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Abstract: Typhoon-specific rainfall-induced landslides present a severe threat in14

mountainous regions. Existing warning systems, however, often fail to account for the distinct15

rainfall dynamics of these extreme events. To bridge this gap, an integrated framework is16

proposed, combining optimized susceptibility predictions with dynamic rainfall thresholds17

tailored to typhoon patterns. The approach enhances machine learning accuracy through18

buffer-based negative sampling and variable weighting. It also introduces a spatiotemporal19

rainfall analysis to distinguish between short-term intense downpours and cumulative soil20

saturation. Tested in Zixing City, Hunan Province, China, following over 700 landslides21

triggered by Typhoon Gaemi, the framework proved its effectiveness. Support Vector22

Machine (SVM) models with frequency ratio (FR) inputs yielded the highest accuracy in23

predicting these slope failures. Rainfall analysis identified the combination of 24-hour24

intensity and 7-day antecedent rainfall as the optimal trigger. This pairing effectively captures25

both immediate and cumulative moisture effects. Spatially, granite slopes and areas near roads26

emerged as critical hotspots for failure. Ultimately, the framework generates high-risk zone27
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maps that align strongly with historical events. This work underscores the unique nature of28

typhoon-driven slope instability and offers a transferable framework for disaster risk29

reduction in cyclone-prone regions.30

Keywords: Typhoon-induced landslide; Slope failure; Hazard warning system; Dynamic31

thresholds; Landslide susceptibility mapping32

1 Introduction33

Landslides pose significant threats to mountainous regions globally (Froude and Petley,34

2018), especially in areas where steep terrain, complex geology (Thiene et al., 2017), and35

extreme weather events like typhoons intersect. In Southeast China, typhoon-induced36

landslides have become a growing concern due to the region's rapid urbanization and the37

increasing variability in climate patterns (Gariano and Guzzetti, 2016; Fan et al., 2018). The38

Nanling Mountains, in southern China, are particularly vulnerable to landslides due to a39

combination of extreme topographic relief and complex geological conditions during the40

typhoon season (Zou et al., 2023).41

Typhoons typically bring prolonged antecedent rainfall, followed by intense, short bursts42

of precipitation (Li et al., 2019). These conditions create unique hydrological environments43

that exceed the complexity of typical rainfall-triggered landslides (Chung and Li, 2022).44

These events trigger slope failures through cumulative soil saturation and sudden hydrological45

stress, challenging traditional landslide prediction methods (Yang et al., 2017). Despite46

advances in landslide susceptibility prediction (LSP) and rainfall threshold modeling, current47

approaches remain inadequate. Three critical limitations persist: severe data imbalance effects,48

suboptimal integration of variable selection with machine learning algorithms, and lack of49

spatially-explicit rainfall thresholds for typhoon-specific conditions (Segoni et al., 2018a;50

Regmi et al., 2024).51
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Most existing studies employ ad-hoc buffer distances without systematic optimization,52

leading to inconsistent model performance across different geological settings (Lombardo and53

Mai, 2018). Traditional methods attempt to mitigate this imbalance by randomly sampling54

non-landslide points across the study area (Steger et al., 2016; Dou et al., 2023). However,55

random selection can introduce spatial bias, as non-landslide points might include areas that56

are unstable but have not yet been identified as landslide-prone (Kalantar et al., 2018).57

To address this limitation, more recent approaches have employed buffer-based negative58

sampling, which systematically excludes non-landslide points near known landslide sites.59

This method assumes that adjacent areas share similar environmental conditions (e.g., slope,60

lithology) and therefore should not be classified as “stable” (Achu et al., 2022). Several61

studies have tested varying buffer distances, ranging from tens to thousands of meters, to62

determine the optimal distance for different regions. However, systematic evaluation of buffer63

distance optimization coupled with variable weighting methods remains largely unexplored.64

LSP is primarily focused on identifying areas prone to slope failure, based on static65

environmental factors such as topography, lithology, land cover, and hydrology (Zêzere et al.,66

2017; Guo et al., 2024). Traditional approaches to LSP often rely on deterministic and67

statistical methods, including information value (IV), certainty factor (CF), frequency ratio68

(FR), logistic regression (LR), and weight of evidence (WOE). These methods quantify the69

relationship between historical landslide occurrences and predisposing factors using linear or70

semi-linear approaches (Ciurleo et al., 2017; Reichenbach et al., 2018). However, these71

methods oversimplify the complex, nonlinear interactions that govern slope stability72

(Merghadi et al., 2020).73

In contrast, machine learning (ML) algorithms, such as support vector machine (SVM)74

and light gradient boosting machine (LightGBM), have emerged as powerful alternatives.75

SVM excels in high-dimensional classification tasks and effectively identifies optimal76
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hyperplanes separating landslide-prone from stable areas (San, 2014; Huang and Zhao, 2018).77

LightGBM offers superior scalability and computational efficiency for processing large78

geospatial datasets (Sun et al., 2023). Both SVM and LightGBM capture intricate79

relationships among variables without restrictive assumptions, making them superior to80

traditional methods in terms of predictive accuracy (Yang et al., 2023). However, frameworks81

that systematically integrates variable weighting methods with advanced ML algorithms for82

LSP optimization are lacking.83

For temporal prediction, existing rainfall threshold approaches predominantly use84

generalized regional thresholds that inadequately capture local geological heterogeneity and85

typhoon-specific rainfall patterns (Guzzetti, 2021; Banfi and De Michele, 2024). These86

thresholds are typically defined based on cumulative or intensity-duration (I-D) rainfall values87

(Piciullo et al., 2017; Segoni et al., 2018a). In typhoon-prone regions, dynamic rainfall88

thresholds are crucial due to the unique combination of long-duration antecedent rainfall and89

sudden high-intensity bursts of precipitation (Guzzetti et al., 2020). Traditional empirical90

methods fail to provide spatially continuous threshold surfaces that account for local91

environmental variability (Piciullo et al., 2018).92

Recent advances have integrated multi-temporal rainfall parameters with advanced93

statistical techniques to optimize rainfall thresholds (Segoni et al., 2015; Huang et al., 2022),94

accounting for diverse triggering mechanisms. Additionally, spatial interpolation methods,95

such as Kriging, have been applied to generate continuous rainfall threshold surfaces that96

allow for local variations in geological and environmental conditions (Kenanoglu et al., 2019;97

Segoni et al., 2018b). This approach, when combined with high-resolution susceptibility maps,98

contributes to the development of integrated hazard warning systems that can dynamically99

adjust to typhoon-specific rainfall-induced scenarios (Piciullo et al., 2018; Mirus et al., 2018).100
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This study examines Zixing City, a mountainous region in southeastern Hunan Province,101

frequently affected by typhoon-induced extreme rainfall. Its steep slopes, fractured geology,102

and high sensitivity to rapid pore-pressure increase render it particularly vulnerable (Ma et al.,103

