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ductances was found to be within 3.5 % of Vd on an annual
domain mean basis for all simulations. The largest deviation
(3.5 %) occurred for WRF/CMAQ (M3Dry), for which grid-
aggregated Vd was calculated within the model, while ef-
fective conductances were estimated through post-processing
(Hogrefe et al., 2023). For the remainder of the discussions in
this paper, we therefore treat the sum of the monthly median
effective conductances as equivalent to Vd.

3 Results

3.1 Grid-aggregated results

Spatial patterns of these annual deposition fluxes for each
model as well as the multi-model mean and normalized stan-
dard deviation are displayed in Fig. 1 for the NA domain and
Fig. 2 for the EUR domain. Table 2 lists the annual total O3
dry deposition fluxes estimated by the participating models
over both the NA and EUR domains. These totals are cal-
culated over all non-water grid cells that were common to
all simulations. The multi-model mean value is 74.3 Tg yr−1

over the NA domain and 67.4 Tg yr−1 over the EUR do-
main. Individual model estimates range from 59.5 (GEM-
MACH (Zhang)) to 91.4 Tg yr−1 (WRF-Chem (UPM)) over
the NA domain and from 47.2 Tg yr−1 (LOTOS/EUROS) to
82.9 Tg yr−1 (WRF-Chem (UPM)) over the EUR domain.
For context, past global modeling studies reported global an-
nual O3 deposition totals generally ranging between 800 and
1200 Tg yr−1 (e.g., Hardacre et al., 2015; Stevenson et al.,
2006; Wild, 2007; Ganzeveld et al., 2009).

Over the NA domain all models estimate that O3 deposi-
tion is highest over the eastern US as well as along the West
Coast, consistent with our expectations that reflect a com-
bination of higher O3 mixing ratios due to higher O3 pre-
cursor emissions in these regions and higher Vd over areas
with higher vegetation density. The pronounced differences
in deposition fluxes over the densely vegetated southeastern
US between WRF-Chem (UPM) and GEM-MACH (Zhang)
suggest that differences in the methodology used to represent
deposition to vegetation are a key driver of model spread. The
map of the multi-model normalized standard deviation over
NA also shows significant spread in deposition to land over
the generally more arid regions in the western US, in addi-
tion to the spread over the southeastern US. Over the EUR
domain, the largest relative spread in deposition to land oc-
curs over northwestern Scandinavia, Ireland, Great Britain,
and Türkiye, as well as the Alps and northern Africa. Over
both domains, there is a large relative spread in O3 deposi-
tion to water, with generally higher values for WRF-Chem
than all other models, but the absolute magnitude of the flux
is much smaller than the flux over land.

To assess the role of variations in simulated Vd on the dry
deposition fluxes discussed above, Table 2 includes the an-
nual mean O3 Vd over both domains alongside the annual
total O3. The relative differences between the annual mean

Table 2. Annual total O3 dry deposition fluxes and annual mean O3
dry deposition velocities estimated by the participating models over
both the NA and EUR domains. These totals are calculated over all
non-water grid cells that were common to all simulations. The NA
numbers are for 2016, while the EUR numbers are for 2010.

Annual total O3 Annual mean O3
dry deposition dry deposition

flux (Tg) velocity (cm s−1)

North America (2016)

WRF/CMAQ (M3Dry) 66.1 0.28
WRF/CMAQ (STAGE) 68.3 0.3
GEM-MACH (Base) 73.9 0.37
GEM-MACH (Zhang) 59.5 0.27
GEM-MACH (Ops) 80.4 0.42
WRF-Chem (RIFS) 79.0 0.34
WRF-Chem (UPM) 91.5 0.38
WRF-Chem (NCAR) 75.5 0.28

Europe (2010)

WRF-Chem (RIFS) 77.5 0.32
WRF-Chem (UPM) 82.9 0.37
LOTOS/EUROS 47.2 0.21
WRF/CMAQ (STAGE) 61.9 0.25

Vd generally match those between the annual total depo-
sition fluxes with only small exceptions (e.g., WRF-Chem
(RIFS) has slightly lower Vd but slightly higher dry deposi-
tion fluxes than GEM-MACH (Base)). Consistent with the
discussion in Sect. 2, the model-to-model differences in Vd
shown in Table 2 indeed do not appear to be caused by the
different first-layer thicknesses shown in Table 1. Notably,
the GEM-MACH (Ops) simulation has the highest Vd, while
the GEM-MACH (Zhang) simulation has the lowest Vd de-
spite both simulations having one of the thickest first-layer
heights. This is consistent with the notion that the surface re-
sistance rc (independent of first-layer thickness) rather than
the aerodynamic resistance ra (dependent on first-layer thick-
ness) is generally the limiting factor controlling ozone dry
deposition.

Figures 3–4 show the spatial patterns of annual mean Vd
for each model and the multi-model mean and normalized
standard deviation. While these maps visually confirm the
results from Table 2 that GEM-MACH (Ops) has the highest
mean Vd and GEM-MACH (Zhang) the lowest mean Vd over
the NA domain and WRF-Chem (UPM) has the highest and
LOTOS/EUROS the lowest mean Vd over the EUR domain,
they also show important spatial differences. For example,
both GEM-MACH (Base) and WRF-Chem (UPM) have very
similar annual mean Vd when averaged over the entire do-
main (Table 2), but this agreement in the means masks the
generally higher Vd in GEM-MACH (Base) over the south-
eastern US and the generally lower Vd over the southwestern
US compared to WRF-Chem (UPM). The role of differences



8 C. Hogrefe et al.: A diagnostic intercomparison of modeled ozone dry deposition

Figure 3. 2016 annual mean O3 grid-scale dry deposition velocities for each model, the multi-model mean, and the normalized multi-model
standard deviation over the NA domain. Note that the plots for individual models are not clipped to the domain common to all simulations
and show the maximum spatial extent submitted for each model. The multi-model mean and normalized standard deviations are calculated
and shown over the common domain.

in surface deposition pathways and LU distributions in caus-
ing model-to-model differences in Vd magnitude and patterns
is discussed in subsequent sections.

Comparing the model-to-model differences in Figs. 3–4
to those in the corresponding dry deposition flux maps in
Figs. 1–2 shows a high level of similarity. For example, the

areas over the southeastern US where GEM-MACH (Base)
and GEM-MACH (Ops) have larger fluxes than other mod-
els coincide with areas where these two simulations also
have the highest O3 Vd. Moreover, the areas with the highest
normalized flux standard deviation discussed above for both
the NA and EUR domains also show the highest normalized
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Figure 4. 2010 annual mean O3 grid-scale dry deposition velocities for each model, the multi-model mean, and the normalized multi-model
standard deviation over the EUR domain. Note that the plots for individual models are not clipped to the domain common to all simulations
and show the maximum spatial extent submitted for each model. The multi-model mean and normalized standard deviations are calculated
and shown over the common domain.

