

1 **Satellite Detection of NO₂ Distributions Using TROPOMI and**
2 **TEMPO and Comparison with Ground-Based Concentrations**

3

4 Summer Acker,¹ Tracey Holloway^{1, 2} and Monica Harkey¹

5 ¹ Nelson Institute Center for Sustainability and the Global Environment, University of Wisconsin-Madison,
6 Madison, WI 53705, United States of America

7 ² Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI 53705, United
8 States of America

9

10 *Correspondence to:* Tracey Holloway (taholloway@wisc.edu)

11

12 **Abstract**

13 In this study we assess the capability of current-generation satellites to capture the variability of
14 near-surface nitrogen dioxide (NO₂) monitoring data, with the goal of supporting health and
15 regulatory applications. We consider NO₂ vertical column densities (VCD) over the United
16 States from two satellite instruments, the Tropospheric Monitoring Instrument (TROPOMI), and
17 Tropospheric Emissions: Monitoring of Pollution (TEMPO), and compare with ground-based
18 concentrations as measured by the EPA's Air Quality System (AQS) monitors. While
19 TROPOMI provides a longer-term record of assessment (2019-2023), TEMPO informs diurnal
20 patterns relevant to evaluating peak NO₂. We analyze frequency distributions and quantify their
21 similarity using the Jensen-Shannon Divergence (JSD), where smaller values indicate better
22 agreement. Satellite and ground monitor NO₂ distributions are most similar at non-roadway
23 monitors (JSD = 0.008) and are most different at interstate (JSD = 0.158) and highway (JSD =
24 0.095) monitors. Seasonal analysis shows the most similarity in distributions in winter (JSD =
25 0.010), and the most difference in summer (JSD = 0.035). Across seasons and monitor locations,
26 the calculated 1:30 pm LT TEMPO consistently exhibits better or comparable JSDs to
27 TROPOMI (TEMPO: 0.005 to 0.151; TROPOMI: 0.012 to 0.265). TEMPO's agreement with
28 monitors in both December 2023 and July 2024 is found to be best around midday, with non-
29 road monitors in July having the best alignment (JSD = 0.008) at 16 UTC (~11 am LT). These

30 findings highlight the ability of TROPOMI and TEMPO to complement existing ground-based
31 monitors, and demonstrate their potential for monitor siting, regulatory, and public health
32 applications.

33 **1 Introduction**

34 Nitrogen dioxide (NO_2) is a gas released through high temperature combustion processes such as
35 the burning of fossil fuels (Lee et al., 1997; Richter et al., 2005), with on-road vehicles, power
36 plants, and industrial processes representing the largest anthropogenic sources in the United
37 States (U.S.; van der A et al., 2008) as well as lightning NOx emissions (Dang et al., 2023) and
38 soil microbial activity (Huber et al., 2020) from natural sources. Exposure to elevated levels of
39 NO_2 has been linked to respiratory and cardiovascular diseases (Mills et al., 2015; Urbanowicz et
40 al., 2023; Meng et al., 2021), especially asthma in children (Mölter et al., 2014; Anenberg et al.,
41 2022; Achakulwisut et al., 2019), as well as premature mortality (Camilleri et al., 2023; Hales et
42 al., 2021; Huangfu and Atkinson, 2020), and other diseases (Xia et al., 2024; Bai et al., 2018).
43 NO_2 plays a critical role in the formation of ozone, which also causes respiratory health problems
44 and is harmful to ecosystems (Grulke & Heath, 2019; Sillman, 1999). It is also a precursor to
45 nitrate (Behera & Sharma, 2012), a type of fine particulate matter ($\text{PM}_{2.5}$), which can penetrate
46 deep into the lungs and exacerbate respiratory and heart conditions (Sangkham et al., 2024;
47 Sharma et al., 2020), as well as cause premature death (Orellano et al., 2020; Thangavel et al.,
48 2022).

49 Due to its radiative characteristics, NO_2 may be observed by satellites during daylight hours
50 (Boersma et al., 2018; Van Geffen et al., 2020; Veefkind et al., 2012), and NO_2 has emerged as
51 one of the most air-quality-relevant pollutants from satellites (Holloway et al., 2021). Several
52 studies have highlighted the potential for satellite NO_2 data to supplement ground-based
53 networks to support health analysis and air quality management (Duncan et al., 2014; Lee &
54 Koutrakis, 2014). The 2017 launch of the Tropospheric Monitoring Instrument (TROPOMI;
55 Boersma et al., 2018; Van Geffen et al., 2020; Veefkind et al., 2012) advanced these applications
56 (Goldberg et al., 2021; Griffin et al., 2019; Kim et al., 2024; Yu & Li, 2022; Dressel et al., 2022;
57 Goldberg et al., 2024; H. J. Lee et al., 2023). The Tropospheric Emissions: Monitoring of
58 Pollution (TEMPO; Chance et al., 2019; Naeger et al., 2021; Zoogman et al., 2017) provides

59 further advancements with daytime hourly observations of NO₂ over North America and finer
60 spatial coverage.

61 While advanced methods exist to calculate near-surface NO₂ from satellite columns (Ahmad et
62 al., 2024; Kim et al., 2021; Shetty et al., 2024; Virta et al., 2023), there is also a strong interest in
63 the utilization of satellite vertical column density (VCD) to directly infer NO₂ concentrations
64 analogous to ground-based monitors (Kim et al., 2024; Lamsal et al., 2014; Griffin et al., 2019;
65 Yu & Li, 2022; Zhang et al., 2018; Lamsal et al., 2015; Goldberg et al., 2021; Dressel et al.,
66 2022; Goldberg et al., 2024; Harkey & Holloway, 2024; Bechle et al., 2013; H. J. Lee et al.,
67 2023; Xu & Xiang, 2023). This study extends prior assessments of NO₂ column-to-surface
68 agreement, where we focus on frequency distributions to capture the net impact of day-to-day
69 variability.

70 The relationship between surface NO₂ and column abundance is influenced by physical and
71 chemical processes, many of which have seasonal components. In winter, shallow boundary
72 layers trap pollutants near the surface, leading to higher surface concentrations and increasing
73 surface-to-column agreement (Harkey et al., 2015). In summer, higher temperatures and
74 increased sunlight accelerate photochemical reactions, converting NO₂ into ozone and other
75 secondary pollutants, and decreasing surface-to-column agreement (Boersma et al., 2009).
76 Seasonal changes in emissions, such as high building-heating emissions in winter, and high
77 power plant emissions in summer (Frost et al., 2006; Levinson & Akbari, 2010) interact with
78 atmospheric processes causing an increase in NO₂ column abundance in winter in four-season
79 climates (Shah et al., 2020). Processes affecting the sources and sinks of NO₂ at the surface and
80 through the vertical column can also lead to temporal lags, with peak surface NO₂ preceding
81 peak column NO₂ in the mornings (Harkey et al. 2024).

82 Frequency distributions capture the variability, extremes, and patterns of pollutant abundance,
83 relevant to air quality standards, pollution trends, and the effectiveness of emission control
84 measures (Knox and Lange, 1974; Pollack, 1975; Venkatram, 1979; Chowdhury et al., 2021;
85 Mondal et al., 2021). For example, Mondal et al. (2021) used frequency distributions of ground-
86 based monitors to examine changes in air quality across Delhi and Kolkata during COVID-19
87 lockdown phases, showing how reduced human activity led to shifts in pollutant levels. We

88 extend this line of analysis by comparing NO₂ distributions across multiple dimensions with
89 TROPOMI and include time-of-day and resolution-dependence of results using data from
90 TEMPO.

91 In this work, we consider: (1) How do the distributions of satellite NO₂ VCD compare with those
92 for near-surface NO₂? (2) To what degree does new hourly data from TEMPO improve the
93 agreement between surface and space based NO₂ distributions? For both questions, we consider
94 spatial variability, especially proximity to roadways, and temporal variability including
95 seasonality and diurnal variability. By considering the ability of satellites to capture peak NO₂
96 values in a comparable distribution to surface data, we consider how satellite VCDs can support
97 air quality management, improve health impact analysis, and inform air pollution monitor siting.

98 **2 Data and Methods**

99 In this study, we evaluate the ability of two satellite instruments, TROPOMI and TEMPO, to
100 capture the spatial and temporal variability in NO₂ surface concentration distributions across the
101 continental United States (CONUS), as measured by AQS monitors. By comparing the
102 coefficient of variation (CV) and Jensen-Shannon divergence (JSD) between satellite and
103 monitor data, we aim to assess the alignment between the datasets.

104 **2.1 EPA Surface Monitor Data**

105 The Environmental Protection Agency (EPA) Air Quality System (AQS) contains hourly NO₂
106 measurements from ground-based monitors, providing high temporal resolution data that are
107 critical for assessing compliance with the U.S. National Ambient Air Quality Standards
108 (NAAQS). There are two NAAQS related to NO₂: one for annual average concentration, set at
109 53 ppb, and one based on peak 1-hour concentrations, set at 100 ppb, based on the 3-year
110 average of the 98th percentile of the yearly distribution of 1-hour daily maximum NO₂
111 concentrations (EPA, 2010). Enforcement of these standards relies on data from AQS NO₂
112 monitors, a network that includes 431 monitors as of August 2024. Because NO₂ has a relatively
113 short atmospheric lifetime, typically ranging from a few hours to a day depending on
114 meteorological conditions (Lange et al., 2022; Liu et al., 2021), ground monitors are expected to
115 capture local conditions (Wang et al., 2020).

116 The EPA AQS data (EPA, 2025) was used to access NO₂ monitor data for the years 2019 through
117 2023 from all available sites in CONUS during this time period (503 unique monitors from 2019
118 to 2023). We note that there are some areas that are overrepresented by NO₂ monitors, and others
119 that are lacking monitors. Specifically, most monitors are located in urban areas, especially on
120 the East Coast and in Southern California, meaning that rural areas tend to be less represented by
121 ground monitors (Kerr et al., 2023). Most monitors use a chemiluminescence method, where the
122 amount of NO₂ that is converted to NO is measured by a molybdenum oxide converter (Fontijn
123 et al., 1970). The converter also reacts with other oxidized nitrogen compounds such as nitric
124 acid (HNO₃) and peroxyacetyl nitrate (PAN) to form NO (Dunlea et al., 2007; Steinbacher et al.,
125 2007), which can lead to an overestimation of NO₂. Corrections for this bias have been applied
126 when comparing with satellite observations (e.g. Cooper et al., 2020; Lamsal et al., 2015; Li et
127 al., 2021). Uncorrected AQS NO₂ has been used for determining compliance with the NAAQS
128 and for health assessments, which is the approach we take here, consistent with prior studies
129 focused on regulatory relevance (Novotny et al., 2011; Penn & Holloway, 2020; Harkey and
130 Holloway, 2024; Goldberg et al., 2021; Kim et al., 2024; Duncan et al., 2013; Qin et al., 2019).
131 More recently, some NO₂ monitors have been added to the network which measure “true NO₂”
132 using Cavity Attenuated Phase Shift Spectroscopy (CAPS, Kebabian et al., 2005). These
133 monitors are expected to be more representative of ground-level NO₂ concentrations and should
134 have less overestimations since they directly measure NO₂ and no other species (Ge et al., 2013).
135 Some of the monitors used in this study use CAPS methodology to measure NO₂. We discuss the
136 comparison of CAPS versus traditional NO₂ monitors in results Sect. 3.1.

137 Hourly AQS measurements at 13:00 and 14:00 local time (LT) were averaged to align with the
138 TROPOMI overpass of ~13:30 LST. Hourly AQS measurements from 12:00 GMT to 23:00
139 GMT are compared with hourly TEMPO data for daylight hours. For both the TROPOMI and
140 TEMPO analyses, AQS data are filtered to ensure consistency with satellite data availability. As
141 a result of filtering monitoring data for TROPOMI and TEMPO separately, the subsets of
142 monitor data available for comparison with each instrument differ, even for the same time
143 periods.

144 **2.2 TROPOMI Data**

145 The Tropospheric Monitoring Instrument (TROPOMI; European Space Agency, 2021) is on
146 board the Copernicus Sentinel-5 Precursor satellite which has a daily, local overpass time of
147 ~13:30 LST (Veefkind et al., 2012). Currently, the highest resolution of TROPOMI is 3.5 km by
148 5.5 km at nadir which has increased from 3.5 km by 7.0 km since August 6th, 2019. Daily
149 TROPOMI NO₂ data for the years 2019 through 2023 were allocated to a 4 km x 4 km grid over
150 CONUS using the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS; Center
151 for Sustainability and the Global Environment, 2024; Harkey et al., 2015, 2021; Harkey and
152 Holloway, 2024; Penn and Holloway, 2020). Using WHIPS, we also remove data with a quality
153 flag lower than 0.75. Each monitor location was compared with the 4 km x 4 km gridded
154 TROPOMI value in the corresponding grid cell. December 2023 and July 2024 4 km x 4 km
155 TROPOMI NO₂ data were also collected for each of the monitors for comparison with TEMPO
156 data.

157 A 4 km x 4 km oversampled grid is used as opposed to the 1 km x 1 km oversampled grid since
158 this study focuses on daily observations, and the 1 km x 1 km grid is best suited for monthly or
159 annual averages (Goldberg et al., 2021). To ensure a valid number of TROPOMI pixels were
160 being represented despite the higher grid resolution, we analyzed the number of ground monitors
161 falling within each TROPOMI pixel by performing a spatial join between ground monitor
162 locations and the oversampled 4 km x 4 km TROPOMI grid. About 97% of TROPOMI pixels
163 contain only one monitor, with only a small number of pixels (2.7%) containing more than one.
164 Figure S1 shows the number of monitors per TROPOMI pixel (locations where there are more
165 than 1 monitor per TROPOMI pixel) and the number of valid TROPOMI retrievals from 2019 to
166 2023 at each grid cell, confirming that monitors are well-distributed enough to not
167 disproportionately cluster within a small subset of satellite pixels. Since monitors are spread
168 across the entire U.S. and most are at least 4 km apart, there is generally sufficient separation to
169 ensure that most monitors are assigned to distinct TROPOMI pixels rather than falling into the
170 same grid cells repeatedly.

