10

11

12

13

14

15

16

17

18

19

20

21
22

Atmospheric chemical processing dictates aerosol aluminum solubility: insights from

field measurement at two locations in northern China

Tianyu Zhang,*® Yizhu Chen,® Huanhuan Zhang,? Lei Liu,®> Chengpeng Huang,* Zhengyang
Fang,'? Yifan Zhang,®® Fu Wang,* Lan Luo,* Guohua Zhang,! Xinming Wang,® Mingjin

Tang*®"

1 State Key Laboratory of Advanced Environmental Technology and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute
of Geochemistry, Chinese Academy of Sciences, Guangzhou, China

2 Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China

3 Hangzhou International Innovation Institute, Beihang University, Hangzhou, China

4 Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen, China

® College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing,
China

® Institute of Surface-Earth System Science, School of Earth System Science, Tianjin
University, Tianjin, China

& Current address: Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-
0819, Japan

Correspondence: Mingjin Tang (mingjintang@126.com)


mailto:mingjintang@126.com

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Abstract

Deposition of mineral dust aerosol into open oceans greatly impacts marine
biogeochemistry and primary production, and the deposition rates can be constrained using
dissolved aluminum (Al) in surface seawater as a tracer. However, aerosol Al solubility, a
critical parameter used in this method, remains highly uncertain. This work investigated
seasonal variations of aerosol Al solubility for supermicron and submicron particles at two
locations (Xi’an and Qingdao) in northern China. Aerosol Al solubility was found to be very
low at Xi’an and much higher at Qingdao. Furthermore, seasonal variability of Al solubility,
its correlation with relative abundance of sulfate and nitrate, and its dependence on relative
humidity, are all different at the two locations. We suggest that all the features observed for
aerosol Al solubility at the two locations can be well explained by the effects of atmospheric
chemical processing. Mineral dust transported to Xi’an (an inland city in Northwest China)
was still not obviously aged and thus chemical processing had little effects on aerosol Al
solubility. After arriving

g at Qingdao (a coastal city in the Northwest Pacific), mineral dust was substantially aged
by chemical processing, leading to substantial enhancement in aerosol Al solubility. Our work
further reveals that aerosol liquid water and acidity play vital roles in the dissolution of aerosol
Al by atmospheric chemical processing. We suggest that spatial variation of aerosol Al
solubility should be taken into account so that oceanic dust deposition can be better constrained

using dissolved Al concentrations in surface seawater.
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1. Introduction

As an important type of tropospheric aerosols, mineral dust aerosol greatly impacts
atmosphere chemistry, climate, and ecological systems (Jickells et al., 2005; Tang et al., 2016;
Kok et al., 2023). After long-range transport, deposition of mineral dust into the oceans is a
major external source of several nutrient and toxic elements for surface seawater (Moore et al.,
2013; Westberry et al., 2023), impacting primary production and biogeochemical cycles in the
oceans and having further feedback on the climate system (Mahowald, 2011; Jiang et al., 2024).
The deposition flux of mineral dust aerosol into the oceans should be accurately estimated
before we can assess its impacts on marine biogeochemistry in a reliable manner (Schulz et al.,
2012; Anderson et al., 2016). Previous studies used several different methods to estimate dust
deposition fluxes and found large discrepancies (Huneeus et al., 2011; Anderson et al., 2016).

Deposition of mineral dust aerosol is the dominant source of dissolved aluminum (Al) in
the surface water of open oceans, and dissolved Al is generally considered to be chemically
and biologically inactive in seawater. As a result, dissolved Al concentrations in surface
seawater could be used to calculate dust deposition flux into the oceans (Measures and Brown,
1996; Measures and Vink, 2000), and the fractional solubility of aerosol Al (the fraction of
aerosol Al that can be dissolved) is one of the key parameters used in this method. Previous
studies which used this method to estimate dust depositions fluxes (Han et al., 2008; Measures
et al., 2010; Grand et al., 2015; Benaltabet et al., 2022) usually assumed uniform Al solubility
values in the range of 1.5-5%. However, field measurements found that aerosol Al solubility
could vary by more than an order of magnitude (Baker et al., 2006; Buck et al., 2013), and

thereby using a uniform aerosol Al solubility value could lead to large uncertainties in
3
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estimated dust deposition fluxes (Han et al., 2008; Xu and Weber, 2021). As a result, it is
important to understand the spatiotemporal variations of aerosol Al solubility and elucidate the
processes and mechanisms which drive such variations.