2025). The large number of landslides (>700) triggered by Typhoon Gaemi in July 2024104

provides a valuable dataset for model calibration and validation.105

Here we developed an integrated framework that combines (i) optimised buffer distances106

for negative sampling, (ii) bivariate weighting methods (IV, CF, FR) with advanced machine107

learning classifiers (SVM, LightGBM), and (iii) spatially continuous, typhoon-specific108

rainfall thresholds derived through Kriging interpolation. The specific objectives are to (1)109

determine optimal buffer distances that minimise spatial bias in imbalanced datasets, (2)110

evaluate the performance gain from coupling bivariate weights with machine learning111

algorithms, (3) establish dynamic rainfall thresholds suited to typhoon rainfall patterns, (4)112

generate continuous threshold surfaces via Kriging, and (5) integrate high-resolution113

susceptibility maps with these thresholds to support an operational early warning system. This114

approach improves landslide prediction in typhoon-prone mountainous regions and provides a115

transferable methodology for similar environments.116

2 Study area and data sources117

2.1 Study area118

Zixing City (25°34′–26°18′ N, 113°08′–113°44′ E), covering 2,747 km² in southeastern119

Hunan Province, China (Fig. 1), is located within the Nanling Mountains geological province.120

Situated approximately 400 km inland from the South China Sea, Zixing lies at the121

intersection of the Nanling Mountains and low hills, forming a watershed divide between the122

Yangtze and Pearl River basins. The region is characterized by steep topography, with123

elevations ranging from 125 to 1,691 meters and slopes exceeding 30° across 78% of the area.124

This mountainous terrain, combined with fractured geology and active NE-SW trending faults125
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such as the Chaling-Yongxing Fault Zone, creates a permeable fracture network that126

facilitates groundwater drainage.127

The climate of Zixing is subtropical monsoon, with annual precipitation averaging 1,550128

mm, 70% of which occurs from April to September. Typhoons significantly contribute to129

rainfall, inducing rapid pore-pressure increases in shallow aquifers (3–8 m depth). These130

climatic and geological conditions make Zixing particularly vulnerable to landslides,131

providing a valuable context for this study. The extensive landslide dataset triggered by132

Typhoon Gaemi in July 2024 (>700 events) serves as a critical resource for model calibration133

and validation.134

135

Figure 1 Geographical distribution of the study area, landslides and rainfall gauges.136

2.2 Data collection and preprocessing137

2.2.1 Compilation of landslide catalogue138

A comprehensive inventory of 705 landslide events triggered by Typhoon Gaemi on July139

27, 2024, was compiled from the Hunan Center for Natural Resources Affairs. The landslide140

locations were verified through field inspections and high-resolution satellite imagery to141

ensure spatial accuracy and completeness of the dataset.142
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2.2.2 Landslides conditioning factors and data sources143

Based on extensive literature reviews and the geoenvironmental characteristics of the144

study area, twelve conditioning factors were selected for landslide susceptibility analysis:145

elevation, slope gradient, slope orientation, curvature, topographic wetness index (TWI),146

stream power index (SPI), normalized difference vegetation index (NDVI), distances to roads,147

rivers, and faults, and lithology (Fig. 2).148

Topographic factors (elevation, slope gradient, slope orientation, TWI, SPI, and149

curvature) were extracted from a 30-meter digital elevation model (DEM) obtained from the150

Geospatial Data Cloud (https://www.gscloud.cn). Environmental factors including NDVI and151

proximity variables (distances to roads, rivers, and fault lines) were derived from 1:50,000-152

scale cartographic maps and Landsat 8 OLI imagery from the same platform. Geological153

composition and structural data were acquired from 1:100,000-scale geological maps.154

155

156

https://www.gscloud.cn/
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157

158
Figure 2 Landslide-related conditioning factors.159

2.2.3 Data preprocessing and spatial standardization160

We transformed all conditioning factors into continuous statistical measures using IV,161

CF, and FR methods and then resampled them to a uniform 60-meter resolution. This162

resolution was selected to balance computational efficiency with scale appropriateness for163

regional landslide analysis while maintaining compatibility with the available geological map164

scale (1:100,000).165

The study area was divided into 60 × 60 meter grid cells, with landslides smaller than the166

grid resolution aggregated to the nearest cell centroid. Multiple landslides within a single cell167

were treated as one event to maintain spatial independence required for machine learning168

modeling. This preprocessing approach ensures statistical validity by minimizing spatial169

autocorrelation effects while providing adequate representation of landslide distribution170

patterns across the study area.171
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2.2.4 Rainfall data collection and spatial distribution172

Rainfall data for the study were obtained from 12 automatic rain gauge stations173

strategically distributed across Zixing City and its surrounding areas (Fig. 1). These stations,174

operated by the Hunan Meteorological Administration, provided hourly precipitation records175

during Typhoon Gaemi (July 20-30, 2024) and the preceding antecedent period. The spatial176

distribution of gauge stations ensured adequate coverage of the study area's topographic and177

climatic gradients.178

To assign rainfall parameters (H1, H12, H24, H72, and D7) to each of the 705 landslide179

points, we employed the Kriging interpolation to generate spatially continuous rainfall180

surfaces from discrete gauge measurements. This geostatistical method accounts for spatial181

autocorrelation in rainfall patterns and provides optimal unbiased estimates by weighting182

nearby observations based on their spatial proximity and correlation structure.183

Spherical variogram models were fitted to the rainfall data through iterative optimization,184

with model selection based on minimum Akaike Information Criterion (AIC) values. The185

interpolation accuracy was rigorously evaluated through leave-one-out cross-validation,186

where each gauge station was sequentially removed and its rainfall values predicted using the187

remaining 11 stations. Four statistical metrics were used to assess performance: Root Mean188

Square Error (RMSE), Mean Absolute Error (MAE), correlation coefficient (R), and Nash-189

Sutcliffe Efficiency (NSE).190

Table 1 Kriging interpolation accuracy assessment for rainfall parameters.191
Parameter RMSE (mm) MAE R NSE

H1 4.2 3.1 0.76 0.71

H12 11.7 8.9 0.83 0.78

H24 16.3 12.6 0.87 0.82

H72 24.8 18.4 0.81 0.77

D7 29.6 22.7 0.78 0.73

The validation results demonstrated acceptable interpolation accuracy across all rainfall192

parameters, with correlation coefficients ranging from 0.76 to 0.87 and Nash-Sutcliffe193
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Efficiency values between 0.71-0.82. Despite some limitations inherent to the sparse gauge194

network in mountainous terrain, the interpolation performance was deemed sufficient for195

regional landslide susceptibility analysis, ensuring reasonable spatial representation of196

precipitation patterns across the study area.197

3 Methodologies198

This study proposes an integrated framework for optimizing LSP and typhoon-specific199

rainfall thresholds within hazard warning systems (Fig. 3). The framework includes the200

following key components: (1) landslide susceptibility prediction and mapping, utilizing201

twelve conditioning factors prioritizing typhoon-induced hydrological responses (e.g., TWI,202

