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Abstract: Typhoon-specific rainfall-induced landslides present a severe threat in14

mountainous regions. Existing warning systems, however, often fail to account for the distinct15

rainfall dynamics of these extreme events. To bridge this gap, an integrated framework is16

proposed, combining optimized susceptibility predictions with dynamic rainfall thresholds17

tailored to typhoon patterns. The approach enhances machine learning accuracy through18

buffer-based negative sampling and variable weighting. It also introduces a spatiotemporal19

rainfall analysis to distinguish between short-term intense downpours and cumulative soil20

saturation. Tested in Zixing City, Hunan Province, China, following over 700 landslides21

triggered by Typhoon Gaemi, the framework proved its effectiveness. Support Vector22

Machine (SVM) models with frequency ratio (FR) inputs yielded the highest accuracy in23

predicting these slope failures. Rainfall analysis identified the combination of 24-hour24

intensity and 7-day antecedent rainfall as the optimal trigger. This pairing effectively captures25

both immediate and cumulative moisture effects. Spatially, granite slopes and areas near roads26

emerged as critical hotspots for failure. Ultimately, the framework generates high-risk zone27
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maps that align strongly with historical events. This work underscores the unique nature of28

typhoon-driven slope instability and offers a transferable framework for disaster risk29

reduction in cyclone-prone regions.30

Keywords: Typhoon-induced landslide; Slope failure; Hazard warning system; Dynamic31

thresholds; Landslide susceptibility mapping32

1 Introduction33

Landslides pose significant threats to mountainous regions globally (Froude and Petley,34

2018), especially in areas where steep terrain, complex geology (Thiene et al., 2017), and35

extreme weather events like typhoons intersect. In Southeast China, typhoon-induced36

landslides have become a growing concern due to the region's rapid urbanization and the37

increasing variability in climate patterns (Gariano and Guzzetti, 2016; Fan et al., 2018). The38

Nanling Mountains, in southern China, are particularly vulnerable to landslides due to a39

combination of extreme topographic relief and complex geological conditions during the40

typhoon season (Zou et al., 2023).41

Typhoons typically bring prolonged antecedent rainfall, followed by intense, short bursts42

of precipitation (Li et al., 2019). These conditions create unique hydrological environments43

that exceed the complexity of typical rainfall-triggered landslides (Chung and Li, 2022).44

These events trigger slope failures through cumulative soil saturation and sudden hydrological45

stress, challenging traditional landslide prediction methods (Yang et al., 2017). Despite46

advances in landslide susceptibility prediction (LSP) and rainfall threshold modeling, current47

approaches remain inadequate. Three critical limitations persist: severe data imbalance effects,48

suboptimal integration of variable selection with machine learning algorithms, and lack of49

spatially-explicit rainfall thresholds for typhoon-specific conditions (Segoni et al., 2018a;50

Regmi et al., 2024).51

From typhoon rainfall to slope failure, this

study addresses the urgent need for typhoon-adapted hazard

warning systems in mountainous regions like Zixing City,

China. We develop an integrated framework to

optimize dynamic susceptibility models and rainfall

thresholds by leveraging machine learning (ML) and

spatiotemporal rainfall analysis. Using buffer-based negative

sampling (0.1–5.0 km) and variable weighting methods

(information value (IV), certainty factor (CF), and frequency

ratio (FR)), we compare two ML models: Support Vector

Machine (SVM) and Light Gradient Boosting Machine

(LightGBM). The SVM model with FR input at 0.5 km buffer

achieved the highest accuracy (AUC=0.913), correctly

classifying 86.4% of landslides in high-risk zones, revealing

how typhoon-driven hydrology interacts with slope instability.

For rainfall thresholds, the H24-D7 model (24-hour intensity

vs. 7-day antecedent rainfall) emerged as optimal (71.8%

accuracy), effectively capturing typhoon-specific triggers like

short-term downpours and cumulative soil saturation. Kriging

interpolation generated spatially explicit thresholds,

identifying granite slopes and road-proximal areas as hotspots

for typhoon-induced failures. The final hazard warning system,

integrating susceptibility and dynamic thresholds, showed

71.4% overlap with historical landslides, emphasizing the

critical role of typhoon rainfall dynamics in slope failure

prediction. This work provides a scalable approach for regions

facing typhoon-related landslide risks, prioritizing both spatial

heterogeneity and temporal rainfall patterns
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Most existing studies employ ad-hoc buffer distances without systematic optimization,52

leading to inconsistent model performance across different geological settings (Lombardo and53

Mai, 2018). Traditional methods attempt to mitigate this imbalance by randomly sampling54

non-landslide points across the study area (Steger et al., 2016; Dou et al., 2023). However,55

random selection can introduce spatial bias, as non-landslide points might include areas that56

are unstable but have not yet been identified as landslide-prone (Kalantar et al., 2018).57

To address this limitation, more recent approaches have employed buffer-based negative58

sampling, which systematically excludes non-landslide points near known landslide sites.59

This method assumes that adjacent areas share similar environmental conditions (e.g., slope,60

lithology) and therefore should not be classified as “stable” (Achu et al., 2022). Several61

studies have tested varying buffer distances, ranging from tens to thousands of meters, to62

determine the optimal distance for different regions. However, systematic evaluation of buffer63

distance optimization coupled with variable weighting methods remains largely unexplored.64

LSP is primarily focused on identifying areas prone to slope failure, based on static65

environmental factors such as topography, lithology, land cover, and hydrology (Zêzere et al.,66

2017; Guo et al., 2024). Traditional approaches to LSP often rely on deterministic and67

statistical methods, including information value (IV), certainty factor (CF), frequency ratio68

(FR), logistic regression (LR), and weight of evidence (WOE). These methods quantify the69

relationship between historical landslide occurrences and predisposing factors using linear or70

semi-linear approaches (Ciurleo et al., 2017; Reichenbach et al., 2018). However, these71

methods oversimplify the complex, nonlinear interactions that govern slope stability72

(Merghadi et al., 2020).73

In contrast, machine learning (ML) algorithms, such as support vector machine (SVM)74

and light gradient boosting machine (LightGBM), have emerged as powerful alternatives.75

SVM excels in high-dimensional classification tasks and effectively identifies optimal76
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hyperplanes separating landslide-prone from stable areas (San, 2014; Huang and Zhao, 2018).77

LightGBM offers superior scalability and computational efficiency for processing large78

geospatial datasets (Sun et al., 2023). Both SVM and LightGBM capture intricate79

relationships among variables without restrictive assumptions, making them superior to80

traditional methods in terms of predictive accuracy (Yang et al., 2023). However, frameworks81

that systematically integrates variable weighting methods with advanced ML algorithms for82

LSP optimization are lacking.83

For temporal prediction, existing rainfall threshold approaches predominantly use84

generalized regional thresholds that inadequately capture local geological heterogeneity and85

typhoon-specific rainfall patterns (Guzzetti, 2021; Banfi and De Michele, 2024). These86

thresholds are typically defined based on cumulative or intensity-duration (I-D) rainfall values87

(Piciullo et al., 2017; Segoni et al., 2018a). In typhoon-prone regions, dynamic rainfall88

thresholds are crucial due to the unique combination of long-duration antecedent rainfall and89

sudden high-intensity bursts of precipitation (Guzzetti et al., 2020). Traditional empirical90

methods fail to provide spatially continuous threshold surfaces that account for local91

environmental variability (Piciullo et al., 2018).92

Recent advances have integrated multi-temporal rainfall parameters with advanced93

statistical techniques to optimize rainfall thresholds (Segoni et al., 2015; Huang et al., 2022),94

accounting for diverse triggering mechanisms. Additionally, spatial interpolation methods,95

such as Kriging, have been applied to generate continuous rainfall threshold surfaces that96

allow for local variations in geological and environmental conditions (Kenanoglu et al., 2019;97

Segoni et al., 2018b). This approach, when combined with high-resolution susceptibility maps,98

contributes to the development of integrated hazard warning systems that can dynamically99

adjust to typhoon-specific rainfall-induced scenarios (Piciullo et al., 2018; Mirus et al., 2018).100
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This study examines Zixing City, a mountainous region in southeastern Hunan Province,101

frequently affected by typhoon-induced extreme rainfall. Its steep slopes, fractured geology,102

and high sensitivity to rapid pore-pressure increase render it particularly vulnerable (Ma et al.,103

