
Comments from Referee #2 (responses are in blue): 
Overall Impression: 
This manuscript presents a timely, and valuable study that addresses a critical challenge in 
hydrology: monitoring intermittent rivers and ephemeral streams (IRES). The application of a 
relatively simple logistic regression model to classify flow states from field camera imagery is 
both pragmatic and innovative. The methodology is clearly described, the results are robust 
and convincingly presented, and the discussion thoughtfully places the work in the broader 
context of IRES monitoring, climate change, and water management. The integration of image 
classifications for quality control of stage data is a particularly strong and practical 
contribution. The manuscript is generally well-written and structured. I believe it represents a 
significant contribution to the field and is a strong candidate for publication after revisions. 
 
Thank you for your thoughtful review.  

Abstract 
The abstract effectively summarizes the study's motivation, methods, key findings, and 
implications. It clearly states the problem (monitoring challenges in IRES), the proposed 
solution (image classification), the location, and the broader significance of the work. However, 
I am including some comments and questions that can improve the abstract. 
 
1. The abstract mentions the model was used for quality control of the stage time series. 
Could you briefly hint at the nature of the discrepancies/uncertainties/errors found (e.g., 
sensor drift, noise during high flow) to immediately highlight the practical utility of the 
Method? 
Yes, we propose adding the following to the abstract: “We then used image classifications to 
perform quality control on the continuous stage time series, which allowed us to identify when 
the stream was dry and when the sensor malfunctioned.” 
 
2. The term "Imagey" in the title appears to be a typo for "Image-based." Was this 
Intentional? 
“Imagery” was intentional, but upon review, we agree that “Image-based” more correctly 
emphasizes that we are using images as an input for classification, so we propose using 
“Image-based” instead. Thank you.  
 
3. The abstract focuses on categorical classification. Did the model's probability output 
itself provide any additional, continuous-like insight beyond the three discrete categories? 
Although we did not explore the probability results beyond what was relevant to our categorical 
classifications (i.e., Figure 6), we did observe some overlap between ‘low water’ and ‘high 
water’ image classifications, and a range of corresponding probabilities assigned to these 
classes. For example, some photos labeled as “high water” were classified as “low water” and 



vice versa. Nevertheless, we ultimately evaluated only the probability distributions for ‘any 
water’ (the combination of low and high water; Figure 6). 

Introduction 
The introduction provides a comprehensive and compelling background, effectively building 
the case for the importance of IRES and the difficulties in monitoring them. The literature 
review is extensive and covers relevant areas, including remote sensing, citizen science, and 
various modeling approaches. 
 
1. While you cover technological methods, could you briefly mention the 
organizational/funding challenges of maintaining sensor networks in remote IRES to 
further justify the need for low-cost methods? 
Yes, we mention this in line 60: “In addition to inaccessibility, developing an in-situ monitoring 
network for stage and discharge on IRES is difficult because nascent gage networks may have 
less expertise, support, or funding compared to established national programs that generally 
focus on perennial streams (Vlah et al., 2023).” 
 
2. You mention that deep learning has been mainly applied to perennial streams. Could 
you elaborate on one or two key reasons why these methods are particularly challenging 
to directly transfer to IRES (e.g., more dynamic channel geometry, greater debris, 
longer dry periods)? 
 
We mention deep learning approaches in the Introduction (l. 101-111) and the Discussion (l. 
463-465), and we propose adding the following to the Discussion: “Current deep learning 
models in the USGS Flow Photo Explorer (USGS, 2024) estimate relative flow states but cannot 
distinguish dry streambeds (Gupta et al., 2022; Goodling et al., 2025), potentially due to the 
dynamic channel morphology, shifting debris and vegetation, and ambiguous flow states of 
IRES – all of which can make training deep learning models challenging.”  
 
3. The introduction effectively sets up the use of machine learning with imagery. Would 
it be valuable to more explicitly state the core hypothesis: that visual features in daytime 
imagery are sufficient to reliably classify IRES flow states for monitoring purposes? 
Thank you for this suggestion.  We propose replacing “Here, we explore the use of image 
classification for categorizing water levels in IRES” with “Here, we explore whether visual 
features in daytime imagery are sufficient to reliably classify IRES flow states for monitoring 
purposes.” 
 
