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Abstract. Herein, we describe a
::
an approach to retrieve free tropospheric columns of peroxyacyl nitrates (PANs) from radiances

observed by the Atmospheric Infrared Sounder (AIRS). AIRS has provided daily global coverage since its launch in 2002,

making the AIRS data a valuable long term record. Although the instrument is very radiometrically stable, the radiance noise

level is large enough to present a challenge when retrieving a weak absorber such as PAN. To address this, we focus on retrievals

over land (to avoid interferences from low, warm clouds over ocean) and develop a decision tree quality filter trained
::::::
spectral5

:::::::
windows

:::::
were

:::::::
selected

::
to

::::::::
minimize

:::::::::::
interference

::::
from

:::::
other

::::::
species

:::
as

:::::
much

::
as

:::::::
possible

::::
and

::
a

:::
set

::
of

:::::
filters

::::
was

:::::::::
developed

to predict whether a PAN value retrieved from AIRS will be
:
is
:
within 0.2 ppb or 50% of what would be retrieved from the

Cross-track Infrared Sounder (CrIS)
:::
and

::
to

::::::
remove

::::::::
spurious

::::::
signals

:::::
caused

:::
by

::::::
specific

:::::::
surface

::::::
features

::
or
::::::
clouds. We show that

AIRS is capable of retrieving PAN plumes
:::
with

::::
very

::::
high

:::::::::::::
concentrations

::
of

::::
PAN

:::::
(such

::
as

:::::
those from significant wildfiresthat

match those retrieved from
:
)
:::
that

:::::
have

::::::
similar

::::::
spatial

:::::
extent

:::
as

::::
seen

:::
by CrIS and that PAN retrieved from AIRS has good10

correlation with CrIS given sufficient averaging. We conclude with recommendations for users to help ensure that these data

are used appropriately.

1 Introduction

Acyl peroxy nitrates (APNs) are a family of air pollutants formed by the reaction of a peroxy radical with NO2. Peroxyacetyl

nitrate (PAN, CH3C(O)OONO2) is the most commonly considered member of this family, resulting from the reaction of a15

peroxyacetyl radical with NO2 (Singh and Hanst, 1981). PAN exists in equilibrium with its reactants and is more stable at

colder temperatures. Because of this, PAN often acts as a temporary reservoir of nitrogen oxides (NOx), enhancing long range

transport of NOx to downwind regions (e.g., Singh et al., 1986; Moxim et al., 1996; Hudman et al., 2004). In addition to

redistributing NOx and the associated potential for photochemical production of secondary pollutants, PAN itself is toxic to

plants and an eye irritant for humans (Gaffney and Marley, 2021).20

PAN is neither a criteria air pollutant nor a designated hazardous air pollutant by the United States Environmental Protection

Agency (Suh et al., 2000) or the World Health Organization (World Health Organization, 2021). As a result, routine in situ

monitoring of PAN is rare. However, targeted campaigns such as the Arctic Research of the Composition of the Troposphere

from Aircraft and Satellites (ARCTAS, Alvarado et al., 2010), Western Wildfire Experiment for Cloud Chemistry, Aerosol

Absorption, and Nitrogen (WE-CAN Juncosa Calahorrano et al., 2021a), or Fire Influence on Regional to Global Environments25

and Air Quality (FIREX-AQ, Warneke et al., 2023) include measurements of PAN to more fully constrain the nitrogen cycle in
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the outflow of the phenomenon of interest for that campaign. Other campaigns focused on measuring background air, such as

HIAPER Pole-to-Pole Observations (HIPPO, Wofsy, 2011) or the Atmospheric Tomography Mission (ATom, Thompson et al.,

2022) include PAN measurements to quantify its effect on remote air.

Techniques for remote sensing of PAN have been developed in the last two decades. PAN has very similar absorption30

features to other members of the APN chemical family (e.g., peroxypropionyl nitrate, peroxy-n-butyryl nitrate, peroxy-n-

valeryl nitrate, peroxyacryloyl nitrate, and peroxycrotonyl nitrate, Monedero et al., 2008). Thus, retrievals of “PAN” are in

fact retrievals of a mixture of APNs. The
:::::::
However,

:::::
PAN

::::::::
typically

::::::::
comprises

::::
the

:::::::
majority

:::::
(75%

::
to

:::::
90%)

:::
of

:::::
APNs

::
in
:::::

both

::::::
remote

:::::
areas

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Roberts et al., 1998, 2002; Wolfe et al., 2007; Fischer et al., 2014)

:::
and

::::::
urban

::::::
plumes

::::::::::::::::::::
(LaFranchi et al., 2009)

:
.

:::
The

:::::::
fraction

::::
may

::
be

:::::
lower

::
in

::::::
wildfire

:::::::
plumes;

:::::::::::::::
Peng et al. (2021)

::::::::::
hypothesize

:::
that

::
an

::::::::
unknown

::::
APN

:::::
could

:::::::
explain

:::::::::::
discrepancies35

::
in NOx:::

/CO
:::::
ratios

:::::::
between

::::
their

:::::::::::
observations

:::
and

::::::
model.

:::::
Given

:::
the

::::::::::::
predominance

::
of

::::
PAN

:::
as

::
the

::::::::
majority

:::::
APN,

:::
the convention

is to refer to the product as
::::::
satellite

:::::::
products

::
as

:::::::::
retrieving “PAN” or “PANs”, and we adopt that convention for this manuscript.

PAN has been retrieved from ground-based instruments as well as limb- and nadir- viewing space-based platforms. Several

sites in the Network for Detection of Atmospheric Composition Change (NDACC) perform retrievals of PAN from ground-

based spectra (Mahieu et al., 2021). From space, PAN in the upper troposphere/lower stratosphere has been retrieved from40

limb measurements from CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA, Ungermann et al.,

2016) on board two space shuttle flights in the 1990s, the Michelson Interferometer for Passive Atmospheric Sounding (MI-

PAS, Glatthor et al., 2007; Moore and Remedios, 2010; Wiegele et al., 2012; Fadnavis et al., 2014; Pope et al., 2016), and

Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS, Tereszchuk et al., 2013). Nadir viewing in-

struments, such as the Tropospheric Emission Spectrometer (TES, Alvarado et al., 2011; Payne et al., 2014), the Infrared45

Atmospheric Sounding Interferometer (IASI, Coheur et al., 2009; Clarisse et al., 2011; Franco et al., 2018), and the Cross-

track Infrared Sounder (CrIS, Payne et al., 2022), provide the ability to retrieve column amounts of PAN sensitive to the

mid-troposphere.

::::::::
Consistent

:::::::
records

::
of

::::::::::
atmospheric

:::::
trace

:::
gas

::::::::::::
concentrations

:::
are

:::::::
essential

::
to

:::::::
monitor

::::
how

:::
air

::::::
quality

:
is
::::::::
changing

::::
over

:::::
time.

::
A

:::::
major

::::::::
challenge

::
in

::::
this

::::::
respect

::
is
::::::::::

addressing
:::::::::
instrument

:::::::::
differences

:::::::
among

:::::::
satellites

:::
to

:::::::
produce

::::::
records

::::::::
spanning

::::::::
multiple50

:::::::
decades.

::::
The

::::::::::
Community

::::::::::
Long-term

:::::::
Infrared

::::::::::
Microwave

:::::::::
Combined

:::::::::::
Atmospheric

:::::::
Product

:::::::
System

::::::::::::
(CLIMCAPS)

:::::::
product

:::::::::::::::::::::
(Smith and Barnet, 2020)

::::::
invested

:::::::::
significant

:::::
effort

::
in

::::::::
applying

:
a
:::::::::
consistent

:::::::
retrieval

::
to

::::::::
radiances

:::::
from

::::
both

:::
the

:::::::::::
Atmospheric

::::::
Infrared

::::::::
Sounder

::::::
(AIRS)

:::
and

:::
the

::::::
various

::::
CrIS

::::::::::
instruments

::
as

::::
well

::
as

::::::::::
minimizing

:::::::::::::::
cross-correlations

:::::::
between

:::::::
retrieved

::::::::
variables

::::::::::::::::::::
(Smith and Barnet, 2019)

:
.
::::::::::
CLIMCAPS

::::::::
produces

:::::::
records

::::::::
spanning

:::
the

::::
more

:::::
than

:::
two

:::::::
decades

:::::
since

:::::
AIRS

::::::::
launched

::
in

:::::
2002

:::
that

::::::
include

:::::::
profiles

::
of

::::::::::
atmospheric

:::::::::::
temperature, H2O:

, CO
:
, O3,

:
CO2,

:
HNO3:

,
:::
and

:
CH4:

,
:::
but

::::
does

:::
not

::::::
include

:::::
PAN.

:
55

:::
The

::::::::::::
TRopospheric

::::::
Ozone

:::
and

:::
its

::::::::
Precurors

:::::
from

:::::
Earth

::::::
System

:::::::::
Sounding

::::::::::
(TROPESS)

::::::
project

::::
also

:::::::
focuses

:::
on

:::::::
applying

::
a

::::::::
consistent

:::::::
retrieval

::::::::
algorithm

:::
for

::::::
various

:::::
trace

::::
gases

::
to

::::::::
radiances

:::::
from

:
a
::::::
variety

::
of

::::::::::
instruments.

::::
This

:::::::
includes

:::::::
thermal

::::::::
radiances

:::::::
observed

:::
by

:::::
AIRS

:::
and

:::::
CrIS,

::
as
:::::

well
::
as

::::::::
radiances

::
in

:::::
other

::::
parts

::
of

:::
the

::::::::::::::
electromagnetic

::::::::
spectrum

::::
from

:::
the

::::::
Ozone

::::::::::
Monitoring

:::::::::
Instrument

:::::
(OMI)

::::
and,

::
in

:::
the

:::::
future,

:::
the

:::::::::::::
TROPOspheric

:::::::::
Monitoring

:::::::::
Instrument

::::::::::::
(TROPOMI).

:::::::::::::::::::::
Cady-Pereira et al. (2024)

:::::::::::
demonstrated

::
the

:::::::::
capability

::::
with

:::::::::
TROPESS

::
to

:::::::
retrieve NH3 ::::

from
::::
both

:::::
AIRS

:::
and

:::::
CrIS.

:::::
They

::::::::
validated NH3 ::::

from
::::
both

::::::::::
instruments

::::::
against60

::::::
aircraft

::::
data

:::
and

:::::
found

:::::
that,

:::::::
although

:::
the

::::::::
retrievals

:::::
from

:::
the

:::
two

::::::::::
instruments

:::
are

:::::::
broadly

::::::
similar,

:::::
there

:::
are

::::::::::
differences

::
in

:::
the
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::::::::
agreement

::::
with

::::::
aircraft

:::::::
profiles.

::::::::
However,

::::
after

:::::::::
accounting

:::
for

:::
the

:::::::::
smoothing

:::::
errors,

:::
the

:::::
biases

::::
fall

:::::
below

:
1
::::
ppb.

::::::::::::::::::::
Pennington et al. (2025)

::::::::
evaluated O3 :::::

trends
:::

in
::::
three

:::::::::
TROPESS

::::::::
products

:::::
using

:::::::
thermal

::::::::
radiances

:::::
from

:::::
AIRS

::::
and

::::
CrIS

::::
and

::::::::
combined

:::::::
thermal

::::
and

::::::::
ultraviolet

::::::::
radiances

:::::
from

:::::
AIRS

:::
and

:::::
OMI.

::::
They

:::::::::
compared

::::
these

::::::::
products

::
to

::::::::::
ozonesonde

::::
data,

:::
and

:::::
found

::::
that

:::::
trends

::
in

:::
the

::::
bias

::
of

:::
the

:::::::
retrieved

:
O3 :::

was
::::::::::
significantly

::::
less

::::
than

::
the

::::::::
reported O3 :::::

trends.
:

65

The ability to retrieve troposphere
::::::::::
tropospheric columns of PAN from space has enabled scientific studies of various sources

of air pollution. Several studies made use of the TES PAN retrievals to investigate factors driving PAN over Eurasia (Zhu et al.,

2015; Jiang et al., 2016) and the tropics (Payne et al., 2017) as well as the prevalence of PAN in smoke-impacted air masses over

North America (Fischer et al., 2018). Zhu et al. (2015) and Jiang et al. (2016) found that a combination of seasonal temperature,

lightning, biomass burning, and microbial emissions influenced the PAN outflow from Eurasia, while Payne et al. (2017) found70

that the dominant factors in the tropics were biogenic emissions and lightning, with some influence from biomass burning

during the study period. Juncosa Calahorrano et al. (2021b) used PAN retrieved from CrIS to quantify the chemical production

of PAN in the outflow from the Pole Creek Fire in central Utah, USA. Shogrin et al. (2023) combined PAN values retrieved from

TES and CrIS and found that PAN columns over Mexico City had no trend over a time period when NO2 columns decreased.

Shogrin et al. (2024) used PAN columns retrieved from CrIS to study whether there were statistically significant changes in75

PAN amounts over eight megacities during the COVID pandemic. They found a mix of increases, decreases, and no change

in PAN columns among the megacities. More recently, Zhai et al. (2024) used PAN retrieved from IASI to study transport of

PANs across the Pacific and concluded that the effect on ozone in the western US was less than 1 ppb. These studies provide

examples of how space-based retrievals of PANcan, particularly in synergy with other space-based trace gas observations,

:::
can provide valuable information about how the meteorological conditions, episodic events, and dominant chemical regime80

influence air quality in different regions.

In this work, we demonstrate the first retrieval of PAN from the Atmospheric Infrared Sounder (AIRS)
:::::
AIRS. As AIRS was

launched in 2002, this has the potential to provide the longest continual record of PAN from a nadir viewing instrument. Our

approach is based on that of Payne et al. (2022). We begin with an overview of the AIRS and CrIS instruments, which are

both used in this work. Then, we review the MUlti-SpEctra, MUlti-SpEcies, MUlti-Sensors (MUSES) algorithm which pro-85

vides a retrieval framework for this work. Next, we describe the specific MUSES configuration we use. Fourth, we address

several challenges encountered in adapting the approach of Payne et al. (2022) to AIRS spectra. Finally, we close with rec-

ommendations to users of the new AIRS PAN product.
:::
Due

::
to

:::
the

::::::::::::
computational

::::
cost

::
of

::::
this

::::::::
retrieval,

:::
our

:::::::
analysis

:::::::
focuses

::
on

::
a

:::
few

::::
days

:::::
with

::::::::
significant

::::::::
variation

::
in

:::::
PAN

::::
from

:::::
major

:::::
fires

::
in

:::
the

:::
US

:::
and

:::::::::
Australia.

::::
This

:::::::
product

::::
will

::
be

:::::::::::
incorporated

::
in

:::
the

:::::::::
operational

:::::::::
TROPESS

::::
data

:::::::::
processing

::
in

:::
the

::::::
future

:
(https://disc.gsfc.nasa.gov/information/mission-project?keywords=90

tropess&title=TROPESS,
::::
last

:::::::
accessed

:::
11

:::
Sep

::::::
2025),

:::::
which

::::
will

::::::
enable

:::::::
analysis

::
on

:
a
::::::
longer

:::::::::
timeseries

::
of

::::
data.

