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Response to the Reviewer’s comments 

Ms. Ref. No.: egusphere-2025-229 

Title: Investigating Influencing Factors of Gas-Particle Distribution of Oxygenated Organic 

Molecules in Urban Atmosphere and Its Deviation from Equilibrium Partitioning Using 

Random Forest Model. 

We sincerely appreciate the reviewer for careful examination of our manuscript and the valuable 

suggestions. Below are our point-to-point responses.  

 

RC1 

Wang et al. measured both gaseous and particle-phase OOMs using FIGAERO-CIMS during a 

winter campaign in Wuhan. They derived gas-to-particle ratios (G/P) using measured FIGAERO-

CIMS signals and predicted equilibrium G/P based on predicated OOM volatility. They further 

applied machine learning methods to revealed key factors that are associated with G/P. The 

manuscript aligns with the scope of Atmospheric Chemistry and Physics. However, clarification of 

the principal findings is recommended prior to publication. Specific comments are given below: 

Response:  

We sincerely thank the reviewer for their valuable comments and suggestions, which will 

significantly improve the quality of our manuscript.  

1. The machine learning analysis provides intriguing insights into G/P influencing factors. However, 

given potential limitations in the representativeness of the dataset and the ML methodology, the 

mechanistic interpretation of identified factors may not be entirely clear. I recommend expanded 

discussion in Section 3.2.2 to include detailed analysis of at least one parameter (e.g., temperature). 

Response:  

By itself, the machine learning methodology cannot uncover the fundamental mechanisms 

through which the factors influence G/P ratio. In Section 3.2.2, we (1) examined the positive 

or negative effects and the sensitive ranges of key features like RH, LWC, OC, K+, SO4
2- and 

pH identified by the ML model and (2) explained why ambient temperature did not rank as 

important feature for most of the OOM species. Prior publications were provided to support 

our interpretation. 

We expanded our discussion of the impact of temperature, RH and LWC. In lines 398-402, 

 “One explanation is that the low RH and LWC in particles may facilitate the reversible 

formation of oligomers (Shen et al. (2018) and suppress their hydrolysis (Liu et al., 2012), 

thereby increasing the concentration of these OOMs in particle phase. It is also possible that 

the thermal desorption and subsequent detection of particle-bound OOMs were inhibited in 

aerosol particles with more moisture.” 

In lines 428-440, 
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“In general, temperature is supposed to be an important influential factor of G/P ratio, because 

saturation vapor pressure of OOMs increases with temperature. Temperature ranged from -

1.6 °C to 14.9 °C during the winter campaign. Although temperature increase tends to elevate 

the G/P ratios as expected (Figure 6a), the models show that temperature did not rank as 

important feature for 5 out of the 6 OOM species. We evaluated the effect of temperature on 

G/P ratios using two-way partial dependence plots (Figure S6). G/P ratio is sensitive to 

temperature change only for two dicarboxylic acids (C5H8O4 and C6H10O4, Figure S6a-S6b) 

and for C12H21NO9 in a narrow temperature range of 10-13 oC (Figure S6f and Figure 7h). The 

G/P ratios of C6H5NO3, C7H7NO3 and C10H16O4 are not sensitive to temperature across most 

of the RH range. This behavior may be attributed to the aerosol coating of inorganic salts and 

other aerosol components that hinder the rapid equilibrium partitioning of OOMs when 

temperature changes. In addition, the influence of temperature may be obscured due to the 

dominant effect of particle composition features (e.g., LWC, pH, OC, SO4
2-, and K+) as 

discussed above.”  

2. Please explain Eq. 4 with an emphasis on its underlying assumptions that are possibly violated 

in the real atmosphere. This clarification would aid the discussion on the influencing factors of the 

ratio of (G/P)obs to (G/P)eq. 

Response: 

Equation 4 is primarily based on Raoult's Law. In line 143-150, we explain the derivation of 

Eq 4 and underlying assumptions.  

“According to modified Raoult's Law, the saturation ratio of an organic species in gas phase 

(i.e. 
𝐶𝑔

𝐶∗) equals the mass fraction of the species in organic aerosol with mass concentration COA 

(𝑖. 𝑒.
𝐶𝑝

𝐶𝑂𝐴
), under the assumptions of equilibrium absorptive partitioning of the species over an 

ideal organic solution and that the species has a molecular weight similar to that of the organic 

solution (Donahue et al., 2009; Epstein et al., 2010). The equilibrium G/P ratio (
𝐺

𝑃
)𝑒𝑞 can thus 

be estimated from saturated mass concentration C* and mass concentration of organic aerosol 

COA (COA = COC × 1.4) using Eq. (4) 

   (
𝐺

𝑃
)𝑒𝑞 =

𝐶∗(𝑇)

𝐶𝑂𝐴
                    （4）” 

3. Lines 179-181, Page 7. Please specify the data partitioning strategy for training and test sets and 

the measures to prevent model overfitting. 

Response:  

Thank you for the reviewer’s suggestion. Regarding the data partitioning strategy for the 

training and test sets, we performed a random split. In lines 207-208, we revised the text to: 

 “The data used for modeling were randomly divided into training data (85% of the total) for 

model training and test data (15% of the total) for evaluating model generalization.” 

Unlike gradient boosting regression and neural networks, the random forest algorithm trains 
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multiple decision trees using bootstrapped subsets of the training data and random subsets of 

features, which inherently provides better resistance to overfitting (Amaratunga et al., 2008). 

To further prevent model overfitting and enhance its generalization ability, we implemented 

the following 3 measures: 

 1) Cross-validation: We employed 5-fold cross-validation on the training set to assess the 

model's generalization ability on different subsets of data. We revised the text in lines 242-243 

to:  

“After selecting the optimal hyperparameters, we further evaluated the final model using 5-

fold cross-validation to assess the model’s generalization ability and ensure it was not 

overfitted.” 

