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Abstract 12 

In this study we assess the capability of current-generation satellites to capture the variability of 13 

near-surface nitrogen dioxide (NO2) monitoring data, with the goal of supporting health and 14 

regulatory applications. We consider NO2 vertical column densities (VCD) over the United 15 

States from two satellite instruments, the Tropospheric Monitoring Instrument (TROPOMI), and 16 

Tropospheric Emissions: Monitoring of Pollution (TEMPO), and compare with ground-based 17 

concentrations as measured by the EPA’s Air Quality System (AQS) monitors. While 18 

TROPOMI provides a longer-term record of assessment (2019-2023), TEMPO informs diurnal 19 

patterns relevant to evaluating peak NO2. We analyze frequency distributions and quantify their 20 

similarity using the Jensen-Shannon Divergence (JSD), where smaller values indicate better 21 

agreement. Satellite and ground monitor NO2 distributions are most similar at non-roadway 22 

monitorsaway from major roads (JSD = 0.008), as indicated by the JSD of 0.008 calculated for 23 

TROPOMI and ground monitors at non-roadways, compared with a JSD nearand are most 24 

different at interstates of (JSD = 0.158) and a JSD near highways of (JSD = 0.095) monitors. 25 

Seasonal analysis shows the most similarity in distributions in winter (JSD = , with a JSD of 26 

0.010), and the most difference in summer, with a (JSD = of 0.035). Across seasons and monitor 27 

locations, the calculated 1:30pm LT TEMPO consistently exhibitshas a lower or similar 28 

comparable JSDs toas TROPOMI, with (TEMPO: JSDs ranging from 0.005 to 0.151; and 29 
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TROPOMI: JSDs ranging from 0.012 to 0.265). TEMPO’s agreement with monitors in both 30 

December 2023 and July 2024 is found to be best around midday, with non-road monitors’ JSD 31 

in July having theas best alignmentlow as (JSD = 0.008) at 16 UTC (~11am LT). These findings 32 

highlight the ability of TROPOMI and TEMPO to complement existing ground-based monitors, 33 

and demonstrate their potential for monitor siting, regulatory, and public health applications.  34 

1 Introduction 35 

The frequency distribution of ambient pollutants in urban areas has long been recognized as a 36 

useful metric for comparison with health-based thresholds, and to assess the effectiveness of 37 

emission controls. Early studies found pollutant concentrations in urban areas to be 38 

approximately lognormally distributed (Knox and Lange, 1974; Pollack, 1975; Venkatram, 39 

1979) and isolated point sources better described by exponential distributions (Venkatram, 40 

1979). The distributional lens also bears relevance to advanced health and regulatory assessment 41 

(Chowdhury et al.,2021; Mondal et al., 2021). In this study we evaluate the capability of current-42 

generation satellites to capture the variability of near-surface nitrogen dioxide (NO2) monitoring 43 

data, with the goal of supporting health and regulatory applications.  44 

Nitrogen dioxide (NO2) is a gas released through high temperature combustion processes such as 45 

the burning of fossil fuels (Lee et al., 1997; Richter et al., 2005), with on-road vehicles, power 46 

plants, and industrial processes representing the largest anthropogenic sources in the United 47 

States (U.S.; van der A et al., 2008) as well as lightning NOX emissions (Dang et al., 2023) and 48 

soil microbial activity (Huber et al., 2020) from natural sources. Exposure to elevated levels of 49 

NO2 has been linked to respiratory and cardiovascular diseases (Mills et al., 2015; Urbanowicz et 50 

al., 2023; Meng et al., 2021), especially asthma in children (Mӧlter et al., 2014; Anenberg et al., 51 

2022; Achakulwisut et al., 2019), as well as premature mortality (Camilleri et al., 2023; Hales et 52 

al., 2021; Huangfu and Atkinson, 2020), and other diseases (Xia et al., 2024; Bai et al., 2018). 53 

NO2 plays a critical role in the formation of ozone, which also causes respiratory health problems 54 

and is harmful to ecosystems (Grulke & Heath, 2019; Sillman, 1999). It is also a precursor to 55 

nitrate (Behera & Sharma, 2012), a type of fine particulate matter (PM2.5), which can penetrate 56 

deep into the lungs and exacerbate respiratory and heart conditions (Sangkham et al., 2024; 57 
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Sharma et al., 2020), as well as cause premature death (Orellano et al., 2020; Thangavel et al., 58 

2022).  59 

The EPA Air Quality System (AQS) contains hourly NO2 measurements from ground-based 60 

monitors, providing high temporal resolution data that are critical for assessing compliance with 61 

the U.S. National Ambient Air Quality Standards (NAAQS). There are two NAAQS related to 62 

NO2: one for annual average concentration, set at 53 ppb, and one based on peak 1-hour 63 

concentrations, set at 100 ppb, based on the 3-year average of the 98th percentile of the yearly 64 

distribution of 1-hour daily maximum NO2 concentrations (EPA, 2010). Enforcement of these 65 

standards relies on data from AQS NO2 monitors, a network that includes 431 monitors as of 66 

2024. Because NO2 has a relatively short atmospheric lifetime, typically ranging from a few 67 

hours to a day depending on meteorological conditions (Lange et al., 2022; Liu et al., 2021), 68 

ground monitors are expected to capture local conditions (Wang et al., 2020).  69 

Several studies have highlighted the potential for satellite NO2 data to supplement ground-based 70 

networks (Duncan et al., 2014; Lee & Koutrakis, 2014). Due to its radiative characteristics, NO2 71 

may be observed by satellites during daylight hours (Boersma et al., 2018; Van Geffen et al., 72 

2020; Veefkind et al., 2012), and NO2 has emerged as one of the most air-quality-relevant 73 

pollutants from satellites (Holloway et al., 2021). Several studies have highlighted the potential 74 

for satellite NO2 data to supplement ground-based networks to support health analysis and air 75 

quality management (Duncan et al., 2014; Lee & Koutrakis, 2014). Some of the first studies 76 

done comparing ground-based NO2 to satellite VCDs (Lamsal et al., 2014; Lamsal et al., 2015; 77 

Zhang et al., 2018) used the Ozone Monitoring Instrument (OMI, 13 km × 24 km; Levelt et al., 78 

2006). Annual OMI and surface NO2 trends in the U.S. show that OMI usually overestimates the 79 

surface trends by ~3.7% each year (Zhang et al., 2018). With tThe 2017 launch of the 80 

Tropospheric Monitoring Instrument (TROPOMI; Boersma et al., 2018; Van Geffen et al., 2020; 81 

Veefkind et al., 2012), new opportunities arose for analyzing column-to-surface agreement at a 82 

higher resolution (3.5 km x 5.5 km)advanced these applications (Goldberg et al., 2021; Griffin et 83 

al., 2019; Kim et al., 2024; Yu & Li, 2022; Dressel et al., 2022; Goldberg et al., 2024; H. J. Lee 84 

et al., 2023). The Tropospheric Emissions: Monitoring of Pollution (TEMPO; Chance et al., 85 

2019; Naeger et al., 2021; Zoogman et al., 2017) provides further advancements with daytime 86 

hourly observations of NO2 over North America and finer spatial coverage. 87 
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While advanced methods exist to calculate near-surface NO2 explicitly (Ahmad et al., 2024; Kim 88 

et al., 2021; Shetty et al., 2024; Virta et al., 2023), there is also a strong interest in the utilization 89 

of satellite vertical column density (VCD) to directly infer NO2 concentrations analogous to 90 

ground-based monitors (Kim et al., 2024; Lamsal et al., 2014; Griffin et al., 2019; Yu & Li, 91 

2022; Zhang et al., 2018; Lamsal et al., 2015; Goldberg et al., 2021; Dressel et al., 2022; 92 

Goldberg et al., 2024; Harkey & Holloway, 2024; Bechle et al., 2013; H. J. Lee et al., 2023; Xu 93 

& Xiang, 2023). This study extends these prior assessments of NO2 column-to-surface 94 

agreement, where we focus on frequency distributions to capture the net impact of day-to-day 95 

variability.   96 

Past studies comparing surface and satellite NO2 have found temporal correlation of daily values 97 

at individual sites ranging from r=0.61 to r=0.69 (Lamsal et al., 2014; Lamsal et al., 2015), 98 

monthly and seasonal values at individual sites ranging from r=0.67 to r=0.90 (Griffin et al., 99 

2019; Yu & Li, 2022; Harkey & Holloway, 2024; Dressel et al., 2022; Xu & Xiang, 2023; 100 

