
Comment from Referee #1 (responses are in blue): 
I find this article to be generally well-written, well-structured, and applies a transferrable 
methodology to classify stream conditions in ephemeral streams in a single study watershed. 
The authors support their claims and provide adequate figures to support their argument. 

Thank you for your thoughtful review of this article.  

I did find that some of the discussion sections strayed beyond the scope of the study described 
in the introduction section to discuss other features of the watershed and ephemeral streams 
more broadly. The paper would be strengthened by focusing on its central contribution. 

These are valid points regarding the discussion sections, and we address them below. 

I did find that a limitation of the study was that it focused on a subset of images from a single 
site. The methodology was demonstrated and its performance evaluated against predictions 
from the National Water Model, but statements about its transferability to other locations or are 
undercut by the limited nature of the data. 

We appreciate this feedback and propose addressing it through the incorporation of an 
appendix that demonstrates transferability. The primary purpose of this work was to provide a 
proof of concept for this method using the Perry Creek site and its unique geographic context. 
While analysis of other sites in different locations and contexts would be beyond the scope of 
this paper, we can nevertheless provide a parsimonious set of examples to demonstrate the 
method’s transferability. 

We tested the model code (which is posted on the HydroShare repository associated with this 
paper) on two example sites from the USGS Flow Photo Explorer to produce time series of 
categorical flow states. These sites are Dry Brook Upper in Massachusetts and USGS 
streamgage 10247170 on Troy Creek in Nevada. Below, we have included a draft of the 
proposed new appendix text and figures, which would be referenced in a revised Discussion 
section, where extensibility and the USGS Flow Photo Explorer in particular are discussed. 

Proposed appendix on transferability to other sites:  

Although the main goal of this work was to demonstrate proof-of-concept at the PEC site, we 
also tested our model on two additional U.S. sites from the USGS Flow Photo Explorer: Dry 
Brook Upper in Massachusetts and USGS streamgage 10247170 on Troy Creek in Nevada 
(USGS, 2024). We selected these sites because they are both IRES with thousands of photos 
available. After labeling only 105 and 111 photos, respectively, the model achieved 84.4% 
accuracy at Dry Brook Upper and 76.5% at Troy Creek. The resulting time series of categorical 
flow states from model predictions (for all confidence levels) are shown in figure A12. This 
exercise was performed with fewer labeled photos compared to the PEC case, no photo 
cropping, and no changes to the model code (aside from updating the formatting of dates). 



Based on this preliminary transferability analysis, we find that about 100 labeled images – with 
all categories represented in both training and testing sets – appear sufficient to transfer this 
method to other sites with consistent imagery. Notably, all photos used in this exercise were 
taken at noon, which likely enhanced model performance due to minimal variation in sun angle. 
While additional labeled photos would likely improve performance at any site, those with 
unbalanced categories or dramatic changes in illumination would benefit most. 

 

Current deep learning models in the USGS Flow Photo Explorer (USGS, 2024) estimate 
relative flow states but cannot distinguish dry streambeds (Gupta et al., 2022; Goodling et al., 
2025). Our method could complement the existing relative streamflow method, for example by 
being included in a conditional two-step approach: detect water presence first with our simple 
model; if present, estimate relative discharge using a CNN. This would preserve the simplicity 
and high accuracy of our model while enabling conditional estimation of streamflow when 
relevant. This approach would be well-suited to watersheds managed for both water supply and 
fishery health since both streamflow volume and stream connectivity would affect watershed 



management. With hundreds of thousands of photos available on the USGS Flow Photo 
Explorer (USGS, 2024) and the likelihood of increased IRES prevalence with climate change, 
this screening for IRES-specific states would be especially valuable. Instructions for applying 
our methodology to USGS Flow Photo Explorer images are available on HydroShare (see Data 
and Code Availability statement). 

I have minor comments regarding clarity and a few considerations not in the original text but 
overall find the article a suitable contribution to HESS: 

Thank you, I will address these comments below.  

1.​ Page 7, line 155: What defines “environmental damage”? Tampering? Batteries dying? 

“Environmental damage” refers to various issues that can affect a field camera, such as 
the camera breaking due to water damage and the batteries dying due to the solar panel 
not receiving enough sunlight to charge fully. We propose editing the relevant text to: “... 
environmental damage, such as water damage or dirty solar panels not generating 
enough power.” 

2.​ Page 9, Lines 173-180: The National Water Model (NWM) is trained/calibrated to gage 
flows, how close is the closest calibration site? In figure A1 looks like it is on the East 
Fork of Russian River, so not on the stream you are monitoring. Worth pointing out in 
this section. 

Yes, the nearest calibration site is the East Fork Russian River gage (EFR), which is not 
part of the Perry Creek watershed, but is part of the Lake Mendocino watershed, and is 
indicated in Figure A1. We propose adding the following sentence to Section 2.1: 
“Although the NWM was not calibrated using data from the Perry Creek watershed, it 
was calibrated using data from the USGS East Fork Russian River streamgage (EFR in 
Fig. A1; Cosgrove et al., 2024), also located within the Lake Mendocino watershed.”   

