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Abstract 9 

Gas-to-particle partitioning governs the fate of Oxygenated Organic Molecules (OOMs) and 10 

the formation of organic aerosols. We employed a Chemical Ionization Mass Spectrometer equipped 11 

with a Filter Inlet for Gases and AEROsol (FIGAERO-CIMS) to measure gas-particle distribution 12 

of OOMs in a winter campaign in urban atmosphere. The observed gas to particle (G/P) ratios show 13 

a narrower range than the equilibrium G/P ratios predicted from saturation mass concentration C* 14 

and organic aerosol content. The difference between observed and equilibrium G/P ratios could be 15 

up to 10 orders of magnitude, depending on C* parameterization selection. Our random forest 16 

models identified relative humidity (RH), aerosol liquid water content (LWC), temperature and 17 

ozone as four influential factors driving the deviations of partitioning from equilibrium state. 18 

Random forest models with satisfactory performance were developed to predict the observed G/P 19 

ratios. Intrinsic molecule features far outweigh meteorological and chemical composition features 20 

in the model's predictions. For a given OOM species, particle chemical composition features 21 

including pH, RH, LWC, organic carbon, potassium and sulfate dominate over meteorological and 22 

gaseous chemical composition features in predicting the G/P ratios. We identified positive or 23 

negative effects, as well as the sensitive ranges, of these influential features using SHapley Additive 24 

exPlanations (SHAP) analysis and curve fitting with a generalized additive model (GAM). Our 25 

models found that temperature does not emerge as a significant factor influencing the observed G/P 26 
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ratios, suggesting that other factors, most likely associated with particle composition, inhibit the 27 

gas/particle partitioning of OOMs in response to temperature change. 28 

1. Introduction 29 

 Oxygenated organic molecules (OOMs) are ubiquitous in the atmosphere. They are key 30 

constituents of organic aerosols (OA) and play a critical role in particle formation and growth (Yuan 31 

et al., 2024). The distribution of an OOM between gas and particle phases not only reflects its 32 

volatility or water solubility, but also governs its formation pathways, atmospheric transport and 33 

deposition. Therefore, understanding the phase distribution of OOMs is essential for gaining 34 

insights into their volatility, transformation processes and environmental impacts in the atmosphere.  35 

Gas-to-Particle (G/P) ratios of OOMs measured by laboratory (e.g., ozonolysis products from 36 

Δ3-Carene (Li et al., 2024a)) or field studies (e.g., in Hyytiälä forest, Finland (Lutz et al., 2019)) 37 

were sometimes used to derive saturation mass concentrations (C*) or partitioning coefficients (Ki), 38 

assuming that the observed G/P ratios represent an equilibrium partitioning state (Priestley et al., 39 

2024; Li et al., 2024a; Lutz et al., 2019; Stark et al., 2017). However, the G/P ratio of an OOM in 40 

atmospheric conditions is influenced by not only intrinsic OOM physicochemical properties but 41 

also external factors such as meteorological shifts (Hildebrandt et al., 2009), precursor oxidation 42 

(Pankow, 1994; Seinfeld and Pankow, 2003), particle chemical composition, morphology and 43 

particle-phase reactions (Jang et al., 2002; George et al., 2007). As a result, OOMs rarely achieve 44 

equilibrium partitioning between the gas and particle phases (Roldin et al., 2014; Li et al., 2024b).  45 

Gas/particle partitioning kinetics has been incorporated into many atmospheric aerosol models, 46 

such as aerosol dynamics models (Liu et al., 2019; Zaveri et al., 2014) and kinetic multilayer models 47 

(Fowler et al., 2018; Roldin et al., 2014), which accounted for molecular transfer rates, interphase 48 

interactions, and environmental variability (Shiraiwa and Pöschl, 2021) in the gas-to-particle 49 

transfer process. The development of these models has advanced our understanding of the 50 

distribution and transport of organic compounds. However, existing theories and models often rely 51 

on parameter simplifications or assumptions, and there is a lack of systematic studies examining the 52 

factors influencing the phase distribution of OOMs under real atmospheric conditions. In recent 53 

years, machine learning methods have been successfully applied for a variety of purposes including 54 
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compound identification (Franklin et al., 2022; Boiko et al., 2022), aerosol classification 55 

(Christopoulos et al., 2018; Bland et al., 2022), precursor apportionment (Pande et al., 2022; Wang 56 

et al., 2021) and property prediction (Gong et al., 2022; Ruiz-Jimenez et al., 2021). Machine learning 57 

has been proven to be a powerful, data-driven approach capable of uncovering complex and 58 

nonlinear relationships between variables. (Lin et al., 2022; Zhu et al., 2019). Unlike physical or 59 

chemical models, machine learning does not rely on predefined assumptions or simplifications, 60 

which enables it to unveil previously unrecognized interactions.  61 

In this work, we employed a Chemical Ionization Mass Spectrometer equipped with a 62 

Chemical Ionization Mass Spectrometer equipped with a Filter Inlet for Gases and AEROsol 63 

(FIGAERO-CIMS) in an urban location to measure the concentrations of OOMs in both the gas and 64 

particle phases. By building data-driven machine learning models with the G/P ratio as the target 65 

variable, we explored the influencing factors of gas-particle distribution of OOMs and examined 66 

the factors that contribute to the deviations from equilibrium gas/particle partitioning. This study 67 

offered new insights and provided the foundation for future studies on the atmospheric behavior of 68 

OOMs. 69 

2. Methodology 70 

2.1 OOM measurement 71 

 Hourly measurements of OOMs in both gas and particle phases was conducted during a winter 72 

campaign from December 5th, 2022, to January 8th, 2023, using an iodide-based FIGAERO-CIMS 73 

(Aerodyne Research Inc., USA) at a suburban site in Wuhan, a megacity in central China 74 

