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Abstract

In this study we assess the capability of current-generation satellites to capture the variability of
near-surface nitrogen dioxide (NO2) monitoring data, with the goal of supporting health and
regulatory applications. We consider NO» vertical column densities (VCD) over the United
States from two satellite instruments, the Tropospheric Monitoring Instrument (TROPOMI), and
Tropospheric Emissions: Monitoring of Pollution (TEMPO), and compare with ground-based
concentrations as measured by the EPA’s Air Quality System (AQS) monitors. While
TROPOMI provides a longer-term record of assessment (2019-2023), TEMPO informs diurnal
patterns relevant to evaluating peak NO>. We analyze frequency distributions and quantify their
similarity using the Jensen-Shannon Divergence (JSD), where smaller values indicate better

agreement. Satellite and ground monitor NO; distributions are most similar at non-roadway

monitorsawi-trom-mratorroads (IS0 = 0.008) as-ndieated-by-the FSB-oF0-008-cdentatedHor

TROPOMI-and-greund-mentters-atnen-—readways, compared-with-aJSD-nearand are most
different at interstates-of (JSD = 0.158) and aJSDB-near highways-ef (JSD = 0.095) monitors.

Seasonal analysis shows the most similarity in distributions in winter (JSD = ;-with-aJSb-of
0.010), and the most difference in summer;—with-a (JSD = 6£0.035). Across seasons and monitor
locations, the calculated 1:30pm LT TEMPO consistently exhibitshas-a lower or simtar
comparable JSDs toas TROPOMI;—with (TEMPO: $SBs+angingfrom 0.005 to 0.151;-and
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TROPOMI: JSPs+tanginefrom 0.012 to 0.265). TEMPO’s agreement with monitors in both
December 2023 and July 2024 is found to be best around midday, with non-road monitors~J3Sb
in July having theas best alignmentlew-as (JSD = 0.008) at 16 UTC (~11am LT). These findings
highlight the ability of TROPOMI and TEMPO to complement existing ground-based monitors,

and demonstrate their potential for monitor siting, regulatory, and public health applications.

1 Introduction

Nitrogen dioxide (NO) is a gas released through high temperature combustion processes such as
the burning of fossil fuels (Lee et al., 1997; Richter et al., 2005), with on-road vehicles, power
plants, and industrial processes representing the largest anthropogenic sources in the United

States (U.S.; van der A et al., 2008) as well as lightning NOx emissions (Dang et al., 2023) and

soil microbial activity (Huber et al., 2020) from natural sources. Exposure to elevated levels of

NO» has been linked to respiratory and cardiovascular diseases (Mills et al., 2015; Urbanowicz et
al., 2023; Meng et al., 2021), especially asthma in children (Molter et al., 2014; Anenberg et al.,
2022; Achakulwisut et al., 2019), as well as premature mortality (Camilleri et al., 2023; Hales et
al., 2021; Huangfu and Atkinson, 2020), and other diseases (Xia et al., 2024; Bai et al., 2018).
NOs plays a critical role in the formation of ozone, which also causes respiratory health problems
and is harmful to ecosystems (Grulke & Heath, 2019; Sillman, 1999). It is also a precursor to
nitrate (Behera & Sharma, 2012), a type of fine particulate matter (PMa s), which can penetrate

deep into the lungs and exacerbate respiratory and heart conditions (Sangkham et al., 2024;
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Sharma et al., 2020), as well as cause premature death (Orellano et al., 2020; Thangavel et al.,
2022).

may be observed by satellites during daylight hours (Boersma et al., 2018; Van Geffen et al.,
2020; Veefkind et al., 2012), and NO: has emerged as one of the most air-quality-relevant
pollutants from satellites (Holloway et al., 2021). Several studies have highlighted the potential
for satellite NO, data to supplement ground-based networks to support health analysis and air
quality management (Duncan et al., 2014; Lee & Koutrakis, 2014). Seme-of the-first-studies

done-comparme-oround-based NO —to-sate e VEDsthamsal-etal 20 bamsabetab 2045

2006y—-AnruatOMand surface NOxtrepdstrthe U-S—sheow-that OMIusuatly-everestimatesthe
surface-trends by ~3-7%each-year (ZLhanget-al; 2018 With-tThe 2017 launch of the
Tropospheric Monitoring Instrument (TROPOMI Boersma et al., 2018; Van Geffen et al., 2020;
Veefkind et al., 2012); 5 i
higherreselution-(3-5kmx5-5tamadvanced these applications (Goldberg et al., 2021; Griffin et
al., 2019; Kim et al., 2024; Yu & Li, 2022; Dressel et al., 2022; Goldberg et al., 2024; H. J. Lee
et al., 2023). The Tropospheric Emissions: Monitoring of Pollution (TEMPO; Chance et al.,

2019: Naeger et al., 2021; Zoogman et al., 2017) provides further advancements with daytime

hourly observations of NO» over North America and finer spatial coverage.
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While advanced methods exist to calculate near-surface NO; explicitly (Ahmad et al., 2024; Kim
et al., 2021; Shetty et al., 2024; Virta et al., 2023), there is also a strong interest in the utilization
of satellite vertical column density (VCD) to directly infer NO, concentrations analogous to
ground-based monitors (Kim et al., 2024; Lamsal et al., 2014; Griffin et al., 2019; Yu & Li,
2022; Zhang et al., 2018; Lamsal et al., 2015; Goldberg et al., 2021; Dressel et al., 2022;
Goldberg et al., 2024; Harkey & Holloway, 2024; Bechle et al., 2013; H. J. Lee et al., 2023; Xu
& Xiang, 2023). This study extends these prior assessments of NO> column-to-surface

agreement, where we focus on frequency distributions to capture the net impact of day-to-day

variability.

The relationship between surface NO; and column abundance is influenced by physical and
chemical processes, many of which have seasonal components. In winter, shallow boundary
layers trap pollutants near the surface, leading to higher surface concentrations and increasing

surface-to-column agreement (Harkey et al., 2015). In summer, higher temperatures and
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increased sunlight accelerate photochemical reactions, converting NO; into ozone and other
secondary pollutants, and decreasing surface-to-column agreement (Boersma et al., 2009).
Seasonal changes in emissions, such as high building-heating emissions in winter, and high
power plant emissions in summer (Frost et al., 2006; Levinson & Akbari, 2010) interact with
atmospheric processes causing an increase in NO> column abundance in winter in four-season
climates (Shah et al., 2020). Processes affecting the sources and sinks of NO> at the surface and
through the vertical column can also lead to temporal lags, with peak surface NO» preceding

peak column NO: in the mornings (Harkey et al. 2024).