2) Restricting parameter ranges: In the Grid Search method, we restricted the parameter ranges 

for n_estimators, max_depth, max_features, and min_samples_split to prevent overfitting. In 

lines 239-241, we added the following sentence: 

“The specific hyperparameter settings used in the Grid Search are provided in the 

supplementary materials, in Table S1.” 

In the supplementary materials, we have added Table S1: 

Table S1. Hyperparameters for grid search in random forest model optimization 

Hyperparameter Values 

n_estimators 50, 100, 150, 200 

max_depth 10, 20, 30, None 

min_samples_split 2, 5, 10 

min_samples_leaf 1, 2, 4 

max_features sqrt, log2 

3) Evaluation of Model Generalization Using the Test Set: The test set, which was not involved 

in the training process, provides a reliable assessment of the model's generalization ability, 

helping to prevent overfitting. The R2 evaluations presented in Table S4 and Table S5 of the 

supplementary materials are based on the test set results, demonstrating the model’s 

satisfactory generalization performance. 

In lines 330-332, we revised the sentence to: 

“The 5-fold cross-validation demonstrates that a predictive multi-species model with 

satisfactory generalization performance was developed, achieving R2=0.88 ± 0.02 and RMSE 

= 1.76 ± 0.13 on the test set (Figure S4).” 

In lines 374-376, we revised the sentence to: 

“The evaluation results and optimal parameters of the six single-species models on the test set 

are presented in Table S4. All models show acceptable generalization ability (R2 = 0.51-0.88).” 

In lines 458-459, we revised the sentence to: 

“All the models show acceptable generalization performance (R2 = 0.52-0.83) (Table S5) on 
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the test set.” 

4. Fig. 1 and its relevant discussion. The method in Ren et al. (2022) provided the equilibrium 

pressure (Ceq) rather than the saturation pressure (C*), as the formula was fit to atmospheric 

aerosols (a mixture of many OOMs). Using Ceq instead of C* in Eq. 4 may introduce systematic 

biases. Could this be the reason for the observed discrepancy between (G/P)obs and (G/P)eq in Figs 

1a and 1d? 

Response:  

In Ren et al. (2022), the authors first obtained a calibration curve for C* and Tmax using a series 

of polyethylene glycol standards with known saturation vapor pressures. Then they measured 

Tmax values of a number of OOMs in atmospheric aerosols and converted the Tmax values into 

corresponding C* of the OOMs. Therefore, Ren et al. indeed provided the saturation 

concentration (C*) values of OOMs with known formulas, although the OOMs were obtained 

from ambient aerosols in their experiment.   

5. Previous studies (e.g., Voliotis et al., 2021; Chen et al., 2024) have reported a narrow volatility 

range of OOMs retrieved using the partitioning method. It is not surprising to see a huge difference 

between the volatility obtained using different methods. Would it be possible to expand discussion 

on this finding? 

Response:  

Thank you for providing the relevant literature. We cited them and expanded the discussion in 

lines 295-306 as follows: 

“Among all the predictions, the prediction from Priestley et al. (2024) is most close to our 

observation. This is because their C* parameterization is based on the measured gas and 

particle-phase concentrations of OOMs in fresh or aged residential wood-burning emissions. 

Their predicted G/P ratio is thus inherently consistent with the observed G/P ratios in our study. 

This also highlights the risks of estimating volatility (C*) using the partitioning method, which 

is based on measuring equilibrium gas- and particle-phase concentrations of OOMs. Two key 

issues arise: (1) OOMs may not achieve the assumed equilibrium state in real atmospheric or 

chamber conditions, introducing substantial uncertainty into calculations of (
𝐺

𝑃
)𝑒𝑞 ; (2) The 

method fails for the compounds with extremely high or low volatility, as their gas- or particle-

phase concentrations often fall below the detection limit of mass spectrometers. These 

limitations explain why the partitioning method typically reports a narrow volatility range 

(Voliotis et al., 2021; Chen et al., 2024).” 

6. As noted by the authors, atmospheric OOMs may not reach equilibrium between the gas and 

particle phases (e.g., Li et al., 2024). Could machine learning features capture this non-equilibrium 

effects? 

Response:  

Yes, machine learning features could capture the non-equilibrium effects. This was discussed 

in Section 3.3 “Identifying key factors driving the deviations of gas/particle partitioning from 
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equilibrium state”. The ML model identified RH, LWC, O3 and temperature as four features 

that lead to non-equilibrium partitioning.  

In lines 44-45, we add the citation Li et al., 2024: 

“As a result, OOMs rarely achieve equilibrium partitioning between the gas and particle phases 

(Roldin et al., 2014; Li et al., 2024).” 
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RC2 

The manuscript by Wang et al. presents a well-executed study that integrates FIGAERO-CIMS 

measurements with a machine learning approach to understand the gas-particle partitioning of 

OOMs in urban environments. They identified key influencing factors such as relative humidity, 

liquid water content, and particle-phase composition. The authors showed how these factors affect 

the deviations from equilibrium partitioning, contributing significant knowledge to atmospheric 

aerosol science. I recommend publication after the authors address the following questions. 

Response:  

We sincerely thank the reviewer for their valuable comments and suggestions, which will 

significantly improve the quality of our manuscript.  

1. It would be better to add more details about the sampling site’s characteristics, such as location 

and distances to pollution sources (e.g., traffic or industrial areas), and discuss how these factors 

influence OOM partitioning. 

Response:  

We appreciate the reviewer’s valuable suggestion. In lines 72-80, we have added more detailed 

information about the characteristics of the sampling site: 

“Hourly measurements of OOMs in both gas and particle phases was conducted during a winter 

campaign from December 5th, 2022, to January 8th, 2023, using an iodide-based FIGAERO-

CIMS (Aerodyne Research Inc., USA) at a suburban site in Wuhan, a megacity in central China 

(114.6157°E, 30.4577°N). The site is located in the campus of China University of 

Geosciences, which is surrounded by residential and agricultural mixed area. The nearest urban 

center and industrial area are about 25 km west to the measurement site. Nearest highways and 

major roads lie about 2 km north and south of the site. The site is the only provincial supersite 

operated by local environmental authority for monitoring air quality in Wuhan and can thus be 

regarded as a receptor site influenced by wide ranges of emission sources from neighboring 

regions.” 

