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Abstract.  

The Filter Inlet for Gases and AEROsols coupled with a Chemical Ionization Mass spectrometer (FIGAERO-CIMS) is a 

widely used method for determining the chemical composition of the molecular constituents of atmospheric organic aerosols 

(OA). This temperature-programmed desorption technique thermally desorbs OA in a linearly ramped desorption temperature, 15 

and the temperature at a detected molecule’s peak desorption rate, Tmax, is proportional to the molecule’s volatility. Thereby, 

FIGAERO-CIMS also enables a direct measurement of the volatilities (saturation vapor pressures) of the OA constituents. A 

series of polyethylene glycols (PEGs) has been used to quantitatively connect FIGAERO measurement results (in particular, 

Tmax) to volatilities (i.e., calibrate). However, available literature values of saturation pressure (Psat) or saturation mass 

concentration (C*) for these compounds only extend to PEG 9, which exhibits Tmax values around ~90 ºC, whereas Tmax values 20 

of OA constituents measured from lab-generated or ambient aerosols routinely reach up to 160 ºC (Li et al., 2021; Masoud et 

al., 2022). To extend the region over which we can conveniently calibrate FIGAERO-CIMS, and hypothetically also other 

thermal desorption-based techniques for investigating OA composition and volatilities, we performed FIGAERO-CIMS 

calibration experiments using aerosol particles consisting of PEGs 5-15, which yielded Tmax values of up to ~150 °C. We then 

set out to estimate the hitherto unknown Psat (C*) values of PEGs 10-15 by utilizing a suite of different Psat estimation methods: 25 

both measurement-independent methods (quantum chemistry-based calculations, molecular structure-based group contribution 

methods, and parametrizations based on molecular sum formulas) and fits of an explicit desorption model to our FIGAERO 

measurement results with C* and vaporization enthalpies as free parameters. We assess the respective suitability of each 

method and argue that we obtain the best estimates for PEG volatilities based on the fits to our measurements. We obtained 

log10(C* (µg m–3)) values ranging from 0.51 ± 0.07 (PEG 6) to –9.2 ± 1.6 (PEG 14), agreeing with previous literature results 30 
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on PEGs <10. Within uncertainties, our results broadly continue the near log-linear relationship of C* with PEG mass for 

larger PEGs and also agree with some of the independent methods. Contrary to common assumptions in previous literature on 

FIGAERO results, we find that the relationship between log10(C* (µg m–3)) and measured Tmax is not linear. We explore the 

consequences of this finding on the analysis of previously published FIGAERO-CIMS measurements of sesquiterpene-derived 

OA. Prospects for improving on our results in future work are discussed. We conclude that calibration experiments using 35 

aerosol containing PEGs up to ~PEG 15, with best-estimated saturation vapor pressures, provide promising opportunities for 

constraining the volatilities of aerosol constituents, down throughout the range of extremely low-volatility organic compounds 

(ELVOC, C* < 3×10–4 µg m–3), as detected not only via FIGAERO-CIMS but also other (online) temperature-programmed 

desorption techniques. 

  40 
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1 Introduction 

Aerosol particles are an important factor in air pollution and the atmosphere’s radiation balance. Much of this suspended 

particulate mass consists of organic material, often constituting most aerosol mass in the sub-micron size range that is 

particularly relevant for providing cloud condensation nuclei (thereby affecting indirect radiative forcing (Sporre et al., 2020)). 45 

Chemically, that organic aerosol fraction has turned out to be extremely complex, and it remains a great challenge to determine 

the detailed chemical composition of organic aerosol (OA). That is due to the diversity of organic species present in our 

atmosphere. Their complex chemical processing in the gas phase largely determines their propensity to condense into aerosol 

particles, while condensed-phase reactions may further alter OA composition, subject also to inorganic constituents (including 

water) and physical aerosol properties such as viscosity (Hallquist et al., 2009). All these properties may also affect the 50 

volatility of OA, i.e., its proclivity to evaporate in response to changes in its chemical and physical environment (e.g., the 

removal of condensing species from the gas phase or changes in temperature). OA volatility is thus a key property for 

describing aerosol evolution and lifetime under changing environmental conditions. Among the state-of-the-art mass 

spectrometry-based methods to tackle these measurement challenges related to OA – in particular measurements of both 

elemental composition of OA constituents and their volatilities – is the Filter Inlet for Gases and AEROsols (FIGAERO, 55 

Lopez-Hilfiker et al., 2014), coupled to a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) that is sensitive 

to a wide range of organic compounds that are present in the atmosphere in trace amounts, including compounds forming OA 

(Bertram et al., 2011). The FIGAERO-CIMS is a semi-online method, with two alternating modes of operation: aerosol is 

collected on a polytetrafluoroethylene (PTFE) filter while the CIMS measures gas-phase compositions; then the gas inlet is 

blocked while a gradually heated nitrogen (N2) flow desorbs the collected aerosol particles and the resultant thermally desorbed 60 

vapours directly enter the CIMS for composition measurements (details in Section 2.2). 

 

FIGAERO-CIMS instruments have been successfully employed in numerous studies of OA over the last decade (Thornton et 

al., 2020). The instrument can, with some caveats, identify and quantify both gas-phase and particle-phase chemical 

compounds over a broad range of chemical functionalities (Lopez-Hilfiker et al., 2014). The inbuilt controlled thermal 65 

desorption mechanism also allows investigating the volatilities of the compounds detected from the particle phase. Such 

particle volatility measurements using FIGAERO-CIMS rely on the accurate identification of the so-called Tmax values of 

individual compounds, i.e., the temperatures at which the highest respective signals are observed. These Tmax values are 

inversely proportional to volatility and can be converted to saturation vapor pressure Psat and saturation mass concentration C* 

values, as has been shown empirically and through modelling (Lopez-Hilfiker et al., 2014; Schobesberger et al., 2018). 70 
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However, an accurate conversion from Tmax to Psat and C* would require a reliable calibration (Bannan et al., 2019; Ylisirniö 

et al., 2021).   

 

Unfortunately, due to a lack of calibration compounds with known Psat at low volatilities (Psat < 10-9 Pa / C* < 10-4 μg m–3), 

the current calibration procedure can only cover the desorption temperature range up to ~80-100 ˚C, but desorption 75 

temperatures of FIGAERO-CIMS can reach 200 ˚C and for ambient or lab-generated OA, Tmax values are routinely identified 

up to 160 ˚C. In this study, we aim to extend the calibrated range of FIGAERO-CIMS for Psat measurements to also cover 

lower Psat values down to Psat ~ 10-16 Pa / C* ~ 10-11 μg m–3. We utilize a combination of different methods to improve the 

accuracy of estimating saturation pressures of low-volatility compounds. The core of our study is careful FIGAERO-CIMS 

calibration experiments using a wide range of polyethylene glycol (PEG) polymers from PEG-5 to PEG-15. The experiments 80 

are supported by parametrization and modelling approaches for assessing the Psat that have so far remained uncertain for PEGs 

beyond an order of 9 (PEG-9; Psat ≈ 6.7 *10-9 Pa; Krieger et al., 2018; Li et al., 2023). Note that all Psat or C* discussed in this 

study refer to the equilibrium pressures (concentrations) over the pure (partly assumed) liquid substance, unless stated 

otherwise. 

