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Abstract 12 

In this study we assess the capability of current-generation satellites to capture the variability of 13 

near-surface nitrogen dioxide (NO2) monitoring data, with the goal of supporting health and 14 

regulatory applications. We consider NO2 vertical column densities (VCD) over the United 15 

States from two satellite instruments, the Tropospheric Monitoring Instrument (TROPOMI), and 16 

Tropospheric Emissions: Monitoring of Pollution (TEMPO), and compare with ground-based 17 

concentrations as measured by the EPA’s Air Quality System (AQS) monitors. While 18 

TROPOMI provides a longer-term record of assessment (2019-2023), TEMPO informs diurnal 19 

patterns relevant to evaluating peak NO2. We analyze frequency distributions and quantify their 20 

similarity using the Jensen-Shannon Divergence (JSD), where smaller values indicate better 21 

agreement. Satellite and ground monitor NO2 distributions are most similar at non-roadway 22 

monitors (JSD = 0.008) and are most different at interstate (JSD = 0.158) and highway (JSD = 23 

0.095) monitors. Seasonal analysis shows the most similarity in distributions in winter (JSD = 24 

0.010), and the most difference in summer (JSD = 0.035). Across seasons and monitor locations, 25 

the calculated 1:30 pm LT TEMPO consistently exhibits better or comparable JSDs to 26 

TROPOMI (TEMPO: 0.005 to 0.151; TROPOMI: 0.012 to 0.265). TEMPO’s agreement with 27 

monitors in both December 2023 and July 2024 is found to be best around midday, with non-28 

road monitors in July having the best alignment (JSD = 0.008) at 16 UTC (~11 am LT). These 29 
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findings highlight the ability of TROPOMI and TEMPO to complement existing ground-based 30 

monitors, and demonstrate their potential for monitor siting, regulatory, and public health 31 

applications.  32 

1 Introduction 33 

Nitrogen dioxide (NO2) is a gas released through high temperature combustion processes such as 34 

the burning of fossil fuels (Lee et al., 1997; Richter et al., 2005), with on-road vehicles, power 35 

plants, and industrial processes representing the largest anthropogenic sources in the United 36 

States (U.S.; van der A et al., 2008) as well as lightning NOX emissions (Dang et al., 2023) and 37 

soil microbial activity (Huber et al., 2020) from natural sources. Exposure to elevated levels of 38 

NO2 has been linked to respiratory and cardiovascular diseases (Mills et al., 2015; Urbanowicz et 39 

al., 2023; Meng et al., 2021), especially asthma in children (Mӧlter et al., 2014; Anenberg et al., 40 

2022; Achakulwisut et al., 2019), as well as premature mortality (Camilleri et al., 2023; Hales et 41 

al., 2021; Huangfu and Atkinson, 2020), and other diseases (Xia et al., 2024; Bai et al., 2018). 42 

NO2 plays a critical role in the formation of ozone, which also causes respiratory health problems 43 

and is harmful to ecosystems (Grulke & Heath, 2019; Sillman, 1999). It is also a precursor to 44 

nitrate (Behera & Sharma, 2012), a type of fine particulate matter (PM2.5), which can penetrate 45 

deep into the lungs and exacerbate respiratory and heart conditions (Sangkham et al., 2024; 46 

Sharma et al., 2020), as well as cause premature death (Orellano et al., 2020; Thangavel et al., 47 

2022).  48 

Due to its radiative characteristics, NO2 may be observed by satellites during daylight hours 49 

(Boersma et al., 2018; Van Geffen et al., 2020; Veefkind et al., 2012), and NO2 has emerged as 50 

one of the most air-quality-relevant pollutants from satellites (Holloway et al., 2021). Several 51 

studies have highlighted the potential for satellite NO2 data to supplement ground-based 52 

networks to support health analysis and air quality management (Duncan et al., 2014; Lee & 53 

Koutrakis, 2014). The 2017 launch of the Tropospheric Monitoring Instrument (TROPOMI; 54 

Boersma et al., 2018; Van Geffen et al., 2020; Veefkind et al., 2012) advanced these applications 55 

(Goldberg et al., 2021; Griffin et al., 2019; Kim et al., 2024; Yu & Li, 2022; Dressel et al., 2022; 56 

Goldberg et al., 2024; H. J. Lee et al., 2023). The Tropospheric Emissions: Monitoring of 57 

Pollution (TEMPO; Chance et al., 2019; Naeger et al., 2021; Zoogman et al., 2017) provides 58 
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further advancements with daytime hourly observations of NO2 over North America and finer 59 

spatial coverage. 60 

While advanced methods exist to calculate near-surface NO2 from satellite columns (Ahmad et 61 

al., 2024; Kim et al., 2021; Shetty et al., 2024; Virta et al., 2023), there is also a strong interest in 62 

the utilization of satellite vertical column density (VCD) to directly infer NO2 concentrations 63 

analogous to ground-based monitors (Kim et al., 2024; Lamsal et al., 2014; Griffin et al., 2019; 64 

Yu & Li, 2022; Zhang et al., 2018; Lamsal et al., 2015; Goldberg et al., 2021; Dressel et al., 65 

2022; Goldberg et al., 2024; Harkey & Holloway, 2024; Bechle et al., 2013; H. J. Lee et al., 66 

2023; Xu & Xiang, 2023). This study extends prior assessments of NO2 column-to-surface 67 

agreement, where we focus on frequency distributions to capture the net impact of day-to-day 68 

variability.   69 

The relationship between surface NO2 and column abundance is influenced by physical and 70 

chemical processes, many of which have seasonal components. In winter, shallow boundary 71 

layers trap pollutants near the surface, leading to higher surface concentrations and increasing 72 

surface-to-column agreement (Harkey et al., 2015). In summer, higher temperatures and 73 

increased sunlight accelerate photochemical reactions, converting NO2 into ozone and other 74 

secondary pollutants, and decreasing surface-to-column agreement (Boersma et al., 2009). 75 

Seasonal changes in emissions, such as high building-heating emissions in winter, and high 76 

power plant emissions in summer (Frost et al., 2006; Levinson & Akbari, 2010) interact with 77 

atmospheric processes causing an increase in NO2 column abundance in winter in four-season 78 

climates (Shah et al., 2020). Processes affecting the sources and sinks of NO2 at the surface and 79 

through the vertical column can also lead to temporal lags, with peak surface NO2 preceding 80 

peak column NO2 in the mornings (Harkey et al. 2024). 81 

Frequency distributions capture the variability, extremes, and patterns of pollutant abundance, 82 

relevant to air quality standards, pollution trends, and the effectiveness of emission control 83 

measures (Knox and Lange, 1974; Pollack, 1975; Venkatram, 1979; Chowdhury et al., 2021; 84 

Mondal et al., 2021). For example, Mondal et al. (2021) used frequency distributions of ground-85 

based monitors to examine changes in air quality across Delhi and Kolkata during COVID-19 86 

lockdown phases, showing how reduced human activity led to shifts in pollutant levels. We 87 
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extend this line of analysis by comparing NO2 distributions across multiple dimensions with 88 

TROPOMI and include time-of-day and resolution-dependence of results using data from 89 

TEMPO. 90 

In this work, we consider: (1) How do the distributions of satellite NO2 VCD compare with those 91 

for near-surface NO2? (2) To what degree does new hourly data from TEMPO improve the 92 

agreement between surface and space based NO2 distributions? For both questions, we consider 93 

spatial variability, especially proximity to roadways, and temporal variability including 94 

seasonality and diurnal variability. By considering the ability of satellites to capture peak NO2 95 

values in a comparable distribution to surface data, we consider how satellite VCDs can support 96 

air quality management, improve health impact analysis, and inform air pollution monitor siting. 97 

