A point-to-point response and relevant changes made in the revised manuscript

Ms. Ref. No.: egusphere-2025-229
Title: Investigating Influencing Factors of Gas-Particle Distribution of Oxygenated
Organic Molecules in Urban Atmosphere and Its Deviation from Equilibrium

Partitioning Using Random Forest Model.

Anonymous Referee #3

General comments

Wang et al. have conducted a measurement campaign using a FIGAERO-CIMS using lodide to
detect OOMs in Wuhan during the winter 2022-2023. The deployed instrument was able to record
concentrations of both compounds in gas and particle phases. Using the data the authors developed
several random forest models, attempting to predict the gas to particle partitioning of detected
compounds. Models were also constructed to study the discrepancy between observed and modelled
partitioning ratios. The significance of the features in each model were further analyzed in an

attempt to elucidate physicochemical properties impacting the underlying processes.

The manuscript fits the scope of Atmospheric Chemistry and Physics, and presents valuable new
knowledge. However, there are a number of concerns when it comes to the analysis presented.

Therefore further clarifications are recommended before final publication.
Response:

We sincerely thank the reviewer for their valuable comments and suggestions, which will

significantly improve the quality of our manuscript.
Specific comments

1. I suggest the authors provide some further explanation of why the selected target variable is
chosen. This would help readers know what to expect from the analysis. What are the benefits of
attempting to predict the gas to particle partitioning rather than e.g. absolute particle phase

concentration?
Response:

In this study, the gas-to-particle ratio is selected as the target variable because the phase
distribution of OOMs is critical for understanding their volatility, atmospheric transformation
pathways, and environmental impacts. Describing the benefits of predicting gas-particle
partitioning is the core focus of the Introduction section.

It presents greater challenges to predict absolute particle-phase concentrations of OOMs with
machine learning models due to their strong dependence on diverse emission sources from



neighboring regions. We lack reliable features for quantifying the variable strengths of
unknown sources and atmospheric aging processes during transport, which are key factors
influencing the OOM concentrations.

In lines 223-230, we added:

“Third, single-species models were tailored to predict the gas/particle partitioning
behaviors of these six individual OOMs under varying meteorological and gas-particle

composition conditions. We also built random forest models to investigate how (;)o ps of the

six OOMs deviate from (%)eq under varying meteorological conditions and gas/particle

compositions. In this study, we did not build random forest model to predict absolute gas or
particle phase concentrations of OOMs, due to their strong dependences on diverse emission
sources from neighboring regions. We lack reliable features for quantifying the variable
strengths of unknown sources and atmospheric aging processes during transport, which are

key factors influencing the OOM concentrations.”

2. Given the data first approach chosen, the quality of the dataset is important. Given that the
datasets represents a time period of one month in winter, how representative is it of varying
conditions? Are there several different meteorological conditions or weather patterns included in
the analysed dataset, and what is their significance for the analysis? I encourage the authors to give
a brief overview of the importance of varying conditions, and perhaps provide some time series of
common meteorological parameters such as temperature and windspeed—+direction in the

supplementary as an overview for the reader.

Response:

We appreciate the reviewer’s suggestion. We added an overview of the observation period in
lines 263-270:

“Despite the overall improvement in air quality in recent years, PMas episodes still occur
frequently in December and January in most Chinese cities, contributing to the majority of
PM, s exceedance days of a year. During the winter observation period of this study, PMa s
concentrations ranged from 20 to 150 pg m>, spanning both clean and severe pollution
conditions. Organic aerosol (Cos = Coc x 1.4) comprised 10%-76% of PM, 5, emerging as a
critical bottleneck of eliminating PMa s episodes. Time series of criteria pollutants and key
meteorological parameters are presented in Figure S2. The data collected during the
observation period herein is considered representative of winter PMa s pollution characteristics

in Wuhan.”