2 Materials and methods  85 

2.1 Generation of calibrant aerosol  

We generated calibrant aerosol particles by atomizing a solution containing PEG polymers, H-(O-CH2-CH2)n-OH, ranging 

from an order of n = 5 (PEG-5) to 15 (PEG-15) using a Topas ATM 226 atomizer. Individual PEGs were obtained from 

Polypure AS (≥95% purity). The used solvent was acetonitrile (ACN) (Fisher Scientific, 99.8% purity). The initial 

concentration of each PEG in the solution was ~0.2 g/l. Note that the concentration of each individual PEG increases during 90 

the atomization process as the solvent has a higher vapor pressure than the PEGs. All PEGs were dissolved into the same 

atomization solution. The atomized polydisperse particles were directed through a dilution system to ensure the evaporation 

of ACN (Ylisirniö et al., 2021). We then size-selected 100 nm electrical mobility-sized monodisperse particles from the “dried” 

polydisperse particles using a differential mobility analyser (TSI 3080). The resulting monodisperse particles were then 

directed to both the FIGAERO filter collector and a condensation particle counter (CPC, TSI 3775) via a flow splitter.  95 

2.2 FIGAERO-CIMS 

The ToF-CIMS (Tofware AG, Aerodyne Research Inc.) was operated with an iodide-ionization scheme (Iyer et al., 2017; Lee 

et al., 2014). The mass resolution of the instrument was 4000-5000 over the relevant mass range. Iodide ions were generated 

by passing an ultrapure N2 flow of 1 standard L min–1 over a permeation tube containing methyl iodide (CH3I, Sigma Aldrich 
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99% purity), followed by a commercial Po-210 α-radiation source (Model P-2021, NRD Static Control LLC). The formed I- 100 

ions were fed into the Ion Molecule Reaction (IMR) chamber, where they mixed with a 2 L min–1 flow of sample molecules. 

The IMR chamber was actively controlled to a pressure of 100 mbar and actively heated to 60 ºC with heating wires wrapped 

around the outside of the IMR to accomplish even heating.  

 

The operation of the FIGAERO inlet is thoroughly explained in previous publications (Bannan et al., 2019; Lopez-Hilfiker et 105 

al., 2014; Thornton et al., 2020). Briefly, the FIGAERO inlet enables measurements of both gas-phase and particle-phase 

chemical constituents through two separate pinholes leading into the instrument. In normal operation, the gas-phase vapours 

are directly sampled into the IMR, while the other pinhole is kept closed, and aerosol particles are sampled onto a PTFE filter 

(SKC Inc. PTFE membrane filter, pore size 2 µm, 25 mm diameter, of which a central section of 6 mm diameter is exposed to 

sampling flow). Once a sufficient amount of particulate matter (typically ~100-200 ng) has been collected onto the PTFE filter, 110 

the filter is moved over the second pinhole, and the gas phase sampling pinhole is closed. Chemical constituents are then 

evaporated from the aerosol particles collected onto the filter by a gradually heated ultra-pure N2 flow through the filter and 

into the IMR (2 standard L min–1). The heating cycle of the FIGAERO typically consists of two phases, the so-called heat 

ramp phase and soak phase. During the heat ramp phase, the N2 is heated from room temperature linearly to ~200 ºC, as 

measured a few millimetres above the filter. This is followed by the soak phase, where the N2 flow is maintained at 200 °C to 115 

evaporate any remaining material from the filter. The measurement data used in this study was selected from two sets of 

measurements, a first set in January 2022 (experiments A and B) and a second set in July 2022 (experiment C). In experiments 

A and B, we used ramping times of 5 min and 15 min with particulate mass loadings of 105 ng and in experiment C, we used 

a 10 min ramping time with particulate mass loading of 170 ng, based on calculations from CPC readings while assuming 

spherical particles and a density of 1.125 kg m-3 (Krieger et al., 2018). Note that the mentioned aerosol mass loadings refer to 120 

the total collected mass over all PEG compounds. Collected masses of individual PEGs ranged from ~5 to 10 ng per compound. 

The used collection flow was 1 L min–1 in all experiments. Additional blank heating cycles with no collected particles were 

also performed before individual experiments to ensure and confirm low background signals. Details of these measurements 

are further discussed in section 3.3.  

 125 

In this study, we employed a custom-built version of the FIGAERO inlet, which slightly differs from the commercially 

available FIGAERO inlet produced by Aerodyne Inc. These differences are mainly in the control program and electronics 

used, but the main measurement principles are the same. 
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2.2.1 Data-analysis  

The time-of-flight data was processed using the tofTools software package (Junninen et al., 2010) written in MATLAB 130 

(Mathworks Inc.) and further post-processed with custom MATLAB scripts. The data-analysis procedure follows the outline 

stated in Ylisirniö et al., (2021). Briefly, both CIMS data and temperature data were recorded in 1 Hz time resolution and 

averaged to 0.2 Hz resolution in the preprocessing. CIMS data was then compared against the temperature data to form so-

called thermograms (i.e., ion count rates, proportional to the PEGs’ desorption rates, vs. desorption temperature). In the typical 

case, these thermograms resemble a lognormal function. The peak value of the thermogram is called Tmax (i.e., the temperature 135 

of maximum desorption). For obtaining the Tmax values from the thermograms, an asymmetrical lognormal function was first 

fitted to the measurement data and Tmax values were assigned to the maxima of these functions, thus minimizing the impact of 

noise on those assignments.  

 

Obtained Tmax values of individual compounds have previously been found to follow a log-linear relationships against 140 

literature-values of saturation vapor pressure Psat,lit of said compound (Bannan et al., 2019; Lopez-Hilfiker et al., 2014; 

Ylisirniö et al., 2021), following the equation 

l n(𝑃𝑠𝑎𝑡,𝑙𝑖𝑡) = 𝑎𝑇𝑚𝑎𝑥 + 𝑏,  (1) 

 

where a and b are fitted parameters. Saturation vapor pressure values of any other measured compounds could be then 

estimated with the equation 145 

𝑃𝑠𝑎𝑡,𝑚𝑒𝑎𝑠  =  𝑒𝑎 𝑇𝑚𝑎𝑥,𝑚𝑒𝑎𝑠 +𝑏 ,  (2) 

 

where Tmax,meas is the measured Tmax value of the compound of interest. It is often customary in the field of aerosol science to 

express Psat values as C*, which can be calculated using the ideal gas law: 

𝐶∗ (µ𝑔 𝑚−3) =  
𝑃𝑠𝑎𝑡,𝑚𝑒𝑎𝑠𝑀𝑤

𝑅 𝑇
 106, 

 (3) 

 

where Mw is the molecular weight of the compound (in units of g mol -1), R is the universal gas constant (8.314 J mol -1 K -1) 150 

and T is the temperature (in units of K) of which the literature Psat,lit value was determined (in our case, 298K).  

