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Abstract. Integrated assessment models (IAMs) occupy a central role in understanding and assessing the intricate interlinkages 

within the human-climate system for informing climate mitigation and adaptation strategies. However, there has been limited 10 

work on explicitly representing the internal social system dynamics that underlie human behavioural responses to climate 

change within IAMs. Instead, behavioural change and demand-side strategies are assessed with external, non-probabilistic 

narrative-based scenario analyses. In this paper, we introduce an alternative fully endogenous behavioural change modelling 

framework within the FRIDA v2.1 model, operationalized with the system dynamics method. Applied to the context of dietary 

behaviour, the framework models behavioural change as a function of perceived accessibility, descriptive norm, and personal 15 

norms, constrained by accessibility and past behaviour. By doing so, it captures the complex social-economic-cultural-

environmental feedback processes within the human-climate system that dynamically determine per capita food demand and 

consumption. Our simulation results show that endogenizing human behaviour leads to lower future demand projections 

compared to the more prevalent GDP-driven modelling approach. This demonstrates the significant impact of behavioural 

feedbacks on emission behaviours and thus climate outcomes. Importantly, using an uncertainty approach, our results account 20 

for a range of plausible behaviours within the 95% confidence bounds, which includes scenarios where we observe reversals 

of sustainable behavioural change in the future. We contribute to the limited work on human behaviour in IAMs, extending 

the complexity of current representations. Future work will extend this framework to other domains of high-impact behaviours, 

enhancing the robustness of IAMs for assessing demand-side mitigation.  
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1 Introduction 

Global climate change is a highly complex issue characterized by multifarious interconnected feedback interactions between 30 

subsystems in the broader human-climate system (Wohlgezogen et al., 2020). Integrated assessment models (IAMs), that 

integrate knowledge from various disciplines, have come to play a pivotal role for understanding and assessing the impacts of 

such complex interactions (van Beek et al., 2020). Today, the Intergovernmental Panel for Climate Change (IPCC) relies on 

IAMs for scenario analysis to support the design of climate mitigation and adaptation strategies. While IPCC authors have 

emphasized the potential of demand-side mitigation for reducing emissions (e.g., Creutzig et al., 2016, 2018, 2023), most 35 

IAMs still do not adequately represent the human system components necessary for assessing climate-relevant behaviours – 

whether these behaviours are direct responses to climate change or arise from other broader drivers (Beckage et al., 2020; van 

Valkengoed et al., 2025). The dominant approach, instead, is coupling separate behaviour change narratives and scenarios with 

IAMs to exogenously drive relevant technoeconomic decisions that interface with biophysical processes (e.g., van den Berg et 

al., 2019, 2024; Riahi et al., 2017). However, Beckage et al. (2022) warn that the external narratives approach does not provide 40 

information about the likelihood of distinct future trajectories, and importantly, fails to capture the internal feedback processes 

that describe the co-evolution of adaptive human behaviour and biophysical impacts. Accordingly, scholars have called for 

improved representations of endogenous social processes in IAMs to dynamically model and assess demand-side behavioural 

change (Beckage et al., 2020; Mathias et al., 2020). 

In this paper, we formally introduce our fully endogenous behavioural change modelling framework, operationalized as 45 

a system dynamics model, that responds to such calls. System dynamics is a simulation modelling methodology that focuses 

on representing dynamic complexity surrounding problem behaviours – i.e., the dynamic interactions of key feedback loops, 

within a closed boundary of a system, that endogenously give rise to system behaviour (Forrester, 1968). Such models are 

quantified with a system of stocks and flows, which are expressed through integral equations for continuous accumulations 

over time and differential equations for defining the rates of change. This approach allows us to represent our framework as a 50 

set of endogenous feedback processes that determine changes in environmentally significant consumptive behaviour. Briefly, 

consumptive behaviour is modelled as a function of three sources of motivations (perceived accessibility, descriptive norm, 

and personal norms), constrained by accessibility and past behaviour. Importantly, these determinants are embedded within 

and responsive to feedback processes between the human and climate sub-systems. We iteratively developed the framework 

by abstracting and integrating knowledge from several sources, including an array of behavioural theories (e.g., Bamberg and 55 

Möser, 2007; Shove, 2010; van Valkengoed et al., 2025), systematic reviews of extant literature (e.g., Godfray et al., 2018; 

Hammerseng, 2024; Milford et al., 2019), as well as insights from participatory modelling activities (see Rajah and Kopainsky, 

2024, 2025) and preliminary proof-of-concepts (see Tusch, 2024; Rajah et al., 2024). 

Our framework is incorporated within the Behavioural Change module of the novel FRIDA (Feedback-based knowledge 

Repository for IntegrateD Assessments) model version 2.1. Also based on system dynamics, FRIDA aims to represent the co-60 

evolution of the climate and human processes by closing all major feedback loops at the global aggregate scale, and in doing 
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so, provide a fully endogenous, process-based explanation of system behaviour (Schoenberg et al., 2025b). The module 

endogenously models dietary behavioural change in terms of changes in total caloric food demand and diet shifts between 

animal products and vegetal products. After situating our modelling framework among existing work, the remaining sections 65 

of this paper provide a formal description and evaluation of the framework as applied to dietary behavioural change in FRIDA 

v2.1. In Sect. 3, we detail the conceptualization and quantification of the framework. Section 4 reports the calibration and 

uncertainty analysis process used for model parameterization, along with the results. In Sect. 5, we compare and explain 

differences in the baseline results from our endogenous modelling framework versus the standard GDP-driven modelling 

approach that does not represent behavioural change processes. We conclude with a discussion of the results, the framework’s 70 

contributions and its limitations.  

2 Existing behavioural change models 

To date, there have been limited studies that have fully endogenized behavioural change within existing IAMs or similar 

human-climate models. Beckage et al. (2018) were among the first to fully couple a social model with a climate model to 

capture human behavioural responses as part of climate feedback: people’s perceptions of a climate risk, based on the frequency 75 

of extreme events, alter their subsequent emission behaviours. In turn, such behavioural change affects emissions, influencing 

global mean temperature and the occurrence of extreme events. Climate risk is modelled as a function of stochastic extreme 

events in memory (events are perceived but also forgotten after a certain delay time), with structural uncertainty over the 

functional form as either linear, logistic, or cubic (Beckage et al., 2018). Premised on the Theory of Planned Behaviour (Ajzen, 

1991), perceived climate risk endogenously influences attitudes, which then determines emissions behaviour change. All other 80 

theoretical constructs (e.g., efficacy, social norms, behavioural control) were kept exogenous. Having demonstrated that such 

coupling resulted in altered climate projections, the authors emphasize the need for endogenizing human behavioural change 

(Beckage et al., 2018, 2020).   

Following this study, Eker et al. (2019) adapted the model to the behaviour-specific context of diet shifts within the FeliX 

IAM, while retaining the original climate risk perception model structures and the main theoretical constructs. They innovate 85 

by closing an additional social transmission loop to endogenize social norms. For this purpose, the global population is 

segmented into a two-stock structure for meat-eaters and lacto-ovo vegetarians (Eker et al., 2019). People shift from meat-

based to vegetarian diet based on changes in income (per capita GDP). On the other hand, the shift from vegetarian to meat-

based diet is determined by attitudes, social norms, and a constant perceived behavioural control. Here, descriptive social 

norms are represented as the prevalence of the population segments: as the proportion of vegetarians increases, more people 90 

shift their diets by way of social transmission. In addition to the effect of climate risk on attitudes (as described above), Eker 

et al. (2019) further include perceived health risk from changes in deaths related to red meat consumption as another 

determinant, following the Protection Motivation Theory (Rogers, 1975; Prentice-Dunn and Rogers, 1986). 

The behavioural components of both models are grounded on compatible social-psychological theories (i.e., Theory of 

Planned Behaviour and Protection Motivation Theory) with similar constructs. However, psychologists contend that there is a 95 
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plurality of theories that could challenge or expand upon any one theory, and focusing only on theories could exclude non-

psychological determinants of behaviour (Nielsen et al., 2021; van Valkengoed et al., 2025). To mitigate this challenge, our 

framework integrates various theories consistent with the Motivation, Agency, Past Behaviour meta-theoretical framework 

(van Valkengoed et al., 2025), along with insights from experiential knowledge and non-psychological determinants in the 

literature. Consequently, our framework extends existing work by closing additional feedback loops involving socioeconomic 100 

and sociocultural processes. 

Pettifor et al. (2023, 2024) recently introduced an alternative framework to endogenously model shifts in lifestyle 

archetypes (Resourceful, Active, Constrained and Cautious) as opposed to behaviours. Each of the four lifestyle archetypes is 

assigned different propensities for low-carbon behaviours, which then serve as inputs to IAMs. Arguably, population 

segmentation into neatly defined identity categories masks internal variations and assumes that people consistently adhere to 105 

their respective identities across various social and material contexts of environmentally significant behaviours. This 

contradicts the known value-action gap, wherein “people who espouse green values do not always act in accordance with 

them” (Shove, 2010, p.1276). Instead, social scientists have varyingly called for a behaviour-specific focus to understand how 

complex feedback processes, embedded in socio-material arrangements, contribute to behaviour change (e.g., Demski et al., 

2015; Lange and Dewitte, 2019; Manfredo et al., 2017; Nielsen et al., 2021; Shove, 2010). Accordingly, our behaviour-specific 110 

modelling framework seeks to represent important social-economic-cultural-environmental feedback processes that 

endogenously determine changes in dietary behaviours.  

Moreover, our modelling choices significantly depart from previous behavioural models (i.e., Beckage et al., 2018; Eker 

et al., 2019). First, we model climate risk perception as a function of both experiential (i.e., extreme events exposure) and 

cognitive processes. This accounts for the modulating effects of climate knowledge and is more consistent with psychological 115 

models of risk (van der Linden, 2015; Villacis et al., 2021). Also, perceived risk is not determined by present state values (i.e., 

stock of extreme events in memory in both models) but by normalized values to changing reference conditions of normality. 

This is in line with models of human judgments where “reference dependence is ubiquitous in sensation and perception” 

(Kahneman, 2011, p.275), allowing us to capture the psychophysical process by which people adapt to changing conditions 

over time. Second, we do not segment the global population into dietary categories (e.g., meat-eaters vs. vegetarians). Dietary 120 

choices are multi-dimensional and heterogenous, encompassing an array of individual consumption practices within each 

identity category. In Eker et al. (2019), for instance, changes in followers of meat-based diets and vegetarian diets are modelled 

endogenously. However, the time-varying shifts in average diet composition for each of these identity categories are modelled 

exogenously. Accurately representing such nuances in identities and practices requires high-resolution intra-sectoral 

modelling, which contrasts with FRIDA’s focus on highly aggregated processes to close the inter-sectoral feedback loops 125 

within the human-climate system. Instead, our modelling framework captures the endogenous behavioural processes that 

determine changes in both aspects of dietary behaviour: (i) the aggregate per capita caloric intake of food products, and (ii) the 

average dietary composition (animal vs. vegetal products). In that sense, we do not focus on any one direction of behavioural 
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change (e.g., pro-environmental shift from meat-based to vegetarian diets); rather, diet shifts may or may not be sustainable 130 

from a climate mitigation perspective, depending on the underlying behavioural processes. 

