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Abstract.

The Filter Inlet for Gases and AEROsols coupled with a Chemical Ionization Mass spectrometer (FIGAERO-CIMS) is a
widely used method for determining the chemical composition of the molecular constituents of atmospheric organic aerosols
(OA). This temperature-programmed desorption technique thermally desorbs OA in a linearly ramped desorption temperature,
and the temperature at a detected molecule’s peak desorption rate, Ty, is proportional to the molecule’s volatility. Thereby,
FIGAERO-CIMS also enables a direct measurement of the volatilities (saturation vapor pressures) of the OA constituents. A
series of polyethylene glycols (PEGs) havehas been used to quantitatively connect FIGAERO measurement results (in
particular, T, ) to volatilities (i.e., calibrate). However, available literature values of saturation pressure (Psq) Or saturation

mass concentration (C*) for these compounds only extend to PEG 9, which exhibits 7). values around ~90 °C, whereas Tyax

values of OA constituents measured from lab-generated or ambient acrosols routinely reach up to +50160 °C (Li et al., 2021
Masoud et al., 2022). To extend the region over which we can conveniently calibrate FIGAERO-CIMS, and hypothetically
also other thermal desorption-based techniques for investigating OA composition and volatilities, we performed FIGAERO-
CIMS calibration experiments using aerosol particles consisting of PEGs 5-15, which yielded 7.« values of up to ~150 °C.
We then set out to estimate the hitherto unknown Py, (C*) values of PEGs 10-15 by utilizing a suite of different P, estimation
methods: both measurement-independent methods (quantum chemistry-based calculations, molecular structure-based group
contribution methods, and parametrizations based on molecular sum formulas) and fits of an explicit desorption model to our
FIGAERO measurement results; with C* and vaporization enthalpies as free parameters. We assess the respective suitability
of each method and argue that we obtain the best estimates for PEG volatilities based on the fits to our measurements. We

obtained logo(C* (ug m>)) values ranging from 0.51 + 0.07 (PEG 6) to 9.2 = 1.6 (PEG 14), swhile-agreeing with previous
1
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literature results on PEGs <10. OurWithin uncertainties, our results broadly continue the near log-linear relationship of C*

with PEG mass for larger PEGs and also agree with some of the independent methods. Contrary to common assumptions in
previous literature on FIGAERO results, we find that the relationship between logio(C* (ug m=)) and measured Ty is not
linear. We explore the consequences of thatthis finding on the analysis of previously published FIGAERO-CIMS
measurements of sesquiterpene-derived OA. Prospects for improving on our results in future work are discussed. We conclude
that calibration experiments using aerosol containing PEGs up to ~PEG 15, with rew-krewnbest-estimated saturation vapor
pressures, provide promising opportunities for constraining the volatilities of aerosol constituents, down throughout the range
of extremely low-volatility organic compounds (ELVOC, C* < 3x104 ug m), as detected not only via FIGAERO-CIMS but

also other (online) temperature-programmed desorption techniques.
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1 Introduction

Acrosol particles are an important factor in air pollution and the atmosphere’s radiation balance. Much of this suspended
particulate mass consists of organic material, often constituting most aerosol mass in the sub-micron size range that is
particularly relevant for providing cloud condensation nuclei (thereby affecting indirect radiative forcing (Sporre et al., 2020)).
Chemically, that organic aerosol fraction has turned out to be extremely complex, and it remains a great challenge to determine
the detailed chemical composition of organic aerosol (OA). That is due to the diversity of organic species present in our
atmosphere;-their. Their complex chemical processing in the gas phase-that largely determines their propensity to condense
into aerosol particles, while condensed-phase reactions may further alter OA composition, subject also to inorganic
constituents (including water) and physical aerosol properties such as viscosity (Hallquist et al., 2009). All these properties
may also affect the volatility of OA, i.e., its proclivity to evaporate in response to changes in its chemical and physical
environment (e.g., the removal of condensing species from the gas phase or changes in temperature). OA volatility is thus a
key property for describing aerosol evolution and lifetime under changing environmental conditions. Among the state-of-the-
art mass spectrometry-based methods to tackle these measurement challenges related to OA — in particular measurements of
both elemental composition of OA constituents and their volatilities — is the Filter Inlet for Gases and AEROsols (FIGAERO,
Lopez-Hilfiker et al., 2014), coupled to a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) that is sensitive
to a wide range of organic compounds that are present in the atmosphere in trace amounts, including compounds forming OA
(Bertram et al., 2011). The FIGAERO-CIMS is a semi-online method, with two alternating modes of operation: aerosol is
collected on a polytetrafluoroethylene (PTFE) filter while the CIMS measures gas-phase compositions; then the gas inlet is
blocked while a gradually heated nitrogen (N2) flow desorbs the collected aerosol particles and the resultant thermally desorbed

vapours directly enter the CIMS for composition measurements (details in Section 2.2).

FIGAERO-CIMS instruments have been successfully employed in numerous studies of OA over the last decade (Thornton et
al., 2020). The instrument can, with some caveats, identify and quantify both gas-phase and particle-phase chemical
compounds over a broad range of chemical functionalities (Lopez-Hilfiker et al., 2014). The inbuilt controlled thermal
desorption mechanism also allows investigating the volatilities of the compounds detected from the particle phase. Such
particle volatility measurements using FIGAERO-CIMS rely on the accurate identification of the so-called Ty« values of
individual compounds, i.e-.. the temperatures at which the highest respective signals are observed. These Ty values are
inversely proportional to volatility and can be converted to saturation vapor pressure Py, and saturation mass concentration C*

values, as has been shown empirically and through modelling (Lopez-Hilfiker et al., 2014; Schobesberger et al., 2018).

3
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However, an accurate conversion from 7. to Py, and C* would require a reliable calibration (Bannan et al., 2019; Ylisirnid

etal., 2021).

Unfortunately, due to a lack of calibration compounds with known Py, at low volatilities (P < 10° Pa/ C* < 10* ug m),
the current calibration procedure can only cover the desorption temperature range up to ~80-100 °C, but desorption
temperatures of FIGAERO-CIMS can reach 200 °C and for ambient or lab-generated OA, Ty values are routinely identified
up to 160 °C. In this study, we aim to extend the calibrated range of FIGAERO-CIMS for Py,; measurements to also cover-alse
lower Py, values down to Py~ 1071 Pa/ C* ~ 107! pg m>. We utilize a combination of different methods to inereaseimprove
the accuracy of eur—ecalibrationestimating saturation pressures of measurements—dewn—to—such—low—velatilities-volatility
compounds. The core of our study is careful FIGAERO-CIMS calibration experiments using a wide range of polyethylene
glycol (PEG) polymers from PEG-5 to PEG-15. The experiments are supported by parametrization and modelling approaches
for assessing the Py, that have so far remained uncertain for PEGs beyond an order of 9 (PEG-9; Py, = 6.7 *10°° Pa; Krieger
etal., 2018; Li et al., 2023). Note that all Py, or C” discussed in this study refer to the equilibrium pressures (concentrations)

over the pure (partly assumed) liquid substance, unless stated otherwise.