standard deviation for Vd. Despite these general similarities,
it is important to note that models may have above-average
O3 fluxes while also having below-average O3 Vd or that a
given model may have areas with a similar Vd but noticeably
different dry deposition fluxes, due to the influence of fac-
tors other than Vd (e.g., the representation of regional trans-
port and chemistry, the parameterizations for subgrid-scale
turbulence, and the location and density of precursor emis-
sion sources) on simulated O3 mixing ratios. Maps of annual
mean O3 for each model as well as the multi-model mean
and standard deviation are shown in Figs. S1–S2 in the Sup-
plement, and we refer to Kioutsioukis et al. (2025) for both
an operational evaluation of simulated O3 fields and analyses
partitioning variability in these fields to variability in O3 Vd
and other variables such as wind speed and the height of the
planetary boundary layer. Makar et al. (2025) showed that
WRF-Chem (NCAR) significantly underestimated observed
precipitation, and Kioutsioukis et al. (2025) hypothesized
that a corresponding underestimation of clouds and overes-
timation of radiation was the main driver for the large pos-
itive ozone bias reported for that model. The above-average
O3 mixing ratio for WRF-Chem (NCAR) shown in Fig. S1

is consistent with this hypothesis and may provide at least a
partial explanation for the above-average O3 flux but below-
average O3 Vd shown for this model in Figs. 1 and 3. As
a second example of confounding factors when comparing
spatial patterns of O3 Vd and O3 fluxes, the GEM-MACH
(Ops) panel in Fig. S1 shows generally higher O3 mixing
ratios over the southeastern US vs. parts of the Canadian bo-
real forest region, consistent with corresponding spatial dif-
ferences in O3 fluxes for this model despite similar O3 Vd
in these two regions. The influence of factors other than Vd
in shaping spatial O3 variability is analyzed in more detail in
Kioutsioukis et al. (2025). However, despite these potentially
confounding influences, the general agreement of both the
model rankings for the domain-wide dry deposition fluxes
vs. Vd (Table 2) and their spatial patterns (Fig. 1 vs. Fig. 3
and Fig. 2 vs. Fig. 4) confirms the influence of O3 Vd on de-
position fluxes estimated in these regional-scale simulations.
This in turn establishes that a diagnostic understanding of
simulated O3 Vd can aid in interpreting model-to-model dif-
ferences in dry deposition fluxes.

Figures S3 and S4 provide insight into temporal differ-
ences in modeled deposition by showing domain-wide de-
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position fluxes and O3 Vd calculated for winter vs. sum-
mer and daytime vs. nighttime periods for the NA domain.
The largest deposition fluxes occur during summer daytime
hours, while the lowest deposition fluxes occur during winter
nighttime hours, a pattern also present for Vd. Photochemi-
cal production of O3 is also higher in summer than in win-
ter, which will also contribute to higher summertime fluxes.
Fluxes during winter daytime hours are generally of the same
order of magnitude as fluxes during summer nighttime hours,
both times corresponding to low photochemical production
or ozone destruction through titration. These figures also
suggest that the low annual total deposition value of model
GEM-MACH (Zhang) and the high annual total deposition
value of model WRF-Chem (UPM) shown in Table 2 were
driven by low and high summer daytime flux values, respec-
tively, and/or that other terms such as photochemical pro-
duction in WRF-Chem (UPM) are enhancing summer ozone
concentrations, hence increasing fluxes. While the absolute
model-to-model differences are smaller during winter than
summer for both fluxes and Vd, the normalized standard de-
viation is comparable across seasons for both variables (sum-
mer daytime flux of 18.2 %; winter daytime flux of 14.5 %;
summer nighttime flux of 22.7 %; winter nighttime flux of
22.8 %; summer daytime Vd of 18.6 %; winter daytime Vd
of 17.2 %; summer nighttime Vd of 34.2 %; winter nighttime
Vd of 28.2 %). During daytime, fluxes and Vd exhibit similar
relative spread. The larger nighttime spread in Vd compared
to the fluxes suggests that nighttime chemical sinks and/or
a smaller ozone reservoir in the shallower nighttime mixing
layer may be more important factors controlling O3 concen-
trations and hence O3 deposition fluxes than the magnitude
of the deposition velocity itself. However, it should also be
noted that Clifton et al. (2020a) found that even small differ-
ences in wintertime Vd can have substantial impacts on the
tropospheric O3 budget given the longer chemical lifetime.

Figures 5–6 depict the contributions of the four effec-
tive conductance pathways to the annual domain-average Vd
for each model over both domains. The total height of the
bars for each model closely corresponds to that model’s Vd
shown in Table 2, within the caveats discussed in Sect. 2.
Note that some of these simulations (WRF/CMAQ (M3Dry),
WRF/CMAQ (STAGE), and GEM-MACH (Zhang)) do not
incorporate a separate lower canopy pathway in their dry
deposition schemes and thus only have three deposition
pathways in total (Galmarini et al., 2021; Clifton et al.,
2023). These figures show that models with a similar Vd
(e.g., WRF/CMAQ (M3Dry), GEM-MACH (Zhang), and
WRF-Chem (NCAR) over NA) can show significant differ-
ences in the absolute and relative contributions of differ-
ent pathways to Vd. Moreover, these figures also demon-
strate that effective conductances allow for an attribution of
model differences in Vd to specific processes. For example,
GEM-MACH (Base), GEM-MACH (Ops), and WRF-Chem
(RIFS) all have similar soil and lower canopy effective con-
ductances, revealing that the differences in Vd between these

Figure 5. Annual domain-average grid-scale effective conduc-
tances and ozone deposition velocities for 2016 over the NA do-
main. Averages were calculated over all non-water grid cells in the
portion of the analysis domain shared by all model simulations.

simulations stem from differences in the cuticular and, to a
lesser extent, stomatal pathways. Specifically, both GEM-
MACH (Base) and GEM-MACH (Ops) have a higher cu-
ticular effective conductance than WRF-Chem (RIFS). For
the two CMAQ simulations over NA, Fig. 5 confirms the
generally larger contributions from the stomatal and cutic-
ular pathways for WRF/CMAQ (M3Dry) and the generally
larger contribution from the soil pathway for WRF/CMAQ
(STAGE) that was reported in Hogrefe et al. (2023). Compar-
ing GEM-MACH (Base) with GEM-MACH (Zhang) shows
lower contributions from the soil and stomatal pathways
for the latter, which also does not include a separate lower
canopy pathway.

Comparing the two GEM-MACH simulations with the
same dry deposition scheme, GEM-MACH (Base) and
GEM-MACH (Ops), reveals that differences other than the
dry deposition scheme that exist between these simulations
(e.g., meteorology and leaf area index (LAI)) have a notice-
able impact on the magnitude of the cuticular and stomatal
pathways. It should be noted that both GEM-MACH (Base)
and GEM-MACH (Ops) are coupled models with chemistry
residing within a weather forecast model; however, GEM-
MACH (Base) is “fully coupled”, i.e., includes aerosol direct
and indirect feedbacks on the predicted meteorology. GEM-
MACH (Base) also includes several other parameterizations
affecting chemical transport as noted above. The difference
in the strength of the cuticle and stomatal conductances be-
tween these two models thus reflects differences in the fore-
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Figure 6. Annual domain-average grid-scale effective conduc-
tances and ozone deposition velocities for 2010 over the EUR do-
main. Averages were calculated over all non-water grid cells in the
portion of the analysis domain shared by all model simulations. The
bar for LOTOS/EUROS shows only the deposition velocity since no
effective conductances were reported.

casted meteorology, in turn influencing the deposition veloc-
ity components.

The impact of factors other than the dry deposition scheme
itself on simulated Vd and pathway contributions is further
illustrated by the comparison of the three WRF-Chem sim-
ulations performed over NA and the two WRF-Chem simu-
lations performed over EUR. These simulations all use the
WRF-Chem implementation of the Wesely scheme and as a
result all share similar relative pathway contributions to Vd,
but Vd itself shows a variation of roughly 25 % over NA and
15 % over EUR between these simulations. All three of these
models make use of feedbacks between aerosols and meteo-
rology, and hence other parameterization differences in addi-
tion to the gas-phase deposition code influence the resulting
gas-phase deposition velocities, through changes in the pre-
dicted temperature, relative humidity, and the other meteoro-
logical terms influencing deposition velocity.