3.​ Figure 5: You need axis labels indicating which axis is predicted and which is observed. 

Thank you for this suggestion. We will revise the figure to include the labels “Predicted 
Category” on the horizontal axis and “Observed Category” on the vertical axis.  

4.​ Page 9, line 197: Indeed, cropping vegetation may be helpful here – if there is a 
mediterranean climate, vegetation dynamics and streamflow ephemerality are both 
highly seasonal the model could learn more from the banks (which could make up more 
of the image) than the channel where intended. 

This is an interesting insight, although its consideration – and the potential for bank 
vegetation to provide useful information for flow prediction (rather than reduce model 
performance, as in our case) – is beyond the scope of the present analysis. 
Nevertheless, we did not crop the images used in the new appendix application of 
photos from the USGS Flow Photo Explorer (see above), and we propose incorporating 



the following point into a revised Discussion section as follows: "Due to there being 
multiple field camera angles at PEC, we cropped the images to focus on the stream 
channel and staff plate. However, images do not necessarily need to be cropped, and 
bank vegetation could potentially help the model predict flow states. For sites with 
consistent camera types and viewing angles, a useful exercise could be to find the 
optimal image resolution and cropping extent for feature recognition. In such an 
exercise, the cost of increased computing power for higher resolution images should be 
balanced with model performance." 

5.​ Page 10, line 204: You only labelled 12.8% of the total images you had available – this 
is acceptable but is a relatively small dataset for training or reporting performance (your 
testing set is 3.9% of your total image dataset) that will represent the population. This is 
a limitation of the study, since as you note the lighting can be very different at different 
times of day/year. Ideally you have a big enough testing set to represent performance at 
each class during different lighting (and vegetation and channel) conditions. 

Yes, we agree that the number of labeled photos is relatively small. Our intention, in part, 
was to demonstrate that the model can still perform well even with a limited number of 
classified photos; this is a situation that is common in data-limited settings. We believe 
this point is conveyed sufficiently throughout the paper and in our demonstration of 
strong model performance despite the limited number of labeled photos. 

6.​ Page 10, line 203-210: Random sampling was used in the selection of images for 
training/testing, which is acceptable, but this means the performance is only 
representative of historical conditions coincident with the label dataset. The performance 
reported in this paper is not representative of model prediction on new unseen imagery. 
This point is worth noting to make sure the reader knows what the model performance 
represents. 

This is correct. Because the present study is limited to imagery from the study period, 
even "out-of-sample" testing data fall within the study period domain. Broadly, this 
means that model performance is only representative within the study period. However, 
to the extent that variation within the study period reflects variation outside of it, model 
performance during the study period may reasonably be considered indicative of 
performance under true out-of-period conditions. We thank the reviewer for raising this 
important point and propose incorporating the following language into Section 2.2.1 
(and/or elsewhere, as appropriate): “Because this study is limited to imagery from the 
study period, our analysis and modeling strictly reflect that period. However, if the 
variation in imagery and corresponding flow during the study period captures the 
seasonal and inter-annual variability typical of other years, then the selected images may 
be considered broadly representative. In our case, the study period includes the full 
range from wet to dry years and thus arguably captures this variability.” 

7.​ Page 12, lines 247-250: Why were these manual weights selected? 



Thank you for noting the omission of our reasoning behind the selection of manual 
weights. We propose adding the following explanation to this section: "We assigned 
manual weights to emphasize water presence categories (‘high water’ and ‘low water’) 
over ‘no water,’ and gave the ‘obstructed’ category a weight higher than ‘no water’ -- 
reflecting its smaller sample size -- but lower than the water categories, given its lesser 
importance." 

8.​ Page 14, line 298: Is there a reference for the 0.028 m3 s-1 threshold for NWM flow? 
How sensitive are your results to this selection? The selection of the threshold appears 
arbitrary at the moment. 

Thank you for noting this error. We ultimately did not use this threshold. As such, we 
propose replacing the line with the following description of what our analysis did: “For 
example, we calculated how often the observed stage at PEC was zero while the NWM 
predicted flow.”  

9.​ Figure 7: Why are there negative stage values? And why are there purple high water 
dots in panel 7 when stage is reported negative? Is that supposed to be a diagnostic tool 
for quality assurance of the stage data, which leads to the record in panel b? The 
paragraph in the main text where Figure 7 is mentioned does not walk the reader 
through this. Also in Figure 7 are the stage observations without any dots times where 
there was no imagery or times where the imagery classification was deemed not high 
confidence? Consider adding shading to indicate “no imagery available” and another 
color of dot to indicate “no high confidence prediction” or something similar so the 
absence of data is clear.  