2025). The large number of landslides (>700) triggered by Typhoon Gaemi in July 2024104

provides a valuable dataset for model calibration and validation.105

Here we developed an integrated framework that combines (i) optimised buffer distances106

for negative sampling, (ii) bivariate weighting methods (IV, CF, FR) with advanced machine107

learning classifiers (SVM, LightGBM), and (iii) spatially continuous, typhoon-specific108

rainfall thresholds derived through Kriging interpolation. The specific objectives are to (1)109

determine optimal buffer distances that minimise spatial bias in imbalanced datasets, (2)110

evaluate the performance gain from coupling bivariate weights with machine learning111

algorithms, (3) establish dynamic rainfall thresholds suited to typhoon rainfall patterns, (4)112

generate continuous threshold surfaces via Kriging, and (5) integrate high-resolution113

susceptibility maps with these thresholds to support an operational early warning system. This114

approach improves landslide prediction in typhoon-prone mountainous regions and provides a115

transferable methodology for similar environments.116

2 Study area and data sources117

2.1 Study area118

119

Zixing City (25°34′–26°18′ N, 113°08′–113°44′ E), covering 2,747 km² in southeastern120

Hunan Province, China (Fig. 1), is located within the Nanling Mountains geological province.121

Situated approximately 400 km inland from the South China Sea, Zixing lies at the122

intersection of the Nanling Mountains and low hills, forming a watershed divide between the123

Yangtze and Pearl River basins. The region is characterized by steep topography, with124

elevations ranging from 125 to 1,691 meters and slopes exceeding 30° across 78% of the area.125

Landslides are among the most devastating

natural hazards, particularly in regions with steep terrain,

complex geology, and high rainfall variability (Thiene et al.,

2017; Froude and Petley, 2018). As rapid urbanization and

climate change exacerbate the frequency of typhoon-induced

删除[肖巍峰]:

Zixing City, situated in southeastern Hunan

Province, China (25°34′–26°18′ N, 113°08′–113°44′ E), spans

2,746 km² and is characterized by rugged topography, with

over 200 peaks exceeding 800 meters in elevation (Fig. 1). As

a typhoon-prone mountainous region in southern Hunan, it
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This mountainous terrain, combined with fractured geology and active NE-SW trending faults126

such as the Chaling-Yongxing Fault Zone, creates a permeable fracture network that127

facilitates groundwater drainage.128

The climate of Zixing is subtropical monsoon, with annual precipitation averaging 1,550129

mm, 70% of which occurs from April to September. Typhoons significantly contribute to130

rainfall, inducing rapid pore-pressure increases in shallow aquifers (3–8 m depth). These131

climatic and geological conditions make Zixing particularly vulnerable to landslides,132

providing a valuable context for this study. The extensive landslide dataset triggered by133

Typhoon Gaemi in July 2024 (>700 events) serves as a critical resource for model calibration134

and validation.135

136

Figure 1. Geographical distribution of the study area, landslides and rainfall gauges.137

2.2 Data collection and preprocessing138

2.2.1 Compilation of landslide catalogue139

A comprehensive inventory of 705 landslide events triggered by Typhoon Gaemi on July140

27, 2024, was compiled from the Hunan Center for Natural Resources Affairs. The landslide141
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locations were verified through field inspections and high-resolution satellite imagery to142

ensure spatial accuracy and completeness of the dataset.143

2.2.2 Landslides-related conditioning factors and data sources144

Based on extensive literature reviews and the geoenvironmental characteristics of the145

study area, twelve conditioning factors were selected for landslide susceptibility analysis:146

elevation, slope gradient, slope orientation, curvature, topographic wetness index (TWI),147

stream power index (SPI), normalized difference vegetation index (NDVI), distances to roads,148

rivers, and faults, and lithology (Fig. 2).149

Topographic factors (elevation, slope gradient, slope orientation, TWI, SPI, and150

curvature) were extracted from a 30-meter digital elevation model (DEM) obtained from the151

Geospatial Data Cloud (https://www.gscloud.cn). Environmental factors including NDVI and152

proximity variables (distances to roads, rivers, and fault lines) were derived from 1:50,000-153

scale cartographic maps and Landsat 8 OLI imagery from the same platform. Geological154

composition and structural data were acquired from 1:100,000-scale geological maps.155

156

Constructing an accurate landslide catalogue is

crucial for landslide susceptibility prediction (Reichenbach et

al., 2018). In this study, a total of 705 landslide events

triggered by Typhoon “Gemei” on July 27, 2024, were

documented. The dataset was obtained from the Hunan Center

for Natural Resources Affairs, verified through field

inspections and satellite imagery to ensure accuracy.
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Identifying key conditioning factors is

essential for delineating landslide-prone areas. Based on

literature reviews and the study area’s geo-environmental

characteristics, twelve factors were selected, including

elevation, slope gradient, slope orientation, curvatures,

topographic wetness index (TWI), distance to road, river, fault,

normalized difference vegetation index (NDVI), stream power

index (SPI), and lithology (Fig. 2).
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157

158

159
Figure 2. Landslide-related conditioning factors.160

161

2.2.3 Data preprocessing and spatial standardization162

We transformed all conditioning factors into continuous statistical measures using IV,163

CF, and FR methods and then resampled them to a uniform 60-meter resolution. This164

resolution was selected to balance computational efficiency with scale appropriateness for165

Topographic factors, such as elevation, slope

gradient, slope orientation, TWI, SPI, and curvature, were

extracted from a 30-meter digital elevation model (DEM)

sourced from the Geospatial Data Cloud

(https://www.gscloud.cn). Environmental factors like NDVI,

distances to roads, rivers, and fault lines were derived from

1:50,000-scale cartographic maps and Landsat 8 OLI imagery,

both of which were also accessible via the Geospatial Data

Cloud. Geological composition and fault line data were

obtained from 1:100,000-scale geological maps. Hourly

rainfall data from 12 meteorological stations during Typhoon

"Gemei" were integrated to support dynamic threshold

analysis.

For analysis, the study area was divided into 60 × 60 meter

grid cells. Within this grid, 705 landslide events were recorded,

each located within a unique grid cell and treated as positive

samples for susceptibility analysis.

删除[肖巍峰]:
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regional landslide analysis while maintaining compatibility with the available geological map166

scale (1:100,000).167

The study area was divided into 60 × 60 meter grid cells, with landslides smaller than the168

grid resolution aggregated to the nearest cell centroid. Multiple landslides within a single cell169

were treated as one event to maintain spatial independence required for machine learning170

modeling. This preprocessing approach ensures statistical validity by minimizing spatial171

autocorrelation effects while providing adequate representation of landslide distribution172

patterns across the study area.173

2.2.4 Rainfall data collection and spatial distribution174

Rainfall data for the study were obtained from 12 automatic rain gauge stations175

strategically distributed across Zixing City and its surrounding areas (Fig. 1). These stations,176

operated by the Hunan Meteorological Administration, provided hourly precipitation records177

during Typhoon Gaemi (July 20-30, 2024) and the preceding antecedent period. The spatial178

distribution of gauge stations ensured adequate coverage of the study area's topographic and179

climatic gradients.180

To assign rainfall parameters (H1, H12, H24, H72, and D7) to each of the 705 landslide181

points, we employed the Kriging interpolation to generate spatially continuous rainfall182

surfaces from discrete gauge measurements. This geostatistical method accounts for spatial183

autocorrelation in rainfall patterns and provides optimal unbiased estimates by weighting184

nearby observations based on their spatial proximity and correlation structure.185

Spherical variogram models were fitted to the rainfall data through iterative optimization,186

with model selection based on minimum Akaike Information Criterion (AIC) values. The187

interpolation accuracy was rigorously evaluated through leave-one-out cross-validation,188

where each gauge station was sequentially removed and its rainfall values predicted using the189

remaining 11 stations. Four statistical metrics were used to assess performance: Root Mean190
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Square Error (RMSE), Mean Absolute Error (MAE), correlation coefficient (R), and Nash-191

Sutcliffe Efficiency (NSE).192

Table 1 Kriging interpolation accuracy assessment for rainfall parameters.193
Parameter RMSE (mm) MAE R NSE

H1 4.2 3.1 0.76 0.71

H12 11.7 8.9 0.83 0.78

H24 16.3 12.6 0.87 0.82

H72 24.8 18.4 0.81 0.77

D7 29.6 22.7 0.78 0.73

The validation results demonstrated acceptable interpolation accuracy across all rainfall194

parameters, with correlation coefficients ranging from 0.76 to 0.87 and Nash-Sutcliffe195

Efficiency values between 0.71-0.82. Despite some limitations inherent to the sparse gauge196

network in mountainous terrain, the interpolation performance was deemed sufficient for197

regional landslide susceptibility analysis, ensuring reasonable spatial representation of198

precipitation patterns across the study area.199

3 Methodologies200

This study proposes an integrated framework for optimizing landslide susceptibility201

prediction (LSP) and typhoon-specific rainfall thresholds within hazard warning systems (Fig.202