Lamsal et al., 2015), and annual average values at sites ranging from r=0.68 to r=0.93 (Zhang et 101 

al., 2018; Lamsal et al., 2015; Goldberg et al., 2021; Kim et al., 2024; Bechle et al., 2013; H. J. 102 

Lee et al., 2023). Here, r refers to the Pearson correlation coefficient, which measures the 103 

strength and direction of a linear relationship between variables. In some cases, these 104 

comparisons adjusted column values to the surface (e.g. Lamsal et al., 2014) and/or adjusted 105 

ground-monitors to reduce the error in chemiluminescent detection of NO2 (e.g. Lamsal et al., 106 

2015; Bechle et al., 2013). Using similar methods, TROPOMI tends to show better agreement 107 

with annual AQS NO2 than does OMI, e.g. r=0.81 using TROPOMI (Goldberg et al., 2015) 108 

versus r=0.68 from OMI (Lamsal et al., 2015). Off-road AQS monitors tend to show better 109 

agreement with satellite data than near-road AQS monitors, e.g. r = 0.81-0.87 at non-near-road 110 

sites versus r = 0.64-0.74 at near-road sites (Kim et al., 2024). The underestimation of estimated 111 

near-surface NO2 near roads and localized sources is a recurring issue in OMI and TROPOMI 112 

NO2 VCDs (Dressel et al., 2022; Goldberg et al., 2024; Ialongo et al., 2020).  113 

The relationship between surface NO2 and column abundance is influenced by physical and 114 

chemical processes, many of which have seasonal components. In winter, shallow boundary 115 

layers trap pollutants near the surface, leading to higher surface concentrations and increasing 116 

surface-to-column agreement (Harkey et al., 2015). In summer, higher temperatures and 117 
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increased sunlight accelerate photochemical reactions, converting NO2 into ozone and other 118 

secondary pollutants, and decreasing surface-to-column agreement (Boersma et al., 2009). 119 

Seasonal changes in emissions, such as high building-heating emissions in winter, and high 120 

power plant emissions in summer (Frost et al., 2006; Levinson & Akbari, 2010) interact with 121 

atmospheric processes causing an increase in NO2 column abundance in winter in four-season 122 

climates (Shah et al., 2020). Processes affecting the sources and sinks of NO2 at the surface and 123 

through the vertical column can also lead to temporal lags, with peak surface NO2 preceding 124 

peak column NO2 in the mornings (Harkey et al. 2024). 125 

Frequency distributions capture the variability, extremes, and patterns of pollutant abundance, 126 

relevant to air quality standards, pollution trends, and the effectiveness of emission control 127 

measures (Knox and Lange, 1974; Pollack, 1975; Venkatram, 1979; Chowdhury et al., 2021; 128 

Mondal et al., 2021). For example, Mondal et al. (2021) used frequency distributions of ground-129 

based monitors to examine changes in air quality across Delhi and Kolkata during COVID-19 130 

lockdown phases, showing how reduced human activity led to shifts in pollutant levels. We 131 

extend this line of analysis by comparing NO2 distributions across multiple dimensions with 132 

TROPOMI and include time-of-day and resolution-dependence of results using data from 133 

TEMPO. the Tropospheric Emissions: Monitoring of Pollution (TEMPO; Chance et al., 2019; 134 

Naeger et al., 2021; Zoogman et al., 2017). TEMPO provides daytime hourly observations of 135 

NO2 over North America and finer spatial coverage—approximately 2.1 km by 4.5 km at its 136 

center.  137 

The Jensen-Shannon Divergence (JSD) is a robust metric for comparing probability distributions 138 

that is used within a wide variety of fields, including machine learning (Thiagarajan & Ghosh, 139 

2024; Saurette et al., 2023; Tsigalou et al., 2021; Melville et al., 2005), data science (Toledo et 140 

al., 2022; Zhao et al., 2024), biology (Yan et al., 2021; Jones et al., 2023; Ahmed et al., 2023), 141 

and meteorology (Kibirige et al., 2023). In environmental research using satellite data, the JSD 142 

has shown that the Mangrove Forest Index (MFI) from Sentinel-2 imagery outperforms 143 

traditional vegetation indices in distinguishing submerged mangrove forests (Jia et al., 2019). In 144 

air quality, JSD has been used to compare modeled and measured PM2.5 (Yang et al., 2024), and 145 

to compare an air quality index (AQI) with measurements of specific air pollutants (Wang & 146 
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Zhang, 2022). We utilize the JSD to quantify the similarity between satellite and monitored NO2 147 

distributions, applying this well-established metric to satellite-derived air quality evaluation. 148 

In this work, we consider: (1) How do the distributions of satellite NO2 VCD compare with those 149 

for near-surface NO2? (2) To what degree does new hourly data from TEMPO improve the 150 

agreement between surface and space based NO2 distributions? For both questions, we consider 151 

spatial variability, especially proximity to roadways, and temporal variability including 152 

seasonality and diurnal variability. By considering the ability of satellites to capture peak NO2 153 

values in a comparable distribution to surface data, we consider how satellite VCDs can support 154 

air quality management, improve health impact analysis, and inform air pollution monitor siting. 155 

2 Data and Methods 156 

In this study, we evaluate the ability of two satellite instruments, TROPOMI and TEMPO, to 157 

capture the spatial and temporal variability in NO2 surface concentration distributions across the 158 

continental United States (CONUS), as measured by AQS monitors. By comparing the 159 

coefficient of variation (CV) and Jensen-Shannon divergence (JSD) between satellite and 160 

monitor data, we aim to assess the alignment between the datasets. 161 

2.1 EPA Surface Monitor Data 162 

The EPA Air Quality System (AQS) contains hourly NO2 measurements from ground-based 163 

monitors, providing high temporal resolution data that are critical for assessing compliance with 164 

the U.S. National Ambient Air Quality Standards (NAAQS). There are two NAAQS related to 165 

NO2: one for annual average concentration, set at 53 ppb, and one based on peak 1-hour 166 

concentrations, set at 100 ppb, based on the 3-year average of the 98th percentile of the yearly 167 

distribution of 1-hour daily maximum NO2 concentrations (EPA, 2010). Enforcement of these 168 

standards relies on data from AQS NO2 monitors, a network that includes 431 monitors as of 169 

August 2024. Because NO2 has a relatively short atmospheric lifetime, typically ranging from a 170 

few hours to a day depending on meteorological conditions (Lange et al., 2022; Liu et al., 2021), 171 

ground monitors are expected to capture local conditions (Wang et al., 2020).  172 
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The EPA Air Quality System data (AQSEPA, 2025) was used to access NO2 monitor data for the 173 

years 2019 through 2023 from all available sites in CONUS during this time period (N=503 174 

unique monitors from 2019 to 2023). We note that there are some areas that are overrepresented 175 

by NO2 monitors, and others that are lacking monitors. Specifically, most monitors are located in 176 

urban areas, especially on the East Coast and in Southern California, meaning that rural areas 177 

tend to be less represented by ground monitors. Most monitors use a chemiluminescence method, 178 

where the amount of NO2 that is converted to NO is measured by a molybdenum oxide converter 179 

(Fontijn et al., 1970). The converter also reacts with other oxidized nitrogen compounds such as 180 

nitric acid (HNO3) and peroxyacetyl nitrate (PAN) to form NO (Dunlea et al., 2007; Steinbacher 181 

et al., 2007), which can lead to an overestimation of NO2. Corrections for this bias have been 182 

applied when comparing with satellite observations (e.g. Cooper et al., 2020; Lamsal et al., 2015; 183 

Li et al., 2021). Uncorrected AQS NO2 has been used for determining compliance with the 184 

NAAQS and for health assessments, which is the approach we take here, consistent with prior 185 

studies focused on regulatory relevance (Novotny et al., 2011; Penn & Holloway, 2020; Harkey 186 

and Holloway, 2024; Goldberg et al., 2021; Kim et al., 2024; Duncan et al., 2013; Qin et al., 187 

2019). More recently, some NO2 monitors have been added to the network which measure “true 188 

NO2” using Cavity Attenuated Phase Shift Spectroscopy (CAPS, Kebabian et al., 2005). These 189 

monitors are expected to be more representative of ground-level NO2 concentrations and have 190 

less overestimations since they directly measure NO2 and no other species (Ge et al., 2013). 191 

Some of the monitors used in this study use CAPS methodology to measure NO2. We discuss the 192 

comparison of CAPS versus traditional NO2 monitors in results Sect. 3.1. 193 

Hourly AQS measurements at 13:00 and 14:00 local time (LT) were averaged to align with the 194 