2 Materials and methods
2.1 Generation of calibrant aerosol

We generated calibrant aerosol particles by atomizing a solution containing PEG polymers, H-(O-CH>-CH,),-OH, ranging
from an order of n = 5 (PEG-5) to 15 (PEG-15) using a Topas ATM 226 atomizer. Individual PEGs were obtained from
Polypure AS (>95% purity). The used solvent was acetonitrile (ACN) (Fisher Scientific, 99.8% purity). The initial
concentration of each PEG in the solution was ~0.2 g/l. Note that the concentration of each individual PEG increases during
the atomization process as the solvent has a higher vapor pressure than the PEGs. All PEGs were dissolved into the same
atomization solution. The atomized polydisperse particles were directed through a dilution system to ensure the evaporation
of ACN (Ylisirnio et al., 2021). We then size--selected 100 nm electrical mobility--sized monodisperse particles from the

“dried” polydisperse particles using a differential mobility analyzeranalyser (TSI 3080). The resulting monodisperse particles

were then directed to both the FIGAERO filter collector and a condensation particle counter (CPC, TSI 3775) via a flow
splitter.

2.2 FIGAERO-CIMS

The ToF-CIMS (Tofware AG, Aerodyne Research Inc.) was operated with an iodide-ionization scheme (Iyer et al., 2017; Lee

et al., 2014). The mass resolution of the instrument was 4000-5000 over the relevant mass range. lodide ions were generated
4
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by passing an ultrapure N; flow of 1 standard L min™' over a permeation tube containing methyl iodide (CHsl, Sigma Aldrich
99% purity), followed by a commercial Po-210 a-radiation source (Model P-2021, NRD Static Control LLC). The formed I-
ions were fed into the Ion Molecule Reaction (IMR) chamber, where they mixed with a 2 L min™' flow of sample molecules.
The IMR chamber was actively controlled to a pressure of 100 mbar and actively heated to 60 °C with heating wires wrapped

around the outside of the IMR to accomplish even heating.

The operation of the FIGAERO inlet is thoroughly explained in previous publications (Bannan et al., 2019; Lopez-Hilfiker et
al., 2014; Thornton et al., 2020). Briefly, the FIGAERO inlet enables measurements of both gas-phase and particle-phase
chemical constituents through two separate pinholes leading into the instrument. In normal operation, the gas-phase vapours
are directly sampled into the IMR, while the other pinhole is kept closed, and aerosol particles are sampled onto a PTFE filter
(SKC Inc. PTFE membrane filter, pore size 2 pm, 25 mm diameter, of which a central section of 6 mm diameter is exposed to

sampling flow). Once a sufficient amount of particulate matter (typically ~100-200 ng) has been collected onto the PTFE filter,

the filter is moved over the second pinhole, and the gas phase sampling pinhole is closed. Chemical constituents are then
evaporated from the aerosol particles collected onto the filter swhenby a gradually heated ultra-pure N> flow through the filter
and into the IMR (2 standard L min"). The heating cycle of the FIGAERO typically consists of two phases, the so-called heat
ramp phase and soak phase. During the heat ramp phase, the Ny is heated from room temperature linearly to ~200 °C, as
measured a few millimetres above the filter. This is followed by the seakingsoak phase, where ~the N, flow is maintained at
200 °C hotNo-is-flowed-through-thefilterto evaporate any remaining material from the filter. The measurement data used in
this study was measured-inselected from two parts;sets of measurements, a first set was-measured-in January 2022 (experiments
A and B) and a second set in July 2022 (experiment C). In January-2022-experiments A and B, we used ramping times of 5
min and 15 min with particulate mass loadings of 105 ng and in July2022-experiments-experiment C, we used a 10 min

ramping time with particulate mass loading of 170 ng, based on calculations from CPC readings while assuming spherical

particles and a density of 1.125 kg m™ (Krieger et al., 2018). Note that the mentioned aerosol mass loadings refer to the total

collected mass over all PEG compounds. Collected masses of individual PEGs ranged from ~5 to 10 ng per compound. The

used collection flow was 1 L min™! in all experiments. Additional blank heating cycles with no collected particles were also
performed before each-experimentindividual experiments to ensure and confirm low background signals. Details of these

measurements isare further discussed in section 3.3.

In this study, we employed a custom-built version of the FIGAERO inlet, which slightly differs from the commercially
available FIGAERO- inlet produced by Aerodyne Inc. These differences are mainly in the control program and used-electronics

used, but the main measurement principles are the same.
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where Thaxmeas is the measured Tnar value of the compound of interest. It is often customary in the field of aerosol science to

express Py, values as C*, which can be calculated using the ideal gas law:

P, M, 3) |
c* m_3 — sat,meas""'w 106‘
LM = R I

A

where M, is the molecular weight of the compound (in units of g mol '), R is the universal gas constant (8.314 J mol ' K ')

and 7 is the temperature (in units of K) of which the literature P, value was determined (in our case, 298K).

Ylisirni6 et al., 2021, further suggested to accomplish the linear fit of equation (1) using a bivariate least squares method (York
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2.3  Saturation vapor pressure determination

The volatility calibration of FIGAERO-CIMS presented here relies on the known saturation vapor pressure values of the PEGs
in order to determine the calibration parameters via Eq. 1 (Ylisirnio et al., 2021). Literature values of Py, for PEGs are available

for PEG-1 to PEG-9 (Krieger et al., 2018, later abbreviated to K2018. Li et al., 2023, later abbreviated to L2023).

Eperimental-experimentalExperimental data thus existsexist in literature for Py, of PEG-1 to PEG-9, but reference data for
larger PEGs (PEG-10 to 15) are missing. To extend the volatility range to lower volatilities, we determine the P, values of
PEGs 5 to 15 with several different modelling and parameterisation methods based on either the molecular composition or
measured thermograms. The estimation methods that are based on molecular composition range from simple molecular
formula-based parametrisations (Li et al., 2016; Mohr et al., 2019; Perékyld et al., 2020; Stolzenburg et al., 2018) and functional
group-based methods (Modified Grain Model, EVAPORATION, SIMPOL) to a more detailed molecular structure-based
quantum chemical model (COSMO-RS; Eckert & Klamt, 2002; Klamt, 1995; Klamt et al., 1998). We also use fits of a
desorption model (Schobesberger et al., 2018) to the experimental thermograms with P, values as free parameters. These

methods are more thoroughly discussed in the following subsections.