 

Ylisirniö et al., 2021 further suggested to accomplish the linear fit of equation (1) using a bivariate least squares method (York 

et al., 2004), e.g., as implemented in MATLAB by Pitkänen et al., 2016, to account for uncertainties in the determination of 

both Psat,lit and Tmax,meas.  155 
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2.3 Saturation vapor pressure determination  

The volatility calibration of FIGAERO-CIMS presented here relies on the known saturation vapor pressure values of the PEGs 

in order to determine the calibration parameters via Eq. 1 (Ylisirniö et al., 2021). Literature values of Psat for PEGs are available 

for PEG-1 to PEG-9 (Krieger et al., 2018, later abbreviated to K2018. Li et al., 2023, later abbreviated to L2023). 160 

 

Experimental data thus exist in literature for Psat of PEG-1 to PEG-9, but reference data for larger PEGs (PEG-10 to 15) are 

missing. To extend the volatility range to lower volatilities, we determine the Psat values of PEGs 5 to 15 with several different 

modelling and parameterisation methods based on either the molecular composition or measured thermograms. The estimation 

methods that are based on molecular composition range from simple molecular formula-based parametrisations (Li et al., 2016; 165 

Mohr et al., 2019; Peräkylä et al., 2020; Stolzenburg et al., 2018) and functional group-based methods (Modified Grain Model, 

EVAPORATION, SIMPOL) to a more detailed molecular structure-based quantum chemical model (COSMO-RS; Eckert & 

Klamt, 2002; Klamt, 1995; Klamt et al., 1998). We also use fits of a desorption model (Schobesberger et al., 2018) to the 

experimental thermograms with Psat values as free parameters. These methods are more thoroughly discussed in the following 

subsections.  170 

 

2.3.1 Desorption modelling 

The desorption model was specifically developed to simulate the thermal desorption of filter-collected aerosol particles in the 

FIGAERO and transport into the CIMS, details seen in (Schobesberger et al., 2018). In our study here, the model was set up 

with a minimal number of free parameters, which are explained later in this section. Model runs used as input the desorption 175 

temperature ramp rates as used experimentally and monodisperse aerosol particle sizes as classified (section 2.2). The 

simulated particles initially consisted of the involved PEGs in equal molar amounts. No chemical reactions (i.e., no 

oligomerization, decomposition, etc.) were allowed, and the particles were assumed to always be homogeneous ideal mixtures. 

In Schobesberger et al. (2018), possibly delayed detection by an older-generation FIGAERO had been attributed to interactions 

between desorbed molecules and instrumental surfaces. These delays/interactions were disabled here, i.e., simulated detection 180 

of molecules was simultaneous with their simulated desorption from the particles. Non-ideal heating was assumed, using the 

same parametrization as in Schobesberger et al. (2018), which served to provide the observed “tails” in the thermograms, while 

having a minimal effect on the simulated Tmax. The only free parameters were the saturation vapor pressure (Psat, i) and 

vaporization enthalpy (∆Hi) of each PEG i, and the sensitivities of the CIMS to each compound (Si). These parameters were 

fit to the observations, wherein ∆Hi were primarily constrained by the thermograms’ upslopes, Psat, i by ∆Hi and Tmax, i, and Si 185 

by the thermogram height (i.e., amount of signal). 
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To provide uncertainties for those fit parameters, while accounting for variabilities between individual experiments, we applied 

an automated model optimization algorithm 24 times to a representative selection of three individual experiments (A, B, C), 

thus exploring the sensitivity of the quality of the fit to each parameter and experiment. Further discussion of that procedure 190 

and its results are discussed in Section 3.3.  

 

2.3.2 Conductor-like screening model for real solvents (COSMO-RS) 

We used the COSMOtherm program (BIOVIA COSMOtherm, 2021) to estimate saturation vapor pressures of PEGs 5-8, 10, 

12 and 14. COSMOtherm is based on the conductor-like screening model for real solvents (COSMO-RS), which is a quantum 195 

chemistry-based model that considers the exact structure (specific structural isomer and even the geometry of the most stable 

conformation in the gas and condensed phase) of molecules in saturation vapor pressure calculations. In COSMOtherm, Psat 

is calculated using 

𝑃𝑠𝑎𝑡,𝑖 = exp (
−(𝐺𝑖

(𝑙)
−𝐺𝑖

(𝑔)

𝑅𝑇
) , 

 (4) 

 

where the free energies (G) in gas (g) and pure condensed (l) phase are derived from density functional theory (BP/def2-200 

TZVPD-FINE//BP/def-TZVP level of theory). The conformer selection for our COSMOtherm calculations is detailed in 

Section S1 of the Supplement Information. 

2.3.3 Modified Grain Method (MGM) 

The modified Grain method (MGM) is an estimation of vapor pressure based on the boiling point of a compound, as determined 

by a structure-activity relationship based on Stein & Brown, (1994) and others’ work (Joback, 1984; Reid et al., 1959). The 205 

boiling point is calculated by the following  

𝑇𝑏 = 198.2 +  ∑(𝑛𝑖 ∗ 𝑔
𝑖
) ,  (5) 

 

where Tb is the boiling temperature in Kelvin, gi is the group increment value, and ni is the number of those functional groups 

present in the molecule. The boiling point (if it is calculated to be less than 700 K) is then corrected using the following 

equation: 210 
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𝑇𝑏_𝑐 = 𝑇𝑏 − 94.84 + 0.5577 ∗ 𝑇𝑏 − 0.0007705(𝑇𝑏)2,  (6) 

 

where Tb_c is the corrected boiling point (K). The relationship between boiling point and functional groups was based on the 

analysis of 4426 organic compounds. Once the boiling point is estimated (if not already available from previous 

measurements), this temperature is used to calculate the liquid vapor pressure through the following equation: 

ln(𝑃𝑙) =
𝐾𝐹 ln(𝑅𝑇𝑏)

Δ𝑍𝑏
∗ [1 −

(3−2𝑇𝜌)
𝑚

𝑇𝜌
− 2𝑚(3 − 2𝑇𝜌)

𝑚−1
ln(𝑇𝜌)], 

 (7) 

 215 

where ln(Pl) is the natural logarithm of the liquid vapor pressure, KF is a structural factor (Lyman et al., 1990; Mill & Mabey, 

1985), R is the gas constant, ΔZb is the compressibility factor (0.97), Tb is the estimated normal boiling point as estimated in 

Eq. (5) and (6), Tρ is equal to T/Tb, where T is the reference temperature (298 K), and m is equal to 0.4133 – 0.2575Tρ. 

 

Additional structural factors have been introduced since the publication of Stein & Brown, (1994), and have been incorporated 220 

into EPIWIN, the program we used to estimate the vapor pressures with the modified grain method. A complete list of structural 

factors and corrections are reported in the freely available program (EPI Suite- Estimation Program Interface | US EPA) in 

addition to previous publications (Lyman et al., 1990; Stein & Brown, 1994).  

2.3.4 EVAPORATION and SIMPOL 

The “simplified po
L prediction method” SIMPOL (Pankow & Asher, 2008) and EVAPORATION (Estimation of VApour 225 

Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects; Compernolle et al., (2011)) 

are popular methods for predicting the (subcooled) liquid saturation vapor pressures of organic compounds based on their 

molecular structures. SIMPOL uses the basic group contribution approach: the logarithm of the saturation vapor pressure is 

described as the sum of terms that amount to the individual contributions of features of the molecular structure (“groups”). 