TROPOMI overpass of ~13:30 LT. Hourly AQS measurements from 12:00 GMT to 23:00 GMT 195 

are compared with hourly TEMPO data for daylight hours. For both the TROPOMI and TEMPO 196 

analyses, AQS data are filtered to ensure consistency with satellite data availability. As a result 197 

of filtering monitoring data for TROPOMI and TEMPO separately, the subsets of monitor data 198 

available for comparison with each instrument differ, even for the same time periods. 199 

2.2 TROPOMI Data 200 
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The Tropospheric Monitoring Instrument (TROPOMI; European Space Agency, 2021) is on 201 

board the Copernicus Sentinel-5 Precursor satellite which has a daily, local overpass time of 202 

~13:30 LST (Veefkind et al., 2012). Currently, the highest resolution of TROPOMI is 3.5 km by 203 

5.5 km at nadir which has increased from 3.5 km by 7.0 km since August 6th, 2019. Daily 204 

TROPOMI NO2 data for the years 2019 through 2023 were allocated to a 4 km x 4 km grid over 205 

CONUS using the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS;  Center 206 

for Sustainability and the Global Environment, 2024; Harkey et al., 2015, 2021; Harkey and 207 

Holloway, 2024; Penn and Holloway, 2020). Using WHIPS, we also remove data with quality 208 

flag lower than 0.75. Each monitor location was compared with the 4 km x 4 km gridded 209 

TROPOMI value in the corresponding grid cell. December 2023 and July 2024 4 km x 4 km 210 

TROPOMI NO2 data were also collected for each of the monitors for comparison with TEMPO 211 

data. 212 

A 4 km x 4 km oversampled grid is used as opposed to the 1 km x 1 km oversampled grid since 213 

this study focuses on daily observations, and the 1 km x 1 km grid is best suited for monthly or 214 

annual averages (Goldberg et al., 2021). To ensure a valid number of TROPOMI pixels were 215 

being represented despite the higher grid resolution, we analyzed the number of ground monitors 216 

falling within each TROPOMI pixel by performing a spatial join between ground monitor 217 

locations and the oversampled 4 km x 4 km TROPOMI grid. About 97% of TROPOMI pixels 218 

contain only one monitor, with only a small number of pixels (2.7%) containing more than one. 219 

Figure S1 shows the number of monitors per TROPOMI pixel (locations where there are more 220 

than 1 monitor per TROPOMI pixel) and the number of valid TROPOMI retrievals from 2019 to 221 

2023 at each grid cell, confirming that monitors are well-distributed enough to not 222 

disproportionately cluster within a small subset of satellite pixels. Since monitors are spread 223 

across the entire U.S. and most are at least 4 km apart, there is generally sufficient separation to 224 

ensure that most monitors are assigned to distinct TROPOMI pixels rather than falling into the 225 

same grid cells repeatedly. 226 

2.3 TEMPO Data 227 

The TEMPO instrument launched onboard the Intelsat 40e mission (NASA, 2024), a 228 

geostationary satellite, on April 7, 2023. TEMPO provides hourly measurements of atmospheric 229 
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pollutants over North America (Chance et al., 2019; Naeger et al., 2021; Zoogman et al., 2017). 230 

TEMPO achieves a spatial resolution of approximately 2.1 km in the north-south direction and 231 

4.5 km in the east-west direction at the center of its Field of Regard (FOR), centered around 232 

36.5° N and 100° W (Chance et al., 2019). The TEMPO Level-3 (L3) NO2 data (Suleiman, 2024) 233 

used in this study were accessed through NASA’s EarthData Search portal.  234 

In order to synchronize TEMPO and ground-based hourly measurements, TEMPO timestamps 235 

were rounded to the nearest hour, with mid-hour values rounded up. All files within each 236 

rounded-hour group were averaged, producing a single NO2 value per hour per day. Only 237 

TEMPO observations with a main data quality flag of 0 and cloud fraction at or less than 0.2 238 

were retained, in line with TEMPO documentation guidelines (NASA Langley Research Center, 239 

2024).   240 

For the comparison with TROPOMI, the UTC equivalents of 1 pm and 2 pm LT were 241 

determined for each time zone based on the latitude and longitude of each monitor location. 242 

TEMPO NO2 values corresponding to these calculated UTC hours were averaged to align with 243 

the TROPOMI overpass time (~13:30 LST). Similarly, for ground-based measurements, the 244 

monitor data were filtered to include only values corresponding to 1 pm and 2 pm LT and then 245 

averaged.  246 

2.4 Monitor Classification 247 

To classify the monitors by roadway proximity, the state-level Census Bureau’s 2021 248 

TIGER/Line shapefiles for Primary and Secondary Roads (2021 TIGER/Line® Shapefiles, 249 

2025) were combined to form a comprehensive dataset for the CONUS domain.  250 

To evaluate how TROPOMI and ground-based monitor NO2 values vary by proximity to a road, 251 

monitors were also assigned to different groups based on their distance from a road (≤20-m, 20 252 

to 50-m, 50 to 300-m, 300-m to 1 kmmi, and >1 kmmi), where buffer distances are calculated 253 

from the road shapefiles (Figure S32). There were 9 monitors that were 20 meters or less away 254 

from a road, 66 between 20 and 50 meters from a road, 108 between 50 and 300 meters, 167219 255 

between 300 meters and 1 kilometermile, and 15301 that were greater than 1 kilometermile from 256 

a road. 257 
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Roads were also classified into three categories: (1) interstates, (2) highways, and (3) other 258 

roads, based on their route type code (RTTYP) values. Where monitors are considered as 259 

representing a roadway category, we followed the criteria of the EPA Near-Road-Network 260 

(Gantt et al., 2021; Kim et al., 2024), to merge monitor locations with road buffers, considering 261 

the 50-m buffer recommended by EPA, as well as a less restrictive 300-m buffer. In each case, 262 

monitors inside the buffer of a particular roadway type were classified as representing that 263 

category. If a monitor fell within multiple buffers, it was assigned the classification of the largest 264 

road type. Monitors not falling within any buffers were classified as "non-roadway." 265 

Using the 50-m buffer, 58 monitors were classified as “interstate,” 17 as “highway,” and 428 as 266 

“non-roadway” (Figure S21; no monitors classified as “other roads”). Using the 300-m buffer, 91 267 

monitors were classified as “interstate,” 90 as “highway,” 320 as “non-roadway,” and 2 as “other 268 

roads.” Since there were no monitors classified as “other roads” for the 50-m buffer, this 269 

category is excluded from the analysis. 270 

We classified interstate monitors as urban or rural using the U.S. Census Bureau 2020 Urban 271 

Areas Tiger/Line Shapefile (U.S. 2020 Urban Areas Shapefile, 2025). Only one interstate 272 

monitor was identified as rural, so this analysis is not included. 273 

2.5 Data Analysis 274 

The frequency distribution of ambient pollutants in urban areas has long been recognized as a 275 

useful metric for comparison with health-based thresholds, and to assess the effectiveness of 276 

emission controls. Early studies found pollutant concentrations in urban areas to be 277 

approximately lognormally distributed (Knox and Lange, 1974; Pollack, 1975; Venkatram, 278 

1979) and isolated point sources better described by exponential distributions (Venkatram, 279 

1979). The distributional lens also bears relevance to advanced health and regulatory assessment 280 

(Chowdhury et al.,2021; Mondal et al., 2021). In this study we evaluate the capability of current-281 

generation satellites to capture the variability of near-surface nitrogen dioxide (NO2) monitoring 282 

data, with the goal of supporting health and regulatory applications.  283 

The coefficient of variation (CV) was calculated for ground-level monitor data and for satellite 284 

data. This metric was used to compare the relative variability of NO2 between satellite and 285 
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ground-level data despite different measurement units (Aerts et al., 2015). CV is defined as the 286 

ratio of the standard deviation (σ) to the mean (μ) of the data: 287 

𝐶𝐶𝐶𝐶 =  �
𝜎𝜎
𝜇𝜇
�× 100 288 

The Jensen-Shannon Divergence (JSD) is used to quantifyies the similarity between the 289 

distributions of NO2 from the satellite and ground-level monitors despite the different 290 

measurement units (Menéndez et al., 1997). The Jensen-Shannon Divergence (JSD) is a robust 291 

metric for comparing probability distributions that is used within a wide variety of fields, 292 

including machine learning (Thiagarajan & Ghosh, 2024; Saurette et al., 2023; Tsigalou et 293 

al., 2021; Melville et al., 2005), data science (Toledo et al., 2022; Zhao et al., 2024), biology 294 