(114.6157°E, 30.4577°N). The site is located in the campus of China University of Geosciences, 75 

which is surrounded by residential and agricultural mixed area. The nearest urban center and 76 

industrial area are about 25 km west to the measurement site. Nearest highways and major roads lie 77 

about 2 km north and south of the site. The site is the only provincial supersite operated by local 78 

environmental authority for monitoring air quality in Wuhan and can thus be regarded as a receptor 79 

site influenced by wide ranges of emission sources from neighboring regions. We obtained valid 80 

data of 594 hours, during which meteorological parameters (e.g., relative humidity (RH) and 81 

temperature (T)), particulate chemical components (e.g., organic carbon (OC) and sulfate ions 82 
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(SO4
2-)), and gaseous components (e.g., sulfur dioxide (SO2) and ozone (O3)) were routinely 83 

monitored. Detailed information about those routine measurement is shown in the supplementary 84 

materials (Text S1).  85 

 The design of FIGAERO-CIMS for hourly OOMs measurement has been described by 86 

previous studies (Zhao et al., 2024; Lopez-Hilfiker et al., 2014; Lee et al., 2014). Briefly, the 87 

FIGAERO operated in a measurement cycle of 1 hour alternating between gas-phase and particle-88 

phase modes. During the gas-phase mode, ambient air was drawn at a flow rate of 2 L/min directly 89 

into the ion-molecule reactor (IMR), where gaseous molecules were ionized and subsequently 90 

detected as adduct ions with the reagent ion I−. Simultaneously, another flow of ambient air was 91 

pulled through a PM2.5 cyclone (URG-2000-30EN, URG Corp.) and then a PTFE filter (2 μm 92 

Zefluor, 25 mm, Pall Corp.), where particles smaller than 2.5 μm were collected. During the 93 

subsequent particle-phase mode, the molecules on the PTFE filter underwent thermal desorption in 94 

a heated ultrahigh-purity (UHP) nitrogen flow, which kept at room temperature for 2 minutes, 95 

increased to 200 ℃ over 15 minutes, held at 200 ℃ for an additional 15 minutes to ensure the 96 

desorption of the majority of OOMs (Lopez-Hilfiker et al., 2014) and then cooled to room 97 

temperature within 4 minutes. The desorbed molecules were directed into a turbulent flow IMR. A 98 

field blank sample was collected every 24 hours. According to our earlier investigation (Wang et al. 99 

2024), The OOM measured with the FIGAERO-CIMS stands for only those polar and moderate-100 

volatility organic species being desorbed below 200°C and accounted for only 26 ± 8% of the total 101 

OA (OC×1.4) measured with the thermal-optical method using the IMPROVE protocol. 102 

2.2 OOMs Identification and Selection 103 

OOMs were identified using a non-target strategy. Mass calibration was performed using ions 104 

such as NO3
−, C2F3O2

−, IC2H2O2
−, IC2F3HO2

−, IC3F5HO2
−, and I3

−, covering a mass range from 62 105 

to 381 m/z. The spectra peaks were iteratively fitted with multiple peaks using a custom peak shape 106 

until the residual was reduced to less than 5 % (Lee et al., 2014; Stark et al., 2015). Subsequently, 107 

the exact masses of these multiple peaks were matched with the most probable elemental formulas 108 

within the ranges of C1-30H1-60O0-20N0-2S0-2X0-2I0-1
−, where X stands for halogen atoms, with mass 109 

errors smaller than 10 ppm (mass resolution of ~6000). Isotope distribution was inspected to match 110 
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with theoretical isotope pattern. Elemental ratio and double bond equivalent (DBE) limits of the 111 

formulas were 0.3 ≤ H/C ≤ 3, N/C ≤ 0.5, O/C ≤3, S/C ≤ 1 and 0 ≤ DBE ≤ 20 (Kind and Fiehn, 2007; 112 

Lee et al., 2018; Kind and Fiehn, 2006). 113 

 In order to obtain reliable concentrations and thus G/P ratios, only those OOMs with a unit 114 

mass peak area ratio of > 20 % and a sample-to-blank ratio of > 2 were included for further analysis. 115 

This filtered out the OOMs with small concentrations in the atmosphere, as well as those extremely 116 

high or low volatility OOMs that are predominantly in only one phase. Thermal desorption may 117 

cause OOM decomposition in the particle phase. According to our earlier study on the same dataset 118 

using a K-means clustering method (Wang et al., 2024), on average, 25.1% of particle-bound OOM 119 

species number and 26.8% of OOM mass detected by the FIGAERO-CIMS could be attributed to 120 

thermal decomposition fragments (Supplementary Materials Text S2). These fragments were 121 

excluded from the gas/particle partitioning analysis. The overlap of non-fragment particle-bound 122 

OOM species with those gas-phase OOM species resulted in 123 species, which were chosen as the 123 

target species for subsequent partitioning analysis. Based on our previous work (Figure S1) (Wang 124 

et al., 2024), these 123 OOM species were classified to 41 aromatic species (33.7%), 35 125 

monoterpene-derived species (28.3%), 14 isoprene-derived species (11.4%), 11 aliphatic species 126 

(8.7%), 10 biomass burning tracers (8.1%), 3 sulfur-containing species (2.4%) and 9 other unknown 127 

species (7.3%).   128 

2.3 Observed G/P ratios of OOMs 129 

The concentrations of an OOM species in gas phase and particle phase are calculated as: 130 

𝐶𝑔 =
𝑠𝑖𝑔𝑛𝑎𝑙𝑔

𝑆×𝑡𝑔×𝑄𝑔
× 1000     (1) 131 

𝐶𝑝 =
𝑠𝑖𝑔𝑛𝑎𝑙𝑝

𝑆×𝑡𝑝×𝑄𝑝
× 1000    (2) 132 

where 𝐶𝑔 (ng m-3) and 𝐶𝑝 (ng m-3) are average concentrations of a species in gas phase and 133 

particle phase, respectively, in a measurement interval (e.g., 1 hour in our campaign). 𝑠𝑖𝑔𝑛𝑎𝑙𝑔 is 134 

the integrated signal (unit: counts) of this species during the 21-minute gas-phase measurement time 135 

(𝑡𝑔) in a measurement interval. 𝑡𝑝 is the particle sampling time (24 minutes) in a measurement 136 
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interval. 𝑠𝑖𝑔𝑛𝑎𝑙𝑝 is the integrated signal of the particle-phase species during thermal desorption 137 