2 Data and Methods 98 

In this study, we evaluate the ability of two satellite instruments, TROPOMI and TEMPO, to 99 

capture the spatial and temporal variability in NO2 surface concentration distributions across the 100 

continental United States (CONUS), as measured by AQS monitors. By comparing the 101 

coefficient of variation (CV) and Jensen-Shannon divergence (JSD) between satellite and 102 

monitor data, we aim to assess the alignment between the datasets. 103 

2.1 EPA Surface Monitor Data 104 

The Environmental Protection Agency (EPA) Air Quality System (AQS) contains hourly NO2 105 

measurements from ground-based monitors, providing high temporal resolution data that are 106 

critical for assessing compliance with the U.S. National Ambient Air Quality Standards 107 

(NAAQS). There are two NAAQS related to NO2: one for annual average concentration, set at 108 

53 ppb, and one based on peak 1-hour concentrations, set at 100 ppb, based on the 3-year 109 

average of the 98th percentile of the yearly distribution of 1-hour daily maximum NO2 110 

concentrations (EPA, 2010). Enforcement of these standards relies on data from AQS NO2 111 

monitors, a network that includes 431 monitors as of August 2024. Because NO2 has a relatively 112 

short atmospheric lifetime, typically ranging from a few hours to a day depending on 113 

meteorological conditions (Lange et al., 2022; Liu et al., 2021), ground monitors are expected to 114 

capture local conditions (Wang et al., 2020).  115 
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The EPA AQS data (EPA, 2025) was used to access NO2 monitor data for the years 2019 through 116 

2023 from all available sites in CONUS during this time period (503 unique monitors from 2019 117 

to 2023). We note that there are some areas that are overrepresented by NO2 monitors, and others 118 

that are lacking monitors. Specifically, most monitors are located in urban areas, especially on 119 

the East Coast and in Southern California, meaning that rural areas tend to be less represented by 120 

ground monitors (Kerr et al., 2023). Most monitors use a chemiluminescence method, where the 121 

amount of NO2 that is converted to NO is measured by a molybdenum oxide converter (Fontijn 122 

et al., 1970). The converter also reacts with other oxidized nitrogen compounds such as nitric 123 

acid (HNO3) and peroxyacetyl nitrate (PAN) to form NO (Dunlea et al., 2007; Steinbacher et al., 124 

2007), which can lead to an overestimation of NO2. Corrections for this bias have been applied 125 

when comparing with satellite observations (e.g. Cooper et al., 2020; Lamsal et al., 2015; Li et 126 

al., 2021). Uncorrected AQS NO2 has been used for determining compliance with the NAAQS 127 

and for health assessments, which is the approach we take here, consistent with prior studies 128 

focused on regulatory relevance (Novotny et al., 2011; Penn & Holloway, 2020; Harkey and 129 

Holloway, 2024; Goldberg et al., 2021; Kim et al., 2024; Duncan et al., 2013; Qin et al., 2019). 130 

More recently, some NO2 monitors have been added to the network which measure “true NO2” 131 

using Cavity Attenuated Phase Shift Spectroscopy (CAPS, Kebabian et al., 2005). These 132 

monitors are expected to be more representative of ground-level NO2 concentrations and should 133 

have less overestimations since they directly measure NO2 and no other species (Ge et al., 2013). 134 

Some of the monitors used in this study use CAPS methodology to measure NO2. We discuss the 135 

comparison of CAPS versus traditional NO2 monitors in results Sect. 3.1. 136 

Hourly AQS measurements at 13:00 and 14:00 local time (LT) were averaged to align with the 137 

TROPOMI overpass of ~13:30 LST. Hourly AQS measurements from 12:00 GMT to 23:00 138 

GMT are compared with hourly TEMPO data for daylight hours. For both the TROPOMI and 139 

TEMPO analyses, AQS data are filtered to ensure consistency with satellite data availability. As 140 

a result of filtering monitoring data for TROPOMI and TEMPO separately, the subsets of 141 

monitor data available for comparison with each instrument differ, even for the same time 142 

periods. 143 

2.2 TROPOMI Data 144 
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The Tropospheric Monitoring Instrument (TROPOMI; European Space Agency, 2021) is on 145 

board the Copernicus Sentinel-5 Precursor satellite which has a daily, local overpass time of 146 

~13:30 LST (Veefkind et al., 2012). Currently, the highest resolution of TROPOMI is 3.5 km by 147 

5.5 km at nadir which has increased from 3.5 km by 7.0 km since August 6th, 2019. Daily 148 

TROPOMI NO2 data for the years 2019 through 2023 were allocated to a 4 km x 4 km grid over 149 

CONUS using the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS; Center 150 

for Sustainability and the Global Environment, 2024; Harkey et al., 2015, 2021; Harkey and 151 

Holloway, 2024; Penn and Holloway, 2020). Using WHIPS, we also remove data with a quality 152 

flag lower than 0.75. Each monitor location was compared with the 4 km x 4 km gridded 153 

TROPOMI value in the corresponding grid cell. December 2023 and July 2024 4 km x 4 km 154 

TROPOMI NO2 data were also collected for each of the monitors for comparison with TEMPO 155 

data. 156 

A 4 km x 4 km oversampled grid is used as opposed to the 1 km x 1 km oversampled grid since 157 

this study focuses on daily observations, and the 1 km x 1 km grid is best suited for monthly or 158 

annual averages (Goldberg et al., 2021). To ensure a valid number of TROPOMI pixels were 159 

being represented despite the higher grid resolution, we analyzed the number of ground monitors 160 

falling within each TROPOMI pixel by performing a spatial join between ground monitor 161 

locations and the oversampled 4 km x 4 km TROPOMI grid. About 97% of TROPOMI pixels 162 

contain only one monitor, with only a small number of pixels (2.7%) containing more than one. 163 

Figure S1 shows the number of monitors per TROPOMI pixel (locations where there are more 164 

than 1 monitor per TROPOMI pixel) and the number of valid TROPOMI retrievals from 2019 to 165 

2023 at each grid cell, confirming that monitors are well-distributed enough to not 166 

disproportionately cluster within a small subset of satellite pixels. Since monitors are spread 167 

across the entire U.S. and most are at least 4 km apart, there is generally sufficient separation to 168 

ensure that most monitors are assigned to distinct TROPOMI pixels rather than falling into the 169 

same grid cells repeatedly.  170 

2.3 TEMPO Data 171 

The TEMPO instrument launched onboard the Intelsat 40e mission (NASA, 2024), a 172 

geostationary satellite, on April 7, 2023. TEMPO provides hourly measurements of atmospheric 173 
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pollutants over North America (Chance et al., 2019; Naeger et al., 2021; Zoogman et al., 2017). 174 

TEMPO achieves a spatial resolution of approximately 2.1 km in the north-south direction and 175 

4.5 km in the east-west direction at the center of its Field of Regard (FOR), centered around 176 

36.5° N and 100° W (Chance et al., 2019). The TEMPO Level-3 (L3) NO2 data (Suleiman, 2024) 177 

used in this study were accessed through NASA’s EarthData Search portal.  178 

In order to synchronize TEMPO and ground-based hourly measurements, TEMPO timestamps 179 

were rounded to the nearest hour, with mid-hour values rounded up. All files within each 180 

rounded-hour group were averaged, producing a single NO2 value per hour per day. Only 181 

TEMPO observations with a main data quality flag of 0 and cloud fraction at or less than 0.2 182 

were retained, in line with TEMPO documentation guidelines (NASA Langley Research Center, 183 

2024).   184 

For the comparison with TROPOMI, the UTC equivalents of 1 pm and 2 pm LT were 185 

determined for each time zone based on the latitude and longitude of each monitor location. 186 