(Yan et al., 2021; Jones et al., 2023; Ahmed et al., 2023), and meteorology (Kibirige et al., 295 

2023). In environmental research using satellite data, the JSD has shown that the Mangrove 296 

Forest Index (MFI) from Sentinel-2 imagery outperforms traditional vegetation indices in 297 

distinguishing submerged mangrove forests (Jia et al., 2019). In air quality, JSD has been 298 

used to compare modeled and measured PM2.5 (Yang et al., 2024), and to compare an air 299 

quality index (AQI) with measurements of specific air pollutants (Wang & Zhang, 2022). We 300 

utilize the JSD to quantify the similarity between satellite and monitored NO2 distributions, 301 

applying this well-established metric to satellite-derived air quality evaluation. 302 

To calculate the JSD, each dataset was binned, with a bin size of 1 ppb (for ground monitors) or 303 

1 x 1015 molecules/cm2 (for satellite data), ranging from 0 to 40 ppb or 40 x 1015 molecule/cm2, 304 

with an additional bin for values exceeding 40 ppb or 40 x 1015 molecule/cm2. For visualization 305 

purposes, the frequency distributions are binned with the ground monitors ranging from 0 to 40 306 

ppb and the satellite data ranging from 0 to 30 x 1015 molecule/cm2, with an additional bin for 307 

values exceeding 40 ppb or 30 x 1015 molecule/cm2. Depending on the specific analysis, NO2 308 

data are grouped by: (1) Distance from roadways (in meters) – TROPOMI daily data from 2019 309 

to 2023 (and corresponding ground monitors) are grouped by proximity to roads to assess spatial 310 

alignment; (2) season – TROPOMI daily data from 2019 to 2023 (and corresponding ground 311 

monitors) are grouped by season to analyze temporal alignment; (3) month – TROPOMI daily 312 

data from December 2023 and July 2024, along with TEMPO and ground monitors at the 313 
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TROPOMI overpass time (~1:30 pm LT, represented by the average of 1 pm and 2 pm LT data), 314 

are grouped by month to compare the temporal differences in alignment between TEMPO and 315 

TROPOMI; and (4) road type (interstate, highway, non-roadway) – Both TROPOMI (daily), 316 

TEMPO (calculated overpass time and hourly), and ground monitor data are grouped by road 317 

type to evaluate varying alignment based on road classifications. 318 

Binned data were then normalized to form probability distributions. The divergence was 319 

calculated as: 320 

𝐽𝐽𝐽𝐽𝐽𝐽(𝑃𝑃,𝑄𝑄) =  
1
2

[𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑀𝑀) + 𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄||𝑀𝑀)] 321 

where P and Q represent the probability distributions from the monitor and satellite data, 322 

respectively, and M is the average of P and Q. The divergence DKL is the Kullback-Leibler 323 

divergence between each distribution and their mean (Clim et al., 2018). JSD values range from 324 

0 to 1, with lower values indicating greater similarity between the satellite and monitor 325 

distributions. In general, a JSD < 0.1 indicates very good alignment, 0.1 ≤ JSD < 0.3 indicates 326 

moderate alignment, and JSD ≥ 0.3 (Kibirige et al., 2023) indicates poor alignment. 327 

3 Results  328 

To evaluate the agreement between satellite and monitored NO2 distributions, we consider the 329 

impact of monitor location using TROPOMI; impact of season using TROPOMI; the comparison 330 

of distributions between TROPOMI and TEMPO; and the impact of time-of-day using TEMPO.     331 

3.1 Alignment of TROPOMI NO2 Distributions with Surface NO2 Distributions  332 

This section analyzes TROPOMI and ground-based NO2 measurements across varying distances 333 

from roads, different seasons, and at monitors located near interstates, highways, and non-334 

roadway sites. Our results show that as the distance from roads increases, the distributions of 335 

surface and column NO2 become more similar. Monitor distributions near interstates and 336 

highways exhibit lower agreement with TROPOMI distributions compared to those farther from 337 

major roadways. Seasonally, alignment is strongest in winter and weakest in summer.  338 
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Figure 1 illustrates the distribution of NO2 levels measured by AQS ground-based monitors and 339 

TROPOMI observations as a function of distance from roadways using daily measurements from 340 

2019 to 2023. For both data sources, mean, peak, and minimum NO2 are all highest in the 20 – 341 

50 m distance category (the second closest near-road category). NO2 abundance decreases as 342 

distance-to-road increases, and to a lesser extent as distance-to-road decreases.  The somewhat 343 

lower abundance ≤ 20 m vs. the 20 – 50 m category may be due to the speciation of NOX, where 344 

NO is more abundant and converts to a higher fraction of NO2 as distance-to-road increases 345 

(Kimbrough et al., 2017). Most direct vehicle emissions are in the form of NO, and close to the 346 

roadway, NO and NO2 readily convert between forms. Limited ozone availability—especially 347 

during stable conditions, which contribute to suppressed vertical mixing—can slow the 348 

conversion of NO to NO2 (Richmond-Bryant et al., 2017). As a result, NO2 may initially be 349 

suppressed very close to the road, and changes in total NOX are primarily driven by mixing and 350 

dilution rather than chemical transformation. Mean monitored NO2 is 6.85 ppb at ≤ 20 m, 10.47 351 

ppb at 20 – 50 m, 4.53 ppb at 50 – 300 m, 3.7153 ppb at 300 m – 1 kmmi, and 2.8076 ppb at > 1 352 

kmmi. Mean TROPOMI NO2 is 3.38 x 1015 molecules/cm2 at ≤ 20 m, 4.21 1015 molecules/cm2 at 353 

20 – 50 m, 3.00 x 1015 molecules/cm2 at 50 – 300 m, 3.7263 x 1015 molecules/cm2 at 300 m – 1 354 

kmmi, and 3.1304 x 1015 molecules/cm2 at > 1 kmmi.  Monitor values show a higher sensitivity 355 

to roadway proximity, where the highest mean monitored concentration is 3759% of the lowest 356 

mean concentration, compared to TROPOMI where the highest mean VCD is 14038% of the 357 

lowest mean VCD.   358 

Monitored NO2 levels drop over 50% at ~50 m from the roadway (based on change in the mean, 359 

upper 2.5 interquartile range, IQR, and the upper 1.5 IQR), a finding that compares with 31% 360 

reduction in NO2 between 20m and 300m from Kimbrough et al. (2017), as well as other studies 361 

that identify a decrease in NO2 at further distances (Karner et al., 2010; Richmond-Bryant et al., 362 

2017). TROPOMI VCDs also show the greatest change with roadway distance at ~50 km, but by 363 

less than 30% (based on change in the mean, upper 2.5 IQR, and the upper 1.5 IQR).   364 

Just as total NO2 abundance, from both monitors and satellite, is highest at distances of 20-50 m 365 

from the roadway, the range of daily values is also widest for the 20 – 50 m range and smallest at 366 

the > 1 kmmi range. Monitored values have a standard deviation of 8.24 ppb in the 20 – 50 m 367 

range, and a standard deviation of 3.3944 ppb in the > 1 kmmi range. The distribution of satellite 368 
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data does not vary as much in size across roadway locations, with a standard deviation of 3.90 x 369 

1015 molecules/cm2 for the 20 – 50 m range and 3.319 x 1015 molecules/cm2 for the > 1 kmmile 370 

range.  In the 20 – 50 m range, the upper IQR of AQS NO2 is 38% higher than the mean. 371 

TROPOMI shows less variability than the monitors, with the 20 – 50 m upper IQR 16% higher 372 

than the mean. As distance from the roadway increases, the distributions of data from ground and 373 

satellite become more comparable.  In the > 1 kmmile range, the upper IQR of monitor NO2 is 374 

2330% higher than the mean and the upper IQR of satellite data is 15% higher than the mean. 375 

The ranges show more similarity at greater distance from the roadway, but even at distances of > 376 

1 kmmile, the range of monitored values exceeds the range of satellite VCDs. These patterns 377 

agree with Kim et al. (2024), who found that surface monitors show better agreement with 378 

TROPOMI further from major roads. This improved alignment at greater distances likely reflects 379 

the reduced influence of localized emission sources, which tend to create sharp gradients and 380 

rapid variability near roads. In areas further from traffic, NO2 concentrations vary more gradually 381 

or are generally more uniform. As a result, surface monitors away from roads reflect broader 382 

conditions, in better agreement with the coarser spatial resolution of TROPOMI. 383 