Figures 7–8 depict maps of absolute pathway contribu-
tions to annual mean Vd over both domains, where the mean
is from the average of the monthly median values. The maps
show the lower contributions from the cuticular pathway for
WRF-Chem compared to other simulations, especially over
the eastern US and central Europe. This is consistent with
the domain-average contributions shown in Fig. 5. For the
models that include the lower canopy pathway as a separate
term from the other pathways (all WRF-Chem simulations
and two of the GEM-MACH simulations), its contribution to
Vd is less than 0.06 cm s−1 throughout both domains (10 % or

less of the domain-wide annual means as shown in Figs. 5–
6). Both CMAQ simulations and the GEM-MACH (Zhang)
simulation tend to have stronger longitudinal gradients over
the NA domain for the soil pathway contribution compared to
other simulations. The two GEM-MACH simulations using
the Wesely dry deposition scheme (GEM-MACH (Base) and
GEM-MACH (Ops)) and the WRF-Chem (RIFS) and WRF-
Chem (UPM) simulations have noticeably higher absolute
soil pathway contributions in the south-central and southeast-
ern US than the other simulations, indicating that the higher
values in the domain-average soil pathway contributions for
these four simulations shown in Fig. 3 originate in these re-
gions.

Figures S5–S6 show the relative, rather than absolute, con-
tribution of the four pathways to annual mean Vd over both
domains, while corresponding maps for summer and winter
over NA are included as Figs. S7–S8. These figures show
that the WRF-Chem simulations tend to have a weaker spa-
tial variation than the WRF/CMAQ and GEM-MACH sim-
ulations in the split between different pathways over both
domains, especially for the relative contribution of the soil
pathway. For example, the dominance of the stomatal and
cuticular pathways over the soil pathway over the eastern US
and of the soil pathway over the stomatal and cuticular path-
ways in the western US that is simulated by WRF/CMAQ
and GEM-MACH is less pronounced in the WRF-Chem sim-
ulations. Over the EUR domain, the WRF-Chem simulations
show a larger relative contribution of the soil pathway than
the WRF/CMAQ simulation throughout much of central Eu-
rope. For the NA domain, the relative contributions of the
cuticular component are highest for WRF/CMAQ over the
northeastern US, followed by GEM-MACH and then WRF-
Chem. These features are especially pronounced during sum-
mer (Fig. S7). For the EUR domain, the relative contribution
of the stomatal component is highest for WRF/CMAQ over
eastern central Europe and exceeds that of the WRF-Chem
simulations.

3.2 LU-specific results

Model-to-model differences in domain-average grid-
aggregated Vd and pathway contributions may result from
not only different process representations but also different
LU spatial distributions and/or LU-dependent parameter and
variable choices. It is important to note that the impacts
of LU on dry deposition calculations can be both direct
(e.g., the incorporation of LU-dependent LAI in some
schemes’ stomatal and/or cuticular resistance formulations)
and indirect and can also vary across schemes depending on
the specific formulations of component resistances (Clifton
et al., 2023). An example of indirect impacts of LU is the
effect of LU-dependent LAI on the calculation of air tem-
perature in the LSM and its subsequent impact on stomatal
resistance even in schemes without direct dependence of
stomatal resistance on LAI. Another example is the effect
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Figure 7. Absolute grid-scale ozone effective conductances (cm s−1), averaged over the entire year. Results are for the NA domain during
2016. Note that these maps are not clipped to the domain common to all simulations and show the maximum spatial extent of non-water cells
submitted for each model.

of LU on the calculation of ground temperature and relative
humidity in the LSM, which are then used in the formula-
tion of cuticular resistance. Thus, examining LU-specific
parameters and variables (e.g., roughness length, LAI) and
using them to interpret model-to-model differences in Vd
and effective conductances are not straightforward, and un-

tangling such direct and indirect effects across the different
modeling systems is beyond the scope of the AQMEII4 grid
model intercomparison activity. Instead AQMEII4 collected
Vd and effective conductances for 16 standardized LU
categories in addition to the grid-aggregated values analyzed
above. These LU-specific fields allow us to investigate the
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Figure 8. Absolute grid-scale ozone effective conductances (cm s−1), averaged over the entire year. Results are for the NA domain during
2016. Note that these maps are not clipped to the domain common to all simulations and show the maximum spatial extent of non-water cells
submitted for each model.

total (both direct and indirect) impacts of LU-dependent
process representations and LU distributions on modeled
deposition by stratifying our analyses by LU. Put differently,
in this section we treat LU as a proxy for all LU-dependent
processes and parameters, meaning that the dependence of
model results on LU in this section should be interpreted
as being due to “all land-use-dependent quantities in the
deposition algorithms used in AQMEII4 models”.

Figure 9 shows the contributions of the four effective con-
ductance pathways to the annual mean Vd for evergreen
needleleaf forest for each model over the NA domain, av-
eraged over only those grid cells where a given model had
85 % coverage of evergreen needleleaf forest (note that the
number of such grid cells differed across models, as dis-
cussed in greater detail in Sect. 3.3). Comparing this fig-
ure to the equivalent grid-aggregated results shown in Fig. 5
when all common non-water grid cells were analyzed shows
that considering instead only the model grid cells contain-
ing a specific LU type can increase model spread. For ex-
ample, annual mean grid-aggregated Vd ranges from 0.26–
0.42 cm s−1 averaged over all common non-water grid cells
over NA (Fig. 5), while the range is 0.24–0.71 for Vd for
grid cells dominated by the evergreen needleleaf forest cate-
gory (Fig. 9). Similar increases can also be seen in the ranges
of absolute pathway contributions (e.g., soil effective con-

ductance from 0.12–0.21 cm s−1 in Fig. 5 to 0.04–0.2 cm s−1

in Fig. 9) and relative pathway contributions (e.g., cuticular
conductance from 7.6 % to 31.7 % in Fig. 5 to 12.6 %–56.4 %
in Fig. 9). Results of individual and summed pathway contri-
butions for a total of eight LU categories over both domains
are shown in Table 3a–e. These results confirm the general
increase in model spread of both Vd and pathway contribu-
tions when considering LU-specific diagnostics, especially
for Vd and the cuticular and stomatal effective conductances
over forested and agricultural LU types. Such increased het-
erogeneity of process-level diagnostics when considering lo-
cations corresponding to specific LU categories compared to
locations representing a mix of LU categories is also reported
in Kioutsioukis et al. (2025). This finding suggests that LU-
dependent parameter choices and the representation of veg-
etation effects on O3 dry deposition (e.g., whether or not a
given scheme accounts for soil moisture effects on stomatal
conductance) are a significant source of variability in grid-
aggregated Vd while also indicating that an analysis of only
grid-aggregated deposition diagnostics may partially mask
the effects of process-specific differences that exist between
schemes. However, the attribution of LU-specific diagnostics
to LU-dependent parameter choices is complicated by poten-
tial model-to-model differences in LU distribution; for exam-
ple, differences in the number and location of grid cells with
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Table 3. (a) Annual mean grid-scale and LU-specific sum of effective conductances (cm s−1) for individual simulations as well as the
range of values across all simulations. For a given column and domain, the maximum values are shown in bold and the minimum values
are shown in italics. Blank cells indicate that data for a given model, pathway, and/or LU were not available. The grid-scale results reflect
spatial averages over all non-water grid cells in the common analysis domain. The LU-specific results reflect spatial averages over all cells
for which that LU fraction exceeded 85 % for a given model (note that the number of such cells can vary across models). The LU categories
are abbreviated as URB (urban), BAR (barren), ENF (evergreen needleleaf forest), DBF (deciduous broadleaf forest), MF (mixed forest),
SHR (shrubland), AGR (planted/cultivated), and GRA (grassland). (b) As in (a) but for the stomatal effective conductances (cm s−1). (c) As
in (a) but for the cuticular effective conductances (cm s−1). (d) As in (a) but for the soil effective conductances (cm s−1). (e) As in (a) but
for the lower canopy effective conductances (cm s−1).