We added Figure S2 in the supplementary materials:
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Figure S2. Time series of partial features. (a) Wind direction and wind speed (reference vector:
west 2 m s!). (b) PM2s and organic carbon (OC) concentrations. (¢) Ozone (O3) and sulfur
dioxide (SO2) concentrations. (d) Ambient temperature and relative humidity (RH).

3. Given the (it seems) limited scope of the dataset, how general are the conclusions of this work?
Response:

As we stated above, the data collected in this study is considered representative of winter
PM, 5 pollution characteristics in a megacity. Without more data from other environments
like forest, rural or remote, we are unable to tell how general the conclusions of this work
are. Like what we stated in the title of this manuscript, we focused only in the case of “urban

atmosphere”.

In the end of Conclusion Section, we stated the limitation of our dataset and recommended

future direction:

“The model was based solely on the data collected during the winter season and for specific

groups of OOM species present in urban atmosphere. To enhance the robustness of the gas-



to-particle partitioning model, future data collection under a broader range of atmospheric

conditions is recommended.”

4. What is in general the certainty of the partitioning ratio measured? For example it is stated that
26.8% of particle mass is detected as fragments. Does this not bias the G/P ratio towards the gas
phase for compounds that fragment? What about other losses in the FIGAERO system, or fragments

that are not detected by the ionization scheme used?
Response:

In line 121, we clarified “These fragments were excluded from the gas/particle partitioning

analysis”. So the fragment did not bias the G/P ratio of OOMs.

By comparing with the OC measured with the thermal-optical method, the OOMs measured
with the FIGAERO-CIMS accounted for only 26 + 8% of the total OA (OC x 1.4). So this
study focused only on detectable OOMs by iodide ionization scheme, not all aerosol organic

compounds.
In line 99-102, we add:

“According to our earlier investigation (Wang et al. 2024), the OOM measured with the
FIGAERO-CIMS stands for only those polar and moderate-volatility organic species being
desorbed below 200°C and accounted for only 26 + 8% of the total OA (OCx 1.4) measured
with the thermal-optical method using the IMPROVE protocol.”

5. Also, the authors select the data based on peaks being relatively dominant on their masses, and
with substantial concentration in the particle phase (lines 104-105). This excludes compounds with
very small concentrations in either particle or gas phase. This, in turn, leads to a narrow range of
G/P values, as compounds predominantly in either phase are filtered out. This is observed (Fig. 1),

and should be commented on more.
Response:
Yes, this was designed to obtain reliable concentrations and thus G/P ratios.
We have added more discussion in lines 114-117:

“In order to obtain reliable concentrations and thus G/P ratios, only those OOMs with a unit
mass peak area ratio of > 20 % and a sample-to-blank ratio of > 2 were included for further
analysis. This filtered out the OOMs with small concentrations in the atmosphere, as well as

those extremely high or low volatility OOMs that are predominantly in only one phase.”

In lines 501-503:



“The OOMs with extremely high or low volatility might be underrepresented in this study,
because either gas- or particle-phase concentration of them often fall below the limit of

quantification of FIGAERO-CIMS.”

6. On the comparison with previous C* parameterisations: Mohr et al parameterisation is still based
on SIMPOL (through Trostl et al), although with increased contribution from OOH groups. This is
not clear in the text. Kurten et al (2016, 10.1021/acs.jpca.6b02196) and subsequent publications
show that for HOM-type compounds, SIMPOL predicts a too steep dependence of C* on e.g. oxygen
content and molar mass. Also, Perdkyld et al do not use particle-phase concentrations, and there is

no assumption of equilibrium. In contrast, Priestley et al assume equilibrium.
Response:
We appreciate the reviewer’s comment, and we have revised the text as follows:
In lines 152-156, we made the following revision:

“Based on the saturation concentrations of HOM detected by Trostl et al. (2016), Mohr et al.
(2019) applied an updated version of a SIMPOL-type parameterization described by Donahue
et al. (2011) to estimate C* from the numbers of carbon, oxygen, and nitrogen atoms of an

organic species (nc, no, and ny), but emphasizing the increased importance of OOH groups.”
In lines 160-167, we made the following revision:

