AC: We would like to thank both reviewers for their comments. Their suggestions have been extremely helpful in clarifying the scope of the work, strengthening the model evaluation, and improving the presentation of the manuscript. We have considered and implemented their recommendations where possible.

RC1: Overview

Van der Zant et al. present RADIv2, an updated version of the RADIv1 1D early diagenesis sediment model described by Sulpis et al., (2022). Specifically, they have included improved parameterizations for diffusive boundary layer thickness and pore water dispersion, and added methane cycling. They also added features that allow ensembles to be run, and that allow unknown parameters to be optimized to better fit in situ data. They validate RADIv2 from in situ measurements across a range of different locations, then use RADIv2 outputs to develop a metamodel. This metamodel parameterizes dissolved oxygen, dissolved inorganic carbon, and total alkalinity fluxes in terms of temperature, bottom velocity, bottom-water calcite saturation state, and organic and inorganic carbon fluxes. They suggest that this metamodel could be used to represent more complex sediment dynamics than are currently included in global ocean biogeochemical models (GOBMs), without incurring the significant computational expense of including a fully process based model.

RC1: General comments

RC1: I think this paper adds some very useful features to RADIv1 and seeks to address a critical issue by demonstrating a pathway towards including more realistic sediment biogeochemical cycling in GOBMs. It's well written, and I think the authors have done a great job in finding so many datasets to compare RADIv2 output against as I know that useful datasets for calibrating such a model are not readily available. Overall, I think it's a strong paper. Below are some suggestions primarily focused on validation and the associated discussion which could improve it further.

RC1. I think this paper could be strengthened by adding more discussion to the sections validating RADIv2 against in situ observations. The applicability of RADIv2 and the resulting metamodel to a wide range of environments depends on these sections, hence I think they are particularly important.

AC: We thank the reviewer for this suggestion and agree that the validation sections are central to demonstrating the applicability of RADIv2 and the metamodel. In the revised manuscript, we (i) added more comprehensive figures comparing modelled and observed benthic fluxes (Figures 2-5), (ii) introduced a statistical analysis that quantifies whether the model shows a significant mean bias relative to the observations (via a Welch two-sample t-test) and whether the simulated fluxes fall within the bulk (25–75 %) and overall (5–95 %) observational ranges, and (iii) expanded the site-specific discussion of these results in each validation subsection. In addition,

we included a sensitivity test for the remineralization rates simulated by RADIv2. These changes are described in more detail in our responses to the specific comments below.

RC1: Comparisons between the modelled and observed fluxes currently focus on whether the modelled fluxes lie within the range of observational values. However, it seems like in several cases the model means lie the observed values. Performing some kind of statistical test to determine whether the model differs significantly from the observations or not would strengthen the case that the model does capture most of what's happening in the environment, and that the variations attributed to transient processes aren't as important. If they do differ significantly, it might indicate that these differences are due to more than just these transient variations, or that these variations occur so frequently that they need to be accounted for.

AC: We agree with the reviewer that the comparison between modelled and observed fluxes can be strengthened.

For most of the literature datasets we use, we do not have access to the raw time series. The published values are typically site-mean fluxes and are presented with an associated standard deviation. For these locations, we do have the underlying distributions, and we cannot construct true violin plots or perform statistical tests at the level of individual measurements without generating pseudo-data and making additional assumptions about the underlying variability.

However, to better show how the model relates to the observations, we have revised Figures 2-5 that show model—data flux comparisons. Instead of simple range bars, we now show boxplots of the site-wise fluxes (25–75 % range) with median and mean lines, whiskers extending to the 5–95 % range, and overlaid points for each observational site. Where multiple datasets are available, points are colour-coded by source, using the published site means. This representation shows where the bulk of the observational fluxes lie, how different datasets contribute to the overall spread, and how the RADIv2 distribution overlaps with (or deviates from) this cloud of observations.

We added a simple statistical analysis to quantify whether the model exhibits a systematic bias relative to the observations. Because the observations and simulated values are not paired (they do not correspond to the same exact locations or boundary conditions) and the sample sizes differ, we use a Welch two-sample t-test to test for a difference in the mean flux between model and observations.

To account for the strong spatial heterogeneity of sediments, we also compare the spread of observed and modelled values. We define the "bulk" of the observations as the 25–75 % quantile range and the extremes as the 5–95 % quantiles. We then compute the fraction of modelled fluxes that fall within the observational bulk and the fraction that fall within the full 5–95 % observational envelope. Together, these metrics indicate whether the model is biased in its mean (systematically over- or underestimates the observed fluxes) and whether the simulated values

remain within the range documented in the literature. We have added the corresponding statistical results to the site-specific validation subsections (North Sea, Monterey Bay, Iberian Margin, and Arabian Sea) in the revised manuscript. For the SAST and WAST stations the number of observations is too small (n = 2 and n = 3, respectively) to apply these tests, so we rely there on a visual comparison only.