3). The framework includes the following key components: (1) landslide susceptibility203

prediction and mapping, utilizing twelve conditioning factors prioritizing typhoon-induced204

hydrological responses (e.g., TWI, SPI) and 705 landslide records from July 27, 2024,205

optimized with five buffer distances and evaluated using ROC curves; (2) dynamic rainfall206

threshold modeling based on typhoon rainfall parameterization, validated and spatially207

interpolated using Kriging; and (3) the integration of spatial and temporal probabilities to208

develop a typhoon-specific rainfall-induced landslide warning system, demonstrated through209

a case study in Zixing City.210

typhoon-adapted hazard warning system,删除[肖巍峰]:
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211

Figure 3. Technical framework for developing a typhoon-specific rainfall-induced landslide warning system.212

3.1 Landslide susceptibility prediction and mapping213

3.1.1 Machine learning models214

SVM is a robust supervised learning algorithm widely used for classification in landslide215

susceptibility mapping (Kalantar et al., 2018; Wang et al., 2020). It operates by finding the216

optimal hyperplane that separates landslide-prone areas from stable regions in a217

multidimensional feature space. For typhoon-triggered landslides, SVM effectively handles218

imbalanced datasets caused by concentrated slope failures in high-intensity rainfall zones. The219

SVM optimization problem is defined as:220





n

i
i

T

bw
Cww

1,, 2
1min 


(1)221

subject to the constraint:222

nibxwy ii
T

i ,,1    0,     ,1))(( i   (2)223

typhoon rainfall-induced landslide hazard

warning system
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where w is the normal vector to the hyperplane, b is the bias term, ξi are slack variables, C is224

the regularization parameter, and ϕ(xi) maps input vectors to a higher-dimensional space. The225

variable yi represents the class label (-1 or 1) for each sample xi.226

LightGBM is an efficient gradient boosting framework for large datasets, known for227

training an ensemble of decision trees by iteratively adding trees that minimize errors from228

previous trees. LightGBM’s scalability is critical for processing typhoon-related geospatial229

data (e.g., hourly rainfall grids) across 2,746 km2 (Sun et al., 2023; Sahin, 2020). The230

minimized objective function is expressed as:231





M

j
j

N

i
ii yyL

1

2

1

2)ˆ(  (3)232

where iy is the true label, iŷ is the predictive value,  is a regularization parameter, and233

j represents the parameters of the model.234

3.1.2 Input variable weighting methods235

The IV method, grounded in information theory, assesses how different factors236

contribute to landslide susceptibility within a study area (Niu et al., 2024). Factors such as237

distance to roads and lithology were weighted higher in Zixing City due to their interaction238

with typhoon-induced soil saturation. The IV for each evaluation factor is determined using239

the formula below:240

SS
NNKFIV

i

i
i /

/ln),(  (4)241

where IV(Fi, K) is the information value of evaluation factor Fi in relation to landslide event K,242

Ni refers to the number of landslides, N is the total number of landslides, Si represents the area243

covered by factor Fi, and S is the total area of the study area.244

The CF is a widely utilized probabilistic technique for assessing the likelihood of245

landslide events (Zhao et al., 2021). It quantifies the prior probability of a landslide occurring246
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under various influential factor conditions using data from known landslide locations. The247

expression of CF is as follows:248




















sa
sa

sa

sa
as

sa

PPPP
PPPP
PPPP

PPPP
PPPP
PPPP

CF
       ,

)1(

       ,
)1(

(5)249

where CF is the certainty factor indicating the degree of association between an influential250

factor and potential landslide occurrence. It is derived from two area-proportional measures:251

PPa, the proportion of landslide points within a specific factor class (number of landslide252

points in the class / total area of the class); and PPs, the proportion of landslide points across253

the entire study region (total number of landslide points / total area of the region).254

The FR is a prevalent method in statistical analysis that assesses the relative impact of255

various factors on the incidence of landslides (Panchal et al., 2021). An elevated FR value256

denotes a more significant influence of a factor on the likelihood of landslides. The FR is257

determined by the following equation:258

SS
NNFR

i

i

/
/

 (6)259

where FR is the frequency ratio, Ni represents the account of landslides within the area260

corresponding to the conditioning factor, N is the total number of landslides, Si is the area261

covered by the conditioning factor and S is the total area of the study region.262

3.1.3 Buffer distance optimization and uncertainty assessment for LSP263

To generate negative (non-landslide) samples for LSP, areas within buffer distances of d264

= 0.1, 0.5, 1.0, 2.0, and 5.0 km around landslide locations were excluded, with balanced265

negative samples (n = 705) randomly selected from remaining stable areas for each distance.266

The optimal buffer distance was determined by evaluating SVM and LightGBM model267

performance using AUC, Precision, Recall, and F1-score metrics.268

where CF is the certainty factor for potential

landslide occurrences, PPa is the proportion of the number of

landslide points relative to the area of the influencing factor's

domain, and PPs is the proportion of the total number of

landslide points across the entire study region to the total area

of the study region.
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The selection of buffer distances (0.1–5.0 km) was based on Zixing’s geomorphological269

considerations and practices commonly reported in LSP. This range encompasses multiple270

spatial scales: slope-scale processes (0.1–0.5 km), catchment-scale features (1.0–2.0 km), and271

regional-scale geological units (5.0 km). The evaluation ensures optimal spatial representation272

without a priori assumptions about scale dependencies (Chang et al., 2023).273

Prediction uncertainty was assessed using the mean and standard deviation (SD) of274

predicted landslide susceptibility values. Lower mean and SD values indicate reduced275

prediction uncertainty and more concentrated susceptibility patterns, suggesting higher model276

confidence in LSP (Huang et al., 2022), thereby complementing the buffer distance277

optimization process.278

3.2 Effective rainfall threshold modeling279

3.2.1 Rainfall parameterization and threshold calculation280

Typhoon-induced landslides are generally influenced by a combination of antecedent281

moisture conditions and immediate precipitation, rather than by isolated rainfall events282

(Mondini et al., 2023; Tufano et al., 2021). To account for the cumulative impact of multi-day283

rainfall while incorporating hydrological processes such as evapotranspiration and drainage,284

we adopted the concept of effective rainfall (Pe), calculated as:285





n

i
i

i
e PkP

0
(7)286

where Pi represents the daily rainfall on the i-th day preceding landslide occurrence, n denotes287

the number of antecedent days considered, and k is the effective rainfall decay coefficient288

(Segoni et al., 2018a). For hourly rainfall parameterization, Pi is derived as:289





24

1j
iji RP (8)290

where Rij is the hourly rainfall at the j-th hour of the i-th day.291

3.2.2 Long-term and short-term rainfall parameters292

Negative (non-landslide) samples are

generated by excluding zones within five buffer distances

(d=0.1, 0.5, 1.0, 2.0, 5.0 km) around landslide points. For each

distance d, negative samples are selected from the remaining

stable areas, balanced to match the landslide count (n=705).

The optimal buffer is determined by maximizing the receiver

operating characteristic curve (AUC) values across distances.

3.1.4 Uncertainty assessment for model performance

To assess the SVM and LightGBM models' performance in

predicting landslide susceptibility, we focused on the area

under the AUC for both the training and test sets. AUC is a

crucial metric for assessing classification models, especially in

binary tasks like this. The AUC score quantifies the model's

overall ability to distinguish between the positive (landslide)

and negative (non-landslide) classes. An AUC value closer to

1 indicates better model performance, reflecting a higher

capability to correctly classify instances.