In lines 441-443, we have also expanded our discussion on the influence of wind speed and 

direction on OOM partitioning: 

“As shown in Figure 6a, wind speed and direction rank relatively low in terms of feature 

importance for the six OOMs. This suggests that while wind direction and speed might 

influence the source areas of OOMs, they have a minimal impact on the G/P ratios of OOMs.” 

2. The authors use different C* parameterizations to estimate the equilibrium G/P ratios and 

compare them with the observed G/P ratios. However, these different C* parameterizations may 

introduce significant uncertainty. Please provide a more detailed discussion of the advantages and 

limitations of each parameterization and explain why these specific methods were chosen. 

Response:  



7 

 

We appreciate the reviewer’s suggestion. Based on the existing literature, we selected the 

parameterization methods to estimate C* and compared their predictions. We have provided a 

more detailed discussion of the results from each method and explained the rationale behind 

our choice of these specific approaches in lines 283-306: 

“Among all the methods, Mohr et al. (2019) predicts the steepest dependence of (
𝐺

𝑃
)𝑒𝑞 on MW. 

Their (
𝐺

𝑃
)𝑒𝑞 are higher than (

𝐺

𝑃
)𝑜𝑏𝑠 for the OOMs with nC = 2-5 and lower than (

𝐺

𝑃
)𝑜𝑏𝑠 for 

the OOMs with nC > 8 (Figure 1b). It has been recognized by Kurtén et al. (2016) and 

subsequent publications that SIMPOL-derived parameterizations predict a too steep 

dependence of C* on Mw and oxygen content. Moreover, the parameterization of Mohr et al. 

(2019) likely produces C* of pure compounds. Without considering the effect of particle matrix, 

it may be unrealistic to predict G/P ratios using their C* parameterization. On the basis of 

thermal desorption temperature, Ren et al. (2022) predicts lower equilibrium G/P ratios than 

all other parameterizations and our observation. The weakness of Ren et al. (2022) is thermal 

desorption may result in the formation of decomposed fragments, which could be misidentified 

as OOM species. As a result, the Tmax of OOM formulas tends to be overestimated and the C* 

tends to be underestimated in their parameterization. Although Peräkylä et al. (2020) also 

predicted lower G/P ratios, their ratios are much closer to our observation than Ren et al. (2022). 

Among all the predictions, the prediction from Priestley et al. (2024) is most close to our 

observation. This is because their C* parameterization is based on the measured gas and 

particle-phase concentrations of OOMs in fresh or aged residential wood-burning emissions. 

Their predicted G/P ratio is thus inherently consistent with the observed G/P ratios in our study. 

This also highlights the risks of estimating volatility (C*) using the partitioning method, which 

is based on measuring equilibrium gas- and particle-phase concentrations of OOMs. Two key 

issues arise: (1) OOMs may not achieve the assumed equilibrium state in real atmospheric or 

chamber conditions, introducing substantial uncertainty into calculations of (
𝐺

𝑃
)𝑒𝑞 ; (2) The 

method fails for the compounds with extremely high or low volatility, as their gas- or particle-

phase concentrations often fall below the detection limit of mass spectrometers. These 

limitations explain why the partitioning method typically reports a narrow volatility range 

(Voliotis et al., 2021; Chen et al., 2024).” 

3. The authors mentioned that the model is based on winter data and limited to specific OOM 

species. It is recommended that the authors clearly discuss the model’s limitations, such as 

whether certain OOM types (e.g., highly volatile organics) were underrepresented, and how 

seasonal variations (e.g., summer heat or rainy season humidity) might affect model predictions. 

The authors should address these limitations and suggest future improvements, such as expanding 

the dataset to include different seasons or OOM species. 
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Response:  

We appreciate the reviewer’s suggestion. We added the discussions about the limitations and 

future improvement direction in the end of the conclusion section. 

“At last, the random forest models developed in this study have certain limitations. (1) Aerosol 

particle coating may serve as an inhibitory factor of gas/particle partitioning. However, the 

mixing state and morphology of aerosol particles were not considered in the model due to the 

challenges in quantifying these features with high resolution. (2) The OOMs with extremely 

high or low volatility might be underrepresented in this study, because their gas- or particle-

phase concentrations often fall below the limit of quantification of FIGAERO-CIMS. (3) 

Isomers were not differentiated in the measurement of FIGAERO-CIMS in this study. The 

observed G/P ratio was contributed by isomers sharing the same chemical formula. The 

machine learning model built in this study did not account for the effect of isomerization on 

gas-particle distribution of OOMs. (4) The model was based solely on the data collected during 

the winter season and for specific groups of OOM species present in urban atmosphere. To 

enhance the robustness of the gas-to-particle partitioning model, future data collection under a 

broader range of atmospheric conditions is recommended.” 

4. In the feature selection process, the authors identify essential features using the random forest 

model and explain them with SHAP analysis. It is recommended that the authors provide more 

statistical justification for the feature selection, such as significance tests or correlation analysis, to 

validate the importance of these features. Additionally, the SHAP interpretation could be enhanced 

by including quantitative analysis of how each feature’s variation impacts the G/P ratio, not just the 

ranking of feature importance. Specifically, sensitivity curves for different features across ranges 

could visually show their contribution to the model output. 

Response:  

We added a correlation analysis between the features and the observed G/P ratio of the six 

selected OOMs.  

On lines 375-381, we added the following revision: 

“All models show acceptable generalization ability (R2 = 0.51-0.88). For all six OOMs, 

particle composition features dominate over meteorological and gaseous composition 

features in predicting the G/P ratios (Figure 5). Particle composition features LWC, OC, K+, 

SO4
2- and pH, as well as RH, consistently play important roles in influencing the G/P ratios of 

these species. This is roughly in line with the correlation analysis between the features and 

the observed G/P ratios of the selected 6 OOMs (Figure S5), which show that pH, RH, LWC, 

and SO4
2- exhibited strong positive or negative correlations with the G/P ratios.”  