4. Have you considered citing studies that discuss the hydrological significance of the 
"pooling" phase in IRES, which your method can detect but stage sensors cannot? For 
example, Stubbington, R., et al. (2017). The biota of intermittent rivers and ephemeral 
streams: aquatic and terrestrial assemblages. In Intermittent Rivers and Ephemeral 
Streams (pp. 217-245). Academic Press. could strengthen this point. 



Thank you for highlighting the importance of the pooling phase in relation to biota in IRES. We 
discuss this later on in the Discussion section (4.1), and also propose including your suggested 
reference in that discussion.. 
 
5. The transition from the broad introduction to the specific objectives of the study is clear, 
but could the final paragraph be slightly more structured to explicitly list the primary 
aims of the paper? 
Yes, we propose adding the hypothesis from your point #3 to this paragraph to make it more 
explicit.  
 

Methods 
The methods section is exceptionally detailed and reproducible, a major strength of the 
manuscript. The description of the study site, data sources, image preparation, model training, 
and validation is thorough. The handling of unbalanced classes and the development of a 
confidence metric are particularly sophisticated and commendable. 
 
1. You limited image analysis to 9 am–4 pm PST to avoid low-light issues. Was any 
consideration given to using the camera's flash-illuminated nighttime images for a 
simple binary "water"/"no water" classification, given that this is a defining feature of 
IRES? 
Yes, we address this directly in Section 2.2.1 and again in the Discussion section.  
 
2. For the image cropping to 1000x1200 pixels, was this specific size determined 
empirically? Did you experiment with different crop sizes or aspect ratios to optimize 
feature recognition? 
We describe the method for preparing images in Section 2.2.1. We propose adding the following 
to that section: “To apply our method, all images were required to have the same dimensions. 
We selected a resolution of 1,000 x 1,200 pixels (fig. 3a) because it was low enough to ensure 
that each image focused on the staff plate and streambed. Thus, the image size was 
determined by resolution constraints rather than through empirical or experimental testing.” In 
addition, we propose adding the following to the Discussion: “For sites with consistent camera 
types and viewing angles, a useful exercise could be to find the optimal image resolution and 
cropping extent for feature recognition. In such an exercise, the cost of increased computing 
power for higher resolution images should be balanced with model performance.” 
 
3. The manual weighting scheme (3.5 for water categories, 3 for obstructed, 1 for 'no 
water') is interesting. Could you provide a sentence on the rationale behind these 
specific weight values? 

Thank you for noting the omission of our reasoning behind the selection of manual weights. We 
propose adding the following explanation to this section: "We assigned manual weights to 
emphasize water presence categories (‘high water’ and ‘low water’) over ‘no water,’ and gave 



the ‘obstructed’ category a weight higher than ‘no water’ -- reflecting its smaller sample size -- 
but lower than the water categories, given its lesser importance."  

4. The confidence level assignment is well-explained but based on qualitative assessment 
of probability distributions. Were any quantitative metrics (e.g., maximizing Youden's 
J index) explored to define the probability thresholds more objectively? 
This is an interesting question, and we agree that we could have experimented with methods 
further in this case. However, because our primary objective was avoiding false positive 
classifications, the distribution (boxplot) assessment approach met our needs in this case. We 
agree, however, that a more objective strategy might be applicable in a generalized version of 
this study, and propose adding the following in the discussion: “In addition, a more objective 
strategy for evaluating classification confidence for other sites could be developed.” 
 
5. You use soil moisture data from a nearby site (DRW) with probably different geology. 
How might this spatial disconnect influence the interpretation of the relationships 
between soil moisture and stage at PEC?  
We discuss the differences in the DRW vs. PEC site, including soil features, in Section 4.3, l. 
432-441, and propose adding the following to that section: “Specifically, the soil hydrologic 
group at DRW is Group B, which indicates moderate infiltration rates, while the PEC watershed 
contains Groups C and D, which indicate slow or very slow infiltration rates, respectively 
(SSURGO, 2024).” 
 