We believe this helps addresses the reviewer's comment about understanding whether differences between model and observations are systematic and if the long tails in the in situ data caused by few extreme points.

A description of the statistical analysis added in **L300** of the manuscript: To quantitatively assess how well RADIv2 represents this coupling, we compare the distributions of modelled and observed benthic fluxes where sufficient observational data are available. Because observations and simulations are not always paired in space or forcing (not all parameters or boundary conditions are available to fully constrain RADIv2) and sample sizes differ, we use a Welch two-sample t-test to evaluate whether the mean modelled flux differs significantly from the mean of the observations. To account for the strong spatial heterogeneity of benthic fluxes, we also quantify the fraction of simulated values that fall within the observational interquartile range (25–75 %) and within the broader 5–95 % observational envelope. Together, these diagnostics provide a joint measure of systematic bias (over- or underestimation) and of how well the modelled fluxes remain within the range documented in the literature.

RC1: I also think the discussion about the discrepancies between the model output and the observational data could dive deeper into factors that might be affecting these differences on the modelling side. Currently much of this discussion is framed around how the values the model is being compared to are outliers in the wider literature (e.g., the North Sea values for remineralization rates were lower than rates reported from other shelves, the Berelson et al., (2003) values for Monterey Bay are lower than the global-mean $C_{\rm org}$ remineralization rates for continental shelf environments). I think that if the point of this section is to demonstrate that RADIv2 can capture conditions across a range of different environments then it's important to focus the discussion on how it compares to the specific environment it's being tested against rather than against more generic conditions.

AC: We agree with the reviewer that the discussion should focus more on the specific environments used for validation rather than comparing to global "typical" conditions. In the revised manuscript we have rewritten the site-specific validation sections to discuss factors that likely drive discrepancy. More detail and a sensitivity analysis are also added for the remineralization rates, as suggested by the next comment in section 3.5 (Summary of RADIv2 performance).

In the revised North Sea subsection, we now state explicitly that the simulated DIC fluxes and remineralization rates tend to be higher than the local observations, and that this likely reflects an

imposed organic-matter supply and/or reactivity that is too high. In our set-up, a highly reactive organic-matter pool is supplied to the sediment, so most of the degradation occurs close to the sediment—water interface. This may enhance DIC fluxes (and, but to lesser extent, elevate O2 uptake) compared to the measured values. The POM rain in Table 2 is estimated from mean yearly values described in Upton et al. (1993). Such annual means smooth over blooms and short-lived export pulses and may overestimate the effective POM supply at the time of the benthic flux measurements.

L327: The simulated DIC fluxes and remineralization rates tend to be higher than the literature range. This likely reflects a combination of too strong organic-matter supply and too reactive organic-matter parameters in our set-up. The imposed POM rain is based on annual-mean export estimates, which smooth over episodic blooms and short-lived pulses and thus likely overestimate the supply at the time of the benthic flux measurements. As a result, most degradation occurs near the sediment—water interface and drives larger DIC fluxes (and slightly elevated O₂ uptake) than those inferred from the local measurements and modelling studies.

And **L336**: The modeled remineralization rates (Figure 2b) are within the same order of magnitude than those observed in continental shelf environments, although they exceed observations from the North Sea. This positive bias is consistent with the combination of relatively high imposed organic-matter supply and reactive organic-matter parameters discussed above.

For Monterey Bay, we now state explicitly that the imposed POM flux is not measured in situ but estimated by analogy with the North Sea calibration, and that this choice likely overestimates the local organic-matter supply and contributes to the positive bias in remineralization and solute fluxes.

L348: Because Berelson et al. (2003) did not measure POM rain to the seafloor directly, the POM flux range used in Table 2 was estimated by analogy with the North Sea calibration. This choice likely overestimates the actual organic-matter supply at Monterey Bay and contributes to the positive bias in the simulated remineralization rates.

For the Iberian Margin, we highlight that the original study already noted the unexpectedly low remineralization rates given the high primary production and did not resolve their cause. We adopt the relatively high export fluxes reported in the paper without additional site-specific tuning, which likely causes RADIv2 to overestimates local remineralization rates at these stations.

L363: In our set-up, we adopt the export flux estimates from Epping et al. (2002) without additional site-specific tuning, so uncertainties in the effective POC supply at these stations likely contribute to the positive bias in RADIv2 remineralization rates.

