
A point-to-point response and relevant changes made in the revised manuscript 

Ms. Ref. No.: egusphere-2025-229 

Title: Investigating Influencing Factors of Gas-Particle Distribution of Oxygenated 

Organic Molecules in Urban Atmosphere and Its Deviation from Equilibrium 

Partitioning Using Random Forest Model. 

 

Anonymous Referee #3 

General comments  

Wang et al. have conducted a measurement campaign using a FIGAERO-CIMS using Iodide to 

detect OOMs in Wuhan during the winter 2022-2023. The deployed instrument was able to record 

concentrations of both compounds in gas and particle phases. Using the data the authors developed 

several random forest models, attempting to predict the gas to particle partitioning of detected 

compounds. Models were also constructed to study the discrepancy between observed and modelled 

partitioning ratios. The significance of the features in each model were further analyzed in an 

attempt to elucidate physicochemical properties impacting the underlying processes.  

The manuscript fits the scope of Atmospheric Chemistry and Physics, and presents valuable new 

knowledge. However, there are a number of concerns when it comes to the analysis presented. 

Therefore further clarifications are recommended before final publication.   

Response:  

We sincerely thank the reviewer for their valuable comments and suggestions, which will 

significantly improve the quality of our manuscript. 

Specific comments  

1. I suggest the authors provide some further explanation of why the selected target variable is 

chosen. This would help readers know what to expect from the analysis. What are the benefits of 

attempting to predict the gas to particle partitioning rather than e.g. absolute particle phase 

concentration? 

Response:  

In this study, the gas-to-particle ratio is selected as the target variable because the phase 

distribution of OOMs is critical for understanding their volatility, atmospheric transformation 

pathways, and environmental impacts. Describing the benefits of predicting gas-particle 

partitioning is the core focus of the Introduction section. 

It presents greater challenges to predict absolute particle-phase concentrations of OOMs with 

machine learning models due to their strong dependence on diverse emission sources from 



neighboring regions. We lack reliable features for quantifying the variable strengths of 

unknown sources and atmospheric aging processes during transport, which are key factors 

influencing the OOM concentrations. 

In lines 223-230, we added: 

“Third, single-species models were tailored to predict the gas/particle partitioning 

behaviors of these six individual OOMs under varying meteorological and gas-particle 

composition conditions. We also built random forest models to investigate how (
𝐺

𝑃
)𝑜𝑏𝑠 of the 

six OOMs deviate from (
𝐺

𝑃
)𝑒𝑞  under varying meteorological conditions and gas/particle 

compositions. In this study, we did not build random forest model to predict absolute gas or 

particle phase concentrations of OOMs, due to their strong dependences on diverse emission 

sources from neighboring regions. We lack reliable features for quantifying the variable 

strengths of unknown sources and atmospheric aging processes during transport, which are 

key factors influencing the OOM concentrations.” 

2. Given the data first approach chosen, the quality of the dataset is important. Given that the 

datasets represents a time period of one month in winter, how representative is it of varying 

conditions? Are there several different meteorological conditions or weather patterns included in 

the analysed dataset, and what is their significance for the analysis? I encourage the authors to give 

a brief overview of the importance of varying conditions, and perhaps provide some time series of 

common meteorological parameters such as temperature and windspeed+direction in the 

supplementary as an overview for the reader. 

Response:  

We appreciate the reviewer’s suggestion. We added an overview of the observation period in 

lines 263-270: 

“Despite the overall improvement in air quality in recent years, PM2.5 episodes still occur 

frequently in December and January in most Chinese cities, contributing to the majority of 

PM2.5 exceedance days of a year. During the winter observation period of this study, PM2.5 

concentrations ranged from 20 to 150 μg m-3, spanning both clean and severe pollution 

conditions. Organic aerosol (COA = COC × 1.4) comprised 10%–76% of PM2.5, emerging as a 

critical bottleneck of eliminating PM2.5 episodes. Time series of criteria pollutants and key 

meteorological parameters are presented in Figure S2. The data collected during the 

observation period herein is considered representative of winter PM2.5 pollution characteristics 

in Wuhan.” 

We added Figure S2 in the supplementary materials:  

 



  

Figure S2. Time series of partial features. (a) Wind direction and wind speed (reference vector: 

west 2 m s-1). (b) PM2.5 and organic carbon (OC) concentrations. (c) Ozone (O3) and sulfur 

dioxide (SO₂) concentrations. (d) Ambient temperature and relative humidity (RH). 