SIMPOL considers a total of 30 possible groups. The group contribution terms are temperature-dependent with empirically 230 

determined coefficients based on 272 compounds. EVAPORATION uses a more complex description of the molecular 

structure, with empirically determined parameters based on 579 compounds. The model can be run, for example, on a website  

https://tropo.aeronomie.be/models/evaporation, (last access 27.3.2025); requiring as input the molecular structure using the 

Simplified Molecular Input Line Entry Specification (SMILES), and temperature. Like all Psat values reported in this study, 

the Psat values calculated via SIMPOL and EVAPORATION are based on a temperature of 298 K.  235 

https://tropo.aeronomie.be/models/evaporation
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2.3.5 Elemental composition parametrizations 

We used three volatility parametrizations based on molecular formula: those suggested in Li et al., (2016); Mohr et al., (2019); 

Peräkylä et al., (2020) and Stolzenburg et al., (2018). Each of them uses the number of carbon, hydrogen, oxygen and nitrogen 

(C, H, O and N) atoms from the sum chemical formula of the compound to predict the compound’s volatility. Equations of 

each parametrization are presented below. Note that these parametrizations yield saturation vapor concentrations (C*) rather 240 

than vapor pressures (Psat). See Eq. (3) for the conversion between these quantities. 

 

The Li et al., (2016) parametrization (later, L2016) for compounds containing C, H and O atoms is of the form 

 

𝑙𝑜𝑔10𝐶∗ = (𝑛𝐶
0 − 𝑛𝐶)𝑏𝐶 − 𝑛𝑂𝑏𝑂 − 2

𝑛𝐶𝑛𝑂

𝑛𝐶 + 𝑛𝑂
𝑏𝐶𝑂,  (8) 

 245 

where nC
0 is the reference carbon number (22.66); nC, and nO, are the number of carbon and oxygen atoms in the molecule, 

respectively. bC = 0.4481 and bO =1.656 denote the contribution of each atom to the log10C*, respectively. bCO = -0.779 is the 

carbon-oxygen nonideality. 

 

The Stolzenburg et al., (2018) parametrization (later, S2018) for the same compounds is of the form 250 

𝑙𝑜𝑔10𝐶∗ = (𝑛𝐶
0 − 𝑛𝐶)𝑏𝐶 − 𝑛𝑂(𝑏𝑂 − 𝑏𝑎𝑑𝑑) − 2

𝑛𝐶𝑛𝑂

𝑛𝐶 + 𝑛𝑂
𝑏𝐶𝑂 ,  (9) 

 

where nC
0 = 25, bC = 0.475, bO = 2.3, and bCO = -0.3. The additional parameter badd = 0.9 accounts for a reduced average 

contribution of oxygen atoms to depressing C* caused by the presence of peroxy groups in highly oxygenated organic 

molecules (HOMs), specifically HOM monomers that follow a-pinene oxidation. The value of badd for HOM dimers is 1.13. 

Results using both badd values are shown in the Results section. 255 

 

The Mohr et al., (2019) parametrization (later, M2019) for CHON compounds is of the form 

𝑙𝑜𝑔10𝐶∗ = (𝑛𝐶
0 − 𝑛𝐶)𝑏𝐶 − (𝑛𝑂 − 3𝑛𝑁)𝑏𝑂 − 2

(𝑛𝑂−3𝑛𝑁)𝑛𝐶

(𝑛𝐶+𝑛𝑂−3𝑛𝑁)
𝑏𝐶𝑂 − 𝑛𝑁𝑏𝑁,  (10) 

 

where nC
0 = 25, bC = 0.475, bO = 0.2, bN = 2.5 and bCO = 0.9. Note that when nN = 0, Eq. (10) reduces to the same form as Eq. 

(8), though M2019 uses different parameter values.  260 

 

Finally, the Peräkylä et al., (2020) parametrization (later, P2020) is of the form 
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𝑙𝑜𝑔10𝐶∗ = 0.18 𝑛𝐶 − 0.14 𝑛𝐻 − 0.38 𝑛𝑂 + 0.8 𝑛𝑁 + 3.1,  (11) 

 

where nC, nO and nN are defined as previously and nH is the number of hydrogen atoms in the molecule. 

 265 

Parametrizations L2016, S2018 and M2019 resemble the parameterization by Donahue et al.,(2011). However, the parameter 

values are derived from different reference C* datasets and with different assumptions. Donahue et al., (2011) based their 

parameterization on reference data of C* of certain groups of organic compounds and assumptions of representative 

combinations of functional groups in secondary organic aerosol (SOA). M2019 and S2018 are both based formally on the 

Donahue et al., (2011) parameterization, but they have been modified with the help of C* estimations with SIMPOL, in two 270 

different ways, to account better for the increased amount of peroxide moieties expected from HOMs (Bianchi et al., 2019). 

M2019 is based on proposed structures for HOMs derived from ɑ-pinene oxidation experiments (Tröstl et al., 2016). S2018 

used a slightly extended or updated dataset (Kurtén et al., 2016) and an additional free parameter that was fit to ɑ-pinene HOM 

monomers and HOM dimers separately. The parameter values in Li et al., (2016), on the other hand, are based on C* of 

thousands of compounds estimated with molecular structure-based methods. As such, the three parameterizations are based on 275 

different reference data, considered compounds and assumptions. The P2020 parametrization of Peräkylä et al. (2020), on the 

other hand, is based on a statistical model built to explain their direct measurements of the condensation behaviour of α-pinene 

HOM monomers.  

 

Additionally, we also made a linear fit of ln(Psat,PEG 5-9) vs. PEG number, similarly as in Eq. (1), where Psat,PEG 5-9 are the 280 

previously published saturation pressures of PEG 5-9, using the mean of K2018 and L2023 values. Extrapolation of that linear 

fit (albeit over many orders of magnitude) was discussed in Ylisirniö et al., (2021) as one way to roughly estimate the C* 

values of PEG 10-15.  

3 Results and discussion 

The results and analysis in this study are built upon laboratory experiments as described above (Sections 2.1-2.2). We will first 285 

present a general comparison of all used estimation methods and then discuss their respective performance in estimating the 

volatilities of PEGs.  

3.1 Comparison of volatility estimation methods 

Figure 1 shows the results of all used volatility estimation methods in C* compared to a) the PEG number, and to b) the 

measured Tmax of PEGs 5-15. Estimated C* values are either direct outputs of the models or converted from Psat values with 290 
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Eq. (3). (An exception is the C* value for PEG-15 derived from the desorption model, which was extrapolated as described in 

Section 3.3.). For the sake of clarity, the shown Tmax values are average values from experiment A, as each experiment used 

different ramping rates, which affect the measured Tmax values. Results from desorption modelling are averages over a set of 

measurements as described in Section 3.3. All shown volatility results are also displayed in Table S2 (in terms of Psat) and S3 

(in terms of C*) in the supplemental material. Table S3 also shows the used Tmax values and their standard deviations. Overall, 295 

the variety of different methods produced a very wide spread of estimates of C* values; differences between estimates ranged 

from 2 orders of magnitude for PEG-5 up to 18 orders of magnitude for PEG-15. The best agreement to reported literature 

values (K2018 and L2023) is with the desorption model, MGM and COSMOtherm. The desorption model and MGM also 

produced nearly identical (within an order of magnitude) estimates for all PEGs. COSMOtherm also agreed with these models 

within the same range up to PEG-12, after which it deviated from them roughly 2 orders of magnitude higher. SIMPOL, 300 

EVAPORATION, S2018 dimers and L2016 estimated broadly the same results between each other, with a maximum 

difference of roughly two orders of magnitude for PEG-15. The lowest volatilities (for all PEGs) are estimated via M2018 

(e.g., C* = 4.64×10-25 µg m-3 for PEG-15), while P2020 estimates highest vapour pressures for PEGs 10-15 (e.g., C* = 5.5×10-

7 µg m-3 for PEG-15). 