:
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::::
AIRS

: ::::
CrIS

::::::
Spectral

::::::::
resolution

:
at
::::

790
::::
cm−1

::::::
(cm−1)

: ::::
0.355

: ::::
0.625

:

::::
Field

::
of

::::
view

:::::::
diameter

:::
(km)

: ::
15

:::::::::::::::::::
(Thrastarson et al., 2021)

::
14

:::::::::::::::::
(Zavyalov et al., 2011)

:::::
Spatial

:::::::
sampling

::::
(km)

: :::
13.5

:::::::::::::::::
(Schreier et al., 2010)

::
15

:::::::::::::::
(Wang et al., 2013)

:::::
NEdT

:::
(K)

::
0.1

::
to
:::
0.8

:::::::::::::::::::
(Thrastarson et al., 2021)

::
∼

:::
0.04

::::::::::::::::::
(Zavyalov et al., 2013)

Table 1.
::::::::
Comparison

::
of
:::::::
relevant

::::
AIRS

:::
and

::::
CrIS

::::::::
instrument

::::::::::::
characteristics.

::::::
Spectral

::::::::
resolution

:::
was

:::::::
computed

::::
from

:::
the

::::
L1B

::::
files.

:::
All

::::
other

:::::
values

::
are

::::
from

:::
the

::::
cited

::::::::
references.

:::::
NEdT

:::::
stands

::
for

:::::
“noise

::::::::
equivalent

::::::::
differential

::::::::::
temperature,”

:::
and

:::
the

:::::
NEdT

::::
value

::
for

::::
CrIS

:::
was

::::::::
estimated

:::
from

::::
Fig.

::
10

::
of

:::::::::::::::::
(Zavyalov et al., 2013)

::
for

::::
CrIS

:::
full

::::::::
resolution

::::::
spectra.

2 Data sources and algorithm background

2.1 AIRS radiances

The Atmospheric Infrared Sounder (AIRS) instrument is carried on board the Aqua satellite. Aqua was launched in May

2002 and flies in a polar, sun synchronous orbit. For most of its mission, it had a local ascending equator crossing time of95

∼13:35. Starting in 2022, it began to drift to a later crossing time; as of early 2025, it has an equator crossing time of ∼14:30

(https://aqua.nasa.gov/, last accessed 12 Mar 2025).

AIRS is a grating spectrometer, covering three spectral bands (3.74 µm to 4.61 µm, 6.20 µm to 8.22 µm, and 8.8 µm to 15.4

µm
:::::::::::
approximately

::::
650

:::::
cm−1

::
to

::::
1140

::::::
cm−1,

::::
1220

::::::
cm−1

::
to

::::
1610

::::::
cm−1,

:::
and

:::::
2170

:::::
cm−1

::
to

::::
2670

:::::
cm−1) with 17 detector arrays

and a nominal spectral resolution of λ/∆λ= 1200 (Aumann et al., 2003)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(ranging between 1086 and 1570, Aumann et al., 2003; Thrastarson et al., 2021)100

. The original calibration is described by Pagano et al. (2003) and an update is given in Pagano et al. (2020). AIRS’s radiometric

calibration has been very stable over its lifetime, with < 2 mK yr−1 drift between 2017 (Aumann et al., 2019) and between

−3 mK and +6 mK since (Aumann et al., 2023).
::::
Table

::
1

::::::::
compares

:::::
some

::
of

:::
the

:::::::
relevant

:::::::::
instrument

::::::::::::
characteristics

:::
of

:::::
AIRS

:::
and

:::::
CrIS. In this work, we use AIRS level 1B radiances from version 5 of the AIRIBRAD product (AIRS Project, 2020).

2.2 CrIS radiances and the CrIS PANs product105

At time of writing, there are three operational Cross-track Infrared Sounder (CrIS) instruments. The first is on board the

Suomi-NPP satellite, launched in October 2011, followed by copies on the JPSS-1/NOAA-20 and JPSS-2/NOAA-21 satellites,

launched in Nov. 2017 and Nov. 2022, respectively. All three are in sun synchronous orbits with ascending local equator

crossing times around 13:30. Unlike AIRS, CrIS is a Fourier transform spectrometer that observes nine fields of view in a

3× 3 array simultaneously. It performs an across-track scan of 30 view positions. The fields of view are ∼ 15 km in diameter110

(Zavyalov et al., 2011).

Payne et al. (2022) used radiances from the CrIS instrument on board Suomi-NPP (S-NPP) (specifically the NASA version

2 level 1B radiances, Sounder SIPS and GES DISC, 2017) to retrieve PANs. CrIS measures in three spectral bands: long-

wave IR (650 cm−1 to 1095 cm−1), midwave IR (1210 cm−1 to 1750 cm−1), and short-wave IR (2155 cm−1 to 2550 cm−1,

4
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Han et al., 2013). At launch, the CrIS S-NPP instrument was operated in “normal spectral resolution” mode, with the bands115

measuring at 0.625 cm−1, 1.25 cm−1, and 2.5 cm−1, respectively. In Dec. 2014, it was switched to “full spectral resolution”

(FSR) mode, with 0.625 cm−1 resolution in all bands (Strow et al., 2021). The NASA FSR level 1B product begins a year later

(Dec. 2015) after additional upgrades to CrIS calibration in Nov. 2015. Our work uses the MUSES algorithm (Sect. 2.3), which

uses radiances from multiple CrIS bands to retrieve atmospheric trace gases and temperature. Currently, this requires the full

spectral resolution product, thus we limit ourselves to CrIS data from Dec. 2015 on.120

Payne et al. (2022) validated the CrIS PANs retrievals against PAN measurements taken during the ATom campaign. The

measured profiles had GEOS-Chem profiles appended to the top. From the standard deviation of the differences between CrIS

and aircraft free tropospheric PAN column averages, Payne et al. (2022) derived a single sounding uncertainty of 0.08 ppb for

the CrIS PANs retrieval.
:::::::::::::::::::::::::::::::::::::::::::::::
(See Payne et al., 2022, for details on how this was done.) This was larger than the uncertainty calcu-

lated by the
::::::
MUSES

:
optimal estimation (OE) algorithm, but Payne et al. (2014)

:::::::::::::::
Payne et al. (2022) attribute the discrepancy to125

pseudo-random error contributions from the retrieval of interfering species or the temperature profile. Such interferent-driven

error would not be
:::
was

::::
not included in the uncertainty calculated by the OE

:::::::
MUSES

:
algorithm, as the OE

::
for

::::
PAN

:::::::::
retrievals,

::
the

:
algorithm calculates uncertainty from noise only.

Further, the comparison with ATom found a negative bias (CrIS lower than aircraft) that correlated with the total column

amount of water vapor. The relationship between water vapor and the CrIS PAN bias was further corroborated by examination130

of the pre-PAN retrieval spectral residuals, which found a positive residual correlated with water vapor column amounts. From

the ATom comparisons, Payne et al. (2022) derived a bias correction for the CrIS PAN product, c= 0.05+0.035×10−23×X ,

where X is the column density of water vapor in molec. cm−2 and c is the correction in ppb.

2.3 MUSES Retrieval

The MUlti-SpEctra, MUlti-SpEcies, MUlti-Sensors (MUSES) retrieval (Worden et al., 2007; Luo et al., 2013; Fu et al., 2018;135

Worden et al., 2019; Malina et al., 2024) is an optimal estimation retrieval with heritage tracing back to the TES retrieval

(Bowman et al., 2006). It is instrument-agnostic, able to solve for the optimal state vector given radiances from a variety

of instruments (e.g., AIRS, CrIS, the Ozone Monitoring Instrument [OMI], and the TROPOspheric Monitoring Instrument

[TROPOMI]), or multiple instruments (e.g., AIRS+OMI, CrIS+TROPOMI).

The MUSES algorithm allows retrievals to be broken down into smaller steps, each of which define the spectral windows140

for which to minimize the radiance residuals, the atmospheric parameters to solve for, which of those parameters to update for

the next step, along with a number of more technical options. The steps are defined in a “strategy table” which can be quickly

edited to test different retrieval approaches. This step-wise design provides flexibility to fix some elements of the state vector

while updating others in certain steps, which is particularly useful when retrieving state vector elements with large differences

in the magnitude of their Jacobian matrices (e.g., atmospheric temperature vs. PAN) or which interfere with each other (e.g.,145

O3 vs. PAN). These steps are run sequentially; the final state of one step becomes the initial state for the next, save for any

state vector elements which the strategy table indicates should not be updated.
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Within each step, MUSES uses an iterative solver that applies the trust-region Levenberg–Marquardt scheme (Bowman et al.,

2006) to mimimize a cost function

J(x) = [y−F(x,b)]
T
S−1
ϵ [y−F(x,b)] + (x−xa)

T
S−1
a (x−xa) (1)150

where

– x is the retrieved state vector,

– xa is the a priori state vector,

– y is the observation vector (i.e., AIRS or CrIS radiances),

– F is the forward model that simulates radiances given the state vector and fixed parameters (b),155

– Sϵ is the error covariance matrix for the observed radiance, and

– Sa is the prior error covariance matrix.

The Levenberg-Marquardt solver will iteratively update the state vector, x along a direction in state space expected to mimimize

Eq. (1). It will continue until the convergence criteria are satisfied or the maximum number of iterations is reached.

An important distinction within MUSES is the difference between the a priori (or constraint) state vector and the initial160

state vector. The former is xa in Eq. (1) and is a mathematical constraint on the optimal state vector, the latter is the starting

point of x before the first iteration of the Levenberg-Marquardt solver. These two can be the
::::
This

:::::::::
distinction

::
is
:::::::::
important

:::::
within

:::::::
MUSES

:::::::
because

::
it
::
is

::
a

::::::::
multi-step

::::::::
retrieval.

::::
The

:::::::
strategy

:::::
table,

:::::::::
mentioned

::::::
above,

::::::
defines

:::::
which

::::::::
elements

::
of

:::
the

:::::
state

:::::
vector

::::
will

::
be

:::::::
retrieved

:::
in

::::
each

:::
step

::::
and

:::::::
whether

::
or

:::
not

:::
the

:::::::
retrieved

:::::
state

::
for

::::
step

:
i
::::::::
becomes

:::
the

:::::
initial

::::
state

:::
for

::::
step

::::
i+1.

::::
For

:::::::
example,

:::
the

:::::::
retrieval

::::
may

:::::
begin

::::
with

::
an

:
H2O::::::

profile
::::
taken

:::::
from

:
a
::::::::::::
meteorological

:::::::::
reanalysis

::
as

::::
both

:::
the

:::::
initial

:::::
guess

:::
and

:::
the

::
a165

::::
priori

:::::::::
constraint.

:::
An

:::::
early

::::
step

::
in

:::
the

:::::::
retrieval

:::
can

::::
then

::::::
retrieve

::
a
::::
new H2O::::::

profile
:::::
which

::
is

:::::
more

::::::::
consistent

::::
with

:::
the

::::::::
observed

::::::::
radiances.

::::
This

::::
new

:
H2O :::::

profile
::::
can

::::
then

::
be

::::
used

:::
as

::
an

:::::
initial

::::
state

:::
for

:::::
later

::::
steps

::::::::
(whether

::
or

:::
not

:::::
those

::::
steps

:::::::
retrieve

:
H2O :

).

::::
This

:::
can

::
be

:::::::::
important

::
for

:::::
weak

:::::::::
absorbers,

::::
such

::
as

:::::
PAN,

:::::
which

:::::
need

:::
the

::::::
profiles

::
of

::::::
strong

::::::
thermal

:::
IR

::::::::
absorbers

::
to

:::
be

:::::::
accurate

::
for

:::
the

:::::
scene

:::
in

:::::::
question

::
so

::::
that

:::
the

::::::::
relatively

:::::
small

:::::::::
absorption

::::::
feature

::
of
::::

the
::::
weak

::::::::
absorber

:::
can

:::
be

::::::::
identified.

::::
We

::::
note

::::
that,

::
for

::
a
:::::
given

::::
step,

:::
the

:::::
initial

::::
state

::::
and

:
a
:::::
priori

::::::::
constraint

::::
can

::
be

:::
the

:
same but do not need to be; in particular for

:
.
:::
For

:
later steps170

of the retrieval, the initial state will
:::
may

:
have been set by earlier retrieval steps .

::
(as

::
in

:::
the

:::::::
example

:::::
given

::::
with

:
H2O)

:::
but

:::
the

::
a

::::
priori

:::::::::
constraint

:::
will

::::::
remain

:::
the

:::::
same

:::
for

::
all

:::::
steps.

:::
Or,

:::
the

::
a

:::::
priori

::::::::
constraint

::::
may

::
be

::::::
chosen

::
to
:::
be

:
a
::::::::
relatively

::::::
simple

::::::
profile

::
to

::::
avoid

::::::::
imposing

::::::
undue

:::::::::::
assumptions,

::::
while

:::
the

::::::
initial

::::
state

::::
may

::
be

::::::
chosen

::
to

::::::
reflect

:
a
:::::
better

:::::::
estimate

::
of

:::
the

:::::::::::
atmospheric

::::
state

::
in

:::
that

:::::::
location

::
to

::::::
attempt

:::
to

::::::::
minimize

:::
the

::::::
number

::
of

:::::
steps

::::::
needed

::
by

:::
the

::::::
solver.

:

MUSES can use different radiative transfer models for F in Eq. (1). For this work, we use version 1.2 of the Optimal Spectral175

Sampling (OSS) model (Moncet et al., 2008, 2015). OSS is designed to use an optimal set of absorption coefficients (per

absorbing species and vertical layers) and weights that can be used to compute the radiance for each channel of a spectrometer
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very efficiently, given the amounts of each absorbing specie
::::::
species. These weights are computed by training OSS against a

reference line-by-line spectroscopic model(Moncet et al., 2008, 2015). Determining those optimal absorption coefficients and

weights requires it to be trained for a given instrument. In version 1.2, the absorption coefficients are calculated from the Line180

By Line Radiative Transfer Model (LBLRTM) version 12.4 (Clough et al., 2005; Alvarado et al., 2013).
::::
This

:::::
allows

:::::
OSS

::
to

::::::::
efficiently

:::::::
simulate

:::
the

::::::::
radiances

::
a
::::::
specific

:::::::::
instrument

::::::
would

:::::::
observe

::
by

::::::::
reducing

::
the

:::::::
number

::
of

:::::::::::::
monochromatic

:::::::::::
wavelengths

:::
that

::::
must

:::
be

:::::::
modeled

:::
for

:
a
:::::
given

:::::::::
instrument

:::::::
channel,

:::
but

:::::
means

::::
that

::::
OSS

::::
must

:::
be

::::::
trained

::
for

::::
each

:::::::::
instrument

::::
used

::
in
::
a
:::::::
retrieval

::::::::
separately.

::::
For

:::::
details

:::
on

:::
the

::::::::
approach,

::::::
readers

:::
are

::::::::::
encouraged

::
to

::::::
review

:::::::::::::::::
Moncet et al. (2008)

:::
and

:::::::::::::::::
Moncet et al. (2015)

:
.

