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Abstract. Microbial communities, comprising phototrophic and heterotrophic microorganisms, play a crucial role in global

biogeochemical cycles. However, existing biogeochemical models rarely take into account the complex interactions between

these groups, usually focusing on competition for resources. In this work, we introduce the Microbial Community Model

(MCoM), a framework for simulating the dynamics of diverse microbial communities. MCoM incorporates a wide range of in-

teractions, such as cross-feeding, metabolite effects, and competition for nutrients. The model differentiates between dissolved5

organic nutrients (DON) and carbon (DOC), accounts for phytoplankton and heterotrophic bacterial species-specific organic

matter release and uptake profiles, and simulates the impacts of bacterial metabolites on phytoplankton growth. Implemented

as a box model, MCoM tracks phototrophic and heterotrophic biomass, active metabolites, DOC, DON, and inorganic nutri-

ents through non-linear differential equations, enabling the exploration of emergent properties and feedbacks. We demonstrate

the model’s capabilities through simulations of experimental data of pairwise co-cultures of heterotrophic and phototrophic10

microorganisms, and find overall good agreement. Due to the scalable implementation, interaction matrices for larger, i.e. hun-

dreds, of microbial groups can easily be realised. We show examples for such applications of MCoM in assessing emergent

dynamics, including periodic succession patterns and multi-stability. MCoM provides a versatile, scalable, and customizable

platform for assessing the range from pairwise interactions to complex microbial communities and their impact on biogeo-

chemical fluxes.15

1 Introduction

Microorganisms are the main driver of global biogeochemical cycles of major elements such as carbon, nitrogen and phos-

phorus. The microbially mediated turnover of these elements does not happen in isolation, because microorganisms live in

diverse, interacting communities. The study of such communities in oceanic ecosystems and their adequate representation in

biogeochemical models is key to understanding global elemental cycles, which in turn are crucial for the Earth’s ecosystems20

and the habitability of the planet (Tagliabue, 2023). Arguably the two most fundamental roles in these ecosystems are primary
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producers that fix inorganic carbon and nutrients into organic biomass by photosynthesis, and their counterparts, heterotrophic

organisms that decompose organic matter back to CO2 and inorganic nutrients. Biogeochemical models are powerful tools to

quantify elemental fluxes mediated by these microorganisms at various scales. They can generally achieve good agreement

with observations in terms of common macronutrients and carbon reservoirs (e.g., Friedrichs et al., 2007; Séférian et al., 2012),25

and a biogeochemical component is a central part of state-of-the-art global Earth System Models.

Interactions between phototrophic and heterotrophic microorganisms are widespread, and can comprise positive and nega-

tive interactions at the same time (Cirri and Pohnert, 2019; Kost et al., 2023). On one hand, the growth rates of heterotrophic

consumers are primarily driven by the availability of organic matter, which is synthesized from inorganic nutrients and carbon

by phytoplankton populations. A key factor influencing the composition of the heterotroph community is the specific compo-30

sition of the organic material produced by phytoplankton, which varies between species (Sarmento et al., 2013; Becker et al.,

2014; Mühlenbruch et al., 2018) and favors different consumers that are adapted to specific compounds (Teeling et al., 2012;

Sarmento et al., 2013; Elovaara et al., 2021). Phytoplankton not only release DOM through the breakdown of previously as-

similated biomass but also exude excess of newly fixed carbon (Myklestad, 2000; Thornton, 2014). The composition of these

exudates can vary significantly depending on environmental conditions, phytoplankton species, and growth phase, further in-35

fluencing the dynamics of heterotrophic bacterial communities (Buchan et al., 2014), and the elemental ratios of this organic

matter is influenced by the factor limiting their growth, resulting in varying carbon-to-nutrient ratios (Saad et al., 2016). On the

other hand, phototrophs rely on the recycling of organic matter that provides new nutrients, a process mediated by heterotrophic

organisms.

A main limitation of traditional biogeochemical modelling approaches is their focus on competition for resources among40

microbes, mainly phytoplankton, neglecting widespread experimental evidence that interactions between phototrophs and het-

erotrophs comprise positive, neutral and negative interactions resulting from cross-feeding or metabolite exchange (Sher et al.,

2011; Seymour et al., 2017; Cirri and Pohnert, 2019). For example, certain bacteria release siderophores, which can either se-

quester iron, limiting its availability to phytoplankton or make it more accessible (Maldonado and Price, 1999; Kazamia et al.,

2018). Other bacteria produce algicides (Coyne et al., 2022), while some synthesize beneficial metabolites such as vitamin B1245

(Sultana et al., 2023), or hormones like auxins (Amin et al., 2015). Further, heterotrophic bacteria may relieve oxidative stress

on phytoplankton by degrading reactive oxygen species, e.g., hydrogen peroxide (Morris et al., 2022).

These microbial interactions are ubiquitous, and systematically affect the rates of growth and elemental turnover of microor-

ganisms and, hence, biogeochemical fluxes (Seymour et al., 2017). Even though these interactions occur on cellular scales,

they may have cascading effects on the entire ecosystem with consequences for carbon cycling and, ultimately, climate reg-50

ulation. However, a mathematical framework on how to incorporate these widespread microbial interactions and link it to

elemental turnover is missing, hampering our ability to systematically assess their community-level effects. Existing theoreti-

cal approaches have started including cooperation (De Mazancourt and Schwartz, 2010) or facilitation (Koffel et al., 2021) into

consumer-resource theory, but have not yet been applied in biogeochemical modelling. To address the middle ground between

purely theoretical and species specific models, we present the Microbial Community Model (MCoM), which is designed to55

simulate the dynamics of microbial communities, encompassing both phototrophic and heterotrophic populations and account
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Figure 1. Model structure as flux diagram between different pools included in MCoM: phototrophic (P ) and heterotrophic (H) populations,

DOM (dissolved organic carbon, DOC, and nutrient, DON), metabolites (M ), and inorganic nutrient (DIN). Schematic networks on links

indicate complex connectivities between the components of the aggregate pools. Phytoplankton populations consume dissolved inorganic

nutrients, are affected by bacterial metabolites, and release dissolved organic matter. Heterotrophic bacteria consume and release (differently

composed) DOM, and consume or produce inorganic nutrient, depending on the availability of DON. Further, heterotrophs may release

metabolites affecting phytoplankton growth.

for various types of interactions. MCoM incorporates features such as the differentiation of dissolved organic nutrients (DON)

and carbon (DOC), DOM release profiles of phytoplankton and heterotrophic bacterial species, DOM preference profiles of

heterotrophs, as well as the positive or negative impacts of bacterial products on phytoplankton growth. Additionally, the

model accounts for competition for inorganic nutrients, excess production of DON and DOC by phytoplankton, and excess60

remineralization of DON by heterotrophic bacteria. Currently implemented as a box model, MCoM tracks state variables such

as biomass, DOC, DON, and inorganic nutrients in a homogeneous volume of water through non-linear differential equations.

This approach allows exploration of emergent properties and feedbacks within microbial communities, which may be essential

for advancing predictive oceanic and climate modelling.

We describe the mathematical formulation and numerical implementation of the model in the Sections 2 and 3. In Section 4,65

we present several examples to evaluate its capabilities to fit experimental data and to describe emergent dynamics.

2 Model description

In MCoM, any momentary state of the microbial model system is represented by the following dynamic variables:

– Phytoplankton population densities Pi (t), i ∈ P (cells L−1)

3

https://doi.org/10.5194/egusphere-2025-2227
Preprint. Discussion started: 2 June 2025
c© Author(s) 2025. CC BY 4.0 License.



