Subject: response to referee report

We thank both referees for their helpful comments. We have implemented most of the recommended edits. To address concerns about the manuscript's length and readability, we have reduced the scope of the paper to a first assessment of Tanager-1 performance and moved some detailed supporting text and figures to a Supplemental Information appendix. The sections on observing system completeness and predicted spatio-temporal coverage of the Tanager constellation were removed and will be covered in greater depth in a subsequent manuscript.

Additional specific responses are summarized below.

Best regards,

Riley Duren on behalf of the co-authors

Referee 1

(1) Observation strategy, given Carbon Mapper completeness goals, target lists and instrument performance.

In response to the referee recommendations, we have reduced section 2.1.1 to an introduction of the observing system completeness metric and the C_D parameter. We feel this is sufficient to provide insight into our measurement strategy and design drivers without offering a more in-depth treatment that merits a dedicated manuscript. Similarly, we have removed section 4.3 entirely.

(2) Questions and concerns on the aspects related first on-orbit performance results

I have several questions/concerns about this effort:

1. How were chosen the scenes used to conduct the analysis? The authors report that 5200 images have already been observed by Tanager (Figure 13 caption), but only "over 300" (line 1071) images were included in this analysis. Not including every image is fine, but the selection process would need to be detailed. Can you also provide a (supplementary) map showing where the scenes come from? Besides, can you please provide the exact numbers of data points included for both imaging modes?

We have clarified the criteria used to select points in figures 20 and 21(now figure 14) and added a map (figure 13) showing the geographic distribution of the scenes used in this analysis. We also clarified the number of data points per imaging mode as requested.

2. I also wonder to what extent images can be only boiled down to a reflectance value and an SZA: how heterogenous are the scenes included in this analysis? For example, I would not expect noise levels to be identical between an homogenous desert image and a heterogeneous urban area in a desert, with dark vegetation spots and bright warehouse roof tops.

We have increased the sample size significantly to improve the statistical robustness of this analysis. We also added the following language: Some scenes exhibit highly variable albedo due to strong surface heterogeneity (e.g., urban landcovers), however scene-averaging over a large population allows a preliminary estimate of how noise generally relates to environmental conditions in Tanager observations.

3. I think the discussion of the Maximum Sensitivity mode could benefit from more data points, especially also covering the lower albedo surfaces (< 0.1) where I would expect it could yield the best improvements compared to Standard. I realize this is somewhat of a "first-data" paper, but I suggest authors to include more points in this Maximum Sensitivity mode in the revised manuscript if more have been observed.

We have maximized the number of points available in this first data paper from 300 to over 4200 scenes, 278 of which are in Maximum Sensitivity mode. As shown in the new figure 14, this significantly expanded the number of low albedo points (< 0.1).

• The caption of Figure 24 mentions that "most observations shown here were using the standard sensitivity mode". Can the authors be explicit about the exact numbers of each sensitivity mode observations included in the controlled release experiment? Can you also color the points of Figure 24 by sensitivity modes? I especially wonder whether maximum sensitivity translates into lower emission rate uncertainties. This may not always be the case because wind speed plays a major role in emission rate uncertainties but still, these additional details would help readers reflect on these questions.

We have revised figure 24 (now figure 17) as suggested and clarified the number of observations in each sensitivity mode. We added a note confirming that maximum sensitivity mode translates to lower emission rate uncertainties due to the improved measurement precision, which indeed is evident in the revised figure.

• I suggest authors to cut the technical gas release details from the main text, and either refer to existing references in the literature, or move the details to supplements to lighten the read of this section.

As suggested, we have moved details on the controlled release test to the SI section.

Finally, I am quite curious about a performance point that has not been mentioned
in this section: could the authors consider giving an overview of the manual plume
verification statistics and, if they can, how they may possibly depend on e.g.
expected target emission intensity, surface heterogeneity surrounding the target,
meteorological conditions (wind speed, cloudiness), imaging sensitivity mode, etc.?
I think giving a sense of how hard manual verification/detection can be in specific
difficult conditions could be a very valuable addition to the scientific literature.