RC1: Diving more into the factors in the model that could be driving these discrepancies could also offer more insight into ways that the RADIv2 could be improved. In particular, I think that more discussion of why RADIv2 overestimates the POC remineralization rate at each site would be useful, as it seems like these overestimations could be responsible for the modelled O2, TA, and DIC fluxes tending to be higher than the observed values. Could this indicate that the POC fluxes used for the model are too high? How are the remineralization rate constants chosen for each site, and how does changing them affect both the remineralization rates and the partitioning of remineralization between aerobic and anaerobic pathways? There are also other parameters that could affect these fluxes, such as changes in porosity or the temperature dependence of redox reaction rates. I understand that RADIv2 has a lot of dials to turn, and the data necessary to really constrain it doesn't exist and so these questions are probably impossible to answer definitively. However, given the importance of this section I think more discussion about why it overestimates remineralization would help strengthen this work.

AC: We agree that it is important to understand which model parameters are primarily responsible for the overestimation of organic matter remineralisation. In RADIv2, the total remineralisation rate is set by the OM reactivity parameters (k_fast, k_slow and their partitioning). The high remineralisation rates are thus a consequence of the assumed POC rain and two-G kinetics. For most sites the imposed POC rain rates are taken from literature estimates that are either annual/climatological means or derived from export-productivity relationships, rather than being co-located and time-aligned with the in-situ measurements.

In the revised manuscript we add a sensitivity experiment to illustrate their relative impact on the remineralization rates.

RADIv2 uses uniform degradation rate constants and a fixed partitioning between the fast and slow pools. To quantify how much of the disagreement could in principle be absorbed by either the POM flux or the reactivity, we performed three sensitivity tests at the Iberian Margin shallow calibration site, holding all other parameters fixed

FPOM sweep: we scaled the imposed POM rain by factors 0.5, 0.75, 1.0, 1.25 and 1.5, while keeping reactivity kinetics constant between runs. The resulting total remineralisation rates were:

2.54, 3.54, 4.52, 5.50 and 6.46 mmol C m^{-2} d^{-1} .

Changing FPOM by $\pm 50\%$ changes total remineralization by roughly -44% to $\pm 43\%$, and the response is close to linear.

Reactivity sweep: we scaled both k_fast and k_slow by factors 0.5, 0.75, 1.0, 1.5, 2.0, and kept their partitioning and the POM rain constant between runs.

The corresponding total remineralization rates were:

5.39, 4.84, 4.52, 4.34 and 4.39 mmol C $m^{-2} d^{-1}$.

The response is non-monotonic: increasing the rate constants does not simply translate into proportionally higher integrated remineralization, because faster remineralization near the surface reduces the amount of POM that is transported to depth and can be degraded there.

Partitioning sweep: we scaled the fraction of fast POM by 0.5, 0.6, 0.7, 0.8, 0.9 (with the slow fraction equal to 1 - fast) and keep the reaction rates and POM rain constant.

The corresponding total remineralisation rates were:

4.31, 4.36, 4.40, 4.45, 4.49 mmol C m⁻² d⁻¹.

Small changes in the vertically integrated rate are simulated over the different partitionings. This knob mainly affects where in the column and which electron acceptors dominate remineralisation, rather than the total C oxidation at fixed FPOC and rate constants.

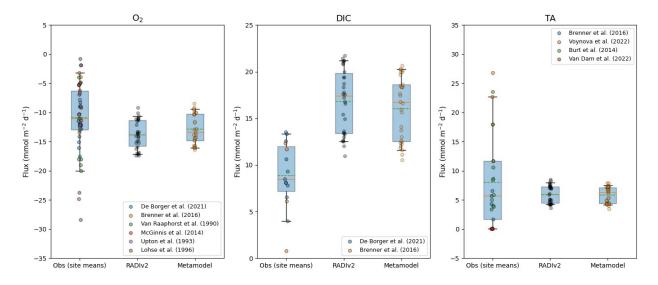
Taken together, these tests show that (i) uncertainties in the local POC supply are sufficient to produce significant changes in the total remineralisation rate, and (ii) global rescaling of the organic matter kinetics and their fast/slow partitioning also affects the integrated rate, but to a lesser degree and in a more non-linear fashion. It should be noted that, FPOC, k_fast/k_slow and their partitioning are not independently constrained at most sites, and different combinations of these parameters can yield similar total remineralisation rates. At the same time, the sensitivity tests suggest that RADIv2 is not locked into a "too-reactive" regime. The systematic positive bias in some of the case studies is consistent with uncertainties in the local POM supply, and/or to lesser extent, the effective reactivity of the sedimentary organic matter.