3 Model description 

Given that our model is embedded within the novel global IAM, FRIDA v2.1, we first present a brief overview of the FRIDA 

model (see Schoenberg et al., 2025b for more details). FRIDA represents the climate and human systems together, each 

represented with similar levels of fidelity. FRIDA places strong emphasis on feedback dynamics and interpretability. It 135 

endogenously incorporates key components of the Earth system such as the radiation balance, carbon and water cycles, and it 

does so alongside the endogenous representation of human factors like population, economy (including GDP), agriculture, and 

energy use. The only exogenous inputs to FRIDA are solar radiation cycles, Montreal gas emissions, and global policy 

(economic, climate or otherwise). The FRIDA model is capable of simulating from 1980-2150, reproducing historical 

behaviour with no additional exogenous inputs. 140 

In prevailing technoeconomic modelling approaches, food demand, 𝐷, is typically expressed as a function of per capita 

real GDP (proxy for income) and population, 𝑃 (e.g., Bijl et al., 2017; Tilman et al., 2011; Tilman and Clark, 2014). Fitted to 

empirical data and projected into the future, 𝐷 increases less than proportionally (𝛽!"# < 1) with higher income levels. Within 

FRIDA’s Land Use and Agriculture (LUA) module, we reproduce this standard formulation with a switch (‘use GDP for food 

demand’) to toggle between the GDP-driven model and our novel endogenous modelling framework for comparison purposes. 145 

Equation (1) represents the GDP-driven model, which is applied to both food demand for direct consumption, measured in 

kilocalories per person per day (kcal·p⁻¹·d⁻¹), and animal products demand per capita, measured in petacalories per million 

person per year (Pcal·Mp⁻¹·yr⁻¹). 

𝐷(𝑡) = 𝑃(𝑡) × 𝐷(0) × (
$%&!(𝑡)
	$%&!(0)	

	*
("#!

 , (1) 

where 𝐷 represents the respective food demands, 𝑃 is the total global population (Mp), 𝐺𝐷𝑃# is the perceived real GDP per 150 

capita (B$·Mp⁻¹·yr⁻¹), and 𝛽!"# is the sensitivity of demand to changes in income (dmnl).  

𝐺𝐷𝑃# is modelled as an exponential smooth of real GDP per capita (𝐺𝐷𝑃) – see Eq. (2). Exponential smooths are used 

to model perception delays, where perceptions are updated gradually as newer information becomes available, thus smoothing 

out temporary fluctuations in the information input (Sterman, 2000).  

𝐺𝐷𝑃#(𝑡) =	𝐺𝐷𝑃#(0)+ ∫ (
$%&(𝜏)	)	$%&!(𝜏)

*+"#! * 𝑑𝜏	
,
- , (2) 155 

where 𝐺𝐷𝑃#(0)	is the initial perceived real GDP per capita set to 𝐺𝐷𝑃(0), and 𝐴𝑇!"# is the averaging time or the delay time 

for changes in income to affect demand.  
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The averaging time determines the rate at which existing perceptions are discounted: smaller averaging times give more 

weight to newer information (i.e., quick to update perceptions), while larger averaging times gives more weight to older 

information (i.e., slow to update perceptions). 185 

Our endogenous modelling framework, encapsulated within FRIDA’s Behavioural Change module, comprises three sub-

modules: Animal Products Demand, Total Food Demand, and Climate Risk Perception (see Fig. 1). Total Food Demand 

captures changes in overall diet (total desired caloric intake), whereas Animal Products Demand computes changes in the share 

of animal products in the average diet. Vegetal products demand is calculated as the remaining share. We model the key 

behavioural processes that endogenously determine changes in total food demand (i.e., diet) and animal products demand (i.e., 190 

diet composition). This provides input to the supply-side dynamics within LUA module, where food production adjusts to 

changes in demand. In turn, production determines the available supply for consumption, which influences the various 

behavioural processes that determine food demand. This creates direct two-way feedback between the Behavioural Change 

and LUA modules, placing demand and supply on equal footing. Additional indirect feedback interlinkages are formed with 

the Climate, Demographics, and Economy modules. For a description of these other modules, see Schoenberg et al. (2025b). 195 

The rest of this section documents the conceptualization and formulations of our modelling framework. For expediency, we 

report uncertain parameter values and ranges in Appendix A.  

 
Figure 1: Sub-system diagram of Behavioural Change module (in blue) and its interlinkages with other relevant top-level modules 
in FRIDA v2.1. 200 
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3.1 Modelling dietary change 

The framework represents several endogenous processes, beyond the simplified GDP-driven model, which influence dietary 

behaviour in terms of per capita demand and consumption (see Fig. 2). Unless otherwise stated, the structure is replicated for 205 

both total food demand and animal product demand. The average daily demand (𝐴𝐷𝐷), measured in kcal·p⁻¹·d⁻¹, is determined 

by the desired average daily demand (𝐷𝐴𝐷𝐷) or the accessible demand from perceived accessibility (𝐷𝐴𝐷𝐷.), whichever is 

smaller. This ensures that dietary behaviours are constrained by agency or the ability to act on intentions (Ajzen, 1991; van 

Valkengoed et al., 2025). After accounting for population and unit conversion, total demand influences total production 

(Pcal·yr⁻¹) in the LUA module. Here, the supply-demand balance each year influences future decisions for adjusting production 210 

capacity and yield. Additionally, a reserve capacity multiplier is included to buffer against demand fluctuations, implicitly 

capturing the role of strategic reserves without modelling explicit inventory dynamics. Global food inventory dynamics were 

deemed unimportant over the multi-decadal time scale of FRIDA. The average daily consumption (𝐴𝐷𝐶; kcal·p⁻¹·d⁻¹) is 

computed as either the total production or total demand (smaller of the two) and normalized by population. This provides an 

additional constraint on behaviour such that people cannot consume beyond the available supply. In this context, 𝐷𝐴𝐷𝐷 is the 215 

dietary behavioural intention that is adjusted by four groups of behavioural processes: (i) past behaviour from habits that 

moderate desired changes in behaviour; (ii) perceived accessibility in terms of socio-economic factors determining the 

affordability and availability of food products; (iii) descriptive norm that describes what others in the social environment are 

doing, which exerts a conformity pressure; and (iv) personal norms or standards that people hold and expect of themselves, 

which are shaped by perceptions of the social and natural environment. 220 
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Figure 2: Simplified causal loop diagram of the endogenous modelling framework; colour coding: grey is associated with past 
behaviour, blue is associated with perceived accessibility, yellow is associated with descriptive norm, and red with personal norms; 225 
R labels denote reinforcing loops (changes are amplified) whereas B labels denote balancing loops (changes are attenuated); double 
strokes on connectors indicate delays; solid connectors are internal to the Behavioural Change module while dashed connectors 
denote connections to other modules in FRIDA. 

3.1.1 Past behaviour 

Humans are creatures of habit, where past habitual behaviour exerts an unconscious influence that could inhibit sustained 230 

behaviour change (Linder et al., 2022; van Valkengoed et al., 2025). Sustained repetition is required for the formation of a 

new habitual behaviour. To represent habituation and the barrier it poses, 𝐷𝐴𝐷𝐷 is modelled as a stock (i.e., integral) that 

adjusts gradually to its indicated value, measured in kcal·p⁻¹·d⁻¹, with a certain delay time for the new behavioural pattern to 

become sustained, as shown in Eq. (3): 

𝐷𝐴𝐷𝐷(𝑡) = 	𝐷𝐴𝐷𝐷(0)+ ∫ (
%*%%$(𝜏)	)	%*%%(𝜏)

*+%! *𝑑𝜏	
,
- , (3) 235 

where 𝐷𝐴𝐷𝐷 is desired average daily demand (kcal·p⁻¹·d⁻¹); 𝐷𝐴𝐷𝐷/ 	is the indicated value that the stock adjusts towards, and 

𝐴𝑇0# is the averaging time to adjust consumption patterns	(yr).  
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As explained previously, larger averaging times give more weight to past habitual behaviour, representing its inhibiting 

influence. 𝐷𝐴𝐷𝐷/  is modelled as a weighted average of the desired demand computed from the remaining motivational 255 

processes that determine behavioural intentions: perceived accessibility, descriptive norm, and personal norms – see Eq. (4). 

𝐷𝐴𝐷𝐷/(𝑡) = 	𝑀𝐼𝑁7𝐷𝐴𝐷𝐷.(𝑡)	, 9𝜔.(𝑡) ∙ 𝐷𝐴𝐷𝐷.(𝑡)+	𝜔"1(𝑡) ∙ 𝐷𝐴𝐷𝐷"1(𝑡)+	𝜔#1(𝑡) ∙ 𝐷𝐴𝐷𝐷#1(𝑡)<=, (4) 

where 𝐷𝐴𝐷𝐷. is the desired demand from perceived accessibility, 𝐷𝐴𝐷𝐷"1 is the desired demand from descriptive norm, 

𝐷𝐴𝐷𝐷#1 is the desired demand from personal norms, and 𝜔 is the average weight (dmnl) or relative importance attributed to 

each motivational process.  260 

An additive weighted average is used to account for actor heterogeneity at the global scale. Within and across countries, 

individuals hold differing stable value priorities (Fischer and Schwartz, 2011), placing varying weights on each behavioural 

motivation. Conflicting values may also be activated under different situational contexts, causing certain motivational 

processes to become more prominent (De Groot and Steg, 2009): e.g., a person might succumb to the social pressure of the 

descriptive norm in one situation, but act on their personal norms in another. Using a weighted average formulation allows for 265 

the integration of these diverse motivational processes while reflecting their relative importance, on average, across different 

individuals and contexts. 

3.1.2 Perceived accessibility 

Accessibility, here, refers to perceptions of the affordability and availability of food products, generally involving socio-

economic factors such as price, income, and economic development (Godfray et al., 2018; Milford et al., 2019). For animal 270 

products, people are not only responsive to changes in price, but also to its relative price: they are more willing to purchase 

and consume animal products when its price decreases more than changes in the price of its substitute, and vice versa (Milford 

et al., 2019). However, since FRIDA does not model the prices of products directly given its level of aggregation, the concept 

of scarcity (represented by the supply-demand balance) is used as proxy for price. Following the microeconomic principle, we 

assume that gaps in the supply-demand balance drive price changes at the margins (Tomek, 2000). Relative prices, then, is 275 

captured by comparing the supply-demand balance between animal products and all crop products (e.g., food products, feed 

for animals, biofuel crops, and other uses). Hence, when the animal products are relatively more available (i.e., less scarce) 

than crop products, people are more willing to increase their animal products demand. The responsiveness of the perceived 

accessible animal products demand to relative scarcity is modelled following Eq. (5):  

𝑠𝑐𝑎𝑟𝑐𝑖𝑡𝑦	𝑒𝑓𝑓𝑒𝑐𝑡(𝑡) =	(
#23"40,/31&!(𝑡)
"56.1"&!(𝑡)

	#23"40,/31%'(!(𝑡)
"56.1"%'(!(𝑡)G 	*

()
	 , (5) 280 

where 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛.#  is the animal products production rate (Pcal·yr⁻¹), 𝑑𝑒𝑚𝑎𝑛𝑑.#  is the total animal products demand 

(Pcal·yr⁻¹), 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛023# is the crop production rate (Pcal·yr⁻¹), 𝑑𝑒𝑚𝑎𝑛𝑑023# is the total crop demand (Pcal·yr⁻¹), and 𝛽7 

is the sensitivity of demand to relative scarcity (dmnl) and is set to less than 1 (Milford et al., 2019).  
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The structure is different for total food demand, since there are no alternatives to food – i.e., food scarcity is not 290 

relativized. Instead, the combined animal and vegetal products supply-demand balance is used as a measure of food 

availability/scarcity and the attendant proxy for changes in price. It should be noted that with FRIDA, we do not model 

malnourishment; crop demand for direct food consumption is first met, taking away from the availability for all other uses. 