Frequency distributions capture the variability, extremes, and patterns of pollutant abundance,
relevant to air quality standards, pollution trends, and the effectiveness of emission control

measures (Knox and Lange, 1974: Pollack, 1975; Venkatram, 1979: Chowdhury et al., 2021:

Mondal et al., 2021). For example, Mondal et al. (2021) used frequency distributions of ground-

based monitors to examine changes in air quality across Delhi and Kolkata during COVID-19
lockdown phases, showing how reduced human activity led to shifts in pollutant levels. We

extend this line of analysis by comparing NO; distributions across multiple dimensions with

TROPOMI and include time-of-day and resolution-dependence of results using data from
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In this work, we consider: (1) How do the distributions of satellite NO2 VCD compare with those
for near-surface NO,? (2) To what degree does new hourly data from TEMPO improve the
agreement between surface and space based NO; distributions? For both questions, we consider
spatial variability, especially proximity to roadways, and temporal variability including
seasonality and diurnal variability. By considering the ability of satellites to capture peak NO»
values in a comparable distribution to surface data, we consider how satellite VCDs can support

air quality management, improve health impact analysis, and inform air pollution monitor siting.

2 Data and Methods

In this study, we evaluate the ability of two satellite instruments, TROPOMI and TEMPO, to
capture the spatial and temporal variability in NO; surface concentration distributions across the
continental United States (CONUS), as measured by AQS monitors. By comparing the
coefficient of variation (CV) and Jensen-Shannon divergence (JSD) between satellite and

monitor data, we aim to assess the alignment between the datasets.
2.1 EPA Surface Monitor Data

The EPA Air Quality System (AQS) contains hourly NO> measurements from ground-based

monitors, providing high temporal resolution data that are critical for assessing compliance with

the U.S. National Ambient Air Quality Standards (NAAQS). There are two NAAQS related to

NO»: one for annual average concentration, set at 53 ppb, and one based on peak 1-hour

concentrations, set at 100 ppb, based on the 3-year average of the 98" percentile of the yearly

distribution of 1-hour daily maximum NQO> concentrations (EPA. 2010). Enforcement of these

standards relies on data from AQS NO»> monitors, a network that includes 431 monitors as of

August 2024. Because NO» has a relatively short atmospheric lifetime, typically ranging from a

few hours to a day depending on meteorological conditions (Lange et al., 2022: Liu et al., 2021),

ground monitors are expected to capture local conditions (Wang et al., 2020).
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The EPA A#Quality-System data (AQSEPA. 2025) was used to access NO; monitor data for the
years 2019 through 2023 from all available sites in CONUS during this time period (N=503

unique monitors from 2019 to 2023). We note that there are some areas that are overrepresented

by NO» monitors, and others that are lacking monitors. Specifically, most monitors are located in

urban areas, especially on the East Coast and in Southern California, meaning that rural areas

tend to be less represented by ground monitors. Most monitors use a chemiluminescence method,

where the amount of NO; that is converted to NO is measured by a molybdenum oxide converter
(Fontijn et al., 1970). The converter also reacts with other oxidized nitrogen compounds such as
nitric acid (HNO3) and peroxyacetyl nitrate (PAN) to form NO (Dunlea et al., 2007; Steinbacher
et al., 2007), which can lead to an overestimation of NO». Corrections for this bias have been
applied when comparing with satellite observations (e.g. Cooper et al., 2020; Lamsal et al., 2015;
Lietal., 2021). Uncorrected AQS NO; has been used for determining compliance with the
NAAQS and for health assessments, which is the approach we take here, consistent with prior
studies focused on regulatory relevance (Novotny et al., 2011; Penn & Holloway, 2020; Harkey
and Holloway, 2024; Goldberg et al., 2021; Kim et al., 2024; Duncan et al., 2013; Qin et al.,
2019). More recently, some NO2 monitors have been added to the network which measure “true
NO;” using Cavity Attenuated Phase Shift Spectroscopy (CAPS, Kebabian et al., 2005). These
monitors are expected to be more representative of ground-level NO» concentrations and have
less overestimations since they directly measure NO» and no other species (Ge et al., 2013).
Some of the monitors used in this study use CAPS methodology to measure NO>. We discuss the

comparison of CAPS versus traditional NO> monitors in results Sect. 3.1.

Hourly AQS measurements at 13:00 and 14:00 local time (LT) were averaged to align with the
TROPOMI overpass of ~13:30 LT. Hourly AQS measurements from 12:00 GMT to 23:00 GMT
are compared with hourly TEMPO data for daylight hours. For both the TROPOMI and TEMPO
analyses, AQS data are filtered to ensure consistency with satellite data availability. As a result
of filtering monitoring data for TROPOMI and TEMPO separately, the subsets of monitor data

available for comparison with each instrument differ, even for the same time periods.

2.2 TROPOMI Data
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The Tropospheric Monitoring Instrument (TROPOMI; European Space Agency, 2021) is on

board the Copernicus Sentinel-5 Precursor satellite which has a daily, local overpass time of
~13:30 LST (Veefkind et al., 2012). Currently, the highest resolution of TROPOMI is 3.5 km by
5.5 km at nadir which has increased from 3.5 km by 7.0 km since August 6™, 2019. Daily
TROPOMI NO:> data for the years 2019 through 2023 were allocated to a 4 km x 4 km grid over
CONUS using the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS;- Center
for Sustainability and the Global Environment, 2024; Harkey et al., 2015, 2021; Harkey and

Holloway, 2024; Penn and Holloway, 2020). Using WHIPS, we also remove data with quality
flag lower than 0.75. Each monitor location was compared with the 4 km x 4 km gridded
TROPOMI value in the corresponding grid cell. December 2023 and July 2024 4 km x 4 km
TROPOMI NO; data were also collected for each of the monitors for comparison with TEMPO
data.

A 4 km x 4 km oversampled grid is used as opposed to the 1 km x 1 km oversampled erid since

this study focuses on daily observations, and the 1 km x 1 km grid is best suited for monthly or

annual averages (Goldberg et al., 2021). To ensure a valid number of TROPOMI pixels were

being represented despite the higher grid resolution, we analyzed the number of ground monitors

falling within each TROPOMI pixel by performing a spatial join between ground monitor

locations and the oversampled 4 km x 4 km TROPOMI erid. About 97% of TROPOMI pixels

contain only one monitor, with only a small number of pixels (2.7%) containing more than one.

Figure S1 shows the number of monitors per TROPOMI pixel (locations where there are more

than 1 monitor per TROPOMI pixel) and the number of valid TROPOMI retrievals from 2019 to

2023 at each grid cell, confirming that monitors are well-distributed enough to not

disproportionately cluster within a small subset of satellite pixels. Since monitors are spread

across the entire U.S. and most are at least 4 km apart, there is generally sufficient separation to

ensure that most monitors are assigned to distinct TROPOMI pixels rather than falling into the

same grid cells repeatedly.

2.3 TEMPO Data

The TEMPO instrument launched onboard the Intelsat 40e mission (NASA, 2024), a
geostationary satellite, on April 7, 2023. TEMPO provides hourly measurements of atmospheric



230
231
232
233
234

235
236
237
238
239
240

241
242
243
244
245
246

247

248
49
50

pollutants over North America (Chance et al., 2019; Naeger et al., 2021; Zoogman et al., 2017).
TEMPO achieves a spatial resolution of approximately 2.1 km in the north-south direction and
4.5 km in the east-west direction at the center of its Field of Regard (FOR), centered around
36.5° N and 100° W (Chance et al., 2019). The TEMPO Level-3 (L3) NO; data (Suleiman, 2024)
used in this study were accessed through NASA’s EarthData Search portal.