TEMPO NO2 values corresponding to these calculated UTC hours were averaged to align with 187 

the TROPOMI overpass time (~13:30 LST). Similarly, for ground-based measurements, the 188 

monitor data were filtered to include only values corresponding to 1 pm and 2 pm LT and then 189 

averaged.  190 

2.4 Monitor Classification 191 

To classify the monitors by roadway proximity, the state-level Census Bureau’s 2021 192 

TIGER/Line shapefiles for Primary and Secondary Roads (2021 TIGER/Line® Shapefiles, 193 

2025) were combined to form a comprehensive dataset for the CONUS domain.  194 

To evaluate how TROPOMI and ground-based monitor NO2 values vary by proximity to a road, 195 

monitors were also assigned to different groups based on their distance from a road (≤20-m, 20 196 

to 50-m, 50 to 300-m, 300-m to 1 km, and > 1 km), where buffer distances are calculated from 197 

the road shapefiles (Figure S3). There were 9 monitors that were 20 meters or less away from a 198 

road, 66 between 20 and 50 meters from a road, 108 between 50 and 300 meters, 167 between 199 

300 meters and 1 kilometer, and 153 that were greater than 1 kilometer from a road. 200 
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Roads were also classified into three categories: (1) interstates, (2) highways, and (3) other 201 

roads, based on their route type code (RTTYP) values. Where monitors are considered as 202 

representing a roadway category, we followed the criteria of the EPA Near-Road-Network 203 

(Gantt et al., 2021; Kim et al., 2024) to merge monitor locations with road buffers, considering 204 

the 50-m buffer recommended by the EPA, as well as a less restrictive 300-m buffer. In each 205 

case, monitors inside the buffer of a particular roadway type were classified as representing that 206 

category. If a monitor fell within multiple buffers, it was assigned the classification of the largest 207 

road type. Monitors not falling within any buffers were classified as "non-roadway." 208 

Using the 50-m buffer, 58 monitors were classified as “interstate,” 17 as “highway,” and 428 as 209 

“non-roadway” (Figure S2; no monitors classified as “other roads”). Using the 300-m buffer, 91 210 

monitors were classified as “interstate,” 90 as “highway,” 320 as “non-roadway,” and 2 as “other 211 

roads.” Since there were no monitors classified as “other roads” for the 50-m buffer, this 212 

category is excluded from the analysis. 213 

We classified interstate monitors as urban or rural using the U.S. Census Bureau 2020 Urban 214 

Areas Tiger/Line Shapefile (U.S. 2020 Urban Areas Shapefile, 2025). Only one interstate 215 

monitor was identified as rural, so this analysis is not included. 216 

2.5 Data Analysis 217 

The coefficient of variation (CV) was calculated for ground-level monitor data and for satellite 218 

data. This metric was used to compare the relative variability of NO2 between satellite and 219 

ground-level data despite different measurement units (Aerts et al., 2015). CV is defined as the 220 

ratio of the standard deviation (σ) to the mean (μ) of the data: 221 

𝐶𝐶𝐶𝐶 =  �
𝜎𝜎
𝜇𝜇
�× 100 222 

The Jensen-Shannon Divergence (JSD) is used to quantify the similarity between the 223 

distributions of NO2 from the satellite and ground-level monitors despite the different 224 

measurement units (Menéndez et al., 1997). The JSD is a robust metric for comparing 225 

probability distributions that is used within a wide variety of fields, including machine learning 226 
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(Thiagarajan & Ghosh, 2024; Saurette et al., 2023; Tsigalou et al., 2021; Melville et al., 2005), 227 

data science (Toledo et al., 2022; Zhao et al., 2024), biology (Yan et al., 2021; Jones et al., 2023; 228 

Ahmed et al., 2023), and meteorology (Kibirige et al., 2023). In environmental research using 229 

satellite data, the JSD has shown that the Mangrove Forest Index (MFI) from Sentinel-2 imagery 230 

outperforms traditional vegetation indices in distinguishing submerged mangrove forests (Jia et 231 

al., 2019). In air quality, the JSD has been used to compare modeled and measured PM2.5 (Yang 232 

et al., 2024), and to compare an air quality index (AQI) with measurements of specific air 233 

pollutants (Wang & Zhang, 2022).  234 

To calculate the JSD, each dataset was binned, with a bin size of 1 ppb (for ground monitors) or 235 

1 x 1015 molecules/cm2 (for satellite data), ranging from 0 to 40 ppb or 40 x 1015 molecule/cm2, 236 

with an additional bin for values exceeding 40 ppb or 40 x 1015 molecule/cm2. For visualization 237 

purposes, the frequency distributions are binned with the ground monitors ranging from 0 to 40 238 

ppb and the satellite data ranging from 0 to 30 x 1015 molecule/cm2, with an additional bin for 239 

values exceeding 40 ppb or 30 x 1015 molecule/cm2. Depending on the specific analysis, NO2 240 

data are grouped by: (1) Distance from roadways (in meters) – TROPOMI daily data from 2019 241 

to 2023 (and corresponding ground monitors) are grouped by proximity to roads to assess spatial 242 

alignment; (2) season – TROPOMI daily data from 2019 to 2023 (and corresponding ground 243 

monitors) are grouped by season to analyze temporal alignment; (3) month – TROPOMI daily 244 

data from December 2023 and July 2024, along with TEMPO and ground monitors at the 245 

TROPOMI overpass time (~1:30 pm LT, represented by the average of 1 pm and 2 pm LT data), 246 

are grouped by month to compare the temporal differences in alignment between TEMPO and 247 

TROPOMI; and (4) road type (interstate, highway, non-roadway) – Both TROPOMI (daily), 248 

TEMPO (calculated overpass time and hourly), and ground monitor data are grouped by road 249 

type to evaluate varying alignment based on road classifications. 250 

Binned data were then normalized to form probability distributions. The divergence was 251 

calculated as: 252 

𝐽𝐽𝐽𝐽𝐽𝐽(𝑃𝑃,𝑄𝑄) =  
1
2

[𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑀𝑀) + 𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄||𝑀𝑀)] 253 
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where P and Q represent the probability distributions from the monitor and satellite data, 254 

respectively, and M is the average of P and Q. The divergence DKL is the Kullback-Leibler 255 

divergence between each distribution and their mean (Clim et al., 2018). JSD values range from 256 

0 to 1, with lower values indicating greater similarity between the satellite and monitor 257 

distributions. In general, a JSD < 0.1 indicates very good alignment, 0.1 ≤ JSD < 0.3 indicates 258 

moderate alignment, and JSD ≥ 0.3 (Kibirige et al., 2023) indicates poor alignment. 259 

3 Results  260 

To evaluate the agreement between satellite and monitored NO2 distributions, we consider the 261 

impact of monitor location using TROPOMI; impact of season using TROPOMI; the comparison 262 

of distributions between TROPOMI and TEMPO; and the impact of time-of-day using TEMPO.     263 

3.1 Alignment of TROPOMI NO2 Distributions with Surface NO2 Distributions  264 

This section analyzes TROPOMI and ground-based NO2 measurements across varying distances 265 

from roads, different seasons, and at monitors located near interstates, highways, and non-266 

roadway sites. Our results show that as the distance from roads increases, the distributions of 267 

surface and column NO2 become more similar. Monitor distributions near interstates and 268 

highways exhibit lower agreement with TROPOMI distributions compared to those farther from 269 

major roadways. Seasonally, alignment is strongest in winter and weakest in summer.  270 

Figure 1 illustrates the distribution of NO2 levels measured by AQS ground-based monitors and 271 

TROPOMI observations as a function of distance from roadways using daily measurements from 272 

2019 to 2023. For both data sources, mean, peak, and minimum NO2 are all highest in the 20 – 273 