Consequently, food scarcity is mainly responsive to the animal products balance.  

The other key driver of accessibility is changes in income: as income increases, people not only expand their caloric 295 

intake but also substitute more of their diet with animal products (Milford et al., 2019; Schmidhuber and Shetty, 2005; Tilman 

and Clark, 2014). Like other models, we express the income effect on demand as a function of changes in 𝐺𝐷𝑃 as in Eq. (6): 

𝑖𝑛𝑐𝑜𝑚𝑒	𝑒𝑓𝑓𝑒𝑐𝑡(𝑡) =	M
$%&(𝑡)
$%&(0)N

($
, (6) 

where 𝐺𝐷𝑃 is the initial real GDP per capita converted to $·p⁻¹·yr⁻¹ and held constant to the 2021-dollar value, and 𝛽/ 	is the 

sensitivity of desired demand from perceived accessibility to changes in income (𝛽/ < 1; dmnl).  300 

In the GDP-driven model, described previously, 𝐺𝐷𝑃 is exponentially smoothed to account for delays. Here, 𝐷𝐴𝐷𝐷. is 

exponentially smoothed to account for the perception of both scarcity and income effects – as shown in Eq. (7) and (8): 

𝐷𝐴𝐷𝐷.(𝑡) =	𝐷𝐴𝐷𝐷.(0)+ ∫ M
%*%%$&(𝜏))	%*%%&(𝜏)

*+& N𝑑𝜏	
,
- , (7)  

𝐷𝐴𝐷𝐷/.(𝑡) =	𝐷𝐴𝐷𝐷.(0) ∙ 𝑠𝑐𝑎𝑟𝑐𝑖𝑡𝑦	𝑒𝑓𝑓𝑒𝑐𝑡(𝑡) ∙ 𝑖𝑛𝑐𝑜𝑚𝑒	𝑒𝑓𝑓𝑒𝑐𝑡(𝑡) , (8) 

where 𝐷𝐴𝐷𝐷. is the desired demand from perceived accessibility (kcal·p⁻¹·d⁻¹), 𝐷𝐴𝐷𝐷/. is the indicated perceived accessible 305 

demand (kcal·p⁻¹·d⁻¹), 𝐴𝑇.	is the averaging time (yr) for taking stock of changing socioeconomic conditions and adjusting the 

perceived accessible demand, and 𝐷𝐴𝐷𝐷.(0) is the initial value of the stock set to 𝐷𝐴𝐷𝐷(0), which is the reference average 

daily demand.  

With the multiplicative formulation in the indicated accessible demand (𝐷𝐴𝐷𝐷/.), the response to changes in income is 

moderated by availability. Equation (8) is formulated differently for animal products demand, since it is a subset of total food 310 

demand. Instead, the effects are applied on the initial share of animal products in diets, %*&(0), representing more substitution 

of diet with animal products as it becomes more available (less scarce) and/or income increases. %*& is constrained to a 

maximum of 1, under extreme conditions, and multiplied with the average daily food demand (𝐴𝐷𝐷+8 input from Total Food 

Demand module) to determine 𝐷𝐴𝐷𝐷/.  for animal products. In doing so, we account for both the desired expansion and 

substitution of calories. 315 

However, econometric analyses of empirical data have found that the income effect follows an inverted u-shaped curve: 

while consumption increases with income (less than proportionally), it reaches an inflection point at a certain level of income 

and declines thereafter (Cole and McCoskey, 2013; Milford et al., 2019; Vranken et al., 2014). Using a non-monotonic function 

to represent both an increase and decrease in demand serves as an unsatisfactory explanation from a process-based perspective. 

A social-psychological perspective might provide a better explanation: less accessible dietary behaviours can amass a symbolic 320 
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value as markers of socioeconomic status, making them more desirable to individuals from lower socioeconomic groups as a 

form of compensatory consumption aimed at signalling upward social mobility or aspirational identity (Chan and Zlatevska, 

2019; Doyle and Richardson, 2025). Higher socioeconomic class consumers, having greater material security and social 

capital, are generally less influenced by the symbolic status of consumption; instead, they are more likely to prioritize post-

material concerns and cultural values such as health, environmental sustainability, and ethical considerations (Doyle and 335 

Richardson, 2025; Vranken et al., 2014). We capture this socioeconomic effect as a distinct process. While 𝐷𝐴𝐷𝐷. represents 

the potential accessible desired demand, the extent to which it becomes realized is determined by how much weight is given 

to accessibility, 𝜔.. Less weight is given to accessibility as GDP per capita increases over time, by way of a logistic function 

as expressed in Eq. (9): 

𝜔.(𝑡) =	𝜔259 ∙ (𝑚 +	 :)	6
;	<	=>&?)@∙B;)	$%&(𝑡) $%&'*+⁄ DE*

 , (9) 340 

where 𝜔. is the weight of perceived accessibility (dmnl), 𝜔259 is the reference weight (dmnl), 𝐺𝐷𝑃259 is the reference GDP 

value for the inflection point ($·p⁻¹·yr⁻¹), 𝑚 is the minimum effect (dmnl), 𝐿 is the maximum effect (dmnl), and 𝑘 is the 

steepness of the curve (dmnl) that determines the rate of change. 

The reference weight, 𝜔259, is set to one-third  denoting that all three motivational processes (accessibility, descriptive 

and personal norms) are weighted equally when 𝐺𝐷𝑃 reaches its inflection point. As income increases beyond the reference 345 

value, the socioeconomic effect on 𝜔.  decreases at a decreasing rate to a minimum effect (𝑚 ). The effect increases 

decreasingly to a maximum (𝐿) as income falls below its reference. A variance parameter, 𝑣, is added to 𝐿 and 𝑚 (= 1	 ±	F
G
) 

in order to vary the minimum and maximum effects symmetrically around the inflection point in sensitivity analyses. This 

allows us to explore different ranges of socioeconomic effects while holding the inflection point at 𝐺𝐷𝑃259. The remaining 

weight is then evenly distributed between the other two processes as computed in Eq. (10): 350 

𝜔"1(𝑡) = 𝜔#1(𝑡) =	
;)	H&(𝑡)

G
 , (10) 

where 𝜔"1 is the weight of descriptive norm and 𝜔#1 is the weight of personal norms. 

3.1.3 Descriptive norm 

The descriptive norm refers to perceptions of typical or prevailing behaviours within the social environment, which provides 

a social motivation for people to conform (Cialdini, 2007; Cialdini et al., 1991; van Valkengoed et al., 2025). Sparkman and 355 

Walton (2017) further distinguish between static and dynamic descriptive norms. The static norm indicates the current state of 

the prevailing behaviour (e.g., eating meat is normal), whereas the dynamic norm points to how the norm is changing over 

time (e.g., more people have been reducing their meat consumption). They contend that people may form expectations about 

the future state of normative behaviour based on their perceptions of changing social trends, which motivates “preconformity" 

to behaviours that are presently counter-normative (Sparkman and Walton, 2017, p.1664).  360 
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We model the process of conformity to the dynamic descriptive norm as a weighted adjustment of 𝐷𝐴𝐷𝐷 to expectations 

of the normative behaviour (𝐷𝐴𝐷𝐷"1) – see Eq. (4). Expectation formation can be modelled with the TREND function, which 

computes the past growth rate of an input variable in order to estimate its likely future value (Sterman, 1987). In our case, the 

input variable is the current (static) normative behaviour, 𝐴𝐷𝐶#  (perceived average daily consumption), which is an 

exponential smooth of 𝐴𝐷𝐶, as shown in Eq. (11): 380 

𝐴𝐷𝐶#(𝑡) =	𝐴𝐷𝐶#(0)+ ∫ M
*%I(𝜏)	)	*%I!(𝜏)

*+&#% N 𝑑𝜏	
,
- , (11) 

where 𝐴𝐷𝐶#𝐴𝐷𝐶#(0) = 𝐴𝐷𝐶(0) is the perceived average daily consumption (kcal·p⁻¹·d⁻¹), 𝐴𝐷𝐶 is the actual average daily 

consumption rate (kcal·p⁻¹·d⁻¹), 𝐴𝑇."0  is the averaging time (yr) for perceiving the current behaviour, and 𝐴𝐷𝐶#(0) =

𝐴𝐷𝐶(0).  

People do not have perfect information on the year-on-year changes in consumption rates; rather the perceived trend is 385 

anchored on an estimated normal reference consumption from the recent past. This short-term reference, 𝐴𝐷𝐶J+259, is thus 

modelled as an exponential smooth of the 𝐴𝐷𝐶# with a short-term time horizon of the recent past (𝐴𝑇J+259), initialized with  

𝐴𝐷𝐶#(0). The short-term trend for changes in perceived consumption is then computed in Eq. (12) as the average yearly growth 

rate of 𝐴𝐷𝐶#	relative to 𝐴𝐷𝐶J+259: 

𝑇𝑟𝑒𝑛𝑑J+(𝑡) =	
*%I!(𝑡))	*%I,-'*+(𝑡)

*%I,-'*+(𝑡)
𝐴𝑇J+259G  , (12) 390 

where 𝑇𝑟𝑒𝑛𝑑J+ is the short-term trend (dmnl·yr-1), 𝐴𝐷𝐶# is the perceived average daily consumption (kcal·p⁻¹·d⁻¹), 𝐴𝐷𝐶J+259 

is the short-term reference average daily consumption rate (kcal·p⁻¹·d⁻¹), and 𝐴𝑇J+259 is the short-term time horizon time (yr). 

The 𝑇𝑟𝑒𝑛𝑑J+ provides an indication of whether the static descriptive norm is trending upwards or downwards over the 

short term – i.e., the perceived changing social trend. Based on this indication, people form an expectation of what the dynamic 

descriptive norm (i.e., 𝐷𝐴𝐷𝐷"1) would be in the immediate future by adjusting the desired demand (𝐷𝐴𝐷𝐷) proportionally to 395 

the growth rate of the trend, as shown in Eq. (13):  

𝐷𝐴𝐷𝐷"1(𝑡) = 	𝐷𝐴𝐷𝐷(𝑡) ∙ 91 +	𝑇𝑟𝑒𝑛𝑑J+(𝑡) ∙ 𝐴𝑇5K#<, (13) 

where 𝐷𝐴𝐷𝐷"1 is the desired average daily demand from descriptive norm (kcal·p⁻¹·d⁻¹), 𝐷𝐴𝐷𝐷 is the desired average daily 

demand (kcal·p⁻¹·d⁻¹), and 𝐴𝑇5K#	is the expectation time horizon for the immediate future set to 1 (yr).  

Here, the anchoring and adjustment of previous behavioural intentions (i.e., 𝐷𝐴𝐷𝐷) captures the reinforcing habituation 400 

feedback: 𝐷𝐴𝐷𝐷"1 is both determined by and a determinant of 𝐷𝐴𝐷𝐷. Thus, a persistent upward trend in consumption would 

amplify the upward adjustment of 𝐷𝐴𝐷𝐷 over time, counteracting the inertia of past habitual behaviour. 
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3.1.4 Personal norms 

Personal norms refer to the individually-held personal standards that one expects of themselves and are founded in personal 

values, moral beliefs, and attitudes toward a certain behaviour (Kaiser et al., 2005; Niemiec et al., 2020; Schwartz, 1977; van 

Valkengoed et al., 2025). This is distinguished from injunctive social norms, which are society-wide standards or socially 410 

approved ways of acting (Cialdini et al., 1991). While there is no consensus within psychology literature on the nature of 

relationships between the various norms, Niemiec et al. (2020) found personal and descriptive norms to be more significant 

predictors of behavioural intentions than injunctive social norms. However, personal norms are not formed in a vacuum but 

shaped by the existing social environment that provides information about socially approved ways of acting (Bamberg and 

Möser, 2007). Similarly, from a sociocultural perspective, personal values are socially constructed within a social system and 415 

reproduced through feedback processes: certain behaviours are assigned a social-cultural value or worth and reinforced as 

social practices (Demski et al., 2015; Godfray et al., 2018; Kendal and Raymond, 2019; Manfredo et al., 2017). In other words, 

people internalize injunctive social norms, at least in part, as personal norms (Bertoldo and Castro, 2016). 