SPI) and 705 landslide records from July 27, 2024, optimized with five buffer distances and203

evaluated using ROC curves; (2) dynamic rainfall threshold modeling based on typhoon204

rainfall parameterization, validated and spatially interpolated using Kriging; and (3) the205

integration of spatial and temporal probabilities to develop a typhoon-specific rainfall-induced206

landslide warning system, demonstrated through a case study in Zixing City.207

208

Figure 3 Technical framework for developing a typhoon-specific rainfall-induced landslide warning system.209
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3.1 Landslide susceptibility prediction and mapping210

3.1.1 Machine learning models211

SVM is a robust supervised learning algorithm widely used for classification in landslide212

susceptibility mapping (Kalantar et al., 2018; Wang et al., 2020). For typhoon-triggered213

landslides, SVM effectively handles imbalanced datasets caused by concentrated slope214

failures in high-intensity rainfall zones. The SVM optimization problem is defined as:215
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where w is the normal vector to the hyperplane, b is the bias term, ξi are slack variables, C is219

the regularization parameter, and ϕ(xi) maps input vectors to a higher-dimensional space. The220

variable yi represents the class label (-1 or 1) for each sample xi.221

LightGBM is an efficient gradient boosting framework for large datasets, known for222

training an ensemble of decision trees by iteratively adding trees that minimize errors from223

previous trees. LightGBM’s scalability is critical for processing typhoon-related geospatial224

data (e.g., hourly rainfall grids) across 2,746 km2 (Sun et al., 2023; Sahin, 2020). The225

minimized objective function is expressed as:226
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where iy is the true label, iŷ is the predictive value,  is a regularization parameter, and228

j represents the parameters of the model.229

3.1.2 Input variable weighting methods230

The IV method, grounded in information theory, assesses how different factors231

contribute to landslide susceptibility within a study area (Niu et al., 2024). Factors such as232
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distance to roads and lithology were weighted higher in Zixing City due to their interaction233

with typhoon-induced soil saturation. The IV for each evaluation factor is determined using234

the formula below:235
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where IV(Fi, K) is the information value of evaluation factor Fi in relation to landslide event K,237

Ni refers to the number of landslides, N is the total number of landslides, Si represents the area238

covered by factor Fi, and S is the total area of the study area.239

The CF method is a widely utilized probabilistic technique for assessing the likelihood of240

landslide occurrences (Zhao et al., 2021). It quantifies the prior probability of a landslide241

initiation under specific conditions of influential factors, utilizing spatial data from known242

landslide locations. The expression of CF is as follows:243
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where CF is the certainty factor indicating the degree of association between an influential245

factor and potential landslide occurrence. It is derived from two area-proportional measures:246

PPa, the proportion of landslide points within a specific factor class (number of landslide247

points in the class / total area of the class); and PPs, the proportion of landslide points across248

the entire study region (total number of landslide points / total area of the region).249

The FR is a prevalent method in statistical analysis that assesses the relative impact of250

various factors on the incidence of landslides (Panchal et al., 2021). An elevated FR value251

denotes a more significant influence of a factor on the likelihood of landslides. The FR is252

determined by the following equation:253
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/
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where FR is the frequency ratio, Ni represents the account of landslides within the area255

corresponding to the conditioning factor, N is the total number of landslides, Si is the area256

covered by the conditioning factor and S is the total area of the study region.257

3.1.3 Buffer distance optimization and uncertainty assessment for LSP258

To generate negative (non-landslide) samples for LSP, areas within buffer distances of d259

= 0.1, 0.5, 1.0, 2.0, and 5.0 km around landslide locations were excluded, with balanced260

negative samples (n = 705) randomly selected from remaining stable areas for each distance.261

The optimal buffer distance was determined by evaluating SVM and LightGBM model262

performance using AUC, Precision, Recall, and F1-score metrics.263

The selection of buffer distances (0.1–5.0 km) was based on Zixing’s geomorphological264

considerations and practices commonly reported in LSP. This range encompasses multiple265

spatial scales: slope-scale processes (0.1–0.5 km), catchment-scale features (1.0–2.0 km), and266

regional-scale geological units (5.0 km). The evaluation ensures optimal spatial representation267

without a priori assumptions about scale dependencies (Chang et al., 2023).268

Prediction uncertainty was assessed using the mean and standard deviation (SD) of269

predicted landslide susceptibility values. Lower mean and SD values indicate reduced270

prediction uncertainty and more concentrated susceptibility patterns, suggesting higher model271

confidence in LSP (Huang et al., 2022), thereby complementing the buffer distance272

optimization process.273

3.2 Effective rainfall threshold modeling274

3.2.1 Rainfall parameterization and threshold calculation275

Typhoon-induced landslides are generally influenced by a combination of antecedent276

moisture conditions and immediate precipitation, rather than by isolated rainfall events277

(Mondini et al., 2023; Tufano et al., 2021). To account for the cumulative impact of multi-day278
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rainfall while incorporating hydrological processes such as evapotranspiration and drainage,279

we adopted the concept of effective rainfall (Pe), calculated as:280





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i
i
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(7)281

where Pi represents the daily rainfall on the i-th day preceding landslide occurrence, n denotes282

the number of antecedent days considered, and k is the effective rainfall decay coefficient283

(Segoni et al., 2018a). For hourly rainfall parameterization, Pi is derived as:284
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where Rij is the hourly rainfall at the j-th hour of the i-th day.286

3.2.2 Long-term and short-term rainfall parameters287

Rainfall-triggered landslides are generally triggered by two dominant mechanisms:288

prolonged low-intensity rainfall and short-duration high-intensity storms. Based on statistical289

analysis of historical landslide events in Hunan Province (Xiao et al., 2025), a 7-day290

antecedent period was identified as optimal for characterizing long-term rainfall impacts.291

Consequently, the 7-day effective rainfall (D7) was selected as the long-term parameter.292

Short-term rainfall metrics were defined as cumulative precipitation over 1 hour (H1), 12293

hours (H12), 24 hours (H24), and 72 hours (H72) preceding landslide initiation. These294

intervals capture distinct rainfall characteristics: H1 reflects extreme short-term intensity for295

rapid slope failures, H12 and H24 represent sub-daily to daily precipitation critical for296

intermediate responses, and H72 accounts for multi-day storm sequences.297

3.2.3 Rainfall threshold model development298

The threshold modeling framework comprises four sequential steps:299

(1) Parameter calculation: The threshold modeling framework comprises four sequential300

steps: (1)Parameter calculation: For each landslide sample, short-term rainfall parameters (H1,301