We have added a description of this sensitivity test and its implications to the revised manuscript (Section 3.5 Summary of RADIv2 performance) starting in L408: However, the model tends to overestimate organic carbon remineralization rates compared to observations. For most sites, the POM rain rates are taken from literature estimates or export–production relationships and are not co-located and time-aligned with the individual in situ flux measurements, so uncertainties in the local POM supply and its degradation kinetics are likely the source of this positive bias. To quantify how much of the disagreement could in principle be absorbed by either the POM flux or the reactivity, we performed three sensitivity tests at the Iberian Margin shallow calibration site, holding all other parameters fixed. Scaling the imposed POM rain by factors 0.5–1.5, while keeping all other organic-matter parameters constant, changes the vertically integrated remineralization rate by roughly -40 to +40 %, with an almost linear response. In contrast, globally scaling both k_fast and k_slow by factors over a range of 0.5–2.0, while keeping the fast/slow partitioning and POM rain constant, produces smaller and more non-monotonic changes in the integrated rate because faster degradation near the surface reduces the amount of POM transported to depth. Varying the partitioning between the fast and slow pools (while keeping total POM rain and rate constants fixed) only weakly affects the depth-integrated

remineralization, but does shift where in the sediment column carbon is oxidized and hence the balance between aerobic and anaerobic pathways. It should be noted that, FPOM, k_fast/k_slow and their partitioning are not independently constrained, and different combinations of these parameters can yield similar total remineralisation rates. These tests indicate that uncertainties in the local POM flux are sufficient to account for much of the overestimation of remineralization, and that global rescaling of the organic matter kinetics and their fast/slow partitioning also affects the integrated rate, but to a lesser degree and in a more non-linear fashion. At the same time, the sensitivity tests suggest that RADIv2 is not locked into a "too-reactive" regime. The systematic positive bias across case studies is consistent with uncertainties in the local POM supply, and/or to a lesser extent, the effective reactivity of the sedimentary organic matter.

RC1: I think it would also be useful to check the metamodel against the experimental data, rather than only comparing it to RADIv2 output. The ultimate goal of the metamodel is to simulate the world, hence I think it's important to see how it does against observational data in addition to how well it replicates the results of RADIv2.

AC: We agree that as the metamodel is to be implemted in GOBMs, the metamodel should be evaluated not only against RADIv2, but also against in-situ data.


Our primary design goal for the metamodel is to act as a surrogate for RADIv2 inside global ocean models: it is trained exclusively on RADIv2 output and is not calibrated directly to observations. Any mismatch with in-situ data can be decomposed into (i) structural/model error in RADIv2 itself and (ii) an emulation error introduced by the metamodel (i.e. the fact that the metamodel–RADIv2 fit is not perfect, $R^2 < 1$ and RMSE > 0).

To better understand this emulation error, we performed an additional offline test at the North Sea sites. We forced the metamodel with the same physical and biogeochemical parameters (T, FPOC, FPIC, Ω _Ca, and bottom-current speed U) as in the corresponding RADIv2 set-up and diagnosed the same benthic fluxes (O₂, DIC, TA). We then compared both RADIv2 and metamodel predictions to the in-situ flux data.

A full global-scale assessment of metamodel skill within a coupled GOBM is beyond the scope of this paper. This is mainly because the simulated fluxes by the metamodel inside of a GOBM would also reflect biases of the host model itself.

We have added a description of this experiment and the Figure in the revised manuscript starting at **L437**: We performed an offline comparison of the metamodel against in situ benthic flux measurements at the North Sea sites. The metamodel is explicitly designed as a surrogate for RADIv2: its coefficients are calibrated on RADIv2 ensemble outputs and are not tuned directly to observations. Any mismatch with in situ data can therefore be separated into biases and structural limitations in RADIv2 itself, and an additional emulation error introduced by the regression ($R^2 < 1$ and RMSE > 0). To quantify this emulation error and to compare the metamodel directly to both observations and RADIv2, we ran the metamodel with the same

bottom-water and depositional drivers used in the corresponding RADIv2 North Sea ensemble set-up (Table 2). Figure 7 compares the resulting metamodel-predicted fluxes with the underlying RADIv2 fluxes and the in situ observations.

RC1: The explanation of how the metamodel was developed could be made clearer by specifying which results the regressions were performed on. If they were performed on the same outputs used to validate the model, then I think it would be helpful for that to be stated. If that is the case, was there thought given to running RADIv2 over a wider parameter space and performing regressions on those results? One area that could potentially be beneficial to explore would be more tropical, carbonate rich environments. Assessing the performance of a metamodel developed over a wider parameter space against both RADIv2 outputs and the validation sites presented here would provide a better basis for assessing how well the metamodel would fare over the diverse range of environments present within a GOBM.