In addition, a section of uncertainties would be great, since I can see some sources of 
uncertainties in your work/modelling, for example: image quality and environmental variability 
(the classification model's performance is inherently tied to the quality and consistency of the 
input imagery), sensor data reliability and spatial mismatch (the "ground truth" data used for 
validation and comparison are themselves sources of uncertainty), limited training data and site 
specificity (the model was trained on a relatively small, manually labeled dataset (537 
images) from a single site. This raises uncertainty about its performance when transferred to 
other IRES with different channel morphology, substrate, vegetation, and water clarity. the 
model's features (e.g., learned from the specific staff plate and rocks at pec) may be overly 
tailored to this unique location). Do not get me wrong, I still think there is a lot of value in 
publishing this paper, however, it is good to show the uncertainties and potential bias of the 
approach. 
 
The issue of transferability to other sites was also raised by Reviewer #1, and we appreciate 
you also bringing in the related concept of uncertainty, and how that relates to transferability.  
 
The primary purpose of this work was to provide a proof of concept for this method using the 
Perry Creek site and its unique geographic context. Accordingly, we used a model that outputs 
prediction probabilities, allowing uncertainty in the predictions to be explicitly represented. We 
expect that both the distribution of probabilities and the assignment of confidence levels would 
likely vary across sites, making classification uncertainty primarily a within-site issue. Exploring 
this variation would require cross-site comparisons, which are beyond the scope of the present 



study. We can nevertheless provide a parsimonious set of examples to demonstrate the 
method’s transferability. 

We tested the model code (which is posted on the HydroShare repository associated with this 
paper) on two example sites from the USGS Flow Photo Explorer to produce time series of 
categorical flow states. These sites are Dry Brook Upper in Massachusetts and USGS 
streamgage 10247170 on Troy Creek in Nevada. Below, we have included a draft of a proposed 
new appendix text and figures, which would be referenced in a revised Discussion section, 
where extensibility and the USGS Flow Photo Explorer in particular are discussed. 

Proposed appendix on transferability to other sites:  

Although the main goal of this work was to demonstrate proof-of-concept at the PEC site, we 
also tested our model on two additional U.S. sites from the USGS Flow Photo Explorer: Dry 
Brook Upper in Massachusetts and USGS streamgage 10247170 on Troy Creek in Nevada 
(USGS, 2024). We selected these sites because they are both IRES with thousands of photos 
available. After labeling only 105 and 111 photos, respectively, the model achieved 84.4% 
accuracy at Dry Brook Upper and 76.5% at Troy Creek. The resulting time series of categorical 
flow states from model predictions (for all confidence levels) are shown in figure A12. This 
exercise was performed with fewer labeled photos compared to the PEC case, no photo 
cropping, and no changes to the model code (aside from updating the formatting of dates). 

Based on this preliminary transferability analysis, we find that about 100 labeled images — with 
all categories represented in both training and testing sets — appear sufficient to transfer this 
method to other sites with consistent imagery. Notably, all photos used in this exercise were 
taken at noon, which likely enhanced model performance due to minimal variation in sun angle. 
While additional labeled photos would likely improve performance at any site, those with 
unbalanced categories or dramatic changes in illumination would benefit most. 



 

Current deep learning models in the USGS Flow Photo Explorer (USGS, 2024) estimate 
relative flow states but cannot distinguish dry streambeds (Gupta et al., 2022; Goodling et al., 
2025). Our method could complement the existing relative streamflow method, for example by 
being included in a conditional two-step approach: detect water presence first with our simple 
model; if present, estimate relative discharge using a CNN. This would preserve the simplicity 
and high accuracy of our model while enabling conditional estimation of streamflow when 
relevant. This approach would be well-suited to watersheds managed for both water supply and 
fishery health since both streamflow volume and stream connectivity would affect watershed 
management. With hundreds of thousands of photos available on the USGS Flow Photo 
Explorer (USGS, 2024) and the likelihood of increased IRES prevalence with climate change, 
this screening for IRES-specific states would be especially valuable. Instructions for applying 
our methodology to USGS Flow Photo Explorer images are available on HydroShare (see Data 
and Code Availability statement). 



Results 
The results are clearly presented, with appropriate use of tables, figures, and statistics. The 
model performance metrics are convincing, and the comparison between image classifications, 
observed stage, and modeled discharge is effective in demonstrating the value of the approach. 
 