50 m distance category (the second closest near-road category). NO2 abundance decreases as 274 

distance-to-road increases, and to a lesser extent as distance-to-road decreases.  The somewhat 275 

lower abundance in the ≤ 20 m category vs. the 20 – 50 m category may be due to the speciation 276 

of NOX, where nitric oxide (NO) is more abundant and converts to a higher fraction of NO2 as 277 

distance-to-road increases (Kimbrough et al., 2017). Most direct vehicle emissions are in the 278 

form of NO, and close to the roadway, NO and NO2 readily convert between forms. Limited 279 

ozone availability—especially during stable conditions, which contribute to suppressed vertical 280 

mixing—can slow the conversion of NO to NO2 (Richmond-Bryant et al., 2017). As a result, 281 

NO2 may initially be suppressed very close to the road, and changes in total NOX are primarily 282 
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driven by mixing and dilution rather than chemical transformation. NO2 peaks in the 20–50 m 283 

range likely because this zone allows for sufficient time and space for NO to oxidize to NO2 284 

while still being close enough to the emission source to experience elevated concentrations; 285 

beyond this range, concentrations decrease with distance due to dispersion and dilution of 286 

pollutants into the surrounding atmosphere. Mean monitored NO2 is 6.85 ppb at ≤ 20 m, 10.47 287 

ppb at 20 – 50 m, 4.53 ppb at 50 – 300 m, 3.71 ppb at 300 m – 1 km, and 2.80 ppb at > 1 km. 288 

Mean TROPOMI NO2 is 3.38 x 1015 molecules/cm2 at ≤ 20 m, 4.21 1015 molecules/cm2 at 20 – 289 

50 m, 3.00 x 1015 molecules/cm2 at 50 – 300 m, 3.72 x 1015 molecules/cm2 at 300 m – 1 km, and 290 

3.13 x 1015 molecules/cm2 at > 1 km.  Monitor values show a higher sensitivity to roadway 291 

proximity, where the highest mean monitored concentration is 375% of the lowest mean 292 

concentration, compared to TROPOMI where the highest mean VCD is 140% of the lowest 293 

mean VCD.   294 

Monitored NO2 levels drop over 50% at ~50 m from the roadway (based on change in the mean, 295 

upper 2.5 interquartile range, IQR, and the upper 1.5 IQR), a finding that compares with a 31% 296 

reduction in NO2 between 20m and 300m from Kimbrough et al. (2017), as well as other studies 297 

that identify a decrease in NO2 at further distances (Karner et al., 2010; Richmond-Bryant et al., 298 

2017). TROPOMI VCDs also show the greatest change with roadway distance at ~50 km, but by 299 

less than 30% (based on change in the mean, upper 2.5 IQR, and the upper 1.5 IQR).   300 

Just as total NO2 abundance, from both monitors and satellite, is highest at distances of 20-50 m 301 

from the roadway, the range of daily values is also widest for the 20 – 50 m range and smallest at 302 

the > 1 km range. Monitored values have a standard deviation of 8.24 ppb in the 20 – 50 m 303 

range, and a standard deviation of 3.39 ppb in the > 1 km range. The distribution of satellite data 304 

does not vary as much in size across roadway locations, with a standard deviation of 3.90 x 1015 305 

molecules/cm2 for the 20 – 50 m range and 3.31 x 1015 molecules/cm2 for the > 1 km range.  In 306 

the 20 – 50 m range, the upper IQR of AQS NO2 is 38% higher than the mean. TROPOMI shows 307 

less variability than the monitors, with the 20 – 50 m upper IQR 16% higher than the mean. As 308 

distance from the roadway increases, the distributions of data from the ground and satellite 309 

become more comparable.  In the > 1 km range, the upper IQR of monitor NO2 is 23% higher 310 

than the mean and the upper IQR of satellite data is 15% higher than the mean. The ranges show 311 

more similarity at greater distances from the roadway, but even at distances of > 1 km, the range 312 
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of monitored values exceeds the range of satellite VCDs. These patterns agree with Kim et al. 313 

(2024), who found that surface monitors show better agreement with TROPOMI further from 314 

major roads. This improved alignment at greater distances likely reflects the reduced influence of 315 

localized emission sources, which tend to create sharp gradients and rapid variability near roads. 316 

In areas further from traffic, NO2 concentrations vary more gradually or are generally more 317 

uniform. As a result, surface monitors away from roads reflect broader conditions, in better 318 

agreement with the coarser spatial resolution of TROPOMI. 319 

When analyzed by season (Figure S4), the relationships are similar, except winter shows the 320 

highest IQRs, with the 20 to 50 m distance group having an IQR of 11.40 ppb for monitors and 321 

4.96 x 1015 molecules/cm2 for TROPOMI, and summer, the lowest IQRs for both monitors (IQR 322 

= 9.05 ppb) and TROPOMI (IQR = 1.71 x 1015 molecules/cm2). In the greater than 1 km distance 323 

group, again winter has the highest IQRs (monitor IQR = 4.60 ppb; TROPOMI IQR = 3.95 x 324 

1015 molecules/cm2) and summer the lowest IQRs (monitor IQR = 2.05 ppb; TROPOMI IQR = 325 

1.55 x 1015 molecules/cm2). 326 

 327 

 328 

Figure 1. Box plots show median and interquartile ranges of all daily 2019 to 2023 NO2 as 329 

measured by AQS monitors (blue) and TROPOMI (orange) across various distances from 330 

roadways, with the whiskers extending to the 1.5 IQR range. No outliers are shown. The left y-331 
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axis represents AQS monitor values in parts per billion (ppb), and the right y-axis represents 332 

TROPOMI NO2 values in 1015 molecules per cm2. The distance categories from the roadway 333 

include ≤ 20 m, 20-50 m, 50-300 m, 300 m-1 km, and > 1 km.  334 

To consider the shape of monitored and satellite NO2 distributions, we consider the effect of 335 

season in Fig. 2. The winter distributions (Figure 2a, calculated from December, January, and 336 

February data) exhibit the longest tails and highest NO2 values. In winter, the 90th percentile of 337 

monitoring data is 14.80 ppb and the 90th percentile of TROPOMI data is 10.93 x 1015 338 

molecules/cm2. Spring distributions (Figure 2b; March, April, and May) show intermediate 339 

behavior, with lower values and shorter tails than winter and fall, but higher than summer (90th 340 

percentile from monitors = 9.71 ppb; 90th percentile from TROPOMI = 6.19 x 1015 341 

molecules/cm2). In summer (Figure 2c, June, July, and August), the distributions exhibit the 342 

shortest tails, and the lowest NO2 values (90th percentile from monitors = 9.00 ppb; 90th 343 

percentile from TROPOMI = 4.57 x 1015 molecules/cm2). Fall (Figure 2d; September, October, 344 

and November) also shows intermediate behavior, generally between winter and spring (90th 345 

percentile from monitors = 12.15 ppb; 90th percentile from TROPOMI = 7.44 x 1015 346 

molecules/cm2). The higher NO2 values in winter from monitor and TROPOMI data are 347 

attributed to reduced photochemical activity in winter leading to longer NO2 lifetimes (Harkey et 348 

al., 2015; Boersma et al., 2009; Shah et al., 2020).  349 

The highest percent frequencies for the monitor and TROPOMI distributions generally occur 350 

within the 1–2 ppb or 1–2 x 1015 molecules/cm2 bin. However, the winter TROPOMI distribution 351 

peaks in the 2–3 x 1015 molecules/cm2 bin with a percent frequency of 18.14%, compared with 352 

winter monitor highest frequency of 14.33%. The highest percent frequency in spring from 353 

TROPOMI is 30.39% versus monitor 24.15%; in summer TROPOMI is 34.35% versus monitor 354 

of 24.68%; in fall TROPOMI is 24.90% versus monitor of 18.89%. These results indicate that 355 