In order to synchronize TEMPO and ground-based hourly measurements, TEMPO timestamps
were rounded to the nearest hour, with mid-hour values rounded up. All files within each
rounded-hour group were averaged, producing a single NO; value per hour per day. Only
TEMPO observations with a main data quality flag of 0 and cloud fraction at or less than 0.2
were retained, in line with TEMPO documentation guidelines (NASA Langley Research Center,
2024).

For the comparison with TROPOMI, the UTC equivalents of 1 pm and 2 pm LT were
determined for each time zone based on the latitude and longitude of each monitor location.
TEMPO NO; values corresponding to these calculated UTC hours were averaged to align with
the TROPOMI overpass time (~13:30 LST). Similarly, for ground-based measurements, the
monitor data were filtered to include only values corresponding to 1 pm and 2 pm LT and then

averaged.
2.4 Monitor Classification

To classify the monitors by roadway proximity, the state-level Census Bureau’s 2021

TIGER/Line shapefiles for Primary and Secondary Roads (2021 TIGER/Line® Shapefiles,

2025) were combined to form a comprehensive dataset for the CONUS domain.

To evaluate how TROPOMI and ground-based monitor NO» values vary by proximity to a road,
monitors were also assigned to different groups based on their distance from a road (<20-m, 20
to 50-m, 50 to 300-m, 300-m to 1 kmsni, and >1 kmmt), where buffer distances are calculated
from the road shapefiles (Figure S32). There were 9 monitors that were 20 meters or less away
from a road, 66 between 20 and 50 meters from a road, 108 between 50 and 300 meters, 167249
between 300 meters and 1 kilometermile, and 1530+ that were greater than 1 kilometermile from

aroad.
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Roads were also classified into three categories: (1) interstates, (2) highways, and (3) other
roads, based on their route type code (RTTYP) values. Where monitors are considered as
representing a roadway category, we followed the criteria of the EPA Near-Road-Network
(Gantt et al., 2021; Kim et al., 2024), to merge monitor locations with road buffers, considering
the 50-m buffer recommended by EPA, as well as a less restrictive 300-m buffer. In each case,
monitors inside the buffer of a particular roadway type were classified as representing that
category. If a monitor fell within multiple buffers, it was assigned the classification of the largest

road type. Monitors not falling within any buffers were classified as "non-roadway."

Using the 50-m buffer, 58 monitors were classified as “interstate,” 17 as “highway,” and 428 as
“non-roadway” (Figure S21; no monitors classified as “other roads”). Using the 300-m buffer, 91
monitors were classified as “interstate,” 90 as “highway,” 320 as “non-roadway,” and 2 as “other
roads.” Since there were no monitors classified as “other roads” for the 50-m buffer, this

category is excluded from the analysis.

We classified interstate monitors as urban or rural using the U.S. Census Bureau 2020 Urban

Areas Tiger/Line Shapefile (U.S. 2020 Urban Areas Shapefile, 2025). Only one interstate

monitor was identified as rural, so this analysis is not included.

2.5 Data Analysis

The coefficient of variation (CV) was calculated for ground-level monitor data and for satellite

data. This metric was used to compare the relative variability of NO2 between satellite and

10
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ground-level data despite different measurement units (Aerts et al., 2015). CV is defined as the

ratio of the standard deviation (o) to the mean (u) of the data:
o
CV = (—) x 100
U

The Jensen-Shannon Divergence (JSD) is used to quantifyies the similarity between the
distributions of NO: from_the satellite and ground-level monitors despite the different
measurement units (Menéndez et al., 1997). The Jensen-ShannonBDivergenee{JSD} is a robust
metric for comparing probability distributions that is used within a wide variety of fields,

including machine learning (Thiagarajan & Ghosh, 2024; Saurette et al., 2023; Tsigalou et
al., 2021; Melville et al., 2005), data science (Toledo et al., 2022; Zhao et al., 2024), biolo

Yan et al., 2021; Jones et al., 2023; Ahmed et al., 2023), and meteorology (Kibirige et al.
2023). In environmental research using satellite data, the JSD has shown that the Mangrove
Forest Index (MFI) from Sentinel-2 imagery outperforms traditional vegetation indices in

distinguishing submerged mangrove forests (Jia et al., 2019). In air quality, JSD has been

used to compare modeled and measured PM,s(Yang et al., 2024), and to compare an air

quality index (AQI) with measurements of specific air pollutants (Wang & Zhang, 2022). e
- . . i . oritored NO. distributi

To calculate the JSD, each dataset was binned, with a bin size of 1 ppb (for ground monitors) or

1 x 10" molecules/cm? (for satellite data), ranging from 0 to 40 ppb or 40 x 10'> molecule/cm?,

with an additional bin for values exceeding 40 ppb or 40 x 10'> molecule/cm?. For visualization

purposes, the frequency distributions are binned with the eround monitors ranging from 0 to 40

ppb and the satellite data ranging from 0 to 30 x 10" molecule/cm?, with an additional bin for

values exceeding 40 ppb or 30 x 10" molecule/cm?. Depending on the specific analysis, NO»

data are grouped by: (1) Distance from roadways (in meters) — TROPOMI daily data from 2019

to 2023 (and corresponding ground monitors) are erouped by proximity to roads to assess spatial

alignment; (2) season — TROPOMI daily data from 2019 to 2023 (and corresponding ground

monitors) are grouped by season to analyze temporal alignment; (3) month — TROPOMI daily

data from December 2023 and July 2024, along with TEMPO and ground monitors at the

11
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TROPOMI overpass time (~1:30 pm LT, represented by the average of 1 pm and 2 pm LT data),

are grouped by month to compare the temporal differences in alignment between TEMPO and

TROPOMI: and (4) road type (interstate, highway, non-roadway) — Both TROPOMI (daily),

TEMPO (calculated overpass time and hourly), and eground monitor data are grouped by road

type to evaluate varying alienment based on road classifications.

Binned data were then normalized to form probability distributions. The divergence was

calculated as:

JSD(P, Q) = 5 [Diy (PIIM) + Dy, (QIIM)]

where P and Q represent the probability distributions from the monitor and satellite data,
respectively, and M is the average of P and Q. The divergence Dk is the Kullback-Leibler
divergence between each distribution and their mean (Clim et al., 2018). JSD values range from
0 to 1, with lower values indicating greater similarity between the satellite and monitor
distributions. In general, a JSD < 0.1 indicates very good alignment, 0.1 < JSD < 0.3 indicates

moderate alignment, and JSD > 0.3 (Kibirige et al., 2023) indicates poor alignment.