– Heterotroph population densities Hi (t), i ∈H (cells L−1)70

– Concentrations of dissolved organic nutrient (DON) compounds Di (t), i ∈N (mM(N) [= mmol(N) m−3])

– Concentrations of dissolved organic carbon (DOC) compounds Di (t), i ∈ C (mM(C) [= mmol(C) m−3])

– Concentrations of bacterial metabolites acting on phytoplankton growth Mi (t), i ∈M (L−1)

– The nutrient concentration N (t) (mM(N))

We are using index sets P , H, N , C, and M throughout the text to enumerate the different components of a specific type. For75

the microbial populations, we assume fixed stoichiometric molar ratios rC:N
i (for i ∈ P and i ∈H) and an average cell carbon

content χC
i . For an overview of parameters and associated physical units, we refer to Table A1. The populations are measured

in cells per litre, but elemental C- and N-content can be associated unambiguously given rC:N
i and χC

i . The dynamics of a

component is determined by the sum of its associated in- and outfluxes, which are denoted by fY
X with varying super- and

subscripts (cf. Table A2). Figure 1 summarizes these fluxes and provides a schematic overview of the model. In the following,80

we describe the different involved processes in detail.

2.1 Phytoplankton population dynamics

The growth of a phytoplankton population Pi is governed by

d

dt
Pi =

(
fC→i

︸ ︷︷ ︸
biomass assimilation

− fi→DOC

)

︸ ︷︷ ︸
biomass decay

/χC
i − ∆Pi,︸ ︷︷ ︸

dispersion

(1)

where χC
i is the cellular carbon content, fC→i is the photosynthetic carbon assimilation flux, and fi→DOC summarizes losses85

of biomass to DOC. Assuming a fixed stoichiometric composition rC:N
i , nutrient fluxes must fulfil

fC→i = rC:N
i · fN→i,︸ ︷︷ ︸

influx

and fi→DOC = rC:N
i · fi→DON.︸ ︷︷ ︸

outflux

(2)

We apply Liebig’s minimum principle to distinguish two different growth regimes, depending on the limiting factor. Specif-

ically, light intensity determines the maximal carbon assimilation rate fmax
C→i, while nutrient availability governs the maximal

nutrient assimilation rate fmax
N→i. As the realized fluxes must adhere to the stoichiometric constraints (2), nutrient limitation90

occurs when

rC:N
i · fmax

N→i < fmax
C→i, (3)

and light limitation when rC:N
i · fmax

N→i > fmax
C→i.

4

https://doi.org/10.5194/egusphere-2025-2227
Preprint. Discussion started: 2 June 2025
c© Author(s) 2025. CC BY 4.0 License.



2.1.1 Maximal and realized assimilation rates

Under conditions where nutrient availability is the primary limiting factor, nutrient uptake is defined by the nutrient concentra-95

tion (fN→i = fmax
N→i) and determines phytoplankton growth. This maximal uptake is assumed to be characterized by a type-II

response function:

fmax
N→i =

Vi,NN

KN
i + N

Pi, (4)

where χN
i is the nutrient content per cell, Vi,N is the (theoretical) maximum nutrient uptake rate (different to fmax

N→i, which is

the maximal rate under current conditions) and KN
i is the corresponding half-saturation constant. The corresponding carbon100

assimilation fC→i is calculated according to Eq. (2).

In light-limited regimes the growth is governed by the maximal photosynthetic carbon assimilation

fmax
C→i = ϕi (I)χChl

i Pi,

where χChl
i is the average chlorophyll content per cell and ϕi (I) is the P-I curve associated to phytoplankton species Pi, which

describes the dependence of the photosynthesis rate on the irradiance I . For the P-I curve we assume the form105

ϕi (I) = ϕs,i

(
1− exp

(−αi · I
ϕs,i

))
· exp

(−βi · I
ϕs,i

)
(5)

with initial sensitivity αi, photoinhibition coefficient βi and upper bound ϕs,i for the photosynthesis rate (Platt et al., 1980).

2.1.2 Assimilation and exudation of DOM

Phytoplankton species exude excessively fixed organic matter directly into the environment (Myklestad, 2000; Thornton, 2014).

In the nutrient limited regime the surplus photosynthetic capacity is assumed to be used for exudation of DOC, which is110

calculated as

f i
C→DOC = fmax

C→i− fC→i. (6)

In the light limited regime, exudates are assumed to be nutrient-saturated1 and we employ an extended scheme to determine

the exudation rates, because organic exudates contain a minimal amount of carbon. We assume that nutrient-rich DOM has a

uniform C:N ratio rC:N
ex,i (with rC:N

ex,i < rC:N
i ), i.e.,115

f i
C→DOC = rC:N

ex,i · f i
N→DON. (7)

Notably, this assumption implies that not all carbon is utilized for biomass assimilation, even though its fixation rate limits

the population’s growth. To maintain a balance between growth and exudation in nutrient-rich environments, we introduce a

maximal fraction qex
i of fmax

C→i, up to which carbon can be allocated for exudation. A maximization of DON exudation under

1Light-limited exudation can also be switched off by setting variant.use_exudation=false.
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this constraint (see Appendix B) gives120

f i
C→DOC = min

(
rC:N
ex,i

rC:N
i − rC:N

ex,i

(
rC:N
i fmax

N→i− fmax
C→i

)
, qmax

i fmax
C→i

)
. (8)

Figure 2 shows the resulting dependence of assimilation and exudation on nutrient availability with fixed photosynthesis rate

fmax
C→i. For low nutrient concentrations, the growth rate follows the maximal nutrient uptake rate, i.e., fC→i = rC:N

i fmax
N→i

(overlapping black and blue curves), cf. Eq. (4) and only DOC is excreted at a rate f i
C→DOC (dashed gray curve). The growth

rate reaches its maximum around a concentration N = 0.4 mM, where rC:N
i fmax

N→i = fmax
C→i and no DOM is excreted. For larger125

concentrations, the growth becomes light-limited and excreted DOM has C:N ratio rC:N
ex,i . Within the interval 0.4 < N < 0.47

(shaded background), the first argument of the minimum function in Eq. (8) takes effect, and the fraction of photosynthesised

organic carbon allocated to exudation is smaller than qmax
i . For increasing nutrient an increasing share of fixed organic carbon

is exuded until the share reaches the maximal value of qmax
i at N ≈ 0.47 and the exudation profile becomes independent of

further increases in nutrient concentrations.130

2.1.3 Population losses

The phytoplankton mortality is governed by the sum of three terms:

fi→DOC = χC
i ·max

(
0,
[

δi︸︷︷︸
linear mortality

+ δq,iPi︸ ︷︷ ︸
quadratic mortality

+
∑

j∈M

ai,jMj

hi,j + Mj

︸ ︷︷ ︸
metabolite production

]
Pi

)
, (9)

where δi is the base rate of linear mortality, δq,i is the coefficient of quadratic mortality, and the sum
∑

j∈M
ai,jMj

hi,j+Mj
describes

the total impact of present metabolites on Pi. Note that the second term in the maximum function may theoretically become135

negative, because the coefficients ai,j are allowed to be negative in order to model beneficial metabolite effects. To ensure that

such a mortality reduction does not result in a positive growth, the maximum ensures the positivity of the flow fi→DOC.

