Response to the Referees - EXSoDOS 1.0: downscaling of weather
extremes shifts for ensemble climate projections using ground-
based measurements, reanalysis and stochastic modelling

General Introduction and Summary of Major Revisions

We thank the three referees for their thorough and constructive reviews. In response, we
improve the clarity, robustness, and positioning of the manuscript by (i) strengthening the
quantitative evaluation of distributions and extremes, (ii) expanding the climate-change
assessment with explicit tables summarizing changes in means and tails, (iii) clarifying and
tabulating the methodological assumptions underlying EXSoDOS, and (iv) sharpening the
novelty claim relative to existing downscaling approaches. We further (v) extend the
validation scores and (vi) add robustness tests based on multi-period calibration and cross
validation, (vii) clarify computational cost and data requirements, and (viii) expand the
discussion of limitations, including stationarity assumptions, return period use limits, and
the lack of spatial or multivariate dependence.

Below, you find the point-by-point responses to the referee's comments.

Referee 1

Referee comment: Overall, the paper is well written, and the statistical technique
developed appears robust. However, there are several issues that need to be addressed
before | can recommend this manuscript for publication.

Response: We thank the referee for the constructive comments, which helps us to improve
the manuscript.

Referee comment: The authors have chosen 5 sites to evaluate EXSoDOS and the
manuscript clearly mentions why these cases were selected. However, in my opinion only
five cases globally may be insufficient to fully assess the robustness of the approach. |
recommend expanding the analysis to include 20-30 stations, with representation from
additional regions. Specifically, it would be valuable to incorporate sites from North and
South America, as well as Australia. Including a few stations located on islands and near
the Southern Ocean would further strengthen the geographic diversity of the dataset.
Within India, the current focus on Puri (a coastal city) could be complemented by selecting
sites from different geographical settings, such as an inland city like Delhi or a location near
the Himalayas.



Response: We agree that five stations are insufficient for a comprehensive global
robustness assessment. The primary objective of this manuscript is to demonstrate the
EXSoDOS methodology, including calibration, validation, and application on single-station
applications, rather than providing an exhaustive global benchmark. Adding more stations
from multiple regions while keeping the single-station focus would make the manuscript
too extensive. Yet, to further illustrate transferability, we added an additional use case in
the Appendix, where precipitation is downscaled for seven randomly selected for USA with
at least 60 years of observations. This additional example suggests that the workflow and
performance are reproducible across regions with different climatic regimes. Nevertheless,
we emphasize that for any new application, local validation remains indispensable
because predictor-predictand relationships and data quality are location dependent.

Proposed manuscript text (Sect. 2.6):

"The selected use cases are intended to demonstrate the methodology and validation
workflow rather than to provide an exhaustive global evaluation. For any new application,
local validation remains essential because data quality and predictor—predictand
relationships are location dependent."”
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Figure S1. Idem as Fig. 4 and 5, but for combine results of 8 stations in USA, , namely
USC00141593 (lat=39.5722, lon=-97.2836), USC00445050 (lat=38.0422, lon=-78.0061),
USC00021664 (lat=32.0061, lon=-109.357, USC00130157 (lat=42.7536, lon=-92.8022),
USC00250640 (lat=40.1306, lon=-99.8278), USC00410404 (32.1633, -95.83),
USC00475808 (44.5378, -90.535).



— 35 observations 1961-1990 «--- =+« observations 1961-1990
o observations 1991-2020 =+«- 120 -+-- observations 1991-2020
> 30 CMIP6 1961-1990 —— o CMIP6 1961-1990
L CMIP6 1991-2020 — [ —— CMIP6 1991-2020
ot CMIP6 2071-2100 —— = 100 — cmipe 2071-2100
£ 25 CMIP6 BC DS 1961-1990 (med. & P10-P90) s T % CMIP6 BC DS 1961-1990 (med. & P10-PS0)
S CMIP6 BC DS 1991-2020 (med. & P10-P90) &% £ 8ol == CMIP6 BC DS 1991-2020 (med. & P10-P90) 4
~ CMIP6 BC DS 2071-2100 (med. & P10-P90) H=s= £ E=S8 CMIP6 BC DS 2071-2100 (med. & P10-P90) 4
- 20 = 7
|
> 5 60
] 15 =
£ £ 40
= s
]
b
by~ [}
—_
9 5 5 20
2
o == 0
0 20 40 60 80 100 1072 101 10° 101
precipitation [mm-day~*] return period [years]

Figure S2. Idem as Fig. 6 and 7, but for combine results of 8 stations in USA.