AC: We agree that the description of the metamodel training should be more explicit. The current metamodel is indeed trained on the same set of RADIv2 experiments that we use for the flux comparison figures. For each site, we constructed an ensemble that spans the observed variability in the key drivers (bottom-water temperature T, current speed U, organic carbon flux FPOC, inorganic carbon flux FPIC, and bottom-water Ω Ca), and we then fit the linear metamodel to the resulting RADIv2 fluxes. A practical challenge was to identify sites that provide sufficient data to calibrate and validate RADIv2, while still sampling a range of environmental conditions without over-representing particular settings (e.g. a few very well-studied regions that represent only a small fraction of the ocean) in the regression. We did consider training the metamodel over a much wider parameter space, however, without a consistent carbonate-chemistry inputs and site-specific constraints, very broad ranges in POC,

FPIC and Ω Ca can generate physically unrealistic combinations (for example, low forced calcite saturations states with, very high PIC fluxes and low pressure). As all simulations performed are the basis of the metamodel, RADIv2 has not yet been tested in such regions, and the metamodel will lack implicit representation of these settings (as is also the case for deltas and very shallow regions, noted by Reviewer 2). We agree that extending the training domain towards more different environments is a logical next step and would improve the ability of the metamodel to perform better in these regions.

In the revised Discussion we now explicitly state that the present metamodel lacks representation of environments such as carbonate-rich tropical shelves. We also highlight that training on a wider, yet physically consistent, ensemble of simulations is a key avenue for future improvement, especially for more localized applications.

The explanation of how the metamodel was developed is now more explicitly stated in **L322**: The same ensemble of RADIv2 fluxes forms the basis of the metamodel introduced in the next section.

And in **L413:** The metamodel is calibrated by fitting it to RADIv2 benthic fluxes from the ensemble simulations summarized in Table 2 and Figures 2–5, i.e., the same experiments used to evaluate RADIv2 against observations.

The limitations of the trained dataset for the metamodel are now added to the discussion starting in **L502**: However, the present training and validation set primarily samples temperate shelves, margins, and deep-sea settings, and does not explicitly include environments such as deltaic systems, very shallow nearshore regions, or carbonate-rich tropical shelves. Expanding the training ensemble to a wider, yet physically consistent, range of bottom-water conditions and particulate fluxes, that can also be validated with in-situ observations, represents an important future improvement, especially for more localized applications.

RC1: I think the structure of the paper could be changed slightly to improve clarity. Section 3.1 to 3.5 are all about model validation, so I would suggest renaming section 3 to model validation. I would then add a distinct metamodel section, which could include parts of what is written in section 3, and 3.6

AC: We agree with the reviewer that this improves the clarity of the paper. Section 3.1 to 3.5 have been renamed to as model validation and a distinct metamodel section (section 4) is added for what was previously section 3.6. Moreover, in the revised manuscript, sections 3.1 and 4 has been adapted, such that sections 3.1 now more refer to the the validation of RADIv2 against insitu measurements, without emphasis on the metamodel. The metamodel introduction and explanation has been moved to section 4.

RC1: Overall, I think this is a strong piece of work that highlights a path forward and makes valuable contributions towards addressing a large problem in current GOBMs. The

suggestions above are intended to help strengthen the validation and discussion in order to further improve the work and maximize its impact. I congratulate the authors for tackling this difficult problem, and look forward to seeing this work develop further.

Specific comments

RC1: Line 59: generic is repeated twice

AC: Thank you, repetition is removed.

RC1: Line 107: How is this incorporated within RADIv2? Manually setting them based on literature values?

AC: The reactivity of the OM pools can be set manually, for example based on literature values or measurements, or it can be calculated from the empirical flux relationship used in RADIv1 (tuned for deep-sea settings). We now have more explicitly stated this starting from **L107:** The rate constants for the fast and slow organic carbon pools can be specified directly by the user, for example based on literature values or in-situ measurements, or they can be diagnosed from the empirical flux relationship used in RADIv1 (tuned for deep-sea settings (Sulpis et al., 2022)).

RC1: Line 112: Does RADIv2 use the same carbonate dissolution/precipitation scheme as RADIv1? If so, I think it's worth stating here, as RADIv1 is setup for relatively cold temperatures. If not, I think it would be useful to describe the differences given the importance of precipitation and dissolution to sediment biogeochemistry.

AC: RADIv2 uses the same carbonate dissolution/precipitation scheme as RADIv1. In both versions, calcite dissolution is represented with rate laws based on the Naviaux et al. (2019) experiments, which were carried out at 5 °C in seawater and provide what we consider to be the most comprehensive set of kinetic constraints currently available. However, we agree that the underlying empirical laws are best constrained for cold conditions, and do not explicitly resolve all possible temperature and undersaturated Ω regimes (e.g. the transition between step retreat, defect-assisted etch pits and homogeneous etch pit formation at higher temperatures and Ω < 1, as discussed by Naviaux et al. 2019).