H12, H24, and H72) and the long-term rainfall parameter (D7) are calculated. The ratios of302
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short-term parameters to the long-term parameter are computed as: R1=H1/D7, R12=H12/D7,303

R24=H24/D7, and R72=H72/D7.304

(2) Threshold setting: Long-to-short-term ratio coefficients (RC1, RC12, RC24, and305

RC72) are introduced as thresholds to determine the dominant rainfall pattern for each306

landslide. These thresholds are used to classify landslides into short-term or long-term307

Typhoon-induced categories.308

(3) Coefficient optimization: A cyclic trial-and-error method is employed to determine309

the optimal ratio coefficients (RC1, RC12, RC24, and RC72), maximizing the accuracy and310

reliability of the model.311

3.2.4 Optimal ratio coefficient threshold determination312

The process of determining the optimal long-to-short-term ratio coefficient threshold is313

demonstrated using H12-D7 as an example. The process for the remaining coefficients (H1-314

D7, H24-D7, and H72-D7) follows a similar approach. A 5-fold cross-validation method is315

applied, with the following procedure:316

(1) Rainfall data extraction for landslide locations: For each of the 705 landslide points,317

R12 and D7 values are extracted from these interpolated surfaces at the exact landslide318

coordinates, ensuring that each landslide location receives rainfall values derived from the319

spatially weighted contributions of all nearby gauge stations. R12 and D7 values for each320

landslide are calculated using Equations (7) and (8).321

(2) Data preparation: The dataset is divided into five equal parts for cross-validation,322

with each part serving as a test set while the remaining four serve as the training set.323

(3) Initial threshold setting: An initial threshold for RC12 is set based on the minimum324

value in the training set.325

(4) Threshold evaluation: For each fold, the RC12 threshold is compared with the R12326

value of samples in the test set. If RC12<R12, the prediction is considered a failure.327
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Prediction accuracy is calculated for each RC12 threshold, adjusting in 0.001 increments until328

the highest prediction accuracy is achieved.329

(5) Optimal RC12 threshold determination: The RC12 threshold with the highest330

prediction accuracy is selected for each fold. The final RC12 threshold is determined by331

averaging the optimal thresholds from all five folds.332

3.2.5 Spatial distribution of optimal threshold333

According to the optimal ratio coefficient threshold determined in section 3.2.4 and the334

long-term and short-term rainfall parameters obtained through interpolation, the threshold335

spatial distribution for the study area can be derived. Taking H12/D7 as an example, the336

process is as follows:337

First, by dividing the H12 values of each landslide point by the optimal ratio coefficient338

RC12, the corresponding D7 thresholds for each landslide point can be calculated. These D7339

thresholds serve as a basis for applying the Kriging interpolation method to obtain the spatial340

distribution map of the D7 thresholds across the entire study area.341

Next, by multiplying the D7 values of each landslide point by the ratio coefficient RC12,342

the corresponding H12 thresholds for each landslide point can be determined. Subsequently,343

utilizing these H12 thresholds, the Kriging interpolation method is applied once more to344

generate the spatial distribution map of the H12 thresholds for the entire study area.345

3.3 Typhoon-specific rainfall-induced landslide warning system346

In order to effectively prevent typhoon-specific rainfall-induced landslide hazards,347

constructing a comprehensive landslide warning system is crucial. This system integrates LSP348

with critical rainfall thresholds, combining spatial probability and temporal probability to349

predict the risk of landslide occurrence and the timing of potential events.350

3.3.1 Construction of the landslide warning system351
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Using the natural breaks point method, the LSP is categorized into five levels of spatial352

probability: very low (S1), low (S2), moderate (S3), high (S4), and very high (S5). These353

levels represent varying degrees of susceptibility to landslides in different regions, forming354

the basis for assessing landslide risks when combined with rainfall data. Paralleling the LSP355

categorization, rainfall thresholds are also divided into five levels using the natural breaks356

point method, representing temporal probability: very low (T1), low (T2), moderate (T3),357

high (T4), and very high (T5). A lower rainfall threshold indicates a higher likelihood of358

typhoon-induced landslides, thus signaling a greater risk of landslide events.359

Table 2 Classification of landslide hazard warning zones by integrating landslide susceptibility levels360
(S1~S5) with rainfall threshold levels (T1~T5).361

Landslide hazard
warning zones

T1 T2 T3 T4 T5

S1 (very low) No warning
zone (2nd level)

No warning
zone (1st level)

No warning
zone (1st level)

No warning
zone (1st level)

No warning
zone (1st level)

S2 (low) 3rd level
warning zone

No warning
zone (2nd level)

No warning
zone (2nd level)

No warning
zone (1st level)

No warning
zone (1st level)

S3 (moderate) 4th level
warning zone

3rd level
warning zone

3rd level
warning zone

No warning
zone (2nd level)

No warning
zone (1st level)

S4 (high) 5th level
warning zone

4th level
warning zone

3rd level
warning zone

No warning
zone (2nd level)

No warning
zone (1st level)

S5 (very high) 5th level
warning zone

5th level
warning zone

4th level
warning zone

3rd level
warning zone

No warning
zone (2nd level)

The matrix-based integration of LSP results and rainfall thresholds, as presented in Table362

2 (Segoni et al., 2015), highlight the correlation between landslide susceptibility and rainfall363

intensity. As the levels of landslide hazard warnings escalate from the 1st level, indicating no364

warning, to the 5th level, which signifies the highest alert, the likelihood of landslide365

occurrences correspondingly increases. Areas categorized in higher hazard zones correspond366

to regions with a heightened risk of landslides. This hazard warning system provides a spatial367

framework for risk assessment and early warning, generating hazard zonation maps that can368

be integrated into operational landslide monitoring and warning protocols. This underscores369

the importance of implementing more effective geological disaster prevention strategies, as370

thoroughly discussed in the literature by Huang et al. (2022).371
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4.Landslide susceptibility prediction using machine learning models372

4.1 Statistical analysis of conditioning factors373

The statistical analysis reveals distinct patterns of landslide susceptibility across all374

conditioning factors (Table S1 in the Supplement). Topographic factors demonstrate clear375

elevation-dependent behavior, with maximum susceptibility occurring at intermediate376

elevations (545-782 m, FR=1.637, IV=0.389), suggesting optimal conditions where377

weathering processes and slope instability converge. Slope gradient exhibits peak378

susceptibility in the moderate range (7.87-15.06°, FR=1.522, IV=0.343), indicating379

insufficient driving forces at gentler slopes and potential debris removal at steeper gradients.380

South-facing aspects show enhanced susceptibility (FR=1.299, IV=0.230), likely attributable381

to intensified weathering from solar radiation and moisture cycles.382

Morphological indices reveal significant correlations with landslide occurrence. Profile383

curvature demonstrates highest susceptibility in convex areas (0.17-0.59, FR=1.480,384