2.3.1 Desorption modelling

The desorption model was specifically developed to simulate the thermal desorption of filter-collected aerosol particles in the
FIGAERO and transport into the CIMS, details seen in (Schobesberger et al., 2018). In our study here, the model was set up
with a minimal number of free parameters, which are explained later in this section. Model runs used as input the desorption
temperature ramp rates as used experimentally and monodisperse aerosol particle sizes as classified (section 2.2). The
simulated particles initially consisted of the involved PEGs in equal molar amounts. No chemical reactions (i.e., no
oligomerization, decomposition, etc.) were allowed, and the particles were assumed to always be homogeneous ideal mixtures.
In Schobesberger et al. (2018), possibly delayed detection by an older-generation FIGAERO had been attributed to interactions
between desorbed molecules and instrumental surfaces. These delays/interactions were disabled here, i.e., simulated detection
of molecules was simultaneous with their simulated desorption from the particles. Non-ideal heating was assumed, using the
same parametrization as in Schobesberger et al. (2018), which served to provide the observed “tails” in the thermograms, while
having a minimal effect on the simulated 7). The only free parameters were the saturation vapor pressure (P, ;) and
vaporization enthalpy (AH;) of each PEG i, and the sensitivities of the CIMS to each compound (S;). These parameters were
fit to the observations, wherein AH; were primarily constrained by the thermograms’ upslopes, P, i by AH; and Ty, i, and S;

by the thermogram height (i.e., amount of signal).
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To provide uncertainties for those fit parameters, while accounting for variabilities between individual experiments, we applied
an automated model optimization algorithm 24 times to a representative selection of three individual experiments (A, B, C),
thus exploring the sensitivity of the quality of the fit to each parameter and experiment. Further discussion of that procedure

and its results are discussed in Section 3.3.

2.3.2  Conductor-like screening model for real solvents (COSMO-RS)

We used the COSMOtherm program (BIOVIA COSMOtherm, 2021) to estimate saturation vapor pressures of PEGs 5-8, 10,
12 and 14. COSMOtherm is based on the conductor-like screening model for real solvents (COSMO-RS), which is a quantum
chemistry--based model that considers the exact structure (specific structural isomer and even the geometry of the most stable
conformation in the gas and condensed phase) of molecules in saturation vapor pressure calculations. In COSMO therm, Psa

is calculated using

-cO-c@ 4)
Psat,i = exp <#)

5
A

where the free energies (G) in gas (g) and pure condensed (1) phase are derived from density functional theory (BP/def2-
TZVPD-FINE//BP/def-TZVP level of theory). The conformer selection for our COSMOtherm calculations is detailed in

Section S1 of the Supplement Information.

2.3.3 Modified Grain Method (MGM)

The modified Grain method (MGM) is an estimation of vapor pressure based on the boiling point of a compound, as determined
by a structure--activity relationship based on Stein & Brown, (1994) and others’ work (Joback, 1984; Reid et al., 1959). The
boiling point is calculated by the following

T, =1982+ Y(n*g,), (5)

where 7 is the boiling temperature in Kelvin, g; is the group increment value, and #; is the number of those functional groups
present in the molecule. The boiling point (if it is calculated to be less than 700 K) is then corrected using the following

equation:
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Ty, =Ty — 94.84 + 0.5577 « T, — 0.0007705(T})%, ©

where T} . is the corrected boiling point (K). The relationship between boiling point and functional groups was based on the
analysis of 4426 organic compounds. Once the boiling point is estimated (if not already available from previous

measurements), this temperature is used to calculate the liquid vapor pressure through the following equation:

n —2T, m m— 7
In(P,) = % ‘A;‘:T") . [1 _G ;:') —2m(3-21,)"" 1n(Tp)], O

where In(#)) is the natural logarithm of the liquid vapor pressure, K is a structural factor (Lyman et al., 1990; Mill & Mabey,
1985), R is the gas constant, 4Z; is the compressibility factor (0.97), T} is the estimated normal boiling point as estimated in

Eq. (5) and (6), T, is equal to 7/T5, where T is the reference temperature (298 K)-), and m is equal to 0.4133 — 0.25757,.

Additional structural factors have been introduced since the publication of Stein & Brown, (1994), and have been incorporated
into EPIWIN, the program we used to estimate the vapor pressures with the modified grain method. A complete list of structural
factors and corrections are reported in the freely available program (EPI Suite- Estimation Program Interface | US EPA) in

addition to previous publications (Lyman et al., 1990; Stein & Brown, 1994).

2.3.4 EVAPORATION and SIMPOL

The “simplified p°. prediction method” SIMPOL (Pankow & Asher, 2008), and EVAPORATION (Estimation of VApour

Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects; Compernolle et al., (2011))
are popular methods for predicting the (subcooled) liquid saturation vapor pressures of organic compounds based on their
molecular structures. SIMPOL uses the basic group contribution approach: the logarithm of the saturation vapor pressure is
described as the sum of terms that amount to the individual contributions of features of the molecular structure (“groups”).
SIMPOL considers a total of 30 possible groups. The group contribution terms are temperature-dependent with empirically
determined coefficients based on 272 compounds. EVAPORATION uses a more complex description of the molecular

structure, with empirically determined parameters based on 579 compounds. The model can be run, for example, on a website

https:/tropo.aeronomie.be/models/evaporation, (last access 27.3.2025); requiring as input the molecular structure using the
Simplified Molecular Input Line Entry Specification (SMILES), and temperature. Like all Py, values reported in this study,
the Py values calculated via SIMPOL and EVAPORATION are based on a temperature of 298 K.
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2.3.5 Elemental composition parametrizations

We used three volatility parametrizations based on molecular formula: those suggested in_Li et al., (2016:); Mohr et al.,
(2019:); Peridkyla et al., (2020;) and Stolzenburg et al., (2018). Each of them uses the number of carbon, hydrogen, oxygen
and nitrogen (C, H, O and N) atoms from the sum chemical formula of the compound to predict the compound’s volatility.
Equations of each parametrization are presented below. Note that these parametrizations yield saturation vapor concentrations

(C") rather than vapor pressures (Ps.). See Eq. (3) for the conversion between these quantities.

The Li et al., (2016) parametrization (later, L2016) for compounds containing C, H and O atoms is of the form

l0g10C" = (n¢ = nc)be —nobp =2 nZCJ:Za beo, ®)

A
where nc’ is the reference carbon number (22.66); n¢, and no, are the number of carbon and oxygen atoms in the molecule,
respectively. be= 0.4481 and bp=1.656 denote the contribution of each atom to the log;oC*, respectively. bco =-0.779 is the

carbon-oxygen nonideality.

