Supplement of

Vertical and seasonal variations in airborne endotoxins in a coastal megacity of North China: insights from 3-hydroxy fatty acids

 $Wenxin\ Zhang^1,\ Wei\ Hu^{1,\ 2^*},\ Mutong\ Niu^1,\ Quanfei\ Zhu^3,\ Na\ An^3,\ Qiang\ Zhang^1,\ Rui\ Jin^1,\ Xiaoli\ Fu^1,$

Jian Hao⁴, Jianbo Yang⁴, Jingle Liu⁵, Jing Shi⁵, Suqin Han⁶, Junjun Deng¹, Libin Wu¹, Yuqi Feng³, Kimitaka Kawamura⁷, Pingqing Fu^{1, 8*}

¹Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China

- 3 School of Bioengineering and Health, Wuhan Textile University, Wuhan 430072, China
 - ⁴Tianjin Institute of Meteorological Science, Tianjin 300074, China
 - ⁵Tianjin Meteorological Radar Research and Test Centre, Tianjin 300061, China
 - ⁶ Tianjin Environmental Meteorological Center, Tianjin 300074, China
 - ⁷ Chubu Institute for Advanced Studies, Chubu University, Kasugai, Aichi 487-8501, Japan
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China

Correspondence to: Wei Hu (huwei@tju.edu.cn), Pingqing Fu (fupingqing@tju.edu.cn)

²Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China

Text S1 Chemicals and reagents. The 3-OH-FA standards (C₈, C₉, C₁₀, C₁₂, C₁₄, C₁₆ and C₁₈) were purchased from J&K Chemical (Beijing, China), while the rest of the 3-OH-FA standards (C₁₁, C₁₃, C₁₅ and C₁₇) were purchased from Shanghai SCR-Biotech Co., Ltd. The information on 3-OH-FAs standards and the method validation is presented in Table S1 and Table S2. 2-chloro-1-methylpyridinium iodide (CMPI), triethylamine (TEA), 2-dimethylaminoethylamine (DMED), formic acid (FA), HPLC-grade acetonitrile (ACN), ethyl acetate (EtOAc), dichloromethane (DCM), methyl tert-butyl ether (MTBE), and HPLC-grade methanol (MeOH) were purchased from Aladdin Chemistry Co. Ltd. (Shanghai, China). The isotope-labeling reagent d₄-DMED, the d₄-DMED-labled saturated fatty acids (C₈ – C₁₈), and the d₄-DMED-labled 3-OH-FA standards (C₈, C₉, C₁₀, C₁₂, C₁₄, C₁₆ and C₁₈) were synthesized according to the previous report (Hao et al., 2015).

Table S1. The 3-OH-FAs standards list.

Analytes	Molecular Formula	CAS No.	Abbreviation	M.W.a
3-hydroxyoctanoic acid	$C_8H_{16}O_3$	14292-27-4	3-OH-C ₈	160.2
3-hydroxynonanoic acid	$C_9H_{18}O_3$	40165-87-5	3-OH-C ₉	174.2
3-hydroxydecanoic acid	$C_{10}H_{20}O_3$	14292-26-3	3-OH-C_{10}	188.3
3-hydroxyundecanoic acid	$C_{11}H_{22}O_3$	40165-88-6	3-OH-C ₁₁	202.3
3-hydroxydodecanoic acid	$C_{12}H_{24}O_3$	1883-13-2	3-OH-C ₁₂	216.3
3-hydroxytridecanoic acid	$C_{13}H_{26}O_3$	32602-69-0	3-OH-C ₁₃	230.4
3-hydroxytetradecanoic acid	$C_{14}H_{28}O_3$	28715-21-1	3-OH-C ₁₄	244.4
3-hydroxypentadecanoic acid	$C_{15}H_{30}O_3$	32602-70-3	3-OH-C ₁₅	258.4
3-hydroxyhexadecanoic acid	$C_{16}H_{32}O_3$	928-17-6	3-OH-C ₁₆	272.4
2-hydroxyhexadecanoic acid	$C_{16}H_{32}O_3$	764-67-0	2-OH-C ₁₆	272.4
3-hydroxyheptadecanoic acid	$C_{17}H_{34}O_3$	40165-89-7	3-OH-C ₁₇	286.4
3-hydroxyoctadecanoic acid	$C_{18}H_{36}O_3$	45261-96-9	3-OH-C_{18}	300.5

Note: ^a Molecular weight

Table S2. Method validation for target 3-OH-FAs.