We have clarified this in the revised manuscript by explicitly stating that RADIv2 inherits the RADIv1 carbonate dissolution/precipitation scheme in **L112**: RADIv2 uses the same carbonate dissolution—precipitation scheme as RADIv1, non-linear kinetics for both calcite and aragonite dissolution described by Naviaux et al. (2019) and Dong et al (2019).

RC1: Line 256: Move the first bracket to after ITTC et al., so that it reads ... ITTC et al., (2011).

AC: Thank you for noticing this. We have changed the in-text citation accordingly.

RC1: Line 296: It could be helpful to be a bit more specific here. Is it the climate change-induced warming itself that could outpace the capacity, or is it the effects of warming? If so, what effects specifically?

AC: Our intention was to refer to the effects of warming on methane cycling, rather than to temperature alone. Warming can enhance methane production and upward transport in sediments, whereas the anaerobic oxidation of methane (AOM) is not found to become more efficient with increasing temperature. As a result, the warming-induced increase in methane supply can outpace the capacity of AOM to consume it, allowing a larger fraction of seafloor methane emissions to bypass the sedimentary filter.

We have now explained this more explicitly in **L296**: However, recent studies suggest that anaerobic oxidation of methane does not become substantially more efficient with warming, whereas warming can enhance methane production within the sediments (Stranne et al., (2022). As a result, a larger fraction of climate-driven seafloor methane production may bypass the sedimentary filter and reach the water column.

RC1: Line 336:

AC: Empty comment.

RC1: Line 348: A citation would be handy for the 12 mmol C m⁻² d⁻¹ number.

AC: We agree with the reviewer. This value is from Berelson et al. (2003) and added in the text.

RC1: Line 392: The text refers to Luff et al. (2000) while the figure reports values from Epping et al. (2002). Should there be another reference in here?

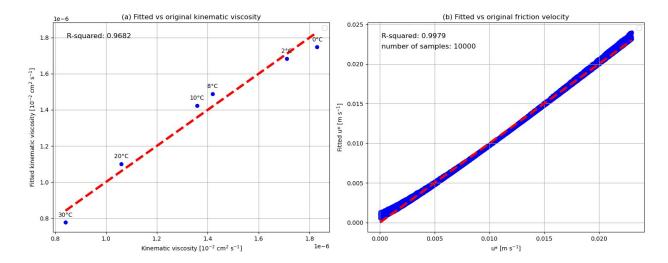
AC: Line 392 refers to the Arabian Sea stations shown in Fig. 5a–b, where the observations come from Witte and Pfannkuche (2000) and the subsequent modelling study by Luff et al. (2000). The Iberian Margin data from Epping et al. (2002) are used separately in Fig. 4, not in Fig. 5.

RC1: Line 426: Capitalise the T variables.

AC: Thank you for noticing this. We have capitalized the T variables in Eq. 21-23.

RC1: Line 457: By keeping track of organic carbon pools with different labilities, won't RADIv2 capture some of this implicitly? The more labile stuff will be consumed closer to the surface, resulting in a reduction in lability with depth.

AC: Yes, that is correct. RADIv2 does implicitly capture part of the depth structure in organic matter lability. The two-G formulation with a fast and a slow pool naturally leads to vertically structured degradation: the more labile pool is consumed near the sediment—water interface, and deeper layers have less reactive carbon. In that sense, the bulk effective reactivity of total POC