TROPOMI consistently records higher peak frequencies than the monitors, whereas monitors 356 

consistently show a wider distribution. 357 

Figure 2 provides a seasonal breakdown of the coefficient of variation (CV) and Jensen-Shannon 358 

divergence (JSD) for both monitor and TROPOMI data across all monitors. Summer exhibits the 359 

highest variability in monitored NO2 concentrations (CV = 127.99%), but the lowest variability 360 

in satellite observations (CV = 78.00%). The highest variability in TROPOMI occurs in winter 361 
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(CV = 103.51%), similar to the variability from monitor data (CV = 104.48%). Satellite CVs 362 

generally follow a similar pattern to that of monitors, though the overall variability is lower for 363 

satellite data across seasons.  364 

 365 

Figure 2. Seasonal frequency distributions of 2019-2023 NO2 as measured by AQS ground-based 366 

monitors (blue) and TROPOMI (light orange) data for four seasons: a) winter, b) spring, c) 367 

summer, and c) fall. The x-axes indicate the range of NO2, with the primary, lower x-axis 368 

showing monitor NO2 concentrations in parts per billion (ppb) and the secondary, upper x-axis 369 

showing TROPOMI NO2 VCD in 1015 molecules per cm2. The boxes show the Coefficient of 370 

Variation (CV; %) and Jensen Shannon Divergence (JSD) for each season. 371 
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This reduced variability in satellite observations can likely be attributed to the vertical mixing 372 

reflected in satellite retrievals, as well as horizontal spatial averaging reflected in satellite data 373 

versus point-based NO2 that are captured by ground monitors. This finding is consistent with 374 

previous studies that highlight the spatial averaging nature of satellite-based measurements, 375 

which integrate NO2 amounts over a larger area than the point-based monitors (Ialongo et al., 376 

2020).  377 

Across all seasons shown in Fig. 2, JSD values are all low (< 0.1), indicating that TROPOMI 378 

may be good at predicting surface NO2 across seasons. The alignment is strongest in winter (JSD 379 

= 0.010), while the divergence is highest in summer (JSD = 0.035), meaning the monitors and 380 

TROPOMI align best when the NO2 lifetime is long in the colder months, and they align the 381 

worst when the NO2 lifetime is short in the warmer months. The better alignment in winter could 382 

also be attributed to winter having the largest range of values in the data, which reduces the 383 

sensitivity of the JSD calculation to small differences in the distributions. A wider spread in NO2 384 

values means that relative discrepancies between TROPOMI and monitor measurements are 385 

smaller in proportion to the total variability, potentially leading to greater similarity. 386 

Across seasons, we find that CAPS or “true NO2” monitors tend to have slightly worse alignment 387 

with TROPOMI than traditional, chemiluminescence monitors. Out of the monitors used in this 388 

study, 102 were identified as CAPS monitors, and 401 as traditional monitors. In winter, CAPS 389 

monitors have a JSD of 0.027 and traditional monitors a JSD of 0.009. In summer, CAPS 390 

monitors have a JSD of 0.078 and traditional monitors a JSD of 0.03. With all seasons combined, 391 

CAPS monitors have a JSD of 0.047 and traditional monitors have a JSD of 0.016. 392 

Table 1 shows the CV and JSD for both monitor and satellite data from 2019 through 2023, 393 

aggregated across all seasons and separated by monitor classification (interstate, highway, and 394 

non-roadway), where roadway monitors are classified as being within 50 meters (Table 1a) or 395 

300 meters (Table 1b) of a road. For the 50-m buffer (Table 1a), the coefficient of variation for 396 

ground-based monitor data increases progressively from interstate monitor locations to non-397 

roadway locations, with interstate monitors exhibiting the lowest variability (CV = 75.07%) and 398 

non-roadway monitors showing the highest variability (CV = 118.17%). This indicates that NO2 399 

concentrations measured by ground monitors in interstate areas are more consistent compared to 400 

non-roadway regions. This pattern is mirrored in the satellite data, with CV values ranging from 401 
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91.62% for highway monitors to 106.16% for non-roadway monitors. These patterns suggest that 402 

regular emissions play a larger role in determining near-road NO2, where non-road areas vary 403 

with changes in wind patterns and the chemical environment.  404 

For highway monitors, the CVs of satellite (CV = 91.62%) and monitor data (CV = 96.27%) are 405 

similar, indicating that TROPOMI performs similarly to ground monitors in capturing NO2 406 

variability along highways. Near interstates, TROPOMI (CV = 92.60%) may capture more 407 

variability than the ground-based measurements (CV = 75.07%), a finding that contrasts with 408 

Fig. 1, where TROPOMI shows a narrower range of NO2 values across all distances. This 409 

difference could stem from the fact that the interquartile ranges in Fig. 1 measure the spread of 410 

absolute values, while the coefficient of variation accounts for variability relative to the mean. 411 

Together, these metrics reveal that TROPOMI may not fully capture localized extremes 412 

(narrower IQR) but still captures more relative variability in pollution near interstates than 413 

monitors (higher CV). 414 

 
Road Type Monitor CV TROPOMI CV JSD 

# of 
Monitors 

 
a) 50-m 

Buffer 

Interstate 75.07 92.60 0.158 58 
Highway 96.27 91.61 0.095 17 

Non-roadway 118.17 106.16 0.009 428 
 

b) 300-m 
Buffer 

Interstate 77.20 91.014 0.133 91 
Highway 135.76 92.31 0.017 90 

Non-roadway 116.23 108.43 0.008 320 
 415 

Table 1. Coefficient of variation (%) and Jensen-Shannon divergence for all seasons combined at 416 

interstate, highway, and non-roadway monitors 2019-2023 for the 50-m and 300-m roadway 417 

buffers. 418 

The key differences seen within the JSD across the three monitor classifications are also present 419 

in the percent frequency distributions of NO2 measured by ground-based monitors and 420 

TROPOMI (Figure S5), with interstate monitors having the lowest alignment (JSD = 0.158), 421 

highway monitors having better alignment (JSD = 0.095), and non-roadway monitors having the 422 

best alignment (JSD = 0.009). The strong alignment between TROPOMI and monitor 423 

distributions in non-roadway regions is consistent with previous studies (Dressel et al., 2022; 424 



17 
 

Kim et al., 2024; Ialongo et al., 2020). This close alignment may be due to the relatively lower 425 

NO2 concentrations, which TROPOMI captures more accurately compared to regions with 426 

higher emissions. These findings further align with previous work showing that TROPOMI tends 427 

to underestimate NO2 in high-pollution areas (such as interstates and highways) but slightly 428 

overestimates in areas of lower pollution, such as rural areas (Dressel et al., 2022; Ialongo et al., 429 

2020; Goldberg et al., 2024). 430 

Due to the large jump in NO2 levels seen within Fig. 1 in the 50-300m category, we compare the 431 

50-meter buffer roadway classifications (Figure S5; Table 1a) with the 300-meter buffer 432 

classifications (Figure S6; Table 1b). Notable differences emerge between distributions, 433 

particularly in the highway category, where 73 monitors are added to the highway distribution 434 

(increasing from 17 to 90 monitors; Table 1) due to the larger buffer. The alignment between 435 

monitor data and TROPOMI observations is significantly improved within the 300-meter buffer 436 

near highways. This improvement in alignment is likely due to the decay of NO2 with increasing 437 

distance from the road (Karner et al., 2010; Kimbrough et al., 2017; Richmond-Bryant et al., 438 

2017). Consequently, the lower surface NO2 concentrations observed at 300 meters are better 439 

captured by TROPOMI. This is reflected in Table 1, which shows a substantial reduction in the 440 