Grid scale URB BAR ENF DBF MF SHR AGR GRA

(a)

WRF/CMAQ (M3Dry) 0.28 0.21 0.25 0.3 0.37 0.27 0.27 0.28 0.21
WRF/CMAQ (STAGE) 0.3 0.27 0.24 0.32 0.42 0.31 0.27 0.3 0.25
GEM-MACH (Base) 0.36 0.26 0.21 0.55 0.48 0.39 0.35 0.4 0.36
GEM-MACH (Zhang) 0.26 0.17 0.14 0.24 0.21 0.27 0.34 0.33 0.34
GEM-MACH (Ops) 0.41 0.26 0.21 0.71 0.45 0.49 0.41 0.42 0.36
WRF-Chem (RIFS) 0.33 0.18 0.13 0.34 0.37 0.28 0.28 0.37 0.32
WRF-Chem (UPM) 0.36 0.2 0.16 0.38 0.42 0.31 0.31 0.41 0.34
WRF-Chem (NCAR) 0.27 0.2 0.12 0.24 0.32 0.26 0.35 0.27
Range NA 0.15 0.1 0.13 0.47 0.27 0.23 0.14 0.14 0.15

WRF-Chem (RIFS) 0.32 0.18 0.14 0.31 0.38 0.26 0.3 0.36 0.3
WRF-Chem (UPM) 0.36 0.19 0.17 0.33 0.42 0.29 0.29 0.42 0.31
LOTOS/EUROS
WRF/CMAQ (STAGE) 0.24 0.26 0.25 0.22 0.29 0.24 0.22 0.29 0.2
Range EUR 0.12 0.08 0.11 0.11 0.13 0.05 0.08 0.13 0.11

(b)

WRF/CMAQ (M3Dry) 0.07 0 0 0.09 0.13 0.09 0.01 0.09 0.02
WRF/CMAQ (STAGE) 0.06 0 0 0.07 0.1 0.08 0 0.07 0.02
GEM-MACH (Base) 0.08 0.01 0 0.15 0.18 0.1 0.05 0.07 0.04
GEM-MACH (Zhang) 0.06 0 0 0.07 0.08 0.07 0.05 0.07 0.13
GEM-MACH (Ops) 0.11 0.01 0 0.22 0.16 0.15 0.1 0.09 0.04
WRF-Chem (RIFS) 0.09 0 0 0.08 0.12 0.09 0.05 0.11 0.06
WRF-Chem (UPM) 0.09 0 0 0.09 0.13 0.1 0.04 0.12 0.05
WRF-Chem (NCAR) 0.07 0 0 0.07 0.09 0.09 0.1 0.05
Range NA 0.05 0.01 0 0.15 0.1 0.08 0.1 0.05 0.11

WRF-Chem (RIFS) 0.09 0 0 0.07 0.12 0.08 0.04 0.12 0.06
WRF-Chem (UPM) 0.1 0 0 0.07 0.13 0.09 0.04 0.12 0.06
LOTOS/EUROS
WRF/CMAQ (STAGE) 0.06 0.01 0 0.06 0.05 0.07 0.01 0.09 0.01
Range EUR 0.04 0.01 0 0.01 0.08 0.02 0.03 0.03 0.05

(c)

WRF/CMAQ (M3Dry) 0.09 0 0 0.17 0.19 0.14 0.01 0.07 0.02
WRF/CMAQ (STAGE) 0.08 0 0 0.15 0.19 0.13 0.01 0.07 0.02
GEM-MACH (Base) 0.06 0 0 0.2 0.1 0.12 0.02 0.03 0.04
GEM-MACH (Zhang) 0.06 0.02 0 0.1 0.06 0.09 0.07 0.05 0.05
GEM-MACH (Ops) 0.09 0 0 0.3 0.09 0.19 0.05 0.04 0.05
WRF-Chem (RIFS) 0.03 0 0 0.04 0.03 0.04 0.02 0.03 0.03
WRF-Chem (UPM) 0.03 0 0 0.05 0.03 0.04 0.02 0.03 0.03
WRF-Chem (NCAR) 0.02 0 0 0.03 0.02 0.03 0.02 0.02
Range NA 0.07 0.02 0 0.27 0.17 0.16 0.06 0.05 0.03

WRF-Chem (RIFS) 0.05 0.02 0.01 0.07 0.05 0.05 0.03 0.04 0.04
WRF-Chem (UPM) 0.05 0.02 0 0.08 0.05 0.06 0.04 0.05 0.04
LOTOS/EUROS
WRF/CMAQ (STAGE) 0.06 0.01 0 0.08 0.07 0.08 0.01 0.06 0.01
Range EUR 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.02 0.03
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Table 3. Continued.

Grid scale URB BAR ENF DBF MF SHR AGR GRA

(d)

WRF/CMAQ (M3Dry) 0.12 0.21 0.25 0.04 0.05 0.04 0.25 0.12 0.17
WRF/CMAQ (STAGE) 0.16 0.27 0.24 0.1 0.13 0.1 0.26 0.16 0.21
GEM-MACH (Base) 0.19 0.24 0.2 0.17 0.15 0.12 0.23 0.26 0.23
GEM-MACH (Zhang) 0.14 0.15 0.14 0.07 0.07 0.11 0.22 0.21 0.16
GEM-MACH (Ops) 0.18 0.24 0.2 0.16 0.15 0.11 0.22 0.25 0.23
WRF-Chem (RIFS) 0.18 0.18 0.13 0.19 0.19 0.13 0.17 0.2 0.2
WRF-Chem (UPM) 0.21 0.2 0.16 0.21 0.22 0.14 0.21 0.23 0.22
WRF-Chem (NCAR) 0.15 0.2 0.12 0.12 0.17 0.11 0.2 0.17
Range NA 0.09 0.12 0.13 0.17 0.17 0.1 0.09 0.14 0.07

WRF-Chem (RIFS) 0.16 0.16 0.13 0.15 0.18 0.11 0.19 0.18 0.17
WRF-Chem (UPM) 0.19 0.17 0.17 0.16 0.21 0.12 0.18 0.22 0.18
LOTOS/EUROS
WRF/CMAQ (STAGE) 0.12 0.24 0.25 0.08 0.17 0.09 0.2 0.14 0.18
Range EUR 0.07 0.08 0.12 0.08 0.04 0.03 0.02 0.08 0.01

(e)

WRF/CMAQ (M3Dry)
WRF/CMAQ (STAGE)
GEM-MACH (Base) 0.03 0.01 0.01 0.03 0.05 0.05 0.05 0.04 0.05
GEM-MACH (Zhang)
GEM-MACH (Ops) 0.03 0.01 0.01 0.03 0.05 0.04 0.04 0.04 0.04
WRF-Chem (RIFS) 0.03 0 0 0.03 0.03 0.02 0.04 0.03 0.03
WRF-Chem (UPM) 0.03 0 0 0.03 0.04 0.03 0.04 0.03 0.04
WRF-Chem (NCAR) 0.03 0 0 0.02 0.04 0.03 0.03 0.03
Range NA 0 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.02

WRF-Chem (RIFS) 0.02 0 0 0.02 0.03 0.02 0.04 0.02 0.03
WRF-Chem (UPM) 0.02 0 0 0.02 0.03 0.02 0.03 0.03 0.03
LOTOS/EUROS
WRF/CMAQ (STAGE)
Range EUR 0 0 0 0 0 0 0.01 0.01 0

a given LU type in a given modeling system may cause dif-
ferences in macro-scale meteorological variables like wind
speed and solar radiation that affect the deposition calcula-
tions in this LU-specific analysis. Differences in LU distri-
butions between models are analyzed in Sect. 3.3.