“Perikyld et al. (2020) parameterized the dependence of C* on nc, no, ny and number of
hydrogen atoms (7zz) by comparing steady-state gas-phase concentrations of a-pinene
ozonolysis products with and without seed addition in a chamber. This parameterization
predicts much smaller sensitivities of HOMs volatility to oxygen-containing functional groups
than SIMPOL. The parameterization of Priestley et al. (2024) was based on measured gas and
particle-phase concentrations, at an assumed equilibrium state, in residential wood-burning
emissions. The C* of the products were obtained via Eq. (4) and a parameterization was obtained

between C and n¢, ny, ny and ny.”

In lines 283-287, we add:
“Among all the methods, Mohr et al. (2019) predicts the steepest dependence of (g)eq on

MW. Their (%) eq are higher than (g) ops for the OOMs with nc = 2-5 and lower than (g) obs

for the OOMs with nc > 8 (Figure 1b). It has been recognized by Kurtén et al. (2016) and
subsequent publications that SIMPOL-derived parameterizations predict a too steep

dependence of C*on MW and oxygen content.”



7. The authors compare the observed G/P with equilibrium G/P from other studies. When this
comparison is presented to the reader, the reason behind the comparison is not clear, given that
these are very different quantities. As the authors themselves state, OOMs rarely achieve
equilibrium partitioning in the free atmosphere. I suggest the authors clearly motivate why the

comparison is being made.
Response:
Thank you for your suggestion.
In line 65-67, the end of Introduction Section, we clarified:

“By building data-driven machine learning models with the G/P ratio as the target variable, we
explored the influencing factors of gas-particle distribution of OOMs and examined the factors

that contribute to the deviations from equilibrium gas/particle partitioning.”

In line 225-226, we added:

“We also built random forest models to investigate how (g)obs of the six OOMs deviate from

(;) eq under varying meteorological conditions and gas/particle compositions.”

8. In Figure I the errorbars denote the range of observations, but systematic errors (such as those
mentioned in comment 4) are not mentioned. Although these may not that relevant for the model,

they may impact the absolute comparison presented here.
Response:

Please see our response to Comment 4. The fragments were excluded from the gas/particle

partitioning analysis. So the fragment issue did not bias the observed G/P ratio of OOMs.

The observed G/P ratio were calculated from equation 3 in the manuscript. The uncertainty
comes only from the integrated signals of gas- and particle-phase OOMs during the

measurement. Therefore, we believe the G/P ratios were not systematically biased.

(ﬁ) e = Cg _ signalgXtyxQp
p/ obs

a - signalyXtgXxQg

9. My understanding is that the Ren et al. comparison is based on the parametrization derived from
thermal desorption temperatures. It seems that the authors cloud also have derived some volatility
estimate from their data since it was collected using the FIGAERO. Why is this not presented for

further comparison?

Response:



Yes, we can also derive C” from 7T, obtained using our FIGAERO data; however, this merely
replicates the work of Ren et al. The comparison of C* obtained from different methods has

already been addressed by many other researchers (Chen et al., 2024; Stark et al., 2017).

Our manuscript focuses on building a machine learning model to explore influencing factors

of G/P distribution of OOMs in the atmosphere and its deviation from equilibrium partitioning.

10. Do the authors believe they mostly observed OOMs close to equilibrium partitioning? Would
this still be the case during summer, when the changes in precursors and oxidants are presumably

faster?
Response:

In this study, the observed G/P ratios do not necessarily reflect a state close to equilibrium

partitioning. We did not mention anywhere the observed G/P ratios are close to equilibrium
o Sy G G . .

partitioning. What we did is to compare (F)eq and (;)Obs and to investigate the factors

contributing to the discrepancy between them.