While we agree that this would make a valuable addition to the scientific literature, we feel that a proper treatment of those topics is beyond the scope of this paper and would be in conflict with other requests to shorten the manuscript. We are also aware of other plans (e.g., by NIST et al with input from many methane satellite teams) in progress to publish consensus standards on this topic.

(3) Questions and concerns on the demonstration of Tanager capabilities based on first observations

Regarding data description, I find that Figure 13 top is not very informative beyond showing the location of all Tanager observations. Could authors at least color observations according to their goal (targeting CO2/CH4 emitting regions; non-trace gas hyperspectral applications)? This would help to better compare top and bottom panels of Figure 13, and possibly help identify where CO2/CH4 emissions were targeted without detecting any plume. Regarding non-detection, I wonder if it is possible to at least report the number of observed targets that were expected to show emission plumes and that did not show any over the first months of commissioning?

We have revised figure 13 (now figure 6) to differentiate between our priority CH4 tasking deck and all Tanager scenes acquired through August 15, 2025 (including those acquired for other hyperspectral applications). This provides readers with an indication of where we have focused on potential high emission regions. Additionally, we have added some zoomed in views for representative regions that illustrate the overlap between Tanager scenes and where emission sources have been detected to date. While this offers some qualitative intuition about the distribution of plume detections vs observed areas, we note that there is considerable uncertainty in the distribution of super-emitters globally and we do not have a prior model of the likelihood of their occurrence within a given grid cell. In future, we do plan to publish some quantitative analysis regarding detection rates and completeness once we have acquired a larger number of observations and in particular more samples of key regions to constrain temporal variability.

Regarding Figure 14, I find this plume observation quite surprising. My understanding is that panel B shows a zoom of panel A, where the background imagery within the red frame is the actual surface imagery at the time of the plume observation. If this is indeed the case, the methane plume shown in panel B appears to be partially located above the cloud.... Did

Tanager observe a methane plume being emitted and/or transported above clouds? If so, this would be quite a surprising find that calls for further explanation. Otherwise, can the authors please explain why the plume mask is overlapping cloudy pixels? How are cloudy pixels managed in the Carbon Mapper L2 processing pipeline? Could the plume seemingly appear above the clouds because of small co-location errors between Tanager RGB and SWIR channels? Could the plume be explained by retrieval artefacts caused by the high cloud density? Please elaborate on this surprising case.

In figure 14 (now figure 7), the plume does not actually overlay the cloud. The extent of the plume color map in panel B is an artifact of smoothing to aid visual visualization for non-expert users of our public data portal. To address the concern raised here we have added the actual plume mask (panel C) used to calculate an IME and emission rate. Additionally, three other Tanager observations of the same source on different dates including those with cloud free conditions indicate this is a persistent emitting source and our emission rate estimates are consistent across that time series. We have added a new panel to the figure showing that time series.

Regarding Figure 15, I am quite uncomfortable with the current framing used to compare the Kayrros Sentinel-5P/TROPOMI plume detection dataset – or any Sentinel-5P/TROPOMI plume detection dataset for that matter – against Tanager detection capabilities. ...So, the authors should reformulate the comparison as to not imply that these emissions should have been detected in TROPOMI.

We thank the referee for flagging this issue and have removed that reference.

Additional comments and concerns on the quality of other figures.

I list my comments for every relevant figure below:

- Figure 1: A colormap or legend to interpret the meaning of colors (see other comments above) should be provided.

Figure 1 has been removed as part of trimming material.

- Figure 4: No labels for x- and y-axis! Please provide these elements including physical units.

Figure 4 (now Figure SI-3) has been amended to provide labels and units.

- Figure 5: Purely decorative, please remove (the whole Section 2.3 could actually be removed, see next significant concern on structure and content).

Figure 5 has been removed. We feel that technical information on the Tanager smallsat bus is important reference information but have moved an abbreviated section to the SI supplement.