3 Results
To evaluate the agreement between satellite and monitored NO; distributions, we consider the
impact of monitor location using TROPOMI; impact of season using TROPOMI; the comparison

of distributions between TROPOMI and TEMPO; and the impact of time-of-day using TEMPO.
3.1 Alignment of TROPOMI NO: Distributions with Surface NO: Distributions

This section analyzes TROPOMI and ground-based NO; measurements across varying distances

from roads, different seasons, and at monitors located near interstates, highways, and non-

roadway sites. Our results show that as the distance from roads increases, the distributions of

surface and column NO» become more similar. Monitor distributions near interstates and

highways exhibit lower agreement with TROPOMI distributions compared to those farther from

major roadways. Seasonally, alignment is strongest in winter and weakest in summer.

12
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Figure 1 illustrates the distribution of NO> levels measured by AQS ground-based monitors and

TROPOMI observations as a function of distance from roadways using daily measurements from

2019 to 2023. For both data sources, mean, peak, and minimum NO; are all highest in the 20 —
50 m distance category (the second closest near-road category). NO, abundance decreases as
distance-to-road increases, and to a lesser extent as distance-to-road decreases. The somewhat
lower abundance < 20 m vs. the 20 — 50 m category may be due to the speciation of NOx, where
NO is more abundant and converts to a higher fraction of NO> as distance-to-road increases

(Kimbrough et al., 2017). Most direct vehicle emissions are in the form of NO, and close to the

roadway, NO and NO» readily convert between forms. Limited ozone availability—especially

during stable conditions, which contribute to suppressed vertical mixing—can slow the

conversion of NO to NO» (Richmond-Brvant et al., 2017). As a result, NO» may initially be

suppressed very close to the road, and changes in total NOx are primarily driven by mixing and

dilution rather than chemical transformation. Mean monitored NO> is 6.85 ppb at <20 m, 10.47
ppb at 20 — 50 m, 4.53 ppb at 50 — 300 m, 3.7153 ppb at 300 m — 1 km, and 2.8076 ppb at > 1
km#i. Mean TROPOMI NO; is 3.38 x 10" molecules/cm?at < 20 m, 4.21 10'3 molecules/cm? at
20 — 50 m, 3.00 x 10'°> molecules/cm?at 50 — 300 m, 3.7263 x 10" molecules/cm?at 300 m — 1

kmsai, and 3.1304 x 10" molecules/cm? at > 1 kmmi. Monitor values show a higher sensitivity
to roadway proximity, where the highest mean monitored concentration is 3759% of the lowest
mean concentration, compared to TROPOMI where the highest mean VCD is 14038% of the

lowest mean VCD.

Monitored NO» levels drop over 50% at ~50 m from the roadway (based on change in the mean,
upper 2.5 interquartile range, IQR, and the upper 1.5 IQR), a finding that compares with 31%
reduction in NO; between 20m and 300m from Kimbrough et al. (2017), as well as other studies
that identify a decrease in NO> at further distances (Karner et al., 2010; Richmond-Bryant et al.,
2017). TROPOMI VCDs also show the greatest change with roadway distance at ~50 km, but by
less than 30% (based on change in the mean, upper 2.5 IQR, and the upper 1.5 IQR).

Just as total NO> abundance, from both monitors and satellite, is highest at distances of 20-50 m
from the roadway, the range of daily values is also widest for the 20 — 50 m range and smallest at
the > 1 km+ range. Monitored values have a standard deviation of 8.24 ppb in the 20 — 50 m

range, and a standard deviation of 3.3944 ppb in the > 1 kmmi range. The distribution of satellite

13
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data does not vary as much in size across roadway locations, with a standard deviation of 3.90 x
10" molecules/cm? for the 20 — 50 m range and 3.319 x 10" molecules/cm? for the > 1 kmmile
range. In the 20 — 50 m range, the upper IQR of AQS NO; is 38% higher than the mean.
TROPOMI shows less variability than the monitors, with the 20 — 50 m upper IQR 16% higher
than the mean. As distance from the roadway increases, the distributions of data from ground and
satellite become more comparable. In the > 1 kmmie range, the upper IQR of monitor NO; is
2330% higher than the mean and the upper IQR of satellite data is 15% higher than the mean.
The ranges show more similarity at greater distance from the roadway, but even at distances of >
1 kmmie, the range of monitored values exceeds the range of satellite VCDs. These patterns
agree with Kim et al. (2024), who found that surface monitors show better agreement with

TROPOMI further from major roads. This improved alignment at greater distances likely reflects

the reduced influence of localized emission sources, which tend to create sharp gradients and

rapid variability near roads. In areas further from traffic, NO; concentrations vary more gradually

or are generally more uniform. As a result, surface monitors away from roads reflect broader

conditions, in better agreement with the coarser spatial resolution of TROPOMIL.

When analyzed by season (Figure S4). the relationships are similar, except winter shows the

highest IQRs with the 20 to 50 m distance group having an IQR of 11.40 ppb for monitors and
4.96 x 10" molecules/cm? for TROPOMI, and summer the lowest IQRs for both monitors (IQR
=9.05 ppb) and TROPOMI (IQR = 1.71 x 10" molecules/cm?). In the greater than 1 km distance
group, again winter has the highest IQRs (monitor IQR = 4.60 ppb; TROPOMI IQR =3.95 x
10" molecules/cm?) and summer the lowest IQRs (monitor IQR = 2.05 ppb: TROPOMI IQR =

1.55 x 10" molecules/cm?).
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Figure 1. Box plots show median and interquartile ranges of all daily 2019 to 2023 NO; as

measured by AQS monitors (blue) and TROPOMI (orange) across various distances from
roadways, with the whiskers extending to the 1.5 IQR range. No outliers are shown. The left y-
axis represents AQS monitor values in parts per billion (ppb), and the right y-axis represents
TROPOMI NO; values in 10> molecules per cm?. The distance categories from the roadway

include <20m, 20-50m, 50-300m, 300m-1kmsat, and >1kmsai.
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To consider the shape of monitored and satellite NO; distributions, we consider the effect of
season in Fig. 2. The winter distributions (Figure 2a, calculated from December, January, and
February data) exhibit the longest tails and highest NO2 values. In winter the 90™ percentile of
monitoring data is 14.80 ppb and the 90" percentile of TROPOMI data is 10.93 x 10'°

molecules/cm?. Spring distributions (Figure 2b: March, April, and May) show intermediate

behavior, with lower values and shorter tails than winter and fall, but higher than summer (90™

percentile from monitors = 9.71 ppb; 90" percentile from TROPOMI = 6.19 x 10"

molecules/cm?). In summer (Figure 2c, June, July, and August) the distributions exhibit the

shortest tails, and the lowest NO2 values (90™ percentile from monitors = 9.00 ppb, 90™
percentile from TROPOMI = 4.57 x 10'° molecules/cm?). Fall (Figure 2d: September, October,

and November) also shows intermediate behavior, generally between winter and spring (90"

percentile from monitors = 12.15 ppb: 90" percentile from TROPOMI = 7.44 x 10"

molecules/cm?).

—The higher
NO; values in winter from monitor and TROPOMI data are attributed to reduced photochemical
activity in winter leading to longer NO> lifetimes (Harkey et al., 2015; Boersma et al., 2009;
Shah et al., 2020).