2.2 Heterotroph population dynamics

The bacterial population densities Hi change according to:

d

dt
Hi =

(
fDOC→i

︸ ︷︷ ︸
biomass assimilation

− fi→DOC

)

︸ ︷︷ ︸
biomass decay

/χC
i − ∆Hi,︸ ︷︷ ︸

dispersion

(10)140

where fDOC→i describes the carbon assimilation into biomass from DOC compounds and fi→DOC the loss of biomass to

organic compounds. As for phytoplankton, heterotrophs are modelled with a fixed stoichiometric composition rC:N
i , which is

preserved by imposing

fDOC→i = rC:N
i (fDON→i + fN→i) ,︸ ︷︷ ︸

influx

and fi→DOC = rC:N
i · fi→DON.︸ ︷︷ ︸

outflux

(11)
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Figure 2. Excess DOM exudation by phytoplankton. Exudation rates fC→DOC (gray dashed) and fN→DON (light blue dashed) are plotted

against nutrient availability N for a fixed photosynthesis rate fmax
C→i = 3.0 fmol(C) cell−1 day−1 (dark gray) and a single cell, i.e., Pi =

1. Additional curves: (rescaled) maximal nutrient assimilation rate fmax
N→i (N) · rC:N

i (blue), realized assimilation rates fC→i (black) and

fN→i (purple). Other parameters for this example: rC:N
i = 5.2mol(C)mol(N)−1, rC:N

ex = 3.0 mol(C)mol(N)−1, qmax
i = 0.15, Vi,N =

2.0 day−1, KN
i = 1.0mM(N).

Since heterotrophic populations are assumed to obtain nutrients from inorganic and organic sources, the constraint for the145

influx involves both sources. Importantly, the DOM assimilation fluxes are aggregates of fluxes from individual compounds,

i.e.,

fDOC→i =
∑

j∈C
fj→i, and fDON→i =

∑

j∈N
fj→i. (12)

Growth may be limited either by DOC or by total (organic and inorganic) nutrient availability, and the realized assimilation

flux is determined by a minimum principle comparing maximal total assimilation rates of carbon (fmax
DOC→i) and nutrient150

(fmax
N→i + fmax

DON→i). A population Hi is nutrient limited if

rC:N
i (fmax

N→i + fmax
DON→i) < fmax

DOC→i, (13)

and energy limited if the opposite holds.
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2.2.1 Maximal assimilation rates

The maximal uptake rate of an individual organic compound Dj by population Hi is modelled as155

fup,max
j→i =

Vi,jDj

Ki,j + Dj
Hi, for j ∈N or j ∈ C. (14)

Here, Vi,j is the (theoretical) maximal uptake rate [cf. Eq (4)] and Ki,j is the corresponding half-saturation constant. Similarly,

the maximal uptake of inorganic nutrient is

fmax
N→i =

Vi,NN

Ki + N
Hi. (15)

When consuming DOM compounds, a part of the compounds is assumed to be catabolized, i.e., metabolically degraded for160

energy extraction. Hence, only a part of the uptake is available for integration into biomass and the remainder is remineralized

and released into the inorganic nutrient and carbon pools. Correspondingly, the maximal assimilation rate for the compound

Dj is calculated as

fmax
j→i = Yi,jf

up,max
j→i , (16)

where the yield coefficient Yi,j determines the assimilated fraction. The resulting maximal organic assimilation fluxes are165

fmax
DOC→i =

∑

j∈C
Yi,jf

up,max
j→i , and, fmax

DON→i =
∑

j∈N
Yi,jf

up,max
j→i . (17)

2.2.2 DOM assimilation and remineralization

If the population Hi grows under nutrient limited conditions, it takes up and assimilates DON compounds at the maximum

possible rates, i.e.,

fj→i = Yi,jf
up,max
j→i , for j ∈N . (18)170

The fraction of DON uptake, which is not assimilated, is remineralized and induces a flow from the organic pool Dj to the

inorganic nutrient pool N :

f i
j→N = (1−Yi,j)fup,max

j→i . (19)

Further, the inorganic nutrient is assimilated at maximum rate fN→i = fmax
N→i as well. Adhering to the stoichiometric con-

straints (11), the uptake of DOC is regulated down. We assume that this regulation decreases the uptake of all available DOC175

compounds proportionally, i.e., for j ∈ C, fup
j→i = c · fup,max

j→i with a factor c = rC:N
i (fmax

N→i + fmax
DON→i)/fmax

DOC→i, yielding

corresponding assimilation and remineralization fluxes of

fj→i = Yi,jf
up
j→i, and f i

j→C = (1−Yi,j)fup
j→i. (20)

In carbon limited situations [Eq. (3) is not fulfilled], DOC is used at maximum rates, i.e., for all j ∈ C:

fup
j→i = fup,max

j→i , and fj→i = Yi,jf
up,max
j→i . (21)180
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While the total assimilation rate of nutrient is tied to fDOC→i by stoichiometry, MCoM implements two variants of how

heterotrophs behave with regard to excess DON uptake capacities.2 Either, (i) heterotrophs still take up maximal amounts of

DON and eventually remineralize any excess, or (ii) they homogeneously decrease the uptake rates for the different DON

compounds such that nutrient assimilation matches carbon assimilation. The latter regulation is implemented analogously as

above for DOC compounds in the nutrient limited case. In any case, we assume that DON is used preferentially and inorganic185

nutrient is only taken up to a degree necessary to serve the nutrient demands. More explicitly, for variant (i) we assume that

fup
j→i = fup,max

j→i for j ∈N . If the DON uptake exceeds DOC uptake, i.e.,

rC:N
i fmax

DON→i > fmax
DOC→i, (22)

additional remineralization occurs:

f+
DON→N = fmax

DON→i− fmax
DOC→i/rC:N

i . (23)190

If Eq. (22) holds for variant (ii), the realized uptake rates for DON compounds are modified as fup
j→i = c ·fup,max

j→i with a factor

c = fmax
DOC→i/

(
rC:N
i fmax

DON→i

)
and f+

DON→N = 0.

Figure 3 shows the uptake, remineralization, as well as assimilation for varying DON at fixed DOC and inorganic nutri-

ent concentrations. For growth limiting concentrations of DON, DON availability controls the population growth rate and is

remineralized at a minimal fraction. For intermediate concentrations, the fraction of remineralized DON remains the same195

but less and less inorganic nutrient is used (shaded interval 0.33 < DON < 0.47) . For DON concentrations above 0.47 mM,

all nutrient requirements are served by DON and for increasing concentrations, the surplus DON is completely remineralized

[variant (i), solid light blue curve] or DON remineralization rates remain constant for higher DON concentrations [variant (ii),

dashed light blue curve].

2.2.3 Population loss and metabolite investment200

Heterotroph biomass loss is assumed to consist of three components:

fi→DOC = χC
i ·

(
δiHi

︸ ︷︷ ︸
linear mortality

+ δq,iH
2
i

)

︸ ︷︷ ︸
quadratic mortality

+ Πi.︸︷︷︸
metabolite production

(24)

Here, δi is the base rate of linear mortality, δq,i is the quadratic mortality coefficient, and

Πi =
∑

j∈M
πj,ifDOC→i (25)

is the metabolite production investment with fractions πj,i of newly assimilated biomass expended for the production of205

metabolite Mj .

2This behaviour is controlled by the parameter variant.surplus_remineralization.
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N

Figure 3. Bacterial remineralization of DON by one cell of a population Hi. Remineralization rate f i
DON→N (light blue) plotted against DON

availability at constant nutrient and DOC concentrations. Variants with (solid) and without (dashed) differ for DON levels (> 0.47mM). Ad-

ditional curves: assimilation of DOC (rescaled), DON and DIN fDOC→i/rC:N
i , fDON→i, and fN→i, maximal nutrient and DON assimilation

fmax
N→i and fmax

DON→i, and remineralization f i
DON→N . Parameters for this example: rC:N

i = 0.4, Vi,DON = 2.0, Ki,DON = 1.0, Yi,DON = 0.7.

Maximal nutrient and carbon assimilation rates: fmax
N→i = 0.1 and fmax

DOC→i = 1.8.

2.3 DOM dynamics

The dynamics of individual DOM compounds are considered to follow the form

d

dt
Dj = fH→j + fP→j + fC→j − fj→H − fj→C − ∆Dj , for j ∈ C, (26a)

d

dt
Dj = fH→j + fP→j︸ ︷︷ ︸

population decay

+ fN→j︸ ︷︷ ︸
exudation

−fj→H − fj→N︸ ︷︷ ︸
uptake

− ∆Dj ,︸ ︷︷ ︸
dispersion

for j ∈N . (26b)210

Here, influxes originate from phytoplankton and heterotroph population decay and from DOM exudation by phytoplankton,

and outfluxes correspond to consumption by heterotrophs.