In landslide susceptibility prediction, the mean and standard

deviation (SD) are critical metrics indicating central tendency

and variability. Generally, a lower mean and SD in LSP

distribution suggest lower uncertainty and less spread in

predicting landslide susceptibility (Huang et al., 2022).
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Rainfall-triggered landslides are generally triggered by two dominant mechanisms:293

prolonged low-intensity rainfall and short-duration high-intensity storms. Based on statistical294

analysis of historical landslide events in Hunan Province (Xiao et al., 2025), a 7-day295

antecedent period was identified as optimal for characterizing long-term rainfall impacts.296

Consequently, the 7-day effective rainfall (D7) was selected as the long-term parameter.297

Short-term rainfall metrics were defined as cumulative precipitation over 1 hour (H1), 12298

hours (H12), 24 hours (H24), and 72 hours (H72) preceding landslide initiation. These299

intervals capture distinct rainfall characteristics: H1 reflects extreme short-term intensity for300

rapid slope failures, H12 and H24 represent sub-daily to daily precipitation critical for301

intermediate responses, and H72 accounts for multi-day storm sequences.302

3.2.3 Rainfall threshold model development303

The threshold modeling framework comprises four sequential steps:304

(1) Parameter calculation: For each landslide sample, short-term rainfall parameters (H1,305

H12, H24, and H72) and the long-term rainfall parameter (D7) are calculated. The ratios of306

short-term parameters to the long-term parameter are computed as: R1=H1/D7, R12=H12/D7,307

R24=H24/D7, and R72=H72/D7.308

(2) Threshold setting: Long-to-short-term ratio coefficients (RC1, RC12, RC24, and309

RC72) are introduced as thresholds to determine the dominant rainfall pattern for each310

landslide. These thresholds are used to classify landslides into short-term or long-term311

Typhoon-induced categories.312

(3) Coefficient optimization: A cyclic trial-and-error method is employed to determine313

the optimal ratio coefficients (RC1, RC12, RC24, and RC72), maximizing the accuracy and314

reliability of the model.315

3.2.4 Optimal ratio coefficient threshold determination316



16

The process of determining the optimal long-to-short-term ratio coefficient threshold is317

demonstrated using H12-D7 as an example. The process for the remaining coefficients (H1-318

D7, H24-D7, and H72-D7) follows a similar approach. A 5-fold cross-validation method is319

applied, with the following procedure:320

(1) Rainfall data extraction for landslide locations: For each of the 705 landslide points,321

R12 and D7 values are extracted from these interpolated surfaces at the exact landslide322

coordinates, ensuring that each landslide location receives rainfall values derived from the323

spatially weighted contributions of all nearby gauge stations. R12 and D7 values for each324

landslide are calculated using Equations (7) and (8).325

(2) Data preparation: The dataset is divided into five equal parts for cross-validation,326

with each part serving as a test set while the remaining four serve as the training set.327

(3) Initial threshold setting: An initial threshold for RC12 is set based on the minimum328

value in the training set.329

(4) Threshold evaluation: For each fold, the RC12 threshold is compared with the R12330

value of samples in the test set. If RC12<R12, the prediction is considered a failure.331

Prediction accuracy is calculated for each RC12 threshold, adjusting in 0.001 increments until332

the highest prediction accuracy is achieved.333

(5) Optimal RC12 threshold determination: The RC12 threshold with the highest334

prediction accuracy is selected for each fold. The final RC12 threshold is determined by335

averaging the optimal thresholds from all five folds.336

3.2.5 Spatial distribution of optimal threshold337

According to the optimal ratio coefficient threshold determined in section 3.2.4 and the338

long-term and short-term rainfall parameters obtained through interpolation, the threshold339

spatial distribution for the study area can be derived. Taking H12/D7 as an example, the340

process is as follows:341

Spatial interpolation: Kriging interpolation is

applied to short-term and long-term rainfall data from various

rain gauge stations within the study area. R12 and D7 values

for each landslide are calculated using Equations (7) and (8).
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First, by dividing the H12 values of each landslide point by the optimal ratio coefficient342

RC12, the corresponding D7 thresholds for each landslide point can be calculated. These D7343

thresholds serve as a basis for applying the Kriging interpolation method to obtain the spatial344

distribution map of the D7 thresholds across the entire study area.345

Next, by multiplying the D7 values of each landslide point by the ratio coefficient RC12,346

the corresponding H12 thresholds for each landslide point can be determined. Subsequently,347

utilizing these H12 thresholds, the Kriging interpolation method is applied once more to348

generate the spatial distribution map of the H12 thresholds for the entire study area.349

3.3 Typhoon-specific rainfall-induced landslide warning system350

In order to effectively prevent typhoon-adapted landslide hazards, constructing a351

comprehensive landslide early warning system is crucial. This system integrates landslide352

susceptibility prediction with critical rainfall thresholds, combining spatial probability and353

temporal probability to predict the risk of landslide occurrence and the timing of potential354

events.355

3.3.1 Construction of the hazard warning system356

Using the natural breaks point method, the LSP is categorized into five levels of spatial357

probability: very low (S1), low (S2), moderate (S3), high (S4), and very high (S5). These358

levels represent varying degrees of susceptibility to landslides in different regions, forming359

the basis for assessing landslide risks when combined with rainfall data. Paralleling the LSP360

categorization, rainfall thresholds are also divided into five levels using the natural breaks361

point method, representing temporal probability: very low (T1), low (T2), moderate (T3),362

high (T4), and very high (T5). A lower rainfall threshold indicates a higher likelihood of363

typhoon-induced landslides, thus signaling a greater risk of landslide events.364

Table 2. Classification of landslide hazard warning zones by integrating landslide susceptibility levels365
(S1~S5) with rainfall threshold levels (T1~T5).366

Landslide hazard
warning zones

T1 T2 T3 T4 T5

Typhoon-adapted hazard warning system删除[肖巍峰]:
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S1 (very low) No warning
zone (2nd level)

No warning
zone (1st level)

No warning
zone (1st level)

No warning
zone (1st level)

No warning
zone (1st level)

S2 (low) 3rd level
warning zone

No warning
zone (2nd level)

No warning
zone (2nd level)

No warning
zone (1st level)

No warning
zone (1st level)

S3 (moderate) 4th level
warning zone

3rd level
warning zone

3rd level
warning zone

No warning
zone (2nd level)

No warning
zone (1st level)

S4 (high) 5th level
warning zone

4th level
warning zone

3rd level
warning zone

No warning
zone (2nd level)

No warning
zone (1st level)

S5 (very high) 5th level
warning zone

5th level
warning zone

4th level
warning zone

3rd level
warning zone

No warning
zone (2nd level)

The matrix-based integration of LSP results and rainfall thresholds, as presented in Table367

1 (Segoni et al., 2015), highlight the correlation between landslide susceptibility and rainfall368

intensity. As the levels of landslide hazard warnings escalate from the 1st level, indicating no369

warning, to the 5th level, which signifies the highest alert, the likelihood of landslide370

occurrences correspondingly increases. Areas categorized in higher hazard zones correspond371

to regions with a heightened risk of landslides. This hazard warning system provides a spatial372

framework for risk assessment and early warning, generating hazard zonation maps that can373

be integrated into operational landslide monitoring and warning protocols. This underscores374

the importance of implementing more effective geological disaster prevention strategies, as375

thoroughly discussed in the literature by Huang et al. (2022).376

4.Landslide susceptibility prediction using machine learning models377

4.1 Statistical analysis of conditioning factors378

The statistical analysis reveals distinct patterns of landslide susceptibility across all379

conditioning factors (Table S1 in the Supplement). Topographic factors demonstrate clear380

elevation-dependent behavior, with maximum susceptibility occurring at intermediate381

elevations (545-782 m, FR=1.637, IV=0.389), suggesting optimal conditions where382

weathering processes and slope instability converge. Slope gradient exhibits peak383

susceptibility in the moderate range (7.87-15.06°, FR=1.522, IV=0.343), indicating384

insufficient driving forces at gentler slopes and potential debris removal at steeper gradients.385

IV, CF and FR values删除[肖巍峰]:
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South-facing aspects show enhanced susceptibility (FR=1.299, IV=0.230), likely attributable386

to intensified weathering from solar radiation and moisture cycles.387

Morphological indices reveal significant correlations with landslide occurrence. Profile388

curvature demonstrates highest susceptibility in convex areas (0.17-0.59, FR=1.480,389

IV=0.480), where stress concentration promotes slope failure. TWI shows strong positive390

correlation with wetness, peaking at high values (8.69-13.62, FR=1.799, IV=0.444),391

confirming the critical role of water accumulation in slope destabilization. SPI indicates392

maximum susceptibility in moderate stream power ranges (1.27-2.39, FR=1.298, IV=0.229),393

reflecting optimal erosional conditions.394

Proximity factors exhibit contrasting patterns based on infrastructure type. Distance to395

roads shows strong inverse correlation with landslide occurrence (0-800 m, FR=1.499,396

IV=0.333), indicating anthropogenic disturbance effects. Conversely, distance to faults397

reveals a bimodal pattern with peak susceptibility at intermediate distances (7-12 km,398

FR=1.439, IV=0.305), suggesting regional structural influence rather than localized fault-399

induced instability. Environmental factors demonstrate vegetation's protective role, with400

moderate NDVI values (0.64-0.76) showing elevated susceptibility (FR=1.854, IV=0.015),401

representing the transition zone between bare soil vulnerability and established vegetation402

stability. Lithological analysis reveals pronounced material control, with rhyolite (FR=1.546,403

IV=0.353) and granite (FR=1.247, IV=0.198) showing enhanced susceptibility due to404

intensive weathering and joint development, while sedimentary rocks (slate, shale, limestone,405

sandstone) exhibit strong resistance (FR<0.21) owing to their structural integrity and lower406

weathering susceptibility.407
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4.2 Landslide susceptibility modeling in Zixing City408