We represent the internalization of injunctive norms by modelling the perceived social-cultural value, 𝑃𝑆𝑉, of the dietary 

behaviour based on long-term consumption patterns. Like descriptive norm perception, a reference long-term 𝐴𝐷𝐶 is modelled 420 

as an exponential smooth to represent the normal consumption level in the distant past, as shown in Eq. (14): 

𝐴𝐷𝐶:+259(𝑡) =	𝐴𝐷𝐶:+259(0)+ ∫ (
*%I!(𝜏)	)	*%I.-'*+(𝜏)

*+.-'*+ * 𝑑𝜏	
,
- , (14) 

where 𝐴𝐷𝐶:+259	is the reference long-term average daily consumption rate (kcal·p⁻¹·d⁻¹), 𝐴𝐷𝐶# is the perceived average daily 

consumption rate (kcal·p⁻¹·d⁻¹), 𝐴𝑇:+259 is the long-term time horizon (yr) under consideration, and 𝐴𝐷𝐶:+259(0) = 𝐴𝐷𝐶#(0).  

We assume that when 𝐴𝐷𝐶# is more (or less) than 𝐴𝐷𝐶:+259, the behaviour has become more (or less) institutionalized 425 

as a social practice, in turn adjusting 𝑃𝑆𝑉 proportionally. As sociocultural scholars contend, reproduction of social practices 

make social values sticky phenomena that require lasting long-term observation for change (Manfredo et al., 2017). A delay 

process is thus introduced for the adjustment of 𝑃𝑆𝑉 to its indicated value – see Eq. (15) and (16). 

𝑃𝑆𝑉(𝑡) = 	𝑃𝑆𝑉(0)+ ∫ (
&JL$(𝜏)	)	&JL(𝜏)

*+!)/ * 𝑑𝜏	
,
- , (15)   

𝑃𝑆𝑉/(𝑡) =	𝑃𝑆𝑉1 ∙ (1 + 𝛼."0 ∙
*%I!(𝑡)	)	*%I.-'*+(𝑡)

*%I.-'*+(𝑡) *	, (16) 430 

where 𝑃𝑆𝑉 is the perceived social-cultural value of the behaviour (dmnl), 𝑃𝑆𝑉/ is the indicated value (dmnl) that the stock 

adjusts to, 𝐴𝑇#7F is the averaging time (yr) for the social value perception, 𝑃𝑆𝑉1 is the normal perceived social-cultural value 

(dmnl), and 𝛼."0 is the sensitivity parameter for value perception (dmnl).  

𝑃𝑆𝑉1 is fixed at a normalized value of 1 since 𝑃𝑆𝑉 is conceptualized as a dimensionless relative variable. The sensitivity 

parameter, 𝛼."0, determines how aggressively 𝑃𝑆𝑉 adjusts to relative changes in long-term consumption patterns. In turn, 435 
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𝑃𝑆𝑉 provides the contextual information about societal standards that is internalized as a source of influence on personal 445 

norms. 

Personal norms are also shaped by the socio-ecological environment, which provides informational cues about risks and 

consequences of certain behaviours (Bamberg and Möser, 2007). For one, the perceived consumption risk (𝑃𝐶𝑅) represents 

the direct tangible impacts of overconsumption that pose a threat to people, adversely influencing moral beliefs and attitudes. 

For food and animal products, this is often tied to concerns over adverse health consequences and moral concerns over animal 450 

welfare (Berndsen and van der Pligt, 2005; Godfray et al., 2018). We model 𝑃𝐶𝑅 as the average daily consumption relative to 

a healthy reference level, 𝐴𝐷𝐶M259, with exponential smoothing applied to capture the delay for consequences to be observed, 

as shown in Eq. (17):  

𝑃𝐶𝑅(𝑡) = 	𝑃𝐶𝑅(0)+ ∫ (
*%I(O) *%I0'*+⁄ 	)	&IQ(O)

*+!%' *𝑑𝜏	
,
- , (17) 

where 𝑃𝐶𝑅 is the perceived consumption risk (dmnl), 𝐴𝐷𝐶 is the average daily consumption rate (kcal·p⁻¹·d⁻¹), 𝐴𝐷𝐶M259 is 455 

the healthy reference average daily consumption rate, 𝐴𝑇#02  is the averaging time (yr) to observe the consequences in 

consumption risk perception, and 𝑃𝐶𝑅(0) is the initial 𝐴𝐷𝐶 relative to 𝐴𝐷𝐶M259.  

𝐴𝐷𝐶M259  is set to the planetary health diet recommendation of 2500 and 304 kcal·p⁻¹·d⁻¹ for total food and animal 

products respectively, which accounts for both nutritional requirements and sustainable production (Willett et al., 2019). 𝑃𝐶𝑅 

is the second source of influence on personal norms. 460 

The third source of influence on personal norms is the perceived climate change risk, 𝑃𝐶𝐶𝑅, which is an input from the 

Climate Risk Perception module, described in the next section. Unlike 𝑃𝐶𝑅 that is based on direct observable consequences 

of overconsumption, 𝑃𝐶𝐶𝑅 stems from indirect consequences. Therefore, subjective attribution is necessary for connecting 

indirect climate consequences to behaviour (Ogunbode et al., 2019; Wong-Parodi and Berlin Rubin, 2022). 𝑃𝐶𝐶𝑅 represents 

the attribution of perceived changes in climatic conditions to climate change, more generally. It is then differentially attributed 465 

to personal norms surrounding specific behavioural domains. For instance, the same 𝑃𝐶𝐶𝑅 might have a stronger influence on 

reducing animal products demand (i.e., dietary shifts), than on reducing total food demand (i.e., reducing waste). 

The desired demand from personal norms, 𝐷𝐴𝐷𝐷#1, accounts for people’s response to all three informational sources. 

In psychophysical models of human perception, the sensation of the intensity of a certain stimulus is often modelled as power 

function (Stevens, 1975). The exponent in this power function tends to be less than 1 for social stimuli, indicating that people’s 470 

response diminishes with larger magnitudes due to desensitization from psychophysical numbing (Fetherstonhaugh et al., 

1997; Slovic, 2007). Others have also emphasized reference dependence in human judgments, where the magnitude of the 

stimulus is judged relative to a reference point, such as expected values or past experiences (Kahneman, 2011; Kahneman and 

Tversky, 1979). The power law has been applied to scale social phenomena, for quantifying responses to social influences 

(e.g., Stevens, 1975), humanitarian disasters (e.g., Slovic, 2007), and epidemic risks (e.g., Bagnoli et al., 2014; Noyes, 2021). 475 

Accordingly, we express 𝐷𝐴𝐷𝐷#1 as a scaled adjustment of 𝐷𝐴𝐷𝐷 to the three perceptions, as shown in Eq. (18): 
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𝐷𝐴𝐷𝐷#1(𝑡) = 	𝐷𝐴𝐷𝐷(𝑡) ∙ 	𝑃𝑆𝑉(𝑡)(!)/ ∙ 𝑃𝐶𝑅(𝑡)(!%' ∙ 𝑃𝐶𝐶𝑅(𝑡)(!%%', (18) 480 

where 𝐷𝐴𝐷𝐷#1 is the desired average daily demand from personal norms (kcal·p⁻¹·d⁻¹), 𝐷𝐴𝐷𝐷 is the desired average daily 

demand (kcal·p⁻¹·d⁻¹), 𝑃𝑆𝑉  is the perceived social-cultural value (dmnl), 𝑃𝐶𝑅 is the perceived consumption risk (dmnl), 

𝑃𝐶𝐶𝑅  is the perceived climate change risk (dmnl), and the dimensionless sensitivity parameters (𝛽 ) determine the 

responsiveness of personal norms to each perception.  

The perceptions, here, are already expressed as relative values, accounting for reference dependence. A multiplicative 485 

formulation is used since the effects are likely not independent: e.g., a high social-cultural significance attached to meat 

consumption (𝑃𝑆𝑉) weakens the moral imperative to protect the climate (𝑃𝐶𝐶𝑅). These perceptions, together, provide the 

social cues for adjusting 𝐷𝐴𝐷𝐷 upwards or downwards, contributing to the gradual habituation of new behavioural intentions 

guided by personal norms. For total food demand, a minimum caloric intake of 1800 kcal·p⁻¹·d⁻¹ is set for 𝐷𝐴𝐷𝐷#1 to prevent 

malnourishment under extreme scenarios. The MAXSOFT function (see Mathematical builtins, 2025) is used to smoothly 490 

transition 𝐷𝐴𝐷𝐷#1	towards the minimum with a tolerance of 100 kcal·p⁻¹·d⁻¹. 

3.2 Modelling perceived climate change risk 

Psychological models of climate risk perception generally consider four main determinants: experiential, cognitive, socio-

demographic and socio-cultural factors (van der Linden, 2015; Villacis et al., 2021). Experiential processes refer to affective 

evaluations of personal experience with climate change (e.g., exposure to extreme weather events) and/or indirect vicarious 495 

experience (e.g., media representations) that attach negative risk-as-feelings (Akerlof et al., 2013; Leiserowitz, 2006; van der 

Linden, 2015). Cognitive factors such as levels and accuracy of climate change knowledge underpin reasoning about risk 

severity and have found to be positively associated with climate risk perceptions (van der Linden, 2015; Xie et al., 2019). In 

our model, we express 𝑃𝐶𝐶𝑅 as a function of both experiential and cognitive processes as shown in Eq. (19):  

𝑃𝐶𝐶𝑅(𝑡) = 𝑃𝐶𝐶𝑅1 ∙ 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑡𝑖𝑎𝑙	𝑒𝑓𝑓𝑒𝑐𝑡(𝑡) ∙ 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒	𝑒𝑓𝑓𝑒𝑐𝑡(𝑡) , (19) 500 

where 𝑃𝐶𝐶𝑅 is the perceived climate change risk (dmnl) and 𝑃𝐶𝐶𝑅1 is the normal perceived risk set to an index value of 1 

(dmnl).  

𝑃𝐶𝐶𝑅 > 1 indicate that current climatic conditions are perceived as abnormal, whereas 𝑃𝐶𝐶𝑅 < 1 indicate better-than-

normal perceived conditions. A multiplicative formulation allows cognition to modulate experience: when knowledge about 

climate change is taken more seriously, affective responses to climate events are heightened and thus risk perception is 505 

amplified. We exclude socio-demographic factors (e.g., age, gender, income and educational level) in our model since they 

have been found to be relatively insignificant predictors (Xie et al., 2019). Socio-cultural factors, such as individual value 

orientations and norms surrounding climate mitigation (Xie et al., 2019), are implicitly included as weights assigned within 

the cognitive and experiential processes (i.e., averaging times and sensitivities). Pro-environmental values and norms, for 
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instance, would suggest a higher weight and therefore a stronger risk perception. Such socio-cultural factors are kept exogenous 

and captured as part of model-wide calibration due to the lack of time-series data for 𝑃𝐶𝐶𝑅, especially at the global level. 