The initial Al solubility is generally low (typically <1.5%) for dust particles over desert
regions (Shi et al., 2011; Aghnatios et al., 2014; Li et al., 2022), and field studies found that
aerosol Al solubility in the troposphere could be much higher and showed wide variability. For
example, Al solubility ranged from 0.2-15.9% for total suspended particles (TSP) over the
Pacific (Buck et al., 2013), and were in the range of 3-78% over the Atlantic (Buck et al., 2010;
Chance et al., 2015). Some studies (Measures et al., 2010; Sakata et al., 2023) found good
correlations between dissolved aerosol Al (or Al solubility) and acid species in aerosol particles,
and thus suggested that chemical processes in the atmosphere could substantially enhance
aerosol Al solubility; furthermore, Li et al. (2017) found that Al solubility was remarkably
increased during cloud events when cloud processing enhanced the formation of secondary
inorganic ions (mainly sulfate and nitrate) and thus increased the acidity of cloud droplets.
However, Yang et al. (2023) found no correlations between Al solubility and the concentrations
of aerosol acidic species, and concluded that the effect of acid processing on Al solubility was
negligible. Aerosol Al solubility over the Atlantic appeared to be higher for air masses from
Europe than those from the Saharan region (Baker et al., 2006; L&pez-Garc m et al., 2017), and
some studies hypothesized that this could be potentially explained by the influence of
anthropogenic aerosol Al if it had higher solubility than mineral dust (Paris et al., 2010; Lpez-

Garcmetal., 2017).
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It can be concluded that although aerosol Al solubility in the atmosphere was explored by
several previous studies, our understanding is still very limited. For example, it remains unclear
why aerosol Al solubility shows large spatial and temporal variation. Some work suggested
that atmospheric chemical aging could enhance aerosol Al solubility, but the mechanisms and
key environmental factors have not been elucidated. Furthermore, the effects of particle size

on aerosol Al solubility have not been well understood.

130°E

Figure 1. A map of East Asia and surrounding areas. The two locations (Xi’an and Qingdao)
where we collected aerosol particles are highlighted. NDVI: normalized difference vegetation

index provided by MODIS (Moderate Resolution Imaging Spectroradiometer).

In this work, we collected supermicron (>1 um) and submicron (<1 pum) aerosol particles
at Xi’an and Qingdao, both located in northern China, and investigated seasonal variations of
aerosol Al solubility at these two locations. Taklimakan and Gobi Deserts in northwestern

China are two important source regions of Asian dust (Prospero et al., 2002). As shown in
5
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Figure 1, Xi’an is an inland city in northwestern China, and the aging extent of dust was found
to be quite limited at Xi’an due to its proximity of desert regions (Wang et al., 2014; Wu et al.,
2017). As Asian dust is transported eastward, it passes over the North China Plain where
anthropogenic emission is very high, and may become much more aged when arriving at
Qingdao, a coastal city of the Northwest Pacific (Li etal., 2014; Pan et al., 2017). By comparing
aerosol Al solubility at Xi’an and Qingdao, our work can provide valuable insights into how
and to which extent aging processes during long-range transport can change aerosol Al
solubility. Dust aerosol concentrations and meteorological conditions vary remarkably at
different seasons in Northern China; as a result, examining its seasonal variations provides a
good opportunity to understand the factors which regulate aerosol Al solubility.
2. Materials and methods
2.1 Sample collection

Samples were collected at two cities (Xi’an and Qingdao) in northern China at four
different seasons during 2021-2023 (Zhang et al., 2023; Chen et al., 2024), and further details
can be found in the supplement (Text S1 and Table S1). In brief, supermicron (>1 pm) and
submicron (<1 um) particles were simultaneously collected using a two-stage aerosol sampler
(TH-150C, Tianhong Co., China) which was operated at 100 L/min, and the sampling duration
was typically 23.5 hours for each pair of aerosol samples. Whatman 41 cellulose filters were
used for aerosol collection in our work, and they were acid-washed before being used for
aerosol sampling to reduce background levels (Zhang et al., 2022). A total of 126 and 106 pairs
of aerosol samples were collected at Xi'an and Qingdao, respectively (Zhang et al., 2023; Chen

et al., 2024). After collection, all the aerosol samples were stored at -20<C for further analysis.
6
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In addition to aerosol particles, we also sampled atmospheric acidic and alkaline gases
(mainly NHz, HCI and HNOs3) at Qingdao, using a ChemComb 3500 Speciation Collection
Cartridge (Thermo Fisher Scientific, USA) at a flow rate of 10 L/min (Walters and Hastings,
2018; Fang et al., 2025). Gas sampling was carried out concurrently with aerosol sampling. In
brief, NHs, HNO3z and HCI were absorbed onto the inner walls of two tandem honeycomb
diffusion tubes coated with proper adsorbents, and then converted into NH4", NOs™ and CI-.
After the sampling was completed, 20 mL ultrapure water was used to rinse each tube
immediately, and a PTFE membrane syringe filter (0.22 pum in pore size) was used to filter the
solution. The solution was then frozen at -20<C for further analysis.