Prior to model development, multicollinearity analysis was conducted using variance409

inflation factor (VIF) to ensure statistical reliability of the conditioning factors. The analysis410

revealed method-specific multicollinearity patterns: IV and CF methods showed no411

significant multicollinearity issues (all VIF < 10), while the FR method exhibited412

multicollinearity in four variables (SPI, Aspect, Plan curvature, and Distance to rivers with413

VIF > 10), which were subsequently excluded from FR-based modeling (Table S2 in the414

supplement). Following this preprocessing, landslide susceptibility prediction was performed415

using SVM and LightGBM models with the three distinct weighting methods (IV, CF, and416

FR). Susceptibility levels were categorized into five classes using the natural breaks417

classification method, with non-landslide samples strategically selected by excluding buffer418

zones of varying distances (0.1, 0.5, 1.0, 2.0, and 5.0 km) around documented landslide419

locations to optimize model performance and reduce spatial bias.420

4.2.1 IV-based modeling performance421

The IV-derived susceptibility maps (Fig. 4) revealed distinct spatial patterns between the422

two models across varying buffer distances. At smaller scales, the SVM model demonstrated423

more detailed classification, with a higher degree of overlap between high susceptibility areas424

and actual landslide locations. The LightGBM model's classification was smoother, with a425

lower degree of overlap between high susceptibility areas and actual landslide locations.426

Notably, this performance discrepancy diminished progressively with increasing buffer427

distances.428
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429

430

Figure 4. Landslide susceptibility map based on SVM and LightGBM models using the IV input.431

4.2.2 CF-based modeling performance432

In CF-based modeling (Fig. 5), the SVM model's high and very high landslide433

susceptibility areas at smaller scales were more extensive than in the IV mode, with actual434

landslide locations more frequently distributed within these high-risk areas. As the scale435

increased, the high susceptibility areas gradually decreased. The LightGBM model also436

showed a relatively smooth distribution, with some high susceptibility areas identified at437

smaller scales gradually integrating as the scale increased, following a similar trend to the438

SVM model.439

3删除[肖巍峰]:



23

440

Figure 5. Landslide susceptibility map based on SVM and LightGBM models using the CF input.441

4.2.3 FR-based modeling performance442

Regarding the FR input (Fig. 6), the SVM model identified a significant number of high443

and very high landslide susceptibility areas at smaller scales compared to the IV and CF444

inputs, which closely matched the actual locations of landslides. As the buffer scale expanded,445

these high-risk areas generally diminished and the distribution became smoother. Conversely,446

the LightGBM model delivered more uniform results, offering broader moderate-risk447

distributions, with a small number of high susceptibility areas that did not align with the448

actual landslide locations. As the scale increased, the high susceptibility areas identified by449

the LightGBM model gradually diminished, showing greater consistency with the SVM450

model results at the higher scale.451

452
453
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454

Figure 6. Landslide susceptibility map based on SVM and LightGBM models using the FR input.455

4.3 Uncertainty analysis of LSP results456

4.3.1 LSP accuracy evaluation and comparative performance457

458

Table S2 (in the Supplement) demonstrates contrasting performance characteristics459

between the two machine learning approaches across different spatial scales and input460

configurations. LightGBM consistently achieved high AUC values (0.915-0.921) and461

maintained stable F1-scores (0.838-0.850) across all buffer distances and input methods,462

indicating robust generalization capability. In contrast, SVM exhibited pronounced sensitivity463

to parameter combinations, with performance varying significantly across different buffer464

distances (F1-scores ranging from 0.681 to 0.859) and input methods, particularly showing465

notable degradation with FR input at extreme spatial scales (0.1 km and 5.0 km).466

Two configurations emerged as comprehensively superior: SVM with FR input at 0.5 km467

and 2.0 km buffer distances, both achieving F1-scores of 0.859. These optimal configurations468

not only maintained competitive AUC values (0.914 and 0.913 respectively) but demonstrated469
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values of SVM and LightGBM models across buffer distances

(0.1–5.0 km) and input methods (IV, CF, FR). Both models

demonstrated robust predictive performance, with LightGBM

consistently outperforming SVM, particularly under FR input
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superior precision-recall balance compared to corresponding LightGBM configurations (F1-470

scores: 0.854 and 0.856). The high recall values (0.845 and 0.851) coupled with robust471

precision (0.873 and 0.867) indicate enhanced sensitivity to landslide-prone areas while472

minimizing false positive predictions. This bimodal performance pattern suggests that473

intermediate buffer distances effectively capture fault-related geomorphological processes474

influencing slope stability.475

Independent validation on the test set confirmed the robustness of these optimal476

configurations, with SVM-FR models at 0.5 km and 2.0 km buffer distances achieving F1-477

scores of 0.847 and 0.852 respectively, representing minimal performance degradation from478

training results. The consistent AUC values (0.909 and 0.908) on the test set further validate479

the models' discriminative capability and indicate absence of overfitting, confirming the480

reliability of these configurations for practical landslide susceptibility assessment applications.481

4.3.2 LSP distribution characteristics across conditions482

In addition to the performance metrics, the distribution characteristics of landslide483

susceptibility predictions revealed fundamental differences between the models (Figs. S1–S3484

in the Supplement). LightGBM generated smoother, more symmetrical distributions with485

lower mean susceptibility values (0.196–0.320) and smaller standard deviations (0.099–486

0.187), indicating stable and uniform predictions. In contrast, SVM exhibited greater487

variability, with irregular distributions, higher mean values (0.303–0.515), and larger standard488

deviations (0.112–0.214). Notably, SVM's mean susceptibility under FR input rose sharply489

(0.446–0.515), while LightGBM maintained lower means despite moderately broader490

deviations (0.160–0.187).491

Therefore, SVM is preferable for FR-based modeling at 0.5 km and 2.0 km buffers,492

where spatial precision is prioritized over prediction uniformity. The SVM model achieved its493

highest accuracy at the 0.5 km buffer, classifying 86.4% of recorded landslides in high and494
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very high susceptibility zones (Fig. 6 (b)). At the 2.0 km buffer (Fig. 6 (d)), it still correctly495

classified 82.1% of landslides in these zones. As a result, Fig. 6 (b) is selected as the final496

landslide susceptibility map.497

5 Landslide risk assessment in Zixing City498

5.1 Critical rainfall thresholds for landslides in Zixing City499

four rainfall threshold models (H1-D7, H12-D7, H24-D7, and H72-D7) through 5-fold500

cross-validation, with their optimal ratio coefficient (RC) thresholds and prediction accuracies501

summarized in Table 3. The H24-D7 model, coupling 24-hour rainfall during landfall with 7-502

day antecedent moisture, achieved the highest accuracy (71.8%) by effectively capturing both503

cumulative saturation and abrupt triggering by typhoon rainfall bursts. Notably, the H24-D7504

model exhibited stable performance across all folds, with accuracy ranging narrowly between505

68.8% (Fold 1) and 74.6% (Fold 4), reflecting robust generalizability.506

Table 3. Optimal RC values and prediction accuracies (%) for each model across 5-fold cross validation.507

Model Fold 1
RC/Accuracy

Fold 2
RC/Accuracy

Fold 3
RC/Accuracy

Fold 4
RC/Accuracy

Fold 5
RC/Accuracy

Average
RC/Accuracy

H1-D7 0.032/56.5 0.062/29.7 0.076/35.5 0.022/53.6 0.040/47.8 0.047/44.6

H12-D7 0.077/54.2 0.167/46.6 0.243/48.3 0.267/47.7 0.154/45.3 0.182/48.5

H24-D7 0.472/68.8 0.436/72.3 0.422/73.1 0.459/74.6 0.414/70.2 0.440/71.8

H72-D7 0.789/56.5 0.776/59.4 0.781/63.1 0.802/51.4 0.783/60.1 0.787/58.1

In contrast, the H1-D7 and H12-D7 models displayed marked instability: H1-D7508

accuracy fluctuated between 29.7% (Fold 2) and 56.5% (Fold 1), while H12-D7 thresholds509

(RC12: 0.077–0.267) corresponded to accuracies of 45.3–48.3%. The H72-D7 model showed510

moderate performance variability (accuracy: 51.4–63.1%) despite consistently high RC72511

thresholds (>0.78).512

These results highlight the critical role of temporal rainfall parameter selection. The513

superior performance of the H24-D7 model (24-hour short-term rainfall and 7-day antecedent514

rainfall) suggests that a 24-hour duration optimally captures both immediate landslide triggers515

The July 2024 typhoon Gaemi-induced

extreme rainfall (412.7 mm average, peaking at 673.9 mm/24h

and 132.2 mm/h) triggered a heavy landslide event in Zixing

City, Hunan. This event, characterized by granite-weathered

soils and slope-side settlements, highlighted critical thresholds

for typhoon-induced failures.