In the supplementary materials, we add a new Figure S5. 
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Figure S5. The correlation between the observed G/P ratios of the 6 selected species and 

various features. 

We had shown the sensitivity curves of SHAP values versus features across different 

feature ranges visually by Figure 7. Now we added quantitative interpretation of the SHAP 

values and sensitive ranges of features in Section 3.2.2. The blue front below highlights our 

changes: 

“pH is among the two most influential factors for the gas/particle partitioning of five 

species (C5H8O4, C6H10O4, C6H5NO3, C7H7NO3 and C10H16O4) with a sensitive range of 3.5–

4.5 (as illustrated for C6H10O4 in Figure 7a). Within this range, the contribution to the G/P ratio 

decreases by 0.5 from pH 3.5 to 4.5. Beyond pH 4.5, the G/P ratio stabilizes at -0.1. An increase 

in pH results in a pronounced decrease of the G/P ratio. This phenomenon can be attributed to 

the enhanced partitioning of OOMs with acidic functional groups from gas to particles with 

elevated pH (Su et al., 2020).  

RH has a positive effect, ranking among the top 5 significant features, on the G/P ratios 

of three OOMs C6H5NO3, C7H7NO3, and C10H16O4 (Figure 6a). SHAP value is sensitive to RH 

across the full RH range (20%-80%, illustrated by an example C6H5NO3 in Figure 7b). LWC 

also has a significant positive effect for C5H8O4, C6H10O4, C6H5NO3, and C7H7NO3. For 

example, in the case of C5H8O4, a sharp increase of 0.35 in the G/P ratio is observed within the 

LWC range below 20 µg m-3. Above 20 µg m-3, the contribution to the G/P ratio stabilizes at 

0.15 (Figure 7c). The underlying mechanism of this behavior is unclear. One explanation is 

that the low RH and LWC in particles may facilitate the formation of reversible oligomers 

(Shen et al. (2018) and suppress their hydrolysis (Liu et al., 2012), thereby increasing the 
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concentration of these OOMs in particle phase. It is also possible that the thermal desorption 

and subsequent detection of particle-bound OOMs were inhibited in aerosol particles with 

more moisture.  

OC has a significant negative impact (i.e., rank among the top 5) on the G/P ratios of all 

six species, being consistent with Eq. (4), where the equilibrium G/P ratios are inversely 

proportional to COA. Taking C12H21NO9 as example (Figure 7d), the SHAP values decrease 

monotonically with COA by 0.08 in the entire COA range (5-25 µg m-3). For this compound, EC 

ranks as the second most influential factor, exerting a notable negative impact below 4 µg m-3. 

A significant G/P decrease of 0.05 was observed in this range (Figure 7e). 

SO4
2- has a positive effect (i.e., rank among the top 5) on the G/P ratios of C5H8O4, 

C6H10O4, C10H16O4 and C12H21NO9. For example, in the case of C6H10O4, the G/P ratio rises 

rapidly by 0.30 with increasing SO4
2- concentrations below 6 µg m-3 (Figure 7f). Above 6 µg 

m-3, the contribution to the G/P ratio stabilizes at 0.1. This may be partly related to the fact that 

SO4
2- is a highly hydrophilic component (Thaunay et al., 2015), which makes its effect similar 

to that of LWC. In addition, an increase of sulfate in aerosols is often associated with enhanced 

acidity and a decrease in pH (Zhang et al., 2007), which drives OOM from particle to gas phase 

as we explained above. 

K+ has a negative effect on the G/P ratios of C5H8O4, C10H16O4, C6H5NO3 and C7H7NO3. 

Taking C10H16O4 as example, the G/P ratio decreases rapidly by 0.15 with K+ in the 

concentration range of below 1 µg m⁻³. Above 1 µg m⁻3, its contribution to the G/P ratio 

stabilizes at -0.05 (Figure 7g). K+ is considered as a tracer of biomass burning. The increase of 

K+ is generally associated with higher pollution levels and higher OC concentrations in the 

study region (Zhao et al., 2024). The effect of K⁺ on the G/P ratio is thus similar to that of OC.” 
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RC3 

General comments  

Wang et al. have conducted a measurement campaign using a FIGAERO-CIMS using Iodide to 

detect OOMs in Wuhan during the winter 2022-2023. The deployed instrument was able to record 

concentrations of both compounds in gas and particle phases. Using the data the authors developed 

several random forest models, attempting to predict the gas to particle partitioning of detected 

compounds. Models were also constructed to study the discrepancy between observed and modelled 

partitioning ratios. The significance of the features in each model were further analyzed in an 

attempt to elucidate physicochemical properties impacting the underlying processes.  

The manuscript fits the scope of Atmospheric Chemistry and Physics, and presents valuable new 

knowledge. However, there are a number of concerns when it comes to the analysis presented. 

Therefore further clarifications are recommended before final publication.   

Response:  

We sincerely thank the reviewer for their valuable comments and suggestions, which will 

significantly improve the quality of our manuscript. 

Specific comments  

1. I suggest the authors provide some further explanation of why the selected target variable is 

chosen. This would help readers know what to expect from the analysis. What are the benefits of 

attempting to predict the gas to particle partitioning rather than e.g. absolute particle phase 

concentration? 

Response:  

In this study, the gas-to-particle ratio is selected as the target variable because the phase 

distribution of OOMs is critical for understanding their volatility, atmospheric transformation 

pathways, and environmental impacts. Describing the benefits of predicting gas-particle 

partitioning is the core focus of the Introduction section. 

It presents greater challenges to predict absolute particle-phase concentrations of OOMs with 

machine learning models due to their strong dependence on diverse emission sources from 

neighboring regions. We lack reliable features for quantifying the variable strengths of 

unknown sources and atmospheric aging processes during transport, which are key factors 

influencing the OOM concentrations. 