Referee comment: Section 3.1: The current description lacks sufficient detail. While the
authors state that there are differences between the four columns in Figure 3, these
distinctions are difficult to visualize due to the way the figure is presented. | recommend
enhancing the analysis by including one or two additional metrics and discussing the
potential limitations of the Perkins distribution overlap score. (...)

Response: We thank the referee for this constructive comment. In response, we have
substantially extended the quantitative validation in Sect. 3.1. In addition to the Perkins
distribution overlap score, we now report a suite of complementary diagnostics that
explicitly target both central tendencies and tail behaviour. These include the mean,
standard deviation, 95th percentile, 1-year return level, annual number of dry days,
quantile-based loss metrics, and Kolmogorov-Smirnov statistics.

This extended set of metrics allows a more objective and transparent comparison between
observations, ERA5, and the different downscaling configurations, and makes differences
that are visually subtle in Fig. 3 quantitatively explicit. We further added a discussion of the
limitations of the Perkins overlap score, in particular its insensitivity to compensating errors
and its limited ability to diagnose discrepancies in the distribution tails. The revised
analysis and the new Table 3 directly address these issues.

Proposed manuscript text (Sect. 3.1):

"While the Perkins distribution overlap score provides an integrated measure of similarity
between two probability density functions, it is inherently insensitive to compensating
errors and offers limited insight into discrepancies in the distribution tails. Therefore, we
complement the Perkins score with additional diagnostics, including quantile-based loss
metrics, Kolmogorov-Smirnov statistics, and explicit indicators of extremes such as high
percentiles, return levels, and dry-day frequencies. Together, these metrics provide a more
complete and objective assessment of both the central tendencies and the extreme
behaviour of the downscaled variables."



Mean Std P95 1y return D{gr /(::TS Perkins %::;Z]A KS stat (p)
observed 3.3 (+0.0) 5.2 (+0.0) | 21.4(+0.0) 69.7 (+0.0) 281.6 (+0.0) 1 | 0.000 (1.000) 0.000 (1.00)
ERAS orig 2.9(-0.4) 3.5(-1.7) 13.4 (-8.0) 38.4 (-31.3) 218.2 (-63.5) 0.53 | 0.146 (1.086) 0.355 (0.00)
ERAS5
upscaled 2.8 (-0.5) 3.3(-1.9) 12.1(-9.3) 37.2 (-32.5) 206.1 (-75.5) 0.487 | 0.200 (1.118) 0.457 (0.00)
ERAS5 DS 3.3(-0.0) 5.2 (+0.0) | 21.8(+0.4) 64.8 (-4.8) 283.8 (+2.2) 0.953 | 0.000 (1.000) 0.010 (0.68)
ERA5 QM 3.1(-0.2) 4.9 (-0.3) 20.5 (-0.9) 61.8 (-7.8) 282.3 (+0.7) 0.905 | 0.001 (1.001) 0.007 (0.92)

Table 3: Validation metrics for precipitation distributions from observations (Observed),
original ERA5 (ERAS5 orig), upscaled ERA5 (ERA5 upscaled), fully correlated stochastic
downscaling (ERA5 DS), and quantile-mapping-only downscaling (ERA5 QM). For the mean,
standard deviation (Std), 95th percentile (P95), 1-year return level (1y return), and annual
number of dry days, absolute values are reported with deviations from observations in
brackets. We further report the Perkins overlap score, the quantile loss difference (with
ratio in brackets), and the Kolmogorov-Smirnov statistic with the corresponding p-value.

Referee comment: (...) Similarly, in Section 3.2, | suggest incorporating relevant statistical
metrics (perhaps in the form of a table) to quantitatively assess aspects such as ‘increase’,
‘decrease’, ‘less extreme’, and ‘shift of distribution’

Response: To make all statements on increases, decreases, and distributional shifts fully
quantitative, we add a new table (Sect. 3.2) summarizing annual precipitation, dry days,
standard deviation, 95th percentile, and 1year return levels for observations, original CMIP6
output, and biascorrected and downscaled CMIP6 projections. Median values and 10-90%
ensemble ranges are reported.