3. Given the (it seems) limited scope of the dataset, how general are the conclusions of this work? 

Response: 

As we stated above, the data collected in this study is considered representative of winter 

PM2.5 pollution characteristics in a megacity. Without more data from other environments 

like forest, rural or remote, we are unable to tell how general the conclusions of this work 

are. Like what we stated in the title of this manuscript, we focused only in the case of “urban 

atmosphere”.  

In the end of Conclusion Section, we stated the limitation of our dataset and recommended 

future direction: 

“The model was based solely on the data collected during the winter season and for specific 

groups of OOM species present in urban atmosphere. To enhance the robustness of the gas-



to-particle partitioning model, future data collection under a broader range of atmospheric 

conditions is recommended.” 

4. What is in general the certainty of the partitioning ratio measured? For example it is stated that 

26.8% of particle mass is detected as fragments. Does this not bias the G/P ratio towards the gas 

phase for compounds that fragment? What about other losses in the FIGAERO system, or fragments 

that are not detected by the ionization scheme used?   

Response: 

In line 121, we clarified “These fragments were excluded from the gas/particle partitioning 

analysis”. So the fragment did not bias the G/P ratio of OOMs. 

By comparing with the OC measured with the thermal-optical method, the OOMs measured 

with the FIGAERO-CIMS accounted for only 26 ± 8% of the total OA (OC × 1.4). So this 

study focused only on detectable OOMs by iodide ionization scheme, not all aerosol organic 

compounds. 

In line 99-102, we add: 

“According to our earlier investigation (Wang et al. 2024), the OOM measured with the 

FIGAERO-CIMS stands for only those polar and moderate-volatility organic species being 

desorbed below 200°C and accounted for only 26 ± 8% of the total OA (OC×1.4) measured 

with the thermal-optical method using the IMPROVE protocol.” 

5. Also, the authors select the data based on peaks being relatively dominant on their masses, and 

with substantial concentration in the particle phase (lines 104-105). This excludes compounds with 

very small concentrations in either particle or gas phase. This, in turn, leads to a narrow range of 

G/P values, as compounds predominantly in either phase are filtered out. This is observed (Fig. 1), 

and should be commented on more. 

Response:  

Yes, this was designed to obtain reliable concentrations and thus G/P ratios.  

We have added more discussion in lines 114-117: 

“In order to obtain reliable concentrations and thus G/P ratios, only those OOMs with a unit 

mass peak area ratio of > 20 % and a sample-to-blank ratio of > 2 were included for further 

analysis. This filtered out the OOMs with small concentrations in the atmosphere, as well as 

those extremely high or low volatility OOMs that are predominantly in only one phase.” 

In lines 501-503: 



“The OOMs with extremely high or low volatility might be underrepresented in this study, 

because either gas- or particle-phase concentration of them often fall below the limit of 

quantification of FIGAERO-CIMS.” 

6. On the comparison with previous C* parameterisations: Mohr et al parameterisation is still based 

on SIMPOL (through Tröstl et al), although with increased contribution from OOH groups. This is 

not clear in the text. Kurten et al (2016, 10.1021/acs.jpca.6b02196) and subsequent publications 

show that for HOM-type compounds, SIMPOL predicts a too steep dependence of C* on e.g. oxygen 

content and molar mass. Also, Peräkylä et al do not use particle-phase concentrations, and there is 

no assumption of equilibrium. In contrast, Priestley et al assume equilibrium. 

Response:  

We appreciate the reviewer’s comment, and we have revised the text as follows: 

In lines 152-156, we made the following revision: 

“Based on the saturation concentrations of HOM detected by Tröstl et al. (2016), Mohr et al. 

(2019) applied an updated version of a SIMPOL-type parameterization described by Donahue 

et al. (2011) to estimate C* from the numbers of carbon, oxygen, and nitrogen atoms of an 

organic species (𝑛𝐶, 𝑛𝑂, and 𝑛𝑁), but emphasizing the increased importance of OOH groups.” 