10
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In Secs. 2.1 and 2.2, we introduced the aggregate fluxes fi→DOC and fi→DON, i ∈ P or i ∈H. To determine their impact on

the concentrations on individual DOM compounds Dj , we assume specific partitioning coefficients215

∑

j∈C
Rj,i =

∑

j∈N
Rj,i = 1. (27)

That is, the individual fluxes are calculated as

fi→j = Rj,ifi→DOC, for j ∈ C, (28a)

fi→j = Rj,ifi→DON, for j ∈N . (28b)

220

For simplicity, the excess DOC- or DON-exudation f i
C→DOC and f i

N→DON by phytoplankton is assumed to follow the same

partitioning to individual compounds:

f i
C→j = Rj,if

i
C→DOC, for j ∈ C, (29a)

f i
N→j = Rj,if

i
N→DON, for j ∈N . (29b)

225

Further, we denote the total uptake and remineralization fluxes per compound by

fj→N =
∑

i∈H
f i

j→N , fj→C =
∑

i∈H
f i

j→C , fj→H =
∑

i∈H
fj→i. (30)

2.4 Metabolite dynamics

Metabolite pools Mj are modelled without any specific stoichiometry, since their contribution to the total DOM is assumed to

be negligible. The energy expenditure for their synthesis is modelled by the corresponding loss term in Eq. (24). The pseudo-230

concentrations Mj represent a basis to calculate the impact of metabolite Mj on susceptible phytoplankton species as described

in Sec. 2.1. They are governed by production and decay:

d

dt
Mj = θj

∑

i∈H
πj,ifDOC→i

︸ ︷︷ ︸
production

−δjMj︸ ︷︷ ︸
decay

− ∆Mj︸ ︷︷ ︸
dispersion

. (31)

Here, the coefficient θj determines the amount of biomass required to synthesize a unit of Mj and δj determines the decay rate

of Mj .235

2.5 Nutrient dynamics

The change of nutrient concentration is driven by uptake from phytoplankton and heterotrophs and remineralization of DON

by heterotrophs. Further, MCoM permits to define an external nutrient concentration Next to model a diffusive exchange with
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an external domain:

d

dt
N = fDON→N︸ ︷︷ ︸

remineralization

−(fN→P + fN→H)︸ ︷︷ ︸
consumption

−∆(N −Next)︸ ︷︷ ︸
dispersion

. (32)240

Here, the aggregate flows are defined as

fDON→N =
∑

i∈H

∑

j∈N
f i

j→N , fN→P =
∑

i∈P
fN→i, and fN→H =

∑

i∈H
fN→i. (33)

2.6 Scaling up to diverse microbial communities

A key feature of MCoM is the straightforward scalability to larger interaction networks. The size and connectivity of the

interaction network, i.e., the number of phototroph populations, heterotroph populations, metabolites, and organic compounds245

can be specified in the configuration file, together with respective parameter values and interaction matrices. MCoM offers

different built-in ways to define microbial communities and their interaction networks: For controlled set-ups, it is possible

to define all rates and interactions explicitly. This explicit definition allows the user to write their own algorithms for the

generation of the community’s interaction network. To generate randomized networks, the entire community or a subset of

parameters can be determined stochastically. When employing stochastic network generation, reproducibility can be ensured250

by setting a seed for the random generation.3 For instance, the user can quickly set up a community by providing the number

of phototrophs, heterotrophs, resources and metabolites, specifying the in- and output of populations (the number of produced

resources and metabolites, as well as the number of consumed resources in case of heterotrophs and the number of metabolites

affecting the population in case of phototrophs) and value ranges for the other system parameters. A specific option4 allows

to define a community of phototroph-heterotroph pairs, which only interact by exchange of DOM and metabolites within the255

pairs, i.e., all adjacency matrices are diagonal. Additional functions to generate interaction matrices according to customized

requirements can easily be implemented.

3 Implementation and performance

3.1 Integration scheme

Starting from a given initial state X0 = (P 0,H0,D0,M0,N0), MCoM generates trajectories using an Adams-Bashforth260

explicit two-step method (Butcher, 2005). This method generates state approximations at equidistant time points tn = t0+n·dt

using the formula

Xn+2 = Xn+1 +
[
3
2
f (tn+1,Xn+1)−

1
2
f (tn,Xn)

]
dt, (34)

where Xn is the vector containing the system state at time tn. As any method, this can lead to inaccuracies when using larger

time steps. In case that a solution seems to show numerical artifacts it advisable to compare the behaviour to a solution obtained265

with smaller step width.
3Parameter run.system_seed
4Parameter variant.competing_pairs
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Figure 4. Computation time (wall time) for varying total network size. The total number of components is the sum of the numbers of different

Pi, Hi, Di, and Mi. For each size 16 different random communities were simulated for 100 years. Inset shows the same data in a log-log

plot and a red dashed line with slope γ = 2.4.

3.2 Performance

MCoM is suited to simulate large communities comprising diverse species, DOM compounds, and metabolites. However, the

numerical complexity and memory requirements of the simulation rise with system size. We assessed the performance of

MCoM in a simple test recording run times for different system sizes. The results are shown in Figure 4. For each number270

n ∈ {5,10, ...,150}, we initialized 16 random networks with n components of each type (heterotrophs, phototrophs, DOC,

DON, and metabolites) and 30% connectivity. That is, for n = 30, each phototroph population produces 10 different DOC and

10 different DON compounds and is affected by 10 metabolites. Each heterotroph population produces the same variety of

DOM compounds, is able to consume 10 DOC and 10 DON types, and produces 10 different metabolites. We simulated each

community for 100 years with an integration step width of dt = 0.025 days, saving the last ten years of the simulation to disc275

saving the system’s state every dtout = 0.5 days. Asymptotically, the computation time scales as nγ with exponent γ = 2.4, as

determined by the asymptotic slope of the graph of log n versus logarithmic computation time (dashed red line in the inset of

Fig. 4). The black dashed curve shows a quadratic polynomial fit to the computation time.

4 Evaluation and application

4.1 Evaluation of network motifs without metabolite-induced feedbacks: Nutrient Remineralization in280

Synechococcus co-cultures

Here, we are evaluating model performance for individual motifs of the interaction network as the smallest unit in diverse

microbial communities. In a first example, we apply the simplest version of the model, i.e., a co-culture of one phototrophic

and one heterotrophic strain, without any metabolite-induced feedbacks, to an incubation experiment to assess its capability

to reproduce the observed temporal variation in cell abundances. Christie-Oleza et al. (2017) cultured Synechococcus popu-285
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lDOC (sim) x 0.18

(a)

Figure 5. Experimentally observed and modelled growth dynamics of Synechococcus in co-culture with different heterotrophic bacteria:

(a) axenic culture; (b) co-culture with R. Pomeroyi; (c) co-culture with Tropicibacter sp. For each experimental setup, three replicates were

prepared, which are shown in the upper plot of each panel, see (Christie-Oleza et al., 2017) for details. For the simulations, we report

Synechococcus (dark green) and heterotroph densities (brown), and concentrations of inorganic nutrient (blue), of labile DOC (black), labile

DON (solid gray) and refractory DON (dashed gray).

lations over a 200-day period in co-cultures with two different heterotrophic bacteria (R. Pomeroyi and Tropicibacter sp.) in

nutrient enriched ASW medium. When grown axenically, the phototroph population went extinct around day 75–100. If it

was co-cultured with a heterotroph, it remained active until the end of the experiment at day 200. The decisive interaction

was hypothesized to be an exchange of organic material, which provided the heterotrophs with energy and organically bound

nutrient, and of remineralized nutrient, which could be assimilated by Synechococcus. Although the phototroph population290

densities reached a peak around days 30–40 for each setup, they showed significantly distinct growth trajectories for the dif-

ferent types of heterotrophs. When grown together with R. Pomeroyi, the subsequent population decay proceeded steadily at

a relatively slow rate until reaching 2.7− 4.4× 107 cells ml−1 at day 200. For Tropicibacter sp., the temporal development

after the initial peak is less stable (cf. Fig. 5c). Within the subsequent 60–70 days, Synechococcus collapsed to minima of

1.0−13.0×105 cells ml−1 attained around days 96–117 for this case. These minima were then followed by a gradual recovery295

of until reaching another peak at density 3.6− 14.7× 107 cells ml−1 at the penultimate measurement time around day 190,

declining again at the last measurement on day 200 to densities 1.1− 2.1× 107 cells ml−1.