11. On line 255 the authors state that they observed significant fluctuations in observed G/P diurnal
variation. in the referenced Figure 2 the concentrations don t look like they vary very much relative
to the mean, and the diurnal patterns look mostly random. I do not understand what the authors

mean by this statement.
Response:

We are sorry for the misunderstanding created by our wording. We rephrased the sentence in

lines 313-319 as follows:

“In contrast, we observed different patterns of (;)Obs diurnal variations for the six OOM

species during the campaign, as shown in Figure 2c-2h. This indicates that the extent of
deviation of actual gas/particle partitioning from equilibrium state fluctuates randomly over
time, driven by other unknown factors. In this study, we will first examine the influencing
factors of gas-particle distribution of OOMs in urban atmosphere during the winter campaign
(Section 3.2), followed by an investigation into the factors contributing to the discrepancies

between observed and equilibrium G/P ratios (Section 3.3).”

12. Since the diurnal variation of temperature and concentration of organic aerosol are highlighted
as the only factors influencing the diurnal variation of equilibrium G/P I would like to see time

series and/or diurnal plots of these parameters.

Response:

We added a new Figure S2 in the supplementary materials to show time series of criteria



pollutants and key meteorological parameters, including temperature and OC.

13. The authors claim that the importance of pH is due to enhanced partitioning of acidic OOMs.
This argument relies on the assumption that the partitioning ratio is close to equilibrium for a
significant fraction of the observations, and the observed G/P is mostly determined by factors
shifting the equilibrium partitioning, which has not been shown in the manuscript. Could there be
other reasons such as a common source for gas phase OOMs and more acidic particulate matter

e.g. sulfuric acid?
Response:

The partitioning always goes in a direction to reach a new equilibrium. But it does not
necessarily mean the observed G/P ratios must be close to equilibrium partitioning G/P. We
totally agree with you that the observed G/P is mostly determined by factors shifting (either
facilitate or inhabit) the equilibrium partitioning. Under the influence of those factors, the
partitioning ratio could be either close to or deviate from equilibrium. All we did here is that
we found a decrease of the observed G/P ratio was associated with an increase in pH, on the
basis of a large set of observation data and machine learning model. This makes sense because,
obviously, the partitioning of acidic OOMs from gas to particles will be enhanced with elevated
particle pH.

14. Line 338 prohibited should probably be changed to inhibited, or another word.
Response:
We have revised the text and changed “prohibited” to “inhibited.”

15. The authors hypothesize that elevated Os leads to depletion of OOMs in the gas phase. Does O3

not also contribute to OOM formation? Can particle phase OOMs not react with O3?
Response:
We revised our statement to make it more precise. In lines 469-472, we have amended the text
as follows:
“Since O3 is not expected to change (%)eq, the negative impact of O3 on (%)obs / (%) eq Tatio
could be explained by the fact that high O3 concentrations are likely to deplete gas-phase

OOMs at a faster rate than particle-phase OOMs, thereby reducing (%)Obs.”

16. The models identified RH, LWC, O3 and temperature as influential factors driving the deviation
between observed and equilibrium G/P. Are these truly influential, or do they serve as proxies for

the diurnal pattern present mostly in the equilibrium G/P.

Response:



By itself, the machine learning model cannot uncover the fundamental mechanisms through
which the factors influence G/P ratio. Apparently, temperature is a truly influential factor that

changed the (%) eq and subsequently the discrepancy between observed and equilibrium G/P.

On the other hand, RH, LWC, Os are likely to serve as proxies of underlying oligomer
formation, hydrolysis reaction or O3 depletion reactions.

17. I suggest adding the term "Random forest” or "Machine learning” to the title since the paper
mostly focuses on using these methods to study the partitioning. There are also few definitive
conclusions about the influencing factors and processes, with the main conclusion being the

importance of particle phase composition and processes.
Response:
Thank you for the suggestion. We have revised the title to:

“Investigating Influencing Factors of Gas-Particle Distribution of Oxygenated Organic
Molecules in Urban Atmosphere and Its Deviation from Equilibrium Partitioning Using

Random Forest Model”

18. Results from the same measurement campaign have already been published by Wang et al. (2024,
10.1021/acsestair.4c00076). This is completely fine, but it would be good to mention this clearly in

the manuscript.
Response:

Thank you very much for your suggestion. We have clearly addressed this in the manuscript.

