
A point-to-point response and relevant changes made in the revised manuscript 

Ms. Ref. No.: egusphere-2025-229 

Title: Investigating Influencing Factors of Gas-Particle Distribution of Oxygenated 

Organic Molecules in Urban Atmosphere and Its Deviation from Equilibrium 

Partitioning Using Random Forest Model. 

 

Anonymous Referee #1 

Wang et al. measured both gaseous and particle-phase OOMs using FIGAERO-CIMS during a 

winter campaign in Wuhan. They derived gas-to-particle ratios (G/P) using measured FIGAERO-

CIMS signals and predicted equilibrium G/P based on predicated OOM volatility. They further 

applied machine learning methods to revealed key factors that are associated with G/P. The 

manuscript aligns with the scope of Atmospheric Chemistry and Physics. However, clarification of 

the principal findings is recommended prior to publication. Specific comments are given below: 

Response:  

We sincerely thank the reviewer for their valuable comments and suggestions, which will 

significantly improve the quality of our manuscript.  

1. The machine learning analysis provides intriguing insights into G/P influencing factors. However, 

given potential limitations in the representativeness of the dataset and the ML methodology, the 

mechanistic interpretation of identified factors may not be entirely clear. I recommend expanded 

discussion in Section 3.2.2 to include detailed analysis of at least one parameter (e.g., temperature). 

Response:  

By itself, the machine learning methodology cannot uncover the fundamental mechanisms 

through which the factors influence G/P ratio. In Section 3.2.2, we (1) examined the positive 

or negative effects and the sensitive ranges of key features like RH, LWC, OC, K+, SO4
2- and 

pH identified by the ML model and (2) explained why ambient temperature did not rank as 

important feature for most of the OOM species. Prior publications were provided to support 

our interpretation. 

We expanded our discussion of the impact of temperature, RH and LWC. In lines 398-402, 

 “One explanation is that the low RH and LWC in particles may facilitate the reversible 

formation of oligomers (Shen et al. (2018) and suppress their hydrolysis (Liu et al., 2012), 

thereby increasing the concentration of these OOMs in particle phase. It is also possible that 

the thermal desorption and subsequent detection of particle-bound OOMs were inhibited in 

aerosol particles with more moisture.” 

In lines 428-440, 

“In general, temperature is supposed to be an important influential factor of G/P ratio, because 

saturation vapor pressure of OOMs increases with temperature. Temperature ranged from -



1.6 °C to 14.9 °C during the winter campaign. Although temperature increase tends to elevate 

the G/P ratios as expected (Figure 6a), the models show that temperature did not rank as 

important feature for 5 out of the 6 OOM species. We evaluated the effect of temperature on 

G/P ratios using two-way partial dependence plots (Figure S6). G/P ratio is sensitive to 

temperature change only for two dicarboxylic acids (C5H8O4 and C6H10O4, Figure S6a-S6b) 

and for C12H21NO9 in a narrow temperature range of 10-13 oC (Figure S6f and Figure 7h). The 

G/P ratios of C6H5NO3, C7H7NO3 and C10H16O4 are not sensitive to temperature across most 

of the RH range. This behavior may be attributed to the aerosol coating of inorganic salts and 

other aerosol components that hinder the rapid equilibrium partitioning of OOMs when 

temperature changes. In addition, the influence of temperature may be obscured due to the 

dominant effect of particle composition features (e.g., LWC, pH, OC, SO4
2-, and K+) as 

discussed above.”  

2. Please explain Eq. 4 with an emphasis on its underlying assumptions that are possibly violated 

in the real atmosphere. This clarification would aid the discussion on the influencing factors of the 

ratio of (G/P)obs to (G/P)eq. 

Response: 

Equation 4 is primarily based on Raoult's Law. In line 143-150, we explain the derivation of 

Eq 4 and underlying assumptions.  

“According to modified Raoult's Law, the saturation ratio of an organic species in gas phase 

(i.e. 
𝐶𝑔

𝐶∗
) equals the mass fraction of the species in organic aerosol with mass concentration COA 

(𝑖. 𝑒.
𝐶𝑝

𝐶𝑂𝐴
), under the assumptions of equilibrium absorptive partitioning of the species over an 

ideal organic solution and that the species has a molecular weight similar to that of the organic 

solution (Donahue et al., 2009; Epstein et al., 2010). The equilibrium G/P ratio (
𝐺

𝑃
)𝑒𝑞 can thus 

be estimated from saturated mass concentration C* and mass concentration of organic aerosol 

COA (COA = COC × 1.4) using Eq. (4) 

   (
𝐺

𝑃
)𝑒𝑞 =

𝐶∗(𝑇)

𝐶𝑂𝐴
                    （4）” 

3. Lines 179-181, Page 7. Please specify the data partitioning strategy for training and test sets and 

the measures to prevent model overfitting. 

Response:  

Thank you for the reviewer’s suggestion. Regarding the data partitioning strategy for the 

training and test sets, we performed a random split. In lines 207-208, we revised the text to: 

 “The data used for modeling were randomly divided into training data (85% of the total) for 

model training and test data (15% of the total) for evaluating model generalization.” 