2.2 Sample analysis and aerosol acidity calculation

Sample pretreatment and analysis were detailed in our previous work (Zhang et al., 2022),
and therefore are only briefly summarized here. The first half of a filter (and only one quarter
of a filter for supermicron particles) was shredded and digested in a Teflon jar using a
microwave digestion instrument. After digestion, the Teflon jar was filled with 1% HNO3 (20
mL), and a PTFE membrane syringe filter (0.22 um in pore size) was used to filter the solution;
subsequently, the solution was analyzed by inductively coupled plasma-mass spectrometry
(ICP-MS) to determine total concentrations of individual trace elements, including Al.

The other half of a filter was immersed in ultrapure water (20 mL) and stirred using an
orbital shaking for two hours; in the next step, the solution was filtered using a PTFE membrane
syringe filter (0.22 um in pore size) and divided into two parts. The first solution was acidified
to contain 1% HNO3s and subsequently analyzed by ICP-MS to determine the concentrations

of dissolved trace elements; the second solution was analyzed by ion chromatography (IC) to
7
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quantify the concentration of water-soluble cations and anions.

The solutions obtained from honeycomb diffusion tubes (see Section 2.1 for more details)
were also analyzed using IC to determine the concentrations of gaseous NHs, HCI and HNO3
in the atmosphere. ISORROPIA-I11, a widely used aerosol thermodynamic model (Fountoukis
and Nenes, 2007), was employed in this work to calculate the acidity of supermicron and
submicron particles. It was operated in the forward mode, and aerosol particles were assumed
to remain metastable. Input parameters included concentrations of water-soluble ions in aerosol
particles and gaseous NH3z, HCI and HNOs, temperature and relative humidity (RH). Our
previous work found good agreement between measured and calculated NHsz partitioning
coefficients at Qingdao (Fang et al., 2025), and as a result the method we used could well
estimate the acidity of supermicron and submicron particles.

3. Results
3.1 Seasonal variations of total and dissolved aerosol Al
3.1.1 Total aerosol Al

Figure 2 displays seasonal variations of total and dissolved aerosol Al at Xi’an and
Qingdao. At Xi’an (Figure 2a), total Al in supermicron particles showed highest concentrations
in spring and winter (1.54+0.89 and 1.91+0.93 ug/m®) and lowest concentrations in summer
(0.9640.54 ng/m®); a similar seasonal pattern was observed for submicron particles, with total
Al concentrations being highest in spring and winter (4.2943.70 and 2.92+1.47 ug/m®) and
lowest in summer (0.9540.44 pg/m®). At Qingdao (Figure 2b), total Al concentrations in
supermicron particles were highest in spring (1.0421.12 ug/m®) and lowest in summer and

autumn (0.33240.18 and 0.31#0.12 pg/m®); similarly, for submicron particles, total Al
8
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concentrations were also highest in spring (1.8842.51 pg/m®) and lowest in summer and
autumn (0.3520.22 and 0.6540.82 pg/m®). For each season the median concentration of total
aerosol Al was usually higher in submicron particles than supermicron particles at both
locations (and there were some exceptions, as shown in Figures 1a and 1b). This is related to
size dependence of mineralogy and elemental compositions of mineral dust aerosol, which is

not well studied and deserves further investigation.

(a) Xi'an (b) Qingdao
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Figure 2. Seasonal variations of total and dissolved aerosol Al for submicron and supermicron
particles: (a) total Al at Xi’an; (b) total Al at Qingdao; (c) dissolved Al at Xi’an; (d) dissolved

Al at Qingdao.

Overall, total aerosol Al concentrations showed similar seasonal variations at Xi’an and
9
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Qingdao, being highest in spring and lowest in summer. This was consistent with previous
studies carried out in other locations in East Asia, such as Zhengzhou (Wang et al., 2019),
Beijing (Zhang et al., 2013), Huaniao Island in the East China Sea (Guo et al., 2014), and Japan
(Sakata et al., 2023). In East Asia, mineral dust aerosol was emitted into the atmosphere mainly
in spring, leading to the increase in total aerosol Al concentrations. Lowest concentrations of
total aerosol Al were observed in summer because precipitation in Northern China mainly
occurred in summer, leading to enhanced wet deposition of aerosol particles (Cao and Cui,
2021). Furthermore, Qingdao was frequently affected by marine air masses in summer, and
this is also one reason why total aerosol Al concentrations were lower in summer than other
seasons. Total aerosol Al concentrations were higher in winter than summer and autumn at
Xi’an, and one major reason is that meteorological conditions favored the accumulation of
aerosol particles (including aerosol Al) during winter (Cao and Cui, 2021).