In lines 118-121, we revised the text as follows:

“According to our earlier study on the same dataset using a K-means clustering method (Wang
et al., 2024), on average, 25.1% of particle-bound OOM species number and 26.8% of OOM
mass detected by the FIGAERO-CIMS could be attributed to thermal decomposition fragments

(see Supplementary Materials Text S2).”

19. The authors use very many explanatory variables in their models. Many of these are correlated
with, or even derived from, each other. Examples include the O/C ratio with oxidation state of
carbon, and RH, sulfate and potassium concentrations with LWC and pH from ISORROPIA II. This
leads to unreasonable conclusions, such as that O:C and oxidation state have an opposite effect on

the G/P ratios. The authors should comment on problems with multicollinearity.
Response:
You raised an important issue.

We have found this issue when we observed the opposite effects of O:C and oxidation state,

and DBE and H/C. This is due to the fact that these features are dependent variables as a



function of n¢, ng, ny and no. To isolate the effect of oxidation and unsaturation-related features,
we utilized the trained random forest model to predict G/P ratios of modified Cio
monocarboxylic acid with varying number of hydroxyl group and DBE (Figure 4). Other
features in the model were fixed at average daytime or nighttime values observed during the

campaign. These discussions are shown in line 357-366 in Section 3.2.1.
We have added a comment on multicollinearity issues in lines 194-201:

“This feature selection scheme guarantees a balanced representation of pertinent factors, while
preserving the simplicity and predictive efficacy of the models. Unlike neural networks and
other machine learning algorithms, the random forest model used in this study is an ensemble
model made up of multiple decision trees. During training, each tree splits using a randomly
chosen subset of features. Because each tree uses different feature subsets, this randomness in
feature selection reduces the model's reliance on any single feature, making it less likely to be
severely impacted by multicollinearity. To further ensure model stability, we also conducted

five-fold cross-validation to confirm the robustness of the model.”

20. Also, the supporting measurements (such as OC and aerosol composition) are poorly described

in the methods.
Response:
We have added the following at lines 81-85 of the manuscript:

“We obtained valid data of 594 hours, during which meteorological parameters (e.g., relative
humidity (RH) and temperature), particulate chemical components (e.g., organic carbon (OC)
and sulfate ions (SO4%)), and gaseous components (e.g., sulfur dioxide (SO2) and ozone (O3))
were routinely monitored. Detailed information about those routine measurement is shown in

the supplementary materials (Text S1).”
In the supplementary materials, we have added:
“Text S1 Routine measurement of gaseous and particulate components

In this study, we measured the chemical composition of PM» s including water-soluble
ions (sulfate (SO4%), nitrate (NO5~), ammonium (NH4"), chloride (CI"), and potassium ion
(K*)) over 594 hours using an Online Ton Chromatography Monitoring System (MARGA-1S,
Metrohm AG, Switzerland) for the water-soluble ions. The system is designed to collect and
analyze PM, s in ambient air in real-time. Air samples are first passed through a cutter and
sampling tubes into the instrument, where aerosol particles are captured and mixed with water
vapor in a high-temperature steam generator. This process causes the particles to grow by

absorption, after which they condense and are directed to the sample collection unit. The



collected samples are then separated and analyzed using ion chromatography for their water-

soluble ion content, including both cations and anions.