171 2.3 TEMPO Data

172 The TEMPO instrument launched onboard the Intelsat 40e mission (NASA, 2024), a
173 geostationary satellite, on April 7, 2023. TEMPO provides hourly measurements of atmospheric

174 pollutants over North America (Chance et al., 2019; Naeger et al., 2021; Zoogman et al., 2017).
175 TEMPO achieves a spatial resolution of approximately 2.1 km in the north-south direction and
176 4.5 km in the east-west direction at the center of its Field of Regard (FOR), centered around
177 36.5° N and 100° W (Chance et al., 2019). The TEMPO Level-3 (L3) NO₂ data (Suleiman, 2024)
178 used in this study were accessed through NASA's EarthData Search portal.

179 In order to synchronize TEMPO and ground-based hourly measurements, TEMPO timestamps
180 were rounded to the nearest hour, with mid-hour values rounded up. All files within each
181 rounded-hour group were averaged, producing a single NO₂ value per hour per day. Only
182 TEMPO observations with a main data quality flag of 0 and cloud fraction at or less than 0.2
183 were retained, in line with TEMPO documentation guidelines (NASA Langley Research Center,
184 2024).

185 For the comparison with TROPOMI, the UTC equivalents of 1 pm and 2 pm LT were
186 determined for each time zone based on the latitude and longitude of each monitor location.
187 TEMPO NO₂ values corresponding to these calculated UTC hours were averaged to align with
188 the TROPOMI overpass time (~13:30 LST). Similarly, for ground-based measurements, the
189 monitor data were filtered to include only values corresponding to 1 pm and 2 pm LT and then
190 averaged.

191 **2.4 Monitor Classification**

192 To classify the monitors by roadway proximity, the state-level Census Bureau's 2021
193 TIGER/Line shapefiles for Primary and Secondary Roads (2021 TIGER/Line® Shapefiles,
194 2025) were combined to form a comprehensive dataset for the CONUS domain.

195 To evaluate how TROPOMI and ground-based monitor NO₂ values vary by proximity to a road,
196 monitors were also assigned to different groups based on their distance from a road (\leq 20-m, 20
197 to 50-m, 50 to 300-m, 300-m to 1 km, and $>$ 1 km), where buffer distances are calculated from
198 the road shapefiles (Figure S3). There were 9 monitors that were 20 meters or less away from a
199 road, 66 between 20 and 50 meters from a road, 108 between 50 and 300 meters, 167 between
200 300 meters and 1 kilometer, and 153 that were greater than 1 kilometer from a road.

201 Roads were also classified into three categories: (1) interstates, (2) highways, and (3) other
202 roads, based on their route type code (RTTYP) values. Where monitors are considered as
203 representing a roadway category, we followed the criteria of the EPA Near-Road-Network
204 (Gantt et al., 2021; Kim et al., 2024) to merge monitor locations with road buffers, considering
205 the 50-m buffer recommended by the EPA, as well as a less restrictive 300-m buffer. In each
206 case, monitors inside the buffer of a particular roadway type were classified as representing that
207 category. If a monitor fell within multiple buffers, it was assigned the classification of the largest
208 road type. Monitors not falling within any buffers were classified as "non-roadway."

209 Using the 50-m buffer, 58 monitors were classified as "interstate," 17 as "highway," and 428 as
210 "non-roadway" (Figure S2; no monitors classified as "other roads"). Using the 300-m buffer, 91
211 monitors were classified as "interstate," 90 as "highway," 320 as "non-roadway," and 2 as "other
212 roads." Since there were no monitors classified as "other roads" for the 50-m buffer, this
213 category is excluded from the analysis.

214 We classified interstate monitors as urban or rural using the U.S. Census Bureau 2020 Urban
215 Areas Tiger/Line Shapefile (U.S. 2020 Urban Areas Shapefile, 2025). Only one interstate
216 monitor was identified as rural, so this analysis is not included.

217 **2.5 Data Analysis**

218 The coefficient of variation (CV) was calculated for ground-level monitor data and for satellite
219 data. This metric was used to compare the relative variability of NO₂ between satellite and
220 ground-level data despite different measurement units (Aerts et al., 2015). CV is defined as the
221 ratio of the standard deviation (σ) to the mean (μ) of the data:

$$222 \quad CV = \left(\frac{\sigma}{\mu} \right) \times 100$$

223 The Jensen-Shannon Divergence (JSD) is used to quantify the similarity between the
224 distributions of NO₂ from the satellite and ground-level monitors despite the different
225 measurement units (Menéndez et al., 1997). The JSD is a robust metric for comparing
226 probability distributions that is used within a wide variety of fields, including machine learning

227 (Thiagarajan & Ghosh, 2024; Saurette et al., 2023; Tsigalou et al., 2021; Melville et al., 2005),
228 data science (Toledo et al., 2022; Zhao et al., 2024), biology (Yan et al., 2021; Jones et al., 2023;
229 Ahmed et al., 2023), and meteorology (Kibirige et al., 2023). In environmental research using
230 satellite data, the JSD has shown that the Mangrove Forest Index (MFI) from Sentinel-2 imagery
231 outperforms traditional vegetation indices in distinguishing submerged mangrove forests (Jia et
232 al., 2019). In air quality, the JSD has been used to compare modeled and measured PM_{2.5} (Yang
233 et al., 2024), and to compare an air quality index (AQI) with measurements of specific air
234 pollutants (Wang & Zhang, 2022).

235 To calculate the JSD, each dataset was binned, with a bin size of 1 ppb (for ground monitors) or
236 1 x 10¹⁵ molecules/cm² (for satellite data), ranging from 0 to 40 ppb or 40 x 10¹⁵ molecule/cm²,
237 with an additional bin for values exceeding 40 ppb or 40 x 10¹⁵ molecule/cm². For visualization
238 purposes, the frequency distributions are binned with the ground monitors ranging from 0 to 40
239 ppb and the satellite data ranging from 0 to 30 x 10¹⁵ molecule/cm², with an additional bin for
240 values exceeding 40 ppb or 30 x 10¹⁵ molecule/cm². Depending on the specific analysis, NO₂
241 data are grouped by: (1) Distance from roadways (in meters) – TROPOMI daily data from 2019
242 to 2023 (and corresponding ground monitors) are grouped by proximity to roads to assess spatial
243 alignment; (2) season – TROPOMI daily data from 2019 to 2023 (and corresponding ground
244 monitors) are grouped by season to analyze temporal alignment; (3) month – TROPOMI daily
245 data from December 2023 and July 2024, along with TEMPO and ground monitors at the
246 TROPOMI overpass time (~1:30 pm LT, represented by the average of 1 pm and 2 pm LT data),
247 are grouped by month to compare the temporal differences in alignment between TEMPO and
248 TROPOMI; and (4) road type (interstate, highway, non-roadway) – Both TROPOMI (daily),
249 TEMPO (calculated overpass time and hourly), and ground monitor data are grouped by road
250 type to evaluate varying alignment based on road classifications.

251 Binned data were then normalized to form probability distributions. The divergence was
252 calculated as:

253

$$JSD(P, Q) = \frac{1}{2} [D_{KL}(P||M) + D_{KL}(Q||M)]$$

254 where P and Q represent the probability distributions from the monitor and satellite data,
255 respectively, and M is the average of P and Q. The divergence D_{KL} is the Kullback-Leibler
256 divergence between each distribution and their mean (Clim et al., 2018). JSD values range from
257 0 to 1, with lower values indicating greater similarity between the satellite and monitor
258 distributions. In general, a $JSD < 0.1$ indicates very good alignment, $0.1 \leq JSD < 0.3$ indicates
259 moderate alignment, and $JSD \geq 0.3$ (Kibirige et al., 2023) indicates poor alignment.

260 **3 Results**

261 To evaluate the agreement between satellite and monitored NO_2 distributions, we consider the
262 impact of monitor location using TROPOMI; impact of season using TROPOMI; the comparison
263 of distributions between TROPOMI and TEMPO; and the impact of time-of-day using TEMPO.

264 **3.1 Alignment of TROPOMI NO_2 Distributions with Surface NO_2 Distributions**

265 This section analyzes TROPOMI and ground-based NO_2 measurements across varying distances
266 from roads, different seasons, and at monitors located near interstates, highways, and non-
267 roadway sites. Our results show that as the distance from roads increases, the distributions of
268 surface and column NO_2 become more similar. Monitor distributions near interstates and
269 highways exhibit lower agreement with TROPOMI distributions compared to those farther from
270 major roadways. Seasonally, alignment is strongest in winter and weakest in summer.

271 Figure 1 illustrates the distribution of NO_2 levels measured by AQS ground-based monitors and
272 TROPOMI observations as a function of distance from roadways using daily measurements from
273 2019 to 2023. For both data sources, mean, peak, and minimum NO_2 are all highest in the 20 –
274 50 m distance category (the second closest near-road category). NO_2 abundance decreases as
275 distance-to-road increases, and to a lesser extent as distance-to-road decreases. The somewhat
276 lower abundance in the ≤ 20 m category vs. the 20 – 50 m category may be due to the speciation
277 of NO_x , where nitric oxide (NO) is more abundant and converts to a higher fraction of NO_2 as
278 distance-to-road increases (Kimbrough et al., 2017). Most direct vehicle emissions are in the
279 form of NO, and close to the roadway, NO and NO_2 readily convert between forms. Limited
280 ozone availability—especially during stable conditions, which contribute to suppressed vertical
281 mixing—can slow the conversion of NO to NO_2 (Richmond-Bryant et al., 2017). As a result,
282 NO_2 may initially be suppressed very close to the road, and changes in total NO_x are primarily

283 driven by mixing and dilution rather than chemical transformation. NO₂ peaks in the 20–50 m
284 range likely because this zone allows for sufficient time and space for NO to oxidize to NO₂
285 while still being close enough to the emission source to experience elevated concentrations;
286 beyond this range, concentrations decrease with distance due to dispersion and dilution of
287 pollutants into the surrounding atmosphere. Mean monitored NO₂ is 6.85 ppb at \leq 20 m, 10.47
288 ppb at 20 – 50 m, 4.53 ppb at 50 – 300 m, 3.71 ppb at 300 m – 1 km, and 2.80 ppb at $>$ 1 km.
289 Mean TROPOMI NO₂ is 3.38×10^{15} molecules/cm² at \leq 20 m, 4.21×10^{15} molecules/cm² at 20 –
290 50 m, 3.00×10^{15} molecules/cm² at 50 – 300 m, 3.72×10^{15} molecules/cm² at 300 m – 1 km, and
291 3.13×10^{15} molecules/cm² at $>$ 1 km. Monitor values show a higher sensitivity to roadway
292 proximity, where the highest mean monitored concentration is 375% of the lowest mean
293 concentration, compared to TROPOMI where the highest mean VCD is 140% of the lowest
294 mean VCD.

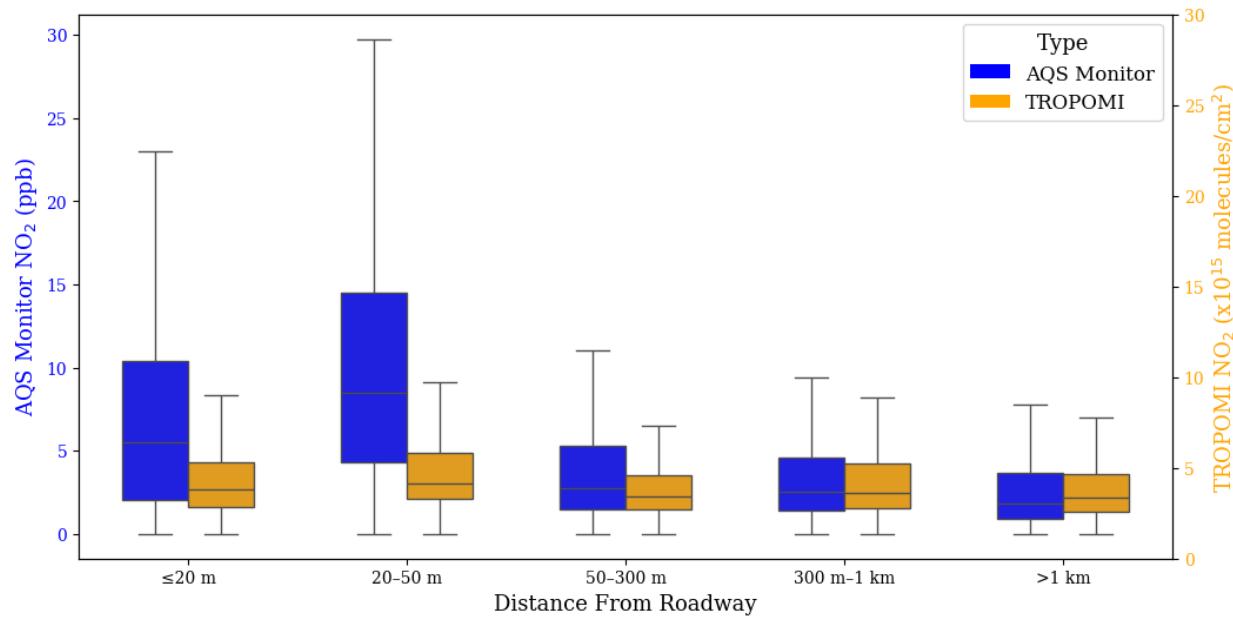
295 Monitored NO₂ levels drop over 50% at \sim 50 m from the roadway (based on change in the mean,
296 upper 2.5 interquartile range, IQR, and the upper 1.5 IQR), a finding that compares with a 31%
297 reduction in NO₂ between 20m and 300m from Kimbrough et al. (2017), as well as other studies
298 that identify a decrease in NO₂ at further distances (Karner et al., 2010; Richmond-Bryant et al.,
299 2017). TROPOMI VCDs also show the greatest change with roadway distance at \sim 50 km, but by
300 less than 30% (based on change in the mean, upper 2.5 IQR, and the upper 1.5 IQR).