As summarized in the supplement (Table S2), total aerosol Al concentrations exhibited
evident spatial variations in East Asia. As Asian dust was transported eastward to the North
Pacific, a clear decrease in aerosol Al concentrations was observed. Mineral dust was the
dominant source for aerosol Al, and therefore concentrations of aerosol Al were found to be
very high in desert regions. For example, total Al concentrations in TSP could reach 24 pg/m®
over the Taklimakan Desert (Zhang et al., 2003). In our current study, annual average total Al
concentrations at Xi’an, an inland city close to the desert, were reported to be 1.4240.86 and
2.28+2.35 ug/m? for supermicron and submicron particles, much lower than that observed over
the Taklimakan Desert. Further decrease in total Al concentrations was observed in coastal and

oceanic regions. For example, our work found that the annual average total Al concentrations
10
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were 0.56+0.75 and 1.08+1.67 pg/m? for supermicron and submicron particles at Qingdao,
lower than those at Xi’an; total Al concentrations in TSP ranged from 0.17 to 1.72 pg/m? in
Hiroshima (Sakata et al., 2023), and further decreased to 1-56 ng/m? in Hawaii in the central
Pacific (Measures et al., 2010).

3.1.2 Dissolved aerosol Al

At Xi’an (Figure 2c), for supermicron particles, dissolved aerosol Al concentrations were
highest in spring (23.1#10.9 ng/m®) and lowest in summer and autumn (15.048.7 and 13.248.6
ng/m3); for submicron particles, dissolved Al concentrations were also highest in spring
(65.4479.2 ng/m3F and lowest in summer and autumn (23.2423.4 and 22.6420.1 ng/mq). Total
(Figure 2a) and dissolved aerosol Al (Figure 2c) showed similar seasonal patterns at Xi’an,
indicating that dissolved aerosol Al was mainly regulated by total aerosol Al.

As shown in Figure 2d, the average dissolved aerosol Al concentrations were 8.8410.8,
12.8+#11.1, 7.9410.5 and 12.84#12.9 ng/m? for supermicron particles at Qingdao in spring,
summer, autumn, and winter, respectively, and 8.745.8, 10.248.2, 6.044.8 and 14.5#15.2 ng/m®
for submicron particles. Dissolved aerosol Al concentrations were highest in summer and
winter and lowest in autumn for both supermicron and submicron particles. In contrast to Xi’an,
total and dissolved aerosol Al at Qingdao showed different seasonal patterns (Figures 2b and
2d); for example, total Al concentrations were lowest in summer at Qingdao when dissolved
Al concentrations were highest. This indicates that dissolved aerosol Al at Qingdao was not
only regulated by total aerosol Al but also affected by other factors such as atmospheric aging
processes.

Compared to Xi’an, dissolved Al concentrations at Qingdao were lower across all the four
1
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seasons, mainly because total Al concentrations were much lower at Qingdao (Tables S3-S4 in
the supplement). As shown in Figure 2, similar seasonal patterns were observed at two
locations for total aerosol Al, but dissolved aerosol Al showed very different seasonality; this
suggests that seasonal patterns of aerosol Al solubility were different at Xi’an and Qingdao, as
presented in Section 3.2.
3.2 Fractional solubility of aerosol Al
3.2.1 Seasonal variations of Al solubility

Figure 3 displays aerosol Al solubility in different seasons at Xi’an and Qingdao. The
median solubilities of aerosol Al were determined to be 1.38%, 1.59%, 1.04% and 1.01% for
supermicron particles at Xi’an in spring, summer, autumn and winter, respectively, and 1.01%,
1.69%, 1.82% and 0.74% for submicron particles. Aerosol Al solubilities were generally low
for the four seasons at Xi’an, showing no apparent variation with seasons (Figure 3a). In
contrast, aerosol Al solubilities exhibited distinct seasonal variability at Qingdao (Figure 3b),
and the median Al solubilities were highest in summer (3.56% and 2.33%) and lowest in spring

(0.54% and 0.61%) for both supermicron and submicron particles.

(a) Xi'an (b) Qingdao
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Figure 3. Seasonal variations of aerosol Al solubility for submicron and supermicron particles
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at (a) Xi’an and (b) Qingdao.

In three seasons (summer, autumn and winter), aerosol Al solubility at Qingdao was
higher than that at Xi’an (Figure 3, Table S5). There are several important dust sources in
Northwest China, being far from (up to a few thousand km) or close to Xi’an. More importantly,
anthropogenic emission in Northwest China is much smaller than the North China Plain, and
thus the aging extent of mineral dust transported to Xi’an was rather limited (Wang et al., 2014;
Wau et al., 2017). On the contrary, Qingdao is much farther from deserts; consequently, after
long-distance transport over the North China Plain where anthropogenic emission is very large,
mineral dust aerosol which arrived at Qingdao was substantially aged (Trochkine et al., 2003;
Takahashi et al., 2011; Jeong, 2020), thereby leading to enhanced dissolution of aerosol Al and
thus the increase in Al solubility. Mineral dust from different desert regions and local
suspended dust cannot explain higher Al aerosol solubility observed at Qingdao, as previous
work showed that Al solubility was low for soil samples from different regions (Shi etal., 2011;
Wauttig et al., 2013; Aghnatios et al., 2014; Li et al., 2022; Hsieh et al., 2023).