The carbonaceous materials were analyzed using an OCEC Analyzer (RT-4, Sunset
Laboratory Inc., USA), which employs a stepwise heating pyrolysis-oxidation method. The
sample is first heated under helium (He) gas, causing the OC to volatilize and partially convert
to pyrolyzed carbon (PC). The sample is then further heated in a helium/oxygen (He/O,)
mixture, where EC is oxidized and decomposed into gaseous oxidation products. All
decomposition products flow through a carrier gas into an oxidation furnace, where the carbon
products are converted to CO» and quantitatively detected using non-dispersive infrared (NDIR)
methods. During this process, laser transmittance is used to monitor the OC/EC separation
point, with OC volatilization and pyrolysis causing a decrease in transmittance intensity and
EC oxidation leading to an increase. When the transmittance intensity returns to its initial level,
the OC/EC separation point is defined, allowing for the precise determination of OC and EC

content in the sample.

PM, 5 concentrations were measured using an air particulate monitor (TH-2000PM,
Wuhan Tianhong Technology Co., Ltd.), utilizing a dual-channel beta-ray method coupled
with a dynamic compensation system. The air flow, set to 33.34 L/min, is first passed through
a PMjo-cutting device to separate the larger particles. The flow is then evenly split into two
streams: one stream directly measures PM o, while the other is passed through a PM; s-cutting
device for the measurement of PM» 5. This approach reduces measurement errors and ensures

accurate quantification of both PM and PM, 5 concentrations.

Hourly concentrations of nitrogen dioxide (NO,), sulfur dioxide (SO,), ozone (0O3), and
ammonia (NH3) were detected using gas analyzers (421/431/49i/171, Thermo Fisher Scientific,
USA). SO, was measured via pulsed fluorescence technology, in which SO, molecules absorb
ultraviolet light at a specific wavelength and re-emit fluorescent light. The intensity of the
emitted fluorescence is directly proportional to the SO, concentration. O3 was quantified using
ultraviolet photometry, as ozone absorbs ultraviolet light at a specific wavelength (254
nm). The O3 concentration is determined by measuring the intensity of the absorbed light. For
NH3 measurement, the method involves its reaction with oxygen at high temperatures (750°C),
converting NH3 into nitrogen monoxide (NO). The NO concentration is directly proportional
to the NH3 concentration, which is then calculated accordingly. The concentration of NO; is
measured using chemiluminescence: the sample first passes through a molybdenum catalyst at
325°C to convert NO2 into NO, which then reacts with O3z generated by a silent discharge
ozone generator, producing chemiluminescence detected by a photomultiplier tube (PMT). By
measuring in NO and NOx modes—recording the NO concentration without catalysis and the
total NO (including converted NO from NO;) with catalysis—the NO concentration is
calculated as the difference between the two measurements.

Meteorological parameters, including relative humidity (RH), temperature (T), wind
speed (WS), and wind direction (WD), were collected using an automatic weather station.



Photolysis frequencies of HONO (Juono) were measured with a PFS-100 photolysis
spectrometer (Focused Photonics Inc., China). The spectrometer uses a quartz receiver head to
collect solar radiation from various directions and transmits the light through optical quartz
fibers to the spectrometer. The spectrometer then transmits the spectral data to an industrial
computer, which calculates the photolysis flux. By integrating this flux with known absorption
cross-sections and quantum yields, the photolysis rate constant is determined.”

21. Add reference for Eq. (4)
Response:
We have added a reference for Eq. (4).:

“According to modified Raoult's Law, the saturation ratio of an organic species in gas phase

(i.e. C—‘Z) equals the mass fraction of the species in organic aerosol with mass concentration Coa

(i.e. CC—"), under the assumptions of equilibrium absorptive partitioning of the species over an
OA
ideal organic solution and that the species has a molecular weight similar to that of the organic
solution (Donahue et al., 2009; Epstein et al., 2010). The equilibrium G/P ratio (ﬁ) eq canthus
P

be estimated from saturated mass concentration C” and mass concentration of organic aerosol
Co4(Coa= Coc x 1.4) using Eq. (4)

c'm

(4)

G
(;)eq =
22. Data availability: I strongly recommend that the data of the study should be made openly
available.
Response:

We uploaded our data to public data repository Zenodo and updated our Data Availability

Statement:

“The data used in this article are available in the public data repository Zenodo
https://doi.org/10.5281/zenodo.15428774.”
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