IV=0.480), where stress concentration promotes slope failure. TWI shows strong positive385

correlation with wetness, peaking at high values (8.69-13.62, FR=1.799, IV=0.444),386

confirming the critical role of water accumulation in slope destabilization. SPI indicates387

maximum susceptibility in moderate stream power ranges (1.27-2.39, FR=1.298, IV=0.229),388

reflecting optimal erosional conditions.389

Proximity factors exhibit contrasting patterns based on infrastructure type. Distance to390

roads shows strong inverse correlation with landslide occurrence (0-800 m, FR=1.499,391

IV=0.333), indicating anthropogenic disturbance effects. Conversely, distance to faults392

reveals a bimodal pattern with peak susceptibility at intermediate distances (7-12 km,393

FR=1.439, IV=0.305), suggesting regional structural influence rather than localized fault-394

induced instability. Environmental factors demonstrate vegetation's protective role, with395

moderate NDVI values (0.64-0.76) showing elevated susceptibility (FR=1.854, IV=0.015),396
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representing the transition zone between bare soil vulnerability and established vegetation397

stability. Lithological analysis reveals pronounced material control, with rhyolite (FR=1.546,398

IV=0.353) and granite (FR=1.247, IV=0.198) showing enhanced susceptibility due to399

intensive weathering and joint development, while sedimentary rocks (slate, shale, limestone,400

sandstone) exhibit strong resistance (FR<0.21) owing to their structural integrity and lower401

weathering susceptibility.402

4.2 Landslide susceptibility modeling in Zixing City403

Prior to model development, multicollinearity analysis was conducted using variance404

inflation factor (VIF) to ensure statistical reliability of the conditioning factors. The analysis405

revealed method-specific multicollinearity patterns: IV and CF methods showed no406

significant multicollinearity issues (all VIF < 10), while the FR method exhibited407

multicollinearity in four variables (SPI, Aspect, Plan curvature, and Distance to rivers with408

VIF > 10), which were subsequently excluded from FR-based modeling (Table S2 in the409

supplement). Following this preprocessing, landslide susceptibility prediction was performed410

using SVM and LightGBM models with the three distinct weighting methods (IV, CF, and411

FR). Susceptibility levels were categorized into five classes using the natural breaks412

classification method, with non-landslide samples strategically selected by excluding buffer413

zones of varying distances (0.1, 0.5, 1.0, 2.0, and 5.0 km) around documented landslide414

locations to optimize model performance and reduce spatial bias.415

4.2.1 IV-based modeling performance416

The IV-derived susceptibility maps (Fig. 4) revealed distinct spatial patterns between the417

two models across varying buffer distances. At smaller scales, the SVM model demonstrated418

more detailed classification, with a higher degree of overlap between high susceptibility areas419

and actual landslide locations. The LightGBM model's classification was smoother, with a420

lower degree of overlap between high susceptibility areas and actual landslide locations.421
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Notably, this performance discrepancy diminished progressively with increasing buffer422

distances.423

424

Figure 4 Landslide susceptibility map based on SVM and LightGBM models using the IV input.425

4.2.2 CF-based modeling performance426

In CF-based modeling (Fig. 5), the SVM model's high and very high landslide427

susceptibility areas at smaller scales were more extensive than in the IV mode, with actual428

landslide locations more frequently distributed within these high-risk areas. As the scale429

increased, the high susceptibility areas gradually decreased. The LightGBM model also430

showed a relatively smooth distribution, with some high susceptibility areas identified at431

smaller scales gradually integrating as the scale increased, following a similar trend to the432

SVM model.433
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434

Figure 5 Landslide susceptibility map based on SVM and LightGBM models using the CF input.435

4.2.3 FR-based modeling performance436

Regarding the FR input (Fig. 6), the SVM model identified a significant number of high437

and very high landslide susceptibility areas at smaller scales compared to the IV and CF438

inputs, which closely matched the actual locations of landslides. As the buffer scale expanded,439

these high-risk areas generally diminished and the distribution became smoother. Conversely,440

the LightGBM model delivered more uniform results, offering broader moderate-risk441

distributions, with a small number of high susceptibility areas that did not align with the442

actual landslide locations. As the scale increased, the high susceptibility areas identified by443

the LightGBM model gradually diminished, showing greater consistency with the SVM444

model results at the higher scale.445
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446

Figure 6 Landslide susceptibility map based on SVM and LightGBM models using the FR input.447

4.3 Uncertainty analysis of LSP results448

4.3.1 LSP accuracy evaluation and comparative performance449

Table S2 (in the Supplement) demonstrates contrasting performance characteristics450

between the two machine learning approaches across different spatial scales and input451

configurations. LightGBM consistently achieved high AUC values (0.915-0.921) and452

maintained stable F1-scores (0.838-0.850) across all buffer distances and input methods,453

indicating robust generalization capability. In contrast, SVM exhibited pronounced sensitivity454

to parameter combinations, with performance varying significantly across different buffer455

distances (F1-scores ranging from 0.681 to 0.859) and input methods, particularly showing456

notable degradation with FR input at extreme spatial scales (0.1 km and 5.0 km).457

Two configurations emerged as comprehensively superior: SVM with FR input at 0.5 km458

and 2.0 km buffer distances, both achieving F1-scores of 0.859. These optimal configurations459

not only maintained competitive AUC values (0.914 and 0.913 respectively) but demonstrated460

superior precision-recall balance compared to corresponding LightGBM configurations (F1-461

scores: 0.854 and 0.856). The high recall values (0.845 and 0.851) coupled with robust462
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precision (0.873 and 0.867) indicate enhanced sensitivity to landslide-prone areas while463

minimizing false positive predictions. This bimodal performance pattern suggests that464

intermediate buffer distances effectively capture fault-related geomorphological processes465

influencing slope stability.466

Independent validation on the test set confirmed the robustness of these optimal467

configurations, with SVM-FR models at 0.5 km and 2.0 km buffer distances achieving F1-468

scores of 0.847 and 0.852 respectively, representing minimal performance degradation from469

training results. The consistent AUC values (0.909 and 0.908) on the test set further validate470

the models' discriminative capability and indicate absence of overfitting, confirming the471

reliability of these configurations for practical landslide susceptibility assessment applications.472

4.3.2 LSP distribution characteristics across conditions473

In addition to the performance metrics, the distribution characteristics of landslide474

susceptibility predictions revealed fundamental differences between the models (Figs. S1–S3475

in the Supplement). LightGBM generated smoother, more symmetrical distributions with476

lower mean susceptibility values (0.196–0.320) and smaller standard deviations (0.099–477

0.187), indicating stable and uniform predictions. In contrast, SVM exhibited greater478

variability, with irregular distributions, higher mean values (0.303–0.515), and larger standard479

deviations (0.112–0.214). Notably, SVM's mean susceptibility under FR input rose sharply480