(30 minutes) period. 𝑄𝑔 and 𝑄𝑝 are the sampling flow rates for the gas phase and particle phase, 138 

respectively (Liter min-1). S is the sensitivity of the species (counts per ng). The observed G/P ratio 139 

(
𝐺

𝑃
)𝑜𝑏𝑠 can be calculated as: 140 

(
𝐺

𝑃
)𝑜𝑏𝑠  =

𝐶𝑔

𝐶𝑝
=

𝑠𝑖𝑔𝑛𝑎𝑙𝑔×𝑡𝑝×𝑄𝑝

𝑠𝑖𝑔𝑛𝑎𝑙𝑝×𝑡𝑔×𝑄𝑔
      （3） 141 

2.4 Comparison with equilibrium G/P ratios  142 

 According to modified Raoult's Law, the saturation ratio of an organic species in gas phase (i.e. 143 

𝐶𝑔

𝐶∗) equals the mass fraction of the species in organic aerosol with mass concentration COA (𝑖. 𝑒.
𝐶𝑝

𝐶𝑂𝐴
), 144 

under the assumptions of equilibrium absorptive partitioning of the species over an ideal organic 145 

solution and that the species has a molecular weight similar to that of the organic solution (Donahue 146 

et al., 2009; Epstein et al., 2010). The equilibrium G/P ratio (
𝐺

𝑃
)𝑒𝑞  can thus be estimated from 147 

saturated mass concentration C* and mass concentration of organic aerosol COA (COA = COC × 1.4) 148 

using Eq. (4) 149 

(
𝐺

𝑃
)𝑒𝑞 =

𝐶∗(𝑇)

𝐶𝑂𝐴
                    （4） 150 

C* at 300 K of OOMs was calculated using 4 different parameterizations reported by Mohr et 151 

al. (2019) , Peräkylä et al. (2020), Ren et al. (2022) and Priestley et al. (2024). Based on the 152 

saturation concentrations of HOM detected by Tröstl et al. (2016), Mohr et al. (2019) applied an 153 

updated version of SIMPOL-type parameterization described by Donahue et al. (2011) to estimate 154 

C* from the numbers of carbon, oxygen, and nitrogen atoms of an organic species (𝑛𝐶, 𝑛𝑂, and 𝑛𝑁), 155 

but emphasizing the increased importance of OOH groups. This parameterization likely produces 156 

C* of pure compounds without considering the effect of particle matrix. Ren et al. (2022) obtained 157 

C* of OOMs via calibrated C* vs. Tmax (thermal desorption temperature at which the maximum signal 158 

intensity occurs) correlations in thermal desorption process. A similar parameterization formula 159 

between C* and 𝑛𝐶, 𝑛𝑂, and 𝑛𝑁 was then derived using multivariate regression. Peräkylä et al. 160 

(2020) parameterized the dependence of C* on 𝑛𝐶, 𝑛𝑂, 𝑛𝑁 and number of hydrogen atoms (𝑛H) by 161 

comparing steady-state gas-phase concentrations of α-pinene ozonolysis products with and without 162 
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seed addition in a chamber. This parameterization predicts much smaller sensitivities of HOMs 163 

volatility to oxygen-containing functional groups than SIMPOL. The parameterization of Priestley 164 

et al. (2024) was based on measured gas and particle-phase concentrations, at an assumed 165 

equilibrium state, in residential wood-burning emissions. The C* of the products were obtained via 166 

Eq. (4) and a parameterization was obtained between C* and 𝑛𝐶 , 𝑛𝑂 , 𝑛𝑁  and 𝑛𝐻 .The 167 

parameterization of Priestley et al. (2024) was obtained similar to Peräkylä et al. (2020), but the gas 168 

and particle-phase concentrations of OOMs were measured in residential wood-burning emissions. 169 

The four C* parameterizations are listed in Text S3. A temperature correction was made based on 170 

Eqs. (5) and (6) to convert 𝐶∗(300𝐾) to 𝐶∗(𝑇) at observed temperatures (Epstein et al., 2010; Li 171 

et al., 2024a): 172 

𝐶∗(𝑇) = 𝐶∗(300𝐾) × exp (
∆𝐻𝑣𝑎𝑝

𝑅
(

1

300𝐾
−

1

𝑇
)       (5) 173 

∆𝐻𝑣𝑎𝑝 = −11 × log10 𝐶∗(300𝐾) + 129      (6)  174 

 where ∆𝐻𝑣𝑎𝑝 is the enthalpy of vaporization. R is gas constant. T is the observed temperature 175 

in every hour. 𝐶∗(𝑇) was then used in Eq. (4) to estimate equilibrium G/P ratios. 176 

2.5 Random forest model 177 

2.5.1 Build random forest models 178 

Complex interactions and potentially non-linear dependences exist among OOM gas-particle 179 

partitioning, atmospheric chemistry, and environmental variables. We employed random forest 180 

models to investigate the influencing factors of gas-particle partitioning. 181 

Our selection of influencing factors (i.e. features) is based on a comprehensive literature review.  182 

We categorized 30 features into four groups: (1) 9 molecule features of the OOMs: nC, nO, nN, nH, 183 

molecular weight (Mw), double bond equivalent (DBE), hydrogen to carbon atom ratios (H/C), 184 

oxygen to carbon atom ratios (O/C) and oxidation state of carbon (OSc). (2) 7 meteorological 185 

features: RH, T, wind speed (WS), wind direction (represented by sine and cosine functions to 186 

preserve the periodicity, denoted as WD_sin and WD_cos), ultraviolet-A (UV-A), ultraviolet-B 187 

(UV-B), JHONO. (3) 4 gaseous composition features: SO2 concentration, O3 concentration, nitrogen 188 
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dioxide (NO2) concentration and ammonia (NH3) concentration. (4) 10 particle composition features: 189 

OC concentration, elemental carbon (EC) concentration, SO4
2- concentration, nitrate ions (NO3