The highest percent frequencies for the monitor and TROPOMI distributions generally occur
within the 1-2 ppb or 1-2 x 10" molecules/cm? bin. However, the winter TROPOMI distribution
peaks in the 2-3 x 10'°> molecules/cm? bin with a percent frequency of 18.14%, compared with
winter monitor highest frequency of 14.33%. The highest percent frequency in spring from
TROPOMI is 30.39% versus monitor 24.15%; in summer TROPOMI is 34.35% versus monitor
of 24.68%:; in fall TROPOMI is 24.90% versus monitor of 18.89%. These results indicate that
TROPOMI consistently records higher peak frequencies than the monitors, whereas monitors

consistently show a wider distribution.

Figure 2 provides a seasonal breakdown of the coefficient of variation (CV) and Jensen-Shannon
divergence (JSD) for both monitor and TROPOMI data across all monitors. Summer exhibits the
highest variability in monitored NO; concentrations (CV = 127.99%), but the lowest variability
in satellite observations (CV = 78.00%). The highest variability in TROPOMI occurs in winter
(CV =103.51%), similar to the variability from monitor data (CV = 104.48%). Satellite CVs

16



430
431

432

433
434
435
436
437
438

439
440

generally follow a similar pattern to that of the monitors, though the overall variability is lower

for satellite data across seasons.
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Figure 2. Seasonal frequency distributions of 2019-2023 NO- as measured by AQS ground-based

monitors (blue) and TROPOMI (light orange) data for four seasons: a) winter, b) spring, c)

summer, and c) fall. The x-axes indicate the range of NO», with the primary, lower x-axis

showing monitor NO; concentrations in parts per billion (ppb) and the secondary, upper x-axis

showing TROPOMI NO> VCD in 10" molecules per cm?. The boxes show the Coefficient of

Variation (CV; %) and Jensen Shannon Divergence (JSD) for each season.

This reduced variability in satellite observations can likely be attributed to the vertical mixing

reflected in satellite retrievals, as well as horizontal spatial averaging reflected in satellite data
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versus point-based NO; that are captured by ground monitors. This finding is consistent with
previous studies that highlight the spatial averaging nature of satellite-based measurements,
which integrate NO;, amounts over a larger area than the point-based monitors (Ialongo et al.,

2020).

Across all seasons shown in Fig. 2, JSD values are all low (< 0.1), indicating that TROPOMI
may be good at predicting surface NO: across seasons. The alignment is strongest in winter (JSD
=0.010), while the divergence is highest in summer (JSD = 0.035), meaning the monitors and
TROPOMI align best when the NO, lifetime is long in the colder months, and align the worst

when the NO» lifetime is short in the warmer months. The better alienment in winter could also

be attributed to winter having the largest range of values in the data, which reduces the

sensitivity of the JSD calculation to small differences in the distributions. A wider spread in NO»

values means that relative discrepancies between TROPOMI and monitor measurements are

smaller in proportion to the total variability, potentially leading to greater similarity.

Across seasons, we find that CAPS or “true NO;” monitors tend to have slightly worse alignment
with TROPOMI than traditional, chemiluminescence monitors. Out of the monitors used in this
study, 102 were identified as CAPS monitors, and 401 as traditional monitors. In winter, CAPS
monitors have a JSD of 0.027 and traditional monitors a JSD of 0.009. In summer, CAPS
monitors have a JSD of 0.078 and traditional monitors a JSD of 0.03. With all seasons combined,

CAPS monitors have a JSD of 0.047 and traditional monitors have a JSD of 0.016.

Table 1 shows the CV and JSD for both monitor and satellite data from 2019 through 2023,
aggregated across all seasons and separated by monitor classification (interstate, highway, and
non-roadway), where roadway monitors are classified as being within 50 meters (Table 1a) or
300 meters (Table 1b) of a road. For the 50-m buffer (Table 1a), the coefficient of variation for
ground-based monitor data increases progressively from interstate monitor locations to non-
roadway locations, with interstate monitors exhibiting the lowest variability (CV = 75.07%) and
non-roadway monitors showing the highest variability (CV = 118.17%). This indicates that NO>
concentrations measured by ground monitors in interstate areas are more consistent compared to
non-roadway regions. This pattern is mirrored in the satellite data, with CV values ranging from

91.62% for highway monitors to 106.16% for non-roadway monitors. These patterns suggest that
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regular emissions play a larger role in determining near-road NOz, where non-road areas vary

with changes in wind patterns and the chemical environment.

For highway monitors, the CVs of satellite (CV = 91.62%) and monitor data (CV =96.27%) are
similar, indicating that TROPOMI performs similarly to ground monitors in capturing NO»
variability along highways. Near interstates, TROPOMI (CV = 92.60%) may capture more
variability than the ground-based measurements (CV = 75.07%), a finding that contrasts with
Fig. 1, where TROPOMI shows a narrower range of NO» values across all distances. This
difference could stem from the fact that the interquartile ranges in Fig. 1 measure the spread of
absolute values, while the coefficient of variation accounts for variability relative to the mean.
Together, these metrics reveal that TROPOMI may not fully capture localized extremes

(narrower IQR) but still captures more relative variability in pollution near interstates than

monitors (higher CV).
# of
Road Type Monitor CV | TROPOMI CV JSD Monitors

Interstate 75.07 92.60 0.158 58

a) 50-m Highway 96.27 91.61 0.095 17
Buffer 17 heroadway 118.17 106.16 0.009 428

Interstate 77.20 91.014 0.133 91

b) 300-m | piohway 135.76 92.31 0.017 90
Buffer ™0 n-roadway 116.23 108.43 0.008 320

Table 1. Coefficient of variation (%) and Jensen-Shannon divergence for all seasons combined at
interstate, highway, and non-roadway monitors 2019-2023 for the 50-m and 300-m roadway
buffers.

The key differences seen within the JSD across the three monitor classifications are also present
in the percent frequency distributions of NO> measured by ground-based monitors and
TROPOMI (Figure S53), with interstate monitors having the lowest alignment (JSD = 0.158),
highway monitors having better alignment (JSD = 0.095), and non-roadway monitors having the
best alignment (JSD = 0.009). The strong alignment between TROPOMI and monitor
distributions in non-roadway regions is consistent with previous studies (Dressel et al., 2022;

Kim et al., 2024; Ialongo et al., 2020). This close alignment may be due to the relatively lower
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NO; concentrations, which TROPOMI captures more accurately compared to regions with
higher emissions. These findings further align with previous work showing that TROPOMI tends
to underestimate NO; in high-pollution areas (such as interstates and highways) but slightly
overestimates in areas of lower pollution, such as rural areas (Dressel et al., 2022; Ialongo et al.,

2020; Goldberg et al., 2024).