1. The confusion matrix shows that 'obstructed' images were most often misclassified as 
'no water'. Given the ephemerality of the stream, do you think this misclassification 
might be functionally acceptable in many cases, as it likely reflects a true dry state? 
Yes, this is a good point. We mention this in the Results section at l. 325-326 with: “In addition, 
‘obstructed’ images were occasionally misclassified as either ‘high water’ or ‘no water’ (1.1% 
and 1.8% of these classifications, respectively). Due to the stream’s ephemerality, it is likely 
there was in fact no water at PEC in the ‘obstructed’ images misclassified as ‘no water’.” 
 
2. Figure 7/9 and the text describe how image classifications identified sensor 
malfunctions. How many erroneous data points would have been missed without this 
image-based quality control? A rough percentage or count would powerfully quantify 
this benefit. 
We describe our quality control of data (i.e., removal of erroneous stage data) at l. 370-383 and 
Appendix 2; we also propose revising Section 3.3 to improve clarity based on suggestions from 
Reviewer #1. Therein, we did not specifically calculate how many erroneous data points would 
have been removed using some other method, e.g., simple visual inspection or use of a value 
threshold vs. image-based quality control, but instead note that the image-based approach 
could either replace other methods or augment them. Even so, we propose adding to Section 
3.3 that “we flagged and removed almost a month of these data from the record”. 
 
3. In Figure 10, the results show a notable discrepancy where the NWM reported zero 
discharge during periods of observed high water (e.g., Jan-Feb 2018). What is your 
leading hypothesis for this systematic underestimation by the NWM in this specific 
Catchment? 
In Section 4.2, we discuss reasons for the discrepancies between the NWM, observed 
discharge, and image classifications that are shown in Figure 10. To respond further to your 
question, we propose adding to Section 4.2: “Many ‘high-water’ image classifications occur 
during January - February 2018, when the NWM shows little discharge. This is illustrated by two 
manual discharge measurements from January 2018 (Figure 10), which record substantially 
higher flows at PEC than those simulated by the NWM. We hypothesize that the NWM struggles 
to represent early wet season flow processes in the steep slopes and low-infiltration soils of the 
PEC watershed. Later in the season, when soils in the PEC watershed are likely more 
saturated, the NWM discharge aligns more closely with PEC stage data and manual 
measurements, suggesting that the model performs better under saturated conditions.” 
 
4. The relationship between stage and soil moisture at 5 cm is stronger than at 100 cm. 
Does this suggest that flow at PEC is primarily driven by shallow subsurface flow or 
saturation-excess overland flow rather than deeper groundwater contributions? If so, 



that should be discussed, showing how the changes over time may impact the local 
hydrology of the watershed and river. 
Yes, we discuss the relationship between stage and soil moisture in Section 4.3, l. 526-532, and 
propose adding to that discussion: “This, combined with our understanding of the geology of the 
PEC watershed, suggests that runoff generation at PEC is primarily driven by shallow 
subsurface flow and saturation-excess overland flow.” 
 
5. You mention that high flows remain unmeasured due to safety. Could the image 
classifications be calibrated against the NWM output or other hydraulic models to 
provide a rough estimate of discharge during these extreme events? 
We interpret this question as asking whether the images and NWM (or another model) could be 
used to estimate (continuous) discharge during extreme events, given the lack of observed 
discharge data. This would be beyond the scope of our study. Our model was not trained to 
predict continuous flow, as some previous studies have done (see references to Gupta et al., 
2022 in the Introduction and Discussion sections). Instead, our model predicts categorical flow 
states, which we then compared to NWM discharge values and the limited available discharge 
observations. Because we have very few observed discharge measurements (as described in 
Section 3.3 l. 402-405), we cannot calibrate or validate hydrologic model estimates of discharge. 
Consequently, linking image classifications to potentially uncertain modeled discharge estimates 
would not provide meaningful results in this case. 
 

Discussion 
The discussion successfully interprets the results, acknowledges limitations, and explores the 
wider implications of the work. The sections on unique site features and extensibility are 
particularly thoughtful and elevate the manuscript beyond a simple methods paper. 
 