2.4 TROPESS products185

The TRopospheric Ozone and its Precurors from Earth System Sounding (TROPESS )
::::::::
TROPESS

:
project focuses on applying

the MUSES algorithm to retrieve a range of atmospheric trace gases from a variety of space-based instruments, including AIRS,

OMI, CrIS, and TROPOMI to date. There are two main “streams” of TROPESS data.
:::::::::
Operational

:::::::::
processing

:::
for

:::::::::
TROPESS

::
is

::
set

:::
up

::
to

::::::::::::
accommodate

:::
two

:::::::
distinct

:::::
goals.

::::
The

:::
first

::
is
::
to

:::::::
provide

:
a
::::::

global
::::::
record

::
of

:::::
ozone

::::
and

::::::
related

::::
trace

:::::
gases

:::
for

:::
the

::::
first

::::
∼20

::::
years

::
of

:::
the

::::
21st

:::::::
century.

:::
The

::::::
second

::
is

::
to

:::::::
support

::::
rapid

:::::::
iteration

:::
on

:::
and

:::::::::::
improvement

::
of

:::
the

:::::::::
underlying

::::
level

::
2

:::::::::
algorithms190

::::
while

::::::::::
processing

::::
more

::::::
recent

::::
data.

::::
Due

::
to

:::
the

::::::::::::
computational

:::
cost

:::
of

::::
these

::::::::
retrievals,

:::::::
meeting

:::::
both

::::
goals

:::::::
requires

::::
two

:::::::
separate

:::
data

:::::::
streams.

:

The first is a “retrospective” or “reanalysis” stream that retrieves trace gas amounts from ∼ 2002 through ∼ 2021 with a

consistent
:::::
2021.

::::
This

::::::
stream

:
is
:::::::::
processed

::::
with

:
a version of the MUSES algorithm

:::::
frozen

::
at

::
the

::::
time

:::
the

:::::::::::
retrospective

:::::::::
processing

:::::
began. The second is a “forward” stream that processes new radiances as they become available with the latest version of the195

MUSES algorithm,
::::::::
including

:::::::
updates

::
to

:::
the

::::::::
algorithm

::::
made

::::
after

:::
the

:::::::::::
retrospective

:::::::::
processing

:::::
began. The forward stream serves

the dual purpose of monitoring significant events affected
:::::::
affecting

:
air quality and serving as a test bed for improvements to the

MUSES algorithm.
:::
Due

::
to
:::
the

:::::::::
difference

::
in

:::
the

::::::::
algorithm

::::::::
versions,

:::::
users

::::
must

::::
take

::::
care

:::
not

::
to

::::::::::
misinterpret

:::::::
changes

::
in

::::::
trends

:::::::
between

:::
the

:::
two

:::::::
streams.

:

Both streams use a “global survey” sampling approach to process a subset of all available soundings yet provide global200

coverage, which allows a balance between computational cost and spatial coverage.
:::
The

::::::
default

::::::
survey

:::::::
strategy

:::::::::
processes

:::
one

::::::::
sounding

::
in

::::
each

:::::::
x◦ ×x◦

::::
box

::::
over

::::
land

:::
and

::::
one

:::
out

::
of

:::::
every

::::
four

::::
such

::::::
boxes

::::
over

:::::
ocean.

::::
For

:::
the

::::::
current

::::::::
products,

::
x

::
is

:::::
either

::::
0.7◦

::
or

::::
0.8◦.

:
In addition, TROPESS produces special collections with full data density for high interest events (e.g., the

2019–2020 Australian Bush Fires and 2020 US West Coast Fires) and a set of megacities around the world.

The CrIS PAN product described in Payne et al. (2022) and Sect. 2.2, with mostly minor updates, is now routinely produced205

as part of both the reanalysis (Bowman, 2023) and forward (Bowman, 2022) TROPESS streams. ,
:::
as

::::
well

::
as

::::::
special

::::::::
products.

:::
The

:::::::::
reanalysis

:::
and

::::::::
forward

::::::
streams

:::::::
provide

:::::
twice

:::::
daily

::::
(day

::::
and

::::::
night)

:::::
global

::::::::
coverage

:::
of

:::::
PAN,

:::::
using

:::
the

::::::
global

::::::
survey

::::::
strategy

:::::::::
described

::
in

:::
the

:::::::
previous

::::::::::
paragraph. Other species retrieved within the TROPESS project include methane, carbon

monoxide, deuterated water (HDO), ammonia, and ozone.
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Window number Freq. range (cm−1)

1 772.5 to 775

2 780 to 781.875

3 793.75 to 796.875

4 800 to 802.5

5 804.375 to 805

Table 2. The microwindows selected for the AIRS PAN retrieval.

3 AIRS PAN retrieval development210

3.1 AIRS PAN retrieval design: microwindows and retrieval order

Retrievals using AIRS radiances have previously been implemented within the TROPESS MUSES algorithm (§2.3), thus the

AIRS PAN retrieval can use the existing readers and
:::::::
MUSES OE framework. The components that must be added are (1)

the desired windows, (2) the strategy table that instructs the MUSES algorithm to retrieve PAN, and (3) details about PAN

retrievals copied from the CrIS PAN retrievals, such as the prior vector values.215

For the existing CrIS PAN retrieval, Payne et al. (2022) chose two windows on the low frequency side of the PAN spectral

feature (Fig. 1). However, parts of these windows fall in the AIRS “spectral gap,” where no radiance channels are available.

Thus, we had to compromise between windows that will see sufficient signal for PAN absorption and windows that avoid

signal from interfering species. Figure 1 shows the selected windows overlaid on simulated absorption features for the relevant

species in this spectral range. The two windows on the left of the PAN feature (below 785 cm−1) only see a weak part of220

the signal from PAN, but are outside of the CCl4 absorption. The center window at 795 cm−1 is able to capture the core

PAN absorption, but has interference from both water and CCl4. The two rightmost microwindows (above 800 cm−1) are able

to avoid interference from water, but have minor to moderate interference from CCl4. CCl4 :
is

:::
not

::::::::
retrieved

:::::
(Table

:::
3)

:::
but

::
is

::::::::
simulated

::
in

:::
the

::::::::
radiative

::::::
transfer

:::
as

::
an

::::::::::
interferent,

::::
using

:::::::::::::
climatological

::::::
profiles

::::::
scaled

::
by

::::::
yearly

:::::
scale

::::::
factors

::::::
derived

:::::
from

::::::
ground

:::::
based

:::::::::::
observations.

:::
The

::::
base

::::::::::::
climatological

:::::::
profiles

::::
vary

::::
with

::::::
latitude

::::
and

::::::::
longitude

::
in

:::
30◦

::::
and

:::
60◦

::::
bins,

:::::::::::
respectively,225

:::
and

::::
were

:::::::::
developed

::::
from

:::::::::
MOZART

::::::
model

:::::
output

::::::::::::::::::
(Brasseur et al., 1998)

:
.

Early tests with the three windows above 790 cm−1 showed that omitting the 795 cm−1 window gave erroneously high

PAN column average values across much of the western United States during a period when the Pole Creek Fire was emitting

PAN (among other species, Juncosa Calahorrano et al., 2021b). Similar tests also showed no benefit to adding additional

microwindows above 805 cm−1. The two microwindows below 785 cm−1 were added later to provide the retrieval with some230

radiance information with PAN but not CCl4 absorption. The specific frequency ranges for each microwindow are given in

Table 2.

Development of the strategy table was straightforward, requiring only the addition of a PAN retrieval step to the standard

AIRS strategy table in use by TROPESS to generate AIRS products. Table 3 enumerates the steps included in this table; the
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Figure 1. An illustration of the factors driving the selection of windows for the AIRS PAN retrieval. Each panel shows the simulated

difference in brightness temperature for a 10% increase in the mixing ratio of one specie
::::::
species at all altitudes as the black line. The AIRS

channels are marked at the top of each panel as gray dots. The chosen windows for the AIRS retrieval are the full height blue boxes. For

reference, the CrIS windows used by Payne et al. (2022) are the short, orange boxes.

PAN step added is step number 6. The choice to place the PAN retrieval immediately following the “strong features” step235

(no. 4) follows Payne et al. (2022). Step number 5 was also added to enable saving of spectral residuals in a wider range of

frequencies centered on the PAN feature. Such a diagnostic is helpful to understand what factors might be affecting a given

retrieval .
:::
and

::::::
proved

:::::::
valuable

:::
for

:::::::
filtering

:::::
(Sect.

::::
3.2).

:

The a priori constraints used in the AIRS PANs retrieval are mostly the same as the Payne et al. (2022) CrIS PANs retrieval,

with the exception of surface emissivity. As in Payne et al. (2022), the PAN profile used as the a priori constraint for each240

sounding is selected from a set of 6 climatological profiles for each month (Fig. 2) and the initial PAN profile used as the

starting point for the nonlinear optimization is a flat 0.3 ppb in the troposphere. Likewise, the a priori covariance for the

PAN VMRs is the same as in Payne et al. (2022).
:::::
These

::::::::::
constraints

:::::
derive

:::::
from

:::::
those

::::
used

:::
in

:::
the

:::::::
retrieval

:::
of

::::
PAN

:::::
from

::
the

::::::::::::
Tropospheric

::::::::
Emissions

:::::::::::
Spectrometer

::::::::::::::::
(Payne et al., 2014)

:
. For surface emissivity, we used the Combined ASTER MODIS

Emissivity over Land (CAMEL) database (Borbas et al., 2018; Feltz et al., 2018) for our inital and a priori constraint on surface245

emissivity. Payne et al. (2022) used the University of Wisconsin Cooperative Institute for Meteorological and Satellite Studies

High Spectral Resolution database (Borbas et al., 2007). Note that all TROPESS products starting from v1.16 now use the

CAMEL database; this included the CrIS PAN retrievals we use for comparison in Sect. 3.3.
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Step num. Step name Retrieved elements Comment

1 Brightness temperature check - Initial check to determine whether to

run step 2, 3, or neither

2 Cloud properties Cloud extent, cloud pressure Optional, depends on step 1

3 Surface temperature Surface temperature Optional, depends on step 1

4 Strong features Atm. temp., surf. temp., H2O, HDO,

N2O, CH4, cld. extent, cld. pres., surf.

emissivity*

5 Model residual check - This step does not update any values,

it provides pre-PAN residuals useful for

future development
:::
and

::::::
filtering

:

6 PAN PAN

7 O3 & H2O update Surf. temp., H2O, O3, cld. extent, cld.

pres., surf. emissivity*

8 Surface refinement Surf. temp., cld. extent, cld. pres., surf.

emissivity*

This step gives a chance to refine

surface temperature/emissivity*/cloud

properties before retrieving NH3

9 NH3 NH3

10 CO CO, surf. temp., cld. extent, surf. emis-

sivity*

Table 3. The retrieval steps in the strategy table for this AIRS PAN retrievalover land. As discussed in §3.2, this retrieval is not performed

over oceans. Retrieved elements annotated with a * are only included over land.

3.2 Issues with
::::::::::
Addressing

:
cloud interference over ocean

During development, we found that low, warm clouds over ocean would be misinterpreted by our AIRS retrieval as PAN.250

We attempted to develop an effective method of filtering, but were not able to find a method that generalized successfully.

Therefore, we encourage users of our initial version of the AIRS PAN product to limit their analyses to soundings over land

only. Future work can investigate other methods of eliminating this bias from the ocean soundings
::
For

:::
the

:::::
cases

::::::
tested,

::
we

:::::
were

:::
able

::
to
:::::
filter

:::
out

::::
such

:::::::::
soundings

::
by

:::::::::::
decomposing

:::
the

:::::
AIRS

::::::::
radiances

::::
into

::::::::
empirical

:::::::::
orthogonal

::::::::
functions

::::::
(EOFs)

::::
and

:::::::
filtering

::::::::
soundings

:::
for

:::::
which

:::
the

:::::::
second

:::::::
principle

::::::::::
component

::::
(PC)

::::
was

:::::
below

::
a

::::::::
threshold. This section of the paper will demonstrate255

the problem in more detail along with our attempts to address it
:::::::
describes

::::
that

::::::::
approach.

This issue
:
of

::::::
certain

::::::
clouds

:::::::::
appearing

::
as

::::
PAN

::
in

:::
the

:::::::
retrieval

:
can be seen in Fig. 3, which shows free tropospheric column

averages of PAN (which we will refer to as XPAN) from 11 Sept 2020. This was a period with major wildfires throughout the

west coast of the United States. In the left panel, XPAN retrieved from CrIS shows a reasonable plume structure, with clear

advection of PAN from the fires on the west coast. We also see some of this in the AIRS retrievals—specifically, the enhanced260
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Figure 2. The different sets of PAN mole fraction profiles used as a priori constraints in the MUSES retrieval. Each panel represents a profile

type, selected within MUSES based on the sounding location. Within each panel, the variation with month is shown by the differently colored

profiles.

Figure 3. Column average PAN between 825 and 215 hPa as retrieved for 2020-09-11 from both CrIS (on the Suomi-NPP satellite, left

panel) and AIRS (
:::::
middle

:::
and

:
right panel

::::
panels).

:::::::
Compared

::
to

:::
the

:::::
middle

:::::
panel,

:::
the

::::
right

::::
panel

::::
uses

:::::::
PC-based

::::
filter

:::::
instead

::
of
:::
the

:::::::
previous

::::::
retrieval

::::
step’s

:::::
water

:::::
quality

:::::
check

::
to

::::
filter

::
for

:::::
cloud

::::::
impacts.

:
The black box in both panels shows the location of the spurious plume in the

AIRS retrievals that is the focus of discussion in Sect. 3.2.
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Figure 4.
::
(a)

::::
RGB

::::
image

::::
from

:::
the

::::::::
GOES-17

::::::::::
(GOES-West)

::::::
satellite

::
as

:::::::
captured

::::::
between

:::::
22:11

:::
and

::::
22:13

:::::
UTC

::
on

::
11

::::
Sept

::::
2020.

:::
(b)

:::::
Cloud

::::::
fraction,

:::
(c)

::::
cloud

:::
top

:::::::
pressure,

:::
and

:::
(d)

::::
cloud

:::
top

:::::::::
temperature

::::
from

:::
the

:::::::::::
MODIS-Aqua

::::::
MYD06

:::::::
product.

::
In

::
all

::::::
panels,

::
the

:::
red

::
or

:::::
black

:::
box

::::::
encloses

:::
the

::::
same

:::
area

::
as

:::
the

::::
black

:::::
boxes

::
in

:::
Fig.

::
3.

PAN in the southern half of California, most of Arizona, and the northwest corner of Mexico, as well as over the northern

Pacific Ocean .
:::
(Fig.

::::
3b).

:

However, in the black box (142° W to 122° W, 20° N to 30° N), CrIS shows mostly background column whereas the AIRS

retrievals show an enhancement with an unusual structure (not a shape representative of transport from the fires).

(a) RGB image from the GOES-17 (GOES-West) satellite as captured between 22:11 and 22:13 UTC on 11 Sept 2020. (b)265

Cloud fraction, (c) cloud top pressure, and (d) cloud top temperature from the MODIS-Aqua MYD06 product. In all panels,

the red or black box encloses the same area as the black boxes in Fig. 3.