The availability of LU-specific dry deposition diagnostics
from the AQMEII4 grid models also provides an opportunity
to compare these diagnostics to the results from the point
model intercomparison study by Clifton et al. (2023). At each
of the eight O3 flux measurement sites examined in Clifton et
al. (2023), the point model simulations were constrained to
use a common set of site-specific variables like LAI, rough-
ness length, reference height, and soil moisture. Figures 10
and S6–S8 show examples of this comparison. In these
figures, bars showing the single-point model results from
Clifton et al. (2023) are prefixed with the label “SP” to more
easily distinguish them from bars showing the grid model
results, and the point model labels also use abbreviations for
GEM-MACH and WRF-Chem as noted in the figure caption.

Figure 10 compares winter and summer average Vd and ef-
fective conductances simulated by the grid models for grid
cells with mixed-forest coverage greater than 85 % against
the corresponding results for single-point models at the two
mixed-forest sites analyzed in Clifton et al. (2023), i.e., Bor-
den Forest and Harvard Forest. The point model results are
identical to those shown in Fig. 5 of Clifton et al. (2023),
but while 18 point simulations were included in that figure,
only the 5 simulations corresponding to the schemes appear-
ing in Clifton et al. (2023) that were also implemented in the
AQMEII4 grid models (CMAQ (M3Dry), CMAQ (STAGE),
GEM-MACH (Wesely), GEM-MACH (Zhang), and WRF-
Chem (Wesely)) are reproduced here. Also note that while
the seasonal grid model values shown in Fig. 10 are derived
for a single year (2016) but averaged over all grid cells for
which a given model had a fractional coverage of mixed for-
est exceeding 85 %, the point model values at Borden Forest
and Harvard Forest are multi-year means at single sites. The
motivation for performing this comparison despite these dif-
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Figure 9. 2016 annual domain-average LU-specific effective con-
ductances and ozone deposition velocities for evergreen needleleaf
forest over the NA domain. Averages were calculated over all grid
cells in the portion of the analysis domain shared by all model sim-
ulations for which a given model had coverage of at least 85 % for
the evergreen needleleaf forest LU category.

ferences in spatio-temporal aggregation is to assess to which
extent the conclusions of a single-point modeling study are
consistent with results obtained from grid model deposition
diagnostics and could therefore inform grid model develop-
ment by providing process-level insights.

A comparison of the summertime grid model and point
model results in Fig. 10 leads to similar conclusions re-
garding the magnitudes of simulated Vd and pathway con-
tributions across models. For example, both grid model and
point model Vd values range between 0.4 and 1.0 cm s−1

across models. The lowest Vd for the point models is sim-
ulated by GEM-MACH (Zhang), while the highest Vd is
simulated by GEM-MACH (Wesely). This is consistent with
the grid model results, with GEM-MACH (Zhang) showing
lower Vd than all other grid models and GEM-MACH (Base)
and GEM-MACH (Ops) showing higher Vd than all other
grid models. Grid and point models also agree that CMAQ
(M3Dry) has a much smaller contribution of the soil effec-
tive conductance to Vd compared to all other models and that
WRF-Chem (Wesely) has a smaller contribution of the cutic-
ular effective conductance to Vd compared to all other mod-
els.

During winter, the point and grid model results show
consistency in terms of relative model rankings (GEM-
MACH (Zhang) and the corresponding grid model simu-
lations GEM-MACH (Base) and GEM-MACH (Ops) have
the highest Vd, while the CMAQ (STAGE) point and grid
model simulations have the lowest Vd), the magnitude of Vd

Figure 10. Summer and winter effective conductances and ozone
deposition velocities calculated by the grid models for mixed-forest
grid cells and calculated by the corresponding subset of single-point
(SP) models analyzed in Clifton et al. (2023) at the Borden Forest
(BF) and Harvard Forest (HF) sites. The bars for the SP models
are overlaid on grey boxes to visually distinguish them from the
bars representing grid models. In the x-axis labels, results for the
SP GEM-MACH (Wesely) and SP GEM-MACH (Zhang) simula-
tions are shown as “SP GM Wesely” and “SP GM Zhang”, respec-
tively, while results for the SP WRF-Chem (Wesely) simulations are
shown as “SP WC Wesely”. The mixed-forest grid cells selected for
this analysis are those in which a given model had at least 85 % cov-
erage for this LU category. The number of these grid cells differs
across models due to underlying differences in LU (see Sect. 3.3).

(ranging from about 0.1 to about 0.35 cm s−1), and model-to-
model variations in pathway contributions. However, the grid
model results show a generally lower Vd and a different rank-
ing than the point model results, with GEM-MACH (Wesely)
Vd roughly equal to GEM-MACH (Zhang) in the point model
comparison rather than significantly lower when compar-
ing the corresponding grid model simulations GEM-MACH
(Base), GEM-MACH (Ops), and GEM-MACH (Zhang).
Spatial variations in snow cover across the mixed-forest grid
cells in the grid models as well as interannual variability in
snow cover at the flux measurement sites may play a role
in causing these wintertime differences, although Clifton et
al. (2023) found that the point models results were not very
sensitive to snow cover. The results of the grid model and
point model analysis agree on the non-negligible wintertime
contribution of the lower canopy pathway for the models
that consider it, i.e., the GEM-MACH (Wesely) (20 %–40 %
across the corresponding grid and point models) and WRF-
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Chem (Wesely) (10 %–14 % across the corresponding grid
and point models) point models and their corresponding grid
model implementations.

Figures S9, S10, and S11 show corresponding results for
evergreen needleleaf forest, broadleaf deciduous forest, and
grassland, respectively. For each of these LU cases, the grid
model results reflect simulated LU-specific Vd and effec-
tive conductances averaged over all grid cells with coverage
greater than 85 % for that LU category for a given model.
The point model results adapted from Fig. 5 of Clifton et
al. (2023) are for Hyytiälä (evergreen needleleaf forest), Is-
pra (deciduous broadleaf forest), and Bugacpuszta and Easter
Bush (both grassland).1 The results for evergreen needle-
leaf and deciduous broadleaf forest in Figs. S9 and S10 are
broadly consistent with those discussed above for mixed for-
est. In particular, agreement between grid and point model-
ing results is generally better during summer than winter, es-
pecially in terms of the GEM-MACH (Wesely) vs. GEM-
MACH (Zhang) comparison. The non-negligible contribu-
tion of the wintertime lower canopy effective conductance
simulated by GEM-MACH (Wesely) and, to a lesser extent,
WRF-Chem (Wesely) discussed above for mixed forest is
also visible in the deciduous broadleaf forest results, for both
grid and point models, while it is less pronounced for ev-
ergreen needleleaf forest. The model-to-model comparisons
for grassland show consistent behavior between the grid
model and point model analyses for both winter and sum-
mer. During winter GEM-MACH (Zhang) and WRF-Chem
(Wesely) show the highest Vd, while GEM-MACH (Wesely)
shows the lowest Vd. During summer, GEM-MACH (We-
sely) Vd exceeds GEM-MACH (Zhang) Vd for both the grid
model results and both grassland point intercomparison sites,
though summertime GEM-MACH (Zhang) Vd for grassland
is not as low relative to other models as for the different
forest LU categories discussed above. Moreover, both grid
model and point model results for summertime also agree
that GEM-MACH (Zhang) has the largest relative contribu-
tion of the stomatal effective conductance to Vd for grassland.