301 Just as total NO₂ abundance, from both monitors and satellite, is highest at distances of 20–50 m
302 from the roadway, the range of daily values is also widest for the 20 – 50 m range and smallest at
303 the $>$ 1 km range. Monitored values have a standard deviation of 8.24 ppb in the 20 – 50 m
304 range, and a standard deviation of 3.39 ppb in the $>$ 1 km range. The distribution of satellite data
305 does not vary as much in size across roadway locations, with a standard deviation of 3.90×10^{15}
306 molecules/cm² for the 20 – 50 m range and 3.31×10^{15} molecules/cm² for the $>$ 1 km range. In
307 the 20 – 50 m range, the upper IQR of AQS NO₂ is 38% higher than the mean. TROPOMI shows
308 less variability than the monitors, with the 20 – 50 m upper IQR 16% higher than the mean. As
309 distance from the roadway increases, the distributions of data from the ground and satellite
310 become more comparable. In the $>$ 1 km range, the upper IQR of monitor NO₂ is 23% higher
311 than the mean and the upper IQR of satellite data is 15% higher than the mean. The ranges show
312 more similarity at greater distances from the roadway, but even at distances of $>$ 1 km, the range

313 of monitored values exceeds the range of satellite VCDs. These patterns agree with Kim et al.
314 (2024), who found that surface monitors show better agreement with TROPOMI further from
315 major roads. This improved alignment at greater distances likely reflects the reduced influence of
316 localized emission sources, which tend to create sharp gradients and rapid variability near roads.
317 In areas further from traffic, NO₂ concentrations vary more gradually or are generally more
318 uniform. As a result, surface monitors away from roads reflect broader conditions, in better
319 agreement with the coarser spatial resolution of TROPOMI.

320 When analyzed by season (Figure S4), the relationships are similar, except winter shows the
321 highest IQRs, with the 20 to 50 m distance group having an IQR of 11.40 ppb for monitors and
322 4.96×10^{15} molecules/cm² for TROPOMI, and summer, the lowest IQRs for both monitors (IQR
323 = 9.05 ppb) and TROPOMI (IQR = 1.71×10^{15} molecules/cm²). In the greater than 1 km distance
324 group, again winter has the highest IQRs (monitor IQR = 4.60 ppb; TROPOMI IQR = $3.95 \times$
325 10^{15} molecules/cm²) and summer the lowest IQRs (monitor IQR = 2.05 ppb; TROPOMI IQR =
326 1.55×10^{15} molecules/cm²).

327



328

329 Figure 1. Box plots show median and interquartile ranges of all daily 2019 to 2023 NO₂ as
330 measured by AQS monitors (blue) and TROPOMI (orange) across various distances from
331 roadways, with the whiskers extending to the 1.5 IQR range. No outliers are shown. The left y-

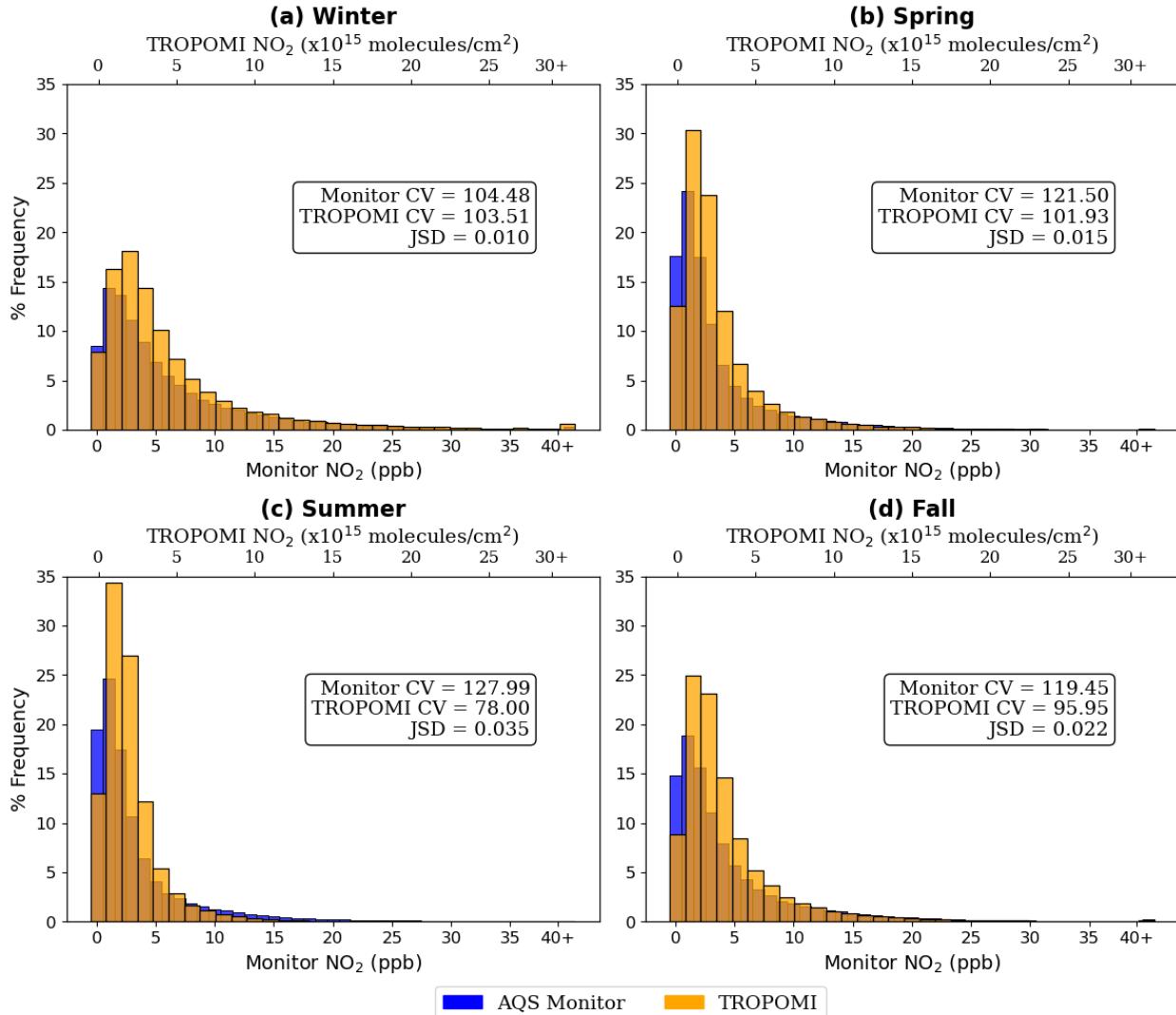
332 axis represents AQS monitor values in parts per billion (ppb), and the right y-axis represents
333 TROPOMI NO₂ values in 10^{15} molecules per cm². The distance categories from the roadway
334 include \leq 20 m, 20-50 m, 50-300 m, 300 m-1 km, and $>$ 1 km.

335 To consider the shape of monitored and satellite NO₂ distributions, we consider the effect of
336 season in Fig. 2. The winter distributions (Figure 2a, calculated from December, January, and
337 February data) exhibit the longest tails and highest NO₂ values. In winter, the 90th percentile of
338 monitoring data is 14.80 ppb and the 90th percentile of TROPOMI data is 10.93×10^{15}
339 molecules/cm². Spring distributions (Figure 2b; March, April, and May) show intermediate
340 behavior, with lower values and shorter tails than winter and fall, but higher than summer (90th
341 percentile from monitors = 9.71 ppb; 90th percentile from TROPOMI = 6.19×10^{15}
342 molecules/cm²). In summer (Figure 2c, June, July, and August), the distributions exhibit the
343 shortest tails, and the lowest NO₂ values (90th percentile from monitors = 9.00 ppb; 90th
344 percentile from TROPOMI = 4.57×10^{15} molecules/cm²). Fall (Figure 2d; September, October,
345 and November) also shows intermediate behavior, generally between winter and spring (90th
346 percentile from monitors = 12.15 ppb; 90th percentile from TROPOMI = 7.44×10^{15}
347 molecules/cm²). The higher NO₂ values in winter from monitor and TROPOMI data are
348 attributed to reduced photochemical activity in winter leading to longer NO₂ lifetimes (Harkey et
349 al., 2015; Boersma et al., 2009; Shah et al., 2020).

350 The highest percent frequencies for the monitor and TROPOMI distributions generally occur
351 within the 1–2 ppb or 1–2 $\times 10^{15}$ molecules/cm² bin. However, the winter TROPOMI distribution
352 peaks in the 2–3 $\times 10^{15}$ molecules/cm² bin with a percent frequency of 18.14%, compared with
353 winter monitor highest frequency of 14.33%. The highest percent frequency in spring from
354 TROPOMI is 30.39% versus monitor 24.15%; in summer TROPOMI is 34.35% versus monitor
355 of 24.68%; in fall TROPOMI is 24.90% versus monitor of 18.89%. These results indicate that
356 TROPOMI consistently records higher peak frequencies than the monitors, whereas monitors
357 consistently show a wider distribution.

358 Figure 2 provides a seasonal breakdown of the coefficient of variation (CV) and Jensen-Shannon
359 divergence (JSD) for both monitor and TROPOMI data across all monitors. Summer exhibits the
360 highest variability in monitored NO₂ concentrations (CV = 127.99%), but the lowest variability
361 in satellite observations (CV = 78.00%). The highest variability in TROPOMI occurs in winter

362 (CV = 103.51%), similar to the variability from monitor data (CV = 104.48%). Satellite CVs
 363 generally follow a similar pattern to that of monitors, though the overall variability is lower for
 364 satellite data across seasons.



365

366 Figure 2. Seasonal frequency distributions of 2019-2023 NO₂ as measured by AQS ground-based
 367 monitors (blue) and TROPOMI (light orange) data for four seasons: a) winter, b) spring, c)
 368 summer, and c) fall. The x-axes indicate the range of NO₂, with the primary, lower x-axis
 369 showing monitor NO₂ concentrations in parts per billion (ppb) and the secondary, upper x-axis
 370 showing TROPOMI NO₂ VCD in 10¹⁵ molecules per cm². The boxes show the Coefficient of
 371 Variation (CV; %) and Jensen Shannon Divergence (JSD) for each season.

372 This reduced variability in satellite observations can likely be attributed to the vertical mixing
373 reflected in satellite retrievals, as well as horizontal spatial averaging reflected in satellite data
374 versus point-based NO₂ that are captured by ground monitors. This finding is consistent with
375 previous studies that highlight the spatial averaging nature of satellite-based measurements,
376 which integrate NO₂ amounts over a larger area than the point-based monitors (Ialongo et al.,
377 2020).

378 Across all seasons shown in Fig. 2, JSD values are all low (< 0.1), indicating that TROPOMI
379 may be good at predicting surface NO₂ across seasons. The alignment is strongest in winter (JSD
380 = 0.010), while the divergence is highest in summer (JSD = 0.035), meaning the monitors and
381 TROPOMI align best when the NO₂ lifetime is long in the colder months, and they align the
382 worst when the NO₂ lifetime is short in the warmer months. The better alignment in winter could
383 also be attributed to winter having the largest range of values in the data, which reduces the
384 sensitivity of the JSD calculation to small differences in the distributions. A wider spread in NO₂
385 values means that relative discrepancies between TROPOMI and monitor measurements are
386 smaller in proportion to the total variability, potentially leading to greater similarity.

387 Across seasons, we find that CAPS or “true NO₂” monitors tend to have slightly worse alignment
388 with TROPOMI than traditional, chemiluminescence monitors. Out of the monitors used in this
389 study, 102 were identified as CAPS monitors, and 401 as traditional monitors. In winter, CAPS
390 monitors have a JSD of 0.027 and traditional monitors a JSD of 0.009. In summer, CAPS
391 monitors have a JSD of 0.078 and traditional monitors a JSD of 0.03. With all seasons combined,
392 CAPS monitors have a JSD of 0.047 and traditional monitors have a JSD of 0.016.

393 Table 1 shows the CV and JSD for both monitor and satellite data from 2019 through 2023,
394 aggregated across all seasons and separated by monitor classification (interstate, highway, and
395 non-roadway), where roadway monitors are classified as being within 50 meters (Table 1a) or
396 300 meters (Table 1b) of a road. For the 50-m buffer (Table 1a), the coefficient of variation for
397 ground-based monitor data increases progressively from interstate monitor locations to non-
398 roadway locations, with interstate monitors exhibiting the lowest variability (CV = 75.07%) and
399 non-roadway monitors showing the highest variability (CV = 118.17%). This indicates that NO₂
400 concentrations measured by ground monitors in interstate areas are more consistent compared to
401 non-roadway regions. This pattern is mirrored in the satellite data, with CV values ranging from

402 91.62% for highway monitors to 106.16% for non-roadway monitors. These patterns suggest that
403 regular emissions play a larger role in determining near-road NO₂, where non-road areas vary
404 with changes in wind patterns and the chemical environment.

405 For highway monitors, the CVs of satellite (CV = 91.62%) and monitor data (CV = 96.27%) are
406 similar, indicating that TROPOMI performs similarly to ground monitors in capturing NO₂
407 variability along highways. Near interstates, TROPOMI (CV = 92.60%) may capture more
408 variability than the ground-based measurements (CV = 75.07%), a finding that contrasts with
409 Fig. 1, where TROPOMI shows a narrower range of NO₂ values across all distances. This
410 difference could stem from the fact that the interquartile ranges in Fig. 1 measure the spread of
411 absolute values, while the coefficient of variation accounts for variability relative to the mean.
412 Together, these metrics reveal that TROPOMI may not fully capture localized extremes
413 (narrower IQR) but still captures more relative variability in pollution near interstates than
414 monitors (higher CV).

	Road Type	Monitor CV	TROPOMI CV	JSD	# of Monitors
a) 50-m Buffer	Interstate	75.07	92.60	0.158	58
	Highway	96.27	91.61	0.095	17
	Non-roadway	118.17	106.16	0.009	428
b) 300-m Buffer	Interstate	77.20	91.014	0.133	91
	Highway	135.76	92.31	0.017	90
	Non-roadway	116.23	108.43	0.008	320

415

416 Table 1. Coefficient of variation (%) and Jensen-Shannon divergence for all seasons combined at
417 interstate, highway, and non-roadway monitors 2019-2023 for the 50-m and 300-m roadway
418 buffers.

419 The key differences seen within the JSD across the three monitor classifications are also present
420 in the percent frequency distributions of NO₂ measured by ground-based monitors and
421 TROPOMI (Figure S5), with interstate monitors having the lowest alignment (JSD = 0.158),
422 highway monitors having better alignment (JSD = 0.095), and non-roadway monitors having the
423 best alignment (JSD = 0.009). The strong alignment between TROPOMI and monitor
424 distributions in non-roadway regions is consistent with previous studies (Dressel et al., 2022;

425 Kim et al., 2024; Ialongo et al., 2020). This close alignment may be due to the relatively lower
426 NO₂ concentrations, which TROPOMI captures more accurately compared to regions with
427 higher emissions. These findings further align with previous work showing that TROPOMI tends
428 to underestimate NO₂ in high-pollution areas (such as interstates and highways) but slightly
429 overestimates in areas of lower pollution, such as rural areas (Dressel et al., 2022; Ialongo et al.,
430 2020; Goldberg et al., 2024).