When we check RGB imagery from the GOES-West Advanced Baseline Imager (https://noaa-goes17.s3.amazonaws.com/

index.html#ABI-L2-MCMIPC/2020/255/22/, last accessed 8 Dec 2022), we clearly see that this plume
:::::::
“plume”

:
seen by the

AIRS PAN retrieval matches the shape of the clouds in that area (Fig. 4a). Further, cloud properties from the MODIS-Aqua270

MYD06 product (MODIS Atmosphere Science Team, 2017) plotted in Fig. 4b–d show that this is a low, warm cloud. This

clear spatial correlation between the cloud extent and the spurious PAN plume leads us to conclude that such low, warm clouds

cause difficulties for our retrieval with the chosen spectral windows (Table 2).
::::::::
Similarly,

::
in

:::
the

::::::
plume

::::::
around

:::::
50°N,

:::::
AIRS

::::
sees

::::::::
enhanced

:::::
XPAN::::::

further
:::::
west

::::
than

::::
CrIS

:::::::
(around

::::
150°

::::
W)

:::
and

:::::
more

::
to

:::
the

:::::::::
northwest

::
of

:::
the

::::
state

::
of
:::::::::::

Washington
::::
(near

::::::
50°N,

:::::::
125°W).

:::::
From

:::
the

:::::
cloud

::::::::
properties

::::::
shown

::
in

:::
Fig.

::
4,
:::::
these

:::
are

::::
also

:::::::
potential

:::::
cases

::
of

:::::::::
erroneous

:::::
impact

:::::
from

::::::
clouds.

:
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Figure 5. The results of the EOF decomposition on AIRS radiances over a domain covering 150° W to 110° W and 20° N to 60° N. The top

panel repeats
::::
shows

:
the spectral signatures of PAN and H2O from Fig. 1 for references. The remaining three panels show the first, second,

and third EOFs, respectively, resulting from the decomposition. The legend in each panel reports the percent of variance explained by that

EOF.

The AIRS data shown in Fig. 3 are those soundings which pass several quality flags used for CrIS PAN
::::::::
prototype

::::::
quality

::::
flags

::::::
chosen

:::::
based

::
on

::::::
quality

:::::
flags

:::
for

:::::
other

::::::
thermal

:
retrievals, including sufficiently small radiance residual, surface temperature

> 265 K, cloud top pressure (as retrieved in our algorithm) below the tropopause, and the quality of the H2O retrieval in step

4 of Table 3.
::::
(Note

::::
that

::::
these

::::::
quality

:::::
flags

::::
were

:::
for

::::::::::
prototyping

:::::::
purposes

:::::
only,

:::
and

:::
are

:::
not

:::::
those

::::
used

::
in

:::
the

::::
final

::::::::
product.)

Since these criteria were insufficient to remove the spurious plume, we investigated an approach inspired by Huang and280

Yung (2005). As they used an empirical orthogonal function (EOF) decomposition to study dominant patterns of variability in

the AIRS data, we tested whether an EOF decomposition could identify the low, warm clouds causing the spurious PAN signal

in our AIRS PAN retrieval.
:::
We

::
do

::::
note

:::
that

::
a

::::::::::::
cloud-clearing

::::::::
approach,

:::
like

::::
that

::::
used

::
in

::::::::::
CLIMCAPS

:::::::::::::::::::::
(Smith and Barnet, 2020)

:
,

::::
could

:::
be

:::
one

::::::::
approach

::
to

:::::::
address

:::
this

:::::
issue.

:::::
Such

::
an

::::::::
approach

::::::::
combines

::::::::
radiances

::::
from

:::::::
multiple

:::::::::
soundings

::
to

:::::
yield

::::::::
radiances

:::::::::
unimpacted

:::
by

::::::
clouds.

::::::::
However,

:::
the

:::::::
MUSES

::::::::
algorithm

::
is
::::::::
designed

::
to

::::::
operate

:::
on

::::::::
individual

:::::::::
soundings.

:::::::::
Therefore,

:::
we

:::::::
focused285

:::
our

:::::
efforts

:::
on

:::
the

::::
EOF

::::::::::::
decomposition

:::
as

:
a
::::
way

::
to

:::::
screen

:::
out

:::::
these

::::::::::::
cloud-affected

:::::::::
soundings.

:

Figure 5 shows the first three EOFs resulting from a decomposition of the AIRS observed radiances (as stored by the MUSES

algorithm in its output radiance files) within the domain covering 150° W to 110° W and 20° N to 60° N. Keeping in mind

that the sign of an EOF is arbitrary, as it can be flipped by changing the sign of the principal component (PC) by which it is

multiplied, the first two EOFs contain many features which match up closely in shape to the H2O spectral features shown in290

the top panel. The third EOF appears to relate to CO2, as the dominant feature appears at approximately the same frequency as
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Figure 6. The PC values for EOF 1 (left) and 2 (right) for each AIRS sounding in a domain covering 150° W to 110° W and 20° N to 60° N.

The red box in both panels outlines the same area as the black and red boxes in Figs. 3 and 4.

the CO2 feature shown in Fig. 1.
:::::
These

:::::
EOFs

::::
were

:::::::::
computed

::::
from

:::
the

:::::::
window

::::
used

:::
in

:::
step

::
5
::
of

:::
the

:::::::
strategy

::::
table

::::::
(Table

:::
3),

:::::
which

:::::
spans

:::
760

:::::
cm−1

::
to
::::
860

::::::
cm−1.

For each AIRS sounding, the observed radiances can be represented as the linear combination of the EOFs with the PCs

as the coefficients. Figure 6 shows the values of the PCs for the first two EOFs needed to reconstruct the AIRS radiances for295

all the soundings in this domain. The second PC (Fig. 6, right panel) has a spatial pattern of negative value
:::::
values

:
strikingly

similar to the clouds seen in Fig. 4.

(a) AIRS XPAN for 11 Sept 2020 over the northern Pacific Ocean and US West Coast, with a filter based on the value of

PC 2 applied. (b) XPAN retrieved from the CrIS instrument on 1 Jan 2020 over New Zealand. (c) XPAN retrieved from AIRS

over the same region as (b), with the same PC-based filtered applied as in (a). (d) MODIS-Aqua cloud fraction, (e) cloud top300

pressure, and (f) cloud top temperature over the same region as (b). In panel (a), the black box denotes the same region as the

boxes in Figs. 3, 4, and 6. In panels (b) to (f), the black or red box highlights a different area with low, warm clouds.

Our tests using this filter are shown in Fig. 7. In Fig. 7a
::
3c, we show the AIRS XPAN with a filter based on the values of PC

2 applied. Filtering out soundings with PC 2 <−10 does remove
:::
< 0

::::::::
removes the spurious XPANsignal. It also removes most

of the soundings over land, but this is not a concern, as it is straightforward in the MUSES algorithm to apply different quality305

criteria for land and ocean. .
:

As a next step, we attempted to apply
::::::
applied

:
this PC-based filtering to different region. We chose a PAN plume from the

Australian Bush Fires in late 2019/early 2020. However, for
::
For

:
this Australian fire case, the filtering approach failed to remove

a different spurious signal. In Fig. 7b and c, we have the
::
we

::::
also

:::
see

:
a
::::::::
collection

::
of

:::::::::
soundings

::::
with

::::
large

:
XPAN values retrieved

from CrIS and AIRS, respectively. Again, we see a PAN signal in AIRS but not CrIS, identified
:::::
values

::
in

:::
the

:::::
AIRS

::::
data

:::
but

:::
not310

::
the

:::::
CrIS

::::
data,

::::::
marked

:
by the black box in these panels

:::
Fig.

::
7,

:::::
panels

::
a
:::
and

::
b. The MODIS cloud properties (Fig. 7d–f) confirm

that this is again a low, warm cloud.

Due to resource limitations, we were not able to investigate why
:::::
When

:::
we

::::::
apply the PC-based filterworked effectively

for the northern Pacific case, but not the Australia/New Zealand case. The most likely explanation is that the EOFs derived

from the northern Pacific radiances were not sufficiently general to apply to other parts of the world. If that is the case, then315
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Figure 7.
::
(a)

:::::
XPAN:::::::

retrieved
::::
from

:::
the

::::
CrIS

::::::::
instrument

::
on

::
1
:::
Jan

::::
2020

::::
over

::::
New

::::::
Zealand.

:::
(b)

::::
XPAN:::::::

retrieved
::::
from

:::::
AIRS

::::
over

::
the

:::::
same

:::::
region

::
as

:::
(a),

:::
with

:::::::::
parametric

::::::
filtering,

::::::::
including

:
a
:::::
check

::
of

::
the

::::::
quality

::
of

:::
the

::::
water

:::::::
retrieval

::::
from

:
a
:::::::
previous

::::::
retrieval

:::
step

:::::::
applied.

::
(c)

::
As

:::
(b),

::
but

::::
with

:::
the

:::::::
PC-based

::::
filter

::::::
applied

::::::
instead

::
of

::
the

:::::::
previous

:::::
step’s

::::
water

::::::
quality

:::::
check.

:::
(d)

:::::::::::
MODIS-Aqua

::::
cloud

:::::::
fraction,

::
(e)

::::
cloud

:::
top

::::::
pressure,

::::
and

::
(f)

::::
cloud

::
top

::::::::::
temperature

:::
over

:::
the

::::
same

:::::
region

:::
as

:::
(b).

::
In

::
all

::::::
panels,

::
the

:::::
black

::
or

:::
red

:::
box

::::::::
highlights

::
an

::::
area

::::
with

:::
low,

:::::
warm

:::::
clouds.

incorporating a global set of radiances into the EOF generation should result in a more robust filter. If not, then it will be

necessary to generate a large set of test cases to identify a successful filtering method. The most efficient way to accomplish

this is to implement this retrieval into the TROPESS forward processing stream (Sect. 2.4). This will give us a much larger set

of AIRS and CrIS ,
::
it
::::::::
correctly

:::::
marks

:::::
these

::::::::
soundings

::
as

::::
bad

::::::
quality

:::
and

:::::::
removes

:::::
them

::::
(Fig.

::::
7c).

::::::::::
Fortunately,

:
it
:::::::
appears

::::
that

::::::::
soundings

::::
over

::::
land

:::
are

:::
not

:::
as

:::::::::
susceptible

::
to

::::
this

::::
issue

::::
with

::::
low,

::::::
warm

::::::
clouds.

::::::
Figure

:
8
::::::
shows320

XPAN values and AIRS radiances from which to derive this filter for later versions of this algorithm
:::::::
retrieved

::::
from

::::
both

:::::
CrIS

:::
and

:::::
AIRS

:::::
again

:::::
along

::::
with

:::::::::::
MODIS-Aqua

:::::
cloud

:::::::::
properties,

::::
this

::::
time

::::
over

::
the

::::::::
Amazon.

::::::
While

::
the

:::::
AIRS

::::::
XPAN::::

(Fig.
:::
8b)

::::::
shows

:::::::
sporadic

::::
high

:::::
values

:::::::::
compared

::
to

::::
CrIS

:::::
(Fig.

:::
8a),

:::::
these

::::::::
erroneous

::::
high

::::::
values

::::::
appear

::
to

::
be

::::::::
random,

:::::
rather

::::
than

::::::::::::
systematically

::::::
located

:::::
where

:::
the

::::
low,

:::::
warm

::::::
clouds

:::
are.

::
In

:::::::::
particular,

:::
the

:::::::
western

:::::
swath

:::::
shows

::::::
mostly

::::
low

:::::
XPAN::::::

values
::::::
despite

:::
the

::::::::
presence

::
of

:::
low,

::::::
warm

::::::
clouds.

:::::::::
Therefore,

::
we

:::::
apply

:::
the

:::::::::
PC-based

::::
filter

::::
only

::
to

:::::
ocean

:::::::::
soundings.

:
325

:::
Our

:::::::::
hypothesis

::
is
::::
that

:::
the

::::::
reason

:::
the

:::::
AIRS

:::::::
retrieval

::
is
:::::::
affected

:::
by

:::
the

::::
low,

:::::
warm

::::::
clouds

:::
and

:::::
CrIS

::
is

:::
not

::
is

:::
due

::::::
either

:::
the

::::::::
difference

::
in

:::::::
spectral

::::::::
windows

::::
used

:::::::
between

:::
the

::::::::
retrievals

::::
(Fig.

:::
1),

:::
the

:::::::::
difference

::
in

:::::::
radiance

:::::
noise

:::::::
between

:::
the

:::::::::::
instruments,

::
or

:
a
:::::::::::
combination

::
of

:::
the

::::
two.

:::::::
Further,

:::
our

:::::::::
hypothesis

:::
for

::::
why

::::
land

:::::::::
soundings

:::
are

:::::
much

:::
less

::::::::
impacted

::::
than

:::::
ocean

:::::::::
soundings

::
is

:::
that

::
it

:
is
:::::
more

:::::::
difficult

::
to

:::::::::
distinguish

::
a

:::
low,

:::::
warm

:::::
cloud

:::::
from

::
an

:::::::::
underlying

:::::
ocean

:::::::
surface

::::
than

:
a
::::
land

:::::::
surface.
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Figure 8.
::

(a)
:::::
XPAN:::::::

retrieved
::::
from

:::
the

:::
CrIS

:::::::::
instrument

::
on

::
11

::::
Sep

::::
2020

::::
over

::
the

:::::::
Amazon.

:::
(b)

::::
XPAN:::::::

retrieved
::::
from

:::::
AIRS

::::
over

::
the

:::::
same

:::::
region

::
as

::
(a)

::::::
without

:::
the

:::::::
PC-based

::::
filter

::::::
applied.

::
(c)

:::::::::::
MODIS-Aqua

::::
cloud

:::::::
fraction,

::
(d)

::::
cloud

::
top

:::::::
pressure,

:::
and

:::
(e)

::::
cloud

:::
top

:::::::::
temperature

::::
over

::
the

::::
same

:::::
region

::
as
:::
(a).

::
In

::
all

::::::
panels,

:::
the

::::
black

::
or

:::
red

:::
box

:::::::
highlights

:::
an

:::
area

:::::
where

:::::::::::
MODIS-Aqua

:::::::
observed

:::::
mostly

:::
low,

:::::
warm

:::::
clouds.

:::::
While

:::
the

::::::::
PC-based

::::
filter

::::
was

::::::::
successful

::
in
:::::
these

:::::
cases,

:::
we

::::
note

:::
that

::
it
::::
may

::::
need

:::::::::
additional

:::::::::
adjustment

::
in

:::
the

::::::
future.

::::::
During330

::::::
testing,

:::
we

:::::
found

::::
that

:::::::
filtering

:::
out

::::::::
soundings

:::::
with

:::
PC

:
2
::::::
<−10

::::
was

::::::::
sufficient

:::
for

:::
the

:::
US

:::::
West

:::::
Coast

::::
Fires

::::
case

:::::
(Fig.

:::
3),

:::
but

:::
not

:::
the

::::::::
Australian

:::::
Bush

:::::
Fires

::::
case

::::
(Fig.