Annual precip
Dataset Dry days [d/yr] Std P95 1y return
[mm/yr]

Obs 1961-1990 1075 272.0 8.66 19.3 62.4

Obs 1991-2020 1173 265 8.86 21.7 62.7

CMIP6 1961-1990 861 (650-1106) 104 (36-178) 5.14 (4.45-7.52) 11.0 (6.9-13.4) 40.5 (26.9-72.1)
CMIP6 1991-2020 894 (688-1185) 103 (36-176) 5.72 (4.20-8.61) 11.2(7.3-15.0) 43.9 (27.8-79.6)
CMIP6 2071-2100 920 (897-1348) 104 (27-179) 8.31(6.23-12.12) 11.3(9.34-18.0) 78.2(51.8-103.5)




CMIP6 BC DS 1961-1990

1228 (1200-1281)

267 (265-270)

9.64 (9.35-9.95)

21.3(20.9-22.0)

73.4 (70.7-76.9)

CMIP6 BC DS 1991-2020

1305 (1247-1316)

267 (266-270)

10.22 (9.76-10.42)

22.7 (21.7-23.2)

75.3 (74.0-77.9)

CMIP6 BC DS 2071-2100

1400 (1110-1602)

271 (267-278)

11.47 (9.85-13.31)

24.9 (20.1-28.5)

85.6 (77.1-100.9)

Table 4: Annual precipitation, dry days, standard deviation, percentile 95 value and 1-year

return value of observed and modelled time series. We include the original CMIP6 climate
projections (SSP585) including models listed in Tab. 1, and the bias-corrected and
downscaled CMIP6 models (CMIP6 BC DS). Observations are also included as comparison.
Results are shown for two historical time frames 1961-1990 and 1991-2020, and for one

future timeframe 2071-2100. For the climate projections, we show median and percentile

10-90 ranges of the model ensemble.

Referee comment: The statistical framework relies on several assumptions that should be

listed explicitly.

Response: We summarize the key methodological assumptions underlying EXSoDOS as an
additional subsection 2.7. The key assumptions include (i) stationarity of predictor—
predictand correlations, (ii) stochastic representation of subgrid variability, (iii) realism of
bias-adjusted coarse scale predictors (perfect prognosis assumption), (iv) sufficient record
length of observations to represent extremes up to ~10year return periods, and (v)

independence across stations and variables. These assumptions are now presented in

tabular form in the appendix.

Assumption

Description / rationale

Implications / how we check it

A1. Perfect-prognosis (PP)
assumption

Predictors (after bias-adjustment) are
assumed to be physically meaningful and
transferable betweenreanalysis and GCMs
(Maraun, 2016).

We mitigate PP violations by (i) bias-
adjusting predictors with quantile-delta
mapping (Cannon et al., 2015) per month
and (ii) validating the full
predictor>predictand chain against station
observations.

A2. Stationary predictor—
predictand dependence

The month- and category-dependent
correlation p between normalized predictor
and predictand is assumed approximately
invariant under climate change (Sect. 2.2.3).

We test stability by calibrating on
independent periods (1961-1990 vs 1991~
2020) and even/odd-year splits;
correlations and resulting tails remain
within sampling uncertainty.

A3. Stochastic residual
variability

Unexplained sub-grid variability is treated as
a stochastic residual r drawn from a
standard normal and mapped back through
the empirical CDF of observations (Eq. 10—
11).

This implies that tail behavior beyond the
observational record cannot be
guaranteed; we therefore restrict
interpretation to return periods supported
by record length and report




ensemble/sampling uncertainty.

A4. Distributional
representativeness of station
record

Station observations are assumed long and
complete enough to represent climatological
distributions and extremes over 30-year
windows (WMO, 2017).

We specify minimum record-length and
completeness criteria, and we limit
validation plots to return periods
supported by sample size (Sect. 2.4).

A5. QDM bias-adjustment
stationarity

Quantile-delta mapping assumes percentile-
dependent model bias is approximately
stationary while climate change signals in
quantiles are preserved (Cannon etal.,
2015).

We discuss known limitations (e.g., trend
inflation when mixing scales) and keep
bias adjustment on the model grid before
station downscaling (Maraun, 2013).

AB. Single-site / single-variable
application

EXSoDOS is applied independently per
station and variable and therefore does not
enforce spatial or cross-variable coherence.

We explicitly state this limitation and
provide guidance on when multi-site or
multivariate methods (e.g., copulas/
correlation-preserving transforms;
Switanek et al., 2022) are required (Sect.
4).