431 Due to the large jump in NO₂ levels seen within Fig. 1 in the 50-300m category, we compare the
432 50-meter buffer roadway classifications (Figure S5; Table 1a) with the 300-meter buffer
433 classifications (Figure S6; Table 1b). Notable differences emerge between distributions,
434 particularly in the highway category, where 73 monitors are added to the highway distribution
435 (increasing from 17 to 90 monitors; Table 1) due to the larger buffer. The alignment between
436 monitor data and TROPOMI observations is significantly improved within the 300-meter buffer
437 near highways. This improvement in alignment is likely due to the decay of NO₂ with increasing
438 distance from the road (Karner et al., 2010; Kimbrough et al., 2017; Richmond-Bryant et al.,
439 2017). Consequently, the lower surface NO₂ concentrations observed at 300 meters are better
440 captured by TROPOMI. This is reflected in Table 1, which shows a substantial reduction in the
441 JSD for highway monitors, from 0.095 in the 50-meter buffer to 0.017 in the 300-meter buffer
442 (an 82% increase in alignment at the 300-meter buffer).

443 The differences observed in the highway category with the 300-meter buffer may be present
444 since the distribution includes 73 more monitors than the 50-meter buffer, capturing lower NO₂
445 amounts that are more aligned with TROPOMI's observations. On the other hand, the interstates
446 category exhibits less noticeable change, with only 33 additional monitors in the 300-meter
447 buffer distribution (increasing from 58 in the 50-meter buffer, Table 1a; to 91 in the 300-meter
448 buffer, Table 1b). This suggests that the monitors added in the 300-meter buffer for interstates
449 measure NO₂ levels similar to those already captured in the 50-meter buffer, resulting in little
450 change to the overall distribution.

451 These results indicate that TROPOMI follows the trend of NO₂ decreasing with increasing
452 distance from roadways that ground-based monitors record, and TROPOMI captures surface
453 concentrations best in winter and at 300+ meters away from the traffic source.

454

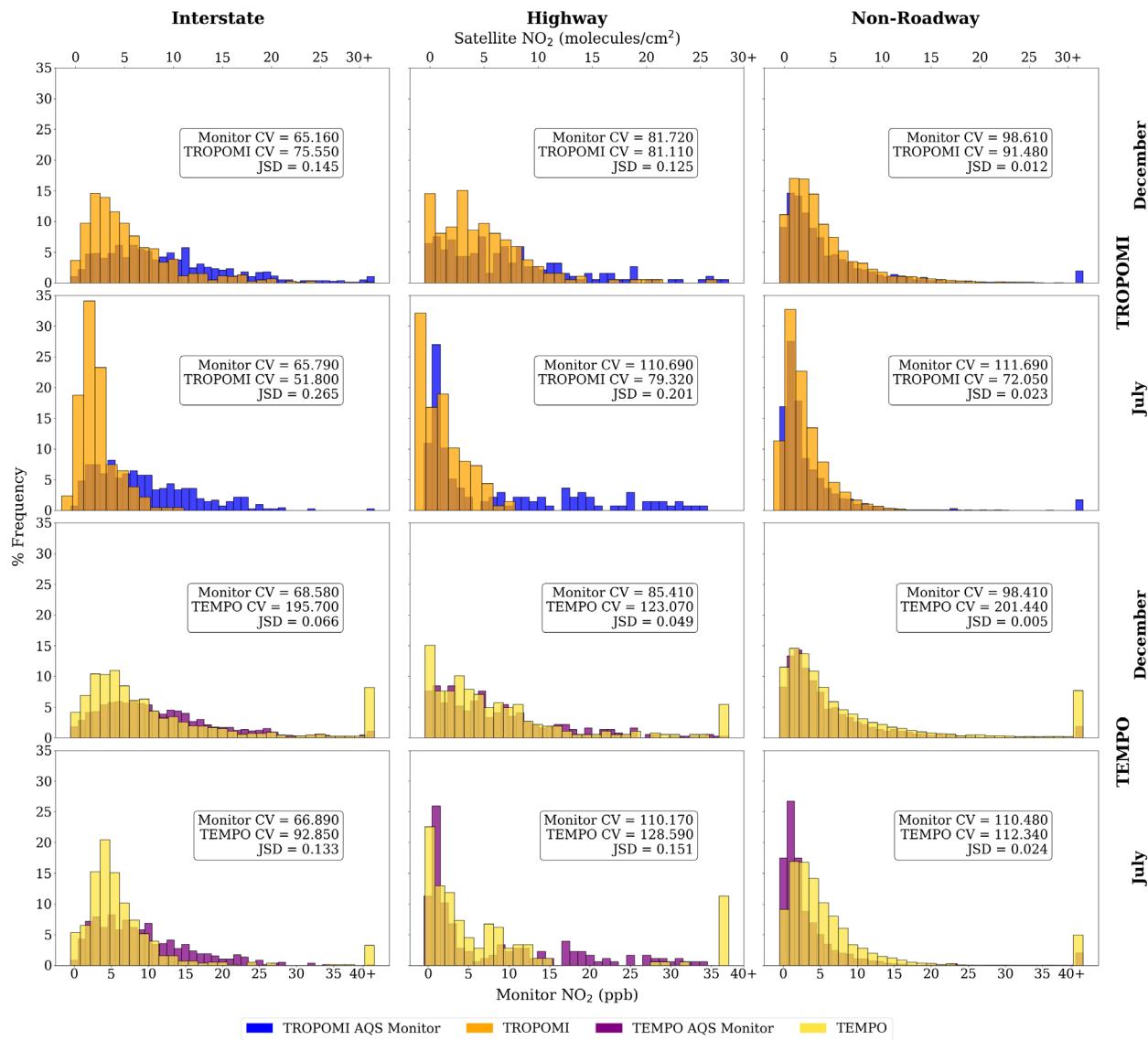
455 **3.2 Column-Column Daily Alignment**

456 Here we compare the distributions of NO₂ from TROPOMI and TEMPO with ground-based
457 monitors to assess how well each satellite instrument captures daily variations in NO₂
458 concentrations. Our results indicate that TEMPO consistently aligns more closely with ground-
459 based measurements than TROPOMI, particularly in high NO₂ areas such as highways and
460 interstates.

461 Figure 3 shows the distributions of NO₂ as measured by AQS ground-based monitors (filtered to
462 match valid TROPOMI and TEMPO data), TROPOMI, and TEMPO, separated by road
463 classifications (interstates, highways, and non-roadways) for December 2023 and July 2024. The
464 1 pm and 2 pm UTC (based on time zone) TEMPO and AQS values were averaged to align with
465 the TROPOMI overpass time of ~1:30 pm LT (see Sect. 2.3). The monitor data in each
466 comparison differs due to the data filtering (see Sect. 2.2 and 2.3). The comparison of frequency
467 distributions reveals how well TEMPO and TROPOMI capture the wide range of ground-based
468 monitor readings across these classifications and time periods.

469 In December 2023, TEMPO (JSD = 0.007) and TROPOMI (JSD = 0.021) exhibit distinct
470 differences in how well they capture NO₂ distributions across the various road classifications.
471 Near interstates, TEMPO has a 90th percentile at 18.34×10^{15} molecules/cm² whereas the
472 TROPOMI 90th percentile is 11.27×10^{15} molecules/cm². TEMPO aligns more closely with
473 monitor distributions with a JSD of 0.066 compared to the TROPOMI JSD of 0.145 (Figure 3).
474 TEMPO has 21.42% of data points above 11×10^{15} molecules/cm² for interstate values in
475 December, whereas TROPOMI appears to underestimate the frequency of higher NO₂ levels
476 more, with a cumulative frequency of 10.53% above that threshold. Near highways, the TEMPO
477 90th percentile is 14.70×10^{15} molecules/cm² compared to TROPOMI with a 90th percentile of
478 10.06×10^{15} molecules/cm². The JSD for TEMPO is 0.049 and TROPOMI is 0.125 for highway
479 monitors, indicating that TEMPO has much better alignment on highways (Figure 3). For non-
480 roadway locations, both instruments show very good alignment (TEMPO JSD = 0.005;
481 TROPOMI JSD = 0.012; Figure 3) with the monitor data distributions, but with TEMPO again
482 being slightly better.

483 In July 2024, the patterns show greater divergence across road classifications (TEMPO JSD =
484 0.027; TROPOMI JSD = 0.049) between the satellite observations and ground-based monitor
485 data compared to the December 2023 distributions. Near interstates, the TEMPO 90th percentile
486 is 8.46×10^{15} molecules/cm² and the TROPOMI 90th percentile is 5.58×10^{15} molecules/cm²,
487 with TEMPO aligning more closely (JSD of 0.133 compared to TROPOMI JSD of 0.265; Figure
488 3). TEMPO has 17.01% of data points above 7×10^{15} molecules/cm² for interstate values in July,
489 whereas TROPOMI appears to underestimate the frequency of higher NO₂ levels more, with a
490 cumulative frequency of 3.61% above that threshold. Near highways, TEMPO achieves a much
491 better representation of the higher observed NO₂ with a 90th percentile of 9.34×10^{15}
492 molecules/cm² compared to TROPOMI with a 90th percentile of 5.32×10^{15} molecules/cm². The
493 JSD for TEMPO is 0.151 and TROPOMI is 0.201 for highway monitors, indicating that TEMPO
494 has better alignment near highways. For non-roadway locations, both instruments show very
495 good alignment (TEMPO JSD = 0.024; TROPOMI JSD = 0.023; Figure 3) with the monitor data
496 distributions, with TEMPO and TROPOMI alignment with ground monitors being more
497 comparable than in December 2023.



498

499 Figure 3. December 2023 and July 2024 at the TROPOMI overpass time (~13:30 LST)
500 frequency distributions of NO₂ as measured by AQS ground-based monitors filtered to the valid
501 TROPOMI (blue) and TEMPO (purple), TROPOMI (light orange), and TEMPO (yellow) data
502 for three monitor classifications: Interstate, Highway, and Non-roadway. The x-axes indicate the
503 range of NO₂, with the primary, lower x-axis showing monitor NO₂ concentrations in parts per
504 billion (ppb) and the secondary, upper x-axis showing TROPOMI NO₂ VCD and TEMPO NO₂
505 VCD in 10¹⁵ molecules per cm². The boxes show the Coefficient of Variation (CV) and Jensen
506 Shannon Divergence (JSD) for each season and monitor classification.

507 Throughout both December 2023 and July 2024, TEMPO's improved alignment with ground-
508 based monitors compared to TROPOMI may be attributed to several factors. TEMPO operates
509 from a geostationary orbit, allowing it to take hourly measurements and capture the diurnal
510 variability of NO₂ concentrations more effectively than TROPOMI, which has a single daily
511 overpass time. This high temporal resolution enables TEMPO to better match the timing of NO₂
512 peaks and fluctuations detected by ground-based monitors, which are also recorded on an hourly
513 basis. Additionally, TEMPO's finer spatial resolution, approximately 2 km in the north-south
514 direction and 4.5 km in the east-west direction, may allow it to capture more localized pollution
515 sources, such as traffic emissions along highways and interstates. This may be why we see such a
516 large difference in alignment in the interstate and highway categories between TEMPO and
517 TROPOMI, and very little difference in alignment in the non-road category. In contrast,
518 TROPOMI's 4 km x 4 km (re-gridded) resolution and single overpass time may be less effective
519 at capturing these localized variations. TEMPO's finer resolution in one direction and its frequent
520 observations may enable it to more precisely match the spatial and temporal variability detected
521 by ground-based monitors. The consistency of slight underestimation for both instruments in
522 high-pollution areas like highways and interstates suggests challenges in fully capturing elevated
523 NO₂ levels that occur near traffic sources. Overall, this indicates that while TEMPO generally
524 provides a closer approximation of NO₂ distributions compared to TROPOMI, both satellite
525 instruments show limitations, particularly in representing peak concentrations at high-polluting
526 sites.

527

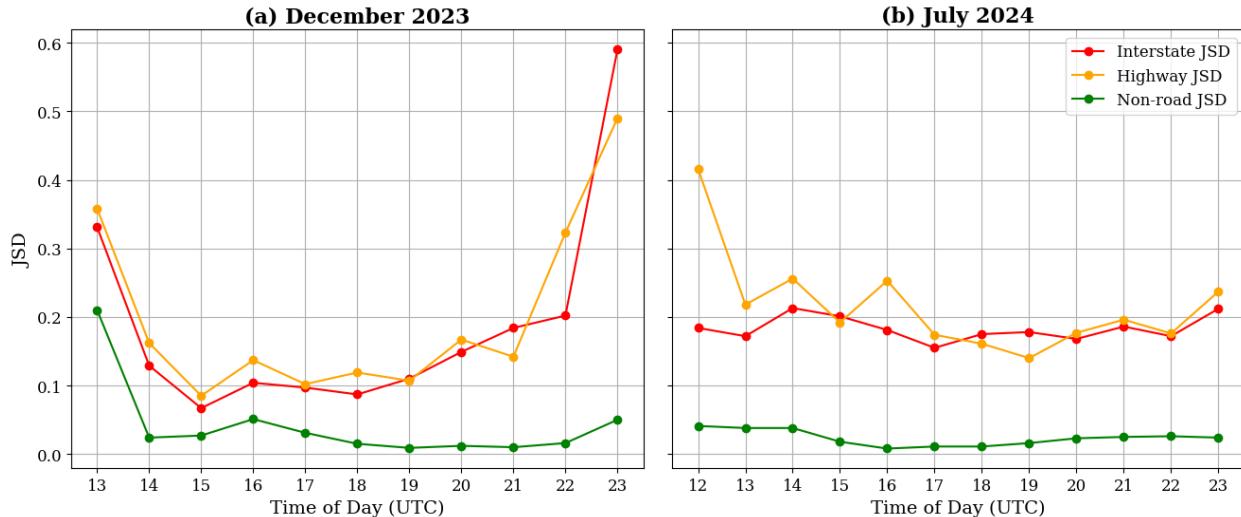
528 **3.3 Column-Surface Diurnal Alignment**

529 In this section we explore the hourly alignment between monitor and hourly TEMPO
530 distributions at interstate, highway, and non-roadway monitors. We find that TEMPO aligns best
531 with ground monitors around midday and exhibits poorer alignment in the early morning and
532 early evening.