JSD for highway monitors, from 0.095 in the 50-meter buffer to 0.017 in the 300-meter buffer 441 

(an 82% increase in alignment at the 300-meter buffer).  442 

The differences observed in the highway category with the 300-meter buffer may be present 443 

since the distribution includes 73 more monitors than the 50-meter buffer, capturing lower NO2 444 

amounts that are more aligned with TROPOMI’s observations. On the other hand, the interstates 445 

category exhibits less noticeable change, with only 33 additional monitors in the 300-meter 446 

buffer distribution (increasing from 58 in the 50-meter buffer, Table 1a; to 91 in the 300-meter 447 

buffer, Table 1b). This suggests that the monitors added in the 300-meter buffer for interstates 448 

measure NO2 levels similar to those already captured in the 50-meter buffer, resulting in little 449 

change to the overall distribution. 450 

These results indicate that TROPOMI follows the trend of NO2 decreasing with increasing 451 

distance from roadways that ground-based monitors record, and TROPOMI captures surface 452 

concentrations best in winter and at 300+ meters away from the traffic source. 453 

 454 
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3.2 Column-Column Daily Alignment 455 

Here we compare the distributions of NO2 from TROPOMI and TEMPO with ground-based 456 

monitors to assess how well each satellite instrument captures daily variations in NO2 457 

concentrations. Our results indicate that TEMPO consistently aligns more closely with ground-458 

based measurements than TROPOMI, particularly in high NO2 areas such as highways and 459 

interstates.  460 

Figure 3 shows the distributions of NO2 as measured by AQS ground-based monitors (filtered to 461 

match valid TROPOMI and TEMPO data), TROPOMI, and TEMPO, separated by road 462 

classifications (interstates, highways, and non-roadways) for December 2023 and July 2024. The 463 

1 pm and 2 pm UTC (based on time zone) TEMPO and AQS values were averaged to align with 464 

the TROPOMI overpass time of ~1:30 pm LT (see Sect. 2.3). The monitor data in each 465 

comparison differs due to the data filtering (see Sect. 2.2 and 2.3). The comparison of frequency 466 

distributions reveals how well TEMPO and TROPOMI capture the wide range of ground-based 467 

monitor readings across these classifications and time periods.  468 

In December 2023, TEMPO (JSD = 0.007) and TROPOMI (JSD = 0.021) exhibit distinct 469 

differences in how well they capture NO2 distributions across the various road classifications. 470 

Near interstates, TEMPO has a 90th percentile at 18.34 x 1015 molecules/cm2 whereas the 471 

TROPOMI 90th percentile is 11.27 x 1015 molecules/cm2. TEMPO aligns more closely with 472 

monitor distributions with a JSD of 0.066 compared to the TROPOMI JSD of 0.145 (Figure 3). 473 

TEMPO has 21.42% of data points above 11 x 1015 molecules/cm2 for interstate values in 474 

December, whereas TROPOMI appears to underestimate the frequency of higher NO2 levels 475 

more, with a cumulative frequency of 10.53% above that threshold. Near highways, the TEMPO 476 

90th percentile is 14.70 x 1015 molecules/cm2 compared to TROPOMI with a 90th percentile of 477 

10.06 x 1015 molecules/cm2. The JSD for TEMPO is 0.049 and TROPOMI is 0.125 for highway 478 

monitors, indicating that TEMPO has much better alignment on highways (Figure 3). For non-479 

roadway locations, both instruments show very good alignment (TEMPO JSD = 0.005; 480 

TROPOMI JSD = 0.012; Figure 3) with the monitor data distributions, but with TEMPO again 481 

being slightly better. 482 
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In July 2024, the patterns show greater divergence across road classifications (TEMPO JSD = 483 

0.027; TROPOMI JSD = 0.049) between the satellite observations and ground-based monitor 484 

data compared to the December 2023 distributions. Near interstates, the TEMPO 90th percentile 485 

is 8.46 x 1015 molecules/cm2 and the TROPOMI 90th percentile is 5.58 x 1015 molecules/cm2, 486 

with TEMPO aligning more closely (JSD of 0.133 compared to TROPOMI JSD of 0.265; Figure 487 

3). TEMPO has 17.01% of data points above 7 x 1015 molecules/cm2 for interstate values in July, 488 

whereas TROPOMI appears to underestimate the frequency of higher NO2 levels more, with a 489 

cumulative frequency of 3.61% above that threshold. Near highways, TEMPO achieves a much 490 

better representation of the higher observed NO2 with a 90th percentile of 9.34 x 1015 491 

molecules/cm2 compared to TROPOMI with a 90th percentile of 5.32 x 1015 molecules/cm2. The 492 

JSD for TEMPO is 0.151 and TROPOMI is 0.201 for highway monitors, indicating that TEMPO 493 

has better alignment near highways. For non-roadway locations, both instruments show very 494 

good alignment (TEMPO JSD = 0.024; TROPOMI JSD = 0.023; Figure 3) with the monitor data 495 

distributions, with TEMPO and TROPOMI alignment with ground monitors being more 496 

comparable than in December 2023. 497 
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 498 

Figure 3. December 2023 and July 2024 at the TROPOMI overpass time (~13:30 LST) 499 

frequency distributions of NO2 as measured by AQS ground-based monitors filtered to the valid 500 

TROPOMI (blue) and TEMPO (purple), TROPOMI (light orange), and TEMPO (yellow) data 501 

for three monitor classifications: Interstate, Highway, and Non-roadway. The x-axes indicate the 502 

range of NO2, with the primary, lower x-axis showing monitor NO2 concentrations in parts per 503 

billion (ppb) and the secondary, upper x-axis showing TROPOMI NO2 VCD and TEMPO NO2 504 

VCD in 1015 molecules per cm2. The boxes show the Coefficient of Variation (CV) and Jensen 505 

Shannon Divergence (JSD) for each season and monitor classification. 506 
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Throughout both December 2023 and July 2024, TEMPO’s improved alignment with ground-507 

based monitors compared to TROPOMI may be attributed to several factors. TEMPO operates 508 

from a geostationary orbit, allowing it to take hourly measurements and capture the diurnal 509 

variability of NO2 concentrations more effectively than TROPOMI, which has a single daily 510 

overpass time. This high temporal resolution enables TEMPO to better match the timing of NO2 511 

peaks and fluctuations detected by ground-based monitors, which are also recorded on an hourly 512 

basis. Additionally, TEMPO’s finer spatial resolution, approximately 2 km in the north-south 513 

direction and 4.5 km in the east-west direction, may allow it to capture more localized pollution 514 

sources, such as traffic emissions along highways and interstates. This may be why we see such a 515 

large difference in alignment in the interstate and highway categories between TEMPO and 516 

TROPOMI, and very little difference in alignment in the non-road category. In contrast, 517 

TROPOMI’s 4 km x 4 km (re-gridded) resolution and single overpass time may be less effective 518 

at capturing these localized variations. TEMPO's finer resolution in one direction and its frequent 519 

observations may enable it to more precisely match the spatial and temporal variability detected 520 

by ground-based monitors. The consistency of slight underestimation for both instruments in 521 

high-pollution areas like highways and interstates suggests challenges in fully capturing elevated 522 