 305 

Almost all used models estimate a broadly log-linear decrease in volatility (C*) when compared against PEG-number (Figure 

1a), except for COSMOtherm, MGM and to some degree the desorption model, which both estimate higher volatilities than 

just linear extrapolation from literature data. Note that although many models appear to estimate loglinear decrease in volatility 

vs PEG-number (and thus molecular mass), true linearity should not be expected, as has been pointed out in previous studies 

(Li et al., 2016; Mohr et al., 2019; Stolzenburg et al., 2018). When comparing the estimated C* results to measured Tmax (Figure 310 

1b), the relationships appear only log-linear for the smaller PEGs but turn out roughly log-polynomial over the full range of 

PEGs 5-15. This effect is further discussed in the next section. 

3.2 Impact of non-linear FIGAERO calibration 

Note that previous investigations of C* using FIGAERO data have typically assumed a log-linear relationship with measured 

Tmax. To illustrate the impact of the log-polynomial relationship of C* vs Tmax found here (Figure 1b), we applied the original 315 

log-linear calibration, Eq. (1), to C* vs Tmax data for PEGs 6-9 and two modifications that follow a second-order polynomial 

ln (𝑃𝑠𝑎𝑡,𝑚𝑒𝑎𝑠)  =  𝑎 𝑇𝑚𝑎𝑥,𝑚𝑒𝑎𝑠
2  + 𝑏𝑇𝑚𝑎𝑥,𝑚𝑒𝑎𝑠 +  𝑐,  (12) 

 

and a third-order polynomial 
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ln (𝑃𝑠𝑎𝑡,𝑚𝑒𝑎𝑠)  =  𝑎 𝑇𝑚𝑎𝑥,𝑚𝑒𝑎𝑠
3 + 𝑏 𝑇𝑚𝑎𝑥,𝑚𝑒𝑎𝑠

2 + 𝑐 𝑇𝑚𝑎𝑥,𝑚𝑒𝑎𝑠  + 𝑑,  (13) 

 

where a, b, c and d are free parameters that we fit to C* vs Tmax data for PEGs 6-15. (PEG-5 was omitted as only a decaying 320 

signal of it was observed, so its Tmax is uncertain; the value for PEG-15 is based on extrapolation as described in Section 3.3.) 

In the absence of literature Psat (or C*) values for PEGs 10-15, we chose the results from desorption modelling to be the best 

estimation of C* values for these compounds and used those results as the basis for the fit. This choice is further discussed in 

section 3.3. The performance of all models in estimating C* is also further discussed in section 4. The bivariate least squares 

fit algorithm used for linear fitting (see sect. 2.2.1) is not suitable for polynomials. Therefore, we employed the Gauss-Markov 325 

original least squares regression in those calculations. This method takes into account the uncertainties in the y-axis (Psat,meas) 

but not the uncertainties in the x-axis (Tmax). Note that using different fitting methods that do or do not take all uncertainties 

into account can cause the fit to unduly weight some points more than others, and care should be taken when selecting an 

appropriate fitting routine. Besides Gauss-Markov estimation, Weighted Least Squares regression, Orthogonal Distance 

Regression or Bayesian regression can be used for fitting polynomials with uncertainties.  330 

 

Figure 2 a) shows how different polynomial fits match the C* vs Tmax values fitted to desorption model results, namely a linear 

fit, a 2nd order polynomial and a 3rd order polynomial. We then investigated how these different fit equations affect the VBS 

(Volatility Basis Set, Donahue et al., (2011)) distribution of sesquiterpene SOA determined with FIGAERO-CIMS. Details 

about the sesquiterpene SOA production and FIGAERO measurement can be found from Ylisirniö et al., (2020). We highlight 335 

that this relatively older dataset is used here merely for illustrative purposes. Accurate FIGAERO volatility calibrations should 

always be conducted using the same instrumentation as in the actual ambient or laboratory experiments, using the same setup 

and settings (ideally at a similar time, to avoid drifts) and even similar aerosol particle sizes and filter loadings.  

 

When inspecting Figure 2 a) more closely, we can notice that different fit equations agree well with each other up to about 340 

PEG-12 (log10(C*) ~ -6 µg m-3), after which the second and third-order polynomial fits increasingly differ from the linear fit. 

The second and third-order polynomial fits agree with each other and measured values within an order of magnitude up to 

PEG-14 (log10(C*) ~ -10 µg m-3), after which the third-order polynomial fits the desorption model data better. When 

comparing the resulting VBS distributions of the three fits (Figure 2 b-d), we can see that the main differences in the three 

distributions are in the region of ultra-low-volatility organic compounds (ULVOC, log10(C*) <  -9 µg m-3) (Schervish & 345 

Donahue, 2020). These divergences illustrate how the availability of calibrants up to higher Tmax substantially improves the 

volatility calibration for FIGAERO, including any extrapolation to even higher Tmax, which is also subject to the choice of 

fitting function. Higher accuracies, especially for ULVOCs, may still be achieved by extending calibration measurements 

further up to, e.g., PEG-18 or PEG-19, to cover an even wider Tmax range. It is also likely that some other fit equation could 
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yield more accurate results than our polynomial fits. However, taking into account current uncertainties in determining the 350 

volatilities of low-volatility calibrants, including our results in this study, simple polynomial fits seem to provide adequate 

approximations within the range of Tmax measurements.   

3.3 Desorption modelling results and uncertainties 

The analysis in Section 3.2 relied not only on the measured Tmax but also on the estimated Psat (C*) of PEGs >9, for which 

literature values have not yet been established. To justify our selection of C* values from the desorption modelling, we present 355 

here a more detailed description of how the model runs were set up, how model parameters were fit to the measured FIGAERO-

CIMS data, and how we evaluated our results. In Figure 3, we present the thermograms measured with FIGAERO-CIMS in 

one of the experiments. The thermograms peaked (Tmax) between 37 °C (PEG-6) and 150 °C (PEG-15). PEG-5 proved to be 

so volatile that only a decaying signal was observed. In a colder environment, its Tmax would likely be just prior to the start of 

the temperature ramp at room temperature, at ~18 °C. The figure also shows a desorption model fitting result, fitted to the 360 

measurement data by choosing suitable values for the saturation vapour pressures (Psat, i) and vaporization enthalpies (∆Hi) for 

each compound (i) at 298 K, along with instrument sensitivities Si (Section 2.3.1). Model fits could be achieved equally well 

either while assuming constant ∆Hi values, or while assuming a small temperature dependence due to the expected change in 

heat capacity upon vaporization. Here, we used a temperature dependence of dΔH/dT = –0.1 kJ mol–1 K–1 as a rough literature-

based estimate (Krieger et al., 2018), but which is similar to dependences found also for a broader range of organic compounds 365 

(Bilde et al., 2015; Epstein et al., 2010; Riipinen et al., 2007; Tong et al., 2004). Note that the model fits the thermogram 

upslopes very well, suggesting an accurate representation of the desorption process. Also, the downslopes, which arise 

primarily from post-desorption transport processes, are fit well overall, though they are simulated using the same heuristic 

approach and the same parametrization as originally estimated rather crudely (Schobesberger et al., 2018).  