Due to the large jump in NO: levels seen within Fig. 1 in the 50-300m category, we compare the
50-meter buffer roadway classifications (Figure S53; Table 1a) with the 300-meter buffer
classifications (Figure S64; Table 1b). Notable differences emerge between distributions,
particularly in the highway category, where 73 monitors are added to the highway distribution
(increasing from 17 to 90 monitors; Table 1) due to the larger buffer. The alignment between
monitor data and TROPOMI observations is significantly improved within the 300-meter buffer
near highways. This improvement in alignment is likely due to the decay of NO; with increasing
distance from the road (Karner et al., 2010; Kimbrough et al., 2017; Richmond-Bryant et al.,
2017). Consequently, the lower surface NO> concentrations observed at 300 meters are better
captured by TROPOMI. This is reflected in Table 12, which shows a substantial reduction in the
JSD for highway monitors, from 0.095 in the 50-meter bufter to 0.017 in the 300-meter buffer

(an 82% increase in alignment at the 300-meter buffer).

The differences observed in the highway category with the 300-meter buffer may be present
since the distribution includes 73 more monitors than the 50-meter buffer, capturing lower NO»
amounts that are more aligned with TROPOMI’s observations. On the other hand, the interstates
category exhibits less noticeable change, with only 33 additional monitors in the 300-meter
buffer distribution (increasing from 58 in the 50-meter buffer, Table 1a; to 91 in the 300-meter
buffer, Table 1b). This suggests that the monitors added in the 300-meter buffer for interstates
measure NO; levels similar to those already captured in the 50-meter buffer, resulting in little

change to the overall distribution.

These results indicate that TROPOMI follows the trend of NO» decreasing with increasing
distance from roadways that ground-based monitors record, and TROPOMI captures surface

concentrations best in winter and at 300+ meters away from the traffic source.
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3.2 Column-Column Daily Alignment

Here we compare the distributions of NO; from TROPOMI and TEMPO with ground-based

monitors to assess how well each satellite instrument captures daily variations in NO»

concentrations. Our results indicate that TEMPO consistently aliens more closely with ground-

based measurements than TROPOMLI, particularly in high NO» areas such as highways and

interstates.

Figure 3 shows the distributions of NO» as measured by AQS ground-based monitors (filtered to
match valid TROPOMI and TEMPO data), TROPOMI, and TEMPO, separated by road

classifications (interstates, highways, and non-roadways) for December 2023 and July 2024. The
1 pm and 2 pm UTC (based on time zone) TEMPO and AQS values were averaged to align with

the TROPOMI overpass time of ~1:30 LT (see Sect. 2.3). The monitor data in each comparison

differs due to the data filtering (see Sect. 2.2 and 2.3). The comparison of frequency distributions
reveals how well TEMPO and TROPOMI capture the wide range of ground-based monitor

readings across these classifications and time periods.

In December 2023, TEMPO (JSD = 0.007) and TROPOMI (JSD = 0.021) exhibit acrossroad
elassificationsshew distinct patteras-differences in how well they capturetheirabilityte
represent NO; distributions across the various road classifications. Near interstates TEMPO

shows a 90" percentile at 18.34 x 10" molecules/cm? where the TROPOMI 90" percentile is
11.27 x 10" molecules/cm?. TEMPO aligns more closely with monitor distributions with a JSD
of 0.066 compared to the TROPOMI JSD of 0.145 (Figure 3). TEMPO has 21.42% of data
points above 11 x 10> molecules/cm? for interstate values in December, whereas TROPOMI
appears to underestimate the frequency of higher NO» levels more, with a cumulative frequency
of 10.53% above that threshold. Near highways, the TEMPO 90™ percentile is 14.70 x 10'°
molecules/cm? compared to TROPOMI with a 90™ percentile of 10.06 x 10'> molecules/cm?. The
JSD for TEMPO is 0.049 and TROPOMI is 0.125 for highway monitors, indicating that TEMPO
has much better alignment on highways (Figure 3). For non-roadway locations, both instruments
show very good alignment (TEMPO JSD = 0.005; TROPOMI JSD = 0.012; Figure 3) with the
monitor data distributions, but with TEMPO again being slightly better.
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In July 2024, the patterns show greater divergence across road classifications (TEMPO JSD =
0.027; TROPOMI JSD = 0.049) between the satellite observations and ground-based monitor
data compared to the December 2023 distributions. Near interstates, the TEMPO 90 percentile
is 8.46 x 10" molecules/cm? and the TROPOMI 90" percentile is 5.58 x 10'> molecules/cm?,
with TEMPO aligning more closely (JSD of 0.133 compared to TROPOMI JSD of 0.265; Figure
3). TEMPO has 17.01% of data points above 7 x 10'° molecules/cm? for interstate values in July,
whereas TROPOMI appears to underestimate the frequency of higher NO; levels more, with a
cumulative frequency of 3.61% above that threshold. Near highways, TEMPO achieves a much
better representation of the higher observed NO, with a 90" percentile of 9.34 x 10"
molecules/cm? compared to TROPOMI with a 90™ percentile of 5.32 x 10'> molecules/cm?. The
JSD for TEMPO is 0.151 and TROPOMI is 0.201 for highway monitors, indicating that TEMPO
has better alignment near highways. For non-roadway locations, both instruments show very
good alignment (TEMPO JSD = 0.024; TROPOMI JSD = 0.023; Figure 3) with the monitor data
distributions, with TEMPO and TROPOMI alignment with ground monitors being more

comparable than in December 2023.
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’566 Figure 3. December 2023 and July 2024 at the TROPOMI overpass time (~13:30 LST)

567 | frequency distributions of NO; as measured by AQS ground-based monitors filtered to the valid
568 | TROPOMI (blue) and TEMPO (purple), TROPOMI (light orange), and TEMPO (yellow) data
569 | for three monitor classifications: Interstate, Highway, and Non-roadway. The x-axes indicate the
570 | range of NO,, with the primary, lower x-axis showing monitor NO> concentrations in parts per
571 | billion (ppb) and the secondary, upper x-axis showing TROPOMI NO> VCD and TEMPO NO;
572 | VCD in 10" molecules per cm?. The boxes show the Coefficient of Variation (CV) and Jensen

573 | Shannon Divergence (JSD) for each season and monitor classification.
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Throughout both December 2023 and July 2024, TEMPO’s improved alignment with ground-
based monitors compared to TROPOMI may be attributed to several factors. TEMPO operates
from a geostationary orbit, allowing it to take hourly measurements and capture the diurnal
variability of NO; concentrations more effectively than TROPOMI, which has a single daily
overpass time. This high temporal resolution enables TEMPO to better match the timing of NO;
peaks and fluctuations detected by ground-based monitors, which are also recorded on an hourly
basis. Additionally, TEMPO’s finer spatial resolution, approximately 2 km in the north-south
direction and 4.5 km in the east-west direction, may allow it to capture more localized pollution
sources, such as traffic emissions along highways and interstates. This may be why we see such a
large difference in alignment in the interstate and highway categories between TEMPO and
TROPOMI, and very little difference in alignment in the non-road category. In contrast,
TROPOMI’s 4 km x 4 km (re-gridded) resolution and single overpass time may be less effective
at capturing these localized variations. TEMPO's finer resolution in one direction and its frequent
observations may enable it to more precisely match the spatial and temporal variability detected
by ground-based monitors. The consistency of slight underestimation for both instruments in
high-pollution areas like highways and interstates suggests challenges in fully capturing elevated
NO; levels that occur near traffic sources. Overall, this indicates that while TEMPO generally
provides a closer approximation of NO; distributions compared to TROPOMI, both satellite
instruments show limitations, particularly in representing peak concentrations at high-polluting

sites.