The Stolzenburg et al., (2018) parametrization (later, S2018) for the same compounds is of the form

lOg}OCjA: (nAgA_ nc)bc: Mo (boA_ badd)‘_ 2 nzcr:o bcofA ©)

A

where nc’ = 25, be = 0.475, bo = 2.3, and bco = -0.3. The additional parameter bas = 0.9 accounts for a reduced average
contribution of oxygen atoms to depressing C* caused by the presence of peroxy groups in highly oxygenated organic
molecules (HOMs), specifically HOM monomers that follow a-pinene oxidation. The value of b, for HOM dimers is 1.13.

Results using both baqs values are shown in the Results section.

The Mohr et al., (2019) parametrization (later, M2019) for CHON compounds is of the form

* -3
log;oC* = (n — nc)be — (o — 3ny)bo — Z%bco — nyby, (10)

where nc’ =25, be=0.475, bo= 0.2, by = 2.5 and bco = 0.9. Note that when ny = 0, Eq. (10) reduces to the same form as Eq.
(8), though M2019 uses different parameter values.

TheFinally, the Perdkyld et al., (2020), parametrization (later, P2020) is-thes, of the form

10
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log,oC* = 0.18 n — 0.14 nyy — 0.38 ny + 0.8y + 3.1, 1))

where n¢, no and ny are defined as previously and ny is the number of hydrogen atoms in the molecule.

Parametrizations L2016, S2018 and M2019 resemble the parameterization by Donahue et al-.,(2011). However.;-hewever

the parameter values are derived from different reference C* datasets and with different assumptionassumptions. Donahue et
al., (2011) based their parameterization on reference data of C* of certain groups of organic compounds and assumptions of
representative combinations of functional groups in secondary organic aerosol (SOA). M2019 and S2018 are both based
formally on the Donahue et al., (2011) parameterization, but they have been modified with the help of C* estimations with
SIMPOL, in two different ways, to account better for the increased amount of peroxide moieties expected from HOMs (Bianchi
et al., 2019). M2019 is based on proposed structures for HOMs derived from a-pinene oxidation experiments (Trostl et al.,
2016). S2018 used a slightly extended or updated dataset (Kurtén et al., 2016) and an additional free parameter that was fit to
a-pinene HOM monomers and HOM dimers separately. The parameter values in Li et al., (2016), on the other hand, are based
on C* of thousands of compounds estimated with molecular structure-based methods. As such, the three parameterizations are
based on different reference data, considered compounds and assumptions. The P2020 parametrization of Perdkyld et al.
(20203). on the other hand, is based on a statistical model built to explain their direct measurements of the condensation

behavierbehaviour of a-pinene HOM monomers.

Additionally, we also made a linear fit of In(Pya,rec 5-9) vs. PEG number, similarly as in Eq. (1), where Ps,peg 5.0 -are the
previously published saturation pressures of PEG 5-9, using seansthe mean of K2018 and L2023 values. Extrapolation of that
linear fit (albeit over many orders of magnitude) was discussed in Ylisirnio et al., (2021) as one way to roughly estimate the

C* values of PEG 10-15.

3 Results and discussion

The results and analysis in this study are built upon laboratory experiments as described above (Sections 2.1-2.2). We will first
present a general comparison of all used estimation methods and then discuss their respective performance in estimating the

volatilities of PEGs.

3.1  Comparison of volatility estimation methods

Figure 1 shows the results of all used volatility estimation methods in C* compared to a) the PEG number, and to b)_the

measured 7. of PEGs 5-15. Estimated C* values are either direct outputs of the models or converted from P, values with

11
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Eq. (3). (An exception is the C* value for PEG-15 derived from the desorption model, which was extrapolated as described in
Section 3.3-).). For the sake of clarity, measuredthe shown Ty values are averages-of two-measurementsaverage values from

CHICASUFCIICHES e experiment A, as each experiment used different

ramping and-seaking timesrates, which affeetsaffect the measured Tynqr values)and-results. Results from desorption modelling

are averages over a set of measurements as described in Section 3.3. All shown volatility results are also displayed in Table

S2 (in terms of Py,) and S3 (in terms of C*) in the supplemental material. Table S3 also shows the used 7., values and their

standard deviations. Overall, the variety of different methods produced a very wide spread of estimates of C* values;
differences between estimates ranged from 2 orders of magnitude for PEG-5 up to 18 orders of magnitude for PEG-15. BestThe
best agreement to reported literature values (K2018 and L2023) is with the desorption model, MGM and COSMOtherm. The
desorption model and MGM also produced nearly identical (within an order of magnitude) estimates for all PEGs.
COSMOtherm also agreed with these models withwithin the same range up to PEG-12, after which it deviated from them
roughly 2 orders of magnitude highhigher. SIMPOL, EVAPORATION, S2018 dimers and L2016 estimated broadly the same
results between each other, with a maximum difference of roughly two orders of magnitude for PEG-15. The lowest volatilities
(for all PEGs) are estimated via M2018 (e.g., C* = 4.64x10° ug m™ for PEG-15), while P2020 estimates highest vapour
pressures for PEGs 10-15 (e.g., C*=5.5x107 pg m™ for PEG-15).-Ad!

Almost all used models estimate a broadly log-linear decrease in volatility (C*) when compared against PEG-number (Figure
la)y—Hewever,—when-compared), except for COSMOtherm, MGM and to some degree the desorption model, which both

estimate higher volatilities than just linear extrapolation from literature data. Note that although many models appear to

estimate loglinear decrease in volatility vs PEG-number (and thus molecular mass), true linearity should not be expected, as

has been pointed out in previous studies (Li et al., 2016; Mohr et al., 2019; Stolzenburg et al., 2018). When comparing the

estimated C* results to measured Ty (Figure 1b), the relationships appear only log-linear for the smaller PEGs but turn out

roughly log-polynomial over the full range of PEGs 5-15. This effect is further discussed in the next section.