- Figure 7: Please consider a merge with Table 3, lots of redundancies between these two.

We feel that figure 7 helps convey the unique nodding imaging mode that differentiates Tanager from most other imaging spectrometer (mostly pure pushbroom) operations.

- Figure 8: Purely illustrative, the angles written on the figure are not defined anywhere. Please remove and just provide a plain-English definition of glint geometry.

We have removed figure 8 and provided a plain English definition.

- Figure 10: Please provide a colorbar with label and units.

Figure 10 has been moved to figure SI-4.

- Figure 11: Please provide a colorbar with a label for the left panel.

In Figure 11 (now figure 4), the left panel shows an RGB image slice overlaid on the hyperspectral image cube, a standard representation for VSWIR imaging spectrometers. Those layers are false colors and we feel that adding a color scale will not be instructive.

- Figure 13: Please see comment above about adding extra information.

Now figure 6, see above response.

- Figure 14: Please provide a colorbar and units and a scalebar for panel A.

Color bar added.

- Figure 15: Please provide a colorbar, longitude of the observed locations and an indication of the significance of the letter labels of the plumes and the map-pin in the right panel.

Now Figure 8. Color bar added. Reformatted image to remove extraneous labels including the map-pin. The latitude references are solely intended to indicate the high latitude location of the scenes. It's unclear that adding longitude provides useful context in this case.

- Figure 16: Please provide a colorbar and scalebars.

Now figure 9. Color bar added.

- Figure 17: Please provide a colorbar.

Now figure 10. Colorbar added.

- Figure 23: Please provide a colorbar.

Now figure 16. This is a grayscale image of a CH4 retrieval intended to convey consistent plume morphology.

- Figure 27: This is purely illustrative, please replace with a figure that supports conclusions (see comment above)

Deleted as part of trimming.

Significant comment and concerns on content

As explained above, I think that this manuscript is an overwhelming read. It provides a lot of information on the Carbon Mapper emission monitoring system but lacks focus around the main and significant scientific novel(es presented in it. I cannot currently recommend the publication of the manuscript without large cuts or transfers to supplements). Besides, similar themes are inexplicably scattered in different corners of the manuscript (see above for completeness study in Sect. 2.1 and 4.3), so I strongly suggest that these cuts come with structure changes. I provide suggestions of cuts and structure change below.

We have endeavored to streamline and shorten the manuscript as suggested. As described above we have removed much of section 2.1 and all of section 4.3. Those topics will be addressed in a future manuscript. Additionally, we have transferred much of the detailed material to SI section.

Cut suggestions:

- Section 2.2, key design parameters driving Tanager detection performance can be quickly summarized in text, and all the non-essential technological details cut from the main text (and moved to supplements if necessary).

Most of this section has been moved to SI section.

- Section 2.3 is a Planet Labs product summary unrelated to the scientific content of this manuscript. It can or even has to) be cut out, and [URL2] can be provided when succinctly describing the Tanager satellite for example.

Shortened to key technical parameters and moved to SI section.

- Section 2.5.1 provides (to my knowledge) new information on the L1 calibration of the Tanager satellite instruments. However, these methodological elements are not directly related to the new scientific content of this manuscript. I suggest cutting

Section 2.5.1 and adding it to the currently provided ATBD documents on Carbon Mapper website and/or move it to the supplements.

We have moved most of this material to SI section as suggested.

- Section 2.5.2 can be heavily summarized focusing on the matched filter and IME methods, and providing a digest explanation of the other steps, namely cloud removal, plume detection, masking, manual verification and publication. References to the already available ATBDs [URL1] can be provided for readers interested in the methodological details.

We have heavily summarized this material in the main body and moved details to SI section as suggested.

I strongly suggest authors to consider a clearer structure centered around the main new scientific materials presented in this manuscript. As an example (already provided above), Sections 2.1 and 4.3 are very related and could be presented at the same place in the manuscript.

We have incorporated this feedback in our responses above.