When analyzed by season (Figure S4), the relationships are similar, except winter shows the 384 

highest IQRs with the 20 to 50 m distance group having an IQR of 11.40 ppb for monitors and 385 

4.96 x 1015 molecules/cm2 for TROPOMI, and summer the lowest IQRs for both monitors (IQR 386 

= 9.05 ppb) and TROPOMI (IQR = 1.71 x 1015 molecules/cm2). In the greater than 1 km distance 387 

group, again winter has the highest IQRs (monitor IQR = 4.60 ppb; TROPOMI IQR = 3.95 x 388 

1015 molecules/cm2) and summer the lowest IQRs (monitor IQR = 2.05 ppb; TROPOMI IQR = 389 

1.55 x 1015 molecules/cm2). 390 



15 
 

 391 

 392 

Figure 1. Box plots show median and interquartile ranges of all daily 2019 to 2023 NO2 as 393 

measured by AQS monitors (blue) and TROPOMI (orange) across various distances from 394 

roadways, with the whiskers extending to the 1.5 IQR range. No outliers are shown. The left y-395 

axis represents AQS monitor values in parts per billion (ppb), and the right y-axis represents 396 

TROPOMI NO2 values in 1015 molecules per cm2. The distance categories from the roadway 397 

include ≤20m, 20-50m, 50-300m, 300m-1kmmi, and >1kmmi.  398 

 399 
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To consider the shape of monitored and satellite NO2 distributions, we consider the effect of 400 

season in Fig. 2. The winter distributions (Figure 2a, calculated from December, January, and 401 

February data) exhibit the longest tails and highest NO2 values. In winter the 90th percentile of 402 

monitoring data is 14.80 ppb and the 90th percentile of TROPOMI data is 10.93 x 1015 403 

molecules/cm2. Spring distributions (Figure 2b; March, April, and May) show intermediate 404 

behavior, with lower values and shorter tails than winter and fall, but higher than summer (90th 405 

percentile from monitors = 9.71 ppb; 90th percentile from TROPOMI = 6.19 x 1015 406 

molecules/cm2). In summer (Figure 2c, June, July, and August) the distributions exhibit the 407 

shortest tails, and the lowest NO2 values (90th percentile from monitors = 9.00 ppb, 90th 408 

percentile from TROPOMI = 4.57 x 1015 molecules/cm2). Fall (Figure 2d; September, October, 409 

and November) also shows intermediate behavior, generally between winter and spring (90th 410 

percentile from monitors = 12.15 ppb; 90th percentile from TROPOMI = 7.44 x 1015 411 

molecules/cm2). The fall (Figure 2d, September, October, and November) and spring (Figure 2b, 412 

March, April, and May) distributions show behavior in between winter and summer. The higher 413 

NO2 values in winter from monitor and TROPOMI data are attributed to reduced photochemical 414 

activity in winter leading to longer NO2 lifetimes (Harkey et al., 2015; Boersma et al., 2009; 415 

Shah et al., 2020).  416 

The highest percent frequencies for the monitor and TROPOMI distributions generally occur 417 

within the 1–2 ppb or 1–2 x 1015 molecules/cm2 bin. However, the winter TROPOMI distribution 418 

peaks in the 2–3 x 1015 molecules/cm2 bin with a percent frequency of 18.14%, compared with 419 

winter monitor highest frequency of 14.33%. The highest percent frequency in spring from 420 

TROPOMI is 30.39% versus monitor 24.15%; in summer TROPOMI is 34.35% versus monitor 421 

of 24.68%; in fall TROPOMI is 24.90% versus monitor of 18.89%. These results indicate that 422 

TROPOMI consistently records higher peak frequencies than the monitors, whereas monitors 423 

consistently show a wider distribution. 424 

Figure 2 provides a seasonal breakdown of the coefficient of variation (CV) and Jensen-Shannon 425 

divergence (JSD) for both monitor and TROPOMI data across all monitors. Summer exhibits the 426 

highest variability in monitored NO2 concentrations (CV = 127.99%), but the lowest variability 427 

in satellite observations (CV = 78.00%). The highest variability in TROPOMI occurs in winter 428 

(CV = 103.51%), similar to the variability from monitor data (CV = 104.48%). Satellite CVs 429 
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generally follow a similar pattern to that of the monitors, though the overall variability is lower 430 

for satellite data across seasons.  431 

 432 

Figure 2. Seasonal frequency distributions of 2019-2023 NO2 as measured by AQS ground-based 433 

monitors (blue) and TROPOMI (light orange) data for four seasons: a) winter, b) spring, c) 434 

summer, and c) fall. The x-axes indicate the range of NO2, with the primary, lower x-axis 435 

showing monitor NO2 concentrations in parts per billion (ppb) and the secondary, upper x-axis 436 

showing TROPOMI NO2 VCD in 1015 molecules per cm2. The boxes show the Coefficient of 437 

Variation (CV; %) and Jensen Shannon Divergence (JSD) for each season. 438 

This reduced variability in satellite observations can likely be attributed to the vertical mixing 439 

reflected in satellite retrievals, as well as horizontal spatial averaging reflected in satellite data 440 
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versus point-based NO2 that are captured by ground monitors. This finding is consistent with 441 

previous studies that highlight the spatial averaging nature of satellite-based measurements, 442 

which integrate NO2 amounts over a larger area than the point-based monitors (Ialongo et al., 443 

2020).  444 

Across all seasons shown in Fig. 2, JSD values are all low (< 0.1), indicating that TROPOMI 445 

may be good at predicting surface NO2 across seasons. The alignment is strongest in winter (JSD 446 

= 0.010), while the divergence is highest in summer (JSD = 0.035), meaning the monitors and 447 

TROPOMI align best when the NO2 lifetime is long in the colder months, and align the worst 448 

when the NO2 lifetime is short in the warmer months. The better alignment in winter could also 449 

be attributed to winter having the largest range of values in the data, which reduces the 450 

sensitivity of the JSD calculation to small differences in the distributions. A wider spread in NO2 451 

values means that relative discrepancies between TROPOMI and monitor measurements are 452 

smaller in proportion to the total variability, potentially leading to greater similarity. 453 

Across seasons, we find that CAPS or “true NO2” monitors tend to have slightly worse alignment 454 

with TROPOMI than traditional, chemiluminescence monitors. Out of the monitors used in this 455 

study, 102 were identified as CAPS monitors, and 401 as traditional monitors. In winter, CAPS 456 

monitors have a JSD of 0.027 and traditional monitors a JSD of 0.009. In summer, CAPS 457 

monitors have a JSD of 0.078 and traditional monitors a JSD of 0.03. With all seasons combined, 458 

CAPS monitors have a JSD of 0.047 and traditional monitors have a JSD of 0.016. 459 

Table 1 shows the CV and JSD for both monitor and satellite data from 2019 through 2023, 460 

aggregated across all seasons and separated by monitor classification (interstate, highway, and 461 

non-roadway), where roadway monitors are classified as being within 50 meters (Table 1a) or 462 

300 meters (Table 1b) of a road. For the 50-m buffer (Table 1a), the coefficient of variation for 463 

ground-based monitor data increases progressively from interstate monitor locations to non-464 

roadway locations, with interstate monitors exhibiting the lowest variability (CV = 75.07%) and 465 

non-roadway monitors showing the highest variability (CV = 118.17%). This indicates that NO2 466 

concentrations measured by ground monitors in interstate areas are more consistent compared to 467 

non-roadway regions. This pattern is mirrored in the satellite data, with CV values ranging from 468 

91.62% for highway monitors to 106.16% for non-roadway monitors. These patterns suggest that 469 
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regular emissions play a larger role in determining near-road NO2, where non-road areas vary 470 

with changes in wind patterns and the chemical environment.  471 

For highway monitors, the CVs of satellite (CV = 91.62%) and monitor data (CV = 96.27%) are 472 

similar, indicating that TROPOMI performs similarly to ground monitors in capturing NO2 473 

variability along highways. Near interstates, TROPOMI (CV = 92.60%) may capture more 474 

variability than the ground-based measurements (CV = 75.07%), a finding that contrasts with 475 

Fig. 1, where TROPOMI shows a narrower range of NO2 values across all distances. This 476 

difference could stem from the fact that the interquartile ranges in Fig. 1 measure the spread of 477 

absolute values, while the coefficient of variation accounts for variability relative to the mean. 478 

Together, these metrics reveal that TROPOMI may not fully capture localized extremes 479 