The results presented above demonstrate that despite dif-
ferences in LU in the region of the observation sites at the
scale of model grid cells, the analysis of O3 dry deposition

1We note that the LU present at these observation sites may not
necessarily represent the dominant land use at the broader grid scale
used in this analysis, and this may account for some of the residual
differences between the grid model results extracted for specific LU
classes and the point model results at these sites. Ispra flux tower
(45.812495◦ N, 8.634771◦ E) is within a forest of about 300 m ex-
tent surrounded by the Joint Research Centre and the town of Is-
pra, and the Easter Bush field site (55.865◦ N, 3.206◦W) is located
200 m from the University of Edinburgh’s Easter Bush Campus. The
Hyytiälä site is more representative of the evergreen needleleaf for-
est on the grid cell scale, with the nearest changes in LU occurring
∼ 800 m from that site, and Bugacpuszta is also more representative
of the larger region, which contains largely farmland/grassland with
some trees.

schemes implemented in grid models can successfully be
linked to the detailed point model evaluation using long-term
O3 flux measurements presented in Clifton et al. (2023) when
generating LU-specific diagnostic information and limiting
the analysis to specific LU categories. This in turn allows
the developers of grid models to leverage process-level in-
sights gained from point intercomparison studies (Clifton et
al., 2023; Khan et al., 2025) for improving the representation
of dry deposition in their modeling systems. In addition, the
general agreement between the grid and point model com-
parisons shown in Figs. 10 and S7–S9 again suggests that
the differences in first-layer heights between the grid models
(Table 1) are not a major factor impacting the interpretation
of Vd and effective conductance differences across models
since reference and displacement heights had been harmo-
nized in the point model calculations. However, as also dis-
cussed in the first part of this section, differences in LU char-
acterizations between models can complicate a process-level
attribution of differences across models to differences in de-
position schemes, especially when considering LU-specific
dry deposition fluxes. Similarly, observation sites with a vari-
ety of LU within a short distance of the measurement location
itself may be less useful for evaluating LU-specific aspects of
deposition algorithms. Model differences in LU distributions
and their effects on deposition fluxes are analyzed in the next
section.

3.3 The influence of land use data on ozone deposition

Table 4 shows the native LU categories used in each
model’s dry deposition calculations and how these cate-
gories were mapped to the 16 common AQMEII4 LU cat-
egories defined in Galmarini et al. (2021) when reporting
LU-specific diagnostics. For some models (WRF/CMAQ
(M3Dry), GEM-MACH (Zhang), WRF-Chem (RIFS), and
WRF-Chem (UPM)), the native LU categories used in the dry
deposition calculations are identical to those used in the land
surface model (LSM) of the driving meteorological model.
For the other models, the LU classification scheme differed
between the LSM in the driving meteorological model and
the dry deposition calculations, and Tables S1–S5 provide
details on the internal mapping between the LSM and dry
deposition calculations implemented in these models. We
note that several AQMEII4 LU categories are held in com-
mon with most model native LU categories (e.g., “evergreen
needleleaf trees”), while others were less direct, requiring
assignment into the nearest AQMEII4 LU category as doc-
umented in these tables.

Figures 11 and 12 show bar charts of the distribution of all
16 AQMEII4 LU categories for each model across all com-
mon grid cells that are not dominated by water for the NA and
EUR domains. These charts reveal that 7 of the 16 categories
(barren, evergreen needleleaf forest, deciduous broadleaf for-
est, mixed forest, shrubland, planted/cultivated land, and
grassland) account for roughly 90 % of all LU over both NA
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Table 4. Mapping of LU classes from the categories used in the models’ dry deposition code to the 16 AQMEII4 categories.

AQMEII4 WRF/CMAQ (M3Dry) WRF/CMAQ (STAGE) GEM-MACH (BASE)
and GEM-MACH
(Ops)

GEM-MACH (Zhang) WRF-Chem (RIFS),
WRF-Chem (UPM),
and WRF-Chem
(NCAR)

LOTOS/EUROS

1: Water 17: Water 1: Water 13: Inland water
14: Ocean

1: Water (ocean)
3: Inland lake (fresh)

16: Waterbodies 09: Inland
water
10: Seawater

2: Develope-
d/urban

13: Urban and built-up 2: Developed/urban 15: Urban 21: Urban 1: Urban and built-up
land

08: Urban

3: Barren 16: Barren or sparsely
vegetated

3: Barren 8: Desert 24: Desert 19: Barren or sparsely
vegetated
23: Bare ground tundra

05: Bare rock

4: Evergreen
needleleaf
forest

1: Evergreen needleleaf
forest

4: Evergreen needleleaf
forest

1: Evergreen needleleaf
forest

4: Evergreen needleleaf trees 14: Evergreen
needleleaf forest

02: Coniferous
forest

5: Deciduous
needleleaf
forest

3: Deciduous
needleleaf forest

5: Deciduous
needleleaf forest

3: Deciduous
needleleaf forest

6: Deciduous needleleaf trees 12: Deciduous
needleleaf forest

N/A

6: Evergreen
broadleaf forest

2: Evergreen broadleaf
forest

6: Evergreen broadleaf
forest

2: Evergreen broadleaf
forest

5: Evergreen broadleaf trees
8: Tropical broadleaf trees

13: Evergreen
broadleaf forest

N/A

7: Deciduous
broadleaf forest

4: Deciduous broadleaf
forest

7: Deciduous broadleaf
forest

4: Deciduous broadleaf
forest

7: Deciduous broadleaf trees
9: Drought deciduous trees

11: Deciduous
broadleaf forest

04: Deciduous
forest

8: Mixed forest 5: Mixed forest 8: Mixed forest 5: Mixed forest 25: Mixed wood forest 15: Mixed forest N/A

9: Shrubland 6: Closed shrublands
7: Open shrublands

9: Shrubland 10: Dwarf trees, shrubs 10: Evergreen broadleaf shrubs

11: Deciduous shrubs
12: Thorn shrubs
26: Mixed shrubs

8: Shrubland
9: Mixed
shrubland/grassland
(WRF-Chem (NCAR)
mapping)

N/A

10: Herbaceous N/A 10: Herbaceous N/A 13: Short grass and forbs N/A N/A

11: Plant-
ed/cultivated

12: Croplands
14: Cropland – natural
vegetation mosaic

11: Planted/cultivated 7: Crops, mixed
farming

15: Crops
16: Rice
17: Sugar
18: Maize
19: Cotton
20: Irrigated crops

2: Dryland cropland
and pasture
3: Irrigated cropland
and pasture
4: Mixed
dryland/irrigated
cropland and pasture
5: Cropland/grassland
mosaic
6: Cropland/woodland
mosaic

01: Arable land

03: Permanent
crops

12: Grassland 10: Grasslands 12: Grassland 6: Grassland 14: Long grass 7: Grassland 06: Grassland

13: Savanna 8: Woody savanna
9: Savanna

13: Savanna N/A N/A 9: Mixed
shrubland/grassland
(WRF-Chem (RIFS)
and WRF-Chem
(UPM) mapping)
10: Savanna