In lines 223-230, we added: 

“Third, single-species models were tailored to predict the gas/particle partitioning 

behaviors of these six individual OOMs under varying meteorological and gas-particle 

composition conditions. We also built random forest models to investigate how (
𝐺

𝑃
)𝑜𝑏𝑠 of the 
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six OOMs deviate from (
𝐺

𝑃
)𝑒𝑞  under varying meteorological conditions and gas/particle 

compositions. In this study, we did not build random forest model to predict absolute gas or 

particle phase concentrations of OOMs, due to their strong dependences on diverse emission 

sources from neighboring regions. We lack reliable features for quantifying the variable 

strengths of unknown sources and atmospheric aging processes during transport, which are key 

factors influencing the OOM concentrations.” 

2. Given the data first approach chosen, the quality of the dataset is important. Given that the 

datasets represents a time period of one month in winter, how representative is it of varying 

conditions? Are there several different meteorological conditions or weather patterns included in 

the analysed dataset, and what is their significance for the analysis? I encourage the authors to give 

a brief overview of the importance of varying conditions, and perhaps provide some time series of 

common meteorological parameters such as temperature and windspeed+direction in the 

supplementary as an overview for the reader. 

Response:  

We appreciate the reviewer’s suggestion. We added an overview of the observation period in 

lines 263-270: 

“Despite the overall improvement in air quality in recent years, PM2.5 episodes still occur 

frequently in December and January in most Chinese cities, contributing to the majority of 

PM2.5 exceedance days of a year. During the winter observation period of this study, PM2.5 

concentrations ranged from 20 to 150 μg m-3, spanning both clean and severe pollution 

conditions. Organic aerosol (COA = COC × 1.4) comprised 10%–76% of PM2.5, emerging as a 

critical bottleneck of eliminating PM2.5 episodes. Time series of criteria pollutants and key 

meteorological parameters are presented in Figure S2. The data collected during the 

observation period herein is considered representative of winter PM2.5 pollution characteristics 

in Wuhan.” 

We added Figure S2 in the supplementary materials:  
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Figure S2. Time series of partial features. (a) Wind direction and wind speed (reference vector: 

west 2 m s-1). (b) PM2.5 and organic carbon (OC) concentrations. (c) Ozone (O3) and sulfur 

dioxide (SO₂) concentrations. (d) Ambient temperature and relative humidity (RH). 

3. Given the (it seems) limited scope of the dataset, how general are the conclusions of this work? 

Response: 

As we stated above, the data collected in this study is considered representative of winter 

PM2.5 pollution characteristics in a megacity. Without more data from other environments 

like forest, rural or remote, we are unable to tell how general the conclusions of this work are. 

Like what we stated in the title of this manuscript, we focused only in the case of “urban 

atmosphere”.  

In the end of Conclusion Section, we stated the limitation of our dataset and recommended 

future direction: 

“The model was based solely on the data collected during the winter season and for specific 

groups of OOM species present in urban atmosphere. To enhance the robustness of the gas-
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to-particle partitioning model, future data collection under a broader range of atmospheric 

conditions is recommended.” 

4. What is in general the certainty of the partitioning ratio measured? For example it is stated that 

26.8% of particle mass is detected as fragments. Does this not bias the G/P ratio towards the gas 

phase for compounds that fragment? What about other losses in the FIGAERO system, or fragments 

that are not detected by the ionization scheme used?   

Response: 

In line 121, we clarified “These fragments were excluded from the gas/particle partitioning 

analysis”. So the fragment did not bias the G/P ratio of OOMs. 

By comparing with the OC measured with the thermal-optical method, the OOMs measured 

with the FIGAERO-CIMS accounted for only 26 ± 8% of the total OA (OC × 1.4). So this 

study focused only on detectable OOMs by iodide ionization scheme, not all aerosol organic 

compounds. 

In line 99-102, we add: 

“According to our earlier investigation (Wang et al. 2024), the OOM measured with the 

FIGAERO-CIMS stands for only those polar and moderate-volatility organic species being 

desorbed below 200°C and accounted for only 26 ± 8% of the total OA (OC×1.4) measured 

with the thermal-optical method using the IMPROVE protocol.” 

5. Also, the authors select the data based on peaks being relatively dominant on their masses, and 

with substantial concentration in the particle phase (lines 104-105). This excludes compounds with 

very small concentrations in either particle or gas phase. This, in turn, leads to a narrow range of 

G/P values, as compounds predominantly in either phase are filtered out. This is observed (Fig. 1), 

and should be commented on more. 

Response:  

Yes, this was designed to obtain reliable concentrations and thus G/P ratios.  

We have added more discussion in lines 114-117: 

“In order to obtain reliable concentrations and thus G/P ratios, only those OOMs with a unit 

mass peak area ratio of > 20 % and a sample-to-blank ratio of > 2 were included for further 

analysis. This filtered out the OOMs with small concentrations in the atmosphere, as well as 

those extremely high or low volatility OOMs that are predominantly in only one phase.” 

In lines 501-503: 
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“The OOMs with extremely high or low volatility might be underrepresented in this study, 

because either gas- or particle-phase concentration of them often fall below the limit of 

quantification of FIGAERO-CIMS.” 

6. On the comparison with previous C* parameterisations: Mohr et al parameterisation is still based 

on SIMPOL (through Tröstl et al), although with increased contribution from OOH groups. This is 

not clear in the text. Kurten et al (2016, 10.1021/acs.jpca.6b02196) and subsequent publications 

show that for HOM-type compounds, SIMPOL predicts a too steep dependence of C* on e.g. oxygen 

content and molar mass. Also, Peräkylä et al do not use particle-phase concentrations, and there is 

no assumption of equilibrium. In contrast, Priestley et al assume equilibrium. 

Response:  

We appreciate the reviewer’s comment, and we have revised the text as follows: 

In lines 152-156, we made the following revision: 

“Based on the saturation concentrations of HOM detected by Tröstl et al. (2016), Mohr et al. 