We modelled both co-cultures and the axenic growth using MCoM with fixed growth parameters for the phototroph and

specific characteristics for the heterotrophs. The exact parameters are listed in Table C1. Importantly, we did not assume

metabolite interactions, but the observations could be reproduced qualitatively by the exchange of nutrients in inorganic and300

organic form.
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As an important characteristic of R. Pomeroyi, we incorporated the observation that it did not use the inorganic nutrient [as

demonstrated in another experiment of Christie-Oleza et al. (2017)]. Further, we assumed that R. Pomeroyi immediately rem-

ineralizes 30% of DON during uptake, thus providing a steady nutrient source for Synechococcus. The simulation showed that

the recycling of nutrients slowed down population decline significantly. However, to reproduce the steady decline observed in305

the experiment, a certain fraction of nutrients must continuously escape the recycling. Otherwise, the total nutrient in both pop-

ulations and thus their densities would asymptote towards positive constants. We incorporated this by assuming that a fraction

(10% for R. Pomeroyi) of the DON release is channelled into a refractory pool, which accumulates during the experiment.

For Tropicibacter sp., we hypothesized that the more severe collapse of the Synechococcus population was partly caused by

an ongoing competition for inorganic nutrient with Tropicibacter sp., which is assumed to be a strong competitor (smaller KN310

than Synechococcus). Further, we modelled Tropicibacter sp. to behave more parsimoniously releasing only 5% of the DON

it takes up in inorganic form. This assumption leads to a domination of the heterotroph until DOC is depleted and it becomes

energy-limited, making inorganic nutrient available for Synechococcus once again and leading to the observed smaller second

peak. Notably, the fit was significantly improved by assuming a more efficient and complete utilization of Synechococcus

exudates by Tropicibacter sp. in comparison to R. Pomeroyi.315

4.2 Evaluation of network motifs with metabolite-induced feedbacks: Interactions in Prochlorococcus co-cultures

In a next step, we evaluate MCoM’s ability to model metabolite-induced feedbacks between heterotrophs and phototrophs.

For this, we consider co-culture experiments of Prochlorococcus and different heterotrophic bacteria conducted by Sher et al.

(2011), which were initially supplied with a stock of 0.8 mM NH4. In comparison to axenic cultures [Fig. 6(a)], Sher et al.

observed different possible outcomes for different heterotrophic bacteria. Based on the cultures’ observed bulk chlorophyll320

fluorescence over time, they clustered the heterotrophs into clearly separated groups exhibiting either inhibitory, neutral or

growth-promoting effects on Prochlorococcus growth. Growth-promoting bacteria induced an earlier (−4 days on average)

and more pronounced peak of the phototroph population than observed for the axenic (or neutrally affected) cases, while

inhibitory bacteria significantly delayed the peak (+13 days on average).

We chose two representative examples from the experimental arrays published by Sher et al. (2011) for illustration. In325

co-culture with a Rhodobacterales strain (HOT5B8), Prochlorococcus growth was clearly promoted [Fig. 6(b)], whereas in

co-culture with a Marinobacter strain (HOT4B5), growth was inhibited [Fig. 6(c)]. For the simulations, we used identical

parameters for both heterotrophs and only varied the metabolite impact coefficient aM [cf. Eq. (9), simplified subscript] using

aM =−0.2 for the growth promoting case and aM = 0.17 for the inhibitory case.

For both modelled co-cultures the simulated metabolite concentrations initially accumulate leading to a saturation at full330

effect strength around day 10 (purple curves in Fig. 6). For the growth-promoting case, metabolite effects decrease the loss

rate of the Prochlorococcus population. Thereby the net growth rate of phototrophs is increased, leading to larger populations

and accelerated depletion of the inorganic nutrient when compared to the axenic culture. For the inhibitory case, metabolite

effects reduce the phytoplankton net growth rate. For both co-cultures, simulated DOC (black curves in Fig. 6) accumulates

in the first days because the initial heterotrophic densities are low. This accumulation is less pronounced for the growth-335
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Promoting (HOT5B8)(a)

Figure 6. Experimentally observed and modelled growth dynamics of Prochlorococcus (MIT9313) in co-culture with different heterotrophic

bacteria (Sher et al., 2011): (a) axenic culture; (b) co-culture with Rhodobacterales strain (HOT5B8); (c) co-culture with Marinobacter strain

(HOT4B5). For each experimental setup, two replicates were prepared, which are shown in the upper plot of each panel. The simulated

Prochlorococcus density (dark green curve) is plotted on top of the bulk chlorophyll fluorescence observed in the experiments. For the

simulations, we report Prochlorococcus and heterotroph densities, P and H , and concentrations of inorganic nutrient (N , blue), of labile

DOC (black), and labile DON (solid gray). Further, we show the impact strength
∣∣∣ aM

h+M

∣∣∣ of metabolites M on the mortality rate of P (solid

purple). The model parameters used in this section are listed in Table C2.

promoting case due to the lower Prochlorococcus mortality. Around day 12 the accumulated DOC is depleted to minimal

levels and heterotrophic growth becomes directly locked to DOC-release by phytoplankton. The DOC-locked regime lasts

until the depletion of the inorganic nutrient stock, which coincides with the Prochlorococcus population peak. This happens at

day 14 for the growth-promoting case, at day 19 for the axenic culture, and at day 30 for the inhibitory case. These differences

are caused by the different phytoplankton growth rates in the different scenarios, which largely determine the consumption rate340

of inorganic nutrient. After this point DOC starts to accumulate again, since heterotrophic growth becomes nutrient-limited.

For the inhibitory case, this second phase of DOC accumulation is less pronounced due to the lower phytoplankton densities.

Rather, we observe a second depletion of DOC at day 34 of the simulated experiment. This depletion is followed by a phase,

where nutrient concentrations rise due to heterotrophic remineralization of surplus DON, comparable to the hypothesized

succession of events for the co-culture of Synechococcus and Tropicibacter sp. [Fig. 5(c)]. In conclusion, with a variation of345

single parameter (aM ) MCoM can capture both, the temporal shifts of the population peaks and the changes of the maximal

observed Prochlorococcus density.
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Figure 7. (a) Cyclic interaction scheme of three consortia; (b) Simulated population densities and metabolite impacts. The data of a single

simulation is distributed over three panels to avoid cluttering of curves. See Table C3 for parameters.