NO2 levels that occur near traffic sources. Overall, this indicates that while TEMPO generally 523 

provides a closer approximation of NO2 distributions compared to TROPOMI, both satellite 524 

instruments show limitations, particularly in representing peak concentrations at high-polluting 525 

sites.  526 

 527 

3.3 Column-Surface Diurnal Alignment 528 

In this section we explore the hourly alignment between monitor and hourly TEMPO 529 

distributions at interstate, highway, and non-roadway monitors. We find that TEMPO aligns best 530 

with ground monitors around midday and exhibits poorer alignment in the early morning and 531 

early evening.  532 

Figure 4 presents the hourly JSD for TEMPO NO2 measurements compared with ground 533 

monitors categorized by interstate (red), highway (orange), and non-roadway (green) monitors 534 

for December 2023 (Figure 4a) and July 2024 (Figure 4b). The results highlight distinct diurnal 535 
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patterns across road types and seasons, reflecting the influence of traffic emissions, atmospheric 536 

mixing, and insolation. 537 

In December 2023, all monitor categories exhibit similar trends in the early morning, with high 538 

JSD values (highway JSD = 0.358; interstate JSD = 0.331; non-road JSD = 0.210) indicative of 539 

moderate to poor alignment between TEMPO and ground-based monitors. This pattern, 540 

consistent with early morning rush hour emissions and limited atmospheric vertical mixing 541 

(Harkey and Holloway, 2024) as well as a decrease in TEMPO’s measurement accuracy due to 542 

high solar zenith angles in the morning according to TEMPO documentation (NASA Langley 543 

Research Center, 2024), suggests that TEMPO may not capture rapid increases in NO2 during 544 

high traffic and low mixing periods. By mid-morning, JSD has decreased for all road types 545 

(highway JSD = 0.085; interstate JSD = 0.067; non-road JSD = 0.027), indicative of good 546 

alignment, with non-road monitors showing the most significant improvement (87% increase in 547 

alignment). This pattern of better alignment in non-road monitor areas could be attributed to 548 

lower NO2 levels away from major sources of emissions. As the day progresses in December, 549 

JSD values for highway and interstate monitors increase steadily (with highways fluctuating 550 

more) after 17 UTC (~12 pm LT), with highways increasing in JSD from 0.102 to 0.490 and 551 

interstates increasing from JSD 0.097 to 0.590, indicating worsening alignment in the afternoon 552 

and early evening. This pattern may reflect the re-accumulation of NO2 due to afternoon traffic 553 

and the collapse of the boundary layer later in the afternoon (Harkey and Holloway, 2024), as 554 

well as the decrease in TEMPO’s measurement accuracy in the evening (NASA Langley 555 

Research Center, 2024). Non-road monitors show less change in JSD throug the day, suggesting 556 

that TEMPO alignment is more consistent in non-road monitor areas throughout the rest of the 557 

day, only fluctuating in JSD values between 0.009 and 0.05. 558 
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 559 

Figure 4. The a) December 2023 and b) July 2024 hourly (UTC) TEMPO NO2 Jensen-Shannon 560 

Divergences at interstate (red), highway (orange), and non-roadway (green) monitor locations. 561 

In July 2024 highway and interstate monitors do not exhibit a clear diurnal pattern, with JSD 562 

values fluctuating between 0.14 and 0.416 for highways and 0.155 and 0.212 for interstates 563 

throughout the day. Consistent, localized traffic emissions and the shorter NO2 lifetime during 564 

the summer suggest a less variable distribution of NO2. Non-road monitors in July show 565 

somewhat worse alignment in the morning (JSD = 0.041), with improved agreement during the 566 

late morning and early afternoon (JSD ranging between 0.008 and 0.025). The non-road JSD 567 

remains fairly constant into the early evening, with alignment decreasing by about 13%, 568 

indicating that sunlight may play a larger role in the alignment in the evening since the sun is at a 569 

higher position in the sky during this time in the summer than in the winter (which increases in 570 

JSD at this time), enhancing TEMPO’s measurement accuracy in the early evening in July.  571 

Both months exhibit their highest JSDs, and worst alignment, in the early morning or early 572 

evening hours, which coincides with peak traffic times and the most uncertainty in TEMPO 573 

observations caused by the solar zenith angle. The best alignment and lowest JSDs occur 574 

sometime near midday (~10 am LT to ~2 pm LT).  575 

The disparity between highways and interstates in TEMPO, where highways generally have the 576 

highest JSD, differs from the pattern seen with TROPOMI, where interstates tended to 577 

consistently exhibit worse alignment. This suggests that TEMPO’s higher spatial and temporal 578 
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resolution may capture localized sources more effectively, leading to variations in alignment 579 

based on the distribution and intensity of NO2 sources. 580 

4 Conclusions 581 

This study evaluates the distributional alignment among estimates of NO2 abundance from 582 

TROPOMI, TEMPO, and ground monitors to inform the potential of satellite data for both 583 

regulatory and public health applications, particularly in informing future NO2 monitor siting 584 

strategies. Several limitations and sources of uncertainty should be considered. Several 585 

limitations of this analysis include: (1) The overrepresentation of AQS monitors in urban areas; 586 

(2) the temporal mismatch between satellite and ground measurements; and (3) the distance from 587 

roads analysis doesn’t consider other local factors. A key limitation is the overrepresentation of 588 

urban areas in the AQS monitoring network, which may bias our results toward urban areas. 589 

Since AQS monitors are more densely located in urban regions with high emissions and complex 590 

local sources, the results may not fully capture alignment in more rural areas with fewer 591 

monitoring stations. Another important consideration is the slight temporal mismatch between 592 

satellite and ground-based measurements. TROPOMI provides a single daily observation around 593 

13:30 pm local solar time, whereas ground monitors and TEMPO record NO2 concentrations 594 

throughout the day. To better align with TROPOMI’s overpass, we averaged 1 pm and 2 pm LT 595 

TEMPO and ground monitor NO2 values. Since NO2 concentrations can change rapidly due to 596 

meteorological conditions and emissions variability, this averaging approach may introduce 597 

some error in comparisons between TEMPO, TROPOMI, and ground-based measurements. The 598 

classification of monitors by distance from roads is based on buffer analysis, which does not 599 

account for local factors such as wind direction, terrain, proximity to industry, and traffic density, 600 

all of which influence NO2 dispersion. Despite these uncertainties, our findings highlight patterns 601 

in column-surface NO2 agreement and demonstrate the potential for satellite data to complement 602 

ground-based monitoring. 603 

The Jensen-Shannon Divergence (JSD) offers a robust and interpretable metric for comparing the 604 

alignment and similarity of NO2 distributions. Its symmetry and bounded range allowed us to 605 

evaluate the degree of similarity between satellite and monitor NO2 values across different 606 

spatial and temporal scales, providing a clear quantitative framework for assessing the similarity 607 

of two different instruments. 608 
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Past studies comparing surface and satellite NO2 have found temporal correlation of daily values 609 

at individual sites ranging from r=0.61 to r=0.69 (Lamsal et al., 2014; Lamsal et al., 2015), 610 

monthly and seasonal values at individual sites ranging from r=0.67 to r=0.90 (Griffin et al., 611 

2019; Yu & Li, 2022; Harkey & Holloway, 2024; Dressel et al., 2022; Xu & Xiang, 2023; 612 

Lamsal et al., 2015), and annual average values at sites ranging from r=0.68 to r=0.93 (Zhang et 613 

al., 2018; Lamsal et al., 2015; Goldberg et al., 2021; Kim et al., 2024; Bechle et al., 2013; H. J. 614 

Lee et al., 2023). Here, r refers to the Pearson correlation coefficient, which measures the 615 

strength and direction of a linear relationship between variables. In some cases, these 616 

comparisons adjusted column values to the surface (e.g. Lamsal et al., 2014) and/or adjusted 617 

ground-monitors to reduce the error in chemiluminescent detection of NO2 (e.g. Lamsal et al., 618 