(2019) applied an updated version of a SIMPOL-type parameterization described by Donahue 

et al. (2011) to estimate C* from the numbers of carbon, oxygen, and nitrogen atoms of an 

organic species (𝑛𝐶, 𝑛𝑂, and 𝑛𝑁), but emphasizing the increased importance of OOH groups.” 

In lines 160-167, we made the following revision: 

“Peräkylä et al. (2020) parameterized the dependence of C* on 𝑛𝐶, 𝑛𝑂, 𝑛𝑁 and number of 

hydrogen atoms (𝑛H) by comparing steady-state gas-phase concentrations of α-pinene 

ozonolysis products with and without seed addition in a chamber. This parameterization 

predicts much smaller sensitivities of HOMs volatility to oxygen-containing functional groups 

than SIMPOL. The parameterization of Priestley et al. (2024) was based on measured gas and 

particle-phase concentrations, at an assumed equilibrium state, in residential wood-burning 

emissions. The C* of the products were obtained via Eq. (4) and a parameterization was obtained 

between C* and 𝑛𝐶, 𝑛𝑂, 𝑛𝑁 and 𝑛𝐻.” 

In lines 283-287, we add: 

“Among all the methods, Mohr et al. (2019) predicts the steepest dependence of (
𝐺

𝑃
)𝑒𝑞 on MW. 

Their (
𝐺

𝑃
)𝑒𝑞 are higher than (

𝐺

𝑃
)𝑜𝑏𝑠 for the OOMs with nC = 2-5 and lower than (

𝐺

𝑃
)𝑜𝑏𝑠 for 

the OOMs with nC > 8 (Figure 1b). It has been recognized by Kurtén et al. (2016) and 

subsequent publications that SIMPOL-derived parameterizations predict a too steep 

dependence of C* on MW and oxygen content.” 



16 

 

7. The authors compare the observed G/P with equilibrium G/P from other studies. When this 

comparison is presented to the reader, the reason behind the comparison is not clear, given that 

these are very different quantities. As the authors themselves state, OOMs rarely achieve 

equilibrium partitioning in the free atmosphere. I suggest the authors clearly motivate why the 

comparison is being made. 

Response:  

Thank you for your suggestion.  

In line 65-67, the end of Introduction Section, we clarified: 

“By building data-driven machine learning models with the G/P ratio as the target variable, we 

explored the influencing factors of gas-particle distribution of OOMs and examined the factors 

that contribute to the deviations from equilibrium gas/particle partitioning.” 

In line 225-226, we added:  

“We also built random forest models to investigate how (
𝐺

𝑃
)𝑜𝑏𝑠 of the six OOMs deviate from 

(
𝐺

𝑃
)𝑒𝑞 under varying meteorological conditions and gas/particle compositions.” 

8. In Figure 1 the errorbars denote the range of observations, but systematic errors (such as those 

mentioned in comment 4) are not mentioned. Although these may not that relevant for the model, 

they may impact the absolute comparison presented here.  

Response:  

Please see our response to Comment 4. The fragments were excluded from the gas/particle 

partitioning analysis. So the fragment issue did not bias the observed G/P ratio of OOMs. 

The observed G/P ratio were calculated from equation 3 in the manuscript. The uncertainty 

comes only from the integrated signals of gas- and particle-phase OOMs during the 

measurement. Therefore, we believe the G/P ratios were not systematically biased.  

(
𝐺

𝑃
)𝑜𝑏𝑠  =

𝐶𝑔

𝐶𝑝
=

𝑠𝑖𝑔𝑛𝑎𝑙𝑔×𝑡𝑝×𝑄𝑝

𝑠𝑖𝑔𝑛𝑎𝑙𝑝×𝑡𝑔×𝑄𝑔
      

9. My understanding is that the Ren et al. comparison is based on the parametrization derived from 

thermal desorption temperatures. It seems that the authors cloud also have derived some volatility 

estimate from their data since it was collected using the FIGAERO. Why is this not presented for 

further comparison?  

Response:  
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Yes, we can also derive C* from Tmax obtained using our FIGAERO data; however, this merely 

replicates the work of Ren et al. The comparison of C* obtained from different methods has 

already been addressed by many other researchers (Chen et al., 2024; Stark et al., 2017).  

Our manuscript focuses on building a machine learning model to explore influencing factors 

of G/P distribution of OOMs in the atmosphere and its deviation from equilibrium partitioning. 

10. Do the authors believe they mostly observed OOMs close to equilibrium partitioning? Would 

this still be the case during summer, when the changes in precursors and oxidants are presumably 

faster? 

Response:  

In this study, the observed G/P ratios do not necessarily reflect a state close to equilibrium 

partitioning. We did not mention anywhere the observed G/P ratios are close to equilibrium 

partitioning. What we did is to compare (
𝐺

𝑃
)𝑒𝑞  and (

𝐺

𝑃
)𝑜𝑏𝑠  and to investigate the factors 

contributing to the discrepancy between them.  

11. On line 255 the authors state that they observed significant fluctuations in observed G/P diurnal 

variation. in the referenced Figure 2 the concentrations don’t look like they vary very much relative 

to the mean, and the diurnal patterns look mostly random. I do not understand what the authors 

mean by this statement. 

Response:  

We are sorry for the misunderstanding created by our wording. We rephrased the sentence in 

lines 313-319 as follows: 

“In contrast, we observed different patterns of (
𝐺

𝑃
)𝑜𝑏𝑠  diurnal variations for the six OOM 

species during the campaign, as shown in Figure 2c-2h. This indicates that the extent of 

deviation of actual gas/particle partitioning from equilibrium state fluctuates randomly over 

time, driven by other unknown factors. In this study, we will first examine the influencing 

factors of gas-particle distribution of OOMs in urban atmosphere during the winter campaign 

(Section 3.2), followed by an investigation into the factors contributing to the discrepancies 

between observed and equilibrium G/P ratios (Section 3.3).” 