3.2 Impact of non-linear FIGAERO calibration

Note that previous investigations of C* using FIGAERO data have typically assumed a log-linear relationship with measured
Tnax- To illustrate the impact of the log-polynomial relationship of C* vs T, found here (Figure 1b), we applied the original
log-linear calibration, Eq. (1), to C* vs T, data for PEGs 6-9 and two modifications that follow a second-order polynomial

In (Psatmeas) = @ Taaxmeass + Blmaxmeas F € (12)
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In (Psatmeas) = @ Tnaxmeas,t b Taaxmeas,t 6 Tnaxmeas, + 3

where a, b, ¢ and d are free parameters that we fit to C* vs T, data for PEGs 6-15. (PEG-5 was omitted as only a decaying

signal of it was observed, so its T, is uncertain; the value for PEG-15 is based on extrapolation as described in Section 3.3.)
In the absence of literature Py, (or C*) values for PEGs 10-15, we chose the results from desorption modelling to be athe best
estimation of C* valuevalues for these compounds and used those results as the basis for the fit. This seleetionchoice is further
discussed in section 3.3. The performance of all models in estimating C* is also further discussed in section 4. The bivariate
least squares fit algorithm used for linear fitting (see sect. 2.2.1) is not suitable for polynomials. Therefore, we employed the
Gauss-Markov original least squares regression in thesethose calculations. This method takes into account the uncertainties in
the y-axis (Psasmeas) but not the uncertainties in the x-axis (7). Note that using different fitting methods that do; or do not

take theall uncertainties into account can cause the fit to unduly weight some points more than others, and care should be taken

when selecting an appropriate fitting routine._Besides Gauss-Markov estimation, Weighted Least Squares regression

Orthogonal Distance Regression or Bayesian regression can be used for fitting polynomials with uncertainties.

Figure 2 a) shows how different polynomial fits match the C* vs T4 values: fitted to desorption model results, namely a linear

fit, a 2"¢ order polynomial and a 3'¢ order polynomial. We then investigated how these different fit equations affect the VBS
(Volatility Basis Set, Donahue et al., (2011)) distribution of sesquiterpene SOA determined with FIGAERO-CIMS. Details
about the sesquiterpene SOA production and FIGAERO measurement can be found from Ylisirni6 et al., (2020). We highlight
that this relatively older dataset is enly-used here merely for illustrative purposes. Accurate FIGAERO volatility calibrations
should always be conducted using the same instrumentation as in the actual ambient or laboratory experiments, using the same

setup and settings (ideally at a similar time, to avoid drifts) and even similar aerosol particle sizes and filter loadings.

When inspecting Figure 2 a) more closely, we can notice that different fit equations agree well with each other up to about
PEG-1012 (log10(C*) ~ -46 pg m™), after which the second- and third-order polynomial fits increasingly differ from the linear
fit. The second- and third-order polynomial fits agree with each other and measured values within an order of magnitude up to
PEG-14 (logl0(C*) ~ -10 pg m?), after which the third-order polynomial fits the desorption model data better.
Ceorrespondinghy-whenWhen comparing atthe resulting VBS distributions frem-these-tweof the three fits (Figure 2 eb-d), we

can see that the main differences in the twethree distributions are in the region of ultra-low-volatility organic compounds
(ULVOC, log10(C*) < -9 ng m) (Schervish & Donahue, 2020). These divergences illustrate how the availability of calibrants
up to higher 7)., substantially improves the volatility calibration for FIGAERO, including any extrapolation to even higher
Tmax, which is also subject to the choice of fitting function. Higher accuracies, especially for ULVOCs, may still be achieved
by extending calibration measurements further up to, e.g., PEG-18 or PEG-19, to cover an even wider T range. It is also
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likely that some other fit equation could yield more accurate results then-butthan our polynomial fits. However, taking into

account current uncertainties in determining the volatilities of low-volatility calibrants, including our results in this study,

simple polynomial fits seem to provide adequate approximations within the range of 7). measurements.

3.3 Desorption medelingmodelling results and uncertainties

The analysis in Section 3.2 relied not only on the measured T but also on the estimated Py (C*) of PEGs >9, for which
literature values have not yet been established. To justify our selection of C* values from the desorption modelling, we present
here a more detailed description of how the model runs were set up, how model parameters were fit to the measured FIGAERO-
CIMS data, and how we evaluated our results. In Figure 3, we present the thermograms measured with FIGAERO-CIMS in
one of the experiments. The thermograms peaked (7na) between 37 °C (PEG-6) and 150 °C (PEG-15). PEG-5 proved to be
so volatile that only a decaying signal was observed. In a colder environment, its 7). would likely be just prior to the start of
the temperature ramp at room temperature, at ~18 °C. The figure also shows a desorption model fitting result, fitted to the
measurement data by choosing suitable values for the saturation vapour pressures (Ps.;, ;) and vaporization enthalpies (AH;) for
each compound (7) at 298 K, along with instrument sensitivities S; (Section 2.3.1). MedelsModel fits could be achieved equally
well either while assuming constant AH; values, or while assuming a small temperature dependence due to the expected change

in heat capacity upon vaporization. Here, we used a temperature dependence of dAH/dT = —0.1 kJ mol™! K™! as a rough

literature-based estimate (Krieger et al., 2648)2018). but which is similar to dependences found also for a broader range of

organic compounds (Bilde et al., 2015; Epstein et al., 2010; Riipinen et al., 2007: Tong et al., 2004).- Note that the model fits

the thermogram upslopes very well, suggesting an accurate representation of the desorption process. Also, the downslopes,
which arise primarily from post-desorption transport processes, are fit well overall, though they are simulated using the same

heuristic approach and the same parametrization as originally estimated rather crudely (Schobesberger et al., 2018).

The automated optimization of the model parameters (applied 24 times for each experiment) followed the covariance matrix
adaptation evolutionary strategy (Hansen & Ostermeier, 2001); the quality of each fit (f) was defined for each PEG as the mean
square deviation between model and measurement, considering data up to just after (40 s) the peak of the thermogram, as
subsequent data were increasingly subject to non-idealities that the model captures with varying success (tails; e.g., Fig:
3).Figure 3). We only selected experiments with filter loadings of <200 ng, to minimize potential biases due to matrix effects,
which can delay desorption (Huang et al., 2018; Ylisirnio et al., 2021) but are not part of the model (which always assumes

well-separated individual particles).

The experiments were made in January (A, B) and July (C) of 2022; they used filter loadings of 105 (A, B) or 170 (C) ng,
collected over 0.3 (A, B) or 4 (C) min, and desorption temperature ramp rates of 0.22 (A), 0.69 (B) or 0.32 (C) K s™!, which
14
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correspond to heat ramping times of (A) 15 min, (B) 5 min and (C) 10 min. Experiment A was part of a series testing for filter
loading effects (105, 205, 1100 ng) that showed increasingly delayed desorption with increasing loading, as expected; this
effect was notable already when doubling the loading to 205 ng. The 105-ng experiment also exhibited the least tailing in its
thermograms (of all considered experiments). In conclusion, experiment A appeared to be the least affected by non-idealities
of all experiments; it also routinely yielded the lowest (best) values for f. We thus also show model-fitting results from
experiment A separately in FigsFigures. S1; and S2. For our best estimates for Py, ;, AH; and their uncertainties (Figs-Figures
1.2, S1, S2; Tables S1-S3), we first determined best estimates for each experiment individually (1//~weighted means of all
successful optimizations, defined as those within 10% of f*, the lowest f obtained by the 24 optimizations), followed by the
1/f*-weighted mean (experiment A double-weighted) over all experiments. For Py, ;, these calculations were performed in

logarithmic space.