In lines 160-167, we made the following revision: 

“Peräkylä et al. (2020) parameterized the dependence of C* on 𝑛𝐶, 𝑛𝑂, 𝑛𝑁 and number of 

hydrogen atoms (𝑛H) by comparing steady-state gas-phase concentrations of α-pinene 

ozonolysis products with and without seed addition in a chamber. This parameterization 

predicts much smaller sensitivities of HOMs volatility to oxygen-containing functional groups 

than SIMPOL. The parameterization of Priestley et al. (2024) was based on measured gas and 

particle-phase concentrations, at an assumed equilibrium state, in residential wood-burning 

emissions. The C* of the products were obtained via Eq. (4) and a parameterization was obtained 

between C* and 𝑛𝐶, 𝑛𝑂, 𝑛𝑁 and 𝑛𝐻.” 

In lines 283-287, we add: 

“Among all the methods, Mohr et al. (2019) predicts the steepest dependence of (
𝐺

𝑃
)𝑒𝑞 on 

MW. Their (
𝐺

𝑃
)𝑒𝑞 are higher than (

𝐺

𝑃
)𝑜𝑏𝑠 for the OOMs with nC = 2-5 and lower than (

𝐺

𝑃
)𝑜𝑏𝑠 

for the OOMs with nC > 8 (Figure 1b). It has been recognized by Kurtén et al. (2016) and 

subsequent publications that SIMPOL-derived parameterizations predict a too steep 

dependence of C* on MW and oxygen content.” 



7. The authors compare the observed G/P with equilibrium G/P from other studies. When this 

comparison is presented to the reader, the reason behind the comparison is not clear, given that 

these are very different quantities. As the authors themselves state, OOMs rarely achieve 

equilibrium partitioning in the free atmosphere. I suggest the authors clearly motivate why the 

comparison is being made. 

Response:  

Thank you for your suggestion.  

In line 65-67, the end of Introduction Section, we clarified: 

“By building data-driven machine learning models with the G/P ratio as the target variable, we 

explored the influencing factors of gas-particle distribution of OOMs and examined the factors 

that contribute to the deviations from equilibrium gas/particle partitioning.” 

In line 225-226, we added:  

“We also built random forest models to investigate how (
𝐺

𝑃
)𝑜𝑏𝑠 of the six OOMs deviate from 

(
𝐺

𝑃
)𝑒𝑞 under varying meteorological conditions and gas/particle compositions.” 

8. In Figure 1 the errorbars denote the range of observations, but systematic errors (such as those 

mentioned in comment 4) are not mentioned. Although these may not that relevant for the model, 

they may impact the absolute comparison presented here.  

Response:  

Please see our response to Comment 4. The fragments were excluded from the gas/particle 

partitioning analysis. So the fragment issue did not bias the observed G/P ratio of OOMs. 

The observed G/P ratio were calculated from equation 3 in the manuscript. The uncertainty 

comes only from the integrated signals of gas- and particle-phase OOMs during the 

measurement. Therefore, we believe the G/P ratios were not systematically biased.  

(
𝐺

𝑃
)𝑜𝑏𝑠  =

𝐶𝑔

𝐶𝑝
=

𝑠𝑖𝑔𝑛𝑎𝑙𝑔×𝑡𝑝×𝑄𝑝

𝑠𝑖𝑔𝑛𝑎𝑙𝑝×𝑡𝑔×𝑄𝑔
      

9. My understanding is that the Ren et al. comparison is based on the parametrization derived from 

thermal desorption temperatures. It seems that the authors cloud also have derived some volatility 

estimate from their data since it was collected using the FIGAERO. Why is this not presented for 

further comparison?  

Response:  



Yes, we can also derive C* from Tmax obtained using our FIGAERO data; however, this merely 

replicates the work of Ren et al. The comparison of C* obtained from different methods has 

already been addressed by many other researchers (Chen et al., 2024; Stark et al., 2017).  

Our manuscript focuses on building a machine learning model to explore influencing factors 

of G/P distribution of OOMs in the atmosphere and its deviation from equilibrium partitioning. 

10. Do the authors believe they mostly observed OOMs close to equilibrium partitioning? Would 

this still be the case during summer, when the changes in precursors and oxidants are presumably 

faster? 

Response:  

In this study, the observed G/P ratios do not necessarily reflect a state close to equilibrium 

partitioning. We did not mention anywhere the observed G/P ratios are close to equilibrium 

partitioning. What we did is to compare (
𝐺

𝑃
)𝑒𝑞  and (

𝐺

𝑃
)𝑜𝑏𝑠  and to investigate the factors 

contributing to the discrepancy between them.  