删除[肖巍峰]:

Four rainfall threshold models (H1-D7, H12-

D7, H24-D7, and H72-D7) were systematically evaluated

through 5-fold cross-validation
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landfall rainfall with 7-day antecedent moisture—key

components of typhoon hydrology—achieved the highest

accuracy (71.8%), effectively capturing both cumulative

saturation and abrupt triggering by typhoon rainfall bursts
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and cumulative hydrological effects, balancing sensitivity and stability. Shorter (H1/H12) or516

longer (H72) durations either overemphasize transient rainfall spikes or dilute critical517

triggering signals.518

5.2 Spatio-temporal distribution of rainfall thresholds519

Fig. 7 illustrates the spatial distribution of rainfall-triggered landslide thresholds derived520

from four models (RC1, RC12, RC24, and RC72) across multiple temporal scales (1-hour,521

12-hour, 24-hour, 72-hour, and 7-day) within the study area.522

5.2.1 Short-term predictions (1-hour to 12-hour scales)523

At the 1-hour scale (Fig. 7 (a)), the RC1 model generated thresholds ranging from 7 to524

50 mm, with 65.2% of landslides occurring in moderate threshold zones (20-30 mm). This525

indicates the model's effectiveness in detecting slope failures under short-duration rainfall. In526

contrast, the RC12 model on the 12-hour scale (Fig. 7 (b)) showed a wider threshold range527

(25-200 mm), with 62.9% of landslides in mid-to-high threshold regions (80-130 mm). This528

mismatch suggests that the 12-hour cumulative data may underestimate rainfall impacts in529

specific topographic settings.530

531

The superior performance of the H24-D7

model—combining 24-hour short-term rainfall (H24) and 7-

day antecedent rainfall (D7)—suggests that a 24-hour duration

optimally captures both immediate landslide triggers and

cumulative hydrological effects, balancing sensitivity and

stability. This contrasts with shorter (H1/H12) or longer (H72)

durations, which either overemphasize transient rainfall spikes

or dilute critical triggering signals
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Figure 7 Distribution of typhoon rainfall thresholds under various optimal RC ratios: (a) 1-hour RC1-based,532
(b) 12-hour RC12-based, (c) 24-hour RC24-based, (d) 72-hour RC72-based, (e) 7-day RC1-based, (f) 7-day533

RC12-based, (g) 7-day RC24-based, and (h) 7-day RC72-based.534
535

5.2.2 Mid-term predictions (24-hour to 72-hour scales)536

The RC24 model at the 24-hour scale (Fig. 7 (c)) displayed a threshold range of 65-400537

mm, with 87.1% of landslides occurring within moderate thresholds (100-250 mm) and538

12.3% in higher thresholds (>250 mm). This indicates a more accurate capture of rainfall539

intensity effects. At the 72-hour scale (Fig. 7 (d)), the RC72 model produced thresholds540

between 78-700 mm, with 59.2% of landslides in mid-to-high threshold regions (200-500541

mm). Although the RC72 model demonstrated reasonable sensitivity to prolonged rainfall, its542

upper threshold (700 mm) may result in conservative risk predictions for some geological543

settings.544

5.2.3 Long-term predictions (7-day scale)545

At the 7-day scale, significant differences emerge across models in terms of predicted546

rainfall thresholds and landslide points. The RC1 model (Fig. 7 (e)) shows a threshold range547

of 100-700 mm, with landslide points predominantly concentrated in the lower rainfall ranges.548

While these low-threshold landslides may indicate localized risks, the model's conservative549

threshold distribution fails to effectively capture landslides triggered by higher rainfall550

amounts, potentially overlooking more significant events.551

The RC12 model (Fig. 7 (f)), with a threshold range of 100-800 mm, also shows a552

concentration of landslide points in the lower rainfall ranges. Despite a wider threshold range,553

the similarity to the RC1 model suggests that RC12 may also underutilize its capacity to554

predict higher typhoon-induced landslides, leading to under-prediction in areas experiencing555

moderate to heavy precipitation.556

In contrast, the RC24 model (Fig. 7 (g)) exhibits a balanced threshold range (250-900557

mm) and effectively identifies landslide points in both moderate and high rainfall categories.558

Figure 7. Distribution of typhoon rainfall

thresholds under the optimal RC ratio in Zixing City.
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This balance enables RC24 to capture the full spectrum of typhoon-induced landslides,559

accurately identifying risks across different rainfall intensities.560

The RC72 model (Fig. 7 (h)) shows a concentration of landslide points in the higher561

rainfall range (175-1000 mm). While it predicts landslides accurately under heavy rainfall562

conditions, the model may overestimate risks in some regions and neglect potential landslides563

associated with lower rainfall thresholds.564

Based on the above analysis, the RC24 model is the optimal choice, which aligns with565

the finding in Section 5.1. Its effectiveness is evident as it demonstrates superior stability and566

accuracy in both the 24-hour and 7-day timescales. The RC24 model's balanced threshold567

range enables it to effectively capture landslide risks across varying rainfall intensities,568

making it the most reliable choice for practical applications in landslide disaster early warning569

systems.570

5.3 Landslide hazard warning system for Zixing City571

Based on the optimal LSP results (Fig. 6 (b)) and the validated RC24 rainfall threshold572

model, a spatially explicit landslide hazard warning system was established for Zixing City.573

The integration of spatial probability (LSP) and temporal probability (rainfall thresholds)574

followed the matrix classification outlined in Table 1.575
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576

Figure 8 Landslide warning zones generated by overlaying spatial and temporal probability maps: (a) optimal577
spatial probability, (b) 24-hour RC24-based rainfall threshold, (c) 7-day RC24-based rainfall threshold, (d)578

overlay of (a) and (b), and (e) overlay of (a) and (c).579
Five susceptibility levels in the LSP map (Fig. 6 (b)) were replaced with five spatial580

probabilities (S1–S5) (Fig. 8 (a)), respectively. Simultaneously, the spatially interpolated 24-581

hour rainfall thresholds (H24) (Fig. 8 (b)) and 7-day effective rainfall thresholds (D7) (Fig. 8582

(c)) derived from the RC24 model were classified into five temporal probability levels (T1–583

T5) using the natural breaks method. Spatial overlay analysis was performed to combine the584

susceptibility levels (S1–S5) with the rainfall threshold levels (T1–T5), generating two hazard585

warning zone maps: H24-based (Fig. 8 (d)) and D7-based (Fig. 8 (e)).586

Quantitative assessment of both warning systems reveals distinct performance587

characteristics. The 24-hour threshold system (Fig. 8 (d)) demonstrates superior predictive588

efficiency, with 71.4% of historical landslides occurring within high to very high warning589

zones (Levels 3–5) while covering only 34.2% of the total area, resulting in an efficiency ratio590

of 2.09 and a risk density of 49.0 landslides per 1000 high-risk grid cells. The spatial591

Figure 8. Landslide hazard warning zones in

Zixing City.
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distribution shows concentrated high-risk areas primarily in the central region, characterized592

by steep slopes (>21.80°), weathered granite lithology, and road proximity (0–800 m). This593

focused distribution indicates effective identification of areas most sensitive to short-term594

intense rainfall triggers.595

The 7-day threshold system (Fig. 8 (e)) exhibits broader spatial coverage, with high-risk596

zones encompassing 42.7% of the study area and capturing 68.7% of historical landslides,597

yielding a lower efficiency ratio of 1.61 and risk density of 37.8 landslides per 1000 grid cells.598

This system effectively identifies extended vulnerable areas in northern and eastern regions,599

reflecting cumulative rainfall effects on slope stability. The expanded coverage captures zones600

where prolonged antecedent moisture interacts with moderate-to-high susceptibility601

conditions.602

Statistical validation confirms the complementary nature of both systems. The 24-hour603

system achieves higher spatial efficiency (efficiency ratio 2.09 vs. 1.61) and landslide604

concentration (risk density 49.0 vs. 37.8), making it optimal for immediate typhoon response605

and targeted emergency resource allocation. Conversely, the 7-day system provides606

comprehensive coverage for prolonged rainfall scenarios, essential for early warning during607

extended typhoon events despite its broader spatial distribution and lower concentration608

efficiency. The combined application of both systems enables dynamic hazard assessment,609

addressing both rapid-onset failures during typhoon landfall and delayed failures following610

sustained precipitation.611

612

6 Discussion613

6.1 Optimization of landslide susceptibility prediction614

Our comparative analysis of SVM and LightGBM models across different input methods615

(IV, CF, FR) and buffer distances revealed important insights into the optimization of LSP616

In the 24-hour threshold system (Fig. 8 (d)), a

significant portion of the study area was classified as high to

very high warning zones (Levels 3–5), particularly in the

central region. These areas are characterized by steep slopes

(>21.80°; yellow to dark red regions in Fig. 2 (b)), weathered

granite lithology (pink areas in Fig. 2 (l)), proximity to roads

(0–800 m; blue zones in Fig. 2 (g)), and moderate-to-distant

distances from fracture zones (2,000–7,000 m; light green

regions in Fig. 2 (i)). The high-susceptibility zones (S4–S5),

combined with lower rainfall thresholds (T4–T5), indicate

acute sensitivity to short-term intense rainfall. Notably, these

high-level warning zones overlap with 71.4% of historical

landslide occurrences, underscoring the immediate threat

posed by short-duration heavy rainfall events.