533 Figure 4 presents the hourly JSD for TEMPO NO₂ measurements compared with ground
534 monitors categorized by interstate (red), highway (orange), and non-roadway (green) monitors
535 for December 2023 (Figure 4a) and July 2024 (Figure 4b). The results highlight distinct diurnal

536 patterns across road types and seasons, reflecting the influence of traffic emissions, atmospheric
537 mixing, and insulation.

538 In December 2023, all monitor categories exhibit similar trends in the early morning, with high
539 JSD values (highway JSD = 0.358; interstate JSD = 0.331; non-road JSD = 0.210) indicative of
540 moderate to poor alignment between TEMPO and ground-based monitors. This pattern,
541 consistent with early morning rush hour emissions and limited atmospheric vertical mixing
542 (Harkey and Holloway, 2024) as well as a decrease in TEMPO's measurement accuracy due to
543 high solar zenith angles in the morning according to TEMPO documentation (NASA Langley
544 Research Center, 2024), suggests that TEMPO may not capture rapid increases in NO₂ during
545 high traffic and low mixing periods. By mid-morning, JSD has decreased for all road types
546 (highway JSD = 0.085; interstate JSD = 0.067; non-road JSD = 0.027), indicative of good
547 alignment, with non-road monitors showing the most significant improvement (87% increase in
548 alignment). This pattern of better alignment in non-road monitor areas could be attributed to
549 lower NO₂ levels away from major sources of emissions. As the day progresses in December,
550 JSD values for highway and interstate monitors increase steadily (with highways fluctuating
551 more) after 17 UTC (~12 pm LT), with highways increasing in JSD from 0.102 to 0.490 and
552 interstates increasing from JSD 0.097 to 0.590, indicating worsening alignment in the afternoon
553 and early evening. This pattern may reflect the re-accumulation of NO₂ due to afternoon traffic
554 and the collapse of the boundary layer later in the afternoon (Harkey and Holloway, 2024), as
555 well as the decrease in TEMPO's measurement accuracy in the evening (NASA Langley
556 Research Center, 2024). Non-road monitors show less change in JSD through the day, suggesting
557 that TEMPO alignment is more consistent in non-road monitor areas throughout the rest of the
558 day, only fluctuating in JSD values between 0.009 and 0.05.



559

560 Figure 4. The a) December 2023 and b) July 2024 hourly (UTC) TEMPO NO₂ Jensen-Shannon
561 Divergences at interstate (red), highway (orange), and non-roadway (green) monitor locations.

562 In July 2024 highway and interstate monitors do not exhibit a clear diurnal pattern, with JSD
563 values fluctuating between 0.14 and 0.416 for highways and 0.155 and 0.212 for interstates
564 throughout the day. Consistent, localized traffic emissions and the shorter NO₂ lifetime during
565 the summer suggest a less variable distribution of NO₂. Non-road monitors in July show
566 somewhat worse alignment in the morning (JSD = 0.041), with improved agreement during the
567 late morning and early afternoon (JSD ranging between 0.008 and 0.025). The non-road JSD
568 remains fairly constant into the early evening, with alignment decreasing by about 13%,
569 indicating that sunlight may play a larger role in the alignment in the evening since the sun is at a
570 higher position in the sky during this time in the summer than in the winter (which increases in
571 JSD at this time), enhancing TEMPO's measurement accuracy in the early evening in July.

572 Both months exhibit their highest JSDs, and worst alignment, in the early morning or early
573 evening hours, which coincides with peak traffic times and the most uncertainty in TEMPO
574 observations caused by the solar zenith angle. The best alignment and lowest JSDs occur
575 sometime near midday (~10 am LT to ~2 pm LT).

576 The disparity between highways and interstates in TEMPO, where highways generally have the
577 highest JSD, differs from the pattern seen with TROPOMI, where interstates tended to
578 consistently exhibit worse alignment. This suggests that TEMPO's higher spatial and temporal

579 resolution may capture localized sources more effectively, leading to variations in alignment
580 based on the distribution and intensity of NO₂ sources.

581 **4 Conclusions**

582 This study evaluates the distributional alignment among estimates of NO₂ abundance from
583 TROPOMI, TEMPO, and ground monitors to inform the potential of satellite data for both
584 regulatory and public health applications, particularly in informing future NO₂ monitor siting
585 strategies. Several limitations and sources of uncertainty should be considered. Several
586 limitations of this analysis include: (1) The overrepresentation of AQS monitors in urban areas;
587 (2) the temporal mismatch between satellite and ground measurements; and (3) the distance from
588 roads analysis doesn't consider other local factors. A key limitation is the overrepresentation of
589 urban areas in the AQS monitoring network, which may bias our results toward urban areas.

590 Since AQS monitors are more densely located in urban regions with high emissions and complex
591 local sources, the results may not fully capture alignment in more rural areas with fewer
592 monitoring stations. Another important consideration is the slight temporal mismatch between
593 satellite and ground-based measurements. TROPOMI provides a single daily observation around
594 13:30 pm local solar time, whereas ground monitors and TEMPO record NO₂ concentrations
595 throughout the day. To better align with TROPOMI's overpass, we averaged 1 pm and 2 pm LT
596 TEMPO and ground monitor NO₂ values. Since NO₂ concentrations can change rapidly due to
597 meteorological conditions and emissions variability, this averaging approach may introduce
598 some error in comparisons between TEMPO, TROPOMI, and ground-based measurements. The
599 classification of monitors by distance from roads is based on buffer analysis, which does not
600 account for local factors such as wind direction, terrain, proximity to industry, and traffic density,
601 all of which influence NO₂ dispersion. Despite these uncertainties, our findings highlight patterns
602 in column-surface NO₂ agreement and demonstrate the potential for satellite data to complement
603 ground-based monitoring.

604 The Jensen-Shannon Divergence (JSD) offers a robust and interpretable metric for comparing the
605 alignment and similarity of NO₂ distributions. Its symmetry and bounded range allowed us to
606 evaluate the degree of similarity between satellite and monitor NO₂ values across different
607 spatial and temporal scales, providing a clear quantitative framework for assessing the similarity
608 of two different instruments.

609 Past studies comparing surface and satellite NO₂ have found temporal correlation of daily values
610 at individual sites ranging from r=0.61 to r=0.69 (Lamsal et al., 2014; Lamsal et al., 2015),
611 monthly and seasonal values at individual sites ranging from r=0.67 to r=0.90 (Griffin et al.,
612 2019; Yu & Li, 2022; Harkey & Holloway, 2024; Dressel et al., 2022; Xu & Xiang, 2023;
613 Lamsal et al., 2015), and annual average values at sites ranging from r=0.68 to r=0.93 (Zhang et
614 al., 2018; Lamsal et al., 2015; Goldberg et al., 2021; Kim et al., 2024; Bechle et al., 2013; H. J.
615 Lee et al., 2023). Here, r refers to the Pearson correlation coefficient, which measures the
616 strength and direction of a linear relationship between variables. In some cases, these
617 comparisons adjusted column values to the surface (e.g. Lamsal et al., 2014) and/or adjusted
618 ground-monitors to reduce the error in chemiluminescent detection of NO₂ (e.g. Lamsal et al.,
619 2015; Bechle et al., 2013). Using similar methods, TROPOMI tends to show better agreement
620 with annual AQS NO₂ than does OMI, e.g. r=0.81 using TROPOMI (Goldberg et al., 2015)
621 versus r=0.68 from OMI (Lamsal et al., 2015). Off-road AQS monitors tend to show better
622 agreement with satellite data than near-road AQS monitors, e.g. r = 0.81-0.87 at non-near-road
623 sites versus r = 0.64-0.74 at near-road sites (Kim et al., 2024). The underestimation of estimated
624 near-surface NO₂ near roads and localized sources is a recurring issue in OMI and TROPOMI
625 NO₂ VCDs (Dressel et al., 2022; Goldberg et al., 2024; Ialongo et al., 2020).

626 In this study, we find a pattern of decreasing NO₂ with increasing distance from traffic sources,
627 which is consistent with the findings of previous studies (Kimbrough et al., 2017; Karner et al.,
628 2010; Richmond-Bryant et al., 2017). While ground-based monitors and TROPOMI satellite data
629 may differ with proximity to roadways, particularly within 50-m, their measurements still follow
630 the same overall trend. This convergence with increasing distance may be due to the reduction of
631 localized near-road emissions and the broader atmospheric mixing captured more effectively by
632 satellite observations at greater distances from roads. Using a larger buffer distance from roads
633 (300 meters instead of 50 meters) improves the alignment between TROPOMI and monitor data,
634 especially for highway monitor locations (JSD decreases by ~82%). The overall trend reflects the
635 well-established gradient of declining NO₂ levels with increasing distance from traffic sources,
636 and TROPOMI's ability to capture this trend, even if the specific values differ from AQS
637 monitors in the near-road environment. Our findings indicate that TROPOMI tends to slightly
638 underestimate surface NO₂ concentrations in areas with high traffic, such as interstates and
639 highways, due to its spatial resolution and full-column measurements, which smooth out

640 localized, ground-level pollution peaks captured by ground monitors. This is most evident in
641 interstate monitors, where the JSD reveals the greatest divergence between satellite and monitor
642 data ($JSD = 0.158$). These results are consistent with prior studies (Dressel et al., 2022; Kim et
643 al., 2024; Ialongo et al., 2020), which also found that satellite instruments are less effective at
644 capturing high NO_2 events near localized sources like traffic. The distributional alignment
645 improves in non-roadway monitors ($JSD = 0.009$), where NO_2 levels are lower, and there are
646 usually fewer localized sources of pollution. The lower pollution levels in these areas allow
647 TROPOMI to more accurately reflect the conditions captured by ground-based monitors, leading
648 to lower JSD values, and therefore better alignment. This trend suggests that TROPOMI may be
649 particularly useful for monitoring air quality in rural or less polluted regions where ground
650 monitors are sparse or absent.

651 Seasonality plays a critical role in the similarity of satellite and monitor data. Winter consistently
652 shows the best alignment ($JSD = 0.010$), with the TROPOMI distribution capturing nearly the
653 full gradient of NO_2 seen within the ground-based monitor distribution. This likely reflects the
654 longer atmospheric lifetime of NO_2 in winter, which allows for better vertical mixing and less
655 spatial variability (Harkey et al., 2015; Boersma et al., 2009; Shah et al., 2020). In contrast,
656 summer shows the worst alignment ($JSD = 0.035$), which is likely due to the shorter lifetime of
657 NO_2 and increased photochemical activity during warmer months, causing greater discrepancies
658 between localized surface measurements and the satellite column. Similar conclusions were
659 reached by previous studies (Shah et al., 2020; Karagkiozidis et al., 2023), indicating that
660 seasonality is a crucial factor in assessing satellite performance for regulatory purposes. These
661 seasonal differences underscore the need for considering temporal factors when evaluating the
662 use of satellite data for monitor siting and NO_2 regulation.

663 The integration of TEMPO data into this study highlights its potential to advance our
664 understanding of NO_2 distributions, especially when compared to TROPOMI. TEMPO's ability
665 to provide hourly measurements at a finer spatial resolution offers significant advantages in
666 capturing diurnal NO_2 patterns and detecting localized pollution events. Our findings from
667 December 2023 and July 2024 at the TROPOMI overpass time (~13:30 LST) demonstrate that
668 TEMPO better captures the wide range of surface NO_2 measurements than TROPOMI,
669 especially at higher NO_2 levels. TEMPO's JSDs are almost always lower than TROPOMI's, with

670 JSDs ranging from 0.005 to 0.151 and TROPOMI's JSDs ranging from 0.012 to 0.265. This
671 improvement in alignment with ground monitors could be attributed to TEMPO's better spatial
672 and temporal resolution.

673 We also find that TEMPO is best at capturing ground-level NO₂ amounts around midday (~10
674 am to ~2 pm LT). This could be due to the lower traffic levels and therefore lower pollution
675 levels during this time period, as well as a lower solar zenith angle, allowing TEMPO to have
676 more accurate measurements. However, challenges remain in completely capturing high NO₂
677 levels during peak traffic times and accurately capturing NO₂ during high solar zenith angles in
678 the morning and evening across monitor classifications. These results underscore the influence of
679 spatial resolution, time of day, and measurement frequency on the ability of satellite instruments
680 to align with ground-based NO₂ measurements. Future research should build upon these insights
681 by incorporating longer time periods and multiple years of data as more TEMPO data becomes
682 available to study long-term TEMPO distributions. The enhanced temporal and spatial resolution
683 of TEMPO, alongside its comparison to other instruments like TROPOMI, provides valuable
684 context for understanding the dynamics of NO₂ pollution, especially how it varies throughout the
685 day. Spatially contiguous satellite products and our analysis of air quality variability offer the
686 potential to support air quality managers and public health analysis.

687

688 **Code and Data Availability**

689 All data used in this study are open to the public. Hourly NO₂ data from AQS were obtained
690 from https://aqs.epa.gov/aqsweb/airdata/download_files.html. Copernicus Sentinel 5P Level 2
691 TROPOMI NO₂ data were processed by the ESA, Koninklijk Nederlands Meteorologisch
692 Instituut (KNMI; <https://doi.org/10.5270/S5P-s4ljg54>), downloaded from the NASA Goddard
693 Earth Sciences Data and Information Center (GES DISC) in January 2021, and gridded using
694 WHIPS ([https://sage.nelson.wisc.edu/data-and-models/wisconsin-horizontal-interpolation-
695 program-for-satellites-whips/](https://sage.nelson.wisc.edu/data-and-models/wisconsin-horizontal-interpolation-program-for-satellites-whips/)). TEMPO Level 3 NO₂ data were downloaded from NASA's
696 EarthData Search ([https://search.earthdata.nasa.gov/search/granules?p=C2930763263-
697 LARC_CLOUD&pg\[0\]\[v\]=f&tl=1732652660.361!3!!](https://search.earthdata.nasa.gov/search/granules?p=C2930763263-LARC_CLOUD&pg[0][v]=f&tl=1732652660.361!3!!)). The 2021 Primary and Secondary Roads
698 Tiger/Line state-level shapefiles were downloaded from the U.S. Census Bureau
699 (<https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2021&layergroup=Roads>).

700 Since all of our data is publicly available and the methods describe our calculations in detail, we
701 did not make our code publicly available. The Jensen Shannon Divergence was calculated using
702 the *scipy.spatial.distance.jensenshannon* python package.

703

704 **Author Contribution**

705 SA and TH conceptualized and designed methodology. MH helped with data curation. SA
706 performed data analysis and visualization and prepared the original draft of the manuscript. All
707 authors contributed to reviewing and editing the manuscript.