:::
7),

:::::::
whereas

::::::::
requiring

:::
PC

::
2

:::
< 0

:::::::
worked

:::
for

::::
both.

::::::
Future

:::::
work

:::
will

::::::::
examine

:::::::
whether

::
the

::::::::
criterion

::
of

:::
PC

:
2
::::
< 0

::
is

::::::::
sufficient

:::::::
globally,

::
or

::
if

::::::
further

:::::::::
refinement

::
is

::::::::
necessary.

We also decided against directly using the MODIS MYD06 cloud product for our filter. This was purely for technical

reasons; adding a dependency on the MODIS cloud products would complicate the TROPESS data processing pipeline. Thus,335

we decided that the appropriate balance was to recommend users limit the use of this AIRS PAN product to land only, where

this issue does not seem to occur, in order to avoid complicating the data processing
::::
note

:::
that

::
it

:::
was

:::::::::
necessary

::
to

:::
use

:::
the

::::
760

:::::
cm−1

::
to

:::
860

::::::
cm−1

:::::::
window,

:::::
rather

::::
than

:::
the

::::::::
narrower

::::::::
windows

::::
used

::
in

:::
the

:::::
PAN

:::::::
retrieval

::::
step

:::::
(Table

:::
2).

:::::
When

:::
we

::::::
tested

:::
the

:::::
latter,

:::
this

::::::::
PC-based

:::::
filter

:::
was

:::
not

::::::::
effective

::
in

:::
the

:::::::::
Australian

::::
fires

:::::
case.

:::::::::
Therefore,

::
we

::::::::
conclude

::::
that

::::::::::
information

::::::::
available

::
in

::
the

:::::
wider

:::::::
window

::::::::
provides

:::
the

::::::::
necessary

::::
data

:::
for

:::
the

:::::
EOFs

::
to

:::::::
correctly

::
fit

::::::
clouds.340

3.3 Filtering and validation through comparison with CrIS

While focusing on AIRS PAN land retrievals avoids the
::
the

::::::::
PC-based

:::::
filter

::::::::
addresses

:::
the issue of interference from low, warm

clouds (Sect. 3.2), it presents a new problem.
:
is
:::
not

::
a
::::::::
sufficient

:::
by

::::
itself

:::
as

:
a
:::::::

quality
::::
filter.

:::::::
Ideally,

::::::
quality

::::::
filters

:::::
would

:::
be

::::::
derived

:::
by

:::::::::
comparing

:::
the

:::::::
satellite

:::::::
product

::
to

::
in

::::
situ

::::
data

::::
and

:::::::
checking

::::
that

:::
the

::::::
filters

:::::
ensure

:::::
good

:::::::::
agreement

::::::::
between

:::
the

::::::
satellite

::::
and

::
in

:::
situ

:::::
data.

::
To

::::
this

::::
end, Payne et al. (2022) used aircraft profiles from the ATom campaign to validate the CrIS345

PAN product. This was ideal for CrIS, as the ATom flights provided profiles of PAN over the majority of the troposphere.

However, we cannot use ATom to validate the AIRS PAN product as the
:::
the majority of the ATom profiles are over ocean (see

Fig. 1 of Payne et al., 2022), and this is also true for HIPPO, a similar campaign that occurred before the start of the CrIS FSR
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Region name Training date Testing date Longitude bounds Latitude bounds

Australia/NZ 1 Jan 2020 5 Jan 2020 150° W to 177.5° E 60°S to 20° S

US West Coast 13 Sept 2020 11 Sept 2020 150° W to 110° W 20° N to 60° N

Amazon - 11 Sept 2020 80° W to 40° W 25° S to 10 ° N

Africa - 11 Sept 2020 5° E to 45° E 30° S to 5° N

Table 4. Regions and dates used for the quality filter decision tree training and testing. A - in the “Training date” column indicates that no

data from that region was used in training.

product (and so not be used by Payne et al., 2022). Additionally, from
::
As

:::
we

::::
will

::::
lose

:::
any

::::::
profile

::::::::::
comparisons

::::
that

:::::
occur

::::
over

:::::
ocean

::::::
clouds,

:::
this

::::::
would

:::::
likely

::::
limit

:::
the

::::::
number

:::
of

::::::::::
comparisons

:::
we

:::
can

:::::
draw

::::
from

::::::
HIPPO

:::
and

::::::
ATom.

:::
To

:::
add

::
to

:::
the

:::::::::
challenge,350

::::
from Fig. 3, we can see that outside of strong PAN plumes from, e.g., fires, the single sounding retrievals over land from AIRS

have significant sounding-to-sounding noise, indicating that bulk statistics will be necessary for a meaningful comparison.

Thus, instead of relying on aircraft data directly, we decided to use the existing CrIS PAN product as a transfer standard

by designing a quality filter that predicts whether the AIRS XPAN value will be within a given threshold of the nearest CrIS

XPAN value. This provides the necessary large number of
::::::::
soundings

::::::
needed

:::
for

::::
bulk

:
statistics and implicitly makes the AIRS355

PAN product consistent with the CrIS PAN product, which can allow users to combine the two.

We chose to implement this quality filter as a decision tree, using
::::
using

::::::::
decision

:::::
trees,

::::
with

:
the Scikit Learn package

(Pedregosa et al., 2011). Using a simple decision tree
:::::
simple

::::::::
decision

::::
trees allowed us to investigate what variables were used

to classify a sounding as good or bad quality during development. Using a decision tree
:::::::
decision

::::
trees

:
rather than hand-tuned

quality filter parameters allowed faster iteration and should, in principle, be more reproducible.
:::::::
Because

:::
we

:::
saw

::
in

::::
Sect.

:::
3.2

::::
that360

:::::
ocean

::::::::
soundings

:::::::
required

::::::::
different

:::::::
filtering

::
for

::::::
clouds

::::
than

::::
land

:::::::::
soundings,

:::
we

::::
also

:::::
tested

:::::::
whether

::::
using

::
a
:::::
single

:::::::
decision

::::
tree

::
for

:::
all

:::::::::
soundings

::
or

:::::::
separate

:::::::
decision

::::
trees

:::
for

::::
land

::::
and

:::::
ocean

:::::::::
soundings

::::
gave

:::::
better

::::::
results.

::::
We

:::::
found

:::
that

:::::::
separate

::::::::
decision

::::
trees

:::
for

::::
land

:::
and

:::::
ocean

:::::::::
soundings

:::::::
retained

:::::
more

::::::::
soundings

::::
with

:::::::::
significant

:::::::
XPAN,

:::
and

::::
that

::::
there

::::
was

::::
little

:::::::::
difference

::
in

:::
the

:::::::::
correlation

:::::::
between

:::::
AIRS

:::
and

::::
CrIS

::::::
XPAN:::::

using
:::::::
separate

:::::::::
land/ocean

::::
trees

::
or

::
a

:::::
single

::::
tree.

:::::::::
Therefore,

:::
we

:::::
chose

::
to

:::
use

:::::::
separate

:::::::
decision

::::
trees.

:::::::::
Appendix

::
C

:::::
shows

::
a

:::::
subset

::
of

::::::
results

:::::
using

:
a
::::::
single

:::::::
decision

::::
tree,

:::
and

::::::::
describes

:::
the

:::::
trade

:::
offs

:::::::
between

:::::
using

::
a365

:::::
single

:::::::
decision

:::
tree

::::
and

:::::::
separate

:::::::
decision

:::::
trees.

The decision tree was
:::
The

:::::::
decision

:::::
trees

::::
were trained on AIRS and CrIS retrievals for one day from each of the 2019/2020

Australian Bush Fires and 2020 US West Coast Fires.
:::::
Ocean

:::::::::
soundings

:::
that

:::::
failed

:::
the

::::::::
PC-based

::::
filter

:::::
(Sect.

::::
3.2)

::::
were

::::::::
excluded

::::
from

:::::::
training.

:
Two different days from these fires, plus retrievals over the Amazon and Africa were used for testing (Table 4).

The data was divided into training and testing by days and regions rather than a random 70/30 or similar stochastic split to370

ensure that the training data included at least some soundings with significant XPAN. Since plumes with significant XPAN are

outnumbered by background soundings, we were concerned that a fully random split would miss the plume soundings.

As inputs, the decision tree
::::
trees received 16 values commonly used by existing MUSES retrievals as quality metrics, listed

in Table 5. It was trained to predict a binary flag indicating whether the AIRS XPAN was within 0.2 ppb or 50% of the CrIS
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XPAN from the CrIS sounding closest to it (by great circle distance). The CrIS soundings are restricted to those that pass basic375

quality flagging for modeled vs. observed radiance and a check for certain surface features that can cause erroneous retrievals.

The CrIS XPAN value compared against includes an averaging kernel adjustment to accommodate different vertical sensitivity

between CrIS and AIRS.
::::
(see

:::
Fig.

:::
15

:::
for

:
a
::::::::
summary

::
of

::::::
typical

::::
CrIS

::::
and

:::::
AIRS

:::::
XPAN:::::::

column
::::::::
averaging

:::::::
kernels.)

:
Specifically,

following Eq. (25) of Rodgers and Connor (2003),

ĉCrIS,comp = ca,AIRS +aT (x̂CrIS −xa,AIRS) (2)380

where

:::::
where

– ca,AIRS is the a priori XPAN from AIRS,

– a is the AIRS pressure-weighted column averaging kernel (i.e., one that includes the integration operator),

– xCrIS is the CrIS posterior PAN profile,385

– xa,AIRS is the AIRS prior PAN profile.

::::
Note

:::
that

:::
the

:::::
CrIS

:::::
XPAN::

is
:::
not

:::
an

::::
input

:::
to

:::
the

:::::::
decision

:::::
trees;

:
it
::
is
::::
used

:::::
only

::
in

:::::::
training.

::::
This

:::::::
permits

:::
the

:::::::
decision

::::
trees

::
to

:::
be

::::::
applied

::
to

:::::
AIRS

:::::::::
soundings

::::::
without

::
a

::::::::::
coincidence

::::
CrIS

::::::::
sounding.

:

Typically, it is important to “prune” decision trees
::::::::::::::::::
(Esposito et al., 1997) by limiting the number of decision nodes it can

include in order to prevent overfitting to the training data. We testing
:::::
tested

:
pruning by limiting both the maximum depth (i.e.,390

the number of nodes along any one path) and maximum number of leaf nodes (i.e., the number of end points for the model).

However, we found that either
::::::
method

:::
of

::::::
pruning

:::
the

::::::::
decision

::::
trees

:
caused the filter to screen out soundings with enhanced

XPAN. Our hypothesis is that, because these soundings are still in the minority of all soundings in the training data, limiting

the decision tree’s size made gave it too little flexibility to account for these someone
::::::::
somewhat

:
uncommon cases.

:::
That

:::
is,

::::::
because

:::::::::
soundings

::::
with

::::::::
enhanced

::::::
XPAN:::

are
::
in
::::

the
:::::::
minority,

::
a
::::::
model

::::::
limited

::
in

::::
size

::::::
lacked

:::
the

::::::::
flexibility

::
to

:::::::
develop

::::::
useful395

::::
rules

:::
for

:::::
these

:::::::::
soundings,

::::
and

::::::
instead

::::
was

::::
able

::
to

:::::::
achieve

:::::
better

::::::::
accuracy

::
by

:::::::
simply

:::::::::
classifying

:::
all

::::
such

:::::::::
soundings

::
as

::::
bad

::::::
quality. Therefore, we proceed without limiting the model size.

Finally
::::::::::
Additionally, we include a single additional check on top of the decision tree:

::
an

:::::::
explicit

:::::
check

:
that the retrieved

surface emissivity at 1025 cm−1 is > 0.94. This filter is similar to one used in Payne et al. (2022) to remove soundings

impacted by a silicate feature that produces a surface emissivity with a similar spectral shape to PAN. The same silicate feature400

also shows up as a low emissivity near 1025 cm−1 (see Appendix B). Although the decision tree is
:::
trees

:::
are

:
trained on this

value as an input, it still retains some soundings clearly affected by the silicate feature. Figure 9 shows CrIS XPAN in panel

(a), AIRS XPAN in panels (c) and (d), and the emissivity value in panel (b). The red or black box identifies a region with low

1025 cm−1 emissivity values that has very high XPAN values in the AIRS retrieval in panel (c). When we add an explicit filter

on the 1025 cm−1 emissivity, those few remaining soundings are removed.405
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Short name Description

Rad. resid. mean Post-PAN retrieval mean of noise-normalized radiance residuals

Rad. resid. std. dev. Post-PAN retrieval standard deviation of noise-normalized radiance residuals

Res. Norm. Init. Quadrature sum of pre-PAN retrieval residual mean and standard deviation

Res. Norm. Final Quadrature sum of post-PAN retrieval residual mean and standard deviation

Rad. Max. SNR Maximum ratio of radiance to noise

K · dL Jacobian dotted with radiance residuals

L · dL Radiances dotted with radiance residuals

Cld. pres. Cloud pressure

Cld. OD mean Mean cloud optical depth between 975 and 1200 cm−1

Cld. OD var. Standard deviation of cloud optical depth between 975 and 1200 cm−1

Mean surf. emis. Mean difference between retrieved and a priori surface emissivity

Desert emis. Value of retrieved surface emissivity nearest 1025 cm−1

H2O self corr. Consistency between H2O retrieved in two different steps

Atm. T quality Quality flag for retrieved atmospheric temperature

O3 quality Quality flag for retrieved O3 profile

H2O quality Quality flag for retrieved H2O profile from step 4 (Table 3)

Table 5. Input variables for the quality filter decision tree
:::
trees. Note that “O3 quality” is not useful as O3 is retrieved after PAN (see Table

3) but is included because it is a standard quality variable in the MUSES algorithm.

For the
:::
The

::::
final

::::::
quality

:::::
filter

:::
will

::
be

::
a
::::::::::
combination

::
of

:::
the

:::::::::
PC-based

::::
filter

::::
from

:::::
Sect.

:::
3.2,

:::
the

::::::::::::::
emissivity-based

::::
filter,

::::
and

:::
the

:::::::
decision

::::::::
tree-based

:::::
filter.

::::::
Figure

::
10

::::::
shows

::::
how

::::
each

::
of

:::::
these

:::::
filters

::::::
affects

:::
the

::::::::
soundings

::::::
passed

:::
as

::::
good

::::::
quality

:::
for

::::
two

::::
days

::::
with

::::
clear

::::
PAN

:::::::
plumes.

:::
As

::::::::
discussed

::
in

:::::
Sect.

:::
3.2,

:::
the

::::::::
PC-based

:::::
filter

::
is

::::::
applied

::::
only

::
to

:::::
ocean

::::::::::
soundings,

:::::
where

::::::
clouds

:::::
cause

:
a
::::
high

::::
bias

::
in

::::::
XPAN.

::::
For

::::
these

::::
two

::::::
scenes,

:::
the

:::::::::
emissivity

:::::
filter

:::
has

:
a
:::::::
modest

::::::
impact,

::::::::
removing

:::::
some

:::::::::
soundings

::
in

::::::::
southern

:::::::::
California,

::::::::::
northeastern

::::::::
Arizona,

:::
and

:::::::::::
southeastern

::::
Utah

::::
(Fig.