Significant comment on writing style and tone

I would recommend the authors to revise the text of the listed sections aiming at (1) providing more neutrally phrased information; and (2) synthesizing information redundancy caused by repetitions.

We have carefully reviewed and endeavored to address the comments regarding writing style and tone throughout the manuscript.

Other significant comments, related to the literature review

GHGSat

GHGSat is a Canadian company operating – among others – a constellation of high-resolution (25x25 m2) methane sensitive satellites, providing high-resolution observations of methane plumes that allow to (1) quantify emission rates; and (2) pinpoint where emissions come from. GHGSat has been reporting on their methods in scien(fic literature (e.g. Jervis et al., 2021; McLean et al. 2024) and their observations have been used in different scientific publications (e.g. Varon et al., 2018, 2019, 2020; Maasakkers et al., 2022 or Schuit et al., 2023). Their observations are in nature comparable to Carbon Mapper's, however GHGSat is not mentioned in the literature review currently provided in the manuscript. Can authors report on GHGSat in their literature review?

We thank the referee for flagging this oversight. We have added a new section that offers a broader review of point source imaging satellites where we elaborate more fully on GHGSat and other relevant sensors to provide better context for where Carbon Mapper and the Tanager satellites contribute to the broader ecosystem of satellites.

TROPOMI detection threshold

Lower emission rate TROPOMI plume detections have been reported in the literature than the > 50 t/hr threshold reported by Lauvaux et al. (2022, 2021 is written in the text, please correct). For example, Schuit et al. (2023) provide a methane plume detection threshold of ~8 t/hr. I suggest authors revise the reported TROPOMI methane plume detection threshold or report a range including both references.

We thank the referee for flagging this and have added the Schuit et al number and citation.

Thermal infrared observations

AIRS is not the only instrument that can provide mid-tropospheric columns of CO2 and/or CH4. The thermal infrared sounder IASI has been providing similar products since 2006 (e.g. Crevoisier et al., 2009a, Crevoisiser et al., 2009b). I suggest authors to either include a complete review of GHG-sensitive thermal infrared products or, considering that thermal infrared observations are quite unrelated to high resolution SWIR-based observations of anthropogenic GHG emissions, to remove the thermal infrared discussion from the literature review.

We agree and have eliminated the reference to thermal IR sounders.

Referee 2

Here is a list of the parts of the manuscript where I think improvements are needed:

- Abstract: it is very long, and reads more as an executive summary of an internal mission report than as an abstract of a scientific publication. I would propose to shorten it substantially, especially in the parts not directly related to findings of this study.

We have revised the abstract as suggested.

- Sec. 1.1: these paragraphs provide a review of past and current missions with sensitivity to methane and CO2. However, the part of this section referring to "point source images" is strongly biased towards the instruments and work by the authors. It is striking (and a bit annoying) not to find a single reference to the GHGSat program, which is very similar to Carbon Mapper in terms of observational requirements and capabilities (with a superior

performance for GHGSat currently because of their higher number of operating satellites). It is also surprising not to find references to the retrieval and analysis work that has been done (mostly by groups in Europe and China) with other space-based imaging spectrometers, including EnMAP, PRISMA and the AHSI onboard the GF and ZY1 satellites, which are also very similar to the Tanager instruments. I would strongly request the authors to better reflect the international context in their study.

We have added a new section 1.2 that summarizes the state of the art in point source imaging satellites that includes GHGSat, EnMAP, PRISMA, AHSI and EMIT to provide better context for the contributions of Carbon Mapper/Tanager to the growing ecosystem.

- Sec. 2: it is also very lengthy: In my opinion, the first two paragraphs read as a new introduction section, sec 2.1.2 does not add meaningful content, L388-397 are redundant with previous contents, and L399-419, L470-480 and L620-655 provide much more detail on the instrument design than what is actually needed to understand Tanager's potential for GHG retrievals. I believe that the whole section would benefit from shortening and focusing on the mission and instrument parameters directly affect

We have significantly reduced the length of section 2 by moving some material to SI section and removing other material to be covered in a future manuscript.