11:
Semi-natural
vegetation

14: Wetlands 11: Permanent
wetlands

14: Wetlands 11: Wetland with plants 22: Swamp 17: Herbaceous
wetland
18: Wooded wetland

N/A

15: Tundra 18: Wooded tundra
19: Mixed tundra
20: Barren tundra

15: Tundra 9: Tundra 22: Tundra 20: Herbaceous tundra
21: Wooded tundra
22: Mixed tundra

N/A

16: Snow and
ice

15: Snow and ice 16: Snow and ice 12: Ice caps and
glaciers

2: Ice 24 Snow or ice 07: Ice

N/A: not available.

and EUR. Over NA, the fractional coverage of some cate-
gories like evergreen needleleaf forest is similar across mod-
els, as might be expected from the commonality of this LU
within the native LU categories of Table 4. On the other hand,
there is considerable disagreement between models for the

fractional coverage of many other categories over NA, espe-
cially non-forest categories such as barren, shrubland, plant-
ed/cultivated land, and grassland. Much of this disagreement
is caused by the GEM-MACH simulations having larger frac-
tions of the barren and shrubland categories and smaller frac-
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Figure 11. Fraction of the NA domain common to all models covered by each AQMEII4 LU category, excluding grid cells dominated by
water by each model.

tions for the planted/cultivated and grassland categories than
either the WRF/CMAQ or WRF-Chem simulations, pointing
to ambiguities in classifying non-forest partially vegetated
areas.2 Over EUR, the primary driver of model variability in
the LU used for deposition calculation is LOTOS/EUROS,
which in its DEPAC dry deposition module splits mixed for-
est from the driving meteorological model equally between
coniferous and deciduous forest and includes shrubland in
the category of semi-natural vegetation and as a result shows
larger coverage than WRF/CMAQ and WRF-Chem for ev-

2A subsequent investigation of the GEM-MACH land use
database suggested that this difference is due to an underlying
dataset which included “short grass and forbs” being aggregated
to “dwarf trees and shrubs”, in turn increasing the relative as-
signment to AQMEII4 shrubland and decreasing the assignment to
AQMEII4 grassland categories. This misassignment has been cor-
rected in implementations of GEM-MACH subsequent to that used
in AQMEII4.

ergreen needleleaf forest, deciduous broadleaf forest, and
grassland. In addition, while all models agree that plant-
ed/cultivated is the dominant category over EUR, the lowest
coverage (29.44 %, LOTOS/EUROS) and highest coverages
(47.11 %, WRF-Chem (UPM)) differ by a factor of 1.6. Here
it should be noted that the WRF-Chem (RIFS) dry deposi-
tion calculations indirectly used the CORINE dataset devel-
oped for Europe (https://land.copernicus.eu/pan-european/
corine-land-cover/, last access: 12 May 2025) by mapping
the CORINE categories to the USGS24 categories in WRF-
Chem (RIFS). On the other hand, the WRF-Chem (UPM) dry
deposition calculations relied on the global USGS24 dataset,
WRF/CMAQ relied on the global MODIS dataset augmented
by additional urban categories in the greater London area
and mapped these to the AQMEII4 categories as shown in
Table S1, and the LOTOS/EUROS dry deposition calcula-
tions relied on the Global Land Cover 2000 dataset (https:
//forobs.jrc.ec.europa.eu/glc2000, last access: 12 May 2025)

https://land.copernicus.eu/pan-european/corine-land-cover/
https://land.copernicus.eu/pan-european/corine-land-cover/
https://forobs.jrc.ec.europa.eu/glc2000
https://forobs.jrc.ec.europa.eu/glc2000
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Figure 12. Fraction of the EUR domain common to all models covered by each AQMEII4 LU category, excluding grid cells dominated by
water by each model.

mapped to the internal DEPAC categories (Manders-Groot
and LOTOS-EUROS team, 2023).

Even for categories for which models show relatively close
agreement of the total domain-wide coverage in Figs. 11
and 12, spatial patterns of the coverage may still differ be-
tween models. To illustrate this, Figs. S12 and S13 show
maps of the fractional coverage of the evergreen needle-
leaf forest category for each model over NA and EUR. One
fundamental difference between the WRF-Chem simulations
and all other simulations is that the WRF-Chem simulations
employed a dominant LU category approach in their LSM
and dry deposition calculations (that is, only the LU with
the largest LU fraction within a grid cell is used to repre-
sent that grid cell’s LU for deposition calculations), while
all other simulations accounted for subgrid variations in LU
by employing a fractional LU category approach. Therefore,
Figs. S12 and S13 show evergreen needleleaf forest fractions
of either 0 or 1 for the WRF-Chem simulations and fractions
between 0 and 1 for all other simulations. Both figures re-
veal that, despite all native LU databases including evergreen

needleleaf forest as an explicit LU category, the coverage for
this LU can vary substantially between models, e.g., over the
southeastern US in the NA domain (Fig. S12) and central Eu-
rope and the Iberian Peninsula in the EUR domain (Fig. S13).

To analyze the level of agreement in spatial coverage
across models for all LU categories while taking into ac-
count that the WRF-Chem simulations used a dominant LU
category approach, we applied two metrics to assess model-
to-model agreement for a given LU category and grid cell.
The first metric simply determines whether all models agree
that the LU category being assessed is the category with
the highest fractional coverage (i.e., the dominant category)
compared to all other categories in that grid cell, regardless
of the actual fractional coverage for that dominant category
for those simulations that use a fractional coverage approach.
The second metric builds upon the first metric by determin-
ing not only whether the LU category being assessed is the
dominant category in that grid cell but also whether all mod-
els agree that its fractional coverage is at least 85 %. By defi-
nition, all grid cells meeting the more stringent second metric
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Table 5. Number and percentage of grid cells within the common NA and EUR analysis domains where all models agree on the land use–
land cover (LULC) category for that grid cell. Two metrics are used to assess agreement: (1) all models agree that the LULC category being
assessed is the category with the highest fractional coverage compared to all other categories in that grid cell (“dominant coverage”), and
(2) in addition to meeting metric 1, all models also agree that a given grid cell has at least 85 % coverage for the LULC category being
assessed. The last four rows summarize the level of agreement across either all 16 LULC categories (including water) or all 15 non-water
LULC categories. The percentages shown in the rows corresponding to individual LULC categories are calculated with respect to all grid
cells in the common analysis domains (108 058 for NA and 176 994 for EUR).