On the other hand, no obvious difference in aerosol Al solubility was observed between
Xi’an and Qingdao in spring, with median aerosol Al solubilities being <1.4% for supermicron
and submicron particles (Figure 3). This agrees with a previous study (Hsu et al., 2010) which
found that aerosol Al solubility was very low (average: ~0.7%) in spring even over the East
China Sea. Furthermore, similar to what we observed in spring at Xi’an and Qingdao, Al
solubility was found to be low (<1.5%) for surface soil particles collected from deserts (Shi et

al., 2011; Aghnatios et al., 2014; Li et al., 2022). Overall, our work implies that in spring when
13
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Asian dust occurred most frequently, mineral dust particles arriving at Qingdao after long-
distance transport did not show substantial increase in Al solubility.
3.2.2 Al solubility under different weather conditions

We encountered four representative weather conditions (i.e. clean, dust, haze and fog days)
during our sampling at Xi’an and Qingdao, and investigated aerosol Al solubility under
different weather conditions (Figure 4, Tables S6-S7).

At Xi’an, no apparent difference in Al solubility was observed during clean, haze, and
dust days (Figure 4a, Table S6), with median values in the range of 1.01-1.47% for supermicron
particles and 0.72-1.86% for submicron particles. Al solubility was found to be <1.2% for three
mineral dust samples (Luochuan loess, Arizona test dust, and dust collected during a dust storm
in Xinjiang) (Li et al., 2022), and ranged from 0.47% to 1.42% for aerosol particles generated
using soil samples from Saharan desert (Shi et al., 2011). Compared to mineral dust in source
regions, Al solubility was not higher under different weather conditions at Xi’an. In addition,
although emission and accumulation of anthropogenic pollutants was greatly enhanced during
haze days at Xi’an (An et al., 2019; Cao and Cui, 2021), there was no obvious increase in
aerosol Al solubility, indicating that the effects of anthropogenic emissions on aerosol Al
solubility was limited at Xi’an. Therefore, one may conclude that aerosol Al solubility at Xi’an

was not different from initial Al solubility of mineral dust.
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Figure 4. Aerosol Al solubility under different weather conditions for submicron and

supermicron particles: (a) Xi’an, (b) Qingdao.

Being different to Xi’an, aerosol Al solubility at Qingdao shows remarkable variations
under different weather conditions (Figure 4b, Table S7). Median Al solubilities were
determined to be 0.31% and 0.24% for supermicron and submicron particles during dust days,
lower than these on clean days (0.99% and 0.77%, respectively). This is probably because
higher wind speeds during dust events hindered the accumulation of atmospheric pollutants
and shortened the transport time to Qingdao, and thus limiting the aging of mineral dust aerosol.
This explanation is supported by a recent study (Zhang et al., 2024) which found that the aging
extent of dust particles in Japan was much lower during fast-moving dust events than slow-
moving dust events. Moreover, large amounts of alkaline components (such as carbonates)
which were emitted to the atmosphere during dust days neutralized acid species and therefore
inhibited acid-promoted dissolution of aerosol trace elements (Zhi et al., 2025).

Figure 4b also suggests that aerosol Al solubilities were much higher during haze and fog

days at Qingdao, when compared to clean days. Highest Al solubilities were observed during
15
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fog days, with median values being 6.90% for supermicron particles and 1.38% for submicron
particles, followed by haze days (3.64% and 1.58%, respectively). This is very likely due to
enhanced chemical processing during haze and fog periods (Shi et al., 2020; Shang et al., 2024),
and especially during fog days the large increase in RH cause huge increase in aerosol liquid
water, therefore greatly promoting aqueous reactions and Al dissolution. Acid and ligand
processing can both enhance aerosol Al solubility, although at present it is difficult to
disentangle their individual contributions.

In summary, aerosol Al solubility at Xi’an was low in general, and did not show much
variability in different seasons or under different weather conditions. Compared to Xi’an,
aerosol Al solubility was higher at Qingdao; furthermore, it was higher in the other three
seasons than in spring, and much higher for haze and fog days than dust days. These results
imply that atmospheric aging had little effects on aerosol Al solubility at Xi’an but could
remarkably increase aerosol Al solubility at Qingdao, as further elaborated in Section 4.

4. Discussion

As shown in Figure 5, our work observed the inverse dependence of aerosol Al solubility

on total Al concentrations at both Xi’an and Qingdao, given by Eq. (1):

fs(AD = a x [A]] 7 1)
where fs(Al) is aerosol Al solubility (%) and [Al] is total Al concentration (ng/m%). Such
relationship was also reported in some previous studies (Jickells et al., 2016; Shelley et al.,
2018; Baker et al., 2020; Shelley et al., 2025). Baker and Jickells (2006) suggested that such
inverse relationship was due to that larger particles have higher deposition velocities and lower

Al solubility: aerosol Al concentrations decrease during transport in the atmosphere due to
16
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deposition, with deposition being faster for larger particles; as a result, aerosol particles will be
enriched with smaller particles with higher Al solubility. However, Shi et al. (2011) found no
substantial change in Al solubility with particle size for mineral dust samples, and therefore

put the explanation proposed by Baker and Jickells (2006) into doubt.
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Figure 5. Aerosol Al solubility versus total aerosol Al concentrations: (a) submicron particles
at Xi’an, (b) supermicron particles at Xi’an, (C) submicron particles at Qingdao, (d)

supermicron particles at Qingdao.