2015; Bechle et al., 2013). Using similar methods, TROPOMI tends to show better agreement 619 

with annual AQS NO2 than does OMI, e.g. r=0.81 using TROPOMI (Goldberg et al., 2015) 620 

versus r=0.68 from OMI (Lamsal et al., 2015). Off-road AQS monitors tend to show better 621 

agreement with satellite data than near-road AQS monitors, e.g. r = 0.81-0.87 at non-near-road 622 

sites versus r = 0.64-0.74 at near-road sites (Kim et al., 2024). The underestimation of estimated 623 

near-surface NO2 near roads and localized sources is a recurring issue in OMI and TROPOMI 624 

NO2 VCDs (Dressel et al., 2022; Goldberg et al., 2024; Ialongo et al., 2020). 625 

In this study, we find a pattern of decreasing NO2 with increasing distance from traffic sources, 626 

which is consistent with the findings of previous studies (Kimbrough et al., 2017; Karner et al., 627 

2010; Richmond-Bryant et al., 2017). While ground-based monitors and TROPOMI satellite data 628 

may differ with proximity to roadways, particularly within 50-m, their measurements still follow 629 

the same overall trend. This convergence with increasing distance may be due to the reduction of 630 

localized near-road emissions and the broader atmospheric mixing captured more effectively by 631 

satellite observations at greater distances from roads. Using a larger buffer distance from roads 632 

(300 meters instead of 50 meters) improves the alignment between TROPOMI and monitor data, 633 

especially for highway monitor locations (JSD decreases by ~82%). The overall trend reflects the 634 

well-established gradient of declining NO2 levels with increasing distance from traffic sources, 635 

and TROPOMI’s ability to capture this trend, even if the specific values differ from AQS 636 

monitors in the near-road environment. Our findings indicate that TROPOMI tends to slightly 637 

underestimate surface NO2 concentrations in areas with high traffic, such as interstates and 638 

highways, due to its spatial resolution and full-column measurements, which smooth out 639 
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localized, ground-level pollution peaks captured by ground monitors. This is most evident in 640 

interstate monitors, where the JSD reveals the greatest divergence between satellite and monitor 641 

data (JSD = 0.158). These results are consistent with prior studies (Dressel et al., 2022; Kim et 642 

al., 2024; Ialongo et al., 2020), which also found that satellite instruments are less effective at 643 

capturing high NO2 events near localized sources like traffic. The distributional alignment 644 

improves in non-roadway monitors (JSD = 0.009), where NO2 levels are lower, and there are 645 

usually fewer localized sources of pollution. The lower pollution levels in these areas allow 646 

TROPOMI to more accurately reflect the conditions captured by ground-based monitors, leading 647 

to lower JSD values, and therefore better alignment. This trend suggests that TROPOMI may be 648 

particularly useful for monitoring air quality in rural or less polluted regions where ground 649 

monitors are sparse or absent.  650 

Seasonality plays a critical role in the similarity of satellite and monitor data. Winter consistently 651 

shows the best alignment (JSD = 0.010), with the TROPOMI distribution capturing nearly the 652 

full gradient of NO2 seen within the ground-based monitor distribution. This likely reflects the 653 

longer atmospheric lifetime of NO2 in winter, which allows for better vertical mixing and less 654 

spatial variability (Harkey et al., 2015; Boersma et al., 2009; Shah et al., 2020). In contrast, 655 

summer shows the worst alignment (JSD = 0.035), which is likely due to the shorter lifetime of 656 

NO2 and increased photochemical activity during warmer months, causing greater discrepancies 657 

between localized surface measurements and the satellite column. Similar conclusions were 658 

reached by previous studies (Shah et al., 2020; Karagkiozidis et al., 2023), indicating that 659 

seasonality is a crucial factor in assessing satellite performance for regulatory purposes. These 660 

seasonal differences underscore the need for considering temporal factors when evaluating the 661 

use of satellite data for monitor siting and NO2 regulation. 662 

The integration of TEMPO data into this study highlights its potential to advance our 663 

understanding of NO2 distributions, especially when compared to TROPOMI. TEMPO's ability 664 

to provide hourly measurements at a finer spatial resolution offers significant advantages in 665 

capturing diurnal NO2 patterns and detecting localized pollution events. Our findings from 666 

December 2023 and July 2024 at the TROPOMI overpass time (~13:30 LST) demonstrate that 667 

TEMPO better captures the wide range of surface NO2 measurements than TROPOMI, 668 

especially at higher NO2 levels. TEMPO’s JSDs are almost always lower than TROPOMI’s, with 669 
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JSDs ranging from 0.005 to 0.151 and TROPOMI’s JSDs ranging from 0.012 to 0.265. This 670 

improvement in alignment with ground monitors could be attributed to TEMPO’s better spatial 671 

and temporal resolution.  672 

We also find that TEMPO is best at capturing ground-level NO2 amounts around midday (~10 673 

am to ~2 pm LT). This could be due to the lower traffic levels and therefore lower pollution 674 

levels during this time period, as well as a lower solar zenith angle, allowing TEMPO to have 675 

more accurate measurements. However, challenges remain in completely capturing high NO2 676 

levels during peak traffic times and accurately capturing NO2 during high solar zenith angles in 677 

the morning and evening across monitor classifications. These results underscore the influence of 678 

spatial resolution, time of day, and measurement frequency on the ability of satellite instruments 679 

to align with ground-based NO2 measurements. Future research should build upon these insights 680 

by incorporating longer time periods and multiple years of data as more TEMPO data becomes 681 

available to study long-term TEMPO distributions. The enhanced temporal and spatial resolution 682 

of TEMPO, alongside its comparison to other instruments like TROPOMI, provides valuable 683 

context for understanding the dynamics of NO2 pollution, especially how it varies throughout the 684 

day. Spatially contiguous satellite products and our analysis of air quality variability offer the 685 

potential to support air quality managers and public health analysis. 686 

 687 

Code and Data Availability 688 

All data used in this study are open to the public. Hourly NO2 data from AQS were obtained 689 

from https://aqs.epa.gov/aqsweb/airdata/download_files.html. Copernicus Sentinel 5P Level 2 690 

TROPOMI NO2 data were processed by the ESA, Koninklijk Nederlands Meteorologisch 691 

Instituut (KNMI; https://doi.org/10.5270/S5P-s4ljg54), downloaded from the NASA Goddard 692 

Earth Sciences Data and Information Center (GES DISC) in January 2021, and gridded using 693 

WHIPS (https://sage.nelson.wisc.edu/data-and-models/wisconsin-horizontal-interpolation-694 

program-for-satellites-whips/). TEMPO Level 3 NO2 data were downloaded from NASA’s 695 

EarthData Search (https://search.earthdata.nasa.gov/search/granules?p=C2930763263-696 

LARC_CLOUD&pg[0][v]=f&tl=1732652660.361!3!!). The 2021 Primary and Secondary Roads 697 

Tiger/Line state-level shapefiles were downloaded from the U.S. Census Bureau 698 

(https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2021&layergroup=Roads). 699 

https://aqs.epa.gov/aqsweb/airdata/download_files.html
https://doi.org/10.5270/S5P-s4ljg54
https://sage.nelson.wisc.edu/data-and-models/wisconsin-horizontal-interpolation-program-for-satellites-whips/
https://sage.nelson.wisc.edu/data-and-models/wisconsin-horizontal-interpolation-program-for-satellites-whips/
https://search.earthdata.nasa.gov/search/granules?p=C2930763263-LARC_CLOUD&pg%5b0%5d%5bv%5d=f&tl=1732652660.361!3
https://search.earthdata.nasa.gov/search/granules?p=C2930763263-LARC_CLOUD&pg%5b0%5d%5bv%5d=f&tl=1732652660.361!3
https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2021&layergroup=Roads
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Since all of our data is publicly available and the methods describe our calculations in detail, we 700 

did not make our code publicly available. The Jensen Shannon Divergence was calculated using 701 

the scipy.spatial.distance.jensenshannon python package. 702 
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