(0.446–0.515), while LightGBM maintained lower means despite moderately broader481

deviations (0.160–0.187).482

Therefore, SVM is preferable for FR-based modeling at 0.5 km and 2.0 km buffers,483

where spatial precision is prioritized over prediction uniformity. The SVM model achieved its484

highest accuracy at the 0.5 km buffer, classifying 86.4% of recorded landslides in high and485

very high susceptibility zones (Fig. 6 (b)). At the 2.0 km buffer (Fig. 6 (d)), it still correctly486
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classified 82.1% of landslides in these zones. As a result, Fig. 6 (b) is selected as the final487

landslide susceptibility map.488

5 Landslide risk assessment in Zixing City489

5.1 Critical rainfall thresholds for landslides in Zixing City490

We evaluated four rainfall threshold models (H1-D7, H12-D7, H24-D7, and H72-D7)491

through 5-fold cross-validation, with their optimal ratio coefficient (RC) thresholds and492

prediction accuracies summarized in Table 3. The H24-D7 model, coupling 24-hour rainfall493

during landfall with 7-day antecedent moisture, achieved the highest accuracy (71.8%) by494

effectively capturing both cumulative saturation and abrupt triggering by typhoon rainfall495

bursts. Notably, the H24-D7 model exhibited stable performance across all folds, with496

accuracy ranging narrowly between 68.8% (Fold 1) and 74.6% (Fold 4), reflecting robust497

generalizability.498

Table 3 Optimal RC values and prediction accuracies (%) for each model across 5-fold cross validation.499

Model Fold 1
RC/Accuracy

Fold 2
RC/Accuracy

Fold 3
RC/Accuracy

Fold 4
RC/Accuracy

Fold 5
RC/Accuracy

Average
RC/Accuracy

H1-D7 0.032/56.5 0.062/29.7 0.076/35.5 0.022/53.6 0.040/47.8 0.047/44.6

H12-D7 0.077/54.2 0.167/46.6 0.243/48.3 0.267/47.7 0.154/45.3 0.182/48.5

H24-D7 0.472/68.8 0.436/72.3 0.422/73.1 0.459/74.6 0.414/70.2 0.440/71.8

H72-D7 0.789/56.5 0.776/59.4 0.781/63.1 0.802/51.4 0.783/60.1 0.787/58.1

In contrast, the H1-D7 and H12-D7 models displayed marked instability: H1-D7500

accuracy fluctuated between 29.7% (Fold 2) and 56.5% (Fold 1), while H12-D7 thresholds501

(RC12: 0.077–0.267) corresponded to accuracies of 45.3–48.3%. The H72-D7 model showed502

moderate performance variability (accuracy: 51.4–63.1%) despite consistently high RC72503

thresholds (>0.78).504

These results highlight the critical role of temporal rainfall parameter selection. The505

superior performance of the H24-D7 model (24-hour short-term rainfall and 7-day antecedent506

rainfall) suggests that a 24-hour duration optimally captures both immediate landslide triggers507
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and cumulative hydrological effects, balancing sensitivity and stability. Shorter (H1/H12) or508

longer (H72) durations either overemphasize transient rainfall spikes or dilute critical509

triggering signals.510

5.2 Spatio-temporal distribution of rainfall thresholds511

Fig. 7 illustrates the spatial distribution of rainfall-triggered landslide thresholds derived512

from four models (RC1, RC12, RC24, and RC72) across multiple temporal scales (1-hour,513

12-hour, 24-hour, 72-hour, and 7-day) within the study area.514

5.2.1 Short-term predictions (1-hour to 12-hour scales)515

At the 1-hour scale (Fig. 7 (a)), the RC1 model generated thresholds ranging from 7 to516

50 mm, with 65.2% of landslides occurring in moderate threshold zones (20-30 mm). This517

indicates the model's effectiveness in detecting slope failures under short-duration rainfall. In518

contrast, the RC12 model on the 12-hour scale (Fig. 7 (b)) showed a wider threshold range519

(25-200 mm), with 62.9% of landslides in mid-to-high threshold regions (80-130 mm). This520

mismatch suggests that the 12-hour cumulative data may underestimate rainfall impacts in521

specific topographic settings.522

523
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Figure 7 Distribution of typhoon rainfall thresholds under various optimal RC ratios: (a) 1-hour RC1-based, (b)524
12-hour RC12-based, (c) 24-hour RC24-based, (d) 72-hour RC72-based, (e) 7-day RC1-based, (f) 7-day RC12-525

based, (g) 7-day RC24-based, and (h) 7-day RC72-based.526

5.2.2 Mid-term predictions (24-hour to 72-hour scales)527

The RC24 model at the 24-hour scale (Fig. 7 (c)) displayed a threshold range of 65-400528

mm, with 87.1% of landslides occurring within moderate thresholds (100-250 mm) and529

12.3% in higher thresholds (>250 mm). This indicates a more accurate capture of rainfall530

intensity effects. At the 72-hour scale (Fig. 7 (d)), the RC72 model produced thresholds531

between 78-700 mm, with 59.2% of landslides in mid-to-high threshold regions (200-500532

mm). Although the RC72 model demonstrated reasonable sensitivity to prolonged rainfall, its533

upper threshold (700 mm) may result in conservative risk predictions for some geological534

settings.535

5.2.3 Long-term predictions (7-day scale)536

At the 7-day scale, significant differences emerge across models in terms of predicted537

rainfall thresholds and landslide points. The RC1 model (Fig. 7 (e)) shows a threshold range538

of 100-700 mm, with landslide points predominantly concentrated in the lower rainfall ranges.539

While these low-threshold landslides may indicate localized risks, the model's conservative540

threshold distribution fails to effectively capture landslides triggered by higher rainfall541

amounts, potentially overlooking more significant events.542

The RC12 model (Fig. 7 (f)), with a threshold range of 100-800 mm, also shows a543

concentration of landslide points in the lower rainfall ranges. Despite a wider threshold range,544

the similarity to the RC1 model suggests that RC12 may also underutilize its capacity to545

predict higher typhoon-induced landslides, leading to under-prediction in areas experiencing546

moderate to heavy precipitation.547

In contrast, the RC24 model (Fig. 7 (g)) exhibits a balanced threshold range (250-900548

mm) and effectively identifies landslide points in both moderate and high rainfall categories.549
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This balance enables RC24 to capture the full spectrum of typhoon-induced landslides,550

accurately identifying risks across different rainfall intensities.551

The RC72 model (Fig. 7 (h)) shows a concentration of landslide points in the higher552

rainfall range (175-1000 mm). While it predicts landslides accurately under heavy rainfall553

conditions, the model may overestimate risks in some regions and neglect potential landslides554

associated with lower rainfall thresholds.555

Based on the above analysis, the RC24 model is the optimal choice, which aligns with556

the finding in Section 5.1. Its effectiveness is evident as it demonstrates superior stability and557

accuracy in both the 24-hour and 7-day timescales.The RC24 model's balanced threshold558

range allows it to accurately assess landslide risks across varying rainfall intensities. This559

makes it the most reliable choice for practical landslide hazard warning applications.560