3.2.1 Exposure 

In our model, the experiential effect captures affective responses to extreme weather events exposure and flooding exposure 515 

from sea level rise (SLR). Extreme weather events are modelled in the Climate module as climate indices (listed below) with 

record-breaking exposure, measured in indices·p⁻¹·yr⁻¹. The climate indices estimate the average exposure to at least one 

historically record-breaking weather event at the global scale, weighted by population (see Wells et al., 2025). Expressed as a 

function of global mean surface temperature anomaly (STA), the climate indices aggregate local record-breaking exposures 

calculated at the grid-cell level data from 35 climate models across seven metrics as found in Li et al. (2023): annual total 520 

precipitation, maximum 1-day precipitation, days with heavy precipitation, warm days, heatwave, sequential precipitation-

humid heatwave, and compound drought and heatwave. In the Climate Risk Perception module, the perceived extreme weather 

events exposure is modelled as an exponential smooth of climate indices to account for the perception delay, as in Eq. (20): 

𝑃𝑊𝐸(𝑡) = 	𝑃𝑊𝐸(0)+ ∫ (
0R/6.,5	/1"/057(𝜏)	)	&S=(𝜏)

*+!1* *𝑑𝜏	
,
- , (20)   

where 𝑃𝑊𝐸  is the perceived extreme weather events exposure (indices·p⁻¹·yr⁻¹), 𝑐𝑙𝑖𝑚𝑎𝑡𝑒	𝑖𝑛𝑑𝑖𝑐𝑒𝑠 represents the average 525 

exposure to extreme or record-breaking events (indices·p⁻¹·yr⁻¹), 𝐴𝑇#T5 is the averaging time (yr) to update perceptions of 

exposure, which also reflects the rate of discounting of new experiences, and 𝑃𝑊𝐸(0) is set to 𝑐𝑙𝑖𝑚𝑎𝑡𝑒	𝑖𝑛𝑑𝑖𝑐𝑒𝑠(0).  

Since human judgments are reference dependent, Osberghaus (2017) argues that climate change responses are dependent 

on people’s reference for the baseline climate condition. Importantly, perceptions of normality changes over time as people 

acclimatize – i.e., what is defined as abnormal today could become the new normal at a later point in time (Hulme et al., 2009; 530 

Osberghaus, 2017). Consequently, not only does the sensation of risk marginally diminish as exposure increases (from the 

power law), but it further declines over time as the reference condition updates to a newer normal. The reference exposure,	
𝑃𝑊𝐸259 , is an exponential smooth of 𝑃𝑊𝐸 to model updating reference conditions, as shown in Eq. (21): 

𝑃𝑊𝐸259(𝑡) =	𝑃𝑊𝐸259(0)+ ∫ (
&S=(𝜏)	)	&S='*+(𝜏)

*+!1*<	*+'!1* * 𝑑𝜏	
,
- , (21)   

where𝑃𝑊𝐸2590 = 𝑃𝑊𝐸(0) 535 

The additive formulation ensures that the perception of the reference condition can never update faster than perceptions 

of the present condition (e.g., in multivariate sensitivity analyses). This representation is consistent with definitions of the 

reference climate condition as a rolling experienced past, used to “anomalize” the present condition (Hulme et al., 2009; 

Osberghaus, 2017). In other words, the present exposure to extreme weather events is considered abnormal only if it exceeds 

the average exposure from the experienced past. While this updating reference condition captures the psychological adaptation 540 

process, it could also relate to physical adaptation of the built environment to accommodate higher extreme exposures. 
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Exposure to SLR is included as a distinct input to the experiential effect for two reasons. First, unlike temperature-related 560 

weather events, SLR impacts are directly experienced by relatively smaller coastal populations. Second, SLR impacts manifest 

as flooding, which people tend to associate with local storm surges rather than SLR and global climate change (Akerlof et al., 

2017). Nevertheless, SLR communication may still capture public imagination as the magnitude of its impacts increases in the 

future, providing a vicarious experience to the broader global population for influencing risk perceptions (Akerlof et al., 2013, 

2017). The SLR sub-module in the Climate module computes changes in sea level from climatic processes, whereas the SLR 565 

Impacts and Adaptation sub-module in the Economy module estimates the number of people exposed to SLR-induced floods 

from coastal populations, measured in Mp⁻¹·yr⁻¹ (see Ramme et al., 2025). The sensation of SLR exposure is similarly 

modelled as function of both the perceived SLR flooding exposure (𝑃𝑆𝐸) and the reference normal level, 𝑃𝑆𝐸259. 𝑃𝑆𝐸 is an 

exponential smooth of the exposure metric (Mp⁻¹·yr⁻¹) from the SLR sub-module. For 𝑃𝑆𝐸259, however, there is a conceptual 

difference: perceptions of risk or abnormality are sensed only when the extent of the exposure is large enough to warrant global 570 

media attention. Therefore, we constrain 𝑃𝑆𝐸259 to a minimum reference value, as shown in Eq. (22) and (23): 

𝑃𝑆𝐸259(𝑡) =	𝑃𝑆𝐸259(0)+ ∫ (
U*>B&J=2$3'*+,	&J=$'*+(𝜏)	D	)	&J='*+(𝜏)

"W * 𝑑𝜏	
,
- , (22)   

𝑃𝑆𝐸/259(𝑡) =	𝑃𝑆𝐸259(𝑡)+	
&J=(𝑡)	)	&J='*+(𝑡)

*+!)*<	*+'!)*
∙ 𝑑𝑡	, (23)   

where 𝑃𝑆𝐸259  is the reference perceived SLR flooding exposure (Mp⁻¹·yr⁻¹), 𝑃𝑆𝐸6/1259  is the minimum reference SLR 

flooding exposure (Mp⁻¹·yr⁻¹),	𝑃𝑆𝐸/259 is the indicated reference perceived SLR flooding exposure (Mp⁻¹·yr⁻¹), 𝐴𝑇#75 is the 575 

averaging time (yr) to update perceptions of SLR exposure, 𝐴𝑇2#75 is the additional time horizon (yr) for updating the reference 

perceived SLR exposure, and 𝑃𝑆𝐸259(0) = 𝑃𝑆𝐸(0).   

𝑃𝑆𝐸/259 is the instantaneously calculated indicated reference value that accounts for the updating process of the normal 

condition over the much longer time horizon. The MAX function in Eq. (22) ensures that 𝑃𝑆𝐸/259	updates only if the computed 

indicated value is larger than the minimum reference value, 𝑃𝑆𝐸6/1259. In doing so, it prevents 𝑃𝑆𝐸259 from falling below the 580 

minimum threshold for risk perception.  

Following the psychophysical power law, the experiential effect of climatic events on risk perception is expressed as a 

power function of both inputs normalized to their respective reference conditions, as shown in Eq. (24):  

𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑡𝑖𝑎𝑙	𝑒𝑓𝑓𝑒𝑐𝑡(𝑡) =	(
&S=(𝑡)

&S='*+(𝑡)
+	 &J=(𝑡)

&J='*+(𝑡)*
(*4!

, (24)   

where 𝛽5K# is the sensitivity of 𝑃𝐶𝐶𝑅 to changes in perceptions of climatic events exposure: perceived extreme weather events 585 

(𝑃𝑊𝐸) and perceived SLR flooding (𝑃𝑆𝐸).  

We use an additive formulation since temperature-related weather events and SLR-induced flooding are conceptualized 

as independent sensory experiences that accumulate in the individual and collective human imagination (Hulme et al., 2009). 
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Moreover, since SLR impacts are negligible for most of the historical period and only expected to cross the minimum reference 595 

in a future point in time, 𝛽5K# is set to be one and the same for both types of climatic events. 

3.2.2 Cognition 

To model the cognitive influence of climate change knowledge on risk perception, we use information about 𝑆𝑇𝐴, measured 

in °C, as a proxy for knowledge. Here, changing levels of 𝑆𝑇𝐴 are taken to be positively associated with awareness-raising 

initiatives to raise climate change knowledge. As 𝑆𝑇𝐴 increases over time, knowledge of global warming (i.e.,	𝑆𝑇𝐴#) increases 600 

with a perception delay. 𝑆𝑇𝐴# (in °C) is modelled with a third-order exponential smooth, where the input is smoothed three 

times over a total averaging time, 𝐴𝑇7,. (yr). Multistage or higher-order exponential smoothing provides a much more gradual 

and smoother updating of climate information, which is required to account for delays in scientific information gathering, 

reporting, and eventually broader societal awareness-raising (Sterman, 2000). This contrasts with other first-order perception 

delays, such as those related to climatic events, which are more immediate and readily perceived by people. 𝐴𝑇7,.  also 605 

functions as a weight given to climate information: smaller values would indicate stronger receptivity (cf. socio-cultural 

factors), enabling a faster updating of awareness, and vice versa. Climate information is further valuated against a reference 

‘normal’ condition,	𝑆𝑇𝐴#259 . Just as people acclimatize to abnormal climatic conditions over time, people could become 

desensitized to increasing climate change knowledge over time (e.g., climate fatigue). Hence, 𝑆𝑇𝐴#259 similarly updates over 

time to account for the desensitization following Eq. (25): 610 

	𝑆𝑇𝐴#259(𝑡) =		 𝑆𝑇𝐴#259(0)+ ∫ M
J+*!(𝜏)	)		J+*!'*+(𝜏)

*+)5&<	*+')5& N 𝑑𝜏	
,
- , (25)   

where 𝑆𝑇𝐴#259  is the reference perceived surface temperature anomaly (°C), 𝑆𝑇𝐴#  is the perceived surface temperature 

anomaly (°C), 𝐴𝑇7,. is the averaging time to report and perceive climate information (yr), 𝑆𝑇𝐴#259(0) = 𝑆𝑇𝐴#(0)𝐴𝑇27,.	is 

the additional time horizon (yr) for updating the reference, and 𝑆𝑇𝐴#259(0) = 𝑆𝑇𝐴#(0). 

𝐴𝑇27,.	 also determines the rate at which climate information is discounted over time. A smaller time horizon suggests 615 

that people evaluate global warming less seriously (cf. socio-cultural factors), since the reference condition updates more 

quickly and shifts the reference point to the right for the evaluation. The cognitive effect is then expressed as a power function 

of this climate information evaluation as shown in Eq. (26): 

𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒	𝑒𝑓𝑓𝑒𝑐𝑡(𝑡) =	(
J+*!(𝑡)

J+*!'*+(𝑡)*
(%("

, (26)   

where 𝛽03! is the sensitivity of 𝑃𝐶𝐶𝑅 to changes in perceptions of climate information about 𝑆𝑇𝐴 (dmnl). Since the cognitive 620 

effect is multiplicative, risk perception is modulated by climate information: i.e., when climate knowledge is taken more 

seriously, 𝑃𝐶𝐶𝑅 is amplified. 
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4 Model calibration and uncertainty analysis 625 

The above formulations were implemented in Stella Architect 3.8 (isee systems) with a simulation horizon from 1980 to 2150 

and a time-step of 1/8 using the fourth-order Runge-Kutta (RK4) integration method. Given the high level of aggregation in 

FRIDA, where the dynamic complexity of main system-wide feedback processes is prioritized over specificity, uncertainty is 

inherent in the model’s parameterization. A multi-step protocol was, therefore, developed for parameter estimation under deep 

uncertainty and presentation of results as an ensemble of runs, reporting the sample median and uncertainty range (see 630 

Schoenberg et al., 2025b).  