In contrast, the 7-day threshold system (Fig. 8 (e)) exhibits a

similar distribution of high to very high warning zones (Levels

3–5) but with expanded coverage into the northern and eastern

parts of the study area. These regions reflect the interaction of

prolonged antecedent rainfall (D7) with moderate-to-very-high

susceptibility (S3–S5). Topographically, these areas feature

greater rainfall accumulation (steep slopes in Fig. 2 (b)) and

are predominantly underlain by granite lithology (large pink

zones in Fig. 2 (l)). Additionally, they are adjacent to roads

(blue and green regions in Fig. 2 (g)) and closer to fracture

zones (green and light yellow areas in Fig. 2 (i)). This broader

spatial distribution captures sustained risks associated with

cumulative rainfall, highlighting zones vulnerable to

prolonged precipitation. The alignment of these warning zones

with 68.7% of historical landslide sites further validates the

effectiveness of the 7-day model in detecting cumulative

hydrological effects.
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under typhoon-specific rainfall conditions. SVM's superior performance at buffer distances of617

0.5–2.0 km with FR inputs highlights the importance of spatial scale selection in typhoon-618

induced landslide modeling. This extends existing research (Kalantar et al., 2018; Bogaard619

and Greco, 2018) by identifying typhoon-specific spatial patterns that diverge from620

conventional rainfall scenarios.621

The optimal 0.5–2.0 km buffer range corresponds to the spatial autocorrelation pattern of622

typhoon-induced failures, where intense moisture infiltration generates discrete instability623

zones. This differs markedly from earthquake-triggered landslides, which cluster at finer624

scales (Fan et al., 2019), reflecting typhoons' distinct hydrological impact. The effectiveness625

of FR weighting is consistent with the findings of Reichenbach et al. (2018) and Yan et al.626

(2019), who demonstrated that frequency-based methods effectively capture non-linear627

relationships between factors in complex terrain. Our findings indicate FR's particular628

strength under typhoon conditions stems from its capacity to capture specific factor629

interactions, including how road networks intensify runoff concentration on weathered granite630

slopes (Liu et al., 2022).631

6.2 Rainfall threshold modeling and typhoon-specific mechanisms632

The H24-D7 model's superior performance (71.8% accuracy) marks a significant633

advancement in understanding the triggering mechanisms of typhoon-specific landslides. This634

temporal window effectively captures the dual-phase nature of typhoon-induced slope failure:635

prolonged antecedent saturation from tropical moisture bands followed by critical threshold636

exceedance during typhoon core passage (Kirschbaum and Stanley, 2018). The model's637

effectiveness validates the conceptual framework proposed by Nolasco-Javier and Kumar638

(2018), who emphasized the importance of multi-temporal rainfall accumulation in tropical639

cyclone environments.640

The comparative analysis of SVM and

LightGBM models across different input methods (IV, CF, FR)

and buffer distances revealed important insights into the

optimization of landslide susceptibility prediction under

typhoon rainfall conditions. While LightGBM generally

exhibited higher overall accuracy and stability, SVM

demonstrated superior performance at specific spatial scales

(0.5–2.0 km buffers), capturing localized slope instability

patterns induced by typhoon-driven hydrological processes.

This finding aligns with previous studies highlighting SVM’s

effectiveness in modeling non-linear interactions between

typhoon rainfall intensity and terrain features (Kalantar, 2018;

Zhao et al., 2021).

The optimal performance of SVM at intermediate buffer

distances (0.5–2.0 km) suggests a critical balance between

typhoon-induced local heterogeneity (e.g., soil saturation

variations) and regional geological controls. This range

effectively isolates slope units most vulnerable to short-

duration typhoon rainfall pulses, while filtering out noise from

distant stable areas. The superiority of the FR input method

underscores its ability to quantify typhoon-specific factor

interactions, such as road density amplifying runoff

concentration in granite-weathered slopes (Liu et al., 2022).

These results emphasize the necessity of typhoon-adapted

spatial scaling in susceptibility modeling, supporting the

spatial correlation principles established by Reichenbach et al.

(2018).
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The spatial heterogeneity in rainfall thresholds reflects the complex interaction between641

typhoon structure and local topography (Lee et al., 2018; Cho et al., 2022). Higher thresholds642

in southeastern slopes (>250 mm) correspond to areas of enhanced orographic lifting (Fig.643

7(c)), where terrain amplifies typhoon rainfall through forced ascent mechanisms. Conversely,644

lower thresholds in northern valleys (100-150 mm) (Fig. 7(c)) indicate areas where645

topographic channeling and moisture convergence create favorable conditions for slope646

failure at reduced precipitation levels. This spatial variability contradicts the assumption of647

uniform regional thresholds commonly applied in operational warning systems (Segoni et al.,648

2018b) and supports the implementation of spatially distributed threshold approaches.649

The H24-D7 model's robust cross-validation performance (68.8-74.6% across folds)650

demonstrates its stability across different typhoon sub-events and rainfall patterns. This651

consistency is crucial for operational implementation, as typhoons exhibit significant internal652

variability in rainfall distribution and intensity (Liu et al., 2017). The model's ability to653

maintain predictive accuracy across this variability represents a substantial improvement over654

traditional empirical threshold approaches that often fail during extreme events (Guzzetti et al.,655

2020).656

6.3 Integration of susceptibility and rainfall thresholds for landslide warning657

Integrating landslide susceptibility and rainfall thresholds in an early warning system658

creates a dynamic framework for real-time monitoring and assessment of landslide hazards.659

By overlaying static susceptibility maps with real-time precipitation data, this approach offers660

a continuous hazard assessment that adapts to changing weather conditions, particularly661

during typhoons. The system updates hazard assessments hourly, reflecting the evolving662

precipitation patterns that drive landslide potential.663

The operational framework consists of three hierarchical components: (1) static664

susceptibility surfaces derived from optimized Support Vector Machine-based Flood Risk665

The evaluation of multiple rainfall threshold

models (H1-D7, H12-D7, H24-D7, and H72-D7) revealed that

the H24-D7 model was the most effective for predicting

typhoon-triggered landslides. This model combines 24-hour

typhoon rainfall bursts with 7-day antecedent moisture from

tropical cyclones, achieving an accuracy of 71.8%. It strikes a

balance between capturing immediate slope failure during

typhoon landfall and accounting for prolonged saturation due

to pre-typhoon rainfall. In contrast, the shorter (H1/H12) and

longer (H72) durations misrepresented the rainfall dynamics

specific to typhoons. This finding aligns with Long et al.

(2020), who emphasized the importance of integrating both

short-term intensity and long-term saturation to predict debris

flows.

Spatial thresholds derived from the H24-D7 model

demonstrated distinct rainfall gradients related to typhoon

exposure. In southeastern slopes, which are more exposed to

prevailing typhoon tracks (Fig. 7c), higher thresholds (>250

mm) were observed. This is consistent with Cai et al. (2023),

who found that areas directly in the path of typhoons typically

experience more intense rainfall due to the influence of the

typhoon’s core. These regions are often impacted by the high-

intensity convective cores of typhoons. In contrast, northern

valleys, influenced by cumulative typhoon rainbands,

exhibited lower thresholds (100-150 mm). As Lin et al. (2019)

pointed out, typhoon rainbands generate widespread,

cumulative rainfall that can be further amplified by topography,

such as in valleys where terrain traps moisture and enhances

precipitation accumulation. This mechanism explains the

lower triggering thresholds in these regions compared to the

slopes directly exposed to typhoon tracks.