5.3 Landslide hazard warning system for Zixing City561

Based on the optimal LSP results (Fig. 6 (b)) and the validated RC24 rainfall threshold562

model, a spatially explicit landslide hazard warning system was established for Zixing City.563

The integration of spatial probability (LSP) and temporal probability (rainfall thresholds)564

followed the matrix classification outlined in Table 2.565

566
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567

Figure 8 Landslide warning zones generated by overlaying spatial and temporal probability maps: (a) optimal568
spatial probability, (b) 24-hour RC24-based rainfall threshold, (c) 7-day RC24-based rainfall threshold, (d)569

overlay of (a) and (b), and (e) overlay of (a) and (c).570

Five susceptibility levels in the LSP map (Fig. 6 (b)) were replaced with five spatial571

probabilities (S1–S5) (Fig. 8 (a)), respectively. Simultaneously, the spatially interpolated 24-572

hour rainfall thresholds (H24) (Fig. 8 (b)) and 7-day effective rainfall thresholds (D7) (Fig. 8573

(c)) derived from the RC24 model were classified into five temporal probability levels (T1–574

T5) using the natural breaks method. Spatial overlay analysis was performed to combine the575

susceptibility levels (S1–S5) with the rainfall threshold levels (T1–T5), generating two hazard576

warning zone maps: H24-based (Fig. 8 (d)) and D7-based (Fig. 8 (e)).577

Quantitative assessment of both warning systems reveals distinct performance578

characteristics. The 24-hour threshold system (Fig. 8 (d)) demonstrates superior predictive579

efficiency, with 71.4% of historical landslides occurring within high to very high warning580

zones (Levels 3–5) while covering only 34.2% of the total area, resulting in an efficiency ratio581
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of 2.09 and a risk density of 49.0 landslides per 1000 high-risk grid cells. The spatial582

distribution shows concentrated high-risk areas primarily in the central region, characterized583

by steep slopes (>21.80°), weathered granite lithology, and road proximity (0–800 m). This584

focused distribution indicates effective identification of areas most sensitive to short-term585

intense rainfall triggers.586

The 7-day threshold system (Fig. 8 (e)) exhibits broader spatial coverage, with high-risk587

zones encompassing 42.7% of the study area and capturing 68.7% of historical landslides,588

yielding a lower efficiency ratio of 1.61 and risk density of 37.8 landslides per 1000 grid cells.589

This system effectively identifies extended vulnerable areas in northern and eastern regions,590

reflecting cumulative rainfall effects on slope stability. The expanded coverage captures zones591

where prolonged antecedent moisture interacts with moderate-to-high susceptibility592

conditions.593

Statistical validation confirms the complementary nature of both systems. The 24-hour594

system achieves higher spatial efficiency (efficiency ratio 2.09 vs. 1.61) and landslide595

concentration (risk density 49.0 vs. 37.8), making it optimal for immediate typhoon response596

and targeted emergency resource allocation. Conversely, the 7-day system provides597

comprehensive coverage for prolonged rainfall scenarios, essential for early warning during598

extended typhoon events despite its broader spatial distribution and lower concentration599

efficiency. The combined application of both systems enables dynamic hazard assessment,600

addressing both rapid-onset failures during typhoon landfall and delayed failures following601

sustained precipitation.602

6 Discussion603

6.1 Optimization of landslide susceptibility prediction604

Our comparative analysis of SVM and LightGBM models across different input methods605

(IV, CF, FR) and buffer distances revealed important insights into the optimization of LSP606
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under typhoon-specific rainfall conditions. SVM's superior performance at buffer distances of607

0.5–2.0 km with FR inputs highlights the importance of spatial scale selection in typhoon-608

induced landslide modeling. This extends existing research (Kalantar et al., 2018; Bogaard609

and Greco, 2018) by identifying typhoon-specific spatial patterns that diverge from610

conventional rainfall scenarios.611

The optimal 0.5–2.0 km buffer range corresponds to the spatial autocorrelation pattern of612

typhoon-induced failures, where intense moisture infiltration generates discrete instability613

zones. This differs markedly from earthquake-triggered landslides, which cluster at finer614

scales (Fan et al., 2019), reflecting typhoons' distinct hydrological impact. The effectiveness615

of FR weighting is consistent with the findings of Reichenbach et al. (2018) and Yan et al.616

(2019), who demonstrated that frequency-based methods effectively capture non-linear617

relationships between factors in complex terrain. Our findings indicate FR's particular618

strength under typhoon conditions stems from its capacity to capture specific factor619

interactions, including how road networks intensify runoff concentration on weathered granite620

slopes (Liu et al., 2022).621

6.2 Rainfall threshold modeling and typhoon-specific mechanisms622

The H24-D7 model's superior performance (71.8% accuracy) marks a significant623

advancement in understanding the triggering mechanisms of typhoon-specific landslides. This624

temporal window effectively captures the dual-phase nature of typhoon-induced slope failure:625

prolonged antecedent saturation from tropical moisture bands followed by critical threshold626

exceedance during typhoon core passage (Kirschbaum and Stanley, 2018). The model's627

effectiveness validates the conceptual framework proposed by Nolasco-Javier and Kumar628

(2018), who emphasized the importance of multi-temporal rainfall accumulation in tropical629

cyclone environments.630
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The spatial heterogeneity in rainfall thresholds reflects the complex interaction between631

typhoon structure and local topography (Lee et al., 2018; Cho et al., 2022). Higher thresholds632

in southeastern slopes (>250 mm) correspond to areas of enhanced orographic lifting (Fig.633

7(c)), where terrain amplifies typhoon rainfall through forced ascent mechanisms. Conversely,634

lower thresholds in northern valleys (100-150 mm) (Fig. 7(c)) indicate areas where635

topographic channeling and moisture convergence create favorable conditions for slope636

failure at reduced precipitation levels. This spatial variability contradicts the assumption of637

uniform regional thresholds commonly applied in operational warning systems (Segoni et al.,638

2018b) and supports the implementation of spatially distributed threshold approaches.639

The H24-D7 model's robust cross-validation performance (68.8-74.6% across folds)640

demonstrates its stability across different typhoon sub-events and rainfall patterns. This641

consistency is crucial for operational implementation, as typhoons exhibit significant internal642

variability in rainfall distribution and intensity (Liu et al., 2017). The model's ability to643

maintain predictive accuracy across this variability represents a substantial improvement over644

traditional empirical threshold approaches that often fail during extreme events (Guzzetti et al.,645