11. On line 255 the authors state that they observed significant fluctuations in observed G/P diurnal 

variation. in the referenced Figure 2 the concentrations don’t look like they vary very much relative 

to the mean, and the diurnal patterns look mostly random. I do not understand what the authors 

mean by this statement. 

Response:  

We are sorry for the misunderstanding created by our wording. We rephrased the sentence in 

lines 313-319 as follows: 

“In contrast, we observed different patterns of (
𝐺

𝑃
)𝑜𝑏𝑠  diurnal variations for the six OOM 

species during the campaign, as shown in Figure 2c-2h. This indicates that the extent of 

deviation of actual gas/particle partitioning from equilibrium state fluctuates randomly over 

time, driven by other unknown factors. In this study, we will first examine the influencing 

factors of gas-particle distribution of OOMs in urban atmosphere during the winter campaign 

(Section 3.2), followed by an investigation into the factors contributing to the discrepancies 

between observed and equilibrium G/P ratios (Section 3.3).” 

12. Since the diurnal variation of temperature and concentration of organic aerosol are highlighted 

as the only factors influencing the diurnal variation of equilibrium G/P I would like to see time 

series and/or diurnal plots of these parameters. 

Response:  

We added a new Figure S2 in the supplementary materials to show time series of criteria 



pollutants and key meteorological parameters, including temperature and OC. 

13. The authors claim that the importance of pH is due to enhanced partitioning of acidic OOMs. 

This argument relies on the assumption that the partitioning ratio is close to equilibrium for a 

significant fraction of the observations, and the observed G/P is mostly determined by factors 

shifting the equilibrium partitioning, which has not been shown in the manuscript. Could there be 

other reasons such as a common source for gas phase OOMs and more acidic particulate matter 

e.g. sulfuric acid? 

Response: 

The partitioning always goes in a direction to reach a new equilibrium. But it does not 

necessarily mean the observed G/P ratios must be close to equilibrium partitioning G/P. We 

totally agree with you that the observed G/P is mostly determined by factors shifting (either 

facilitate or inhabit) the equilibrium partitioning. Under the influence of those factors, the 

partitioning ratio could be either close to or deviate from equilibrium. All we did here is that 

we found a decrease of the observed G/P ratio was associated with an increase in pH, on the 

basis of a large set of observation data and machine learning model. This makes sense because, 

obviously, the partitioning of acidic OOMs from gas to particles will be enhanced with elevated 

particle pH. 

14. Line 338 prohibited should probably be changed to inhibited, or another word. 

Response: 

We have revised the text and changed “prohibited” to “inhibited.” 

15. The authors hypothesize that elevated O3 leads to depletion of OOMs in the gas phase. Does O3 

not also contribute to OOM formation? Can particle phase OOMs not react with O3? 

Response:  

We revised our statement to make it more precise. In lines 469-472, we have amended the text 

as follows: 

“Since O3 is not expected to change (
𝐺

𝑃
)𝑒𝑞, the negative impact of O3 on (

𝐺

𝑃
)𝑜𝑏𝑠/(

𝐺

𝑃
)𝑒𝑞 ratio 

could be explained by the fact that high O3 concentrations are likely to deplete gas-phase 

OOMs at a faster rate than particle-phase OOMs, thereby reducing (
𝐺

𝑃
)𝑜𝑏𝑠.” 

16. The models identified RH, LWC, O3 and temperature as influential factors driving the deviation 

between observed and equilibrium G/P. Are these truly influential, or do they serve as proxies for 

the diurnal pattern present mostly in the equilibrium G/P. 

Response:  



By itself, the machine learning model cannot uncover the fundamental mechanisms through 

which the factors influence G/P ratio. Apparently, temperature is a truly influential factor that 

changed the  (
𝐺

𝑃
)𝑒𝑞 and subsequently the discrepancy between observed and equilibrium G/P. 

On the other hand, RH, LWC, O3 are likely to serve as proxies of underlying oligomer 

formation, hydrolysis reaction or O3 depletion reactions.  

17. I suggest adding the term ”Random forest” or ”Machine learning” to the title since the paper 

mostly focuses on using these methods to study the partitioning. There are also few definitive 

conclusions about the influencing factors and processes, with the main conclusion being the 

importance of particle phase composition and processes. 