Aerosol Fe solubility was also frequently observed to increase with the decrease in total

Fe concentrations (Sedwick et al., 2007; Mahowald et al., 2018; Meskhidze et al., 2019), and
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one possible reason is the influence of anthropogenic aerosol Fe (Sholkovitz et al., 2009; Ito
and Shi, 2016) with higher solubility than mineral dust (Schroth et al., 2009; Fu et al., 2012;
Ito et al., 2021). Nevertheless, being different from aerosol Fe, aerosol Al stems predominantly
from mineral dust, with little contribution from anthropogenic sources; furthermore, Al
solubility was measured to be 0.440.6% for coal fly ash (Li et al., 2022), an important type of
anthropogenic aerosols, not higher than that for mineral dust (0.840.4%). Therefore, we suggest
that anthropogenic emission may not be able to explain the inverse dependence of Al aerosol
solubility on total Al concentrations.

We argue that chemical processing in the atmosphere can very well explain such inverse
dependence. Total aerosol Al concentrations decrease with transport due to deposition, while
reactions with acidic gases (such as SO, and NOx) can enhance the dissolution of aerosol Al
(Jickells et al., 2016). Figure 5 shows that the inverse dependence of Al solubility on total Al
concentration was more pronounced at Qingdao, with the slopes (b values) much larger than
those obtained at Xi’an. This is because compared to Xi’an, Qingdao is more distant from
deserts and therefore dust aerosol is expected to be more aged at Qingdao. It also further
supports the vital role chemical aging plays in regulating aerosol Al solubility,

4.1 Effects of acid processing and the role of RH
4.1.1 Effects of acid processing

Laboratory experiments found that the amount of Al dissolved from minerals would
increase with the decrease in solution pH (Amram and Ganor, 2005; Bibi et al., 2011, 2014;
Cappelli et al., 2018), and some field measurements also suggested that acid processing in the

atmosphere could lead to large increase in aerosol Al solubility (Measures et al., 2010; Sakata
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et al., 2023). In this work, we examined the relationship between aerosol Al solubility and the
relative abundance of acidic species ([sulfate]/[Al] and [nitrate]/[Al]) at Xi’an and Qingdao. It
should be noted that non-sea-salts sulfate (Virkkula et al., 2006), instead of sulfate, was used
at Qingdao because it is a coastal city and heavily impacted by sea spray aerosol.

At Xi’an, overall aerosol Al solubility showed no significant correlation with [sulfate]/[Al]
or [nitrate]/[Al] for either supermicron or submicron particles (r < 0.4, Figure 6 and S1),
indicating that acid processing did not enhance aerosol Al solubility. Enhancement of aerosol
trace element solubility by acid processing requires internal mixing of acid species with mineral
dust particles (Baker and Croot, 2010). Previous studies suggested that mineral dust particles
observed at Xi’an which is close to deserts largely remained externally mixed with acid species
(Wangetal., 2014; Wu et al., 2017), and thus aerosol Al solubility was not apparently enhanced

by acid processing at Xi’an.
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Figure 6. Aerosol Al solubility versus [sulfate]/[Al]: (a) submicron particles at Xi’an, (b)
supermicron particles at Xi’an, (c) submicron particles at Qingdao, (d) supermicron particles

at Qingdao. Data represented by crosses are not included in fitting.

On the contrary, Figure 6 shows that aerosol Al solubility at Qingdao was well correlated
with [sulfate]/[Al] (r > 0.7, p < 0.01), implying that acid-promoted dissolution significantly
enhanced Al solubility. We also found that correlations of Al solubility with [sulfate]/[Al] was
better than those with [nitrate]/[Al] (Figures 6 and S1, Table S8), in line with a previous study
(Sakata et al., 2023) which found aerosol Al solubility at Hiroshima, southern Japan, to be

correlated with [sulfate]/[Al] but not with [nitrate]/[Al]. This may imply that chemical
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processing by sulfate was more important than nitrate for Al solubility enhancement via acid
processing, likely because aluminosilicate dust particles tend to react preferentially with SO>
and H2SO4 while nitrogen oxides react mainly with carbonate particles (Sullivan et al., 2007;
Fitzgerald et al., 2015). Furthermore, our work reveals better correlations between Al solubility
and [sulfate]/[Al] for supermicron particles than submicron particles (Figure 6), indicating that
the effect of acid processing on Al solubility was more important in supermicron particles.
4.1.2 The role of RH

Relative humidity (RH) is a vital factor influencing liquid water contents and phase state
of aerosol particles and thus their secondary chemistry. When RH increased >60%, the phase
state of aerosol particles in northern China changed from semisolid to liquid (Liu et al., 2017;
Sun et al., 2018; Song et al., 2022), leading to large increase in aerosol liquid water content and
thereby potentially affecting aerosol Al solubility.