708

709 **Competing Interests**

710 The authors declare that they have no conflict of interest.

711

712 **Acknowledgements**

713 This paper was funded by NASA Grant 80NSSC21K0427 through the Health and Air Quality
714 Applied Sciences Team (HAQAST). We also thank the EPA for providing the Air Quality System
715 data, the Earth Sciences Data and Information Center (GES DISC) for TROPOMI L2 data, the
716 Wisconsin Horizontal Interpolation Program for Satellites (WHIPS) for helping to process and
717 grid TROPOMI data, and NASA Langley Atmospheric Science Data Center Distributed Active
718 Archive Center for providing access to the TEMPO data. The authors acknowledge OpenAI 4o
719 for help with data analysis debugging. We also appreciate valuable comments from Muhammad
720 Omar Nawaz and anonymous reviewers from the public discussion.

721

722

723 **References**

724 Achakulwisut, P., Brauer, M., Hystad, P., and Anenberg, S. C.: Global, national, and urban
725 burdens of paediatric asthma incidence attributable to ambient NO₂ pollution: estimates from
726 global datasets, *The Lancet Planetary Health*, 3, e166–e178, [https://doi.org/10.1016/S2542-
727 5196\(19\)30046-4](https://doi.org/10.1016/S2542-5196(19)30046-4), 2019.

728 Aerts, S., Haesbroeck, G., and Ruwet, C.: Multivariate coefficients of variation: Comparison and
729 influence functions, *Journal of Multivariate Analysis*, 142, 183–198,
730 <https://doi.org/10.1016/j.jmva.2015.08.006>, 2015.

731 Ahmed, Z., Zeeshan, S., Persaud, N., Degroat, W., Abdelhalim, H., and Liang, B. T.:
732 Investigating genes associated with cardiovascular disease among heart failure patients for
733 translational research and precision medicine, *Clinical and Translational Dis*, 3, e206,
734 <https://doi.org/10.1002/ctd2.206>, 2023.

735 Anenberg, S. C., Mohegh, A., Goldberg, D. L., Kerr, G. H., Brauer, M., Burkart, K., Hystad, P.,
736 Larkin, A., Wozniak, S., and Lamsal, L.: Long-term trends in urban NO₂ concentrations and
737 associated paediatric asthma incidence: estimates from global datasets, *The Lancet Planetary
738 Health*, 6, e49–e58, [https://doi.org/10.1016/S2542-5196\(21\)00255-2](https://doi.org/10.1016/S2542-5196(21)00255-2), 2022.

739 Bai, L., Chen, H., Hatzopoulou, M., Jerrett, M., Kwong, J. C., Burnett, R. T., Van Donkelaar, A.,
740 Copes, R., Martin, R. V., Van Ryswyk, K., Lu, H., Kopp, A., and Weichenthal, S.: Exposure to
741 Ambient Ultrafine Particles and Nitrogen Dioxide and Incident Hypertension and Diabetes:,
742 *Epidemiology*, 29, 323–332, <https://doi.org/10.1097/EDE.0000000000000798>, 2018.

743 Bechle, M. J., Millet, D. B., and Marshall, J. D.: Remote sensing of exposure to NO₂: Satellite
744 versus ground-based measurement in a large urban area, *Atmospheric Environment*, 69, 345–
745 353, <https://doi.org/10.1016/j.atmosenv.2012.11.046>, 2013.

746 Behera, S. N. and Sharma, M.: Transformation of atmospheric ammonia and acid gases into
747 components of PM_{2.5}: an environmental chamber study, *Environ Sci Pollut Res*, 19, 1187–1197,
748 <https://doi.org/10.1007/s11356-011-0635-9>, 2012.

749 Boersma, K. F., Jacob, D. J., Trainic, M., Rudich, Y., DeSmedt, I., Dirksen, R., and Eskes, H. J.:
750 Validation of urban NO₂ concentrations and their diurnal and seasonal
751 variations observed from the SCIAMACHY and OMI sensors using in situ surface
752 measurements in Israeli cities, *Atmos. Chem. Phys.*, 9, 3867–3879, <https://doi.org/10.5194/acp-9-3867-2009>, 2009.

754 Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., Van Geffen, J. H.
755 G. M., Zara, M., Peters, E., Van Roozendael, M., Wagner, T., Maasakkers, J. D., Van Der A, R. J.,

756 Nightingale, J., De Rudder, A., Irie, H., Pinardi, G., Lambert, J.-C., and Compernolle, S. C.:
757 Improving algorithms and uncertainty estimates for satellite NO₂ retrievals: results from the quality assurance for the essential climate variables (QA4ECV)
758 project, *Atmos. Meas. Tech.*, 11, 6651–6678, <https://doi.org/10.5194/amt-11-6651-2018>, 2018.

760 Camilleri, S. F., Kerr, G. H., Anenberg, S. C., and Horton, D. E.: All-Cause NO₂ -Attributable
761 Mortality Burden and Associated Racial and Ethnic Disparities in the United States, *Environ.*
762 *Sci. Technol. Lett.*, 10, 1159–1164, <https://doi.org/10.1021/acs.estlett.3c00500>, 2023.

763 Wisconsin Horizontal Interpolation Program for Satellites (WHIPS):
764 <https://sage.nelson.wisc.edu/data-and-models/wisconsin-horizontal-interpolation-program-for-satellites-whips/>, last access: 6 December 2024.

766 Chance, K., Liu, X., Miller, C. C., González Abad, G., Huang, G., Nowlan, C., Souri, A.,
767 Suleiman, R., Sun, K., Wang, H., Zhu, L., Zoogman, P., Al-Saadi, J., Antuña-Marrero, J.-C., Carr,
768 J., Chatfield, R., Chin, M., Cohen, R., Edwards, D., Fishman, J., Flittner, D., Geddes, J., Grutter,
769 M., Herman, J. R., Jacob, D. J., Janz, S., Joiner, J., Kim, J., Krotkov, N. A., Lefer, B., Martin, R.
770 V., Mayol-Bracero, O. L., Naeger, A., Newchurch, M., Pfister, G. G., Pickering, K., Pierce, R. B.,
771 Rivera Cárdenas, C., Saiz-Lopez, A., Simpson, W., Spinei, E., Spurr, R. J. D., Szykman, J. J.,
772 Torres, O., and Wang, J.: TEMPO Green Paper: Chemistry, physics, and meteorology
773 experiments with the Tropospheric Emissions: monitoring of pollution instrument, in: *Sensors, Systems,*
774 *and Next-Generation Satellites XXIII, Sensors, Systems, and Next-Generation*
775 *Satellites XXIII, Strasbourg, France*, 10, <https://doi.org/10.1117/12.2534883>, 2019.

776 Chowdhury, S., Haines, A., Klingmüller, K., Kumar, V., Pozzer, A., Venkataraman, C., Witt, C.,
777 and Lelieveld, J.: Global and national assessment of the incidence of asthma in children and
778 adolescents from major sources of ambient NO₂, *Environ. Res. Lett.*, 16, 035020,
779 <https://doi.org/10.1088/1748-9326/abe909>, 2021.

780 Clim, A., Zota, R. D., and Tinică, G.: The Kullback-Leibler Divergence Used in Machine
781 Learning Algorithms for Health Care Applications and Hypertension Prediction: A Literature
782 Review, *Procedia Computer Science*, 141, 448–453, <https://doi.org/10.1016/j.procs.2018.10.144>,
783 2018.

784 Cooper, M. J., Martin, R. V., McLinden, C. A., and Brook, J. R.: Inferring ground-level nitrogen
785 dioxide concentrations at fine spatial resolution applied to the TROPOMI satellite instrument,
786 *Environ. Res. Lett.*, 15, 104013, <https://doi.org/10.1088/1748-9326/aba3a5>, 2020.

787 Dang, R., Jacob, D. J., Shah, V., Eastham, S. D., Fritz, T. M., Mickley, L. J., Liu, T., Wang, Y.,
788 and Wang, J.: Background nitrogen dioxide (NO₂) over the United States and its implications for
789 satellite observations and trends: effects of nitrate photolysis, aircraft, and open fires, *Atmos.*
790 *Chem. Phys.*, 23, 6271–6284, <https://doi.org/10.5194/acp-23-6271-2023>, 2023.

791 Dressel, I. M., Demetillo, M. A. G., Judd, L. M., Janz, S. J., Fields, K. P., Sun, K., Fiore, A. M.,
792 McDonald, B. C., and Pusede, S. E.: Daily Satellite Observations of Nitrogen Dioxide Air
793 Pollution Inequality in New York City, New York and Newark, New Jersey: Evaluation and
794 Application, *Environ. Sci. Technol.*, 56, 15298–15311, <https://doi.org/10.1021/acs.est.2c02828>,
795 2022.

796 Duncan, B. N., Yoshida, Y., De Foy, B., Lamsal, L. N., Streets, D. G., Lu, Z., Pickering, K. E.,
797 and Krotkov, N. A.: The observed response of Ozone Monitoring Instrument (OMI) NO₂
798 columns to NO_x emission controls on power plants in the United States: 2005–2011,
799 *Atmospheric Environment*, 81, 102–111, <https://doi.org/10.1016/j.atmosenv.2013.08.068>, 2013.

800 Duncan, B. N., Prados, A. I., Lamsal, L. N., Liu, Y., Streets, D. G., Gupta, P., Hilsenrath, E.,
801 Kahn, R. A., Nielsen, J. E., Beyersdorf, A. J., Burton, S. P., Fiore, A. M., Fishman, J., Henze, D.,
802 Hostetler, C. A., Krotkov, N. A., Lee, P., Lin, M., Pawson, S., Pfister, G., Pickering, K. E.,
803 Pierce, R. B., Yoshida, Y., and Ziemb, L. D.: Satellite data of atmospheric pollution for U.S. air
804 quality applications: Examples of applications, summary of data end-user resources, answers to
805 FAQs, and common mistakes to avoid, *Atmospheric Environment*, 94, 647–662,
806 <https://doi.org/10.1016/j.atmosenv.2014.05.061>, 2014.

807 Dunlea, E. J., Herndon, S. C., Nelson, D. D., Volkamer, R. M., San Martini, F., Sheehy, P. M.,
808 Zahniser, M. S., Shorter, J. H., Wormhoudt, J. C., Lamb, B. K., Allwine, E. J., Gaffney, J. S.,
809 Marley, N. A., Grutter, M., Marquez, C., Blanco, S., Cardenas, B., Retama, A., Ramos Villegas,
810 C. R., Kolb, C. E., Molina, L. T., and Molina, M. J.: Evaluation of nitrogen dioxide
811 chemiluminescence monitors in a polluted urban environment, *Atmos. Chem. Phys.*, 7, 2691–
812 2704, <https://doi.org/10.5194/acp-7-2691-2007>, 2007.

813 AirData Pre-Generated Hourly File Downloads:
814 https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw, last access: 21 February 2025.

815 European Space Agency: TROPOMI Level 2 Nitrogen Dioxide, <https://doi.org/10.5270/S5P-9bnp8q8>, 2021.

816
817 Fontijn, Arthur., Sabadell, A. J., and Ronco, R. J.: Homogeneous chemiluminescent measurement
818 of nitric oxide with ozone. Implications for continuous selective monitoring of gaseous air
819 pollutants, *Anal. Chem.*, 42, 575–579, <https://doi.org/10.1021/ac60288a034>, 1970.

820 Frost, G. J., McKeen, S. A., Trainer, M., Ryerson, T. B., Neuman, J. A., Roberts, J. M., Swanson,
821 A., Holloway, J. S., Sueper, D. T., Fortin, T., Parrish, D. D., Fehsenfeld, F. C., Flocke, F.,
822 Peckham, S. E., Grell, G. A., Kowal, D., Cartwright, J., Auerbach, N., and Habermann, T.:
823 Effects of changing power plant NO_x emissions on ozone in the eastern United States: Proof of
824 concept, *J. Geophys. Res.*, 111, 2005JD006354, <https://doi.org/10.1029/2005JD006354>, 2006.

825 Gantt, B., Owen, R. C., and Watkins, N.: Characterizing Nitrogen Oxides and Fine Particulate
826 Matter near Major Highways in the United States Using the National Near-Road Monitoring
827 Network, *Environ. Sci. Technol.*, 55, 2831–2838, <https://doi.org/10.1021/acs.est.0c05851>, 2021.

828 Ge, B., Sun, Y., Liu, Y., Dong, H., Ji, D., Jiang, Q., Li, J., and Wang, Z.: Nitrogen dioxide
829 measurement by cavity attenuated phase shift spectroscopy (CAPS) and implications in ozone
830 production efficiency and nitrate formation in Beijing, China, *JGR Atmospheres*, 118, 9499–
831 9509, <https://doi.org/10.1002/jgrd.50757>, 2013.

832 Goldberg, D. L., Anenberg, S. C., Kerr, G. H., Mohegh, A., Lu, Z., and Streets, D. G.:
833 TROPOMI NO₂ in the United States: A Detailed Look at the Annual Averages, Weekly Cycles,
834 Effects of Temperature, and Correlation With Surface NO₂ Concentrations, *Earth's Future*, 9,
835 e2020EF001665, <https://doi.org/10.1029/2020EF001665>, 2021.

836 Goldberg, D. L., Tao, M., Kerr, G. H., Ma, S., Tong, D. Q., Fiore, A. M., Dickens, A. F.,
837 Adelman, Z. E., and Anenberg, S. C.: Evaluating the spatial patterns of U.S. urban NO_x
838 emissions using TROPOMI NO₂, *Remote Sensing of Environment*, 300, 113917,
839 <https://doi.org/10.1016/j.rse.2023.113917>, 2024.

840 Griffin, D., Zhao, X., McLinden, C. A., Boersma, F., Bourassa, A., Dammers, E., Degenstein, D.,
841 Eskes, H., Fehr, L., Fioletov, V., Hayden, K., Kharol, S. K., Li, S., Makar, P., Martin, R. V.,
842 Mihele, C., Mittermeier, R. L., Krotkov, N., Sneep, M., Lamsal, L. N., Linden, M. T., Geffen, J.
843 V., Veefkind, P., and Wolde, M.: High-Resolution Mapping of Nitrogen Dioxide With
844 TROPOMI: First Results and Validation Over the Canadian Oil Sands, *Geophysical Research
845 Letters*, 46, 1049–1060, <https://doi.org/10.1029/2018GL081095>, 2019.