Starting the temperature ramp at a lower temperature in the model, such as 0 °C, a thermogram can also be simulated alse-for
PEG-5 (Fig—3;(Figure 3, dashed line), but Py, ; and AH; could not reasonably be constrained by our optimization routine and
are thus not reported for PEG-5. Also, PEG-6 is already observed desorbing from the very beginning of the experiment,
substantially altering the thermogram’s upslope and thus preventing us from obtaining as reliable model optimizations for AH
as for larger PEGs. But as its desorption occurs near room temperature, Py, was nonetheless well constrained, so we report
Py for PEG-6 but not AH.

At the other end of the scale, the automated model optimization did not work well for PEG-15. In order to reduce computational
expense, the algorithm optimized pairs of Py, ; and AH; for each PEG-i separately while the desorption of the sum of all other
PEGs was approximated to provide appropriate condensed-phase mass fractions of the PEG-i, as that fraction affects
evaporation rates (Raoult effect). Comparisons with results of (slower) model runs that properly simulated the desorption of
all PEGs simultaneously showed negligible differences for all but the last-desorbing species, PEG-15. Therefore, the reported
desorption model values for PEG-15 (Figs. 1-2; Tables S2-S4) are not resultsresult from optimization but a log-linear
extrapolation of the results for PEGs 6-14.

Besides the success of the desorption model in fitting the FIGAERO-CIMS measurements, the resulting values of AH; and
even more so Py, ; are also in excellent quantitative agreement with previous experimental findings for PEGs 5-9 (Krieger et
al., 2018; Li et al., 2023) (Eigs-Figures 1, S1, S2; Tables S2, S4). Further, more heuristic confidence in our model results is
created by their agreement with the MGM (FEig—)-and(Figure 1). It is also interesting to note that our results for higher-order

PEGs broadly eentinuingcontinue the linear trend of AH; and the log-linear trend of Py, ; vs. PEG order (or mass) that previous
studies reported for PEGs 5-9 (Figs—S respeeit IXper —Figures S1-S2; especially experiment A). However, our




420

425

430

435

|440

445

uncertainties do_increase for higher-order PEGs, and in principle, log-linearity should not be expected. Indeed, both

COSMOtherm and MGM predict a slight departure from that log-linearity with increasing PEG order, consistent also with the

desorption model results and their uncertainties (see also Section 3.1 and Conclusions).

4  Discussion
4.1  Measurement accuracy and performance of the desorption model

In the previous section, we argued that the desorption model produces among our best estimates of Py, (C*) for PEGs, at least
for PEGs 6-14, mainly motivated by the high accuracy atwith which the model can replicate the overall behaviour of the
measured thermograms. We obtained uncertainty estimates for individual experiments by assessing the sensitivity of fit quality
to variations in Py, ; and AH;. But ultimately, the main source of uncertainty for the desorption modelling results stems from
variabilities in our FIGAERO-CIMS measurement results. We know that several experimental details affect the thermograms,
in particular the values of 7,q.; most prominently the desorption temperature ramp rate, the size of deposited aerosol particles
and total filter mass loading (all of which work to increase Tnax). The effects of ramp rate and particle size are well understood
and accountable in the model (Thornton et al., 2020; Ylisirnid et al., 2021), and filter mass loading effects should be negligible
at low-enough loadings, at which we expect individual deposited particles to be well separated. However, even when
accounting for those effects and only considering loadings of <200 ng, we encountered variabilities in 7). values and in
thermogram shapes (especially tails) that we have not been able to explain. The desorption model nonetheless achieved
subjectively good fits of the thermograms (except for tails, when they were elevated compared to Experimentexperiment A),
and the variabilities between experiments translated to variabilities in the obtained values for Py, ; and AH; that are the main

source of reported model uncertainties.

We hypothesize that the following three potential issues can be involved in producing variabilities between measurements,
though we have not endeavoured to elucidate their respective roles or effects quantitatively:
1) The heating of the IMR was found to generally reduced thermogram tailing. A custom-built heating system was used
in our experiments (see Section 2.2) aiming for a uniform IMR heating.
2) We found that allowing_a longer time for the PEG aerosol to “dry” (i.e., evaporate remaining solvent; Section 2.1)
sometimes led to a reduction of 7.... We hypothesize that the deposition of not fully dried PEG aerosol facilitates

matrix effects on the filter. Consequently, we have paid attention to assurecnsure sufficient “drying” of the PEG

acrosol for our calibration experiments. Impacts of retained solvents in P, measurements have been reported and
discussed in earlier studies, e.g., finding an effect in the opposite direction for carboxylic acids (e.g., Bilde et al.,
(2015); Cappa et al., (2007, 2008)).
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3) The FIGAERO typically utilizes a k-type thermocouple for temperature measurement, which typically has_a
measurement error of + 2.2 K. Additional ~1 K of reading error can be also introduced by the electronics of the
measurement system. However, k-type thermocouples are also sensitive to reading errors caused by static electric
fields that can sometimes form to the PTFE surfaces of the FIGAERO inlet. This could be-possibly be improved
withby using_a different kind of thermometer such as PT100 or PT1000 temperature probe, although this might
meanrequire some redesigning of the inlet system. There may also be some variability in the exact position of the
temperature probe, and the desorption flow of nitrogen may have a significant temperature profile, both radially and

in the direction of the flow.

Acknowledging all these sources for uncertainty, we estimate that our reported values from the desorption modelling are still
roughly within up to two orders of magnitude of the “true” values; especially alse-for larger PEGs, whereas the estimates for
smaller PEGs are better constrained (Figs:-Figures 1, S1, S2). However, that level of uncertainty makes our estimates still
accurate enough for most applications, considering the vast scale of different C* values spanned (Fig—+:(Figure 1; spanning

nearly 20 orders of magnitude) and the similarly wide scales typically relevant in studies of SOA.