1. You rightly note that temporal correlation of flow states could be used for further quality 
control. Could a simple Hidden Markov Model be a natural next step to incorporate this 
temporal dependency? 
Thank you for this question. There are a number of different methods that might be used to 
incorporate temporal dependency. Because evaluation of the suitability of methods for this is 
beyond the scope of this paper, we declined to list potential methods to avoid confusion.   
 
2. How does the performance of your logistic regression model (91% accuracy) compare, 
in your view, to the potential trade-offs of using a more complex but data-hungry model 
like a CNN for this specific task? That could be a good paragraph in the discussion, 
showing the drawbacks and positives sides of using a parsimonious but effective model. 
In Section 4.1, l. 447, we describe that our method “prioritizes a simple, accurate, site-specific 
model that requires minimal manually-labeled training data.” We also note in Section 4.1, l. 
463-465, that a CNN may be more suitable for images classified as ‘low water’ or ‘high water’.  
In accordance with this suggestion, as well as prior feedback from both you and Reviewer #1, 



we propose including a discussion of potential applications of our model, in conjunction with 
CNN models, within a new appendix focused on model transferability (see above). 
 
3. In the biggening (abstract and objectives) you state the method is "transferable." Could 
you specify the primary condition for transferability (e.g., the presence of a staff plate 
or a consistent field of view of the streambed)? Maybe a bit of discussion on the costs 
of this equipment set up would also help the reader to have an idea of how much it 
would cost. Perhaps that could be included in the methods?! 
In accordance with suggestions made by you and Reviewer #1, we proposed editing relevant 
sections of the Discussion and adding a new appendix that specifically addresses transferability 
(see above). Furthermore, with respect to the cost of setup, we propose adding a brief text 
appendix that details our setup costs, and propose referencing that appendix in a revised 
Section 4.5, l. 605-606 where we mention the low cost of our method: “The (2025) cost of field 
cameras similar to those used in this study range from  €100 - €300. The mounting accessories 
and telemetry equipment add about €100, though costs may vary depending on specific 
hardware choices. The telemetry system enables near real-time image access but requires an 
annual renewal fee of about €70. Total installation costs can vary considerably depending on 
site accessibility and labor expenses. Sites typically require biannual servicing to maintain a 
consistent power supply, clear vegetation that could obstruct the camera’s view of the stream, 
and to perform routine maintenance.” 
 
4. The discussion on the potential for subsurface flow bypassing the PEC site is 
fascinating. Could this hypothesis be further supported by comparing the water level in 
Lake Mendocino with dry/wet periods at PEC? 
We agree that this hypothesis could certainly be explored further, and observations at PEC and 
other sites in the same watershed suggest that exploration may be worthwhile. However, that 
exploration is outside the scope of this work.  
 
5. You mention that your code is transferable. What is the minimum number of manually 
labeled images you would estimate is necessary to achieve reasonable performance at 
a new, similar site? 
Based on suggestions made by you and Reviewer #1, we proposed adding a new appendix that 
specifically addresses transferability, including discussion of performance with a minimal 
number of manually labeled images (see above).  
 
6. In the context of climate change, how might your method help in detecting shifts in the 
timing of flow initiation and cessation in IRES, which is a key impact of warming 
Temperatures? 
As described in Section 4.1, l. 457-459, this method is well-suited for IRES since it focuses on 
water presence or absence. Therefore, it is well-suited to identify the timing of flow initiation and 
cessation in IRES. We propose making this point more explicit by adding the following to this 
same Discussion section: “Our method could be expanded to detect IRES-relevant states 
including wet streambeds, isolated pools, standing water, trickling water, snow, or ice.” We 
discuss the context of climate change in the Introduction, and describe how our method 



supports IRES monitoring under climate change in the proposed new conclusion and 
transferability appendix.  
 
7. Have you considered referencing studies that have successfully implemented low-cost, 
image-based methods in data-scarce regions? For instance, 
- Noto, S., Tauro, F., Petroselli, A., Apollonio, C., Botter, G., & Grimaldi, S. 
(2022). Low-cost stage-camera system for continuous water-level monitoring 
in ephemeral streams. Hydrological Sciences Journal, 67(9), 1439–1448. 
https://doi.org/10.1080/02626667.2022.2079415 
Yes, we cite this work. 
 