We observed no apparent variation of aerosol Al solubility with RH at Xi’an (Figure 7a).
When RH was <60%, median Al solubilities for supermicron and submicron particles were
1.22% and 1.14%, respectively; when RH increased >90%, the median Al solubilities were
determined to be 1.82% and 0.82%, showing no obvious increase when compared to those at
<60% RH. This again may imply that chemical processing had very limited impact on aerosol
Al solubility at Xi’an, as mineral dust particles mostly remained externally mixed with

secondary species and their aging extent was very limited (Wang et al., 2014; Wu et al., 2017).
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397  Figure 7. Aerosol Al solubility at different relative humidity (RH) for submicron and
398  supermicron particles: (a) Xi’an, (b) Qingdao.

399

400 In contrast, RH played an important role in regulating aerosol Al solubility at Qingdao,
401  because mineral dust particles observed at Qingdao had been transported through the North
402  China Plain and were substantially aged. As shown in Figure 7b, for supermicron particles, the
403  median Al solubility was only 0.76% at <60% RH, and gradually increased to 4.73% at 80-90%
404 RH, and abruptly increased to 8.87% at >90% RH. For submicron particles, median Al
405  solubility was <1% at <60% RH, and further increase in RH to 80-90% did not lead to large
406  changes in Al solubility; nevertheless, when RH exceeded 90%, the median Al solubility was
407  remarkably increased to 4.02%, much higher than those observed when RH was < 90%.

408 4.2 Effects of aerosol acidity on aerosol Al solubility at Qingdao

409 Figure 8 shows the dependence of aerosol Al solubility on aerosol acidity (represented by
410 pH) at Qingdao (we did not measure NHs at Xi’an and thus could not estimate the aerosol

411  acidity in a reliable manner). For supermicron particles, the median Al solubility was only 0.99%
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when aerosol pH was >4.0, and gradually increased to 10.24% as aerosol pH was decreased to
<2.5. For submicron particles, the median Al solubility was only 0.69% when pH was >4.0,
increased slightly with the decrease in pH when pH was in the range of 2.5-4.0, and then
increased greatly to 6.09% when pH was decreased to <2.5. In addition, aerosol acidity at
Qingdao was highest in summer and lowest in spring (Chen et al., 2024), consistent with the
seasonal variation of aerosol Al solubility, further supporting the importance of aerosol acidity

in regulating Al solubility.
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Figure 8. Aerosol Al solubility corresponding to different aerosol acidity for submicron and

supermicron particles in Qingdao.

As shown in Figure S2, aerosol Al solubility was generally <2% when aerosol acidity was
low (pH > 4.0), and higher Al solubility (>2%) was usually observed for samples with high RH
and high acidity (pH < 4.0), again underscoring the roles of aerosol acidity (and RH). However,

some samples exhibited low Al solubility although the corresponding RH and aerosol acidity
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were both higher, and such phenomenon was more pronounced for submicron particles. This
is very likely linked with aerosol mixing state (Riemer et al., 2019). Aerosol Al solubility and
acidity used in our work are both the average properties of an aerosol sample which contains
numerous particles, while in reality the two properties will have large particle-to-particle
variations. For a given aerosol sample, it can happen that particles with high acidity may
contain very little Al while particles with low acidity are enriched in Al; in this case, high
acidity do not promote Al solubility for this sample. Single particle analysis which provides
mixing state information can give further insights. We also note that samples with low Al
solubility but high RH and high acidity were mostly found in clean days, perhaps due to the
influence of local resuspended dust for which chemical aging was very limited.
4.3 Size-dependence of aerosol Al solubility

At Xi’an, no obvious difference in aerosol Al solubility was found between supermicron
and submicron particles across all the four seasons (Figure 3a). This is because the aging extent
of dust particles was rather limited at Xi’an (Wang et al., 2014; Wu et al., 2017) and Al
solubility does not vary with particle size for unaged dust particles (Shi et al., 2011). At
Qingdao, aerosol Al solubility showed no obvious difference between supermicron and
submicron particles in spring, because the aging extent of dust arriving at Qingdao was also
limited in spring when Asian dust occurred most frequently. However, in the other three
seasons, Al solubility was higher for supermicron particles than submicron particles at Qingdao,
and the ratios of median Al solubility in supermicron particles to that in submicron particles

were found to be 1.53, 1.70 and 2.57 in summer, autumn and winter, respectively. Similar to

24



448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

our observation at Qingdao, Li et al. (2017) found that aerosol Al solubility was much higher
for TSP (14-28%) than PM25 (2-23%) at the summit of Mount Heng, southern China.