4.2 Parametrizations of molecular formulas

Comparing the output of molecular formula parametrization-based models (L2016, S2018, M2019, P2020) to results from the
desorption model as well as literature for PEGs 5-9, most parametrization models tend to underestimate the C* value of PEGs,
especially at the higher-order polymers (the exception being P2020). The biggest discrepancies result from M2019 and the two
variants of S2018, most likely stemming from the fact that these models have been trained on relatively specific datasets,
focusing on a-pinene-derived HOMs. In those HOMs, oxygen atoms are often found in carboxyl, hydroxyl, and hydroperoxyl
groups, which substantially reduce the compounds’ saturation vapor pressures. But for PEGs, the larger they are, the more of
their oxygen is found in ether groups, which are relatively less “efficient” in reducing a compound’s vapor pressure. Thus,
M2019 and S2018 are simply the least fit for predicting the vapor pressures (C* values) of PEGs. The L2016 parametrization,
on the other hand, performs better, maybe due to being based on a more balanced training set of organic compounds. It performs
particularly well for the smaller PEGs (for which C* are also better established), in line with the increasingly unusual

dominance of ether groups in the composition of larger PEGs.

P2020 compares quite differently to the results from literature and our desorption model: underestimating C* (by up to two

orders of magnitude) for lower-order PEGs but then ever-estimatingoverestimating (by up to three orders of magnitude) for

higher-order PEGs. It was trained on a-pinene-derived HOMs, much like M2019 and S2018, but using a fundamentally
17
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different approach than all other parametrizations considered in this study. Also, for typical HOM formulas, notable
(M2019). Therefore, the overall differences in the results obtained by these parametrizations also reflect our still poor
understanding of the volatility of HOMs (such as from a-pinene oxidation). The discrepancies between the parametrizations

are amplified here by applying them to PEGs, and increasingly so for larger PEGs.

4.3  Group contribution methods (MGM, SIMPOL, EVAPORATION)

Overall, the group contribution methods appear as somewhat more accurate predictors of saturation vapor pressures than the
simpler formula-based parametrizations (Fig—ta(Figure 1a) — as may be expected from their more complex approach that
involves molecular structural information. Nonetheless, both SIMPOL and EVAPORATION results increasingly deviate from
our experiment-based estimates with increasing PEG order (qualitatively similar to most formula-based parametrizations): up
to ~5 orders of magnitude for SIMPOL, and up to ~3 orders of magnitude for the more elaborate EVAPORATION model.
Specifically, they seem to overestimate how much each additional ether group reduces the vapor pressure.
N

The MGM model, on the other hand, seems to perform very well in estimating C* values of PEGs, with only relatively small
deviations, generally within an order of magnitude, from both previous experimental results (K2018, L2023; PEGs 5-9) and
the results we found here via fitting the desorption model to our experiments (PEGs 5-15). Thereby, the MGM notably
outperforms both SIMPOL and EVAPORATION, even though those provide direct predictions of vapor pressures, whereas
the MGM first predicts boiling points, from which the vapor pressures are only subsequently calculated. It is beyond the scope
of this study to explore what may be the reasons behind the relative success of the MGM. But we hypothesize that the MGM
could be more robust, because it is based on a much larger set of compounds, for which boiling points have been measured:
4426 organic compounds, whereas SIMPOL and EVAPORATION are based on saturation vapor pressure measurements for
272 and 579 organics, respectively. Especially the larger PEGs consist mostly of multiple ether groups, which is relatively

uncommon and less likely to be sufficiently represented in the smaller training sets.

4.4  COSMOtherm

COSMOtherm is by far the most complex model used in this study to determine C* values of the PEG’s. The results from

COSMOtherm are in good agreement with literature values and desorption model results for the C* of PEGs 5-10 and only

significantly deviate from the desorption model for PEG 14, the largest PEG calculated using COSMOtherm. The

computational cost of the COSMOtherm calculations inereaseincreases, dramatically with increasing molecular size; PEG-14

is a large molecule in light of all discussions in this study, with a chemical formula of CsHsgO1s and no branching.

Consequently, the COSMOtherm calculations for PEG-14 were those with the highest level of simplification (i.e., in
18
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aumbersnumber, of conformers searched), and it is here where we would first expect errors. Note that our application of
COSMOtherm was an iterative process that took into account the agreement of intermediate results obtained for the smaller
PEGs with the corresponding, previously published saturation vapor pressure values (K2018) (see Section 2.3.2). Overall, our
results suggest that our approach with COSMOtherm was suitable for predicting C* values for this homologous series up to

compounds with at least four orders of magnitude lower C* (PEG-12) than the lowest previously known C* (PEG-8).

5 Summary and Conclusions

In this study, we set out to determine estimates of P, (C*) values for PEGs 5-15 using a variety of different estimation
methods. In the same process, we also compared how different saturation vapor pressure estimation methods differed from
each other. We found that the different methods can produce up to 18 orders of magnitude differences in estimated C* values
(Fig—ta(Figure 1a, PEG-15). We argue that we achieve the best estimates for the volatilities of the PEGs (at least for PEGs 6-
14) by fitting an explicit aerosol desorption model to our thermal desorption-based FIGAERO-CIMS measurements of PEG
aerosol. These estimates are in excellent agreement with previous findings on the volatility for PEGs up to PEG-9. Our
uncertainty ranges for C* increase to up to three orders of magnitude for the largest PEGs, mainly due to variabilities between
sets of experiments. Within an order of magnitude, however, our best estimates continue thea broadly, log-linear dependence
of Psu (C*) on PEG order (or mass) up to PEG-14, in agreement with literature on PEGs 5-9. Analogously, the dependence of
AH,on PEG order broadly continues its linear trend as well (Fig-Figure, S2).

We also explored a variety of theoretical and (semi-)empirical methods that are commonly used in the field to estimate
saturation vapor pressures for organic compounds, absent measurements: from quantum chemistry-based calculations to
molecular structure-based group contribution methods, to simple parametrizations based on molecular sum formulas.
Generally, the simpler the method and the larger the considered PEG compound, the larger the errors, as the variety of estimates
of C* spanned up to 18 orders of magnitude. These results demonstrate that any of the formula-based parametrizations need
to be used with caution, keeping in mind especially; how a specific parametrization was developed. Most parametrizations we
considered were specifically developed for a-pinene-derived HOMs, using relatively small sets of representingrepresentative,
compounds. However, our understanding of the often-complex structures of these HOMs and of their inter- as well as intra-
molecular interactions havehas been subject of recent and current research. Consequently, the respective parametrizations can
be useful in pertinent studies, but their application to compounds of generally different compositions will likely be problematic,
such-as seen here for PEGs. Another considered parametrization, developed for a broader, more diverse set of organics,
achieved better accuracy overall, though it still typically underestimated C* by orders of magnitude. Similar estimations as by

that broader parametrization were obtained by two common group contribution methods (SIMPOL, EVAPORATION),
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whereas those obtained by a third method (MGM) broadly agreed with our best estimates. Although the MGM obtains C*
values less directly, we suggest that the method could be a robust alternative nonetheless, possibly thanks to being based on a
wider set of organics than SIMPOL and EVAPORATION. In many practical applications, however, a downside of all group
contribution methods is that the target compounds need to be identified at the level of their molecular structures before the
models can be utilized, which is typically not achieved by state-of-the-art mass spectrometry-based measurements of
oxygenated organic compounds in the atmosphere. The same limitations apply to using COSMOtherm for estimating
volatilities, and it also requires increasing levels of simplification or higher computational resources when considering larger
molecules. Our COSMOtherm application did, however, yield promising results. In conclusion, we suggest that measurements
of the thermal desorption behavierbehaviour, of aerosol constituents can be a more versatile and reliable way of determining
their volatility. Useful quantification of that volatility will not necessarily require (possibly complex) model simulations, like
in this study, but can achieve sufficiently accurate (within an order of magnitude) results by reference to the desorption

behavierbehaviour,of calibration compounds with known volatilities, such as aerosol particles consisting of a mixture of PEGs.