 370 

The automated optimization of the model parameters (applied 24 times for each experiment) followed the covariance matrix 

adaptation evolutionary strategy (Hansen & Ostermeier, 2001); the quality of each fit (f) was defined for each PEG as the mean 

square deviation between model and measurement, considering data up to just after (40 s) the peak of the thermogram, as 

subsequent data were increasingly subject to non-idealities that the model captures with varying success (tails; e.g., Figure 3). 

We only selected experiments with filter loadings of < 200 ng, to minimize potential biases due to matrix effects, which can 375 

delay desorption (Huang et al., 2018; Ylisirniö et al., 2021) but are not part of the model (which always assumes well-separated 

individual particles).  

 

The experiments were made in January (A, B) and July (C) of 2022; they used filter loadings of 105 (A, B) or 170 (C) ng, 

collected over 0.3 (A, B) or 4 (C) min, and desorption temperature ramp rates of 0.22 (A), 0.69 (B) or 0.32 (C) K s–1, which 380 
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correspond to heat ramping times of (A) 15 min, (B) 5 min and (C) 10 min. Experiment A was part of a series testing for filter 

loading effects (105, 205, 1100 ng) that showed increasingly delayed desorption with increasing loading, as expected; this 

effect was notable already when doubling the loading to 205 ng. The 105-ng experiment also exhibited the least tailing in its 

thermograms (of all considered experiments). In conclusion, experiment A appeared to be the least affected by non-idealities 

of all experiments; it also routinely yielded the lowest (best) values for f. We thus also show model-fitting results from 385 

experiment A separately in Figures. S1 and S2. For our best estimates for Psat, i, ∆Hi and their uncertainties (Figures 1, 2, S1, 

S2; Tables S1-S3), we first determined best estimates for each experiment individually (1/f-weighted means of all successful 

optimizations, defined as those within 10% of f*, the lowest f obtained by the 24 optimizations), followed by the 1/f*-weighted 

mean (experiment A double-weighted) over all experiments. For Psat, i, these calculations were performed in logarithmic space. 

 390 

Starting the temperature ramp at a lower temperature in the model, such as 0 °C, a thermogram can also be simulated for PEG-

5 (Figure 3, dashed line), but Psat, i and ∆Hi could not reasonably be constrained by our optimization routine and are thus not 

reported for PEG-5. Also, PEG-6 is already observed desorbing from the very beginning of the experiment, substantially 

altering the thermogram’s upslope and thus preventing us from obtaining as reliable model optimizations for ∆H as for larger 

PEGs. But as its desorption occurs near room temperature, Psat was nonetheless well constrained, so we report Psat for PEG-6 395 

but not ∆H. 

 

At the other end of the scale, the automated model optimization did not work well for PEG-15. In order to reduce computational 

expense, the algorithm optimized pairs of Psat, i and ∆Hi for each PEG-i separately while the desorption of the sum of all other 

PEGs was approximated to provide appropriate condensed-phase mass fractions of the PEG-i, as that fraction affects 400 

evaporation rates (Raoult effect). Comparisons with results of (slower) model runs that properly simulated the desorption of 

all PEGs simultaneously showed negligible differences for all but the last-desorbing species, PEG-15. Therefore, the reported 

desorption model values for PEG-15 (Figs. 1-2; Tables S2-S4) are not result from optimization but a log-linear extrapolation 

of the results for PEGs 6-14.  

 405 

Besides the success of the desorption model in fitting the FIGAERO-CIMS measurements, the resulting values of ∆Hi and 

even more so Psat, i are also in excellent quantitative agreement with previous experimental findings for PEGs 5-9 (Krieger et 

al., 2018; Li et al., 2023) (Figures 1, S1, S2; Tables S2, S4). Further, more heuristic confidence in our model results is created 

by their agreement with the MGM (Figure 1). It is also interesting to note that our results for higher-order PEGs broadly 

continue the linear trend of ∆Hi and the log-linear trend of Psat, i vs. PEG order (or mass) that previous studies reported for 410 

PEGs 5-9 (Figures S1-S2; especially experiment A). However, our uncertainties do increase for higher-order PEGs, and in 

principle, log-linearity should not be expected. Indeed, both COSMOtherm and MGM predict a slight departure from that log-
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linearity with increasing PEG order, consistent also with the desorption model results and their uncertainties (see also Section 

3.1 and Conclusions). 

4 Discussion 415 

4.1 Measurement accuracy and performance of the desorption model  

In the previous section, we argued that the desorption model produces among our best estimates of Psat (C*) for PEGs, at least 

for PEGs 6-14, mainly motivated by the high accuracy with which the model can replicate the overall behaviour of the 

measured thermograms. We obtained uncertainty estimates for individual experiments by assessing the sensitivity of fit quality 

to variations in Psat, i and ∆Hi. But ultimately, the main source of uncertainty for the desorption modelling results stems from 420 

variabilities in our FIGAERO-CIMS measurement results. We know that several experimental details affect the thermograms, 

in particular the values of Tmax; most prominently the desorption temperature ramp rate, the size of deposited aerosol particles 

and total filter mass loading (all of which work to increase Tmax). The effects of ramp rate and particle size are well understood 

and accountable in the model (Thornton et al., 2020; Ylisirniö et al., 2021), and filter mass loading effects should be negligible 

at low-enough loadings, at which we expect individual deposited particles to be well separated. However, even when 425 

accounting for those effects and only considering loadings of <200 ng, we encountered variabilities in Tmax values and in 

thermogram shapes (especially tails) that we have not been able to explain. The desorption model nonetheless achieved 

subjectively good fits of the thermograms (except for tails, when they were elevated compared to experiment A), and the 

variabilities between experiments translated to variabilities in the obtained values for Psat, i and ∆Hi that are the main source of 

reported model uncertainties.  430 

 

We hypothesize that the following three potential issues can be involved in producing variabilities between measurements, 

though we have not endeavoured to elucidate their respective roles or effects quantitatively: 

1) The heating of the IMR was found to generally reduced thermogram tailing. A custom-built heating system was used 

in our experiments (see Section 2.2) aiming for a uniform IMR heating. 435 

2) We found that allowing a longer time for the PEG aerosol to “dry” (i.e., evaporate remaining solvent; Section 2.1) 

sometimes led to a reduction of Tmax. We hypothesize that the deposition of not fully dried PEG aerosol facilitates 

matrix effects on the filter. Consequently, we have paid attention to ensure sufficient “drying” of the PEG aerosol for 

our calibration experiments. Impacts of retained solvents in Psat measurements have been reported and discussed in 

earlier studies, e.g., finding an effect in the opposite direction for carboxylic acids (e.g., Bilde et al., (2015); Cappa et 440 

al., (2007, 2008)).  
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3) The FIGAERO typically utilizes a k-type thermocouple for temperature measurement, which typically has a 

measurement error of ± 2.2 K. Additional ~1 K of reading error can be also introduced by the electronics of the 

measurement system. However, k-type thermocouples are also sensitive to reading errors caused by static electric 

fields that can sometimes form to the PTFE surfaces of the FIGAERO inlet. This could possibly be improved by using 445 

a different kind of thermometer such as PT100 or PT1000 temperature probe, although this might require some 

redesigning of the inlet system. There may also be some variability in the exact position of the temperature probe, 

and the desorption flow of nitrogen may have a significant temperature profile, both radially and in the direction of 

the flow. 