On the other hand, a few other studies (Baker et al., 2020; Hsieh et al., 2023; Sakata et al.,
2023; Yang et al., 2023) found that aerosol Al solubility was higher in fine particles than coarse
particles. For example, aerosol Al solubility was found to increase with the decrease in particle
size over the tropical eastern Atlantic (Baker et al., 2020), being ~10.31% for particles in the
size of 0.36-0.61 um and 0.43-4.53% for particles above 0.61 um. At Hiroshima, southern
Japan, aerosol Al solubility was reported to be 8.8246.48% for fine particles (<1.3 um), more
than two times larger than that (3.2543.41%) for coarse particles (>1.3 um) (Sakata et al., 2023).
Baker and Jickells (2006) suggested that this is because fine particles have larger surface-to-
volume ratios and thus facilitate Al dissolution via acid processing. Hsieh et al. (2023) found
aerosol Al solubility to be 38% for fine particles (0.57-1.0 um) but only 0.37% for coarse
particles (>7.3 um) over the East China Sea, and suggested that the observed size-dependence
could be explained by the enrichment of anthropogenic Al (which has higher solubility than
dust Al) in fine particles. However, aerosol Al originates predominantly from mineral dust,
with little contributions from anthropogenic sources (Taylor and McLennan, 1985; Mahowald
et al., 2018), and fractional solubility of anthropogenic Al was not necessarily higher than
mineral dust (Li et al., 2022).

As discussed above, there is not clear yet how and why aerosol Al solubility varies with
particle size. Such discrepancy is at least partly because different leaching protocols were used
in previous studies to extract dissolved aerosol Al and thereby Al solubility obtained in

different studies was not directly comparable (Meskhidze et al., 2019; Li et al., 2023; Li et al.,
25
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2024). Furthermore, mechanistic insights can be obtained by laboratory experiments which
examine the size dependence of the solubility and dissolution kinetics of Al for mineral dust
particles under atmospherically relevant conditions.

5. Conclusions and atmospheric implications

Deposition of mineral dust aerosol is a major external source of several nutrient and toxic
elements for surface water in open oceans, and thus have large impacts on marine
biogeochemistry; however, previous studies which estimated dust deposition flux into the
oceans reveals large discrepancies. Aerosol Al solubility, which is a critical parameter in using
dissolved Al concentrations in surface seawater as a tracer to constrain dust deposition flux,
remains poorly understood. In this work, we investigated seasonal variations of aerosol Al
solubility for supermicron (>1 pm) and submicron (<1 pum) aerosol particles at Xi’an and
Qingdao, both located in northern China, in attempt to elucidate the processes and mechanisms
which govern the variation of aerosol Al solubility in the atmosphere.

At Xi’an, aerosol Al solubility was low in general for both supermicron and submicron
particles, showing no obvious variability in different seasons or under different weather
conditions. This implies that chemical processing did not substantially enhance aerosol Al
solubility at Xi’an, as it is an inland city close to major deserts in northwestern China and thus
the aging extent of mineral dust particles arriving at Xi’an was quite limited. Compared to
Xi’an, aerosol Al solubility was higher at Qingdao, a coastal city in northern China;
furthermore, Al solubility was higher in the other three seasons than in spring, and much higher
for haze- and especially fog-impacted days than dust days. This indicates that chemical

processing substantially increased aerosol Al solubility at Qingdao.
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Aerosol Al solubility at Xi’an showed no significant correlation with relative abundance
of sulfate or nitrate, and did not vary apparently with RH; in contrast, Al solubility at Qingdao
was well correlated with relative abundance of sulfate and nitrate, and increased with RH. This
further supports that chemical processing had little impacts on aerosol Al solubility at Xi’an
(because the aging extent of mineral dust aerosol at Xi’an is very limited) but remarkably
increased aerosol Al solubility at Qingdao (because mineral dust particles transported to
Qingdao were substantially aged). Moreover, for both supermicron and submicron particles,
Al solubility at Qingdao was found to increase with aerosol acidity (in addition to RH),
underscoring the vital role of aerosol liquid water and acidity in enhancing Al dissolution via
chemical aging.

Our comprehensive investigation of aerosol Al solubility at two locations in Northern
China suggests that atmospheric chemical processing dictates aerosol Al solubility. As a result,
aerosol Al solubility is expected to spatially variable, depending on the extent of chemical
processing. For example, we found that aerosol Al solubility is higher at Qingdao than Xi’an
in general, and expect it to increase further as mineral dust aerosol is further transported
eastward to the Pacific. As a result, when leveraging dissolved Al concentrations in surface
seawater as a tracer to estimate deposition flux of mineral dust aerosol into open oceans,
considering the spatial distribution of aerosol Al solubility, instead of using a uniform value on

the global scale, can help us better constrain the oceanic deposition flux of mineral dust.
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