Thank you for your comments, which indicate that the placement and discussion of this 
image were not clear in the manuscript. To address this, we propose moving Figure 7 to 
the position of Figure 8, so that the relevant methods are discussed before the figure is 
presented. Otherwise, answers to most of the reviewer’s questions are already provided 
in Section 3.3 and Appendix 2. For remaining questions and omissions, we propose 
making clarifications in both the figure caption and the surrounding text. Specifically, we 
propose revising the figure 7 caption to read: “Original and quality-controlled, 
barometrically compensated stage from the Perry Creek (PEC) site from December 
2022-February 2023. No imagery was available after 1 February 2023. Stage values 
(black lines) are colored (points) by high-confidence image classifications (only). a) 
Shows the time series before quality control, and b) shows the time series after quality 
control.” In addition, we propose emphasizing in Section 3.3 that observed stage data 
can be “prone to sensor error”. Finally, we propose adding text describing the negative 
stage values in more detail in Section 3.3: “Noisy data and stage measurements less 
than zero were an issue before installing the HOBO MX2001-04-SS-S pressure 
transducer and HOBO MicroRX data logger in October 2023; thus, the image 
classifications were useful in validating when the observed stage should be zero.” 



10.​Page 28, line 446-448 and Page 29, line 464-465: Is there a citation or the claim of not 
having enough imagery to train a CNN? The Gupta et al. and Noto et al. studies you cite 
have about as much imagery as you do. You report ~4,700 images, which is more than 
at 2 of Gupta et al. 's sites. 

We agree that our language misstates the point and is overly general. Gupta et al. found 
that using a reduced number of labeled image pairs (500–1,000) resulted in worse 
performance. In our study, we used 537 labeled images, even though the total number of 
available images -- both in our case and in Gupta et al.’s -- was higher. We intentionally 
limited the number of labeled images to evaluate model accuracy under more 
constrained conditions. Accordingly, we agree that the discussion of CNNs is not 
particularly helpful, as we did not explicitly evaluate CNN performance or its relationship 
to training size in our study. Therefore, we propose removing the references to CNNs 
and their sample size requirements. 

11.​Section 4.4: This section largely diverges from the central contribution of the study (a 
methodology to classify images) and into a lot of site-specific information that is largely 
conjecture about processes and reads as redundant to the prior section (4.3). This 
section could be eliminated. 

Thank you for your input. Upon review, we agree with your recommendation. We 
propose moving this section to an appendix and referencing it in the main text where 
appropriate. 

12.​Page 33, line 604: Is there a citation for the claim that “these efforts have struggled to 
translate to IRES”? Neither study cited included nonperennial streams. 

We agree, this should be reworded to: “these efforts did not focus on IRES”.  

13.​Section 4.6: This section is only loosely connected with the central contribution of the 
paper (image classification model) and is material that could be included in the 
introductory material. This section could be eliminated. 

We agree that the material in this section is better suited for partial incorporation into the 
introduction, as well as inclusion in a new “Conclusion” section (in response to your 
comment below). 

14.​Conclusion section is missing: It is traditional to summarize the paper’s contribution in 
a conclusion section, one is missing here. 

We propose including a new Conclusion section that summarizes the overall 
contribution, and incorporates salient points from Section 4.6 (in response to your 
comment above):  

“This work demonstrates that a simple machine learning algorithm can classify timelapse 
field camera images to identify no, low, or high water levels in IRES, providing a 



low-cost, transferable method for monitoring water occurrence in these sparsely 
observed systems. Given the prevalence of ungaged IRES, field cameras and image 
classification offer a practical approach to improving understanding of their role in 
climate-impacted freshwater systems. For example, the FIRO program at Lake 
Mendocino (Fig. A1) currently uses streamflow observations from EFR to inform 
reservoir inflow models. As climate change is expected to increase drying in IRES, 
unmonitored contributions from tributaries such as Perry Creek (Appendix 3) could affect 
reservoir storage. Thus, as the FIRO program expands, field cameras and image 
classification may offer a cost-effective approach to integrating information on the 
presence and magnitude of IRES contributions. 

This approach can also support monitoring of critical habitats, including tributaries where 
salmon passage depends on streamflow connectivity threatened by drought and water 
diversions (see e.g., Scott River, 2025). Installing cameras at tributary confluences could 
inform targeted habitat restoration. More broadly, formally recognizing IRES as integral 
to river systems can incentivize monitoring and protect them from degradation due to 
climate change, mining, and urban development (Acuña et al., 2014). The 2023 
exclusion of ephemeral streams from U.S. Clean Water Act protections highlights the 
vulnerability of IRES and the importance of cost-effective monitoring approaches like 
ours for understanding the impacts and effectiveness of water management efforts. 

We conclude by offering practical recommendations for implementing our method. 
Cameras should be installed along IRES reaches that are important for monitoring water 
management objectives (e.g., fish passage, drought contingency planning). Installations 
should be in stable locations with clear views of the streambed and minimal vegetation 
interference. Consistent camera types and viewing angles should be used, as they 
improve the robustness of time series and the effectiveness of classification. Long-term 
maintenance budgets are also recommended to support sustained monitoring. Finally, 
this approach can be integrated with complementary methods (Gupta et al., 2022; 
Goodling et al., 2025) and deployed through accessible platforms such as the USGS 
Flow Photo Explorer (USGS, 2024) and the CrowdWater mobile application 
(SPOTTERON GmbH, 2025).” 
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