12. Since the diurnal variation of temperature and concentration of organic aerosol are highlighted 

as the only factors influencing the diurnal variation of equilibrium G/P I would like to see time 

series and/or diurnal plots of these parameters. 

Response:  

We added a new Figure S2 in the supplementary materials to show time series of criteria 
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pollutants and key meteorological parameters, including temperature and OC. 

13. The authors claim that the importance of pH is due to enhanced partitioning of acidic OOMs. 

This argument relies on the assumption that the partitioning ratio is close to equilibrium for a 

significant fraction of the observations, and the observed G/P is mostly determined by factors 

shifting the equilibrium partitioning, which has not been shown in the manuscript. Could there be 

other reasons such as a common source for gas phase OOMs and more acidic particulate matter 

e.g. sulfuric acid? 

Response: 

The partitioning always goes in a direction to reach a new equilibrium. But it does not 

necessarily mean the observed G/P ratios must be close to equilibrium partitioning G/P. We 

totally agree with you that the observed G/P is mostly determined by factors shifting (either 

facilitate or inhabit) the equilibrium partitioning. Under the influence of those factors, the 

partitioning ratio could be either close to or deviate from equilibrium. All we did here is that 

we found a decrease of the observed G/P ratio was associated with an increase in pH, on the 

basis of a large set of observation data and machine learning model. This makes sense because, 

obviously, the partitioning of acidic OOMs from gas to particles will be enhanced with elevated 

particle pH. 

14. Line 338 prohibited should probably be changed to inhibited, or another word. 

Response: 

We have revised the text and changed “prohibited” to “inhibited.” 

15. The authors hypothesize that elevated O3 leads to depletion of OOMs in the gas phase. Does O3 

not also contribute to OOM formation? Can particle phase OOMs not react with O3? 

Response:  

We revised our statement to make it more precise. In lines 469-472, we have amended the text 

as follows: 

“Since O3 is not expected to change (
𝐺

𝑃
)𝑒𝑞, the negative impact of O3 on (

𝐺

𝑃
)𝑜𝑏𝑠/(

𝐺

𝑃
)𝑒𝑞 ratio 

could be explained by the fact that high O3 concentrations are likely to deplete gas-phase 

OOMs at a faster rate than particle-phase OOMs, thereby reducing (
𝐺

𝑃
)𝑜𝑏𝑠.” 

16. The models identified RH, LWC, O3 and temperature as influential factors driving the deviation 

between observed and equilibrium G/P. Are these truly influential, or do they serve as proxies for 

the diurnal pattern present mostly in the equilibrium G/P. 

Response:  
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By itself, the machine learning model cannot uncover the fundamental mechanisms through 

which the factors influence G/P ratio. Apparently, temperature is a truly influential factor that 

changed the  (
𝐺

𝑃
)𝑒𝑞 and subsequently the discrepancy between observed and equilibrium G/P. 

On the other hand, RH, LWC, O3 are likely to serve as proxies of underlying oligomer 

formation, hydrolysis reaction or O3 depletion reactions.  

17. I suggest adding the term ”Random forest” or ”Machine learning” to the title since the paper 

mostly focuses on using these methods to study the partitioning. There are also few definitive 

conclusions about the influencing factors and processes, with the main conclusion being the 

importance of particle phase composition and processes. 

Response:  

Thank you for the suggestion. We have revised the title to: 

“Investigating Influencing Factors of Gas-Particle Distribution of Oxygenated Organic 

Molecules in Urban Atmosphere and Its Deviation from Equilibrium Partitioning Using 

Random Forest Model”  

18. Results from the same measurement campaign have already been published by Wang et al. (2024, 

10.1021/acsestair.4c00076). This is completely fine, but it would be good to mention this clearly in 

the manuscript. 

Response:  

Thank you very much for your suggestion. We have clearly addressed this in the manuscript. 

In lines 118-121, we revised the text as follows: 

“According to our earlier study on the same dataset using a K-means clustering method (Wang 

et al., 2024), on average, 25.1% of particle-bound OOM species number and 26.8% of OOM 

mass detected by the FIGAERO-CIMS could be attributed to thermal decomposition fragments 

(see Supplementary Materials Text S2).” 

19. The authors use very many explanatory variables in their models. Many of these are correlated 

with, or even derived from, each other. Examples include the O/C ratio with oxidation state of 

carbon, and RH, sulfate and potassium concentrations with LWC and pH from ISORROPIA II. This 

leads to unreasonable conclusions, such as that O:C and oxidation state have an opposite effect on 

the G/P ratios. The authors should comment on problems with multicollinearity. 

Response:   

You raised an important issue.  

We have found this issue when we observed the opposite effects of O:C and oxidation state, 

and DBE and H/C. This is due to the fact that these features are dependent variables as a 
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function of nC, nH, nN and nO. To isolate the effect of oxidation and unsaturation-related features, 

we utilized the trained random forest model to predict G/P ratios of modified C10 

monocarboxylic acid with varying number of hydroxyl group and DBE (Figure 4). Other 

features in the model were fixed at average daytime or nighttime values observed during the 

campaign. These discussions are shown in line 357-366 in Section 3.2.1. 

We have added a comment on multicollinearity issues in lines 194-201: 

“This feature selection scheme guarantees a balanced representation of pertinent factors, while 

preserving the simplicity and predictive efficacy of the models. Unlike neural networks and 

other machine learning algorithms, the random forest model used in this study is an ensemble 

model made up of multiple decision trees. During training, each tree splits using a randomly 

chosen subset of features. Because each tree uses different feature subsets, this randomness in 

feature selection reduces the model's reliance on any single feature, making it less likely to be 

severely impacted by multicollinearity. To further ensure model stability, we also conducted 

five-fold cross-validation to confirm the robustness of the model.” 

20. Also, the supporting measurements (such as OC and aerosol composition) are poorly described 

in the methods.   