(narrower IQR) but still captures more relative variability in pollution near interstates than 480 

monitors (higher CV). 481 

 
Road Type Monitor CV TROPOMI CV JSD 

# of 
Monitors 

 
a) 50-m 

Buffer 

Interstate 75.07 92.60 0.158 58 
Highway 96.27 91.61 0.095 17 

Non-roadway 118.17 106.16 0.009 428 
 

b) 300-m 
Buffer 

Interstate 77.20 91.014 0.133 91 
Highway 135.76 92.31 0.017 90 

Non-roadway 116.23 108.43 0.008 320 
 482 

Table 1. Coefficient of variation (%) and Jensen-Shannon divergence for all seasons combined at 483 

interstate, highway, and non-roadway monitors 2019-2023 for the 50-m and 300-m roadway 484 

buffers. 485 

The key differences seen within the JSD across the three monitor classifications are also present 486 

in the percent frequency distributions of NO2 measured by ground-based monitors and 487 

TROPOMI (Figure S53), with interstate monitors having the lowest alignment (JSD = 0.158), 488 

highway monitors having better alignment (JSD = 0.095), and non-roadway monitors having the 489 

best alignment (JSD = 0.009). The strong alignment between TROPOMI and monitor 490 

distributions in non-roadway regions is consistent with previous studies (Dressel et al., 2022; 491 

Kim et al., 2024; Ialongo et al., 2020). This close alignment may be due to the relatively lower 492 
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NO2 concentrations, which TROPOMI captures more accurately compared to regions with 493 

higher emissions. These findings further align with previous work showing that TROPOMI tends 494 

to underestimate NO2 in high-pollution areas (such as interstates and highways) but slightly 495 

overestimates in areas of lower pollution, such as rural areas (Dressel et al., 2022; Ialongo et al., 496 

2020; Goldberg et al., 2024). 497 

Due to the large jump in NO2 levels seen within Fig. 1 in the 50-300m category, we compare the 498 

50-meter buffer roadway classifications (Figure S53; Table 1a) with the 300-meter buffer 499 

classifications (Figure S64; Table 1b). Notable differences emerge between distributions, 500 

particularly in the highway category, where 73 monitors are added to the highway distribution 501 

(increasing from 17 to 90 monitors; Table 1) due to the larger buffer. The alignment between 502 

monitor data and TROPOMI observations is significantly improved within the 300-meter buffer 503 

near highways. This improvement in alignment is likely due to the decay of NO2 with increasing 504 

distance from the road (Karner et al., 2010; Kimbrough et al., 2017; Richmond-Bryant et al., 505 

2017). Consequently, the lower surface NO2 concentrations observed at 300 meters are better 506 

captured by TROPOMI. This is reflected in Table 12, which shows a substantial reduction in the 507 

JSD for highway monitors, from 0.095 in the 50-meter buffer to 0.017 in the 300-meter buffer 508 

(an 82% increase in alignment at the 300-meter buffer).  509 

The differences observed in the highway category with the 300-meter buffer may be present 510 

since the distribution includes 73 more monitors than the 50-meter buffer, capturing lower NO2 511 

amounts that are more aligned with TROPOMI’s observations. On the other hand, the interstates 512 

category exhibits less noticeable change, with only 33 additional monitors in the 300-meter 513 

buffer distribution (increasing from 58 in the 50-meter buffer, Table 1a; to 91 in the 300-meter 514 

buffer, Table 1b). This suggests that the monitors added in the 300-meter buffer for interstates 515 

measure NO2 levels similar to those already captured in the 50-meter buffer, resulting in little 516 

change to the overall distribution. 517 

These results indicate that TROPOMI follows the trend of NO2 decreasing with increasing 518 

distance from roadways that ground-based monitors record, and TROPOMI captures surface 519 

concentrations best in winter and at 300+ meters away from the traffic source. 520 

 521 
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3.2 Column-Column Daily Alignment 522 

Here we compare the distributions of NO2 from TROPOMI and TEMPO with ground-based 523 

monitors to assess how well each satellite instrument captures daily variations in NO2 524 

concentrations. Our results indicate that TEMPO consistently aligns more closely with ground-525 

based measurements than TROPOMI, particularly in high NO2 areas such as highways and 526 

interstates.  527 

Figure 3 shows the distributions of NO2 as measured by AQS ground-based monitors (filtered to 528 

match valid TROPOMI and TEMPO data), TROPOMI, and TEMPO, separated by road 529 

classifications (interstates, highways, and non-roadways) for December 2023 and July 2024. The 530 

1 pm and 2 pm UTC (based on time zone) TEMPO and AQS values were averaged to align with 531 

the TROPOMI overpass time of ~1:30 LT (see Sect. 2.3). The monitor data in each comparison 532 

differs due to the data filtering (see Sect. 2.2 and 2.3). The comparison of frequency distributions 533 

reveals how well TEMPO and TROPOMI capture the wide range of ground-based monitor 534 

readings across these classifications and time periods.  535 

In December 2023, TEMPO (JSD = 0.007) and TROPOMI (JSD = 0.021) exhibit across road 536 

classifications show distinct patterns differences in how well they capturetheir ability to 537 

represent NO2 distributions across the various road classifications. Near interstates TEMPO 538 

shows a 90th percentile at 18.34 x 1015 molecules/cm2 where the TROPOMI 90th percentile is 539 

11.27 x 1015 molecules/cm2. TEMPO aligns more closely with monitor distributions with a JSD 540 

of 0.066 compared to the TROPOMI JSD of 0.145 (Figure 3). TEMPO has 21.42% of data 541 

points above 11 x 1015 molecules/cm2 for interstate values in December, whereas TROPOMI 542 

appears to underestimate the frequency of higher NO2 levels more, with a cumulative frequency 543 

of 10.53% above that threshold. Near highways, the TEMPO 90th percentile is 14.70 x 1015 544 

molecules/cm2 compared to TROPOMI with a 90th percentile of 10.06 x 1015 molecules/cm2. The 545 

JSD for TEMPO is 0.049 and TROPOMI is 0.125 for highway monitors, indicating that TEMPO 546 

has much better alignment on highways (Figure 3). For non-roadway locations, both instruments 547 

show very good alignment (TEMPO JSD = 0.005; TROPOMI JSD = 0.012; Figure 3) with the 548 

monitor data distributions, but with TEMPO again being slightly better. 549 
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In July 2024, the patterns show greater divergence across road classifications (TEMPO JSD = 550 

0.027; TROPOMI JSD = 0.049) between the satellite observations and ground-based monitor 551 

data compared to the December 2023 distributions. Near interstates, the TEMPO 90th percentile 552 

is 8.46 x 1015 molecules/cm2 and the TROPOMI 90th percentile is 5.58 x 1015 molecules/cm2, 553 

with TEMPO aligning more closely (JSD of 0.133 compared to TROPOMI JSD of 0.265; Figure 554 

3). TEMPO has 17.01% of data points above 7 x 1015 molecules/cm2 for interstate values in July, 555 

whereas TROPOMI appears to underestimate the frequency of higher NO2 levels more, with a 556 

cumulative frequency of 3.61% above that threshold. Near highways, TEMPO achieves a much 557 

better representation of the higher observed NO2 with a 90th percentile of 9.34 x 1015 558 

molecules/cm2 compared to TROPOMI with a 90th percentile of 5.32 x 1015 molecules/cm2. The 559 

JSD for TEMPO is 0.151 and TROPOMI is 0.201 for highway monitors, indicating that TEMPO 560 

has better alignment near highways. For non-roadway locations, both instruments show very 561 

good alignment (TEMPO JSD = 0.024; TROPOMI JSD = 0.023; Figure 3) with the monitor data 562 

distributions, with TEMPO and TROPOMI alignment with ground monitors being more 563 

comparable than in December 2023. 564 
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 565 

Figure 3. December 2023 and July 2024 at the TROPOMI overpass time (~13:30 LST) 566 

frequency distributions of NO2 as measured by AQS ground-based monitors filtered to the valid 567 

TROPOMI (blue) and TEMPO (purple), TROPOMI (light orange), and TEMPO (yellow) data 568 

for three monitor classifications: Interstate, Highway, and Non-roadway. The x-axes indicate the 569 

range of NO2, with the primary, lower x-axis showing monitor NO2 concentrations in parts per 570 

billion (ppb) and the secondary, upper x-axis showing TROPOMI NO2 VCD and TEMPO NO2 571 

VCD in 1015 molecules per cm2. The boxes show the Coefficient of Variation (CV) and Jensen 572 