The spatial gradient observed in the H24-D7 thresholds

reflects the dual rainfall modes of typhoons: convective cores

with high-intensity bursts and stratiform bands with prolonged

drizzle. This highlights the need for typhoon-specific models

that can capture both microscale (e.g., storm cell) and

macroscale (e.g., rainband) dynamics. Many existing models

fail to address these complexities (Segoni et al., 2018b;

Guzzetti et al., 2020). The H24-D7 model, by incorporating

these spatial gradients and rainfall modes, represents a

significant advancement in accurately predicting typhoon-

induced landslides.
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(SVM-FR) models, which act as baseline hazard zones, (2) dynamic threshold surfaces (H24666

and D7) that define conditions under which rainfall triggers landslide activation, and (3) real-667

time precipitation monitoring, which drives continuous hazard updates. These components668

work together to ensure a comprehensive and up-to-date hazard assessment.669

One of the key features of this system is its ability to automatically adjust warning levels670

based on meteorological forecasts. When forecasts indicate a greater than 70% probability of671

threshold exceedance in high-susceptibility areas, the system escalates warning levels672

accordingly, providing timely alerts to mitigate disaster risk (Piciullo et al., 2018). The dual-673

threshold configuration enhances this approach by providing temporal staging suited to the674

dynamic nature of typhoons. Specifically, as a typhoon approaches (48-72 hours before675

landfall), the D7 threshold monitors antecedent rainfall to identify areas nearing saturation676

and instability. As the typhoon intensifies and makes landfall, the H24 threshold responds to677

immediate, intensive rainfall events, triggering warnings for zones that experience rapid678

threshold exceedance (Gariano et al., 2015). This staged warning system ensures optimized679

lead times for alerts, while also minimizing the risk of alert fatigue, a common challenge in680

continuous hazard monitoring (Nocentini et al., 2024).681

Unlike traditional point-based threshold systems, which are limited in their ability to682

account for spatial variability across complex terrain, this approach integrates spatially683

continuous thresholds. This design allows the system to address terrain-induced variability in684

rainfall-triggered landslides while maintaining computational efficiency for regional-scale685

applications (Calvello and Piciullo, 2016; Sun et al., 2024). Moreover, by incorporating686

typhoon-specific rainfall parameterization within probabilistic threshold surfaces, this system687

significantly advances beyond existing point-based hazard mapping approaches (Guzzetti et688

al., 2020; Nolasco-Javier and Kumar, 2018).689
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For effective operational deployment, the system must be integrated with meteorological690

monitoring infrastructure, such as weather radar networks and automated rainfall stations.691

Critical components of implementation include real-time data processing capabilities,692

standardized protocols for disseminating warnings, and post-event validation procedures that693

ensure system accuracy and maintain stakeholder trust. The modular design of the system694

allows it to be adapted to various regional monitoring networks and institutional frameworks,695

making it versatile and scalable across different geographic and organizational contexts.696

6.4 Limitations and future research directions697

Despite promising advancements, this study has limitations owing to the complexity of698

typhoon-induced landslides. First, the model’s validation relies solely on landslides from699

Typhoon Gaemi. While this single event provided a comprehensive dataset, validating against700

multiple, varied typhoons is crucial for model robustness. Typhoons differ significantly in701

intensity, rainfall patterns, forward speed, and seasonality, all of which can influence702

threshold parameters. For instance, a slow-moving typhoon with higher cumulative rainfall703

and lower peak intensity could alter the optimal H24-D7 ratios. Future research should704

incorporate landslide inventories from typhoons with contrasting characteristics to assess705

threshold transferability and develop adaptive parameterization. The framework’s modular706

design readily facilitates this by allowing recalibration of the RC24 coefficient for different707

typhoon types.708

Second, the current study primarily addresses rainfall-induced landslides, overlooking709

other potential contributing factors. Future work should explore integrating multiple710

triggering mechanisms, including earthquakes, human-induced slope modifications, and711

typhoon rainfall, for a more comprehensive hazard assessment.712

Third, the study doesn't explicitly address the potential impacts of climate change on713

typhoon rainfall and landslide occurrence. As climate change alters typhoon frequency,714

The integration of landslide susceptibility

maps with spatially distributed rainfall thresholds resulted in a

comprehensive hazard warning system for Zixing City. This

approach, combining spatial probability (LSP) and temporal

probability (rainfall thresholds), addresses the limitations of

traditional, uniform threshold-based warning systems by
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intensity, and tracks, future studies should incorporate climate projections specific to715

typhoon-prone regions. This will enable the development of forward-looking landslide716

warning systems that can adapt to the evolving threats posed by typhoon-specific rainfall.717

Fourth, while this study demonstrates the effectiveness of ML approaches, further718

refinement is possible. Future research should explore advanced deep learning techniques and719

ensemble methods to better capture the complex, non-linear relationships between typhoon-720

related variables (e.g., rainfall intensity, duration, antecedent moisture) and slope stability.721

These advanced methods may offer improved predictive accuracy, more robust uncertainty722

quantification, and ultimately, more reliable hazard warnings.723

Finally, climate projections for Southeast China show a 15–25% increase in peak724

typhoon rainfall by 2080 (RCP8.5), which could alter the H24–D7 landslide thresholds from725

this study. Higher atmospheric moisture may lower D7 thresholds, while greater rainfall726

intensity could require new H24 parameters. Shifting typhoon tracks and seasonality might727

also change which areas are vulnerable. Future work must use downscaled climate data to728

create non-stationary thresholds, ensuring the long-term reliability of warning systems in the729

region.730

7 Conclusions731

This study establishes a novel integrated framework combining optimized LSP with732

typhoon-specific rainfall threshold modeling for comprehensive hazard assessment in733

mountainous regions. Through systematic analysis of 705 landslides triggered by Typhoon734

Gaemi in Zixing City, several key insights emerge:735

(1) Buffer distance optimization proves critical for typhoon-induced landslide modeling,736

with SVM-FR combinations at 0.5-2.0 km distances achieving superior performance (F1-737

score: 0.859) compared to conventional approaches. This spatial scale effectively captures738

Despite the significant advancements made in

this study, several limitations exist, especially when

considering the complex and dynamic nature of typhoon -

induced landslides. Firstly, the model validation

predominantly depends on a single landslide event triggered
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typhoon-induced moisture infiltration patterns that differ fundamentally from other triggering739

mechanisms.740

(2) The H24-D7 threshold model demonstrates exceptional stability (71.8% accuracy741

across 5-fold validation), successfully characterizing the dual-phase failure mechanism unique742

to typhoons: prolonged antecedent saturation coupled with intense precipitation bursts during743

typhoon passage.744

(3) Spatially distributed rainfall thresholds reveal significant heterogeneity, reflecting745

complex interactions between typhoon structure and local topography that contradict uniform746

regional threshold assumptions in existing operational systems.747

(4) The integrated warning system achieves operational efficiency through dual-748

threshold configuration: H24 thresholds provide immediate response capability during749

typhoon landfall, while D7 thresholds enable early detection of vulnerable areas approaching750

saturation conditions.751

(5) This framework addresses three critical gaps in current landslide prediction:752

systematic buffer optimization for imbalanced datasets, effective integration of variable753

weighting with machine learning algorithms, and development of typhoon-specific spatially754

explicit thresholds.755
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757
758

Code and data availability. The source code and data will be made available on request.759

Competing interests. The contact author has declared that none of the authors has any760

competing interests.761

Author contributions. Weifeng Xiao: Writing-review & editing, Validation,762

Conceptualization. Guangchong Yao: Visualization, Validation, Data curation. Zhenghui763

Xiao: Writing-review & editing, Formal analysis. Ge Liu: Resource, Correspondence.764

The comparative analysis of SVM and

LightGBM models revealed that SVM with FR input at 0.5 km

and 2.0 km buffer distances achieved optimal performance in

landslide susceptibility prediction. This highlights the

importance of careful consideration of spatial scale and input

variable selection in susceptibility modeling.

The H24-D7 model, integrating 24-hour typhoon rainfall

bursts and 7-day antecedent moisture—key components of

typhoon hydrology—achieved the highest accuracy

(71.8%), revealing how typhoon-induced saturation and

intense rainfall synergistically drive slope failure.

The typhoon-adapted hazard warning system, merging

susceptibility maps with dynamic rainfall thresholds, showed

71.4% overlap with historical landslides, confirming the utility

of linking spatial slope vulnerability to typhoon rainfall

patterns.

The 24-hour and 7-day warning maps unveiled divergent

failure mechanisms: short-term typhoon downpours triggering

abrupt slope failures vs. prolonged antecedent rainfall inducing

gradual soil saturation, underscoring the need for temporally

explicit hazard assessments.

The developed framework demonstrates significant potential

for improving landslide risk management by providing

spatially explicit hazard warnings that account for both

inherent susceptibility and dynamic rainfall conditions.
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