4.3 Application for studying phytoplankton succession: Metabolite interactions lead to fluctuating dynamics

Having evaluated MCoMs ability to reproduce dynamics of individual motifs, which may represent components in a larger

microbial interaction network, we now show two examples of MCoM’s application when scaled up to more diverse microbial350

communities. First, we consider a cyclic interaction network to illustrate how feedbacks mediated by metabolite interactions

can lead to self-sustained fluctuations in a community of three phytoplankton and three heterotroph populations [Fig 7(a)]. We

model associations of specific heterotroph and phytoplankton species, Hi and Pi, by stipulating that the heterotroph Hi spe-

cializes on the consumption of organic matter produced by the phototroph Pi, forming a “consortium”. Due to this syntrophic

relationship population peaks of Pi tend to be succeeded by peaks of Hi. Further, different consortia are assumed to be coupled355

via metabolites, such that metabolites produced by Hi positively affect Pi+1. Effectively, this causes population peaks of Hi

to be succeeded by peaks of Pi+1, and so on, leading to a “merry-go-round” succession of consortia. Figure 7(b) shows the

corresponding trajectory from day 9000 to 10000 after it has settled on a periodic orbit. While such a setup may appear highly

artificial, it is robust to parameter variations and illustrates the potential of metabolite feedbacks to incite non-stationarity of

population densities even if no environmental forcing is present.5360

4.4 Application for studying community stability: Metabolite interactions facilitate priority effects in microbial

consortia

Generalizing the notion of a “consortium” as a coherent sub-community, we randomly generated communities consisting of

separate highly connected groups of species. A consortium in this sense can loosely be defined as a set of phototrophs, DOM

compounds, heterotrophs and metabolites, which interact mostly within themselves. That is, within a consortium, heterotrophs365

feed on DOM released by members of the consortium, and phototroph growth is positively affected by metabolites produced by

5In natural situations, successions are regularly reported as a response to an initial environmental impulse, such as seasonal upwelling of nutrients. These

scenarios can also be modelled with MCoM specifying a fluctuation for the parameter environment.nutrient.
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Figure 8. Competition between two consortia for different inter-consortial coupling strength and initial states. (a) Schematic representation

of the microbial community consisting of two consortia with inter-consortial coupling by shared metabolites. (b)–(d) Phytoplankton density

trajectories; (b) and (c) Priority effects (bi-stability) in case of high connectivity and no coupling: The same interaction network may lead

to a competitive exclusion of consortium B by consortium A (b) or vice versa (c), depending on which consortium is initially dominant; (d)

Dynamics for higher inter-consortial metabolite interactions (overlap 5), leading to coexistence despite initial dominance of consortium A.

(e) Periodic variation of the average environmental irradiance; (f) Asymptotic relative abundances for different coupling strengths and initial

states. (g) Number of runs displaying coexistence.

these heterotrophs. Although competition between consortium members (for nutrients and DOM) is possible, positive feedback

loops within a consortium can be expected to facilitate the growth of its members on average.

For each community, two consortia, A and B, were generated, each consisting of ten phototrophs, ten heterotrophs, ten DOC

and ten DON compounds, and ten metabolite types. For the generation, we prescribed the in- and out-degrees of the microbial370
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nodes, i.e., the number of released and consumed compounds, as well as number of produced and effective metabolites (cf. Ta-

ble C4). Then, we randomly connected the different components adhering to these degrees. Further, we allowed for a coupling

of the two consortia by defining a number of shared metabolites, which effect both consortia. This number is called “overlap”

in the following. Figure 8 (a) shows the community structure schematically.

In the following, we assumed an annual cycle of varying average light intensity as shown in Panel (e). Panels (b)–(d) show375

the time series of simulated phytoplankton population densities for different degrees of inter-consortial coupling and different

initial conditions. In Panel (b) and (c), we show two simulations for the same community consisting of two consortia with

a single overlapping metabolite. This configuration often leads to priority effects, as exemplified by the depicted dynamics:

When the phototrophs of consortium A (green curves) are initialized with higher density than the phototrophs of consortium

B [see Panel (b)], consortium A remains dominant over the whole time span of the simulation (approx. 45 years). Vice versa,380

consortium B remains dominant if its phototrophs have higher initial density [Panel (c)].

Panel (d) shows a trajectory in a modified network with higher inter-consortial coupling (overlap 5), where priority effects

are not observed, i.e., despite differing initial phototroph densities the trajectories converge to identical periodic orbits after a

transient time. In such cases, the ’crosstalk’ between consortia prevents their dynamical separation and an equilibrium, where

members of both consortia coexist, is attained independently of the initial state.385

We explored this effect systematically in different systems. For each of six values of the overlap, we generated 20 commu-

nities, each containing two consortia, A and B (20 phototrophs and 20 heterotrophs in total). Each community was initialized

twice, with either consortium A or consortium B being dominant, and integrated for 60 years (see Table C4 for a detailed

description of parameters). The relative averaged abundance over the last ten years of the simulation is reported for each simu-

lation run in Panel (f). Starting from different initial states, where either consortium A or B is dominant, priority effects appear390

as differences in observed asymptotic distributions for the different initial states.

We categorized all observed regimes either as coexistence, where both consortia contribute more than 10% to the total

abundance, or as dominance of either consortium A or B. For low overlap, communities show pronounced priority effects

in most cases, where in general the initially dominant consortium remains dominant. For instance, for zero overlap, none of

the simulations ended in coexistence [Panel (g)]. However, in 1/8 of the simulations the finally dominating consortium was395

the initially rare one. For one overlapping metabolite, two of 40 runs led to a coexistence of both consortia. Already for an

overlap of three metabolites about 50% of the simulations end in coexistence, and for overlap higher than five (where >30% of

metabolites are shared between consortia), species coexistence is the most frequent (>75%) simulation outcome.

5 Conclusions

MCoM v1.0 is a versatile, scalable framework for simulating the dynamics of microbial communities consisting of phototrophic400

and heterotrophic species that includes a wide range of microbial interactions. The processes implemented into MCoM capture

essential mechanisms of these interactions, such as nutrient competition, exo-metabolite and DOM production, as well as

remineralization. Due to its flexible structure, MCoM allows to explore a range of ecological scenarios, from single-species

19

https://doi.org/10.5194/egusphere-2025-2227
Preprint. Discussion started: 2 June 2025
c© Author(s) 2025. CC BY 4.0 License.



experiments (Sher et al., 2011; Christie-Oleza et al., 2017) to complex community interactions (Garcia et al., 2018; Kost et al.,

2023). We demonstrated this by simulating simple co-culture experiments, as well as non-linear phenomena such as emergent405

periodic succession patterns and multi-stability, which are prerequisites for modelling, e.g., ecological tipping points. Aside

from aiding mechanistic insights to ecological observations, MCoM may prove useful for the simulation of biotechnological

setups as the relevance and the potential of microbial interactions for industrial exploitation becomes increasingly recognized

(Ramanan et al., 2016).

MCoM is intentionally kept relatively simple in order to assess fundamental controls of microbial communities and their410

impact on biogeochemical fluxes. Due to its customizable nature, it offers a robust foundation for future enhancements. Several

more detailed process descriptions could be integrated as modular additions, which can be toggled on or off according to the

user needs. For instance, incorporating adaptive elemental ratios that vary with environmental conditions (Godwin and Cotner,

2015; Trautwein et al., 2017; Tanioka and Matsumoto, 2020) could further refine its representation of both phytoplankton

and heterotrophic processes. Introducing adaptive interaction strategies, as seen in algicidal interactions (Seyedsayamdost415

et al., 2011; Meyer et al., 2017) and expanding the role of exo-metabolites to influence assimilation rates or other parameters

(beyond phytoplankton mortality) would increase the model’s versatility. Furthermore, incorporating environmental factors

like temperature to modulate growth rates (Coles and Jones, 2000; Bouman et al., 2005) could improve the model’s accuracy

in scenarios with varying environments. In summary, MCoM provides a versatile platform that is customizable to specific

requirements from assessing pairwise interactions to diverse microbial communities. By taking into account the full range of420

positive and negative interactions, it expands the currently prevailing competition-centred view in biogeochemical modelling.