3.3 Column-Surface Diurnal Alignment

In this section we explore the hourly alignment among monitor ebservations-and hourly TEMPO
observationsdistributions at interstate, highway, and non-roadway monitors. We find that

TEMPO aligns best with ground monitors around midday and exhibits poorer alienment in the

early morning and early evening.

Figure 4 presents the hourly JSD for TEMPO NO, measurements compared with ground
monitors categorized by interstate (red), highway (orange), and non-roadway (green) monitors

for December 2023 (Figure 4a) and July 2024 (Figure 4b). The results highlight distinct diurnal
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patterns across road types and seasons, reflecting the influence of traffic emissions, atmospheric

mixing, and insolation.

In December 2023, all monitor categories exhibit similar trends in the early morning, with high
JSD values (highway JSD = 0.358; interstate JSD = 0.331; non-road JSD = 0.210) indicative of
moderate to poor alignment between TEMPO and ground-based monitors. This pattern,
consistent with early morning rush hour emissions and limited atmospheric vertical mixing
(Harkey and Holloway, 2024) as well as a decrease in TEMPQO’s measurement accuracy due to
high solar zenith angles in the morning according to TEMPO documentation (NASA Langley
Research Center, 2024), suggests that TEMPO may not capture rapid increases in NO> during
high traffic and low mixing periods. By mid-morning, JSD has decreased for all road types
(highway JSD = 0.085; interstate JSD = 0.067; non-road JSD = 0.027), indicative of good
alignment, with non-road monitors showing the most significant improvement (87% increase in
alignment). This pattern of better alignment in non-road monitor areas could be attributed to
lower NO; levels away from major sources of emissions. As the day progresses in December,
JSD values for highway and interstate monitors increase steadily (with highways fluctuating
more) after 17 UTC (~12 pm LT), with highways increasing in JSD from 0.102 to 0.490 and
interstates increasing from JSD 0.097 to 0.590, indicating worsening alignment in the afternoon
and early evening. This pattern may reflect the re-accumulation of NO> due to afternoon traffic
and the collapse of the boundary layer later in the afternoon (Harkey and Holloway, 2024), as
well as the decrease in TEMPO’s measurement accuracy in the evening (NASA Langley
Research Center, 2024). Non-road monitors show less change in JSD through the day, suggesting
that TEMPO alignment is more consistent in non-road monitor areas throughout the rest of the

day, only fluctuating in JSD values between 0.009 and 0.05.
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627 | Figure 4. The a) December 2023 and b) July 2024 hourly (UTC) TEMPO NO> Jensen-Shannon

628 | Divergences at interstate (red), highway (orange), and non-roadway (green) monitor locations.

629  In July 2024 highway and interstate monitors do not exhibit a clear diurnal pattern, with JSD

630  values fluctuating between 0.14 and 0.416 for highways and 0.155 and 0.212 for interstates

631  throughout the day. Consistent, localized traffic emissions and the shorter NO; lifetime during
632  the summer suggest a less variable distribution of NO;. Non-road monitors in July show

633  somewhat worse alignment in the morning (JSD = 0.041), with improved agreement during the
634 late morning and early afternoon (JSD ranging between 0.008 and 0.025). The non-road JSD

635 remains fairly constant into the early evening, with alignment decreasing by about 13%,

636 indicating that sunlight may play a larger role in the alignment in the evening since the sun is at a
637  higher position in the sky during this time in the summer than in the winter (which increases in

638  JSD at this time), enhancing TEMPO’s measurement accuracy in the early evening in July.

639  Both months exhibit their highest JSDs, and worst alignment, in the early morning or early
640  evening hours, which coincides with peak traffic times and the most uncertainty in TEMPO
641  observations caused by the solar zenith angle. The best alignment and lowest JSDs occur

642  sometime near midday (~10am LT to ~2pm LT).

643  The disparity between highways and interstates in TEMPO, where highways generally have the
644  highest JSD, differs from the pattern seen with TROPOMI, where interstates tended to
645  consistently exhibit worse alignment. This suggests that TEMPO’s higher spatial and temporal

26



646
647

resolution may capture localized sources more effectively, leading to variations in alignment

based on the distribution and intensity of NO> sources.

4 Conclusions

This study evaluates the distributional alignment between satellite-derived NO; data from
TROPOMI, TEMPO, and ground-based AQS monitors across the U.S. Our findings highlight
several key points that inform the potential of satellite data for both regulatory and public health

applications, particularly in informing future NO, monitor siting strategies. Several limitations

and sources of uncertainty should be considered. Several limitations of this analysis include: (1)

The overrepresentation of AQS monitors in urban areas: (2) the temporal mismatch between

satellite and ground measurements:; and (3) the distance from roads analysis doesn’t consider

other local factors. A key limitation is the overrepresentation of urban areas in the AQS

monitoring network, which may bias our results toward urban areas. Since AQS monitors are

more densely located in urban regions with high emissions and complex local sources, the results

may not fully capture alienment in more rural areas with fewer monitoring stations. Another

important consideration is the slight temporal mismatch between satellite and ground-based

measurements. TROPOMI provides a single daily observation around 13:30 pm local solar time,

whereas ground monitors and TEMPO record NO; concentrations throughout the day. To better

align with TROPOMI’s overpass, we averaged 1 pm and 2 pm LT TEMPO and ground monitor

NO»> values. Since NO» concentrations can change rapidly due to meteorological conditions and

emissions variability, this averaging approach may introduce some error in comparisons between

TEMPO, TROPOMI, and ground-based measurements. The classification of monitors by

distance from roads is based on buffer analysis, which does not account for local factors such as

wind direction, terrain, proximity to industry, and traffic density, all of which influence NO;

dispersion. Despite these uncertainties, our findings highlight patterns in column-surface NO»

agreement and demonstrate the potential for satellite data to complement ground-based

monitoring.

The Jensen-Shannon Divergence (JSD) preved-to-be-an-essential-toolin-this-study-offersing a

robust and interpretable metric for comparing the alignment and similarity of NO; distributions.

Its symmetry and bounded range allowed us to evaluate the degree of similarity between satellite
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and monitor NO> values across different spatial and temporal scales, providing a clear

quantitative framework for assessing the similarity of two different instruments.

Past studies comparing surface and satellite NO; have found temporal correlation of daily values

at individual sites ranging from r=0.61 to r=0.69 (Lamsal et al., 2014; Lamsal et al., 2015),

monthly and seasonal values at individual sites ranging from r=0.67 to r=0.90 (Griffin et al.,

2019; Yu & L1, 2022; Harkey & Holloway, 2024; Dressel et al., 2022; Xu & Xiang, 2023;

Lamsal et al., 2015). and annual average values at sites ranging from r=0.68 to 1=0.93 (Zhang et

al.. 2018; Lamsal et al., 2015; Goldberg et al., 2021: Kim et al., 2024: Bechle et al.. 2013 H. J.