-) 190 

concentration, chloride ions (Cl-) concentration, ammonium ions (NH4
+) concentration, PM2.5 191 

concentration, potassium ions (K+) concentration, as well as aerosol-phase pH and liquid water 192 

content (LWC). Calculation details of pH and LWC using ISORROPIA-II model (Fountoukis and 193 

Nenes, 2007) are provided in Text S4. This feature selection scheme guarantees a balanced 194 

representation of pertinent factors, while preserving the simplicity and predictive efficacy of the 195 

models. Unlike neural networks and other machine learning algorithms, the random forest model 196 

used in this study is an ensemble model made up of multiple decision trees. During training, each 197 

tree splits using a randomly chosen subset of features. Because each tree uses different feature 198 

subsets, this randomness in feature selection reduces the model's reliance on any single feature, 199 

making it less likely to be severely impacted by multicollinearity. To further ensure model stability, 200 

we also conducted five-fold cross-validation to confirm the robustness of the model. 201 

First, we developed a multi-species model involving 123 OOM species to predict the (
𝐺

𝑃
)𝑜𝑏𝑠 202 

of OOMs from molecule features, meteorological features, gas and particle composition features. A 203 

total of 73062 (
𝐺

𝑃
)𝑜𝑏𝑠 values for 123 species with hourly resolution were collected in the winter 204 

campaign. Outliers can indeed exacerbate modeling errors and potentially affect the model’s 205 

outcomes. Therefore, they should be removed (Leong et al., 2020). Outlier removal is described in 206 

Text S5. The data used for modeling were randomly divided into training data (85% of the total) for 207 

model training and test data (15% of the total) for evaluating model generalization. 208 

Second, we selected six typical OOMs, including more volatile (C5H8O4, C6H10O4, C6H5NO3, 209 

C7H7NO3, C
* range: 103.90~106.53 μg m-3) and less volatile species (C10H16O4, C12H21NO9, C

* range: 210 

10-4.73 ~101.18 μg m-3) according to the C* parameterization of Mohr et al. (2019). C5H8O4 (glutaric 211 

acid (Lee et al., 2014; Reyes-Villegas et al., 2018)) and C6H10O4 (adipic acid (Ye et al., 2021; Lee 212 

et al., 2014)) are small dicarboxylic acids (C ≤ 6) typically formed through photochemical 213 

degradation of reactions of alkenes, aldehydes, longer-chain acids (Kawamura and Sakaguchi, 1999) 214 

or other low-oxygen organic compounds (Grosjean and Friedlander, 1980) in urban atmosphere 215 

(Kawamura and Ikushima, 1993). C6H5NO3 (Huang et al., 2019; Cai et al., 2022) and C7H7NO3 216 
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(Huang et al., 2019; Cai et al., 2022) are nitrophenols either directly emitted from vehicle exhaust 217 

(Tremp et al., 1993), coal and wood combustion (Huang et al., 2019), industrial processes (Harrison 218 

et al., 2005) or being formed through the nitration of phenol in gas or liquid phase (Lüttke and 219 

Levsen, 1997). C10H16O4 is primarily derived the oxidation of monoterpenes (Ye et al., 2019; 220 

Barreira et al., 2021). C12H21NO9 is an organic nitrate from long-chain alkane oxidation under high-221 

NOx conditions (Wang and Ruiz, 2018).   222 

Third, single-species models were tailored to predict the gas/particle partitioning behaviors of 223 

these six individual OOMs under varying meteorological and gas-particle composition conditions. 224 

We also built random forest models to investigate how (
𝐺

𝑃
)𝑜𝑏𝑠 of the six OOMs deviate from (

𝐺

𝑃
)𝑒𝑞 225 

under varying meteorological conditions and gas/particle compositions. In this study, we did not 226 

build random forest model to predict absolute gas or particle phase concentrations of OOMs, due to 227 

their strong dependences on diverse emission sources from neighboring regions. We lack reliable 228 

features for quantifying the variable strengths of unknown sources and atmospheric aging processes 229 

during transport, which are key factors influencing the OOM concentrations. 230 

2.5.2 Model optimization, evaluation and feature importance analysis   231 

To optimize and evaluate the model's performance, we applied a combination of Grid Search 232 

and Cross-Validation methods. First, we employed Grid Search to tune the hyperparameters of the 233 

Random Forest model. The search space included the following hyperparameters: n_estimators (the 234 

number of decision trees), max_depth (the maximum depth of each tree), and max_features (the 235 

number of features considered for splitting at each node) and min_samples_split (the minimum 236 

number of samples required to split an internal node). For each combination of hyperparameters, 237 

we used 5-fold Cross-Validation on the training set with coefficient of determination (R2) as the 238 

primary metric to assess model performance and identify the best configuration. The specific 239 

hyperparameter settings used in the Grid Search are provided in the supplementary materials, in 240 

Table S1. 241 

After selecting the optimal hyperparameters, we further evaluated the final model using 5-fold 242 

cross-validation to assess the model’s generalization ability and ensure it was not overfitted. In this 243 
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evaluation, both R² and Root Mean Square Error (RMSE) were used as metrics: R2 indicates the 244 

proportion of variance in the G/P ratio explained by the model. RMSE, on the other hand, quantifies 245 

the average prediction error and is calculated as the square root of the average squared differences 246 

between the predicted and actual values. The final model performance was determined by averaging 247 

the R² and RMSE values across the 5 validation sets. All model tuning and evaluation were 248 

conducted using Python (v.3.8). 249 

 To quantify the influence of each feature on the G/P ratio, we computed SHAP (SHapley 250 

Additive exPlanations) value of each feature for each sample (i.e., at each hour) using the SHAP 251 

package (v.0.40.0) in Python (v.3.8). A positive SHAP value indicates that the feature contributes 252 

positively to the G/P ratio, while a negative SHAP value means it has a negative contribution. The 253 