- Rodrigues, R. M., Braga, B. B., & Costa, C. A. G. (2025). Efficiency in river 
discharge measurement: combining Chiu’s method with particle image 
velocimetry techniques. RBRH, 30, e31. 
We have not cited this work, but we propose referencing it in the introduction section discussing 
image-based approaches to monitoring IRES. 
These papers could broaden the perspective on transferability and cost-effectiveness. 
 

Conclusion 
The conclusion effectively summarizes the main findings and their significance. It 
compellingly argues for the role of this low-cost method in improving IRES monitoring and, 
consequently, water management in a changing climate. 
 
1. Could the conclusion more explicitly state the single most important recommendation 
for water managers seeking to implement this method? 

In response to this and feedback from Reviewer #1, we propose including a new Conclusion 
section that summarizes the overall contribution (see below), and incorporates discussion of 
practical recommendations:  

“This work demonstrates that a simple machine learning algorithm can classify timelapse field 
camera images to identify no, low, or high water levels in IRES, providing a low-cost, 
transferable method for monitoring water occurrence in these sparsely observed systems. Given 
the prevalence of ungaged IRES, field cameras and image classification offer a practical 
approach to improving understanding of their role in climate-impacted freshwater systems. For 
example, the FIRO program at Lake Mendocino (Fig. A1) currently uses streamflow 
observations from EFR to inform reservoir inflow models. As climate change is expected to 
increase drying in IRES, unmonitored contributions from tributaries such as Perry Creek 
(Appendix 3) could affect reservoir storage. Thus, as the FIRO program expands, field cameras 
and image classification may offer a cost-effective approach to integrating information on the 
presence and magnitude of IRES contributions. 

https://doi.org/10.1080/02626667.2022.2079415


This approach can also support monitoring of critical habitats, including tributaries where 
salmon passage depends on streamflow connectivity threatened by drought and water 
diversions (see e.g., Scott River, 2025). Installing cameras at tributary confluences could inform 
targeted habitat restoration. More broadly, formally recognizing IRES as integral to river systems 
can incentivize monitoring and protect them from degradation due to climate change, mining, 
and urban development (Acuña et al., 2014). The 2023 exclusion of ephemeral streams from 
U.S. Clean Water Act protections highlights the vulnerability of IRES and the importance of 
cost-effective monitoring approaches like ours for understanding the impacts and effectiveness 
of water management efforts. 

We conclude by offering practical recommendations for implementing our method. Cameras 
should be installed along IRES reaches that are important for monitoring water management 
objectives (e.g., fish passage, drought contingency planning). Installations should be in stable 
locations with clear views of the streambed and minimal vegetation interference. Consistent 
camera types and viewing angles should be used, as they improve the robustness of time series 
and the effectiveness of classification. Long-term maintenance budgets are also recommended 
to support sustained monitoring. Finally, this approach can be integrated with complementary 
methods (Gupta et al., 2022; Goodling et al., 2025) and deployed through accessible platforms 
such as the USGS Flow Photo Explorer (USGS, 2024) and the CrowdWater mobile application 
(SPOTTERON GmbH, 2025).” 

 
2. Beyond FIRO, can you speculate on one other specific water management decision 
(e.g., environmental flow allocations, drought contingency planning) that would benefit 
from the categorical flow data your method provides? 
Yes, our proposed new conclusion section discusses monitoring for salmon migration (see 
above). 
 
3. While the method is low-cost, the conclusion could acknowledge the ongoing costs and 
challenges of maintaining field cameras in harsh environments as a consideration for 
long-term deployment. 
Yes, our proposed new conclusion section recommends including a budget for site maintenance 
in all long-term monitoring programs.  
 
4. What do you see as the next critical technological or methodological advancement 
needed to make IRES monitoring truly scalable across vast river networks? 
While the broader topic of scaling IRES monitoring approaches like ours is beyond the scope of 
our paper, we propose addressing this briefly at the end of our new conclusion section, and 
expanding on this in the new appendix (see above).  
 
I congratulate the authors on an excellent piece of work. I hope that with these revisions, the 
manuscript will be an even stronger contribution to the literature. 
Thank you for your thorough review. The revisions based on your feedback will undoubtedly 
strengthen the manuscript. 
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