Response:  

Thank you for the suggestion. We have revised the title to: 

“Investigating Influencing Factors of Gas-Particle Distribution of Oxygenated Organic 

Molecules in Urban Atmosphere and Its Deviation from Equilibrium Partitioning Using 

Random Forest Model”  

18. Results from the same measurement campaign have already been published by Wang et al. (2024, 

10.1021/acsestair.4c00076). This is completely fine, but it would be good to mention this clearly in 

the manuscript. 

Response:  

Thank you very much for your suggestion. We have clearly addressed this in the manuscript. 

In lines 118-121, we revised the text as follows: 

“According to our earlier study on the same dataset using a K-means clustering method (Wang 

et al., 2024), on average, 25.1% of particle-bound OOM species number and 26.8% of OOM 

mass detected by the FIGAERO-CIMS could be attributed to thermal decomposition fragments 

(see Supplementary Materials Text S2).” 

19. The authors use very many explanatory variables in their models. Many of these are correlated 

with, or even derived from, each other. Examples include the O/C ratio with oxidation state of 

carbon, and RH, sulfate and potassium concentrations with LWC and pH from ISORROPIA II. This 

leads to unreasonable conclusions, such as that O:C and oxidation state have an opposite effect on 

the G/P ratios. The authors should comment on problems with multicollinearity. 

Response:  

You raised an important issue.  

We have found this issue when we observed the opposite effects of O:C and oxidation state, 

and DBE and H/C. This is due to the fact that these features are dependent variables as a 



function of nC, nH, nN and nO. To isolate the effect of oxidation and unsaturation-related features, 

we utilized the trained random forest model to predict G/P ratios of modified C10 

monocarboxylic acid with varying number of hydroxyl group and DBE (Figure 4). Other 

features in the model were fixed at average daytime or nighttime values observed during the 

campaign. These discussions are shown in line 357-366 in Section 3.2.1. 

We have added a comment on multicollinearity issues in lines 194-201: 

“This feature selection scheme guarantees a balanced representation of pertinent factors, while 

preserving the simplicity and predictive efficacy of the models. Unlike neural networks and 

other machine learning algorithms, the random forest model used in this study is an ensemble 

model made up of multiple decision trees. During training, each tree splits using a randomly 

chosen subset of features. Because each tree uses different feature subsets, this randomness in 

feature selection reduces the model's reliance on any single feature, making it less likely to be 

severely impacted by multicollinearity. To further ensure model stability, we also conducted 

five-fold cross-validation to confirm the robustness of the model.” 

20. Also, the supporting measurements (such as OC and aerosol composition) are poorly described 

in the methods.   

Response:  

We have added the following at lines 81-85 of the manuscript:  

“We obtained valid data of 594 hours, during which meteorological parameters (e.g., relative 

humidity (RH) and temperature), particulate chemical components (e.g., organic carbon (OC) 

and sulfate ions (SO4
2-)), and gaseous components (e.g., sulfur dioxide (SO2) and ozone (O3)) 

were routinely monitored. Detailed information about those routine measurement is shown in 

the supplementary materials (Text S1).” 

In the supplementary materials, we have added: 

“Text S1 Routine measurement of gaseous and particulate components 

In this study, we measured the chemical composition of PM2.5, including water-soluble 

ions (sulfate (SO4
2−), nitrate (NO3

−), ammonium (NH4
+), chloride (Cl−), and potassium ion 

(K+)) over 594 hours using an Online Ion Chromatography Monitoring System (MARGA-1S, 

Metrohm AG, Switzerland) for the water-soluble ions. The system is designed to collect and 

analyze PM2.5 in ambient air in real-time. Air samples are first passed through a cutter and 

sampling tubes into the instrument, where aerosol particles are captured and mixed with water 

vapor in a high-temperature steam generator. This process causes the particles to grow by 

absorption, after which they condense and are directed to the sample collection unit. The 



collected samples are then separated and analyzed using ion chromatography for their water-

soluble ion content, including both cations and anions. 