Response:  

We have added the following at lines 81-85 of the manuscript:  

“We obtained valid data of 594 hours, during which meteorological parameters (e.g., relative 

humidity (RH) and temperature), particulate chemical components (e.g., organic carbon (OC) 

and sulfate ions (SO4
2-)), and gaseous components (e.g., sulfur dioxide (SO2) and ozone (O3)) 

were routinely monitored. Detailed information about those routine measurement is shown in 

the supplementary materials (Text S1).” 

In the supplementary materials, we have added: 

“Text S1 Routine measurement of gaseous and particulate components 

In this study, we measured the chemical composition of PM2.5, including water-soluble 

ions (sulfate (SO4
2−), nitrate (NO3

−), ammonium (NH4
+), chloride (Cl−), and potassium ion (K+)) 

over 594 hours using an Online Ion Chromatography Monitoring System (MARGA-1S, 

Metrohm AG, Switzerland) for the water-soluble ions. The system is designed to collect and 

analyze PM2.5 in ambient air in real-time. Air samples are first passed through a cutter and 

sampling tubes into the instrument, where aerosol particles are captured and mixed with water 

vapor in a high-temperature steam generator. This process causes the particles to grow by 

absorption, after which they condense and are directed to the sample collection unit. The 
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collected samples are then separated and analyzed using ion chromatography for their water-

soluble ion content, including both cations and anions. 

The carbonaceous materials were analyzed using an OCEC Analyzer (RT-4, Sunset 

Laboratory Inc., USA), which employs a stepwise heating pyrolysis-oxidation method. The 

sample is first heated under helium (He) gas, causing the OC to volatilize and partially convert 

to pyrolyzed carbon (PC). The sample is then further heated in a helium/oxygen (He/O2) 

mixture, where EC is oxidized and decomposed into gaseous oxidation products. All 

decomposition products flow through a carrier gas into an oxidation furnace, where the carbon 

products are converted to CO2 and quantitatively detected using non-dispersive infrared (NDIR) 

methods. During this process, laser transmittance is used to monitor the OC/EC separation 

point, with OC volatilization and pyrolysis causing a decrease in transmittance intensity and 

EC oxidation leading to an increase. When the transmittance intensity returns to its initial level, 

the OC/EC separation point is defined, allowing for the precise determination of OC and EC 

content in the sample. 

PM2.5 concentrations were measured using an air particulate monitor (TH-2000PM, 

Wuhan Tianhong Technology Co., Ltd.), utilizing a dual-channel beta-ray method coupled 

with a dynamic compensation system. The air flow, set to 33.34 L/min, is first passed through 

a PM10-cutting device to separate the larger particles. The flow is then evenly split into two 

streams: one stream directly measures PM10, while the other is passed through a PM2.5-cutting 

device for the measurement of PM2.5. This approach reduces measurement errors and ensures 

accurate quantification of both PM10 and PM2.5 concentrations. 

Hourly concentrations of nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and 

ammonia (NH3) were detected using gas analyzers (42i/43i/49i/17i, Thermo Fisher Scientific, 

USA). SO2 was measured via pulsed fluorescence technology, in which SO2 molecules absorb 

ultraviolet light at a specific wavelength and re-emit fluorescent light. The intensity of the 

emitted fluorescence is directly proportional to the SO2 concentration. O3 was quantified using 

ultraviolet photometry, as ozone absorbs ultraviolet light at a specific wavelength (254 

nm). The O3 concentration is determined by measuring the intensity of the absorbed light. For 

NH3 measurement, the method involves its reaction with oxygen at high temperatures (750°C), 

converting NH3 into nitrogen monoxide (NO). The NO concentration is directly proportional 

to the NH3 concentration, which is then calculated accordingly. The concentration of NO2 is 

measured using chemiluminescence: the sample first passes through a molybdenum catalyst at 

325°C to convert NO2 into NO, which then reacts with O3 generated by a silent discharge 

ozone generator, producing chemiluminescence detected by a photomultiplier tube (PMT). By 

measuring in NO and NOX modes—recording the NO concentration without catalysis and the 

total NO (including converted NO from NO2) with catalysis—the NO2 concentration is 

calculated as the difference between the two measurements. 

Meteorological parameters, including relative humidity (RH), temperature (T), wind 

speed (WS), and wind direction (WD), were collected using an automatic weather station. 
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Photolysis frequencies of HONO (JHONO) were measured with a PFS-100 photolysis 

spectrometer (Focused Photonics Inc., China). The spectrometer uses a quartz receiver head to 

collect solar radiation from various directions and transmits the light through optical quartz 

fibers to the spectrometer. The spectrometer then transmits the spectral data to an industrial 

computer, which calculates the photolysis flux. By integrating this flux with known absorption 

cross-sections and quantum yields, the photolysis rate constant is determined.” 

21. Add reference for Eq. (4) 

Response:  

We have added a reference for Eq. (4).: 

“According to modified Raoult's Law, the saturation ratio of an organic species in gas phase 

(i.e. 
𝐶𝑔

𝐶∗) equals the mass fraction of the species in organic aerosol with mass concentration COA 

(𝑖. 𝑒.
𝐶𝑝

𝐶𝑂𝐴
), under the assumptions of equilibrium absorptive partitioning of the species over an 

ideal organic solution and that the species has a molecular weight similar to that of the organic 

solution (Donahue et al., 2009; Epstein et al., 2010). The equilibrium G/P ratio (
𝐺

𝑃
)𝑒𝑞 can thus 

be estimated from saturated mass concentration C* and mass concentration of organic aerosol 

COA (COA = COC × 1.4) using Eq. (4) 

(
𝐺

𝑃
)𝑒𝑞 =

𝐶∗(𝑇)

𝐶𝑂𝐴
                    （4）” 

22. Data availability: I strongly recommend that the data of the study should be made openly 

available. 

Response:  

We uploaded our data to public data repository Zenodo and updated our Data Availability 

Statement: 

“The data used in this article are available in the public data repository Zenodo 

https://doi.org/10.5281/zenodo.15428774.” 

  

https://doi.org/10.5281/zenodo.15428774
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