First, model calibration was performed in Stella Architect, which uses Powell’s BOBYQA algorithm (Powell, 2009). For 

parameters without known ranges from data or literature, a wide range was set based on prior belief. The calibration process 

minimized the squared error between observed and simulated data across seven model variables for the historical period 

between 1980 to 2020: animal products production, animal products demand, crop production, vegetal products demand 635 

(subset of crops used for food), average daily animal products demand per capita, average daily vegetal products demand per 

capita, and average daily food demand per capita. The calibration data were obtained or calculated from Food and Agriculture 

Organization of the United Nations (FAO, 2024), assuming demand equates to available caloric supply at retail. Hence, demand 

includes consumer food waste. We performed partial model calibration of parameters in the Behavioural Change module and 

the GDP-driven model, separately, to prevent errors from propagating to other modules in FRIDA. It should be noted that all 640 

three sub-modules within the Behavioural Change module were calibrated together due to the lack of reliable time-series for 

Climate Risk Perception. In other words, climate risk parameters were calibrated to fit both total food and animal products 

data simultaneously. The calibration parameters and estimated values are reported in Appendix A.  

Figure 3 presents the default model run using the calibrated values, for both our endogenous modelling framework and 

GDP-driven model, which does not yet account for uncertainty within that calibration. We refer to the simulated behaviour 645 

produced by FRIDA v.2.1 that incorporates our modelling framework as the endogenous model behaviour (hereafter, EMB). 

Even though both models provide a good fit to data for the historical period between 1980 and 2020, our framework performs 

marginally better when comparing the root mean squared error (RMSE) that quantifies the error between the simulated and 

observed data. The total RMSE for animal products production, animal products demand, crop production and vegetal products 

(Fig. 3a-d; measured in Pcal·yr⁻¹) for the default EMB is 484.34, lower than the 498.75 for the default GDP-driven behaviour. 650 

As for the average daily animal products, vegetal products, and total food demand (Fig. 3e-g; measured in kcal·p⁻¹·yr⁻¹), the 

total RMSE for EMB is 61.11 compared to 64.18 for GDP-driven. Despite the marginal difference in performance for the past, 

the difference in structure for the two models generates significantly different future projections, as will be shown in the next 

section. 

Given the lack of quantitative measurements for the Climate Risk Perception module, we qualitatively assess the 655 

calibrated PCCR, as depicted in Fig. 3h, against available literature. Psychological inventories measuring climate change risk 

perceptions are relatively recent developments (e.g., Libarkin et al., 2018), and even then collected data tend to be analysed 
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cross-sectionally rather than temporally. Nevertheless, Capstick et al. (2015) provide an international and temporal analysis of 

public opinion surveys and polls. Briefly, they found that basic climate change knowledge and awareness burgeoned in the 

1980s, which resulted in a rapid growth in public concern between the mid-1980s and early 1990s. Despite some fluctuations, 660 

public concern saw a sustained growth from the mid-1990s to mid-2000s, alongside increased scientific and media attention. 

From the mid- to late-2000s, they found growing climate scepticism in some parts of the world, but globally, the decline in 

public concern was offset by increased concern from other regions. Since the 2010s, they suggest that public concern has 

stabilized and, in some cases, increased. More recent survey polls, as found in van Valkengoed et al. (2023), further indicate 

that public concern has been gradually increasing since the late-2010s. Though not from validated psychometric measures, 665 

these findings may be indicative of the dynamic development in risk perception. The EMB produced by our modelling 

framework broadly captures these major trends, following a somewhat s-shaped curve. Regardless, without validated time-

series for partial model calibration of the module, the uncertainty in this calibration remains irreducible. 

 

 670 
Figure 3: Comparison of simulated single-run EMB produced by our modelling framework (black solid line) against GDP-driven 
behaviour produced by changes in income (blue dashed line) and observed data points (in red). 
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Relying on single model runs, as above, misrepresents the model’s precision because it does not account for the deep 

uncertainty in the calibration process. To represent this calibration uncertainty, the second step in the protocol reduces the prior 

sampling range of parameters to a likely range. The algorithm determines a likely range for each parameter independently by: 675 

(i) finding the maximum value and minimum value before the likelihood drops below 1/1000th of the maximum likelihood 

found via calibration and (ii) symmetrizing the range using the minimum distance between a discovered endpoint and the 

calibrated value without breaking the prior range. The likelihood is the probability that the model, with a given set of 

parameters, reproduces historical data. The estimated uncertainty ranges for each parameter are reported in Appendix A. The 

algorithm was not able to determine a likely range for 𝐴𝑇2#75 (additional time horizon of reference SLR flooding) since it has 680 

no historical impact. However, since it impacts future projections, we externally loaded a range with a variance of ±15% from 

the calibrated value. This relatively narrow range represents only a gradual desensitization to SLR flooding, which is projected 

to have significant cascading societal and economic impacts (Akerlof et al., 2017; Ramme et al., 2025). As for the GDP-driven 

model, the parameters were not reduced using the algorithm due to the associated computational costs – except for the time 

constant, 𝐴𝑇!"#, which is used elsewhere in the EMB. Instead, we used local sensitivity analyses to select sufficiently wide 685 

ranges that represented the maximum possible variance while still accurately capturing historical data. 

Thereafter, we performed multivariate sensitivity analysis using Sobol Sequences sampling (Sobol’ and Levitan, 1999) 

across all uncertain parameters in FRIDA, including those in other modules, for EMB and GDP-driven models separately (see 

Rajah (2025) for the full list of varied parameters along with the ranges). This produced two sets of 100,000-run ensembles, 

with the median plotted alongside the 67% and 95% confidence intervals. Sample runs that do not complete due to overflow 690 

and divide errors are excluded from the ensemble, and all remaining ensemble runs are equally weighted. Given the small 

sample size relative to the number of parameters varied, likelihood weighting was not applied to the ensemble runs since doing 

so would have resulted in too few runs being included in the uncertainty range. Therefore, the ensembles include runs with 

low statistical likelihood and results in a larger uncertainty range than if we were to weight the runs by likelihood with a 

sufficiently large sample size. 695 

5 Simulation results and discussion 

Figure 4 presents the baseline results of the key indicators for dietary behaviour, comparing the performance of our endogenous 

modelling framework (i.e., EMB) to the GDP-driven model. In general, we observe that future projections for GDP-driven 

food demand are higher than our EMB. GDP-driven animal products demand (Fig. 4d) increases at a diminishing rate to 3980 

Pcal·yr⁻¹ by 2150, 95% CI [2352, 6593]. Whereas the median vegetal products demand (Fig. 4e) peaks at 10986 [8828, 13683] 700 

Pcal·yr⁻¹ around 2120 before gradually declining to 10864 [8059, 14319] in 2150. The slowing growth and even decline in 

demand, however, is largely attributed to the decline in the global population towards the end of the simulation (Fig. 4f) due 

to reduced fertility from increased literacy and income, and increased mortality from climate damages. Accounting for 

population and unit conversion, we arrive at developments in the various average daily food demands (Fig. 4a-b) that increase 
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throughout the simulation duration to high figures, especially at the global scale: total food demand reaches 4230 [3387, 5526] 705 

kcal·p⁻¹·d⁻¹ in year 2150 with animal products constituting about 27 [22, 31] % of food demand. These results are unsurprising 

since demand is unbounded, allowing it to increase so long as real income increases. 

 

 
Figure 4: Comparison of simulation results for EMB (in black) and GDP-driven (in blue) 100,000-member ensembles across key 710 
dietary performance indicators in the human system, with confidence intervals. 

On the other hand, our endogenous modelling framework captures people’s dynamic response to changes in their social-

ecological environment, which results in considerably lower future estimates across all food-related indicators. The median 

average daily food demand (Fig. 4c) peaks around 2070 at 3175 [2990, 3373] kcal·p⁻¹·d⁻¹, then declines to 3083 [2669, 3727] 

by 2150. In contrast, the average daily animal products demand (Fig. 4a) peaks earlier in 2060 at 697 [624, 781] kcal·p⁻¹·d⁻¹, 715 
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drops to 507 [413, 777] by around 2140, and gradually increases to 510 [417, 856] by 2150. This translates to a share of about 

22 [21, 23] % in 2060, 16 [15, 21] % around 2140, and 17 [16, 23] % by 2150. This trend indicates that more people, on 

average, are likely to reduce their overall intake and shift their diet composition, substituting animal products with vegetal 

products. Daily vegetal products demand (Fig. 4b), however, is dependent on the dynamics of the other two: the median peaks 

at around 2140, when animal products demand is at its minimum, at 2560 [2250, 2924] kcal·p⁻¹·d⁻¹, or 83 [83, 80] % share, 720 

and stabilizes thereafter, given that the more pronounced decline in animal products demand drives a substitution that outpaces 

the overall decline in food demand.  

However, considering the confidence bounds, dietary behavioural change is uncertain. For instance, we observe sample 

runs in the lower bound that result in more marked reductions in total food demand, allowing vegetal products demand to peak 

earlier and decline more considerably – i.e., reduction exceeds diet substitution. As for the upper bound, more concerning 725 

dynamics are observed: both daily food demand and animal products demand decline for a period before increasing once again 

towards the end of the simulation. In fact, a slight increase in daily animal products demand has already been observed in the 

median. Consequently, there is a declining share of vegetal products demand at the 97.5th percentile despite higher quantities 

being demanded: between 2120 and 2150, the quantity demanded increases from 2779 to 2941 kcal·p⁻¹·d⁻¹, but the share 

declines from 83 to 78%. In other words, the increased overall caloric food intake toward the end of the simulation is 730 

accompanied by a faster rate of increase in animal products demand compared to vegetal products. These results suggests that 

there are plausible scenarios where sustainable dietary behavioural change reverses. 

To account for such complex dietary behavioural changes, Figure 5 presents the simulation results of the key explanatory 

variables for endogenous behavioural responses modelled within our framework. Average daily animal products demand and 

total food demand are driven by the relative importance of perceived accessibility, descriptive norm, and personal norms, as 735 

depicted in Fig. 5a and 5b respectively. The perceived accessibility of food products exerts an upward pressure on dietary 

behaviour. The perceived food accessibility increases steadily over time (Fig. 5b) mostly from a sustained increase in real 

income; although in the lower bound of the 95% CI, real income and thus accessibility declines sometime after 2120 from 

climate-driven inflation in the Economy module. As for animal products, income and relative scarcity determine the accessible 

share of animal products in diets. Consequently, a declining desired caloric intake (i.e., total food demand) could lead to a 740 

reduced animal products demand despite increased desired animal products shares (depending on the relative rate of change). 

The perceived accessible animal products demand therefore starts slowing down around 2070, as total food demand declines, 

but increases again as animal products are relatively less scarce than vegetal products as well as the behavioural change reversal 

in the 95% CI of total food. 
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 745 
Figure 5: Simulation results from the 100,000-member EMB ensemble for key explanatory variables in the Behavioural Change 
module, with 67% and 95% confidence intervals. 

For the first half of the simulation, people are most responsive to this perceived accessibility of food products from 

changing socioeconomic conditions, giving it relatively more weight in their behavioural intentions as shown in Fig. 5d. As 

income levels in developing regions catch up, more people can increase their food consumption not only to meet nutritional 750 

needs but also to signal changes in socioeconomic class. This is reinforced by the descriptive norm process that exerts a 

conformity pressure to increase consumption. Hence, we observe increased per capita demand during this period of nutrition 

transition in many parts of the world – i.e., increased caloric intake and higher composition of animal products in diets 

(Schmidhuber and Shetty, 2005). During this period, the perceived climate change risk (PCCR; Fig. 5c) and perceived 

consumption risk (PCR; Fig. 5f) exert a downward pressure on personal norms and therefore behavioural intentions. While 755 

these balancing feedback loops dampen the rate of growth of in demand, they are weaker than the more dominant reinforcing 

socio-cultural process that assigns more perceived social value (PSV) to the food product (Fig. 5e) as it is consumed more.  