:::::
10g).

::
In

::::
both

:::::::
scenes,

:::
the

:::::::
decision

:::::::::
tree-based

::::
filter

::::
does

:::::::
remove410

:
a
::::::
number

:::
of

:::
the

::::::::
soundings

::::
with

:::::
large

:::::
XPAN::::::

values
::::
(Fig.

::::::
10d,h).

:::::::::
Therefore,

::
in

:::
the

::::::
public

::::
files,

:::
we

:::
will

:::::::
provide

:::
the

::::::::::
information

::
for

:::::
users

::
to

:::::
adjust

:::
the

::::::
quality

:::::::
flagging

::
to

::::
suit

::::
their

::::::::::
application;

:::::::::
specifically

:::
the

:::
PC

:::::
value

::::
used

:::
for

:::::::
flagging,

:::
the

:::::::::
emissivity

:::::
value

::::
used

::
for

::::::::
flagging,

:::
and

:::
the

::::::
binary

:::
flag

::::::::
produced

:::
by

:::
the

:::::::
decision

:::::
trees.

:::
For

:::
the rest of this section, we will focus on the performance of the combined decision tree + emissivity filter. Appendix A

contains a brief exploration of the relationship between the input variables and predicted quality flag.415

First, we examine the spatial distribution of PAN plumes in our filtered AIRS product versus CrIS. Figure 11 shows our

filtered AIRS PAN data alongside the standard TROPESS CrIS PAN product
::::
PAN

::::::::
retrieved

::::
from

:::::
CrIS. The data shown here

are from the four testing data region/day pairs in Table 4; thus, these are data that the decision tree was
::::
trees

::::
were not trained on.

We have also removed ocean soundings from the AIRS PAN plots due to the results shown in Sect. 3.2. The first two rows show

the Australian 2019/2020 Bush Fires and the 2020 US West Coast Fires, respectively. In both cases, we can see that the AIRS420
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Figure 9. (a) XPAN retrieved from CrIS on 11 Sept 2020 over Africa. (b) Surface emissivity at 1025 cm−1. (c) XPAN retrieved from AIRS

with only the decision tree machine learning (ML)
::::::::
tree-based filter applied. (d) Like (c), but with the emissivity filter

::::::::
emissivity-

:::
and

::::
PC-

::::
based

:::::
filters added to the decition tree

:::::::
tree-based

:
filter.

:::
The

:::
red

::
or

::::
black

:::
box

::
in

::::
each

::::
panel

:::::::
indicates

::
an

::::
area

::::
with

::
the

::::::
silicate

:::::
feature

::::::
known

:
to
::::
bias

:::
our

:::
PAN

::::::::
retrievals.

Figure 10.
::
(a)

::::
AIRS

::::::
XPAN :::

data
::::

from
:::

the
::::::::
Australian

:::::
Bush

::::
Fires

::
on

::
5
:::
Jan

::::
2020

::::
with

::
no

:::::::
filtering

::::::
applied.

:::
(b)

::
As

::::
(a),

:::
with

:::
the

::::::::
PC-based

:::
filter

:::::::
applied.

::
(c)

::
As

:::
(a),

::::
with

::
the

::::
PC-

:::
and

::::::::
emissivity-

:::::
based

:::::
filters

::::::
applied.

:::
(d)

::
As

:::
(a),

::::
with

:::
the

::::::::
PC-based,

:::::::::::::
emissivity-based,

:::
and

:::::::
decision

:::::::
tree-based

:::::
filters

::::::
applied.

::::::
(e)–(h)

::::
show

:::
the

::::
same

::::::
filtering

:::::::::
progression,

:::
but

::
for

:::
11

:::
Sep

::::
2020

:::
over

:::
the

:::
US

::::
West

::::
Coast

:::::
Fires.
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Figure 11. Maps of XPAN retrieved from CrIS (first column) and AIRS (second column) along with CO total column, also retrieved from

AIRS (third column). Each row contains one of the testing region/day pairs from Table 4. The first and third columns are filtered by the

standard TROPESS quality flag; the middle column uses the combined decision tree +
:::
PC

:
+
:
emissivity flag

:::
filter described in Sect. 3.3.

PAN product matches the location of enhanced PAN plumes seen in the CrIS data very well. In the Australian Bush Fire case,

AIRS correctly finds that the southern island of New Zealand did not see high XPAN values at this time. In the US West Coast

Fires case, the large XPAN values in Arizona, central/southern California, and northwestern Mexico all align with those seen

by CrIS , and pass the decision tree + emissitivity filter
::
are

::
all

::
in
:::
the

:::::
same

::::::
region

:::::
where

::::
CrIS

::::
sees

::::
high

:::::
XPAN::::::

values.
:::::::::
Likewise,

::
in

:::
the

:::::::::
Australian

::::
fires

::::
case,

:::::
AIRS

:::::::
captures

::::
the

::::
PAN

::::::
plume

::::::::::
approaching

::::
New

:::::::::
Zealand’s

:::::::
northern

::::::
island,

::::::
though

:::::::::
compared

::
to425

::::
CrIS,

:::::
more

::
of

:::
the

:::::
plume

::
is
::::::::
removed

::
by

:::
our

:::::::
filtering

::::::
criteria.

The last two rows of Fig. 11 show a day over the Amazon and central/southern Africa, respectively. These are regions not

included in the training data for the decision tree
::::
trees

:
(Table 4), so these are a good test of whether the filter can generalize to

new regions. Neither region has significant PAN plumes in the CrIS data. However, there are small enhancements to ∼ 0.5 ppb

in both cases. In the Amazon, there are also a few soundings with ∼ 1 ppb XPAN near 55° W, 17.5° S. AIRS does see this430
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1 ppb hotspot, though it also retrieves several soundings with > 1 ppb further north, where CrIS does not. The Amazon hotspot

in western Brazil cannot be seen in AIRS due to the swath gap. However, the
:::
The PAN hotspot seen by CrIS in the African test

over Angola, Zambia, and the Democratic Republic of the Conga is present
:::::
Congo

::
is

:::
not

::
as

:::::::
apparent

:
in the AIRS PANas well,

albeit with much more sounding-to-sounding variation;
::::::::
however,

:::::
AIRS

::::
does

::::::
appear

::
to

::::::
capture

:::::
some

:::::::::::
enhancement

::
in

:::
that

:::::
area,

:::::::::
particularly

:::::::::
compared

::
to

::::::
further

:::::
north,

::::
near

:::
the

::::::
equator.435

Helpfully, in most of these cases, when there is a strong PAN enhancement in CrIS, AIRS also sees an enhancement in

CO. For example, in the Amazon test case, only the soundings with enhanced PAN at 55° W, 17.5° S also have a strong CO

enhancement; while the false enhancements further north in the AIRS PAN do not. This implies that users looking for PAN

plumes in the AIRS data can check for enhanced CO to distinguish whether a small PAN plume is likely real. This is not a

entirely self-sufficient condition, as it is possible to have a PAN plume without enhanced CO, but the presence of enhanced CO440

can give more confidence in an observed PAN plume.
::::
(See

::::
Sect.

::
4
:::
for

:
a
::::::::
summary

::
of

:::::::::::::::
recommendations

:::
for

::::
use.)

:

We also tested the correlation between AIRS and CrIS XPAN with different amounts of spatial averaging. Figure 12 shows

the results for four different spatial averaging box sizes. While the data from our test cases does have some fire-influenced

observations, many of the observations vary primarily from large-scale seasonal or latitudinal variations. At 1◦ × 1◦, the cor-

relation is very weak. It improves slightly
::::::::
somewhat

:::::
weak.

::::
The

::::::::::
correlation

::
is

::::
more

:::::::::
significant

:
at 2◦ × 2◦and ,

:
5◦ × 5◦, but445

only approaches significant correlation to CrIS at
:::
and 10◦×10◦.

:::::::::
However,

::::::::
averaging

::
to

::::::
5◦ × 5◦

:::
or

::::::::
10◦ × 10◦

::
is

::::::
needed

:::
for

:::
the

:::
root

:::::
mean

:::::::
squared

::::
error

::::::::
(RMSE)

:::::::
between

:::::
AIRS

::::
and

::::
CrIS

::::::
XPAN :::::

values
::
to
:::::
drop

:::::
below

:::
0.1

::::
ppb

:::
and

:::
for

:::
the

:::::
visual

::::::::::
correlation

:::::::::
(especially

:::
for

::::
high

:::::::
values)

::
to

::
be

::::::::
apparent. This is a significant

:::
fair

:
amount of averaging, but is not surprising, given the

sounding-to-sounding variation seen in Fig. 11. Given the amount of observations, this will still provide useful PAN coverage.

:::
We

::::::
discuss

:::::::::::::::
recommendations

::
for

::::
use

:::::
based

::
on

::::
this

::::
result

:::
in

::::
Sect.

::
4.450

In Fig. 12d, we see that the AIRS XPAN value is biased low compared to CrIS XPAN. This low bias is reduced, but not

eliminated, if we do not apply the bias correction to the CrIS data. (The bias correction is 0.05+ cH2O · 3.5× 10−25, so

is positive for any positive column of .) It is not clear if this bias in the AIRS data is best parameterized as a function of

H2O, as was the case for CrIS, or if another parameter is a better predictor.
::::::::::::::::
Payne et al. (2022)

::::
were

::::
able

::
to

:::::
derive

:::
the

:::::
CrIS

:::
bias

:::::::::
correction

:::::::
through

::::::::::
comparison

:::::::
between

:::::
CrIS

::::
and

::
in

:::
situ

:::::::::::
background

:::::
XPAN:::::::

values.
::
In

::::
this

:::::
work,

:::
the

:::::
need

::
to

:::::::
average455

:
a
:::::::::
significant

:::::::
number

::
of

:::::
AIRS

:::::::::
soundings

::
to

::::::
reduce

:::
the

:::::::
random

::::::::::::::::::
sounding-to-sounding

:::::
noise

::::::
makes

:
it
:::::::
difficult

::
to
:::::::

identify
::::
any

:::::::::
relationship

::::::::
between

:::::
AIRS

:::::
XPAN::::::

values
:::
and

:
H2O ::::::

column
::::::::
amounts.

3.4 Uncertainty estimates and vertical sensitivity

The CrIS radiance noise is lower than the AIRS radiance noise, which is a significant advantage when retrieving species, such

as PANs, with only weak absorption features. Figure 13 shows per-channel median and 25th to 75th percentile noise equivalent460

spectral radiance (NESR) valuesdivided by the corresponding observed radiance value. Although we use different frequencies

in the AIRS and CrIS retrievals, the AIRS NESR values are systematically greater than the CrIS values. Taking all of our test

cases for comparing AIRS and CrIS (Table 4), we find that the median ratio of AIRS to CrIS NESR across all channels is ∼5.9.

Assuming that single sounding uncertainty scales linearly with radiance noise, that suggests that the AIRS single sounding

22



0.0

0.5

1.0

1.5

2.0

AI
RS

 X
PA

N8
00

 (p
pb

)

y = 0.65x + 0.05
R = 0.382

RMSE = 0.14 ppb

(a) Box size = 1
y = 0.70x + 0.06

R = 0.713
RMSE = 0.11 ppb

(b) Box size = 2

1 0 1 2
CrIS XPAN800 (ppb, H2O BC + AIRS AKs)

0.0

0.5

1.0

1.5

2.0
AI

RS
 X

PA
N8

00
 (p

pb
)

y = 0.81x + 0.04
R = 0.802

RMSE = 0.088 ppb

(c) Box size = 5

1 0 1 2
CrIS XPAN800 (ppb, H2O BC + AIRS AKs)

y = 0.83x + 0.04
R = 0.769

RMSE = 0.065 ppb

(d) Box size = 10

Africa (2020-09-11)
Amazon (2020-09-11)
Australia/NZ (2020-01-05)
US West Coast (2020-09-11)

Figure 12. Correlation between AIRS XPAN and CrIS XPAN where the latter includes both the AIRS averaging kernel correction from Eq.

(2) and the H2O bias correction from Payne et al. (2022). The different test date/region pairs from Table 4 are represented by the different

color series. Each marker represents the daily average of the AIRS and matched CrIS soundings in a box with the size of the marker increasing

with the number of soundings in that box. Each box must have a minimum of 10 soundings to be included. The box size is the only difference

between panels: (a) 1◦ × 1◦, (b) 2◦ × 2◦, (c) 5◦ × 5◦, and (d) 10◦ × 10◦

uncertainty in XPAN should be
::::::::::::
approximately

:
0.5 ppb, that is, approximately six times the 0.08 ppb value Payne et al. (2022)465

calculated for CrIS. This aligns with the correlation between AIRS and CrIS XPAN shown in Fig. 12, which shows that AIRS

values below 0.5 ppb are dominated by random uncertainty without significant averaging.
:::
We

::::
also

:::::::
checked

:::
the

::::::::::
correlation

:::::::
between

::::::::
individual

:::::
AIRS

::::
and

::::
CrIS

:::::
XPAN::::::

values
::
in

::::
Fig.

:::
14,

:::
and

::::::::
similarly

:::
see

:::
that

:::
the

::::::
values

::::
have

:
a
::::::
spread

::
of

::::
∼0.5

::::
ppb.

::::::
While

::
we

::::::
expect

:::
the

:::::
error

::
of

:::::::::
individual

:::::::::
soundings

::
to

::::
vary

:::::::::
depending

:::
on

:::
the

:::::::
specific

::::::::::
atmospheric

::::
and

::::::
surface

:::::::::
conditions

:::
for

:::::
each

::::::::
sounding,

:::
we

::::::
believe

:::
0.5

:::
ppb

::
to
:::
be

:
a
:::::::::
reasonable

:::::::
estimate

:::
of

:::
the

:::::
typical

::::::::::
uncertainty

::
in

:::
the

:::::
AIRS

::::::
XPAN ::::

data.470

Figure 15 compares the pressure-weighted column averaging kernels
:::
and

:::
the

::::
sum

::::::
across

:::
the

::::
rows

:::
of

:::
the

::::::::
averaging

::::::
kernel

::::::::::::::::::::::
(Cady-Pereira et al., 2024) for AIRS and CrIS for good quality land soundings within the US West Coast Fires domain on

2020-09-11. The averaging kernels shown are the medians of averaging kernels for soundings binned by surface temperature.

For both instruments, maximum sensitivity shifts to lower pressure with decreasing surface temperature. However, compared

to CrIS, AIRS maximum sensitivity decreases more quickly as surface temperature decreases.
:::
We

::::::
suspect

::::
this

::
is

:::
due

:::
to

:::
the475

::::::
greater

::::
noise

:::::::
present

::
in

:::
the

:::::
AIRS

:::::::::
radiances,

::::
with

:::::
AIRS

:::::::::
sensitivity

:::::::::
decreasing

::::
more

:::::
with

:::::::
reduced

::::::
thermal

:::::::
contrast

::::
due

::
to

:::
the

::::::
greater

:::::
noise.

::::::::
However,

:::
we

::::
have

:::
not

:::::::::
confirmed

::::
this

:::::::::
hypothesis.