2020).646

6.3 Integration of susceptibility and rainfall thresholds for landslide warning647

Integrating landslide susceptibility and rainfall thresholds in an early warning system648

creates a dynamic framework for real-time monitoring and assessment of landslide hazards.649

By overlaying static susceptibility maps with real-time precipitation data, this approach offers650

a continuous hazard assessment that adapts to changing weather conditions, particularly651

during typhoons. The system updates hazard assessments hourly, reflecting the evolving652

precipitation patterns that drive landslide potential.653

The operational framework consists of three hierarchical components: (1) static654

susceptibility surfaces derived from optimized Support Vector Machine-based Flood Risk655
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(SVM-FR) models, which act as baseline hazard zones, (2) dynamic threshold surfaces (H24656

and D7) that define conditions under which rainfall triggers landslide activation, and (3) real-657

time precipitation monitoring, which drives continuous hazard updates. These components658

work together to ensure a comprehensive and up-to-date hazard assessment.659

One of the key features of this system is its ability to automatically adjust warning levels660

based on meteorological forecasts. When forecasts indicate a greater than 70% probability of661

threshold exceedance in high-susceptibility areas, the system escalates warning levels662

accordingly, providing timely alerts to mitigate disaster risk (Piciullo et al., 2018). The dual-663

threshold configuration enhances this approach by providing temporal staging suited to the664

dynamic nature of typhoons. Specifically, as a typhoon approaches (48-72 hours before665

landfall), the D7 threshold monitors antecedent rainfall to identify areas nearing saturation666

and instability. As the typhoon intensifies and makes landfall, the H24 threshold responds to667

immediate, intensive rainfall events, triggering warnings for zones that experience rapid668

threshold exceedance (Gariano et al., 2015). This staged warning system ensures optimized669

lead times for alerts, while also minimizing the risk of alert fatigue, a common challenge in670

continuous hazard monitoring (Nocentini et al., 2024).671

Unlike traditional point-based threshold systems, which are limited in their ability to672

account for spatial variability across complex terrain, this approach integrates spatially673

continuous thresholds. This design allows the system to address terrain-induced variability in674

rainfall-triggered landslides while maintaining computational efficiency for regional-scale675

applications (Calvello and Piciullo, 2016; Sun et al., 2024). Moreover, by incorporating676

typhoon-specific rainfall parameterization within probabilistic threshold surfaces, this system677

significantly advances beyond existing point-based hazard mapping approaches (Guzzetti et678

al., 2020; Nolasco-Javier and Kumar, 2018).679
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For effective operational deployment, the system must be integrated with meteorological680

monitoring infrastructure, such as weather radar networks and automated rainfall stations.681

Critical components of implementation include real-time data processing capabilities,682

standardized protocols for disseminating warnings, and post-event validation procedures that683

ensure system accuracy and maintain stakeholder trust. The modular design of the system684

allows it to be adapted to various regional monitoring networks and institutional frameworks,685

making it versatile and scalable across different geographic and organizational contexts.686

6.4 Limitations and future research directions687

Despite promising advancements, this study has limitations owing to the complexity of688

typhoon-induced landslides. First, the model’s validation relies solely on landslides from689

Typhoon Gaemi. While this single event provided a comprehensive dataset, validating against690

multiple, varied typhoons is crucial for model robustness. Typhoons differ significantly in691

intensity, rainfall patterns, forward speed, and seasonality, all of which can influence692

threshold parameters. For instance, a slow-moving typhoon with higher cumulative rainfall693

and lower peak intensity could alter the optimal H24-D7 ratios. Future research should694

incorporate landslide inventories from typhoons with contrasting characteristics to assess695

threshold transferability and develop adaptive parameterization. The framework’s modular696

design readily facilitates this by allowing recalibration of the RC24 coefficient for different697

typhoon types.698

Second, the current study primarily addresses rainfall-induced landslides, overlooking699

other potential contributing factors. Future work should explore integrating multiple700

triggering mechanisms, including earthquakes, human-induced slope modifications, and701

typhoon rainfall, for a more comprehensive hazard assessment.702

Third, the study doesn't explicitly address the potential impacts of climate change on703

typhoon rainfall and landslide occurrence. As climate change alters typhoon frequency,704
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intensity, and tracks, future studies should incorporate climate projections specific to705

typhoon-prone regions. This will enable the development of forward-looking landslide706

warning systems that can adapt to the evolving threats posed by typhoon-specific rainfall.707

Fourth, while this study demonstrates the effectiveness of ML approaches, further708

refinement is possible. Future research should explore advanced deep learning techniques and709

ensemble methods to better capture the complex, non-linear relationships between typhoon-710

related variables (e.g., rainfall intensity, duration, antecedent moisture) and slope stability.711

These advanced methods may offer improved predictive accuracy, more robust uncertainty712

quantification, and ultimately, more reliable hazard warnings.713

Finally, climate projections for Southeast China show a 15–25% increase in peak714

typhoon rainfall by 2080 (RCP8.5), which could alter the H24–D7 landslide thresholds from715

this study. Higher atmospheric moisture may lower D7 thresholds, while greater rainfall716

intensity could require new H24 parameters. Shifting typhoon tracks and seasonality might717

also change which areas are vulnerable. Future work must use downscaled climate data to718

create non-stationary thresholds, ensuring the long-term reliability of warning systems in the719

region.720

7 Conclusions721

This study establishes a novel integrated framework combining optimized LSP with722

typhoon-specific rainfall threshold modeling for comprehensive hazard assessment in723

mountainous regions. Through systematic analysis of 705 landslides triggered by Typhoon724

Gaemi in Zixing City, several key insights emerge:725

(1) Buffer distance optimization proves critical for typhoon-induced landslide modeling,726

with SVM-FR combinations at 0.5-2.0 km distances achieving superior performance (F1-727

score: 0.859) compared to conventional approaches. This spatial scale effectively captures728
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typhoon-induced moisture infiltration patterns that differ fundamentally from other triggering729

mechanisms.730

(2) The H24-D7 threshold model demonstrates exceptional stability (71.8% accuracy731

across 5-fold validation), successfully characterizing the dual-phase failure mechanism unique732

to typhoons: prolonged antecedent saturation coupled with intense precipitation bursts during733

typhoon passage.734

(3) Spatially distributed rainfall thresholds reveal significant heterogeneity, reflecting735

complex interactions between typhoon structure and local topography that contradict uniform736

regional threshold assumptions in existing operational systems.737

(4) The integrated warning system achieves operational efficiency through dual-738

threshold configuration: H24 thresholds provide immediate response capability during739

typhoon landfall, while D7 thresholds enable early detection of vulnerable areas approaching740

saturation conditions.741

(5) This framework addresses three critical gaps in current landslide prediction:742

systematic buffer optimization for imbalanced datasets, effective integration of variable743

weighting with machine learning algorithms, and development of typhoon-specific spatially744

explicit thresholds.745
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