SHAP values versus feature values were then fitted with a generalized additive model (GAM) using 254 

the pygam package (v.0.8.0) to further identify the sensitive ranges where the changes of feature 255 

values significantly affect the SHAP values. For more details, please refer to Text S6. We utilized 256 

two-way Partial Dependence Plots (PDPs) (Chen et al., 2024a; Shi et al., 2023; Zhang et al., 2022) 257 

to analyze the joint effects of T and RH on the predicted G/P ratio. This analysis yielded a 258 

comprehensive understanding of how simultaneous changes of T and RH affect the observed G/P 259 

ratio, thereby unveiling the complex dynamics among these variables. For more details, please refer 260 

to the Text S7. 261 

3. Results and Discussion 262 

Despite the overall improvement in air quality in recent years, PM2.5 episodes still occur 263 

frequently in December and January in most Chinese cities, contributing to the majority of PM2.5 264 

exceedance days of a year. During the winter observation period of this study, PM2.5 concentrations 265 

ranged from 20 to 150 μg m-3, spanning both clean and severe pollution conditions. Organic aerosol 266 

(COA = COC × 1.4) comprised 10%–76% of PM2.5, emerging as a critical bottleneck of eliminating 267 

PM2.5 episodes. Time series of other criteria pollutants and key meteorological parameters are 268 

presented in Figure S2. The data collected during the observation period herein is considered 269 

representative of winter PM2.5 pollution characteristics in Wuhan. 270 
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3.1 Observed G/P ratios of OOMs and comparison with equilibrium partitioning 271 

   272 

 273 

Figure 1. Comparison of (
𝐺

𝑃
)𝑜𝑏𝑠 of 123 OOMs with corresponding (

𝐺

𝑃
)𝑒𝑞 predicted by Eq. (4). C* 274 

was estimated from the parameterizations of Mohr et al. (2019), Peräkylä et al. (2020), Ren et al. 275 

(2022) and Priestley et al. (2024), respectively. Error bars of (
𝐺

𝑃
)𝑜𝑏𝑠 denote the range of G/P ratios 276 

observed under varying conditions for 594 samples (i.e. 594 hours). Error bars of (
𝐺

𝑃
)𝑒𝑞 denote the 277 

variations with temperature and COA. Color scales in (b-e) denote carbon number of OOM species. 278 

Dashed red lines in (b-e) denote a 1:1 correspondence.  279 

As shown in Figure 1a, although G/P ratios generally decrease with increasing molecular 280 

weight, the observed G/P ratios (
𝐺

𝑃
)𝑜𝑏𝑠 show a narrower range (10-1~101.5) than the equilibrium 281 

G/P ratios (
𝐺

𝑃
)𝑒𝑞 predicted from Eq. (4). The differences could be up to 10 orders of magnitude, 282 

depending on C* parameterization. Among all the methods, Mohr et al. (2019) predicts the steepest 283 

dependence of (
𝐺

𝑃
)𝑒𝑞 on MW. Their (

𝐺

𝑃
)𝑒𝑞 are higher than (

𝐺

𝑃
)𝑜𝑏𝑠 for the OOMs with nC = 2-5 and 284 

lower than (
𝐺

𝑃
)𝑜𝑏𝑠 for the OOMs with nC > 8 (Figure 1b). It has been recognized by Kurtén et al. 285 

(2016) and subsequent publications that SIMPOL-derived parameterizations predict a too steep 286 

dependence of C* on Mw and oxygen content. Moreover, the parameterization of Mohr et al. (2019) 287 

likely produces C* of pure compounds. Without considering the effect of particle matrix, it may be 288 
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unrealistic to predict G/P ratios using their C* parameterization. On the basis of thermal desorption 289 

temperature, Ren et al. (2022) predicts lower equilibrium G/P ratios than all other parameterizations 290 

and our observation. The weakness of Ren et al. (2022) is thermal desorption may result in the 291 

formation of decomposed fragments, which could be misidentified as OOM species. As a result, the 292 

Tmax of OOM formulas tends to be overestimated and the C* tends to be underestimated in their 293 

parameterization. Although Peräkylä et al. (2020) also predicted lower G/P ratios, their ratios are 294 

much closer to our observation than Ren et al. (2022). Among all the predictions, the prediction 295 

from Priestley et al. (2024) is most close to our observation. This is because their C* 296 

parameterization is based on the measured gas and particle-phase concentrations of OOMs in fresh 297 

or aged residential wood-burning emissions. Their predicted G/P ratio is thus inherently consistent 298 

with the observed G/P ratios in our study. This also highlights the risks of estimating volatility (C*) 299 

using the partitioning method, which is based on measuring equilibrium gas- and particle-phase 300 

concentrations of OOMs. Two key issues arise: (1) OOMs may not achieve the assumed equilibrium 301 

state in real atmospheric or chamber conditions, introducing substantial uncertainty into calculations 302 

of (
𝐺

𝑃
)𝑒𝑞; (2) The method fails for the compounds with extremely high or low volatility, as their gas- 303 

or particle-phase concentrations often fall below the detection limit of mass spectrometers. These 304 

limitations explain why the partitioning method typically reports a narrow volatility range (Voliotis 305 

et al., 2021; Chen et al., 2024b). 306 

In theory, no matter which C* parameterization is used in Eq. (4), the temporal variation of 307 

(
𝐺

𝑃
)𝑒𝑞 for an OOM species depends solely on COA and temperature. Therefore, we are able to obtain 308 

a normalized (
𝐺

𝑃
)𝑒𝑞 , which is independent of C* parameterization, by dividing the (

𝐺

𝑃
)𝑒𝑞  of an 309 

OOM by its maximum value. Diurnal variations of normalized (
𝐺

𝑃
)𝑒𝑞 of C5H8O4 and C7H7NO3 are 310 

shown in Figure 2a-2b and those of other four selected OOMs are shown in Figure S3. We found 311 

similar diurnal variations for all six OOMs: a peak G/P ratio appeared in the afternoon, which is 312 

attributed to higher temperature. In contrast, we observed different patterns of (
𝐺