At this juncture, it is important to reiterate that PCCR, PCR and PSV are not independent factors; rather they interact 

multiplicatively to shape personal norms and, by extension, dietary intentions. While the feedback effects are interdependent, 
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the calibrated weights offer insight into the relative influence of each feedback process. For total food demand, the median 

sensitivity to PSV is estimated at 0.936, while sensitivities to PCR and PCCR are –0.798 and –0.138, respectively. In the case 

of animal products demand, the corresponding median estimates are 0.974 for PSV, –0.724 for PCR, and –0.407 for PCCR. 765 

These figures highlight the dominant role of perceived social value in shaping demand, while also illustrating the moderating 

effects of perceived consumption risk and climate change risk. On average, individuals are least responsive to PCCR, with this 

effect being more pronounced for total food demand than for animal products demand. This pattern reflects real-world 

dynamics, as climate change is more strongly associated with meat consumption; that is, people are likely to reduce their 

animal products demand more than their overall caloric intake. 770 

As income increases beyond a threshold, socioeconomic considerations wane and people become less bounded by 

perceived accessibility, as described in Sect. 3. Therefore, in the latter half of the simulation, more people act upon their moral 

and social motivations, giving more weight to their personal norms and descriptive norm. In extreme conditions, where GDP 

declines in the 95% CI from inflation, we observe that more weight is given to accessibility once again as shown in Fig. 5d. 

Nevertheless, during this period the balancing feedback from perceived risks from climate change and overconsumption, 775 

particularly for animal products, is strengthened as conditions get progressively worse. In turn, these loops can effectively 

counteract the reinforcing processes related to descriptive norm and social value perception, turning them from a vicious cycle 

to a virtuous one from a mitigation perspective. The descriptive norm process is adaptable, adjusting the current desired 

demand upwards or downwards depending on the directionality of changing social trends. Similarly, a sustained reduction in 

consumption would reinforce lower assigned social value to the consumption practice – albeit gradually, given the stickiness 780 

of culture. The net effect is the second nutrition transition (Vranken et al., 2014), where more people substitute their animal 

products consumption and reduce their caloric intake in response to heightened perceived threats as well as changing social-

cultural processes. 

Importantly, this second nutrition transition may not be an enduring phenomenon since the balancing feedback processes 

weaken over time. First, the perceived consumption risk corrects itself as shown in Fig. 5f. The threat of overconsumption 785 

alleviates as people reduce their consumption, particularly for animal products. Second, the desensitization and gradual 

psychophysical adaptation in climate risk perception, as shown in Fig. 5g-i, create reinforcing processes that actively work 

against the balancing effect of PCCR. These processes push the reference conditions for what are considered ‘normal’ in the 

evaluation process. Hence, we observe PCCR (Fig. 5c) reaches a maximum before gradually declining over time – especially 

due the quick adaptation in climate information and slowing frequency of extreme events frequency. Therefore, towards the 790 

end of the simulation, the net effect is a shift in dominance back to the reinforcing loops that are part of descriptive and personal 

norms. As threat perceptions wane, people are more sensitive to these processes that not only make rising consumption 

relatively more common, but also more valued. In turn, we observe the reversal in dietary behavioural change within the 

uncertainty range. 

Downstream dietary behaviour at the per capita level propagates upstream to determine total demand, which is also 795 

affected by population changes. In general, a declining population could result in a decline in total demand despite individual 
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behavioural changes. The total vegetal products demand (Fig. 4e) therefore declines in the latter half of the simulation even 

though per capita demand increases. However, the reversal in diet shifts offsets the decline in population for both animal 

products and vegetal products demand, leading to increasing total demand within the upper bound of the EMB 95% CI (see 

Fig. 4d-e). Animal products production (Fig. 4g) responds to changes in demand and therefore follows a similar development. 

Animal production then affects the climate system through CH4 and N2O emissions as well as land use changes for grazing. 810 

Crop production, however, is not solely determined by vegetal products demand; it also responds to other crop uses including 

bioenergy and, importantly, animal feed to support intensified animal products production. As a result, crop production (Fig. 

4h) does not decline despite decreasing vegetal products demand. Crop production affects the climate system through land use 

changes for cropland as well as N2O emissions from fertilizer use. Even with reversals in behavioural change within the 

uncertainty range, we observe that baseline projections for total demand and production are still lower in the EMB compared 815 

to GDP-driven behaviour. 

 As mentioned, production dynamics have consequences for climate projections, as depicted in Fig. 6. CH4 and N2O 

emissions are directly influenced by animal products production and crop production; while land use transitions for food 

production affect CO2 emissions (Friedlingstein et al., 2024). After 2060, greenhouse gases emission rates from Land Use and 

Agriculture (Fig. 6a-c) are projected to be considerably lower in the EMB. In turn, we project a slightly cooler climate baseline 820 

in the future, as shown in Fig. 6d: EMB median STA of 3.16 [2.07, 4.83] °C in 2100 and 3.56 [2.14, 6.17] °C in 2150, compared 

to the projected 3.21 [2.11, 4.90] °C in 2100 and 3.67 [2.22, 6.31] °C in 2150 from the GDP-driven model. Similarly, we 

observe a slightly lower EMB median SLR of 0.65 [0.41, 1.05] m in 2100 and 1.13 [0.67, 2.03] m in 2150, compared to the 

GDP-driven 0.66 [0.41, 1.06] m in 2100 and 1.16 [0.68, 2.07] m in 2150 (Fig. 6e). There is considerable overlap in the 

confidence bounds for STA and SLR, as dietary behaviour only contributes a fraction of total emissions. Other high-impact 825 

behaviours influencing energy demand are still modelled as functions of GDP in FRIDA v2.1 (for more details, see Schoenberg 

et al., 2025b). Including endogenous behavioural change for these other sources of human behaviour could result in more 

significant differences in STA and SLR projections between the EMB and GDP-driven simulations. 
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Figure 6: Comparison of simulation results for EMB (in black) and GDP-driven (in blue) 100,000-member ensembles across key 
performance indicators in the climate system with confidence intervals. 

6 Conclusions 

In this paper, we have documented the conceptualization and quantification of our endogenous behavioural change modelling 835 

framework. This framework models dietary behaviour, specifically daily average food demand and consumption, as a function 

of complex social-economic-cultural-environmental feedback processes related to perceived accessibility, descriptive norms, 

and personal norms, constrained by accessibility and past behaviour. In doing so, we close one human-climate feedback loop 

that captures the dynamic human behavioural response to changing climatic conditions, addressing a current gap in most state-

of-the-art IAMs.  840 

To evaluate the performance of our endogenous modelling approach, we compared the results of our baseline EMB 

against the baseline produced by the more common GDP-driven approach. Our findings indicate that while both approaches 

can acceptably reproduce historical data, our approach results in considerably lower future projections across key human-

climate system indicators. As explained in the previous section, our endogenous framework captures how individuals adapt to 

their changing social-ecological environments such as improved socioeconomic conditions, shifting norms, and changing risk 845 

perceptions. In response, people may alter their dietary behaviours favourably from a climate mitigation perspective – even in 

the absence of targeted policies for facilitating pro-environmental behavioural change. We consequently observe relatively 

cooler future baseline climate projections by endogenizing human behaviour. In contrast to our endogenous behavioural change 
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framework, GDP-driven models assume that human consumption increases proportionally with income, largely ignoring the 

complex feedback dynamics internal to the human system. Since most IAMs project rising real GDP over the simulation 

horizon, models using the GDP-driven approach may result in systematically inflated demand projections that do not account 

for behavioural changes. Such inflated projections feed into the climate system and result in relatively warmer climate futures 860 

and potentially overstating mitigation challenges. By demonstrating how complex behavioural feedback can dampen future 

demand trajectories, our results lend further support to calls for incorporating endogenous behavioural responses into climate 

modelling and IAMs (e.g., Beckage et al., 2020, 2022). 

Recognizing this potential overestimation problem, others have tweaked the GDP-driven model for more realistic 

projections. For instance, Bijl et al. (2017, p.48) state that “Since real income can increase dramatically over long time periods, 865 

decreasing income elasticities are an essential part of our long-term food demand model.” Not only do they decrease the 

elasticities, but they also set a maximum intake of 3500 kcal·p⁻¹·d⁻¹. While this formulation can reproduce the inverted-u 

relationship between income and demand, it does not provide a process-based explanation for this phenomenon. Our 

framework explains this as part of the socioeconomic process, where certain food products become commodified and lose their 

symbolic significance as they become more affordable. In turn, other sources of behavioural motivations become more salient 870 

determinants in dietary decisions, allowing demand to be effectively moderated without including arbitrary bounds. 

Using an uncertainty approach, our simulation results account for a range of plausible behaviours within the 95% 

confidence bounds. This allows for probabilistic scenario analyses that cannot be achieved with the externally imposed 

socioeconomic narratives used in the Shared Socioeconomic Pathways (SSP) framework. Several process-based IAMs (e.g., 

IMAGE, GCAM, MESSAGE-GLOBIOM, REMIND-MAgPIE) use the SSPs to parameterize future scenarios in model runs. 875 

While SSPs provide a useful framework for consistency across climate models, such scenarios are non-probabilistic and treat 

human behaviour as exogenous and static, limiting the ability to capture human-climate feedback dynamics (Beckage et al., 

2022). Moreover, while IAMs used for economic optimization (e.g., DICE, MIND, ReMIND) can be run probabilistically, 

these models do not model human behaviour in a process-based manner. Rather, behavioural outcomes are the result of 

optimization (typically for cost minimization or utility maximization), which reflect the best possible outcomes achievable 880 

under the assumption of full behavioural control. Consequently, these models do not generate probabilistic scenarios for human 

behavioural choices or the associated climate outcomes. In contrast, our fully coupled endogenous modelling approach allows 

us to explore a range of simulated probabilistic futures within a process-based IAM framework without relying on external 

scenarios nor optimization.  

Beckage et al. (2022) contend that the increased input uncertainty space from endogenizing human behaviour may not 885 

necessarily increase output uncertainty since behavioural responses create balancing feedback. While we do not disagree with 

this premise, our results suggest that this is only the case if the balancing loops dominate the model behaviour. Compared to 

the GDP-driven model, our endogenous framework results in tighter confidence bounds since we account for important 

balancing loops. However, we also observe an expanding uncertainty space (e.g., see animal products demand) towards the 

end of the simulation due to the shift in dominance from balancing to reinforcing processes, as explained in Sect. 5. This 890 
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highlights the need for sufficient dynamic complexity in any representation of behavioural processes to fully account for output 

uncertainty. Nevertheless, we agree that endogenizing human behaviour provides a tighter constraint on the input uncertainty 905 

space (and possibly the output space) compared to exogenous imposed behavioural scenarios that typically cover a much wider 

input space (Beckage et al., 2022). 

Our uncertainty analysis further shows that while climate-friendly behavioural change may occur in the future, this shift 

may not endure. While the second nutrition transition (cf. Vranken et al., 2014) occurs as more people become responsive to 

the downward pressures from personal and social norms, embedded reinforcing social-cultural processes may facilitate a third 910 

unfavourable transition from the system’s resistance. As emphasized, the strength of balancing feedback loops weakens over 

time: reducing consumption alleviates the risk of overconsumption, while desensitization or adaptation reduces the perceived 

climate risk. In turn, social-cultural processes could work to reinforce increasing consumption trends once again. Such 

reversals in behaviour change have not been reported in existing models, likely due to their lower dynamic complexity. 