The carbonaceous materials were analyzed using an OCEC Analyzer (RT-4, Sunset 

Laboratory Inc., USA), which employs a stepwise heating pyrolysis-oxidation method. The 

sample is first heated under helium (He) gas, causing the OC to volatilize and partially convert 

to pyrolyzed carbon (PC). The sample is then further heated in a helium/oxygen (He/O2) 

mixture, where EC is oxidized and decomposed into gaseous oxidation products. All 

decomposition products flow through a carrier gas into an oxidation furnace, where the carbon 

products are converted to CO2 and quantitatively detected using non-dispersive infrared (NDIR) 

methods. During this process, laser transmittance is used to monitor the OC/EC separation 

point, with OC volatilization and pyrolysis causing a decrease in transmittance intensity and 

EC oxidation leading to an increase. When the transmittance intensity returns to its initial level, 

the OC/EC separation point is defined, allowing for the precise determination of OC and EC 

content in the sample. 

PM2.5 concentrations were measured using an air particulate monitor (TH-2000PM, 

Wuhan Tianhong Technology Co., Ltd.), utilizing a dual-channel beta-ray method coupled 

with a dynamic compensation system. The air flow, set to 33.34 L/min, is first passed through 

a PM10-cutting device to separate the larger particles. The flow is then evenly split into two 

streams: one stream directly measures PM10, while the other is passed through a PM2.5-cutting 

device for the measurement of PM2.5. This approach reduces measurement errors and ensures 

accurate quantification of both PM10 and PM2.5 concentrations. 

Hourly concentrations of nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and 

ammonia (NH3) were detected using gas analyzers (42i/43i/49i/17i, Thermo Fisher Scientific, 

USA). SO2 was measured via pulsed fluorescence technology, in which SO2 molecules absorb 

ultraviolet light at a specific wavelength and re-emit fluorescent light. The intensity of the 

emitted fluorescence is directly proportional to the SO2 concentration. O3 was quantified using 

ultraviolet photometry, as ozone absorbs ultraviolet light at a specific wavelength (254 

nm). The O3 concentration is determined by measuring the intensity of the absorbed light. For 

NH3 measurement, the method involves its reaction with oxygen at high temperatures (750°C), 

converting NH3 into nitrogen monoxide (NO). The NO concentration is directly proportional 

to the NH3 concentration, which is then calculated accordingly. The concentration of NO2 is 

measured using chemiluminescence: the sample first passes through a molybdenum catalyst at 

325°C to convert NO2 into NO, which then reacts with O3 generated by a silent discharge 

ozone generator, producing chemiluminescence detected by a photomultiplier tube (PMT). By 

measuring in NO and NOX modes—recording the NO concentration without catalysis and the 

total NO (including converted NO from NO2) with catalysis—the NO2 concentration is 

calculated as the difference between the two measurements. 

Meteorological parameters, including relative humidity (RH), temperature (T), wind 

speed (WS), and wind direction (WD), were collected using an automatic weather station. 



Photolysis frequencies of HONO (JHONO) were measured with a PFS-100 photolysis 

spectrometer (Focused Photonics Inc., China). The spectrometer uses a quartz receiver head to 

collect solar radiation from various directions and transmits the light through optical quartz 

fibers to the spectrometer. The spectrometer then transmits the spectral data to an industrial 

computer, which calculates the photolysis flux. By integrating this flux with known absorption 

cross-sections and quantum yields, the photolysis rate constant is determined.” 

21. Add reference for Eq. (4) 

Response:  

We have added a reference for Eq. (4).: 

“According to modified Raoult's Law, the saturation ratio of an organic species in gas phase 

(i.e. 
𝐶𝑔

𝐶∗) equals the mass fraction of the species in organic aerosol with mass concentration COA 

(𝑖. 𝑒.
𝐶𝑝

𝐶𝑂𝐴
), under the assumptions of equilibrium absorptive partitioning of the species over an 

ideal organic solution and that the species has a molecular weight similar to that of the organic 

solution (Donahue et al., 2009; Epstein et al., 2010). The equilibrium G/P ratio (
𝐺

𝑃
)𝑒𝑞 can thus 

be estimated from saturated mass concentration C* and mass concentration of organic aerosol 

COA (COA = COC × 1.4) using Eq. (4) 

(
𝐺

𝑃
)𝑒𝑞 =

𝐶∗(𝑇)

𝐶𝑂𝐴
                    （4）” 

22. Data availability: I strongly recommend that the data of the study should be made openly 

available. 

Response:  

We uploaded our data to public data repository Zenodo and updated our Data Availability 

Statement: 

“The data used in this article are available in the public data repository Zenodo 

https://doi.org/10.5281/zenodo.15428774.” 
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