Unlike gradient boosting regression and neural networks, the random forest algorithm trains 

multiple decision trees using bootstrapped subsets of the training data and random subsets of 

features, which inherently provides better resistance to overfitting (Amaratunga et al., 2008). 



To further prevent model overfitting and enhance its generalization ability, we implemented 

the following 3 measures: 

 1) Cross-validation: We employed 5-fold cross-validation on the training set to assess the 

model's generalization ability on different subsets of data. We revised the text in lines 242-243 

to:  

“After selecting the optimal hyperparameters, we further evaluated the final model using 5-

fold cross-validation to assess the model’s generalization ability and ensure it was not 

overfitted.” 

2) Restricting parameter ranges: In the Grid Search method, we restricted the parameter ranges 

for n_estimators, max_depth, max_features, and min_samples_split to prevent overfitting. In 

lines 239-241, we added the following sentence: 

“The specific hyperparameter settings used in the Grid Search are provided in the 

supplementary materials, in Table S1.” 

In the supplementary materials, we have added Table S1: 

Table S1. Hyperparameters for grid search in random forest model optimization 

Hyperparameter Values 

n_estimators 50, 100, 150, 200 

max_depth 10, 20, 30, None 

min_samples_split 2, 5, 10 

min_samples_leaf 1, 2, 4 

max_features sqrt, log2 

3) Evaluation of Model Generalization Using the Test Set: The test set, which was not involved 

in the training process, provides a reliable assessment of the model's generalization ability, 

helping to prevent overfitting. The R2 evaluations presented in Table S4 and Table S5 of the 

supplementary materials are based on the test set results, demonstrating the model’s 

satisfactory generalization performance. 

In lines 330-332, we revised the sentence to: 

“The 5-fold cross-validation demonstrates that a predictive multi-species model with 

satisfactory generalization performance was developed, achieving R2=0.88 ± 0.02 and RMSE 

= 1.76 ± 0.13 on the test set (Figure S4).” 

In lines 374-376, we revised the sentence to: 

“The evaluation results and optimal parameters of the six single-species models on the test set 

are presented in Table S4. All models show acceptable generalization ability (R2 = 0.51-0.88).” 

In lines 458-459, we revised the sentence to: 

“All the models show acceptable generalization performance (R2 = 0.52-0.83) (Table S5) on 

the test set.” 

4. Fig. 1 and its relevant discussion. The method in Ren et al. (2022) provided the equilibrium 



pressure (Ceq) rather than the saturation pressure (C*), as the formula was fit to atmospheric 

aerosols (a mixture of many OOMs). Using Ceq instead of C* in Eq. 4 may introduce systematic 

biases. Could this be the reason for the observed discrepancy between (G/P)obs and (G/P)eq in Figs 

1a and 1d? 

Response:  

In Ren et al. (2022), the authors first obtained a calibration curve for C* and Tmax using a series 

of polyethylene glycol standards with known saturation vapor pressures. Then they measured 

Tmax values of a number of OOMs in atmospheric aerosols and converted the Tmax values into 

corresponding C* of the OOMs. Therefore, Ren et al. indeed provided the saturation 

concentration (C*) values of OOMs with known formulas, although the OOMs were obtained 

from ambient aerosols in their experiment.   

5. Previous studies (e.g., Voliotis et al., 2021; Chen et al., 2024) have reported a narrow volatility 

range of OOMs retrieved using the partitioning method. It is not surprising to see a huge difference 

between the volatility obtained using different methods. Would it be possible to expand discussion 

on this finding? 

Response:  

Thank you for providing the relevant literature. We cited them and expanded the discussion in 

lines 295-306 as follows: 

“Among all the predictions, the prediction from Priestley et al. (2024) is most close to our 

observation. This is because their C* parameterization is based on the measured gas and 

particle-phase concentrations of OOMs in fresh or aged residential wood-burning emissions. 

Their predicted G/P ratio is thus inherently consistent with the observed G/P ratios in our study. 

This also highlights the risks of estimating volatility (C*) using the partitioning method, which 

is based on measuring equilibrium gas- and particle-phase concentrations of OOMs. Two key 

issues arise: (1) OOMs may not achieve the assumed equilibrium state in real atmospheric or 

chamber conditions, introducing substantial uncertainty into calculations of (
𝐺

𝑃
)𝑒𝑞; (2) The 

method fails for the compounds with extremely high or low volatility, as their gas- or particle-

phase concentrations often fall below the detection limit of mass spectrometers. These 

limitations explain why the partitioning method typically reports a narrow volatility range 

(Voliotis et al., 2021; Chen et al., 2024).” 

6. As noted by the authors, atmospheric OOMs may not reach equilibrium between the gas and 

particle phases (e.g., Li et al., 2024). Could machine learning features capture this non-equilibrium 

effects? 

Response:  

Yes, machine learning features could capture the non-equilibrium effects. This was discussed 

in Section 3.3 “Identifying key factors driving the deviations of gas/particle partitioning from 

equilibrium state”. The ML model identified RH, LWC, O3 and temperature as four features 

that lead to non-equilibrium partitioning.  



In lines 44-45, we add the citation Li et al., 2024: 

“As a result, OOMs rarely achieve equilibrium partitioning between the gas and particle phases 

(Roldin et al., 2014; Li et al., 2024).” 
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