:::::
Note

::::
that,

:::
for

::::
both

::::::::::
instruments,

:::
the

:::::::::
averaging

::::::
kernels

::::::
shown

::
in

:::
the

::::
left

:::::
panels

::::::::::
incorporate

:::
the

:::::::
pressure

::::::::
weighting

::::::::
function,

::::::
which

:
is
::::
why

:::
the

::::::
values

:::
are

::::
well

:::::
below

::
1.

:

:::::
Figure

:::
16

:::::
shows

:::
the

::::::
overall

:::::::
degrees

::
of

:::::::
freedom

::::::
(DOF)

::
of

:::::
signal

:::
for

::::
both

:::
the

:::::
AIRS

:::
and

:::::
CrIS

:::::::
products

::
in

:::
the

::::::::::
2020-09-11

:::
US

::::
West

:::::
Coast

::::
Fire

:::::
scene.

:::::
From

::::
Fig.

::
16

::::::
panels

:
a
:::
and

::
b,

:::
we

:::
can

:::
see

::::
that

:::
the

:::::
DOFs

:::
for

:::
the

::::
CrIS

::::
PAN

:::::::
product

:::
are

:::::::
grouped

::::::
around

::
1,480

::::::::
indicating

:::
that

:::::
there

::
is

:::::::::
essentially

::::::
always

::::::
enough

::::::::::
information

::
to

:::::::
retrieval

:
a
::::::
single

::::
piece

:::
of

::::::
vertical

::::::::::
information

::
in

:::
the

::::
form

::
of

::
a
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Figure 13. (a) Noise equivalent spectral radiance (NESR) from the channels in the spectral windows used in the CrIS and AIRS PAN

retrievals. The circles give the median NESR value per channel and the error bars show the 25th to 75th percentile range. The medians and

percentiles are computed over all soundings from the training and test data listed in Table 4. (b) As (a), but with the NESR values given as a

percentage of the corresponding observed radiance.

Figure 14.
:
A
:::::::
heatmap

::::::
showing

:::
the

:::::::::
distribution

::
of

::::
AIRS

:::::
XPAN::::::::

compared
:
to
:::
the

:::::::::::
corresponding

:::
CrIS

::::::
XPAN :::

with
::::::::
averaging

::::
kernel

:::::::::
adjustment

:::
and H2O:::

bias
::::::::
correction.

::::::
Unlike

:::
Fig.

:::
12,

::::
there

:
is
:::
no

:::::::
averaging,

::::
this

:
is
:
a
:::::::::
comparison

::
of

::::::::
individual

::::::::
soundings.
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Figure 15. Column
:::
The

:::
left

:::
two

:::::
panels

::::
show

::::::
column

:
averaging kernels for the free tropospheric column average quantities from AIRS (top)

and CrIS (bottom). The values are the dot product of the free tropospheric pressure weighting function with the averaging kernel matrix;

thus, the averaging kernels shown are weighted by each level’s contribution to the column average. The
::::
right

::::
panel

:::::
shows

:::
the

::::
sum

:::::
across

:::
rows

::
of
:::

the
::::::::
averaging

:::::
kernel

::::::::::::::::::::
(Cady-Pereira et al., 2024).

::::
This

::::::
quantity

:::::::
estimates

:::
the

::::::::
sensitivity

::
of

:::
the

::::::
column

::
to

:
a
:::::
given

::::
level,

::::::
without

:::
the

::::::
pressure

::::::::
weighting

:::::::
function.

:::
The kernels showns

::::
shown

::
in
:::
all

::::::
panels are the medians in 5 K surface temperature bins from the good-quality

land soundings of the US West Coast Fires domain on 2020-09-11. For CrIS, good quality is defined using the standard MUSES quality flag.

For AIRS, it uses both the machine learning and
:::::::
PC-based,

:
emissivityflags ,

:::
and

::::::::::
decision-tree

:::::
based

:::::
filters as described at the end of Sect.

3.3.

::::::
column

:::::::
average.

::
In

::::::::
contrast,

:::
Fig.

:::
16

::::::
panels

:
c
::::
and

:
d
:::::
show

:::
that

:::
the

:::::
AIRS

::::::
DOFs

:::
are

:::::
lower

::::::::
(centered

::::::
around

:::::
∼0.5)

::::
with

::
a

:::::
wider

::::::::::
distribution.

::::::
Greater

:::::
AIRS

::::::
XPAN::::::

values
::
do

::::
tend

::
to

:::
be

::::::::
associated

::::
with

::::::
greater

::::::
DOFs.

::::
This

:::::::
implies

:::
that

:::
the

:::::
AIRS

:::::::
product

::::
will

:::::
retain

:::::::
influence

:::::
from

:::
the

:::::
prior,

:::::::::
particularly

::
in

::::::::::
background

::::::::::
conditions,

:::
but

:::
can

:::::
detect

::::::::::
sufficiently

::::
large

::::
PAN

:::::::::::::
enhancements.

4 Recommendations for use485

The primary benefit to a retrieval of PAN from AIRS is the longer record available from AIRS compared to CrIS. We envision

two primary use cases for this product. The first use case is tracking long term changes in background PAN levels. Given the

sounding-to-sounding variation in the AIRS XPAN values, this will require significant averaging to discern trends in XPAN

from AIRS. However, Fig. 12 does show that the root mean squared error between AIRS and CrIS is < 0.1 ppb when averaged

to a
::::::
5◦ × 5◦

::
or

:
10◦ × 10◦ box, which is comparable to the CrIS PAN errors. This does not imply that the overall error is490

< 0.1 ppb (as the AIRS and CrIS retrievals could have similar systematic errors), only that the AIRS and CrIS records will
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Figure 16.
::
(a)

::
A

::
2D

::::::::
histogram

::
of
:::::::

degrees
::
of

::::::
freedom

::
of
:::::

signal
:::

vs.
:::::::
retrieved

:::::
XPAN::::

from
:::::

CrIS.
:::
(b)

::
A

:::::::
histogram

:::
of

::
the

::::
CrIS

:::::::
degrees

::
of

::::::
freedom.

:::
(c)

::
As

:::
(a),

:::
but

::
for

:::::
AIRS.

:::
(d)

::
as

:::
(b),

:::
but

::
for

:::::
AIRS.

:::
All

:::::
panels

:::
are

:::
from

:::
the

:::::::::
2020-09-11

::::
scene

::::
over

:::
the

::
US

::::
West

:::::
Coast

::::
Fires

:::::
shown

::
in

:::
Fig.

::
3.

::
No

::::::::
soundings

::::
were

:::::::
removed

::
by

:::::::
filtering.

be consistent to within 0.1 ppb with similar averaging. Table 6 gives ranges of the number of points in each box size from

Fig. 12. Based on this information, our first recommendation is that users interested in trends in background PAN from the

AIRS product choose a spatiotemporal averaging window that has a median of at least 250
:::
140

:
soundings passing our quality

screening per window which will result in a typical difference versus CrIS of about 0.1 ppb.
:::
This

::
is
:::::::

chosen
::
as

:::
the

:::::::
median495

::::::
number

::
of

::::::
points

::
(to

::::
two

::::::::
significant

:::::::
figures)

::
in

:
a
:::::::
5◦ × 5◦

:::
box

::::::
(Table

::
6),

:::
as

:::
Fig.

:::
12

:::::
shows

:::
this

::::
box

:::
size

::
is
::::::::
sufficient

::
to

::::::
reduce

:::
the

:::::
RMSE

::::::::
between

:::::
AIRS

:::
and

::::
CrIS

::
to

:::::
< 0.1

::::
ppb. In principle, it should not matter whether the 250

:::
140 soundings are accumulated

by averaging in time or space, as we do not expect
::::::
assume the AIRS-CrIS XPAN differences to be spatially or temporally

correlated.
:::
are

:::::::
similarly

:::::::::::
uncorrelated

::
in

::::
time

:::
as

::
in

:::::
space.

::::
We

::::::
expect

:::
this

::::::::::
assumption

::
to

::::
hold

::::
true

::
as

::::
long

:::
as

:::::::
episodic

::::::
events

:::
that

::::::::::
significantly

:::::::
perturb

::::
PAN

::::::::::::
concentrations

:::::
(such

::
as

::::::::
wildfires)

:::
are

:::
not

::::::::
included

::
in

:::
the

::::
time

:::::
period

::::::::
averaged.

:::
We

::::
will

:::
test

::::
this500

:::::::::
assumption

::
in

:::
the

:::::
future

:::
as

::::
more

::::
data

:::::::
becomes

:::::::::
available.

The second use case is investigating PAN from extreme events, such as wildfires, before the start of the CrIS PAN product.

We showed in Fig. 11 that the AIRS PAN product does reliably see significant XPAN values of 0.5 to 1 ppb. However, users
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Box width 1st pct. 25th pct. Median 75th pct. 99th pct.

1° 10.0 11.0
:::
12.0 14.0

:::
15.0 18.0

:::
22.0 42.3

:::
46.0

2° 10.0 21.0
:::
23.0 34.0

:::
38.0 46.0

:::
58.0 132.

:::
154.

5° 11.4
:::
12.0 43.0

:::
62.0 97.0

:::
137. 204.

:::
238. 620.

:::
747.

10° 11.5
:::
25.0 102.

:::
150. 260.

:::
406. 539.

:::
642. 1690

::::
2140

Table 6. Distribution of the number of points in the different sized boxes used for the AIRS-CrIS comparisons.

should be aware that there are many cases where a high AIRS XPAN value within a small spatial area is false. Figure 14 shows

that there is a large fraction of AIRS soundings with XPAN > 0.5 ppb that match with CrIS soundings with XPAN < 0.5 ppb.505

Therefore, users looking for PAN caused by extreme events should

1. ensure that high XPAN values are spatially connected (as a contiguous plume is more likely to be a real signal than a

spurious single-sounding error), and

2. check for other species expected to be generated by the event of interest, such as CO for wildfires.

A heatmap showing the distribution of AIRS XPAN compared to the corresponding CrIS XPAN with averaging kernel510

adjustment and bias correction. Unlike Fig. 12, there is no averaging, this is a comparison of individual soundings.

These two criteria should help users filter out false positive high XPAN values. We also
:::::
When

:::::
using

:::::
other

::::::
species

:::
of

::::::
interest,

:::::
users

:::::
need

:::
not

::::::
restrict

::::::::::
themselves

::
to

::::::::::
TROPESS

::::::::::::
products—any

:::::::::::
good-quality

::::::
dataset

::::
will

:::
be

:::::
useful

:::
in

:::
this

:::::::
regard.

:::::
Users

::::::::
interested

::
in

:::::::
extreme

:::::
events

::::
with

:::::
large

:::::
XPAN::::::

values
:::::
should

::::
note

::::
that

:::
the

:::::::
decision

::::::::
tree-based

:::::
filter

:::
can

::::::
remove

:::::::::
soundings

::::
with

::::
clear

::::
PAN

:::::::::::::
enhancements.

:::::::
Custom

:::::::
filtering

::::
using

:::::
only

:::
the

:::
PC-

::::
and

:::::::::
emissivity-

:::::
based

:::::
filters

::::
can

::
be

::::
used

:::
in

::::
such

:::::
cases

::
to515

::::::
recover

:::
the

::::::::
soundings

::::
with

::::::::
enhanced

:::::
PAN;

::::::::
however,

:::::
users

::::
must

::
be

:::::
aware

::::
that

:::
the

::::::::
difference

::::
with

:::::::
respect

::
to

::::
CrIS

:::
will

:::::
likely

:::
be

:::::
larger

::
in

::::
such

:
a
:::::
case.

:::::::
Further,

::::
while

:::
we

:::::::
believe

:::
that

:::
the

::::::::
PC-based

::::
filter

::
is
::::
able

::
to

:::::::
remove

::::
most

::::::::::::
cloud-affected

:::::::::
soundings,

:::::
there

:::
may

:::
be

:::::
cases

:::::
where

::
it
::
is

:::
not

::::
fully

::::::::
effective.

:::::
Thus,

:::
we

:
encourage users to engage with the algorithm team if there is concern

about whether a signal of interest in the AIRS PAN is correct. As stated in
::::
Sect.

:
3.4, users should use a 0.5 ppb uncertainty per

sounding when using individual soundings in their analysis.520

5 Conclusions

We have demonstrated the ability to retrieve free tropospheric column amounts of PAN from AIRS spectraover land. This is

more challenging than the existing CrIS retrieval due to the higher radiance noise in AIRS than CrIS and the presence of a gap

in the AIRS spectra on the low-frequency side of the PAN spectral feature. The AIRS PAN retrieval is also sensitive to low,

warm clouds over oceans, which cause spurious PAN signals in the AIRS PAN retrieval. As a result, the
::::
These

::::::::
spurious

::::::
signals525

::::
have

::::
been

::::::::::
successfully

::::::::
removed

::::
with

:
a
::::::::
PC-based

::::
filter

::
in

:::::::
testing,

:::
but

:::::
further

::::::::::
adjustment

::::
may

::
be

::::::
needed

::
to

:::::
make

:::
this

::::
filter

:::::
fully

:::::::
effective

::
at

::::::::
removing

:::::
these

::::::
signals.

:
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:::
The

:
AIRS product does have larger errors than the CrIS product and requires care in its application. This is mitigated by the

use of a decision tree
::::::::
tree-based

:
quality filter trained to identify AIRS soundings with XPAN values significantly different than

the nearest CrIS sounding and by averaging sufficient numbers of AIRS soundings. We recommend averaging 250
:::
For

::::::
studies530

::
of

::::::::::
background

::::
PAN

:::::::::::::
concentrations,

:::
we

::::::::::
recommend

::::::::
averaging

:::
at

::::
least

:::
140

:
AIRS soundings which will result in a ∼0.1 ppb

error
:::::
relative

:::
to

:::
the

:::::::
existing

::::
CrIS

::::
PAN

:::::::
product. This product opens up the potential for a global record of free tropospheric

PAN amounts from 2002 to the present, potentially allowing the evaluation of trends in background PAN over land for over

two decades.

This product is planned for inclusion in the TROPESS forward stream. This will ,
::::::::
provided

:::::
AIRS

::::::::
continues

::
to

:::::::
operate.

::::
This535

:::::
would

:
allow us to evaluate its performance over a larger range of times than was possible during development. Future work

can
:::::
could take advantage of that data set to explore methods of effectively filtering out low, warm

::::::
further

:::
test

:::
the

:::::::::::
effectiveness

::
of

:::
the

::::::::
PC-based

::::
filter

:::
on

:::
the

::::::
effects

::
of

:
clouds over oceanor even

:
.
::::
This

:::
can

::::
also

::::::
enable

::
us

::
to
:::::::

explore
:
alternative methods of

retrieving PAN from AIRS taking advantage of, e.g., more advanced machine learning methods trained to directly retrieve

XPAN:
,
:::
that

::::
may

::::::
reduce

:::
the

::::::::::::::::::
sounding-to-sounding

:::::
noise. An interesting experiment would be to test whether a well-designed540

machine learning approach could be trained to directly predict the XPAN value CrIS would retrieve given only the AIRS

radiances.