Code availability. The source code for MCoM v1.0 is published under MIT license and can be downloaded from Zenodo (Lücken et al.,

2025). The repository contains the software documentation, instructions on configuration and installation, as well as a test suite. To run

MCoM, Julia and Python must be installed (see README.md and requirements.txt for more specific dependencies). For the latest version,

please visit https://github.com/bgc-mod/MCoM.425
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Appendix A: Reference tables
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Table A1. Parameters of the MCoM model. All parameters are assumed to be non-negative if not stated otherwise.

Parameter Description Source code variable Unit

Vi,N Maximal DIN uptake rates of Pi or Hi V_NP[i], V_NH[i] fmol(N) day−1 cell−1

Ki,N Half saturation constants for DIN uptake by Pi or Hi K_NP[i], K_NH[i] mM(N)

Vi,j Maximal uptake rates DOC (resp. DON) compound j uptake by Hi V_DOCH[j,i], V_DONH[j,i] fmol(C) day−1 cell−1, fmol(N) day−1 cell−1

Ki,j Half saturation constants for DOC (resp. DON) compound j uptake

by Hi

K_DOCH[j,i], K_DONH[j,i] mM(C), mM(N)

Yi,j Biomass yield coefficients, i.e., fractions of uptake of DOC (resp.

DON) compound Dj integrated into biomass of Pi or Hi, 0≤
Yi,j ≤ 1

Y_DOC[j,i], Y_DON[j,i] -

χC
i Carbon content per cell of population Pi or Hi XH_C[i], XP_C[i] fmol(C) cell−1

rC:N
i , rC:N

ex,i C:N ratios of populations Pi or Hi, and of N -rich exudates of Pi,

rC:N
i > rC:N

ex,i for all species.

rCN_P[i], rCN_H[i] mol(C)mol(N)−1

rChl:C
i Chlorophyll to carbon ratio for cells of Pi rChlC[i] mol(Chl)mol(C)−1

χN
i , χChl

i Nutrient or chlorophyll content per cell (χN
i = χC

i /rC:N
i , χChl

i =

χC
i · rChl:C

i )

- fmol(N) cell−1, fmol(Chl) cell−1

qex
i Maximal fractions of assimilated DOC used for DON exudation of

Pi in light limited regime.

q_ex[i] -

δi Linear loss rates of phytoplankton, heterotrophs, and metabolites d_P[i], d_H[i], d_M[i] day−1

δq,i Quadratic loss rates of phytoplankton and heterotrophs d_P2[i]*XP_C[i],

d_H2[i]*XH_C[i]

cell−1 day−1

aM
i,j Interaction rate per unit of metabolite j on growth of phytoplankton

population i; can be negative

lambda_i *A_MP[j,i] day−1

hi,j Half saturation constant for the effect of metabolite j on population

i

h_M[j,i] -

θi Conversion coefficient for determining the amount of metabolite i

corresponding to the amount of invested DOC

not included (assumed

equal to one)

mM(C)−1

αi Slope of the P-I curve of Pi at irradiance I = 0. (Effective if vari-

ant.use_PI_curve=true)

I_alpha[i] mol(C) m2

86400 mol(Chl) µmol(Q)

βi Photoinhibition coefficient of the P-I curve of Pi. (Effective if vari-

ant.use_PI_curve=true)

I_beta[i] mol(C) m2

86400 mol(Chl) µmol(Q)

ϕs,i Upper limit for the photosynthesis rate of Pi. (Effective if vari-

ant.use_PI_curve=true)

I_max[i] mol(C)mol(Chl)−1 day−1

Rj,i Release partition coefficients, 0≤Rj,i ≤ 1, for i ∈ P or i ∈H, and

j ∈ C or j ∈N
R_PDOC[i,j], R_PDON[i,j],

R_HDOC[i,j], R_HDON[i,j]

-

πj,i Production of metabolite j by heterotroph Hi P_HM[i,j] -

irrad_min, irrad_max Range of the average irradiance. (Varies sinusoidally between min-

imum and maximum in one year.) If variant.use_PI_curve=false,

this is interpreted directly as specific photosynthesis rate with unit
µmol C

µmol Chl·day .

irrad_min, irrad_max µmol(Q) m−2 s−1
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Table A2. Reference table of notations for elemental flows.

Flow Description Source Target Unit

General population-associated flows (i ∈ P or i ∈H)

fN→i realized inorganic nutrient assimilation into biomass DIN Pi or Hi fmol(N) day−1

fmax
N→i maximal inorganic nutrient assimilation into biomass DIN Pi or Hi fmol(N) day−1

fi→DOC total biomass loss to DOC Pi or Hi DOC fmol(C) day−1

fi→DON total biomass loss to DON Pi or Hi DON fmol(N) day−1

Phytoplankton populations (i ∈ P)

fC→i realized photosynthetic carbon assimilation into biomass DIC Pi fmol(C) day−1

fmax
C→i photosynthetic carbon fixation (= maximal assimilation) DIC Pi fmol(C) day−1

f i
C→DOC DOC exudation DIC DOC fmol(C) day−1

f i
N→DON DON exudation DIN DON fmol(N) day−1

Heterotroph populations (i ∈H)

fDOC→i, fDON→i realized total organic carbon, resp. nutrient, assimilation into

biomass

DOC, DON Hi fmol(C) day−1, fmol(N) day−1

fmax
DOC→i, fmax

DON→i maximal total organic carbon, resp. nutrient, assimilation into

biomass

DOC, DON Hi fmol(C) day−1, fmol(N) day−1

fup
j→i, j ∈ C ∪N realized uptake of DOC or DON compound j into biomass Dj Hi, and DIC or DIN fmol(C) day−1, fmol(N) day−1

fup,max
j→i , j ∈ C ∪N maximal uptake of DOC or DON compound j into biomass Dj Hi, and DIC or DIN fmol(C) day−1, fmol(N) day−1

f i
j→C , f i

j→N , j ∈ C ∪N remineralization of DOC or DON compound j Dj DIC, DIN fmol(C) day−1, fmol(N) day−1

f+
DON→N surplus nutrient remineralization DON DIN fmol(N) day−1

DOC or DON compounds (j ∈ C or j ∈N )

fH→j total heterotroph biomass loss to compound j Hi Dj fmol(C) day−1, fmol(N) day−1

fP→j total phototroph biomass loss to compound j Pi Dj fmol(C) day−1, fmol(N) day−1

fC→j , fN→j total phototrophic exudation of compound j DIN, DOC Dj fmol(C) day−1, fmol(N) day−1

f i
C→j , f i

N→j , i ∈ P exudation of compound j by population Pi DIN, DOC Dj fmol(C) day−1, fmol(N) day−1

fj→H total assimilation of compound j into heterotroph biomass Dj Hi fmol(C) day−1, fmol(N) day−1

fj→C , fj→N total remineralization of compound j Dj DIC, DIN fmol(C) day−1, fmol(N) day−1

fi→j , i ∈ P ∪H biomass loss of population i to compound j Pi or Hi Dj fmol(C) day−1, fmol(N) day−1

Nutrient N

fDON→N total remineralization DON DIN fmol(N) day−1

fN→P , fN→H total assimilation into biomass DIN Pi or Hi fmol(N) day−1
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Appendix B: Calculation of realized carbon assimilation (fC→i) and DOC exudation rates (f i
C→DOC)

We use the stoichiometric ratios rC:N
i and rC:N

ex,i , the maximal assimilation rates fmax
C→i and fmax

N→i, and the maximal fraction qex
i

of carbon allocated for exudation to derive the realized assimilation and exudation rates fC→i and f i
C→DOC.