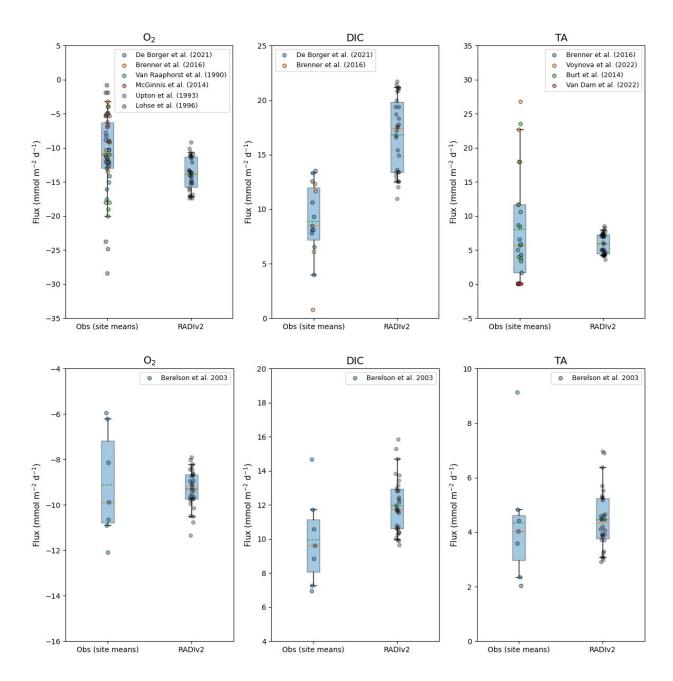

indeed decreases with depth. However, reactivity of each pool (k_fast, k_slow) is fixed, and does not change with depth or time. This means that ageing and progressive "internal" loss of reactivity within a given pool are not represented. Moreover, in heterogeneous or poorly mixed sediments, or in settings with highly reactive, pulsed inputs, Kuderer and Middelburg (2024) have shown that reactivity with depth is better described by continuous reactivity models (i.e. a spectrum of k-values or power-law decay), rather than a small number of fixed-k pools.

We have clarified this starting from **L454**: This approach to organic matter degradation produces a vertical structure in bulk (apparent) reactivity: the more labile pool is preferentially consumed near the sediment—water interface, so deeper layers are dominated by less reactive carbon. This is sufficient for well-mixed sediments, where organic carbon reactivity is relatively constant within the mixed layer (Kuderer and Middelburg, 2024). However, experimental studies (Westrich and Berner, 1984), field observations (Jorgensen, 1978), and recent theoretical advances (Rothman, 2024) have shown that organic carbon reactivity often declines continuously with degradation. In RADIv2 each organic-matter pool has a fixed degradation rate constant, and degradation does not weaken with depth or time. The work of Kuderer and Middelburg (2024) summarizes the conditions under which different degradation kinetics are suitable, and highlights the need to model organic carbon reactivity as a continuum that declines with age and burial depth in regions that receive highly reactive OM or poorly-mixed environments, rather than a small number of fixed-k pools. Incorporating such an approach into RADIv2 would enhance its ability to simulate organic matter degradation under a broader range of marine sediments.

Figures & tables

RC1: Figure 1: The fitted line in 1a is difficult to make out. It might be worth changing the colour and style so it stands out a bit more. Switching the panels may also improve the flow so that they appear in the order that they're discussed.

AC: Yes, we agree. Panels (a) and (b) have been swapped, in-text references to them changed accordingly and the fitted line has increased line width.


RC1: Figure 2: Changing the x axis labels so they're in alphabetical order would make it easier to find the reference each bar refers to. You could also put all of the references in a single table, either in the text or supplementary, so that you didn't have to list them in each caption.

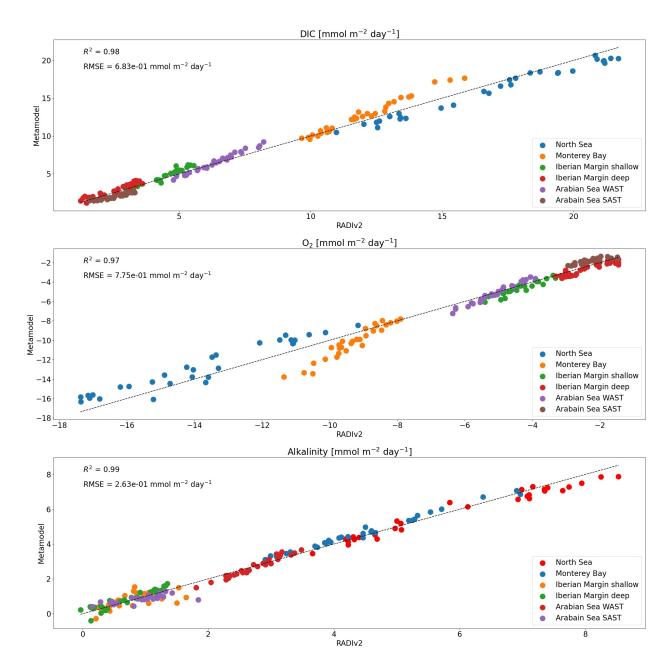
AC: With the new Figures (2-5) that better show how the model relates to the observations, the citations are no longer on the x-axis but now in the legend of the Figures.

RC1: If the data's available and n is large enough that they're not too noisy, it would be interesting to see the bars as violin plots to better get a sense of the data. Are the long tails in the in situ data caused by just a few extreme points, or do some of these data sets of some kind of bimodality? Are the RADIv2 results relatively normal?

AC: This is a great suggestion, but for most of the literature datasets we use, we do not have access to the raw time series. The published values are typically site-mean fluxes with an associated standard deviation. As a consequence, we do not know the full shape of the underlying distributions, and we cannot construct "true" violin plots or perform hypothesis tests at the level of individual measurements without generating pseudo-data and making additional assumptions about the underlying variability and sampling design.