Analytes	MRM parameter	Retention time (min)	R^2
3-OH-C ₈	231.2→186.2	3.19	0.9995
3-OH-C ₉	$245.2 \rightarrow 200.2$	4.14	0.9972
3-OH-C_{10}	259.2→214.2	5.20	0.9986
3-OH-C ₁₁	273.2→228.2	6.42	0.9901
3-OH-C_{12}	287.2→242.2	7.63	0.9956
3-OH-C_{13}	$301.2 \rightarrow 238.2$	7.65	0.9947
3-OH-C_{14}	$315.2 \rightarrow 270.2$	9.89	0.9958
3-OH-C ₁₅	329.2→284.2	8.84	0.9888
3-OH-C_{16}	$343.2 \rightarrow 298.2$	12.06	0.9931
3-OH-C ₁₇	357.2→294.2	13.18	0.9912
3-OH-C ₁₈	371.2→326.2	14.10	0.9949

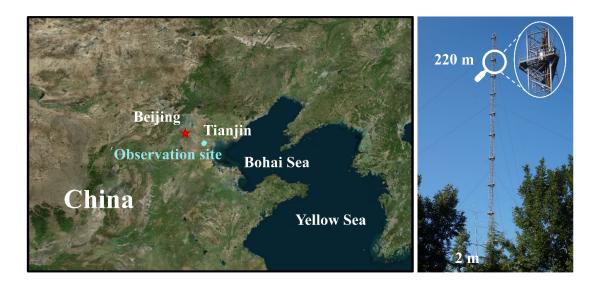
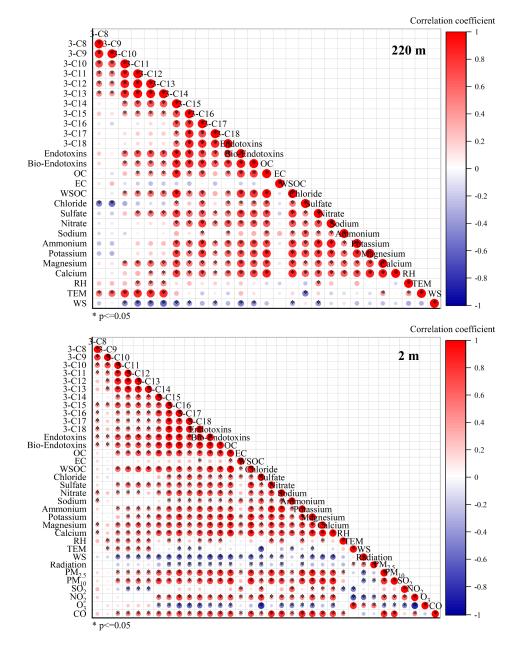



Figure S1. Geographical location of the observation site at the Tianjin Atmospheric Boundary Layer Observatory of the China Meteorological Administration, located at the southern area of urban Tianjin, China (39°08'N; 117°22'E) and sampler setting on the 255-m meteorological tower. The background map is sourced from MeteoInfo (Wang, 2019), and the tower photograph was taken by Libin Wu.

Figure S2. Spearman correlation between concentration of 3-OH-FAs, endotoxins and environmental factors (meteorological parameters, carbonaceous fraction, anions and cations, air pollutants) at different heights.

45 References

Hao, Y. H., Zhang, Z., Wang, L., Liu, C., Lei, A. W., Yuan, B. F., and Feng, Y. Q.: Stable isotope labeling assisted liquid chromatography-electrospray tandem mass spectrometry for quantitative analysis of endogenous gibberellins, Talanta, 144, 341-348, https://doi.org/10.1016/j.talanta.2015.06.056, 2015.

Wang, Y. Q.: An Open Source Software Suite for Multi-Dimensional Meteorological Data Computation and Visualisation,

Journal of Open Research Software, 7, 21, https://doi.org/10.5334/jors.267., 2019.