We assume that carbon is fixated at maximum rate. Since it is fully allocated for assimilation and exudation [Eq. (6)], we430

have

fC→i = fmax
C→i− f i

C→DOC. (B1)

Further, the required uptake of N by Pi, that is f i
N→DON + fN→i, is related to the total carbon fixation by the stoichiometric

composition of assimilation and exudation fluxes [Eqs. (2) and (7)]. Dividing these by the ratios, adding them up, then using

Eq. (B1) and some basic algebra gives435

fN→i + f i
N→DON =

rC:N
ex,i

rC:N
i rC:N

ex,i

· fmax
C→i +

rC:N
i − rC:N

ex,i

rC:N
i rC:N

ex,i

· f i
C→DOC. (B2)

Note that the coefficient of f i
C→DOC is positive as we assume rC:N

i > rC:N
ex,i .

This can be solved for f i
C→DOC by maximization under the given constraints

f i
C→DOC ≤ qmax

i fmax
C→i, (B3)

and440

fN→i + f i
N→DON ≤ fmax

N→i,

which, using Eq. (B2), is equivalent to

f i
C→DOC ≤

rC:N
ex,i

rC:N
i − rC:N

ex,i

(
rC:N
i fmax

N→i− fmax
C→i

)
. (B4)

Hence,

f i
C→DOC = min

(
qmax
i fmax

C→i,
rC:N
ex,i

rC:N
i − rC:N

ex,i

(
rC:N
i fmax

N→i− fmax
C→i

)
)

.445
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Appendix C: Parameters used in Section 4

Table C1. Parameters for modeling Co-culture experiments of Synechococcus and heterotrophic bacteria, see Sec. 4.1.

Parameter Synechococcus Parameter R. Pomeroyi Tropicibacter sp.

P0 107 cellsml−1 H0 5 · 105 cellsml−1 3 · 106 cellsml−1

χC 12.0 fmol(C) cell−1 χC 15.0 fmol(C) cell−1 12.0 fmol(C) cell−1

rC:N
i 5.2mol(C)mol(N)−1 rC:N

i 4.0mol(C)mol(N)−1 4.0mol(C)mol(N)−1

fmax
C→i 4.6 fmol(C) day−1 cell−1 δ, δq 0.1 day−1, 0.45 (106 cells)−1 day−1 0.2 day−1, 0.012 (106 cells)−1 day−1

(constant photosynthetic rate)

δ, δq 0.28 day−1, 0.0 cell−1 day−1 VN 0.0 fmol(N) cell−1 day−1 4.0 fmol(N) cell−1 day−1

VN 1.7 fmol(N) cell−1 day−1 KN - 0.1 mM(N)

KN 2.0mM(N) VDON 4.0 fmol(N) cell−1 day−1 5.2 fmol(N) cell−1 day−1

KDON 0.1mM(N) 0.1mM(N)

Environment YDON 0.7 0.95

N0 8.8mM(N) VDOC 6.0 fmol(N) cell−1 day−1 12.2 fmol(N) cell−1 day−1

∆ 0.0 day−1 KDOC 0.1mM(C) 0.1mM(C)

YDOC 0.8 0.87

RlDOC,H 0.5 0.99

RlDOC,P 0.9 1.0

RlDON,H 0.9 0.93

RlDON,P 0.9 1.0
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Table C2. Parameters for modeling Co-culture experiments of Prochlorococcus and heterotrophic bacteria, see Sec. 4.2.

Prochlorococcus Heterotrophs

P0 106 cellsml−1 H0 104 cellsml−1

χC 10.0 fmol(C) cell−1 χC 2.0 fmol(C) cell−1

rC:N
i 5.0mol(C)mol(N)−1 rC:N

i 4.0mol(C)mol(N)−1

fmax
C→i 10.0 fmol(C) day−1 cell−1 δ, δq 0.2 day−1, 0.0 cell−1 day−1

(constant photosynthetic rate)

δ, δq 0.35 day−1, 0.0 cell−1 day−1 VN 1.5 fmol(N) cell−1 day−1

VN 1.25 fmol(N) cell−1 day−1 KN 8.0 mM(N)

KN 2.4 mM VDON 3.0 fmol(N) cell−1 day−1

KDON 0.6mM(N)

Environment YDON 0.6

N0 800mM(N) VDOC 3.0 fmol(N) cell−1 day−1

∆ 0.0 day−1 KDOC 0.6mM(C)

lDOC0 5.0 mM(C) YDOC 0.7

lDON0 0.05 mM(N) hM 5 · 10−7

M0 10−9 πM 10−7

δM 0.3 day−1

Rhodobacterales (HOT5B8) Marinobacter (HOT4B5)

aM -0.2 aM 0.17
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Table C3. Parameters used for the cyclic interaction motif, see Sec. 4.3.

Parameter Phytoplankton Parameter Heterotrophs

χC
i 10.0 fmol(C) cell−1 χC

i 2.0 fmol(C) cell−1

rC:N
i 5.2mol(C)mol(N)−1 rC:N

i 4.0mol(C)mol(N)−1

δi, δq,i 0.2 day−1, 0.2 (106 cells)−1 day−1 δi, δq,i 0.1 day−1, 0.02 (106 cells)−1 day−1

hi,j 10−4 πj,i 10−5

aM
i,j 0.0 or −1.0 Nutrient uptake

Vi,N 1.0 fmol(N) cell−1 day−1 Vi,N 1.5 fmol(N) cell−1 day−1

Ki,N 2.0mM(N) Ki,N 8.0mM(N)

ϕs,i 5.0mol(C)mol(Chl)−1 day−1 DON uptake

αi 0.08 mol(C) m2

86400 mol(Chl) µmol(Q)
Vi,j 3.0 fmol(N) cell−1 day−1

βi 0.003 mol(C) m2

86400 mol(Chl) µmol(Q)
Ki,j 1.0mM(N)

Yi,j 0.5

Environment DOC uptake

∆ 0.1 day−1 Vi,j 4.0 fmol(N) cell−1 day−1

δM 0.1 day−1 Ki,j 1.0mM(C)

Next 5.0mM(N) Yi,j 0.5

I 10.0 µmol(Q)m−2 day−1
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Table C4. Parameters used for the simulation of two competing consortia, see Sec. 4.4

Parameter Phytoplankton Parameter Heterotrophs

Pi (0) 108, resp. 106, cellsml−1 Hi (0) 105–107 cellsml−1

χC
i 10.0 fmol(C) cell−1 χC

i 2.0 fmol(C) cell−1

rC:N
i 5.2mol(C)mol(N)−1 rC:N

i 4.0mol(C)mol(N)−1

δi, δq,i 0.1 day−1, 1.0 (106 cells)−1 day−1 δi, δq,i 0.1 day−1, 0.02 (106 cells)−1 day−1

hi,j 10−4 πj,i 10−5

aM
i,j 0.0 or −0.1 Nutrient uptake

Vi,N 1.0 fmol(N) cell−1 day−1 Vi,N 1.5 fmol(N) cell−1 day−1

Ki,N 2.0mM(N) Ki,N 8.0mM(N)

ϕs,i 3.0–5.0mol(C)mol(Chl)−1 day−1 DON uptake

αi 0.05–0.3 mol(C) m2

86400 mol(Chl) µmol(Q)
Vi,j 3.0 fmol(N) cell−1 day−1

βi 0.003–0.08 mol(C) m2

86400 mol(Chl) µmol(Q)
Ki,j 1.0mM(N)

Yi,j 0.5

Environment DOC uptake

∆ 0.1 day−1 Vi,j 4.0 fmol(N) cell−1 day−1

N0 8.8mM(N) Ki,j 1.0mM(C)

δM 0.1 day−1 Yi,j 0.5

Next 5.0mM(N)

Imin 0.0 µmol(Q)m−2 day−1 Connectivity

Imax 125.0 µmol(Q)m−2 day−1 exPDOC 4

exPDON 4

System dimensions exHDOC 4

dims.P 20 exHDON 4

dims.H 20 upDOCH 3

dims.DOC 20 upDONH 3

dims.DON 20 prodHM 2

dims.M 10–20 (overlap-depd.) effsMP 4
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