Lee et al., 2023). Here, r refers to the Pearson correlation coefficient, which measures the

strength and direction of a linear relationship between variables. In some cases. these

comparisons adjusted column values to the surface (e.g. Lamsal et al., 2014) and/or adjusted

ground-monitors to reduce the error in chemiluminescent detection of NO; (e.g. Lamsal et al.,
2015; Bechle et al., 2013). Using similar methods, TROPOMI tends to show better agreement
with annual AQS NO, than does OMI, e.g. r=0.81 using TROPOMI (Goldberg et al., 2015)
versus 1=0.68 from OMI (Lamsal et al., 2015). Off-road AQS monitors tend to show better

agreement with satellite data than near-road AQS monitors, e.g. r = 0.81-0.87 at non-near-road

sites versus r = 0.64-0.74 at near-road sites (Kim et al., 2024). The underestimation of estimated

near-surface NO» near roads and localized sources is a recurring issue in OMI and TROPOMI

NO; VCDs (Dressel et al., 2022: Goldberg et al., 2024: Ialongo et al., 2020).

In this study, we find a pattern of decreasing NO> with increasing distance from traffic sources,
which is consistent with the findings of previous studies (Kimbrough et al., 2017; Karner et al.,
2010; Richmond-Bryant et al., 2017). While ground-based monitors and TROPOMI satellite data
may differ with proximity to roadways, particularly within 50-m, their measurements still follow
the same overall trend. This convergence with increasing distance may be due to the reduction of
localized near-road emissions and the broader atmospheric mixing captured more effectively by
satellite observations at greater distances from roads. Using a larger buffer distance from roads
(300 meters instead of 50 meters) improves the alignment between TROPOMI and monitor data,

especially for highway monitor locations (JSD decreases by ~82%). The overall trend reflects the
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well-established gradient of declining NO; levels with increasing distance from traffic sources,
and TROPOMI’s ability to capture this trend, even if the specific values differ from AQS
monitors in the near-road environment. Our findings indicate that TROPOMI tends to slightly
underestimate surface NO> concentrations in areas with high traffic, such as interstates and
highways, due to its spatial resolution and full-column measurements, which smooth out
localized, ground-level pollution peaks captured by ground monitors. This is most evident in
interstate monitors, where the JSD reveals the greatest divergence between satellite and monitor
data (JSD = 0.158). These results are consistent with prior studies (Dressel et al., 2022; Kim et
al., 2024; Talongo et al., 2020), which also found that satellite instruments are less effective at
capturing high NO» events near localized sources like traffic. The distributional alignment
improves in non-roadway monitors (JSD = 0.009), where NO; levels are lower, and there are
usually fewer localized sources of pollution. The lower pollution levels in these areas allow
TROPOMI to more accurately reflect the conditions captured by ground-based monitors, leading
to lower JSD values, and therefore better alignment. This trend suggests that TROPOMI may be
particularly useful for monitoring air quality in rural or less polluted regions where ground

monitors are sparse or absent.

Seasonality plays a critical role in the similarity of satellite and monitor data. Winter consistently
shows the best alignment (JSD = 0.010), with the TROPOMI distribution capturing nearly the
full gradient of NO; seen within the ground-based monitor distribution. This likely reflects the
longer atmospheric lifetime of NO» in winter, which allows for better vertical mixing and less
spatial variability (Harkey et al., 2015; Boersma et al., 2009; Shah et al., 2020). In contrast,
summer shows the worst alignment (JSD = 0.035), which is likely due to the shorter lifetime of
NO:> and increased photochemical activity during warmer months, causing greater discrepancies
between localized surface measurements and the satellite column. Similar conclusions were
reached by previous studies (Shah et al., 2020; Karagkiozidis et al., 2023), indicating that
seasonality is a crucial factor in assessing satellite performance for regulatory purposes. These
seasonal differences underscore the need for considering temporal factors when evaluating the

use of satellite data for monitor siting and NO; regulation.

The integration of TEMPO data into this study highlights its potential to advance our
understanding of NO; distributions, especially when compared to TROPOMI. TEMPO's ability
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to provide hourly measurements at a finer spatial resolution offers significant advantages in
capturing diurnal NO, patterns and detecting localized pollution events. Our findings from
December 2023 and July 2024 at the TROPOMI overpass time (~13:30 LST) demonstrate that
TEMPO better captures the wide range of surface NO> measurements than TROPOMI,
especially at higher NO; levels. TEMPO’s JSDs are almost always lower than TROPOMI’s, with
JSDs ranging from 0.005 to 0.151 and TROPOMI’s JSDs ranging from 0.012 to 0.265. This

improvement in alignment with ground monitors could be attributed to TEMPO’s better spatial

and temporal resolution.

We also find that TEMPO is best at capturing ground-level NO> amounts around midday (~10am
to ~2pm LT). This could be due to the lower traffic levels and therefore lower pollution levels
during this time period, as well as a lower solar zenith angle, allowing TEMPO to have more
accurate measurements. However, challenges remain in completely capturing high NO> levels
during peak traffic times and accurately capturing NO> during high solar zenith angles in the
morning and evening across monitor classifications. These results underscore the influence of
spatial resolution, time of day, and measurement frequency on the ability of satellite instruments
to align with ground-based NO> measurements. Future research should build upon these insights
by incorporating longer time periods and multiple years of data as more TEMPO data becomes
available to study long-term TEMPO distributions. The enhanced temporal and spatial resolution
of TEMPO, alongside its comparison to other instruments like TROPOMI, provides valuable

context for understanding the dynamics of NO> pollution, especially how it varies throughout the

r._Spatially

contiguous satellite products and our analysis of air quality variability offer the potential to

day;

support air quality managers and public health analysis.

Code and Data Availability
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All data used in this study are open to the public. Hourly NO; data from AQS were obtained
from https://ags.epa.gov/agsweb/airdata/download_files.html. Copernicus Sentinel 5P Level 2
TROPOMI NO; data were processed by the ESA, Koninklijk Nederlands Meteorologisch
Instituut (KNMI; https://doi.org/10.5270/S5P-s4ljg54), downloaded from the NASA Goddard
Earth Sciences Data and Information Center (GES DISC) in January 2021, and gridded using

WHIPS (https://sage.nelson.wisc.edu/data-and-models/wisconsin-horizontal-interpolation-
program-for-satellites-whips/). TEMPO Level 3 NO, data were downloaded from NASA’s
EarthData Search (https://search.earthdata.nasa.gov/search/granules?p=C2930763263-

LARC _CLOUD&pg[0][v]=t&tl=1732652660.361!3!!). The 2021 Primary and Secondary Roads

Tiger/Line state-level shapefiles were downloaded from the U.S. Census Bureau

(https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2021&layergroup=Roads).

Since all of our data is publicly available and the methods describe our calculations in detail, we
did not make our code publicly available. The Jensen Shannon Divergence was calculated using

the scipy.spatial.distance.jensenshannon python package.
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