𝑃
)𝑜𝑏𝑠  diurnal 313 

variations for the six OOM species during the campaign, as shown in Figure 2c-2h. This indicates 314 

that the extent of deviation of actual gas/particle partitioning from equilibrium state fluctuates 315 
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randomly over time, driven by other unknown factors. In this study, we will first examine the 316 

influencing factors of gas-particle distribution of OOMs in urban atmosphere during the winter 317 

campaign (Section 3.2), followed by an investigation into the factors contributing to the 318 

discrepancies between observed and equilibrium G/P ratios (Section 3.3).  319 

 320 

Figure 2. Diurnal variations of (a-b) Normalized equilibrium G/P ratios for the selected species 321 

(C5H8O4 and C7H7NO3) and (c-h) observed G/P ratios during the campaign. Solid line denotes the 322 

average value and filled area denotes the 95% confidence intervals of the mean.  323 

3.2 Influencing Factors of the observed G/P ratios of OOMs 324 

3.2.1 Multi-species model performance and key features 325 

 326 

Figure 3. Multi-Species Model: (a) Feature importance based on the mean of absolute SHAP values 327 
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calculated for 594 samples (i.e. 594 hours) to predict the G/P ratio. (b) Distribution of SHAP values 328 

in 594 samples for top 20 features. 329 

 The 5-fold cross-validation demonstrates that a predictive multi-species model with 330 

satisfactory generalization performance was developed, achieving R2=0.88 ± 0.02 and RMSE = 1.76 331 

± 0.13 on the test set (Figure S4). Mean absolute SHAP values indicate the average importance of 332 

each feature in predicting the observed G/P ratios (Figure 3a). The model highlights that intrinsic 333 

molecule features, such as nC, Mw, nH, DBE, far outweigh meteorological and chemical composition 334 

features in the model's predictions. Of the nine molecular features, eight are ranked as highly 335 

important, with nN being comparatively less influential. 336 

Figure 3b shows the SHAP value distribution for each feature. For molecule features, such as 337 

nC, Mw, nH and nO, high feature values are associated with negative SHAP, while low feature values 338 

are associated with positive SHAP. This suggests that large molecules with high nC, Mw, nH and nO, 339 

and consequently lower volatility, are more likely to partition into the particle phase, thereby 340 

reducing the G/P ratio.  341 

 342 

Figure 4. Predicted G/P ratios using the developed multi-species model for (a) Monocarboxylic 343 

acids as a function of the number of carbon atoms, (b) Modified 10-carbon monocarboxylic acids 344 

as a function of the number of additional hydroxyl groups and (c) Modified 10-carbon 345 

monocarboxylic acids as a function of DBE, under average daytime and nighttime environmental 346 

and gas/particle composition conditions. 347 

However, the molecule features related to oxidation state and unsaturation degree did not show 348 

consistent effects on the observed G/P ratios. For example, OSc has a negative effect on the G/P 349 

ratios, whereas O/C has a positive effect. DBE has a negative effect on the G/P ratios, whereas H/C 350 

shows a mixed positive or negative effect. This is due to the fact that these features are dependent 351 
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variables as a function of nC, nH, nN and nO. To isolate the effect of oxidation and unsaturation-352 

related features, we utilized the trained random forest model to predict G/P ratios of modified C10 353 

monocarboxylic acid with varying number of hydroxyl group and DBE (Figure 4b and 4c). Other 354 

features in the model were fixed at average daytime or nighttime values observed during the 355 

campaign (see Table S2, S3). For comparison, the isolated effect of carbon atom number is also 356 

plotted (Figure 4a).  357 

Figure 4 demonstrates that the number of carbon atoms exerts the most significant influence 358 

on the predicted G/P ratio, which decreases sharply as the carbon atom number increases from 1 to 359 

4. Beyond this point, the ratio levels off. For modified 10-carbon monocarboxylic acids, G/P ratios 360 

are high when there is one or no hydroxyl group (Figure 4b). The G/P ratio levels off when the 361 

number of hydroxyl group exceeds 2. The G/P ratio decreases with increasing DBE value (Figure 362 

4c). When DBE value exceeds 5, the G/P ratio change becomes minimal. In all the subplots, the G/P 363 

ratio during nighttime is consistently lower than that during daytime, which could be attributed to 364 

enhanced partitioning from gas to particles at lower nighttime temperature.  365 

3.2.2 Identification of key features and sensitive analysis in single-species models 366 

 367 

Figure 5. SHAP value analysis of three categories of features. Mean |SHAP| denotes the mean 368 

absolute SHAP values calculated for 594 samples (i.e. 594 hours): (a) glutaric acid (C5H8O4), (b) 369 

adipic acid (C6H10O4), (c) monoterpene oxidation products (C10H16O4), (d, e) nitrophenol (C6H5NO3 370 
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and C7H7NO3), and (f) nitrated aliphatic acid (C12H21NO9).  371 

By excluding molecule features, single-species models focus on the prediction of observed 372 

gas/particle partitioning behaviors of individual OOMs from meteorological and gas/particle 373 

composition features. The evaluation results and optimal parameters of the six single-species models 374 

on the test set are presented in Table S4. All models show acceptable generalization ability (R2 = 375 

0.51-0.88). For all six OOMs, particle composition features dominate over meteorological and 376 

gaseous composition features in predicting the G/P ratios (Figure 5). Particle composition features 377 

LWC, OC, K+, SO4
2- and pH, as well as RH, consistently play important roles in influencing the G/P 378 

ratios of these species. This is roughly in line with the correlation analysis between the features and 379 

the observed G/P ratios of the selected 6 OOMs (Figure S5), which show that pH, RH, LWC, and 380 

SO4
2- exhibited strong positive or negative correlations with the G/P ratios. Below, we (1) examined 381 

the positive or negative effects of these features one by one (Figure 6a), and (2) identified the 382 

sensitive ranges of these features by fitting SHAP values against feature values using a GAM (Figure 383 

7). 384 

pH is among the two most influential factors for the gas/particle partitioning of five species 385 