Table S1: Key assumptions of EXSoDOS stochastic downscaling

Minor comments

Referee comment: L22: “...generally underrepresented in climate projections.” Add 2-3

references.

Response: We add references supporting the underrepresentation of extremes in coarse-
resolution climate models, for example: IPCC (2021, WGI), Sillmann et al. (2013), and
Fischer & Knutti (2015). Proposed manuscript change (Introduction): “...point-scale events

like heavy precipitation, heavy wind, and extreme heat are not explicitly represented in
climate projections (IPCC, 2021; Sillmann et al., 2013; Fischer and Knutti, 2015).”

We note that we now state ‘not explicitly represented’ instead of ‘underrepresented’, in line

with the public comments of Prof. Benestad who correctly points out that locally (point-
scaled) measured and grid-scale averaged values are different by nature.

Referee comment: L38: “finer resolution grids”. It might be good to mention the resolution.

Response: We now specify typical resolutions explicitly. Proposed manuscript change

(Introduction): “...statistical downscaling methods have been developed to finer-resolution
grids (e.g., ~1 km for CHELSA-W5ES5; Karger et al., 2023) and point observation locations,
whereas typical GCM resolutions are ~1-3°.”

Referee comment: L53: “...normalized and correlated with each other.” Kindly add one
sentence with a short explanation.




Response: We add clarification in Sect. 2.2: “we map predictor and predictand values to
standard normal space using their empirical CDFs (i.e., apply the probability integral
transform and then the inverse normal CDF), estimate correlation in that space, and then
map sampled values back through the inverse empirical CDF of observations.”

Referee comment: L66: “EXSoDOS runs quickly...” Please add a metric here.

Response: We add explicit runtime metrics and clarify what is included. Proposed
manuscript change (Introduction): “For a single station, a full downscaling run for one
scenario typically takes ~5-10 seconds, and a 10-member ensemble completes in <1
minute on a modern CPU, excluding one-time data download and gridded bias-adjustment
preprocessing. Downloading of source data (ERA5, CMIP6 climate models, station data)
can take longer (network dependent) and QDM bias-adjustment (incl. ERA5 grid upscaling)
on continental grids can take hours, which is performed once per model/grid.”

Referee comment: L87: Is there any reason for the 50:50 split? Citation to a previous
literature might be helpful.

Response: We add the following reasoning to the manuscript: “For both calibration and
validation, we require that the overall distribution and extremes to be represented on a
climatological timescale. Over a 60-year period we have an equivalent of 30 year data for
both, which is in line with WMO climatology assessment standards of the World
Meteorological Organization (WMO, 2017).”

Referee comment: L140: How sensitive are the results to the choice for 2 additional
months.

Response: Below, we show the sensitivity to the model with respect to the number of
months used for calibration. The top panels show the results from original seasonal (3-
monthly) calibration, and the bottom panels show the results of using single months
calibration. The single months calibration tends to enlarge the climate trends for intensities
between 40-60mm/day, but dampen climate trends in the high extremes with return
periods >than 5 years. We argue that the results using seasonal (3-monthly) calibration are
more robust since it uses a larger sample size to determine distributions and correlations
between predictors and predictands, while still providing samples representative for the
time of the year.
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Figure: upper panels show the distribution (left) and return periods (right) from the original
seasonal calibration, and lower panels show the results using single-month calibration.

Proposed manuscript text (Sect. 2.2.1, end of first paragraph): “Calibration is performed
per calendar month. To increase sample size while keeping seasonality, we include data
from the adjacent months (+1 month), yielding an effective 3-month seasonal window. A
sensitivity test using single-month windows showed less robust tail estimates due to
reduced calibration sample size per month, whereas the 3-month window provides a larger
sample size and smoother transitions between months (see Appendix Fig. R1).”

Referee comment: L149: Are there existing literatures which support the choice of an
exponential profile?

Response: To the author’s best knowledge, exponential (or other non-linear) profiles
haven’t been considered to create predictor categories or to employ quantile delta
mapping bias correction. We add to the manuscript that: “We’ve introduced an exponential
profile to represent the large variation in the tails of the distribution.”



Referee comment: L192: How sensitive are the results to the choice of ‘c’? Can the authors
include a figure?

Response: Thanks for this remark. While the intension was to better relate predictands with
their predictors, we realize that it leads to inconsistencies. For example, the rescaled
variable y’ ~ y/x for x >> ¢ will correlate differently with x compared toy’ ~y for x<<c.
Therefore, we remove scaling of the predictand in the revised manuscript. Therefore,
sensitivity to this parameter becomes obsolete.