846 Grulke, N. E. and Heath, R. L.: Ozone effects on plants in natural ecosystems, *Plant Biol J*, 22,
847 12–37, <https://doi.org/10.1111/plb.12971>, 2020.

848 Hales, S., Atkinson, J., Metcalfe, J., Kuschel, G., and Woodward, A.: Long term exposure to air
849 pollution, mortality and morbidity in New Zealand: Cohort study, *Science of The Total
850 Environment*, 801, 149660, <https://doi.org/10.1016/j.scitotenv.2021.149660>, 2021.

851 Harkey, M. and Holloway, T.: Simulated Surface-Column NO₂ Connections for Satellite
852 Applications, *JGR Atmospheres*, 129, e2024JD041912, <https://doi.org/10.1029/2024JD041912>,
853 2024.

854 Harkey, M., Holloway, T., Oberman, J., and Scotty, E.: An evaluation of CMAQ NO₂ using
855 observed chemistry-meteorology correlations, *JGR Atmospheres*, 120,
856 <https://doi.org/10.1002/2015JD023316>, 2015.

857 Harkey, M., Holloway, T., Kim, E. J., Baker, K. R., and Henderson, B.: Satellite Formaldehyde to
858 Support Model Evaluation, *JGR Atmospheres*, 126, e2020JD032881,
859 <https://doi.org/10.1029/2020JD032881>, 2021.

860 Holloway, T., Miller, D., Anenberg, S., Diao, M., Duncan, B., Fiore, A. M., Henze, D. K., Hess,
861 J., Kinney, P. L., Liu, Y., Neu, J. L., O'Neill, S. M., Odman, M. T., Pierce, R. B., Russell, A. G.,
862 Tong, D., West, J. J., and Zondlo, M. A.: Satellite Monitoring for Air Quality and Health, *Annu.
863 Rev. Biomed. Data Sci.*, 4, 417–447, <https://doi.org/10.1146/annurev-biodatasci-110920-093120>,
864 2021.

865 Huangfu, P. and Atkinson, R.: Long-term exposure to NO₂ and O₃ and all-cause and respiratory
866 mortality: A systematic review and meta-analysis, *Environment International*, 144, 105998,
867 <https://doi.org/10.1016/j.envint.2020.105998>, 2020.

868 Huber, D. E., Steiner, A. L., and Kort, E. A.: Daily Cropland Soil NO_x Emissions Identified by
869 TROPOMI and SMAP, *Geophysical Research Letters*, 47, e2020GL089949,
870 <https://doi.org/10.1029/2020GL089949>, 2020.

871 Ialongo, I., Virta, H., Eskes, H., Hovila, J., and Douros, J.: Comparison of TROPOMI/Sentinel-5
872 Precursor NO₂ observations with ground-based measurements in
873 Helsinki, *Atmos. Meas. Tech.*, 13, 205–218, <https://doi.org/10.5194/amt-13-205-2020>, 2020.

874 Jia, M., Wang, Z., Wang, C., Mao, D., and Zhang, Y.: A New Vegetation Index to Detect
875 Periodically Submerged Mangrove Forest Using Single-Tide Sentinel-2 Imagery, *Remote
876 Sensing*, 11, 2043, <https://doi.org/10.3390/rs11172043>, 2019.

877 Jones, D. C., Danaher, P., Kim, Y., Beechem, J. M., Gottardo, R., and Newell, E. W.: An
878 information theoretic approach to detecting spatially varying genes, *Cell Reports Methods*, 3,
879 100507, <https://doi.org/10.1016/j.crmeth.2023.100507>, 2023.

880 Kang, D. and Pickering, K.: Lightning NO_x Emissions and the Implications for Surface Air
881 Quality over the Contiguous United States, *EM (Pittsburgh Pa)*, 11, 1–6, 2018.

882 Karagkiozidis, D., Koukouli, M.-E., Bais, A., Balis, D., and Tzoumaka, P.: Assessment of the
883 NO₂ Spatio-Temporal Variability over Thessaloniki, Greece, Using MAX-DOAS Measurements
884 and Comparison with S5P/TROPOMI Observations, *Applied Sciences*, 13, 2641,
885 <https://doi.org/10.3390/app13042641>, 2023.

886 Karner, A. A., Eisinger, D. S., and Niemeier, D. A.: Near-Roadway Air Quality: Synthesizing the
887 Findings from Real-World Data, *Environ. Sci. Technol.*, 44, 5334–5344,
888 <https://doi.org/10.1021/es100008x>, 2010.

889 Kebabian, P. L., Herndon, S. C., and Freedman, A.: Detection of Nitrogen Dioxide by Cavity
890 Attenuated Phase Shift Spectroscopy, *Anal. Chem.*, 77, 724–728,
891 <https://doi.org/10.1021/ac048715y>, 2005.

892 Kerr, G. H., Goldberg, D. L., Harris, M. H., Henderson, B. H., Hystad, P., Roy, A., and
893 Anenberg, S. C.: Ethnoracial Disparities in Nitrogen Dioxide Pollution in the United States:
894 Comparing Data Sets from Satellites, Models, and Monitors, *Environ. Sci. Technol.*, 57, 19532–
895 19544, <https://doi.org/10.1021/acs.est.3c03999>, 2023.

896 Kibirige, G. W., Huang, C. C., Liu, C. L., and Chen, M. C.: Influence of land-sea breeze on
897 PM_{2.5} prediction in central and southern Taiwan using composite neural network, Sci
898 Rep, 13, 3827, <https://doi.org/10.1038/s41598-023-29845-w>, 2023.

899 Kim, E. J., Holloway, T., Kokandakar, A., Harkey, M., Elkins, S., Goldberg, D. L., and Heck, C.:
900 A Comparison of Regression Methods for Inferring Near-Surface NO₂ With Satellite Data, JGR
901 Atmospheres, 129, e2024JD040906, <https://doi.org/10.1029/2024JD040906>, 2024.

902 Kim, H. C., Kim, S., Lee, S.-H., Kim, B.-U., and Lee, P.: Fine-Scale Columnar and Surface NO_x
903 Concentrations over South Korea: Comparison of Surface Monitors, TROPOMI, CMAQ and
904 CAPSS Inventory, Atmosphere, 11, 101, <https://doi.org/10.3390/atmos11010101>, 2020.

905 Kim, M., Brunner, D., and Kuhlmann, G.: Importance of satellite observations for high-
906 resolution mapping of near-surface NO₂ by machine learning, Remote Sensing of Environment,
907 264, 112573, <https://doi.org/10.1016/j.rse.2021.112573>, 2021.

908 Kimbrough, S., Chris Owen, R., Snyder, M., and Richmond-Bryant, J.: NO to NO₂ conversion
909 rate analysis and implications for dispersion model chemistry methods using Las Vegas, Nevada
910 near-road field measurements, Atmospheric Environment, 165, 23–34,
911 <https://doi.org/10.1016/j.atmosenv.2017.06.027>, 2017.

912 Knox, J. B. and Lange, R.: Surface Air Pollutant Concentration Frequency Distributions:
913 Implications for Urban Modeling, Journal of the Air Pollution Control Association, 24, 48–53,
914 <https://doi.org/10.1080/00022470.1974.10469893>, 1974.

915 Lamsal, L. N., Krotkov, N. A., Celarier, E. A., Swartz, W. H., Pickering, K. E., Bucsela, E. J.,
916 Gleason, J. F., Martin, R. V., Philip, S., Irie, H., Cede, A., Herman, J., Weinheimer, A., Szykman,
917 J. J., and Knepp, T. N.: Evaluation of OMI operational standard NO₂ column retrievals using in situ and surface-based NO₂ observations, Atmos. Chem. Phys., 14, 11587–11609, <https://doi.org/10.5194/acp-14-11587-2014>, 2014.

920 Lamsal, L. N., Duncan, B. N., Yoshida, Y., Krotkov, N. A., Pickering, K. E., Streets, D. G., and
921 Lu, Z.: U.S. NO₂ trends (2005–2013): EPA Air Quality System (AQS) data versus improved
922 observations from the Ozone Monitoring Instrument (OMI), Atmospheric Environment, 110,
923 130–143, <https://doi.org/10.1016/j.atmosenv.2015.03.055>, 2015.

924 Lange, K., Richter, A., and Burrows, J. P.: Variability of nitrogen oxide emission fluxes and
925 lifetimes estimated from Sentinel-5P TROPOMI observations, *Atmos. Chem. Phys.*, 22, 2745–
926 2767, <https://doi.org/10.5194/acp-22-2745-2022>, 2022.

927 Lee, H. J. and Koutrakis, P.: Daily Ambient NO₂ Concentration Predictions Using Satellite
928 Ozone Monitoring Instrument NO₂ Data and Land Use Regression, *Environ. Sci. Technol.*,
929 140204134232009, <https://doi.org/10.1021/es404845f>, 2014.

930 Lee, H. J., Liu, Y., and Chatfield, R. B.: Neighborhood-scale ambient NO₂ concentrations using
931 TROPOMI NO₂ data: Applications for spatially comprehensive exposure assessment, *Science of
932 The Total Environment*, 857, 159342, <https://doi.org/10.1016/j.scitotenv.2022.159342>, 2023.

933 Lee, M., Heikes, B. G., Jacob, D. J., Sachse, G., and Anderson, B.: Hydrogen peroxide, organic
934 hydroperoxide, and formaldehyde as primary pollutants from biomass burning, *J. Geophys. Res.*,
935 102, 1301–1309, <https://doi.org/10.1029/96JD01709>, 1997.

936 Levinson, R. and Akbari, H.: Potential benefits of cool roofs on commercial buildings:
937 conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants,
938 *Energy Efficiency*, 3, 53–109, <https://doi.org/10.1007/s12053-008-9038-2>, 2010.

939 Li, J., Wang, Y., Zhang, R., Smeltzer, C., Weinheimer, A., Herman, J., Boersma, K. F., Celarier,
940 E. A., Long, R. W., Szykman, J. J., Delgado, R., Thompson, A. M., Knapp, T. N., Lamsal, L. N.,
941 Janz, S. J., Kowalewski, M. G., Liu, X., and Nowlan, C. R.: Comprehensive evaluations of
942 diurnal NO₂ measurements during DISCOVER-AQ 2011: effects of
943 resolution-dependent representation of NO₂ emissions, *Atmos. Chem. Phys.*, 21, 11133–11160, <https://doi.org/10.5194/acp-21-11133-2021>,
945 2021.

946 Liu, X., Yi, G., Zhou, X., Zhang, T., Lan, Y., Yu, D., Wen, B., and Hu, J.: Atmospheric NO₂
947 Distribution Characteristics and Influencing Factors in Yangtze River Economic Belt: Analysis of
948 the NO₂ Product of TROPOMI/Sentinel-5P, *Atmosphere*, 12, 1142,
949 <https://doi.org/10.3390/atmos12091142>, 2021.

950 Melville, P., Yang, S.M., Saar-Tsechansky, M., Mooney, R.J.: Active Learning for Probability
951 Estimation using Jensen-Shannon Divergence, in: Proceedings of the 16th European Conference
952 on Machine Learning, 268–279, 2005.

953 Menéndez, M. L., Pardo, J. A., Pardo, L., and Pardo, M. C.: The Jensen-Shannon divergence,
954 Journal of the Franklin Institute, 334, 307–318, [https://doi.org/10.1016/S0016-0032\(96\)00063-4](https://doi.org/10.1016/S0016-0032(96)00063-4),
955 1997.

956 Meng, X., Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Milojevic, A., Guo, Y., Tong, S.,
957 Coelho, M. D. S. Z. S., Saldiva, P. H. N., Lavigne, E., Correa, P. M., Ortega, N. V., Osorio, S.,
958 Garcia, Kyselý, J., Urban, A., Orru, H., Maasikmets, M., Jaakkola, J. J. K., Rytí, N., Huber, V.,
959 Schneider, A., Katsouyanni, K., Analitis, A., Hashizume, M., Honda, Y., Ng, C. F. S., Nunes, B.,
960 Teixeira, J. P., Holobaca, I. H., Fratianni, S., Kim, H., Tobias, A., Íñiguez, C., Forsberg, B.,
961 Åström, C., Ragettli, M. S., Guo, Y.-L. L., Pan, S.-C., Li, S., Bell, M. L., Zanobetti, A., Schwartz,
962 J., Wu, T., Gasparrini, A., and Kan, H.: Short term associations of ambient nitrogen dioxide with
963 daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities, BMJ,
964 n534, <https://doi.org/10.1136/bmj.n534>, 2021.

965 Mills, I. C., Atkinson, R. W., Kang, S., Walton, H., and Anderson, H. R.: Quantitative systematic
966 review of the associations between short-term exposure to nitrogen dioxide and mortality and
967 hospital admissions, BMJ Open, 5, e006946, <https://doi.org/10.1136/bmjopen-2014-006946>,
968 2015.

969 Mölter, A., Agius, R., De Vocht, F., Lindley, S., Gerrard, W., Custovic, A., and Simpson, A.:
970 Effects of long-term exposure to PM₁₀ and NO₂ on asthma and wheeze in a prospective birth
971 cohort, J Epidemiol Community Health, 68, 21–28, <https://doi.org/10.1136/jech-2013-202681>,
972 2014.

973 Mondal, A., Sharma, S. K., Mandal, T. K., Girach, I., and Ojha, N.: Frequency distribution of
974 pollutant concentrations over Indian megacities impacted by the COVID-19 lockdown, Environ
975 Sci Pollut Res, 29, 85676–85687, <https://doi.org/10.1007/s11356-021-16874-z>, 2022.

976 Naeger, A. R., Newchurch, M. J., Moore, T., Chance, K., Liu, X., Alexander, S., Murphy, K., and
977 Wang, B.: Revolutionary Air-Pollution Applications from Future Tropospheric Emissions:

978 Monitoring of Pollution (TEMPO) Observations, Bulletin of the American Meteorological
979 Society, 102, E1735–E1741, <https://doi.org/10.1175/BAMS-D-21-0050.1>, 2021.

980 Tropospheric Emissions: Monitoring of Pollution (EVI-1) | NASA's Earth Observing System:
981 <https://eospso.nasa.gov/missions/tropospheric-emissions-monitoring-pollution-evi-1>, last access:
982 26 November 2024.