Beckage et al. (2018) represent the behavioural response as a single major balancing loop driven by frequency of extreme 915 

events. Apart from exogenous variations in associated parameters, an increasing frequency over the simulation horizon would 

always create a strong downward pressure since people do not adapt to worse conditions. In Eker et al. (2019), the endogenous 

behavioural processes only act on the fractional rate of meat-eaters shifting to vegetarianism, while the fractional rate of 

vegetarians becoming meat-eaters is dependent only on income. Further, changes in the average composition of each dietary 

type are externally imposed under different scenarios. These structures restrict the model’s ability to capture more complex 920 

behavioural shifts. In contrast, the increased dynamic complexity in our framework creates more nonlinearities and allows for 

a wider range of plausible behaviours, including runs where climate-friendly behavioural change reverses over time. 

Our modelling framework is not without limitations. It is primarily designed to be embedded in FRIDA and thus is 

bounded by FRIDA’s level of aggregation and specificity, especially at the supply-side. For instance, modelling prices for 

aggregate food (vegetal and animal) products was deemed impractical at the global scale, thereby necessitating a simplification 925 

to scarcity. Modelling relative price/scarcity was also challenging without disaggregation of appropriate meat-alternatives as 

well as the vegetal-products-demand satisficing assumption. Consequently, we used the overall crop supply-demand balance 

(including feed, biofuel etc.) instead of only vegetal food products balance to approximate scarcity of meat-alternatives. This 

ensures that we account for newer sources of crop demand, including novel plant-based meat-alternatives, that compete with 

traditional crop farming (Newton and Blaustein-Rejto, 2021). Such simplifications for relative prices can be addressed in more 930 

disaggregated models.  

Similarly, FRIDA does not explicitly model the concept of food waste as a separate process. As a result, waste is included 

in both food production and demand figures. This simplification reflects the current lack of consistent time-series data on 

actual household demand and consumption, which limits the ability to calibrate the model to waste-adjusted consumption 

levels. Consequently, there is a discrepancy between the consumption rate (which includes waste) and target healthy reference 935 

level (which excludes waste). This reference level is not scaled with a waste multiplier to avoid embedding waste as a 

normative component of a healthy diet. This modelling choice ensures that the benchmark remains waste-free and motivates 
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the reduction of demand, whether through lower actual consumption or reduced waste. Future work could address this 

limitation by explicitly modelling food waste as a distinct, endogenously evolving quantity. That is, the behavioural feedback 

processes would influence both actual consumption and food waste separately, enabling a more nuanced representation of 

dietary behaviours. 

We have modelled the aggregate per capita demand, while noting variation in behaviours among individuals (across and 945 

within regions) around the average values. Heterogenous socio-demographic factors and value orientations are, instead, 

implicitly captured in the calibrated estimates of weights and sensitivities given to endogenous factors or processes. Further 

work is underway for policy analysis, including varying these parameters to simulate scenarios with shifting values and social 

identities over time. Future work could also complement this framework by modelling endogenous value shifts to influence 

such parameters. For instance, the recent development in modelling lifestyle shifts (Pettifor et al., 2023, 2024) could be a 950 

potential avenue. While psychologists warn that pro-environmental behavioural propensities should not be used to infer 

behaviours that occur in in a dynamic context (Lange and Dewitte, 2019), lifestyle shifts can be used to approximate shifts in 

values and social identities at the population-level. In turn, these dynamics could endogenously influence relevant sensitivity 

parameters in our context-specific behavioural model. 

Our endogenous behavioural change modelling can be further adapted and applied to energy-related high-impact 955 

behaviours such as heating/cooling energy demand and transportation energy demand in future versions of FRIDA. The various 

energy demands in the present version are modelled primarily as functions of GDP per capita. This has consequences for future 

projections more broadly, and the simulation results presented here. For instance, climate impacts in terms of STA and SLR 

could be overestimated due to potentially inflated energy demand projections. If we were to fully endogenize energy demand, 

the lower simulated climate baseline would also influence behavioural responses in dietary behaviour. Therefore, expanding 960 

the scope of the Behavioural Change module in FRIDA is necessary to more robustly assess climate impacts and demand-side 

mitigation. 

Future research could also explore the applicability of our framework to other models beyond FRIDA. For models 

operating at the national or regional spatial resolutions, the structures presented in our endogenous behavioural model could 

be easily adapted and calibrated using appropriate time-series data. In such cases, particular attention should be given to the 965 

demand-supply dynamics that shape consumer behaviour. Specifically, localized supply needs to encompass both domestic 

production and imports. For models that disaggregate food products (e.g., by crop and animal type), more extensive adaptation 

would be required. Beyond arraying the structures for each food category, additional components must be introduced to capture 

the matrix of within- and across-type relative scarcity/accessibility and diet substitution (e.g., beef to poultry vs. beef to soy). 

Despite such structural modifications, we anticipate that the core behavioural feedback processes described in this paper would 970 

remain applicable, offering a foundation for modelling dietary behaviours across diverse food system contexts. 

Ultimately, by endogenizing behavioural feedbacks within a dynamic modelling framework, we provide a pathway for 

more robust and responsive representations of behavioural change and human-climate interactions, addressing a critical gap 

in IAMs and advancing the potential for demand-side assessments. 
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Appendix A: Uncertain parameters 

Table A1: Documentation of uncertain parameters with estimated values and ranges. Values rounded to nearest integer for reference 
values; three significant figures for others. 980 

Parameter Name in source code Unit Value Min Max Notes 
Land Use and Agriculture Module 

𝐷&(0) direct_food_demand_per_person_per_day_1980 kcal·p⁻¹·d⁻¹ 2481 2400 2560 Externally loaded 
𝛽'()! elasticity_of_food_demand_to_GDP_per_person dmnl 0.257 0.15 0.35 Externally loaded 
𝐷*(0) animal_product_demand_per_person_1980 Pcal·Mp⁻¹·yr⁻¹ 0.148 0.138 0.158 Externally loaded 
𝛽'()" elasticity_of_animal_product_demand_to_GDP_per_person dmnl 0.494 0.4 0.6 Externally loaded 
𝐴𝑇'() time_to_change_crop_demand_components yr 6.71 5 8.42  

Total Food Demand Module 

𝐷𝐴𝐷𝐷(0) average_daily_demand_per_capita_in_1980 kcal·p⁻¹·d⁻¹ 2466 2463 2470  
𝐴𝑇+) time_to_adjust_consumption_pattern yr 1 1 1 Lower bound# 
𝛽, sensitivity_of_demand_to_scarcity dmnl 0.512 0.023 1  
𝛽- elasticity_of_demand_to_GDP dmnl 0.254 0.249 0.260  
𝐴𝑇. time_to_adjust_desired_demand_from_accessibility yr 1.23 1 1.46  

𝐺𝐷𝑃/01 reference_GDP_per_person_for_socioeconomic_effect $·p⁻¹·yr⁻¹ 50000 45000 55000 FAO data (2023a) 

𝑘 growth_rate_of_socioeconomic_effect dmnl 4.65 2.68 6.62  
𝑣 range_of_socioeconomic_effect dmnl 1 0.793 1.21  

𝐴𝑇.(+ time_to_perceive_average_consumption yr 1.11 1 1.23  
𝐴𝑇23/01 time_horizon_for_short_term_perception yr 2.37 1 3.74  
𝐴𝑇43/01 time_horizon_for_long_term_perception yr 55.5 33.7 77.4  
𝐴𝑇),5 time_to_adjust_value_perception yr 4.25 3 5.50  
𝛼.(+ sensitivity_of_social_value_perception dmnl 1.22 1.11 1.32  
𝐴𝑇)+/ time_to_observe_consequences yr 7.43 5.66 9.21  
𝛽),5 sensitivity_of_personal_norm_to_social_value dmnl 0.936 0.872 1  
𝛽)+/ sensitivity_of_personal_norm_to_consumption_risk dmnl -0.798 -0.94 -0.65  
𝛽)++/ sensitivity_of_personal_norm_to_climate_risk dmnl -0.134 -0.144 -0.124  

Animal Products Demand Module 

𝐷𝐴𝐷𝐷(0) average_daily_demand_per_capita_in_1980 kcal·p⁻¹·d⁻¹ 376 375 378  
𝐴𝑇+) time_to_adjust_consumption_pattern yr 4.44 4.27 4.60  
𝛽, sensitivity_of_demand_to_relative_scarcity dmnl 0.451 0.334 0.568  
𝛽- elasticity_of_demand_to_GDP dmnl 0.349 0.340 0.358  
𝐴𝑇. time_to_adjust_desired_demand_from_accessibility yr 1.03 1 1.05  

%67(0) initial_share_of_demand_from_consumption_domain dmnl 0.179 0.178 0.179  
𝐺𝐷𝑃/01 reference_GDP_per_person_for_socioeconomic_effect $·p⁻¹·yr⁻¹ 40000 35000 45000 FAO data (2023b) 
𝑘 growth_rate_of_socioeconomic_effect dmnl 4.87 4.28 5.47  
𝑣 range_of_socioeconomic_effect dmnl 1 0.963 1.04  

𝐴𝑇.(+ time_to_perceive_average_consumption yr 2.86 1.87 3.84  
𝐴𝑇23/01 time_horizon_for_short_term_perception yr 5.53 1 10.1  
𝐴𝑇43/01 time_horizon_for_long_term_perception yr 55.5 44.7 66.2  
𝐴𝑇),5 time_to_adjust_value_perception yr 4.39 3.37 5.40  
𝛼.(+ sensitivity_of_social_value_perception dmnl 1.42 1.35 1.48  
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𝐴𝑇)+/ time_to_observe_consequences yr 25.0 21.1 29.0  
𝛽),5 sensitivity_of_personal_norm_to_social_value dmnl 0.974 0.948 1  
𝛽)+/ sensitivity_of_personal_norm_to_consumption_risk dmnl -0.724 -0.749 -0.699  
𝛽)++/ sensitivity_of_personal_norm_to_climate_risk dmnl -0.407 -0.425 -0.389  

Climate Risk Perception Module 
𝐴𝑇)80 time_to_perceive_climate_extremes_exposure yr 4.96 3.80 6.13  
𝐴𝑇/)80 additional_time_horizon_of_reference_climate_extremes yr 51.3 26.3 76.3  
𝐴𝑇),0 time_to_perceive_SLR_flooding_exposure yr 3.59 1 6.17  

𝑃𝑆𝐸9-:/01 minimum_reference_for_SLR_flooding_exposure Mp⁻¹·yr⁻¹ 10 7.63 12.4  
𝐴𝑇/),0 additional_time_horizon_of_reference_SLR_flooding yr 48 41 55 Externally loaded 
𝛽0;) sensitivity_to_climatic_events_exposure dmnl 0.430 0.410 0.450  
𝐴𝑇,<. time_to_report_and_perceive_climate_information yr 6.84 4.82 8.85  
𝐴𝑇/,<. additional_time_horizon_of_reference_sta yr 10.1 10 10.2  
𝛽+=' sensitivity_to_climate_information dmnl 0.429 0.393 0.465  

# The time constant was constrained to its lower bound of 1 year during calibration to match the model’s annual time unit and avoid numerical instability from 

sub-annual dynamics. 

 

Code and data availability. The output data presented in this paper as well as the codes used for reproducing the figures can be retrieved 995 
from the FRIDA Behavioral Change Module repository on Zenodo at https://doi.org/10.5281/zenodo.15397824 (Rajah, 2025). The FRIDA 

v2.1 model code and its input data are open-source and can be downloaded from https://doi.org/10.5281/zenodo.15310859 (Schoenberg et 

al., 2025a). 
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