NA, # of common NA, # of common EUR, # of common EUR, # of common
cells with “dominant cells with LU cells with “dominant cells with LU

coverage” for LU category coverage coverage” for LU category coverage
category for > 85% for category for > 85% for

all models all models all models all models

Water 27 925 (25.84 %) 26 949 (24.94 %) 81 423 (46.00 %) 78 186 (44.17 %)

Developed/urban 161 (0.15 %) 32 (0.03 %) 63 (0.04 %) 4 (0 %)

Barren 112 (0.10 %) 14 (0.01 %) 2203 (1.25 %) 1310 (0.74 %)

Evergreen needleleaf forest 7111 (6.58 %) 1544 (1.43 %) 9270 (5.237 %) 2531 (1.43 %)

Deciduous needleleaf forest 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)

Evergreen broadleaf forest 1 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)

Deciduous broadleaf forest 2663 (2.46 %) 581 (0.54 %) 362 (0.21 %) 5 (0 %)

Mixed forest 3968 (3.67 %) 705 (0.65 %) 0 (0 %) 0 (0 %)

Shrubland 757 (0.70 %) 43 (0.04 %) 0 (0 %) 0 (0 %)

Herbaceous 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)

Planted/cultivated 10 640 (9.85 %) 6130 (5.67 %) 24 627 (13.91 %) 6108 (3.45 %)

Grassland 164 (0.15 %) 52 (0.05 %) 147 (0.08 %) 0 (0 %)

Savanna 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)

Wetlands 1 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)

Tundra 83 (0.08 %) 0 (0 %) 0 (0 %) 0 (0 %)

Snow and ice 1 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)

Total of grid cells with common LU 53 587 (49.59 %) 36 050 (33.36 %) 118 095 (66.72 %) 88 144 (49.80 %)
(including water cells)

Total of grid cells with diverging LU 54 471 (50.41 %) 72 008 (66.64 %) 58 899 (33.28 %) 88 850 (50.20 %)
(including water cells)

Total of grid cells with common LU 25 662 (32.02 %) 9101 (11.22 %) 36 672 (38.37 %) 9958 (10.08 %)
(excluding water cells)

Total of grid cells with diverging LU 54 471 (67.98 %) 72 008 (88.78 %) 58 899 (61.63 %) 88 850 (89.92 %)
(excluding water cells)

also meet the first metric. Identifying grid cells meeting the
first metric can be thought of as a way to assess agreement
in LU categories across models if all simulations (not only
WRF-Chem) had used a dominant LU category approach.
The subset of grid cells identified by metric 1 for a given
LU category that also satisfies the > 85% criterion defined
for metric 2 can be thought of as the common “dominant”
cells for that LU category in which even the computations

performed by the models using a fractional LU category ap-
proach were mostly impacted by the physical characteristics
of that LU category, with only minor impacts from other LU
categories possibly also present in the grid cell. This sub-
set of grid cells was used in Sect. 3.2 when comparing Vd
values between the point model simulations at specific flux
measurement sites and the grid model simulations.

dagmar.eikenroth
Highlight
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The results of applying metrics 1 and 2 to all LU categories
and models over both NA and EUR are shown in Figs. S14–
S15 and Table 5, which lists the number and percentage of
grid cells within the common NA and EUR analysis meeting
each metric. The first 16 rows of Table 5 contain results for
each of the AQMEII4 LU categories. The percentages shown
in these rows are calculated with respect to the total number
of grid cells in the common analysis domains (108 058 for
NA and 176 994 for EUR), including water grid cells. Water
is by far the category with the highest level of agreement
over both NA and EUR, with only minor differences between
the two metrics, indicating that most grid cells dominated by
water across all models are almost fully (> 85%) or often
fully covered by water, reflecting the oceans and open waters
present in both analysis domains.

The LU categories with the second- and third-largest
amount of agreement between models are planted/cultivated
land and evergreen needleleaf forest over both domains. Over
NA, the deciduous broadleaf and mixed-forest LU categories
also have about 600–4000 (0.5 %–4 %) common grid cells,
depending on metric and category. For the remaining LU
categories, the number and percentage of grid cells match-
ing across models is very low, especially for the more strin-
gent metric 2. While to some extent this is expected given the
low overall domain coverage of some of these categories by
all models (Figs. 11–12), this is also the case for shrubland
and grassland, which have substantial domain-wide coverage
over NA (Fig. 11).

The last four rows of Table 5 summarize the level of agree-
ment across either all 16 LU categories (including water) or
the 15 non-water LU categories. Figures 13a–d depict the lo-
cation of common grid cells for both metrics and continents.
In these figures, grid cells meeting the metric for any LU cat-
egory are colored in dark red, while grid cells not meeting it
for any LU category (i.e., grid cells without a common LU
category as measured by the metric) are colored in white.
These figures along with Table 5 illustrate that even for the
less restrictive metric 1, 68 % (62 %) of non-water grid cells
over NA (EUR) do not share a common dominant LU cate-
gory across models. Over NA, many of these non-matching
grid cells are located in the southern and western portions of
the domain, while over EUR, they are most prevalent in the
western, northeastern, and southeastern portions of the do-
main. When considering the more stringent metric 2, i.e., grid
cells in which the common category has at least 85 % cover-
age for all models, this number of grid cells with diverging
LU categories increases to roughly 90 % of non-water grid
cells over both domains. The only areas with significant con-
tiguous clusters of such common cells are the agricultural re-
gions in the north-central NA domain and portions of central
Europe and Sweden.

This low number of grid cells with a common LU category
strongly suggests that differences in LU coverage can con-
tribute to or even drive differences in LU-specific dry depo-
sition fluxes, in addition to any differences in process repre-

sentation that exist between different models. To investigate
this, Fig. 14 compares LU-specific dry deposition fluxes, Vd,
and LU fractions over NA for seven selected LU categories.
The LU-specific dry deposition fluxes (Vd) represent annual
totals (means) over all grid cells in which the LU category
being assessed has a fractional coverage of at least 85 % for
a given model. For some LU categories with relatively simi-
lar total coverage across the domain (e.g., evergreen needle-
leaf forest and deciduous broadleaf forest), differences in to-
tal O3 dry deposition flux to that LU category closely mir-
ror differences in LU-specific average Vd. For mixed forest,
the lower fractional coverage for GEM-MACH (Base) and
GEM-MACH (Ops) leads to a below-average total deposi-
tion flux to that category despite Vd being the highest. For
the grassland and barren categories, differences in their dry
deposition fluxes are almost entirely driven by differences in
LU fractional coverage rather than differences in Vd. Corre-
sponding results for the EUR domain are shown in Fig. S16
and confirm that differences in both Vd and LU coverage con-
tribute to differences in LU-specific dry deposition fluxes.

The results shown in Figs. 14 and S14 have important
implications for computing estimates of deposition fluxes
to specific ecosystems. In past model intercomparison stud-
ies such as those performed under the umbrella of the Task
Force on Hemispheric Transport of Air Pollution (TF-HTAP;
http://www.htap.org, last access: 19 August 2025), such es-
timates were often computed through post-processing by ap-
portioning archived modeled grid-aggregated dry deposition
fluxes to specific LU categories using a fixed LU database
(e.g., Hardacre et al., 2015; Schwede et al., 2018). While this
approach makes use of actual modeled dry deposition fluxes
rather than using modeled concentrations as inputs to offline
dry deposition calculations (e.g., Van Dingenen et al., 2009;
Avnery et al., 2011), it may still be subject to uncertainties
arising from differences between grid-aggregated vs. LU-
specific dry deposition fluxes as well as differences in LU
categorization – a flux associated with a model LU category
for model-internal deposition may be aggregated under a dif-
ferent LU category in post-processing using a different post-
processing database. The diagnostic information collected
for AQMEII4 and analyzed in this paper allows us to illus-
trate and quantify both uncertainties. Figure 15 compares the
LU-specific annual total dry deposition fluxes to seven LU
categories calculated by model WRF/CMAQ (STAGE) (grey
bars) to estimates derived by combining grid-aggregated dry
deposition fluxes from the same model with LU fractions
from all models (colored bars). Comparing the grey bars to
the dark-blue bars shows the impact of computing actual LU-
specific deposition fluxes within the model simulation vs. es-
timating them by linearly scaling grid-aggregated values us-
ing the model’s own LU fractions. This effect is relatively
small for most LU categories but reaches about 20 % for
evergreen needleleaf forest and 40 % for barren. Compar-
ing the grey bars to all the other colored bars (except dark
blue) shows the combined uncertainty of using linear scal-

http://www.htap.org
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