- Sec. 2.5.3: please explain how uncertainties in emission rates are estimated

We have added a section on uncertainty quantification in the SI section

- Sec. 4.1, MDL: does this MDL analysis only refer to one pixel standing out from the background XCH4 values, as I seem to interpret from Eq. 7? I don't think that you would claim a plume detection if this is only based on a 1-pixel enhancement, but you would need several connected pixels with an enhancement n-times higher than the noise level. Is this correct? If so, I don't this metric can be used as an absolute measure of detection limit, as I think you are doing within this section.

Equation 7 (now equation 4) provides a first order method for estimating MDL based on 1-2 pixels as outlined in Jacob et al. However, this is not equivalent to saying that we would report a plume detection based solely on a 1-2 pixel enhancement. We explain at multiple places throughout the manuscript that a more robust method for determining detection limit is empirical testing to establish a Probability Of Detection (POD). As discussed, empirical testing to determine POD can take upwards of a year for most satellites so we're not yet able to report that. Instead, as explained we summarize what we think is a robust initial assessment of single measurement precision as a check of whether the instrument and retrieval algorithms are performing as designed and on track to meet sensitivity targets. We do not rely solely on MDL as an absolute measure of detection limit as explained in the text. However, to address this concern we have added the following text and a new figure: "As an additional check on the single pixel MDLs presented in Tables 4

and 5, we compare Tanager detections to independent metered rates and AVIRIS-3 quantified rates near the predicted Tanager MDL. Figure 18A shows a multi-pixel plume detected by Tanager-1, acquired in Maximum Sensitivity mode, for the lowest unblinded controlled release test with a reported release rate of 99 ± 4 kg/h on December 21, 2024 at 18:24 UTC. Figure 18B shows another plume detected by Tanager-1 in Standard Sensitivity mode in the Permian Basin on October 4, 2024 at 17:48 UTC that was also detected by AVIRIS-3 and quantified by AVIRIS-3 as 179 \pm 106 kg/h. In both cases a clear plume, extending well beyond a single pixel is readily visible, suggesting that our MDL predictions are in line with mass-balance noise estimates derived from Equation"

Other minor comments:

- L151 "of CH4" Corrected.
- L343 "types. And" Corrected.
- Table 1, I miss the GSD parameter *Added*.
- Figs.3 and 4: they should have a more similar format. Also, axis labels are missing in Fig.4.

Moved to SI section and corrected.

- L656 FPA has been defined ealier in the text

Corrected.

- L778 and L785: two consecutive definitions of QC

Corrected.

- L895 TOA has been defined ealier in the text

Corrected.

- L978 "Condo"?

We have vacated our Condo in the Congo. Seriously, thanks for the catch.

- L1010-1016: As the authors know, super-emissions in the Permian basin are typically short-lived. I don't think that the 7 t/h source would have been active 15 days after the initial Tanager detection even if it had not been notified.

The observational evidence suggests that this source persisted for at least 10 days, perhaps longer. This is consistent with analysis of previous observations of super emitters in the Permian. We added the following text regarding this example: "Analysis of contemporaneous AVIRIS-3 aerial surveys of the Permian on October 1, 9 and 10 reveal high emissions at the same location in all 7 observations (in addition to the Tanager detection), indicating a persistent source with an average emission rate of $4200 \pm 500 \, \text{kgCH}_4/\text{h}$ over at least that 10 day interval."

- Fig. 20, 21: ppm·m units should be used for consistency with the other figures and XCH4 maps

Our experience is that when it comes to representing single measurement precision and noise relative to background concentrations, the convention is to use mmol m-2 and % rather than ppm-m. We feel this offers a more consistent comparison with precision and noise reported elsewhere in the literature.

- L1210: "for an isolated of interest"

This section was removed in the interest of reducing the manuscript length.

- Fig. 25, 26: they should have the same y-axis label; also, please, discuss the TTA peaks in the text.

This section was removed in the interest of reducing the manuscript length.