983 NASA Langley Research Center: TEMPO Level 2/3 trace gas and cloud data user guide, 2024.

984 Novotny, E. V., Bechle, M. J., Millet, D. B., and Marshall, J. D.: National Satellite-Based Land-
985 Use Regression: NO₂ in the United States, *Environ. Sci. Technol.*, 45, 4407–4414,
986 <https://doi.org/10.1021/es103578x>, 2011.

987 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., and Ciapponi, A.: Short-term exposure to
988 particulate matter (PM10 and PM2.5), nitrogen dioxide (NO₂), and ozone (O₃) and all-cause and
989 cause-specific mortality: Systematic review and meta-analysis, *Environment International*, 142,
990 105876, <https://doi.org/10.1016/j.envint.2020.105876>, 2020.

991 Penn, E. and Holloway, T.: Evaluating current satellite capability to observe diurnal change in
992 nitrogen oxides in preparation for geostationary satellite missions, *Environ. Res. Lett.*, 15,
993 034038, <https://doi.org/10.1088/1748-9326/ab6b36>, 2020.

994 Pollack, R.: Studies of Pollutant Concentration Frequency Distributions, 1975.

995 Qin, M., Yu, H., Hu, Y., Russell, A. G., Odman, M. T., Doty, K., Pour-Biazar, A., McNider, R. T.,
996 and Knipping, E.: Improving ozone simulations in the Great Lakes Region: The role of
997 emissions, chemistry, and dry deposition, *Atmospheric Environment*, 202, 167–179,
998 <https://doi.org/10.1016/j.atmosenv.2019.01.025>, 2019.

999 Richmond-Bryant, J., Chris Owen, R., Graham, S., Snyder, M., McDow, S., Oakes, M., and
1000 Kimbrough, S.: Estimation of on-road NO₂ concentrations, NO₂/NO_X ratios, and related
1001 roadway gradients from near-road monitoring data, *Air Qual Atmos Health*, 10, 611–625,
1002 <https://doi.org/10.1007/s11869-016-0455-7>, 2017.

1003 Richter, A., Burrows, J. P., Nüß, H., Granier, C., and Niemeier, U.: Increase in tropospheric
1004 nitrogen dioxide over China observed from space, *Nature*, 437, 129–132,
1005 <https://doi.org/10.1038/nature04092>, 2005.

1006 Sangkham, S., Phairuang, W., Sherchan, S. P., Pansakun, N., Munkong, N., Sarndhong, K.,
1007 Islam, Md. A., and Sakunkoo, P.: An update on adverse health effects from exposure to PM2.5,
1008 Environmental Advances, 18, 100603, <https://doi.org/10.1016/j.envadv.2024.100603>, 2024.

1009 Saurette, D. D., Heck, R. J., Gillespie, A. W., Berg, A. A., and Biswas, A.: Divergence metrics for
1010 determining optimal training sample size in digital soil mapping, Geoderma, 436, 116553,
1011 <https://doi.org/10.1016/j.geoderma.2023.116553>, 2023.

1012 Shah, V., Jacob, D. J., Li, K., Silvern, R. F., Zhai, S., Liu, M., Lin, J., and Zhang, Q.: Effect of
1013 changing NO₂ lifetime on the seasonality and long-
1014 term trends of satellite-observed tropospheric NO₂ columns over China,
1015 Atmos. Chem. Phys., 20, 1483–1495, <https://doi.org/10.5194/acp-20-1483-2020>, 2020.

1016 Sharma, S., Chandra, M., and Kota, S. H.: Health Effects Associated with PM2.5: a Systematic
1017 Review, Curr Pollution Rep, 6, 345–367, <https://doi.org/10.1007/s40726-020-00155-3>, 2020.

1018 Shetty, S., Schneider, P., Stebel, K., David Hamer, P., Kylling, A., and Koren Berntsen, T.:
1019 Estimating surface NO₂ concentrations over Europe using Sentinel-5P TROPOMI observations
1020 and Machine Learning, Remote Sensing of Environment, 312, 114321,
1021 <https://doi.org/10.1016/j.rse.2024.114321>, 2024.

1022 Sillman, S.: The relation between ozone, NO_x and hydrocarbons in urban and polluted rural
1023 environments, Atmospheric Environment, 33, 1821–1845, [https://doi.org/10.1016/S1352-2310\(98\)00345-8](https://doi.org/10.1016/S1352-2310(98)00345-8), 1999.

1025 Steinbacher, M., Zellweger, C., Schwarzenbach, B., Bugmann, S., Buchmann, B., Ordóñez, C.,
1026 Prevot, A. S. H., and Hueglin, C.: Nitrogen oxide measurements at rural sites in Switzerland:
1027 Bias of conventional measurement techniques, J. Geophys. Res., 112, 2006JD007971,
1028 <https://doi.org/10.1029/2006JD007971>, 2007.

1029 Suleiman, R.: TEMPO gridded NO₂ tropospheric and stratospheric columns V03
1030 (PROVISIONAL), https://doi.org/10.5067/IS-40E/TEMPO/NO2_L3.003, 2024.

1031 Thangavel, P., Park, D., and Lee, Y.-C.: Recent Insights into Particulate Matter (PM2.5)-
1032 Mediated Toxicity in Humans: An Overview, IJERPH, 19, 7511,
1033 <https://doi.org/10.3390/ijerph19127511>, 2022.

1034 Thiagarajan, P. and Ghosh, S.: Jensen–Shannon divergence based novel loss functions for
1035 Bayesian neural networks, *Neurocomputing*, 618, 129115,
1036 <https://doi.org/10.1016/j.neucom.2024.129115>, 2024.

1037 Toledo, A. S. O., Silini, R., Carpi, L. C., and Masoller, C.: Outlier mining in high-dimensional
1038 data using the Jensen–Shannon divergence and graph structure analysis, *J. Phys. Complex.*, 3,
1039 045011, <https://doi.org/10.1088/2632-072X/aca94a>, 2022.

1040 Tsigalou, C., Panopoulou, M., Papadopoulos, C., Karvelas, A., Tsairidis, D., and
1041 Anagnostopoulos, K.: Estimation of low-density lipoprotein cholesterol by machine learning
1042 methods, *Clinica Chimica Acta*, 517, 108–116, <https://doi.org/10.1016/j.cca.2021.02.020>, 2021.

1043 Urbanowicz, T., Skotak, K., Filipiak, K. J., Olasińska-Wiśniewska, A., Szczepański, K., Wyrwa,
1044 M., Sikora, J., Tykarski, A., and Jemielity, M.: Long-Term Exposure of Nitrogen Oxides Air
1045 Pollution (NO₂) Impact for Coronary Artery Lesion Progression—Pilot Study, *JPM*, 13, 1376,
1046 <https://doi.org/10.3390/jpm13091376>, 2023.

1047 2021 TIGER/Line® Shapefiles: <https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2021&layergroup=Roads>, last access: 21 February 2025.

1048 U.S. 2020 Urban Areas Shapefile:
1049 https://www2.census.gov/geo/tiger/TIGER_RD18/LAYER/UAC20/, last access: 21 February
1050 2025.

1051 Van Der A, R. J., Eskes, H. J., Boersma, K. F., Van Noije, T. P. C., Van Roozendael, M., De
1052 Smedt, I., Peters, D. H. M. U., and Meijer, E. W.: Trends, seasonal variability and dominant NO_x
1053 source derived from a ten year record of NO₂ measured from space, *J. Geophys. Res.*, 113,
1054 2007JD009021, <https://doi.org/10.1029/2007JD009021>, 2008.

1055 Van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., Ter Linden, M., Zara, M., and Veefkind, J.
1056 P.: S5P TROPOMI NO₂ slant column retrieval: method, stability,
1057 uncertainties and comparisons with OMI, *Atmos. Meas. Tech.*, 13, 1315–1335,
1058 <https://doi.org/10.5194/amt-13-1315-2020>, 2020.

1059 Veefkind, J. P., Aben, I., McMullan, K., Förster, H., De Vries, J., Otter, G., Claas, J., Eskes, H. J.,
1060 De Haan, J. F., Kleipool, Q., Van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel,

1062 R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.:
1063 TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the
1064 atmospheric composition for climate, air quality and ozone layer applications, *Remote Sensing*
1065 of Environment

, 120, 70–83, <https://doi.org/10.1016/j.rse.2011.09.027>, 2012.

1066 Venkatram, A.: Applications of Pollutant Frequency Distributions, *Journal of the Air Pollution*
1067 *Control Association*, 29, 251–253, <https://doi.org/10.1080/00022470.1979.10470788>, 1979.

1068 Virta, H., Ialongo, I., Szeląg, M., and Eskes, H.: Estimating surface-level nitrogen dioxide
1069 concentrations from Sentinel-5P/TROPOMI observations in Finland, *Atmospheric Environment*,
1070 312, 119989, <https://doi.org/10.1016/j.atmosenv.2023.119989>, 2023.

1071 Wang, F. and Zhang, Z.: Correlation Structure and Co-Movement of Hunan Province's Air
1072 Pollution: Evidence from the Multiscale Temporal Networks, *Atmosphere*, 14, 55,
1073 <https://doi.org/10.3390/atmos14010055>, 2022.

1074 Wang, Y., Bechle, M. J., Kim, S.-Y., Adams, P. J., Pandis, S. N., Pope, C. A., Robinson, A. L.,
1075 Sheppard, L., Szpiro, A. A., and Marshall, J. D.: Spatial decomposition analysis of NO₂ and
1076 PM_{2.5} air pollution in the United States, *Atmospheric Environment*, 241, 117470,
1077 <https://doi.org/10.1016/j.atmosenv.2020.117470>, 2020.

1078 Xia, X., Meng, X., Liu, C., Guo, Y., Li, X., Niu, Y., Lam, K. B. H., Wright, N., Kartsonaki, C.,
1079 Chen, Y., Yang, L., Du, H., Yu, C., Sun, D., Lv, J., Chen, J., Yang, X., Gao, R., Wu, S., Kan, H.,
1080 Chan, K. H., Li, L., Chen, Z., Chen, J., Chen, Z., Clarke, R., Collins, R., Li, L., Lv, J., Peto, R.,
1081 Walters, R., EdrisMohamed, A., Pozarickij, A., Iona, A., Wang, B., Clarke, C., Kartsonaki, C.,
1082 Schmidt, D., Avery, D., Bennett, D., Fry, H., Du, H., Lam, H., Turnbull, I., Millwood, I., Liu, J.,
1083 Clarke, J., Chan, K. H., Kolhe, K., Lin, K., Wang, L., Yang, L., Kakkoura, M., Rahmati, M.,
1084 Barnard, M., Mazidi, M., Wright, N., Yao, P., Ryder, P., Im, P. K., Harish, P., Nie, Q., Stevens, R.,
1085 Clarke, R., Walters, R., Boxall, R., Morris, S., Gilbert, S., Yang, X., Chen, Y., Chen, Z., Han, X.,
1086 Hou, C., Xia, Q., Liu, C., Lv, J., Pei, P., Sun, D., Yu, C., Pan, L., Pang, Z., Gao, R., Li, S., Duan,
1087 H., Wang, S., Liu, Y., Du, R., Zang, Y., Cheng, L., Tian, X., Zhang, H., Zhai, Y., Ning, F., Sun,
1088 X., Li, F., Lv, S., Wang, J., Hou, W., Sun, W., et al.: Associations of long-term nitrogen dioxide
1089 exposure with a wide spectrum of diseases: a prospective cohort study of 0·5 million Chinese

1090 adults, *The Lancet Public Health*, 9, e1047–e1058, [https://doi.org/10.1016/S2468-2667\(24\)00264-0](https://doi.org/10.1016/S2468-2667(24)00264-0), 2024.

1092 Xu, A. and Xiang, C.: Assessment of the Emission Characteristics of Major States in the United
1093 States using Satellite Observations of CO₂, CO, and NO₂, *Atmosphere*, 15, 11,
1094 <https://doi.org/10.3390/atmos15010011>, 2023.

1095 Yan, J., Li, P., Gao, R., Li, Y., and Chen, L.: Identifying Critical States of Complex Diseases by
1096 Single-Sample Jensen-Shannon Divergence, *Front. Oncol.*, 11, 684781,
1097 <https://doi.org/10.3389/fonc.2021.684781>, 2021.

1098 Yu, Z. and Li, X.: The Temporal–Spatial Characteristics of Column NO₂ Concentration and
1099 Influence Factors in Xinjiang of Northwestern Arid Region in China, *Atmosphere*, 13, 1533,
1100 <https://doi.org/10.3390/atmos13101533>, 2022.

1101 Zhang, R., Wang, Y., Smeltzer, C., Qu, H., Koshak, W., and Boersma, K. F.: Reconciling the
1102 differences between OMI-based and EPA AQS in situ NO₂ trends,
1103 <https://doi.org/10.5194/amt-2017-410>, 25 January 2018.

1104 Zhao, D., Yan, W., You, M., Zhang, J., Arun, P. V., Jiao, C., Wang, Q., and Zhou, H.:
1105 Hyperspectral Anomaly Detection Based on Empirical Mode Decomposition and Local
1106 Weighted Contrast, *IEEE Sensors J.*, 24, 33847–33861,
1107 <https://doi.org/10.1109/JSEN.2024.3455258>, 2024.

1108 Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al-Saadi, J. A., Hilton,
1109 B. B., Nicks, D. K., Newchurch, M. J., Carr, J. L., Janz, S. J., Andraschko, M. R., Arola, A.,
1110 Baker, B. D., Canova, B. P., Chan Miller, C., Cohen, R. C., Davis, J. E., Dussault, M. E.,
1111 Edwards, D. P., Fishman, J., Ghulam, A., González Abad, G., Grutter, M., Herman, J. R., Houck,
1112 J., Jacob, D. J., Joiner, J., Kerridge, B. J., Kim, J., Krotkov, N. A., Lamsal, L., Li, C., Lindfors,
1113 A., Martin, R. V., McElroy, C. T., McLinden, C., Natraj, V., Neil, D. O., Nowlan, C. R.,
1114 O’Sullivan, E. J., Palmer, P. I., Pierce, R. B., Pippin, M. R., Saiz-Lopez, A., Spurr, R. J. D.,
1115 Szykman, J. J., Torres, O., Veefkind, J. P., Veihelmann, B., Wang, H., Wang, J., and Chance, K.:
1116 Tropospheric emissions: Monitoring of pollution (TEMPO), *Journal of Quantitative
1117 Spectroscopy and Radiative Transfer*, 186, 17–39, <https://doi.org/10.1016/j.jqsrt.2016.05.008>,
1118 2017.