Shannon Divergence (JSD) for each season and monitor classification. 573 
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Throughout both December 2023 and July 2024, TEMPO’s improved alignment with ground-574 

based monitors compared to TROPOMI may be attributed to several factors. TEMPO operates 575 

from a geostationary orbit, allowing it to take hourly measurements and capture the diurnal 576 

variability of NO2 concentrations more effectively than TROPOMI, which has a single daily 577 

overpass time. This high temporal resolution enables TEMPO to better match the timing of NO2 578 

peaks and fluctuations detected by ground-based monitors, which are also recorded on an hourly 579 

basis. Additionally, TEMPO’s finer spatial resolution, approximately 2 km in the north-south 580 

direction and 4.5 km in the east-west direction, may allow it to capture more localized pollution 581 

sources, such as traffic emissions along highways and interstates. This may be why we see such a 582 

large difference in alignment in the interstate and highway categories between TEMPO and 583 

TROPOMI, and very little difference in alignment in the non-road category. In contrast, 584 

TROPOMI’s 4 km x 4 km (re-gridded) resolution and single overpass time may be less effective 585 

at capturing these localized variations. TEMPO's finer resolution in one direction and its frequent 586 

observations may enable it to more precisely match the spatial and temporal variability detected 587 

by ground-based monitors. The consistency of slight underestimation for both instruments in 588 

high-pollution areas like highways and interstates suggests challenges in fully capturing elevated 589 

NO2 levels that occur near traffic sources. Overall, this indicates that while TEMPO generally 590 

provides a closer approximation of NO2 distributions compared to TROPOMI, both satellite 591 

instruments show limitations, particularly in representing peak concentrations at high-polluting 592 

sites.  593 

 594 

3.3 Column-Surface Diurnal Alignment 595 

In this section we explore the hourly alignment among monitor observations and hourly TEMPO 596 

observationsdistributions at interstate, highway, and non-roadway monitors. We find that 597 

TEMPO aligns best with ground monitors around midday and exhibits poorer alignment in the 598 

early morning and early evening.  599 

Figure 4 presents the hourly JSD for TEMPO NO2 measurements compared with ground 600 

monitors categorized by interstate (red), highway (orange), and non-roadway (green) monitors 601 

for December 2023 (Figure 4a) and July 2024 (Figure 4b). The results highlight distinct diurnal 602 
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patterns across road types and seasons, reflecting the influence of traffic emissions, atmospheric 603 

mixing, and insolation. 604 

In December 2023, all monitor categories exhibit similar trends in the early morning, with high 605 

JSD values (highway JSD = 0.358; interstate JSD = 0.331; non-road JSD = 0.210) indicative of 606 

moderate to poor alignment between TEMPO and ground-based monitors. This pattern, 607 

consistent with early morning rush hour emissions and limited atmospheric vertical mixing 608 

(Harkey and Holloway, 2024) as well as a decrease in TEMPO’s measurement accuracy due to 609 

high solar zenith angles in the morning according to TEMPO documentation (NASA Langley 610 

Research Center, 2024), suggests that TEMPO may not capture rapid increases in NO2 during 611 

high traffic and low mixing periods. By mid-morning, JSD has decreased for all road types 612 

(highway JSD = 0.085; interstate JSD = 0.067; non-road JSD = 0.027), indicative of good 613 

alignment, with non-road monitors showing the most significant improvement (87% increase in 614 

alignment). This pattern of better alignment in non-road monitor areas could be attributed to 615 

lower NO2 levels away from major sources of emissions. As the day progresses in December, 616 

JSD values for highway and interstate monitors increase steadily (with highways fluctuating 617 

more) after 17 UTC (~12 pm LT), with highways increasing in JSD from 0.102 to 0.490 and 618 

interstates increasing from JSD 0.097 to 0.590, indicating worsening alignment in the afternoon 619 

and early evening. This pattern may reflect the re-accumulation of NO2 due to afternoon traffic 620 

and the collapse of the boundary layer later in the afternoon (Harkey and Holloway, 2024), as 621 

well as the decrease in TEMPO’s measurement accuracy in the evening (NASA Langley 622 

Research Center, 2024). Non-road monitors show less change in JSD through the day, suggesting 623 

that TEMPO alignment is more consistent in non-road monitor areas throughout the rest of the 624 

day, only fluctuating in JSD values between 0.009 and 0.05. 625 
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 626 

Figure 4. The a) December 2023 and b) July 2024 hourly (UTC) TEMPO NO2 Jensen-Shannon 627 

Divergences at interstate (red), highway (orange), and non-roadway (green) monitor locations. 628 

In July 2024 highway and interstate monitors do not exhibit a clear diurnal pattern, with JSD 629 

values fluctuating between 0.14 and 0.416 for highways and 0.155 and 0.212 for interstates 630 

throughout the day. Consistent, localized traffic emissions and the shorter NO2 lifetime during 631 

the summer suggest a less variable distribution of NO2. Non-road monitors in July show 632 

somewhat worse alignment in the morning (JSD = 0.041), with improved agreement during the 633 

late morning and early afternoon (JSD ranging between 0.008 and 0.025). The non-road JSD 634 

remains fairly constant into the early evening, with alignment decreasing by about 13%, 635 

indicating that sunlight may play a larger role in the alignment in the evening since the sun is at a 636 

higher position in the sky during this time in the summer than in the winter (which increases in 637 

JSD at this time), enhancing TEMPO’s measurement accuracy in the early evening in July.  638 

Both months exhibit their highest JSDs, and worst alignment, in the early morning or early 639 

evening hours, which coincides with peak traffic times and the most uncertainty in TEMPO 640 

observations caused by the solar zenith angle. The best alignment and lowest JSDs occur 641 

sometime near midday (~10am LT to ~2pm LT).  642 

The disparity between highways and interstates in TEMPO, where highways generally have the 643 

highest JSD, differs from the pattern seen with TROPOMI, where interstates tended to 644 

consistently exhibit worse alignment. This suggests that TEMPO’s higher spatial and temporal 645 
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resolution may capture localized sources more effectively, leading to variations in alignment 646 

based on the distribution and intensity of NO2 sources. 647 

4 Conclusions 648 

This study evaluates the distributional alignment between satellite-derived NO2 data from 649 

TROPOMI, TEMPO, and ground-based AQS monitors across the U.S. Our findings highlight 650 

several key points that inform the potential of satellite data for both regulatory and public health 651 

applications, particularly in informing future NO2 monitor siting strategies. Several limitations 652 

and sources of uncertainty should be considered. Several limitations of this analysis include: (1) 653 

The overrepresentation of AQS monitors in urban areas; (2) the temporal mismatch between 654 

satellite and ground measurements; and (3) the distance from roads analysis doesn’t consider 655 

other local factors. A key limitation is the overrepresentation of urban areas in the AQS 656 

monitoring network, which may bias our results toward urban areas. Since AQS monitors are 657 

more densely located in urban regions with high emissions and complex local sources, the results 658 

may not fully capture alignment in more rural areas with fewer monitoring stations. Another 659 

important consideration is the slight temporal mismatch between satellite and ground-based 660 

measurements. TROPOMI provides a single daily observation around 13:30 pm local solar time, 661 

whereas ground monitors and TEMPO record NO2 concentrations throughout the day. To better 662 

align with TROPOMI’s overpass, we averaged 1 pm and 2 pm LT TEMPO and ground monitor 663 

NO2 values. Since NO2 concentrations can change rapidly due to meteorological conditions and 664 

emissions variability, this averaging approach may introduce some error in comparisons between 665 

TEMPO, TROPOMI, and ground-based measurements. The classification of monitors by 666 

distance from roads is based on buffer analysis, which does not account for local factors such as 667 

wind direction, terrain, proximity to industry, and traffic density, all of which influence NO2 668 

dispersion. Despite these uncertainties, our findings highlight patterns in column-surface NO2 669 

agreement and demonstrate the potential for satellite data to complement ground-based 670 

monitoring. 671 

The Jensen-Shannon Divergence (JSD) proved to be an essential tool in this study, offersing a 672 

robust and interpretable metric for comparing the alignment and similarity of NO2 distributions. 673 

Its symmetry and bounded range allowed us to evaluate the degree of similarity between satellite 674 
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and monitor NO2 values across different spatial and temporal scales, providing a clear 675 

quantitative framework for assessing the similarity of two different instruments. 676 