 450 

Acknowledging all these sources for uncertainty, we estimate that our reported values from the desorption modelling are still 

roughly within up to two orders of magnitude of the “true” values; especially for larger PEGs, whereas the estimates for smaller 

PEGs are better constrained (Figures 1, S1, S2). However, that level of uncertainty makes our estimates still accurate enough 

for most applications, considering the vast scale of different C* values spanned (Figure 1; spanning nearly 20 orders of 

magnitude) and the similarly wide scales typically relevant in studies of SOA.  455 

 

4.2 Parametrizations of molecular formulas 

Comparing the output of molecular formula parametrization-based models (L2016, S2018, M2019, P2020) to results from the 

desorption model as well as literature for PEGs 5-9, most parametrization models tend to underestimate the C* value of PEGs, 

especially at the higher-order polymers (the exception being P2020). The biggest discrepancies result from M2019 and the two 460 

variants of S2018, most likely stemming from the fact that these models have been trained on relatively specific datasets, 

focusing on ɑ-pinene-derived HOMs. In those HOMs, oxygen atoms are often found in carboxyl, hydroxyl, and hydroperoxyl 

groups, which substantially reduce the compounds’ saturation vapor pressures. But for PEGs, the larger they are, the more of 

their oxygen is found in ether groups, which are relatively less “efficient” in reducing a compound’s vapor pressure. Thus, 

M2019 and S2018 are simply the least fit for predicting the vapor pressures (C* values) of PEGs. The L2016 parametrization, 465 

on the other hand, performs better, maybe due to being based on a more balanced training set of organic compounds. It performs 

particularly well for the smaller PEGs (for which C* are also better established), in line with the increasingly unusual 

dominance of ether groups in the composition of larger PEGs. 

 

P2020 compares quite differently to the results from literature and our desorption model: underestimating C* (by up to two 470 

orders of magnitude) for lower-order PEGs but then overestimating (by up to three orders of magnitude) for higher-order 

PEGs. It was trained on ɑ-pinene-derived HOMs, much like M2019 and S2018, but using a fundamentally different approach 
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than all other parametrizations considered in this study. Also, for typical HOM formulas, notable discrepancies result; e.g., 

C10H14O9 yields a C* of 0.33 µg m–3 via Eq. 11 (P2020) but only 6.3 × 10–4 µg m–3 via Eq. 10 (M2019). Therefore, the overall 

differences in the results obtained by these parametrizations also reflect our still poor understanding of the volatility of HOMs 475 

(such as from ɑ-pinene oxidation). The discrepancies between the parametrizations are amplified here by applying them to 

PEGs, and increasingly so for larger PEGs. 

4.3 Group contribution methods (MGM, SIMPOL, EVAPORATION) 

Overall, the group contribution methods appear as somewhat more accurate predictors of saturation vapor pressures than the 

simpler formula-based parametrizations (Figure 1a) – as may be expected from their more complex approach that involves 480 

molecular structural information. Nonetheless, both SIMPOL and EVAPORATION results increasingly deviate from our 

experiment-based estimates with increasing PEG order (qualitatively similar to most formula-based parametrizations): up to 

~5 orders of magnitude for SIMPOL, and up to ~3 orders of magnitude for the more elaborate EVAPORATION model. 

Specifically, they seem to overestimate how much each additional ether group reduces the vapor pressure. 

 485 

The MGM model, on the other hand, seems to perform very well in estimating C* values of PEGs, with only relatively small 

deviations, generally within an order of magnitude, from both previous experimental results (K2018, L2023; PEGs 5-9) and 

the results we found here via fitting the desorption model to our experiments (PEGs 5-15). Thereby, the MGM notably 

outperforms both SIMPOL and EVAPORATION, even though those provide direct predictions of vapor pressures, whereas 

the MGM first predicts boiling points, from which the vapor pressures are only subsequently calculated. It is beyond the scope 490 

of this study to explore what may be the reasons behind the relative success of the MGM. But we hypothesize that the MGM 

could be more robust, because it is based on a much larger set of compounds, for which boiling points have been measured: 

4426 organic compounds, whereas SIMPOL and EVAPORATION are based on saturation vapor pressure measurements for 

272 and 579 organics, respectively. Especially the larger PEGs consist mostly of multiple ether groups, which is relatively 

uncommon and less likely to be sufficiently represented in the smaller training sets. 495 

4.4 COSMOtherm 

COSMOtherm is by far the most complex model used in this study to determine C* values of the PEG’s. The results from 

COSMOtherm are in good agreement with literature values and desorption model results for the C* of PEGs 5-10 and only 

significantly deviate from the desorption model for PEG 14, the largest PEG calculated using COSMOtherm. The 

computational cost of the COSMOtherm calculations increases dramatically with increasing molecular size; PEG-14 is a large 500 

molecule in light of all discussions in this study, with a chemical formula of C28H58O15 and no branching. Consequently, the 

COSMOtherm calculations for PEG-14 were those with the highest level of simplification (i.e., in number of conformers 
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searched), and it is here where we would first expect errors. Note that our application of COSMOtherm was an iterative process 

that took into account the agreement of intermediate results obtained for the smaller PEGs with the corresponding, previously 

published saturation vapor pressure values (K2018) (see Section 2.3.2). Overall, our results suggest that our approach with 505 

COSMOtherm was suitable for predicting C* values for this homologous series up to compounds with at least four orders of 

magnitude lower C* (PEG-12) than the lowest previously known C* (PEG-8). 

5 Summary and Conclusions 

In this study, we set out to determine estimates of Psat (C*) values for PEGs 5-15 using a variety of different estimation 

methods. In the same process, we also compared how different saturation vapor pressure estimation methods differed from 510 

each other. We found that the different methods can produce up to 18 orders of magnitude differences in estimated C* values 

(Figure 1a, PEG-15). We argue that we achieve the best estimates for the volatilities of the PEGs (at least for PEGs 6-14) by 

fitting an explicit aerosol desorption model to our thermal desorption-based FIGAERO-CIMS measurements of PEG aerosol. 

These estimates are in excellent agreement with previous findings on the volatility for PEGs up to PEG-9. Our uncertainty 

ranges for C* increase to up to three orders of magnitude for the largest PEGs, mainly due to variabilities between sets of 515 

experiments. Within an order of magnitude, however, our best estimates continue a broadly log-linear dependence of Psat (C*) 

on PEG order (or mass) up to PEG-14, in agreement with literature on PEGs 5-9. Analogously, the dependence of ∆H on PEG 

order broadly continues its linear trend as well (Figure S2). 

 

We also explored a variety of theoretical and (semi-)empirical methods that are commonly used in the field to estimate 520 

saturation vapor pressures for organic compounds, absent measurements: from quantum chemistry-based calculations to 

molecular structure-based group contribution methods, to simple parametrizations based on molecular sum formulas. 

Generally, the simpler the method and the larger the considered PEG compound, the larger the errors, as the variety of estimates 

of C* spanned up to 18 orders of magnitude. These results demonstrate that any of the formula-based parametrizations need 

to be used with caution, keeping in mind especially how a specific parametrization was developed. Most parametrizations we 525 

considered were specifically developed for ɑ-pinene-derived HOMs, using relatively small sets of representative compounds. 