Referee comment: L213: | would like to see a figure/chart before and after detrending.

Response: We thank the referee for this interesting question. We suppose that it was
referred to ‘retrending’ mentioned on L213 instead of ‘detrending’.

Below, you find the results for precipitation where predictors have been detrended, but no
retrending was done on the final output predictands. It shows that the overall climate
change sighals are much less pronounced before retrending than after retrending, and a
smaller ensemble spread on the distribution and return levels were found.
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Referee comment: L305-320, 325-330: Kindly add a few more citations for each case.
We make sure that each case have two references as follows:

“...many native vegetation (crop) species require the occurrence of freezing temperatures
to ensure proper dormancy release and phenological development of many perennial plant
species (e.g. Evans et al., 2014; IPCC, 2021).”

“For Spangdalhem (Germany) also in Europe, wind speed variability and extremes directly
affect wind energy yield and structural loads on turbines (Tobin et al., 2015; Pryor et al.,
2012).”



“...one of the global hotspots of extreme heat, particularly in the Middle East and South
Caucasus regions (Perkins-Kirkpatrick and Lewis, 2020; Wouters et al., 2022).”

“Coastal India is highly vulnerable to extreme heat stress due to the combined effects of
high temperature and humidity, with documented impacts on mortality and labour
productivity (Im et al., 2017; Raymond et al., 2020).”

“As rainfall is a dichotomous variable, its inter-annual variability in time and space is
difficult to assess. In Mali—and particularly in the Sikasso region—rainfallis a key driver of
agricultural production, which remains a major source of livelihood for the local
population. Variations in rainfall occurrence and intensity directly affect crop yields and
water availability and can exacerbate vulnerability to climate hazards such as droughts and
floods. Rainfall variability and the increasing relevance of heavy-rainfall extremes across
the Sahel have been widely documented, with important implications for agriculture and
flood risk (Panthou et al., 2014; Sanogo et al., 2015)”

Referee comment: Figure 3: Needs a legend.
Response: Thank you for your suggestion. We will add a legend for the revised manuscript.
Referee comment: Figures 3, 5, 6: | recommend using Kelvin as the unit of temperature.

Response: We prefer to stick to degrees Celsius, which is the unit for which weather station
datais provided by the archives and weather institutes.

Referee comment: Figure 5: Check units of ‘wind speed’ and ‘precipitation’

Response: We checked and confirmed the validity of the wind speed and precipitation units
and confirmed that they are correct.

Referee comment: Figure 6, 7: Kindly consider using one common legend for the entire
figure.

Response: Thanks for the suggestion. We include one legend for all the panels together in
the revised manuscript.

Referee 2

Referee comment: This manuscript proposes a new stochastic model to improve the
prediction accuracy of climate extremes. The methodology is innovative, and the



manuscript is well-written and easy to follow. However, | believe the following issues
should be addressed before publication on Geoscientific Model Development.

Response: We thank the reviewer for their constructive comments, which we address
below.

Referee comment: As the authors mentioned in Lines 213-215, the statistical relationship
was assumed to remain unchanged under climate change. To test the robustness of the
relationship, could the authors conduct cross-validation (e.g. 5-fold or leave-one-out) to
evaluate the stability and generalizability of the statistical relationship?

Response: We provide robustness tests for precipitation using three calibration periods
(1961-1990, 1991-2020, and the full record 1961-2023), even/odd year splits, resultingin 6
simulations per case. The spread across simulations is related to, and of the same order
as, the variability over different sampling in the measurements (cfr. variability of
observations across time period and even/odd years). Such a spread needs to be taken into
accountin climate change assessments. We include these results as an Appendix.
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Figure: distributions (upper panels) and return levels (lower panels) for observations (Obs),
ERA5 (ERAS5), and downscaled results from models with the differerent calibration sets
(models). We show results for even (even) and odd (uneven) years. Left panels show results
for 1971-1990 and right panels show results for 1991-2020.

Station selection and landsurface characteristics

Referee comment: In addition, | am concerned about the representativeness of the five
stations selected (Section 2.6.1). Why the five cases were selected to show the general
utility of the model?