(C5H8O4, C6H10O4, C6H5NO3, C7H7NO3 and C10H16O4) with a sensitive range of 3.5–4.5 (as 386 

illustrated for C6H10O4 in Figure 7a). Within this range, the contribution to the G/P ratio decreases 387 

by 0.5 from pH 3.5 to 4.5. Beyond pH 4.5, the G/P ratio stabilizes at -0.1. An increase in pH results 388 

in a pronounced decrease of the G/P ratio. This phenomenon can be attributed to the enhanced 389 

partitioning of OOMs with acidic functional groups from gas to particles with elevated pH (Su et 390 

al., 2020).  391 

RH has a positive effect, ranking among the top 5 significant features, on the G/P ratios of three 392 

OOMs C6H5NO3, C7H7NO3, and C10H16O4 (Figure 6a). SHAP value is sensitive to RH across the 393 

full RH range (20%-80%, illustrated by an example C6H5NO3 in Figure 7b). LWC also has a 394 

significant positive effect for C5H8O4, C6H10O4, C6H5NO3, and C7H7NO3. For example, in the case 395 

of C5H8O4, a sharp increase of 0.35 in the G/P ratio is observed within the LWC range below 20 µg 396 

m-3. Above 20 µg m-3, the contribution to the G/P ratio stabilizes at 0.15 (Figure 7c). The underlying 397 

mechanism of this behavior is unclear. One explanation is that the low RH and LWC in particles 398 
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may facilitate the reversible formation of oligomers (Shen et al. (2018) and suppress their hydrolysis 399 

(Liu et al., 2012), thereby increasing the concentration of these OOMs in particle phase. It is also 400 

possible that the thermal desorption and subsequent detection of particle-bound OOMs were 401 

inhibited in aerosol particles with more moisture. 402 
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 403 

Figure 6. SHAP summary plots for feature importance based on the random forest model for glutaric 404 
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acid (C5H8O4), adipic acid (C6H10O4), monoterpene oxidation product (C10H16O4), nitrophenol 405 

(C6H5NO3 and C7H7NO3), and nitrated aliphatic acid (C12H21NO9). Features are prioritized in 406 

descending order based on their importance. (a) SHAP summary for the observed G/P ratios (
𝐺

𝑃
)𝑜𝑏𝑠. 407 

(b) SHAP summary for (
𝐺

𝑃
)𝑜𝑏𝑠/(

𝐺

𝑃
)𝑒𝑞 ratios.  408 

OC has a significant negative impact (i.e., rank among the top 5) on the G/P ratios of all six 409 

species, being consistent with Eq. (4), where the equilibrium G/P ratios are inversely proportional 410 

to COA. Taking C12H21NO9 as example (Figure 7d), the SHAP values decrease monotonically with 411 

COA by 0.08 in the entire COA range (5-25 µg m-3). For this compound, EC ranks as the second most 412 

influential factor, exerting a notable negative impact below 4 µg m-3. A significant G/P decrease of 413 

0.05 was observed in this range (Figure 7e). 414 

SO4
2- has a positive effect (i.e., rank among the top 5) on the G/P ratios of C5H8O4, C6H10O4, 415 

C10H16O4 and C12H21NO9. For example, in the case of C6H10O4, the G/P ratio rises rapidly by 0.30 416 

with increasing SO4
2- concentrations below 6 µg m-3 (Figure 7f). Above 6 µg m-3, the contribution 417 

to the G/P ratio stabilizes at 0.1. This may be partly related to the fact that SO4
2- is a highly 418 

hydrophilic component (Thaunay et al., 2015), which makes its effect similar to that of LWC. In 419 

addition, an increase of sulfate in aerosols is often associated with enhanced acidity and a decrease 420 

in pH (Zhang et al., 2007), which drives OOM from particle to gas phase as we explained above. 421 

K+ has a negative effect on the G/P ratios of C5H8O4, C10H16O4, C6H5NO3 and C7H7NO3. 422 

Taking C10H16O4 as example, the G/P ratio decreases rapidly by 0.15 with K+ in the concentration 423 

range of below 1 µg m⁻3. Above 1 µg m⁻3, its contribution to the G/P ratio stabilizes at -0.03 (Figure 424 

7g). K+ is considered as a tracer of biomass burning. The increase of K+ is generally associated with 425 

higher pollution levels and higher OC concentrations in the study region (Zhao et al., 2024). The 426 

effect of K⁺ on the G/P ratio is thus similar to that of OC.  427 

In general, temperature is supposed to be an important influential factor of G/P ratio, because 428 

saturation vapor pressure of OOMs increases with temperature. Temperature ranged from -1.6 °C 429 

to 14.9 °C during the winter campaign. Although temperature increase tends to elevate the G/P ratios 430 

as expected (Figure 6a), the models show that temperature did not rank as important feature for 5 431 
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out of the 6 OOM species. We evaluated the effect of temperature on G/P ratios using two-way 432 

partial dependence plots (Figure S6). G/P ratio is sensitive to temperature change only for two 433 

dicarboxylic acids (C5H8O4 and C6H10O4, Figure S6a-S6b) and for C12H21NO9 in a narrow 434 

temperature range of 10-13 oC (Figure S6f and Figure 7h). The G/P ratios of C6H5NO3, C7H7NO3 435 

and C10H16O4 are not sensitive to temperature across most of the RH range. This behavior may be 436 

attributed to the aerosol coating of inorganic salts and other aerosol components that hinder the rapid 437 

equilibrium partitioning of OOMs when temperature changes. In addition, the influence of 438 

temperature may be obscured due to the dominant effect of particle composition features (e.g., LWC, 439 

pH, OC, SO4
2-, and K+) as discussed above. 440 

As shown in Figure 6a, wind speed and direction rank relatively low in terms of feature 441 

importance for the six OOMs. This suggests that while wind direction and speed might influence 442 

the source areas of OOMs, they have a minimal impact on the G/P ratios of OOMs. 443 



 

21 

 

 444 

Figure 7. Curve fitting of SHAP values versus features using a GAM, illustrating the sensitive 445 

ranges where the changes of feature values significantly affect the SHAP values. Only the most 446 

affected OOM species by the eight features are shown. (a) RH for C6H5NO3. (b) LWC for C5H8O4. 447 

(c) pH for C6H10O4. (d) Temperature for C12H21NO9. (e) OC for C12H21NO9. (f) EC for C12H21NO9. 448 