However, our understanding of the often-complex structures of these HOMs and of their inter- as well as intra-molecular 

interactions has been subject of recent and current research. Consequently, the respective parametrizations can be useful in 

pertinent studies, but their application to compounds of generally different compositions will likely be problematic, as seen 

here for PEGs. Another considered parametrization, developed for a broader, more diverse set of organics, achieved better 530 

accuracy overall, though it still typically underestimated C* by orders of magnitude. Similar estimations as by that broader 

parametrization were obtained by two common group contribution methods (SIMPOL, EVAPORATION), whereas those 
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obtained by a third method (MGM) broadly agreed with our best estimates. Although the MGM obtains C* values less directly, 

we suggest that the method could be a robust alternative nonetheless, possibly thanks to being based on a wider set of organics 

than SIMPOL and EVAPORATION. In many practical applications, however, a downside of all group contribution methods 535 

is that the target compounds need to be identified at the level of their molecular structures before the models can be utilized, 

which is typically not achieved by state-of-the-art mass spectrometry-based measurements of oxygenated organic compounds 

in the atmosphere. The same limitations apply to using COSMOtherm for estimating volatilities, and it also requires increasing 

levels of simplification or higher computational resources when considering larger molecules. Our COSMOtherm application 

did, however, yield promising results. In conclusion, we suggest that measurements of the thermal desorption behaviour of 540 

aerosol constituents can be a more versatile and reliable way of determining their volatility. Useful quantification of that 

volatility will not necessarily require (possibly complex) model simulations, like in this study, but can achieve sufficiently 

accurate (within an order of magnitude) results by reference to the desorption behaviour of calibration compounds with known 

volatilities, such as aerosol particles consisting of a mixture of PEGs. 

 545 

Notably, a closer look at Figure 1a (and Figure S1) suggests that toward the larger PEGs, there may be a slight deviation toward 

higher C* values compared to the log-linear extrapolation from PEGs 5-8, which is also in line with the independent 

COSMOtherm and MGM model results. On the other hand, the nominally “best” desorption model fits suggest the log-linear 

extrapolation may be an excellent predictor up to PEG-14. More precise sets of measurements are needed to elucidate the 

volatility trends of those larger PEGs with better certainty. E.g., the desorption temperature measurement in the FIGAERO 550 

could be improved, and other aspects affecting reproducibility optimized (see Section 4.1). Also, the determination of ∆H and 

Psat values via desorption modelling could be optimized to achieve quicker convergence and more robust uncertainty estimates, 

for example, by incorporating Bayesian estimation approaches. 

 

Uncertainty also remains in what is the appropriate formal relationship between the logarithm of C* and Tmax (Figs. 1b, 2a). 555 

Unlike previous assumptions or hypotheses (Bannan et al., 2019; Lopez-Hilfiker et al., 2014; Mohr et al., 2017; Ylisirniö et 

al., 2021), it is not linear. It appears that a 2nd or 3rd-order polynomial relationship is instead suitable. Using previously 

published FIGAERO measurements of SOA, we explored the consequences of using such polynomial fits to calibration results 

up to ~150 °C instead of a linear fit to calibrations only up to 90 °C. As demonstrated in Figure 2, a calibration curve that is 

accurate up to higher temperatures is needed to accurately determine the volatility of compounds in the ELVOC and ULVOC 560 

ranges. Those compounds play a particularly important role, for example, in the climatically critical processes of atmospheric 

new particle formation and nanoparticle growth (Schervish & Donahue, 2020; Simon et al., 2020). Especially nanoparticle 

growth models rely on an accurate representation of the volatilities of the compounds involved (Stolzenburg et al., 2018; Tröstl 

et al., 2016). 
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 565 

An additional error source for practical applications of a Tmax-C*-relationship established via PEGs is likely due to the relatively 

low ∆H values we find for PEGs (in agreement with Krieger et al., 2018), when compared to broader sets of organic compounds 

(Figure S2). As illustrated in Figure S3, this discrepancy may induce overestimations for C* assigned based on Tmax measured 

for more typical organics but using a Tmax-C* relationship established for PEGs. As ∆H is of increasing importance with 

increasing desorption temperature, the expected average bias increases with decreasing C*, up to about an order of magnitude 570 

in the ELVOC and ULVOC ranges.  

 

To conclude, the most valuable contribution of this work is probably the determination of the volatilities (or, in more accurate 

terms, the saturation vapor pressures) of higher-order PEGs. Previous Psat measurements were obtained up to PEG 9, which 

falls within the LVOC range, but the higher-order PEGs extend throughout the LVOC and the whole ELVOC ranges (Figure 575 

2). Our study thus provides knowledge for calibrating thermal desorption-based techniques for volatility measurements down 

to the transition to ULVOCs, while remaining uncertainties are likely acceptable for most applications. It is worth stressing 

that we expect that the knowledge of PEG vapor pressures will be useful beyond FIGAERO-CIMS measurements, i.e., for 

thermal desorption-based techniques more broadly, including some notable recent developments. For instance, a recently 

developed volatilization inlet (VIA, Häkkinen et al., (2023)) provides truly online thermal desorption of aerosol particles, and 580 

when coupled to a nitrate CIMS, it has been demonstrated to detect and separate ɑ-pinene-derived HOMs by their volatility, 

as well as PEGs (Zhao et al., 2024). There, the separation by volatility was only qualitative. But using this study’s C* values, 

the thermal desorption measurements for PEGs could serve as a calibration to quantitatively determine the C* values of the 

detected HOMs, and of course also of other measured organics, down to extremely low volatilities. A similar new method for 

measuring particle volatility online that will most likely benefit from this work is the Wall-Free Particle Evaporator (WALL-585 

E, Gao et al., (2025)), which strives to minimize the thermal decomposition and vapor wall losses often observed with thermal 

desorption methods.  
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Figure 1. Panel a) PEG number vs. C* estimated with different methods, as explained in the text. Circles show measurements-based 

values from literature (K2018 = Krieger et al., 2018; L2023 = Li et al., 2023). Yellow stars are desorption model results with whiskers 770 
indicating uncertainties; blue stars are COSMOtherm model results. Plus signs show parameterizations based on molecular 

structure; triangles show parameterizations based on molecular formula (L2016 = Li et al., 2016; S2018 = Stolzenburg et al., 2018; 

M2019 = Mohr et al., 2019; P2020 = Peräkylä et al., 2020). The dashed line is a linear fit to average values of PEG 5-9 from K2018 

and L2023. Panel b) Measured average Tmax values from all experiments vs. C* determined with different methods (the same legend 

applies to both panels). 775 
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Figure 2. Panel a) shows different log-linear and log-polynomial fits to C* vs. Tmax values, with C* values determined with desorption 

modelling. Panels b), c) and d) show VBS distributions determined from FIGAERO – CIMS measurement of sesquiterpene SOA, 

determined with different fit equations. LVOC, ELVOC and ULVOC refer to the categories of low-volatility, extremely low-780 
volatility and ultra-low-volatility organic compounds, respectively, which are defined by respective ranges of volatility as indicated 

by the background color shades (red, gray, purple; Schervish & Donahue, (2020)). 

 



30 

 

 

Figure 3. Thermograms measured by FIGAERO-CIMS in “experiment A” (see text for details) for monodisperse aerosol consisting 785 
of PEGs 5-15 (blue) and example results from desorption modelling (orange) after fitting model inputs for Psat, i, ∆Hi, and Si for each 

PEG (i = 5…15; see Sections 2.3.1 and 3.3). 

 