To improve the comparison and better convey how the model relates to the observations, we have revised the all Figures (2-5) that show model—data flux comparisons. Instead of simple range bars, we now plot a boxplot of the site-wise fluxes and overlay points for each observational site, colour-coded by dataset, using the published site means. This representation shows where the bulk of the observational fluxes lie, how different datasets contribute to the overall spread, and how the RADIv2 distribution overlaps with (or deviates from) this cloud of observations. Moreover, we have added the corresponding statistical results discussed in the previous response to the site-specific validation subsections (North Sea, Monterey Bay, Iberian Margin, and Arabian Sea) in the revised manuscript.

RC1: Could the table be presented as a figure as well? Given the number of different values reported it might make it easier to quickly compare different values.


AC: We explored several plotting options (grouped bars and point–range plots), but the strong heterogeneity between datasets (different numbers of sites and inconsistency in ranges and their uncertainties) made the graphical summaries hard to interpret. For this reason, we chose to retain the tabular format.

RC1: Figures 3-5: Same comment about violin plots, though I think a table's fine for just a few values. The figure panels for 4 and 5 could potentially be narrowed. The colours in figure 2 correspond to the parameter being plotted. It would be good to keep these colours consistent in the other plots.

AC: We agree with the reviewer that the comparison between modelled and observed fluxes can be strengthened. Given the limited number of site-mean values for these locations, we did not implement violin plots (see previous comment and response), but we now explicitly show all individual observational points in the panels, together with the model distributions.

RC1: Figure 6: The x labels have RADI2v instead of RADIv2. All the other figures with oxygen fluxes (which I think were into the sediment) have reported them as positive values while here they're reported as negative values. I think changing the other figures to have negative values would help make the presentation of this paper more consistent, and highlight that the oxygen fluxes are in the opposite direction to the TA and DIC fluxes.

AC: We thank the reviewer for pointing this out. The label has been corrected to "RADIv2" in the revised version. We agree that reporting O_2 fluxes as negative values is more clear, making the opposite direction of O_2 uptake (into the sediment) versus DIC and TA release explicit. We have therefore updated all figures to use a consistent sign convention, with O_2 fluxes shown as negative and DIC/TA fluxes as positive.

RC1: Table 2: Is saturation state calculated from TA and DIC? If so, it might be worth stating it specifically given the larger uncertainties that can occur if you calculate it from other pairs of parameters.

AC: In the revised manuscript we now explicitly state that Ω Ca and Ω Ar are computed from TA and DIC using a the CO2SYS carbonate chemistry routine and provide the Zenodo DOI for the CO2System.jl module starting in **L324:** For each site, the calcium carbonate state is computed from total alkalinity and dissolved inorganic carbon using the CO2SYS carbonate-chemistry routine (Humphreys et al., 2022), which solves the carbonate system with standard equilibrium constants and calcite/aragonite solubility products following Mucci (1983) and applies pressure

corrections following Ingle et al. (1973). The CO2System.jl module is available on https://doi.org/10.5281/zenodo.6395674.

RC1: It seems like all the organic carbon is now either fast or slow, whereas RADIv1 had refractory organic carbon. Has that been removed from the model? If so, I think this change should be mentioned somewhere.

AC: RADIv2 still allows for a refractory organic carbon pool. In the ensemble simulations presented in Table 2, we assume that the incoming organic matter flux is entirely partitioned into a "fast" and a "slow" reactive pool. Refractory organic carbon is included in the model structure, but its reactivity is fixed to zero, so it does not contribute to remineralization or benthic fluxes. This choice avoids ambiguity when applying the metamodel in larger-scale models: if the training were based on a total POC flux that included a refractory fraction, but the same fraction was not treated consistently in the host model, the predicted benthic fluxes would be systematically biased. Users who wish to track inert carbon inventories can still include a refractory fraction in RADIv2 applications.

We now mention that RADIv2 still includes a refractory carbon pool in **L104**: A refractory organic carbon pool is also retained in the model structure, but its reactivity is set to zero by default, so it does not remineralize. The refractory fraction can be prescribed as a user-defined fraction of the incoming POM rain, in which case it mainly affects sediment burial rates (computed from the total particulate rain to the sediments) and the bulk carbon content of the sediment column.

And further explain that only reactive OM is considered in the ensemble runs for the metamodel starting in **L324:** For the metamodel training ensembles, we set the refractory fraction of particulate organic matter to zero and treat all incoming POM as reactive (assigned to the fast or slow pools), because the POM flux, converted to POC according to a fixed stoichiometry, is used directly as a predictor. In RADIv2, refractory organic carbon does not contribute to benthic solute fluxes, so including a refractory fraction in the training data would introduce ambiguity when applying the metamodel in larger-scale models: if the training was based on a total POC flux that includes a refractory fraction, but the same fraction is not treated consistently in the host model, the predicted benthic flux