Past studies comparing surface and satellite NO2 have found temporal correlation of daily values 677 

at individual sites ranging from r=0.61 to r=0.69 (Lamsal et al., 2014; Lamsal et al., 2015), 678 

monthly and seasonal values at individual sites ranging from r=0.67 to r=0.90 (Griffin et al., 679 

2019; Yu & Li, 2022; Harkey & Holloway, 2024; Dressel et al., 2022; Xu & Xiang, 2023; 680 

Lamsal et al., 2015), and annual average values at sites ranging from r=0.68 to r=0.93 (Zhang et 681 

al., 2018; Lamsal et al., 2015; Goldberg et al., 2021; Kim et al., 2024; Bechle et al., 2013; H. J. 682 

Lee et al., 2023). Here, r refers to the Pearson correlation coefficient, which measures the 683 

strength and direction of a linear relationship between variables. In some cases, these 684 

comparisons adjusted column values to the surface (e.g. Lamsal et al., 2014) and/or adjusted 685 

ground-monitors to reduce the error in chemiluminescent detection of NO2 (e.g. Lamsal et al., 686 

2015; Bechle et al., 2013). Using similar methods, TROPOMI tends to show better agreement 687 

with annual AQS NO2 than does OMI, e.g. r=0.81 using TROPOMI (Goldberg et al., 2015) 688 

versus r=0.68 from OMI (Lamsal et al., 2015). Off-road AQS monitors tend to show better 689 

agreement with satellite data than near-road AQS monitors, e.g. r = 0.81-0.87 at non-near-road 690 

sites versus r = 0.64-0.74 at near-road sites (Kim et al., 2024). The underestimation of estimated 691 

near-surface NO2 near roads and localized sources is a recurring issue in OMI and TROPOMI 692 

NO2 VCDs (Dressel et al., 2022; Goldberg et al., 2024; Ialongo et al., 2020).  693 

 694 

In this study, we find a pattern of decreasing NO2 with increasing distance from traffic sources, 695 

which is consistent with the findings of previous studies (Kimbrough et al., 2017; Karner et al., 696 

2010; Richmond-Bryant et al., 2017). While ground-based monitors and TROPOMI satellite data 697 

may differ with proximity to roadways, particularly within 50-m, their measurements still follow 698 

the same overall trend. This convergence with increasing distance may be due to the reduction of 699 

localized near-road emissions and the broader atmospheric mixing captured more effectively by 700 

satellite observations at greater distances from roads. Using a larger buffer distance from roads 701 

(300 meters instead of 50 meters) improves the alignment between TROPOMI and monitor data, 702 

especially for highway monitor locations (JSD decreases by ~82%). The overall trend reflects the 703 
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well-established gradient of declining NO2 levels with increasing distance from traffic sources, 704 

and TROPOMI’s ability to capture this trend, even if the specific values differ from AQS 705 

monitors in the near-road environment. Our findings indicate that TROPOMI tends to slightly 706 

underestimate surface NO2 concentrations in areas with high traffic, such as interstates and 707 

highways, due to its spatial resolution and full-column measurements, which smooth out 708 

localized, ground-level pollution peaks captured by ground monitors. This is most evident in 709 

interstate monitors, where the JSD reveals the greatest divergence between satellite and monitor 710 

data (JSD = 0.158). These results are consistent with prior studies (Dressel et al., 2022; Kim et 711 

al., 2024; Ialongo et al., 2020), which also found that satellite instruments are less effective at 712 

capturing high NO2 events near localized sources like traffic. The distributional alignment 713 

improves in non-roadway monitors (JSD = 0.009), where NO2 levels are lower, and there are 714 

usually fewer localized sources of pollution. The lower pollution levels in these areas allow 715 

TROPOMI to more accurately reflect the conditions captured by ground-based monitors, leading 716 

to lower JSD values, and therefore better alignment. This trend suggests that TROPOMI may be 717 

particularly useful for monitoring air quality in rural or less polluted regions where ground 718 

monitors are sparse or absent.  719 

Seasonality plays a critical role in the similarity of satellite and monitor data. Winter consistently 720 

shows the best alignment (JSD = 0.010), with the TROPOMI distribution capturing nearly the 721 

full gradient of NO2 seen within the ground-based monitor distribution. This likely reflects the 722 

longer atmospheric lifetime of NO2 in winter, which allows for better vertical mixing and less 723 

spatial variability (Harkey et al., 2015; Boersma et al., 2009; Shah et al., 2020). In contrast, 724 

summer shows the worst alignment (JSD = 0.035), which is likely due to the shorter lifetime of 725 

NO2 and increased photochemical activity during warmer months, causing greater discrepancies 726 

between localized surface measurements and the satellite column. Similar conclusions were 727 

reached by previous studies (Shah et al., 2020; Karagkiozidis et al., 2023), indicating that 728 

seasonality is a crucial factor in assessing satellite performance for regulatory purposes. These 729 

seasonal differences underscore the need for considering temporal factors when evaluating the 730 

use of satellite data for monitor siting and NO2 regulation. 731 

The integration of TEMPO data into this study highlights its potential to advance our 732 

understanding of NO2 distributions, especially when compared to TROPOMI. TEMPO's ability 733 
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to provide hourly measurements at a finer spatial resolution offers significant advantages in 734 

capturing diurnal NO2 patterns and detecting localized pollution events. Our findings from 735 

December 2023 and July 2024 at the TROPOMI overpass time (~13:30 LST) demonstrate that 736 

TEMPO better captures the wide range of surface NO2 measurements than TROPOMI, 737 

especially at higher NO2 levels. TEMPO’s JSDs are almost always lower than TROPOMI’s, with 738 

JSDs ranging from 0.005 to 0.151 and TROPOMI’s JSDs ranging from 0.012 to 0.265. This 739 

improvement in alignment with ground monitors could be attributed to TEMPO’s better spatial 740 

and temporal resolution.  741 

We also find that TEMPO is best at capturing ground-level NO2 amounts around midday (~10am 742 

to ~2pm LT). This could be due to the lower traffic levels and therefore lower pollution levels 743 

during this time period, as well as a lower solar zenith angle, allowing TEMPO to have more 744 

accurate measurements. However, challenges remain in completely capturing high NO2 levels 745 

during peak traffic times and accurately capturing NO2 during high solar zenith angles in the 746 

morning and evening across monitor classifications. These results underscore the influence of 747 

spatial resolution, time of day, and measurement frequency on the ability of satellite instruments 748 

to align with ground-based NO2 measurements. Future research should build upon these insights 749 

by incorporating longer time periods and multiple years of data as more TEMPO data becomes 750 

available to study long-term TEMPO distributions. The enhanced temporal and spatial resolution 751 

of TEMPO, alongside its comparison to other instruments like TROPOMI, provides valuable 752 

context for understanding the dynamics of NO2 pollution, especially how it varies throughout the 753 

day, to improve strategies for air quality monitoring and public health protection. Spatially 754 

contiguous satellite products and our analysis of air quality variability offer the potential to 755 

support air quality managers and public health analysis. 756 

This study offers insights for optimizing nitrogen dioxide monitor siting, enhancing regulatory 757 

planning, and supporting public health interventions. By demonstrating the strengths and 758 

limitations of satellite-derived NO2 data, we highlight its potential to complement ground-based 759 

monitoring networks. 760 

 761 

Code and Data Availability 762 
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All data used in this study are open to the public. Hourly NO2 data from AQS were obtained 763 

from https://aqs.epa.gov/aqsweb/airdata/download_files.html. Copernicus Sentinel 5P Level 2 764 

TROPOMI NO2 data were processed by the ESA, Koninklijk Nederlands Meteorologisch 765 

Instituut (KNMI; https://doi.org/10.5270/S5P-s4ljg54), downloaded from the NASA Goddard 766 

Earth Sciences Data and Information Center (GES DISC) in January 2021, and gridded using 767 

WHIPS (https://sage.nelson.wisc.edu/data-and-models/wisconsin-horizontal-interpolation-768 

program-for-satellites-whips/). TEMPO Level 3 NO2 data were downloaded from NASA’s 769 

EarthData Search (https://search.earthdata.nasa.gov/search/granules?p=C2930763263-770 

LARC_CLOUD&pg[0][v]=f&tl=1732652660.361!3!!). The 2021 Primary and Secondary Roads 771 

Tiger/Line state-level shapefiles were downloaded from the U.S. Census Bureau 772 

(https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2021&layergroup=Roads). 773 

Since all of our data is publicly available and the methods describe our calculations in detail, we 774 

did not make our code publicly available. The Jensen Shannon Divergence was calculated using 775 

the scipy.spatial.distance.jensenshannon python package. 776 
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