(g) SO42- for C6H10O4. (h) K+ for C10H16O4. Blue line denotes the GAM fit. Shaded area indicates 449 

95% confidence interval. Dots are the SHAP values for 594 samples (i.e. 594 hours). Red dashed 450 

line denotes SHAP value of 0. 451 
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3.3 Identifying key factors driving the deviations of gas/particle partitioning from equilibrium 452 

state 453 

To investigate the deviations of observed gas/particle partitioning from equilibrium state, we 454 

first calculate the ratios of (
𝐺

𝑃
)𝑜𝑏𝑠 over normalized (

𝐺

𝑃
)𝑒𝑞 in every hour for the selected six OOM 455 

species. Normalized (
𝐺

𝑃
)𝑒𝑞 was used here in order to offset the effect of the C* parameterization 456 

selection. We then developed new random forest models to investigate the effects of meteorological 457 

and gas/particle composition features on the (
𝐺

𝑃
)𝑜𝑏𝑠/(

𝐺

𝑃
)𝑒𝑞 ratios. All the models show acceptable 458 

generalization performance (R2 = 0.52-0.83) (Table S5) on the test set. 459 

Figure 6b presents the SHAP analysis results for the (
𝐺

𝑃
)𝑜𝑏𝑠/(

𝐺

𝑃
)𝑒𝑞 ratios of the six OOMs. The 460 

models identify RH, LWC, O3 and temperature as four influential factors driving the deviations from 461 

equilibrium partitioning. Positive correlations are observed between the SHAP values of 462 

(
𝐺

𝑃
)𝑜𝑏𝑠/(

𝐺

𝑃
)𝑒𝑞  and RH and LWC for all six compounds. This indicates that RH and LWC have 463 

stronger positive effect on (
𝐺

𝑃
)𝑜𝑏𝑠 than their effect on (

𝐺

𝑃
)𝑒𝑞, which should be negligible according 464 

to Eq. (4). Temperature is shown to be a negative factor driving the deviation from equilibrium 465 

partitioning, suggesting that temperature has a stronger influence on (
𝐺

𝑃
)𝑒𝑞 than (

𝐺

𝑃
)𝑜𝑏𝑠. This is 466 

consistent with our earlier result that (
𝐺

𝑃
)𝑜𝑏𝑠 is not sensitive to temperature. Surprisingly, O3 is 467 

identified as an important influential factor with negative effect, particularly for the three 468 

nitrophenols and monoterpene oxidation product C10H16O4. Since O3 is not expected to change (
𝐺

𝑃
)𝑒𝑞, 469 

the negative impact of O3 on (
𝐺

𝑃
)𝑜𝑏𝑠/(

𝐺

𝑃
)𝑒𝑞  ratio could be explained by the fact that high O3 470 

concentrations are likely to deplete gas-phase OOMs at a faster rate than particle-phase OOMs, 471 

thereby reducing (
𝐺

𝑃
)𝑜𝑏𝑠. 472 

Conclusions  473 

We measured the G/P ratios of OOM species using a FIGAERO-CIMS in urban atmosphere in 474 

a winter campaign. The observed G/P ratios show a narrower range than the equilibrium G/P ratios 475 
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predicted from C* and COA. The difference between observed and equilibrium G/P ratios could be 476 

up to 10 orders of magnitude, depending on C* parameterization. Our observed G/P ratio is 477 

inherently closer to the equilibrium G/P ratios predicted from the C* parameterization by Priestley 478 

et al., which was derived from measured G/P ratios in wood-burning emissions. Our random forest 479 

models identified RH, LWC, O3 and temperature as four influential factors driving the deviations of 480 

gas/particle partitioning from equilibrium state.  481 

Random forest models with satisfactory performance were developed to predict observed G/P 482 

ratios. Intrinsic molecule features, such as nC, Mw, nH, DBE, far outweigh meteorological and 483 

chemical composition features in the model's predictions. Large molecules with high nC, Mw, nH 484 

and nO, and consequently lower volatility, are more likely to partition into the particle phase, thereby 485 

reducing the G/P ratio. As dependent variables, oxidation state and unsaturation do not show 486 

consistently positive or negative effects on the observed G/P ratios. If other variables are fixed, the 487 

model predicts that G/P ratios generally decrease with the addition of oxygen atom and DBE. 488 

Particle composition features dominate over meteorological and gaseous composition features 489 

in predicting the G/P ratio of a given OOM species. Among those particle features, pH, RH, LWC, 490 

OC, K+ and SO4
2- consistently play important roles in influencing the G/P ratios of the six selected 491 

OOM species, showing either positive or negative effect. We also identified the sensitive ranges 492 

where the changes of these features significantly affect the SHAP values and provided valuable 493 

insights for future research in atmospheric chemistry. It is surprising that temperature does not 494 

emerge as an important factor influencing the G/P ratios for five out of the six selected OOM species. 495 

Our model suggests that other factors, most likely associated with the particle composition, inhibit 496 

the gas/particle partitioning of OOMs in response to temperature change. 497 

At last, the random forest models developed in this study have certain limitations. (1) Aerosol 498 

particle coating may serve as an inhibitory factor of gas/particle partitioning. However, the mixing 499 

state and morphology of aerosol particles were not considered in the model due to the challenges in 500 

quantifying these features with high resolution. (2) The OOMs with extremely high or low volatility 501 

might be underrepresented in this study, because their gas- or particle-phase concentrations often 502 

fall below the limit of quantification of FIGAERO-CIMS. (3) Isomers were not differentiated in the 503 
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measurement of FIGAERO-CIMS in this study. The observed G/P ratio was contributed by isomers 504 

sharing the same chemical formula. The machine learning model built in this study did not account 505 

for the effect of isomerization on gas-particle distribution of OOMs. (4) The model was based solely 506 

on the data collected during the winter season and for specific groups of OOM species present in 507 

urban atmosphere. To enhance the robustness of the gas-to-particle partitioning model, future data 508 

collection under a broader range of atmospheric conditions is recommended. 509 
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