Notably, a closer look at Fig—ta-(and Fig-Figure 1a (and Figurg S1) suggests that toward the larger PEGs, there may be a slight
deviation toward higher C* values compared to the log-linear extrapolation from PEGs 5-8, which is also in line with the
independent COSMOtherm and MGM model results. On the other hand, the nominally “best” desorption model fits suggest
the log-linear extrapolation may be an excellent predictor up to PEG-14. More precise sets of measurements are needed to
elucidate the volatility trends of those larger PEGs with better certainty. E.g., the desorption temperature measurement in the
FIGAERO could be improved, and other aspects affecting reproducibility optimized (see Section 4.1). Also, the determination
of AH and P, values via desorption medelingmodelling could be optimized to achieve quicker convergence and more robust

uncertainty estimates, for example, by incorporating Bayesian estimation approaches.

Uncertainty also remains in what is the appropriate formal relationship between the logarithm of C* and T (Figs. 1b, 2a).
Unlike previous assumptions or hypotheses (Bannan et al., 2019; Lopez-Hilfiker et al., 2014; Mohr et al., 2017; Ylisirnio et
al., 2021), it is not linear. It appears that a 2" or 3™-order polynomial relationship is instead suitable. Using previously
published FIGAERO measurements of SOA, we explored the consequences of using such polynomial fits to calibration results
up to ~150 °C instead of a linear fit to calibrations only up to 90 °C. As demonstrated in Fig-2-Figure 2, a calibration curve
that is accurate up to higher temperatures is needed to accurately determine the volatility of compounds in the ELVOC and
ULVOC ranges. Those compounds play a particularly important role, for example, in the climatically critical processes of

atmospheric new particle formation and nanoparticle growth (Schervish & Donahue, 2020; Simon et al., 2020), Especially
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nanoparticle growth models rely on an accurate representation of the volatilities of the compounds involved (Stolzenburg et
al., 2018; Trostl et al., 2016),
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An additional error source for practical applications of a 7,,.-C"-relationship established via PEGs is likely due to the relatively

low AH values we find for PEGs (in agreement with Krieger et al., 2018), when compared to broader sets of organic compounds

(Figure S2). As illustrated in Figure S3, this discrepancy may induce overestimations for C* assigned based on 7}, measured

for more typical organics but using a T,..-C" relationship established for PEGs. As AH is of increasing importance with

increasing desorption temperature, the expected average bias increases with decreasing C”, up to about an order of magnitude

in the ELVOC and ULVOC ranges.

To conclude, the most valuable contribution of this work is probably the determination of the volatilities (or, in more accurate

terms, the saturation vapor pressures) of higher-order PEGs. Previous Py, measurements were obtained up to PEG 9, which
falls within the LVOC range, but the higher-order PEGs extend throughout the LVOC and the whole ELVOC ranges (Fig-
2)(Figure 2), Our study thus provides knowledge for calibrating thermal desorption-based techniques for volatility
measurements down to the transition to ULVOCs, while remaining uncertainties are likely acceptable for most applications.
It is worth stressing that we expect that the knowledge of PEG vapor pressures will be useful beyond FIGAERO-CIMS
measurements, i.c., for thermal desorption-based techniques more broadly, including some notable recent developments. For

instance, a recently developed volatilization inlet (VIA, Hékkinen et al., (2023)), provides truly online thermal desorption of

aerosol particles, and when coupled to a nitrate CIMS, it has been demonstrated to detect and separate a-pinene-derived HOMs

by their volatility, as well as PEGs (Zhao et al., 2024), There, the separation by volatility was only qualitative. But using this

study’s C* values, the thermal desorption measurements for PEGs could serve as a calibration to quantitatively determine the
C* values of the detected HOMs, and of course also of other measured organics, down to extremely low volatilities. A similar
new method for measuring particle volatility online that will most likely benefit from this work is the Wall-Free Particle

Evaporator (WALL-E, Gao et al., (2025)), which strives to minimize the thermal decomposition and vapor wall losses often

observed with thermal desorption methods.
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Figure 1. Panel a) PEG number vs. C* estimated with different methods, as explained in the text. Circles show measurements-based
values from literature (K2018 = Krieger et al., 2018; L2023 = Li et al., 2023). Yellow stars are desorption model results with whiskers
indicating uncertainties; blue stars are COSMOtherm model results. Plus signs show parameterizations based on molecular
structure; triangles show parameterizations based on molecular formula (L2016 = Li et al., 2016; S2018 = Stolzenburg et al., 2018;
M2019 = Mobhr et al., 2019; P2020 = Periikyli et al., 2020). The dashed line is a linear fit to average values of PEG 5-9 from K2018
and L2023. Panel b) Measured average Twmax values from all experiments vs. C* determined with different methods-—(¥he (the same

legend applies to both panels).
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Figure 2. Panel a) shows different log-linear and log-polynomial fits to C* vs. Tiax values, with C* values determined with desorption
modelling. Panels b), ¢) and d) show VBS distributions determined from FIGAERO — CIMS measurement of sesquiterpene SOA,
determined with different fit equations. LVOC, ELVOC and ULVOC refer to the categories of low-volatility, extremely low-
volatility and ultra-low-volatility organic compounds, respectively, which are defined by respective ranges of volatility as indicated

by the background color shades (red, gray, purple; Schervish & Donahue, (2020)),
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| Figure 3. Thermograms measured by FIGAERO-CIMS in “Experimentexperiment A” (see text for details) for monodisperse aerosol
consisting of PEGs 5-15 (blue) and example results from desorption modelling (orange) after fitting model inputs for Ps, i, AH;, and
Si for each PEG (i =5...15; see Sections 2.3.1 and 3.3).

32