Code and data availability. A Jupyter notebook to reproduce the figures in this paper is available at https://doi.org/10.5281/zenodo.15305278

(NASA-TROPESS, 2025). The data used by that notebook are available at https://doi.org/10.22002/stfqh-edj29 (Laughner et al., 2025). AIRS

level 1B radiances (AIRS Project, 2020) were obtained from https://airsl1.gesdisc.eosdis.nasa.gov/data/Aqua_AIRS_Level1/AIRIBRAD.545

005/ (last access 12 Mar 2025). CrIS level 1B radiances (Sounder SIPS and GES DISC, 2017) were obtained from https://sounder.gesdisc.

eosdis.nasa.gov/data/SNPP_Sounder_Level1/SNPPCrISL1B.2 (last access 12 Mar 2025). GOES imagery were obtained from https://noaa-goes17.

s3.amazonaws.com/index.html#ABI-L2-MCMIPC/2020/255/22/ (last accessed 8 Dec 2022). MODIS cloud properties from the MYD06

product (collection 6.1, MODIS Atmosphere Science Team, 2017) and the associated geolocation MYD03 product were downloaded from the

Level-1 and Atmosphere Archive and Distribution System (LAADS DAAC, https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/550

products/MYD06_L2/, last accessed 1 Sept 2023).

Appendix A: Decision tree explainability

We use SHapeley Addition exPlanations (Lundberg and Lee, 2017) to investigate what values most contributed to the decision

tree’ s
::::
trees’

:
prediction of AIRS quality in Sect. 3.3. The results are shown in Fig. A1. Since this is a classification decision

tree
::::
these

:::
are

:::::::::::
classification

:::::::
decision

::::
trees, the SHAP value represents an increase or decrease in the probability of the sounding555

being classified as “good,” with positive SHAP values indicating a high “good” probability.

Some of the relationships shown in Fig. A1 make physical sense:

– Res. Norm. Init., the pre-PAN residual, follows the expected pattern where smaller residuals are more likely to yield a

good sounding. Since this is the pre-PAN retrieval residual, this suggests that a successful retrieval is highly dependent on
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Figure A1. Beeswarm plot showing the Shapley values for the 13 input variables to the quality filtering decision tree
:::
trees that have non-zero

contributions to the output flag. The meaning of each input variable’s short name is given in Table 5.

the previous steps minimizing the observation/model mismatch from other atmospheric parameters. This is a reasonable560

relationship, as PAN is a weaker absorber than the trace gases optimized in a previous step (Table 3).

– K · dL, which represents maximum of the absolute value of the dot product of the residuals with the Jacobian, is essen-

tially a summary of the residual weighted towards frequencies with strong absorbance. Therefore, it is likewise sensible

that decreasing values of this quantity increase the chance of a sounding being classified as “good.”

–
::::
Rad.

:::::
resid.

::::::
mean,

:::
the

:::::
mean

::
of

::::
the

::::::::
post-PAN

::::::::
residual,

::::::
should

:::::::
indicate

::::
how

:::::
well

:::
the

::::::::
posterior

:::::::
solution

:::::::
matches

::::
the565

:::::::
observed

:::::::::
radiances.

::::
This

::
is
::::
also

::
a

:::::::
sensible

::::::
metric,

::
as

::
it
::::::::
indicates

::::
how

::::
well

:::
the

:::::::::::
optimization

::::::::
algorithm

::::::::::
minimized

:::
the

:::
cost

::::::::
function,

::
so

:::::
lower

::::::
values

::::::
should

:::::::
correlate

::::
with

::
a
::::::
higher

:::::::::
probability

::
of

:::
the

::::::::
sounding

:::::
being

::::::
marked

:::
as

::::
good

:::::::
quality,

:::::
which

::
is

::::
what

:::
we

:::
see

::
in

:::
the

::::
land

::::::
model.
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Several of the other relationships from Fig. A1 are less clear. For example, mean cloud optical depth and the maximum

signal-to-noise (SNR) ratio seem backwards: higher cloud optical depth and lower SNR seem unlikely to correlate with good570

soundings, as generally more optically thick clouds should obfuscate the radiances of interest and lower SNR spectra should

be more difficult to extract a signal from. However, we must remember that this decision tree is
::::
these

::::::::
decision

::::
trees

:::
are trained

to predict if AIRS returned XPAN similar to CrIS. Thus, we interpret this behavior to mean that these are cases where AIRS

and CrIS return similar XPAN values due to these factors. Optically thick clouds likely mean that both instruments are not able

to obtain much information about the trace gas columns, and therefore return similar values. Likewise, low SNR spectra will575

have a low information content, thus both retrievals are more likely to return the prior. Since we use a consistent prior in both

retrievals, this would result in similar XPAN.

::::
Rad.

:::::
resid.

:::
std.

:::
dev.

::::::
shows

::::::
another

::::::::::
unexpected

::::::::::
relationship.

::::
This

::
is

::
the

::::::::
standard

:::::::
deviation

::
of
:::
the

:::::::::
post-PAN

:::::::
radiance

::::::::
residuals.

:::::
Larger

::::::
values

::::::::
generally

:::::::
indicate

:::
that

:::::
there

::
is

:
a
:::
lot

::
of

:::::::
variation

::
in
::::

how
::::
well

:::
the

::::::::
posterior

::::
state

:::::::
matched

:::
the

::::::::
observed

:::::::::
radiances.

::::
This

:::
can

:::::
occur

::
if,

::::
e.g.,

::::::
narrow

:::::::
features

::
in

:::
the

::::::::
radiances

:::::
were

:::
not

::
fit

::::
well

:::
by

:::
the

:::::::
posterior

:::::
state

::::::
causing

:::::::
specific

::::::::::
frequencies

::
to580

::::
have

::::
large

:::::::::
residuals.

:::::::::::
Interestingly,

::::
both

::::::
models

::::::::
associate

::::::
greater

::::::
values

::::
with

::::::::
improved

:::::::::
likelihood

:::
of

:
a
::::::::
sounding

:::::
being

:::::
good

::::::
quality.

::::
This

::::
may

:::::::
indicate

:::
that

::::
there

:::
are

::::::::
narrower

:::::::::
absorption

:::::::
features

::::
than

::::
PAN

:::::
which

:::
the

:::::::::::
optimization

:::
can

::
try

::
to
:::
fit

:::::::::
incorrectly

::::
with

::::
PAN,

::::
and

::::
thus

::
the

::::::::
decision

:::
tree

::
is

:::::::::
identifying

::::
that

::::::::
soundings

:::::
were

::::
these

::::::::
non-PAN

:::::::::
absorption

:::::::
features

:::
are

:::
not

::::::::::
erroneously

::
fit

:::
are

::::
more

:::::
likely

::
to

:::
be

::::
good

:::::::
quality.

::::::::
However,

:::
this

::
is

::::::::::
speculative.

:::::::::::
Alternatively,

::
it

::::
may

::
be

::::::
similar

::
to

:::::
mean

:::::
cloud

::::::
optical

:::::
depth

:::
and

:::::
SNR,

:::::
where

::::
this

:
is
::::::
simply

::::::::::
identifying

::::
cases

::::::
where

:::
the

:::::::
posterior

::
is
::::::
similar

::
to
:::
the

:::::
prior.

:::::
Since

:::
the

:::::
AIRS

::::
and

::::
CrIS

::::::::
retrievals585

:::
use

:::
the

::::
same

:::::
prior,

:::
this

::::::
would

:::::
result

::
in

::::::::
consistent

::::::
values

:::
for

:::
the

::::
same

:::::::
reasons

::
as

:::::::::
mentioned

:::
for

:::::
cloud

::::::
optical

:::::
depth

:::
and

:::::
SNR.

For the remaining features, we mostly see them centered on zero impact, with the long tails to either end having a mix of

high and low input values. This indicates that there is not a clear correlation between these input values and the predicted

quality.

Appendix B: Physical interpretation of emissivity interference590

Figure 9 showed that, in the region with low emissivity near 1025 cm−1, very high AIRS XPAN was retrieved, but CrIS

retrievals returned very low XPAN. These opposed effects of the silicate feature discussed in relation to Fig. 9 arises from the

relative shapes of the emissivity and PAN spectral features and the position of the AIRS and CrIS microwindows.

Figure B1a shows the surface emissivity near 1025 cm−1 again, and panel (b) shows the spectral shape of the emissivity

feature in two boxes marked in panel (a). From this, it is clear how the low emissivity near 1025 cm−1 used in our quality595

filtering corresponds to a dip in the emissivity in the frequency range of the PAN feature (the gray shading in panel b). Panel (c)

expands the PAN frequency range and shows the emissivity features along with the PAN feature and AIRS and CrIS windows.

Due to steps prior to the PAN step, the emissivity versus frequency is set to a straight line between 780 and 810 cm-1 with no

fitting inside the 780-810 cm-1 window. We can see that the AIRS windows fall primarily on frequencies where the slopes of

the PAN and southern box’s emissivity features versus frequency have the same sign. Thus, in AIRS, the silicate emissivity600

feature present in the southern box is fit by the retrieval as additional PAN, as increasing the absorbance due to PAN will
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Figure B1. (a) A map of surface emissivity at 1025 cm−1, as in Fig. 9, but with two boxes indicating areas with different emissivity values.

(b) Spectral shape of the emissivity values in the two boxes marked on panel (a). The lines indicate the mean emissivity and the shaded

areas ±1 standard deviation within each box. The grey area marks the frequency range plotted in panel (c). (c) The mean emissivity from the

same boxes as (b), with the PAN spectral feature and microwindows from Fig. 1 overplotted. The AIRS and CrIS microwindows are offset

vertically solely to make them distinguishable where they overlap.

generally reduce the residuals. However, the second CrIS window covers frequencies where the PAN and emissivity features

have opposite slopes versus frequency. For CrIS therefore, the retrieval may attempt to invert the PAN feature to produce the

concave down shape seen in the emissivity, resulting in negative XPAN values over regions with this feature.

Appendix C:
:::::
Using

:
a
::::::
single

:::::::
decision

::::
tree

:::
for

::::::
quality

::::::::
filtering605

:::
For

:::
the

:::::::
decision

::::::::
tree-based

:::::
filter

::::::::
described

::
in

::::
Sect.

:::
3.3,

:::
we

:::::
tested

:::::
using

:
a
::::::
single

:::::::
decision

:::
tree

:::
for

::::
both

::::
land

:::
and

:::::
ocean

:::::::::
soundings

::::::
instead

::
of

:::::::
separate

:::::
trees

::
for

:::::
those

::::
two

:::::::::
categories

::
of

:::::::::
soundings.

::
In

:::::::::
principle,

:
a
:::::
single

::::::::
decision

:::
tree

::::::
would

::
be

::::::::::
preferable,

::
as

::
it

:::::
would

::::
both

:::::::
simplify

:::::::::::::
implementation

::::
and

::::::::
eliminate

:::::::
concerns

::::
that

:::::
mixed

:::::::::
land/ocean

:::::::::
soundings

::
or

:::::::::
soundings

::::
near

:
a
:::::
coast

:::::
could

::
be

::::::
filtered

:::::
using

:::
the

:::
less

:::::::::
applicable

:::::::
decision

::::
tree.

::::
This

::::::
section

::::::
shows

::::
why

:::
we

::::::
elected

::
to

:::
use

:::::::
separate

:::::::
decision

:::::
trees

::::::
instead.

:

:::::
Figure

:::
C1

::::::
shows

:::
the

:::::::::
correlation

::::::::
between

:::::
AIRS

:::
and

:::::
CrIS

:::::
XPAN:::::

with
:::::::
different

:::::
levels

:::
of

::::::::
averaging

:::::
when

:::::
using

:::
the

::::::
single610

:::::::
decision

:::
tree

::
in
:::
the

:::::
filter,

::::::
instead

:::
of

:::::::
separate

:::::::
decision

::::
trees

:::
for

::::
land

::::
and

:::::
ocean

:::::::::
soundings.

:::::::::::
Comparison

::
to

::::
Fig.

::
12

::::::
shows

::::
that,

::
on

:::
the

:::::
gross

::::
scale

::::::::::
represented

:::
by

:::
the

::::::::
averaging

:::::
boxes

::::
used

:::::
here,

::::::
neither

::::::
option

::
is

::::::
clearly

:::::
better

::::
than

:::
the

:::::
other.

:::::
Using

:
a
::::::
single

:::::::
decision

:::
tree

:::::::
instead

::
of

:::::::
separate

:::::
trees

:::::
yields

::::::
similar

::
R

::::
and

::::::
RMSE

::::::
values,

::::
with

:::
the

::::::
single

:::::::
decision

::::
tree

:::::::::
performing

::::::
better

::
at

::::
some

:::::
levels

::
of
:::::::::
averaging

:::
and

:::
the

:::::::
separate

::::
trees

::::::::::
performing

:::::
better

:::
for

::::::
others.

::::::::
However,

::::
when

:::
we

::::::::
compare

:::
Fig.

:::
C2

::
to

::::
Fig.

:::
10,

:::
we

:::
can

:::
see

::
in

::::::
panels

:
d
::::
and

:
h
::::
that

:::
the

:::::
single

:::::::
decision

::::
tree

::::
(Fig.

::::
C2)

:::::::
removes615

::::
more

::
of

:::
the

:::::
PAN

::::::
plumes

::::::::
compared

::
to

:::
the

:::::::
separate

:::::
trees

::::
(Fig.

::::
10).

::::
This

:::
was

:::
the

:::::
main

:::::
reason

:::
we

:::::
chose

::
to

::::
use

:::::::
separate

:::::::
decision

::::
trees

::
to

::::
filter

::::
land

:::
and

::::::
ocean

:::::::::
soundings,

::
as

:::
the

:::::
ability

::
to

::::::::
examine

::::::
plumes

::::
from

:::::::
extreme

::::::
events

:
is
::::
one

::
of

:::
our

:::::::
primary

:::
use

:::::
cases.

:

Author contributions. VP developed the initial concept and secured funding. SK performed the initial experiments to test if the AIRS PAN

retrieval was practical and additional tests to determine the best choice of microwindows. JL identified the possible sets of microwindows to
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Figure C1.
:::
This

:::::
figure

::
is

:::
the

::::
same

::
as

:::
12,

:::::
except

:::
the

:::::::
filtering

:::
uses

::
a
:::::
single

::::::
decision

::::
tree

:::::
trained

:::
on

:::
and

::::::
applied

::
to

::::
both

::::
land

:::
and

:::::
ocean

::::::::
soundings,

::::
rather

::::
than

::::::
separate

::::
land

:::
and

:::::
ocean

::::
trees.

Figure C2.
:::
This

:::::
figure

::
is

:::
the

::::
same

::
as

:::
10,

:::::
except

:::
the

:::::::
filtering

:::
uses

::
a
:::::
single

::::::
decision

::::
tree

:::::
trained

:::
on

:::
and

::::::
applied

::
to

::::
both

::::
land

:::
and

:::::
ocean

::::::::
soundings,

::::
rather

::::
than

::::::
separate

::::
land

:::
and

:::::
ocean

::::
trees.
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