Response: We opted to focus on the description of the model and to demonstrate with the
five cases its procedure for applications including the calibration, validation and validation.
We chose five stations, rather arbitrarily, to demonstrate the utility for each of the variables.
The locations are arbitrary in diverse locations in the world. The five cases are all linked to a
particular challenge to climate change, which we further elaborate with 2 reference per
case, see our reply to the first referee. Given these 5 cases, one can now employ the same
model and procedure to any station elsewhere. To further show the
applicability/transferability of EXSoDOS to other stations, we make a sixth case in the
appendix which show results for 8 stations with 60-year data that are randomly chosen for
the US, see below.
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Figure S1. Ildem as Fig. 4 and 5, but for combine results of 8 stations in USA.
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Figure S2. Idem as Fig. 6 and 7, but for combine results of 8 stations in USA, namely
USC00141593 (lat=39.5722, lon=-97.2836), USC00445050 (lat=38.0422, lon=-78.0061),
USC00021664 (lat=32.0061, lon=-109.357, USC00130157 (lat=42.7536, lon=-92.8022),
USC00250640 (lat=40.1306, lon=-99.8278), USC00410404 (32.1633, -95.83),
USC00475808 (44.5378, -90.535).

Referee comment: What are the Plant Functional Types of these stations? Understanding
the PFTs could help assess whether the model performance is influenced by land-surface
characteristics.

Response: We agree with the reviewer that land-surface characteristics including dominant
vegetation/land cover can influence station-scale variability and extremes, and may
therefore affect EXSoDOS performance. EXSoDOS implicitly captures local land-surface
effects through the observed predictand record used for calibration/denormalization, but
does notinclude explicit land-surface predictors. Reporting plant functional types is
outside the scope of this paper, hence we do notinclude it in the manuscript. In the revised
manuscript we add (Sect. 4, Limitations) a short statement that performance may depend
on site characteristics, and more generally on general environmental and climatic context
(e.g., adding boundary-layer stability or circulation indicators). We also clarify that
extending the predictor set is a promising avenue to better represent regime-dependent
land-atmosphere interactions.

Referee 3

Referee comment: This manuscript introduces EXSoDOS, a stochastic point-scale
downscaling framework for representing changes in weather extremes however, several
methodological assumptions, validation choices, and claims of novelty need strengthening
before publication.



Response: We thank the referee for the constructive comments, which helps us to further
sharpen assumptions, validation, and novelty.

Referee comment: The paper positions EXSoDOS as novel, yet its design is close to prior
stochastic “perfect-prog” approaches (analog/binning, weather generators, recent station-
scale frameworks). Please sharpen the novelty claim: Clarify what is conceptually new
beyond the two-stage design and the pre-scaling trick; (...)

Response: We agree that the downscaling algorithm itself is similar to previous methods.
EXSoDOS is positioned as novel in its explicit focus on evaluating and assessing shifts in
extremes across past and future climatological periods for multiple types of variables. This
was achieved by its consistent use of globally available datasets with hyper-climatological
temporal coverage (ie., >>30 years) including ERA5, CMIP6 and the station data, and its
non-parametric treatment of distributions. To the authors’ best knowledge, downscaling
time series that can evaluate both past (ie., between 1961-1990 and 1991-2020) and future
climatological shifts (ie., towards the end of the 21°* century) in weather extremes haven’t
been done before. In contrast to previous methods, the method that allows seasonality and
including data retrieval with global coverage, the downscaling and validation is transferable
to any weather station, even in locations as shown for Sikasso in Mali for which data
availability is scarce but where high-quality long-term observation records are available.
The method uses observed CDF instead of fitting them to particular distributions, which
avoids additional assumptions, hence it allows to simulate different types of variables
(Tmin,Tmax,Tmean, precip, wind and heat stress temperature).

We will highlight these novelty aspects more in the introduction and method section of the
manuscript.

In the introduction:

“To fill this gap, we present EXSoDOS, a stochastic downscaling framework designed
explicitly to evaluate shifts in local weather extremes across past and future climatological
periods. While the underlying stochastic downscaling approach builds on established
perfect-prognosis concepts, the novelty of EXSoDOS lies in its end-to-end design for
consistent assessment of extreme-event variability and return levels across multiple
decades, variables, and climate states. This is achieved through the combined use of
globally available long-term datasets (station observations, ERA5 reanalysis, and CMIP6
ensembles), a non-parametric treatment of distributions, and a workflow that allows direct
comparison of observed, reconstructed, and projected extremes.”



Section 2.1: “A key design criterion of EXSoDOS is the consistent use of datasets with
hyper-climatological temporal coverage (>>30 years), which enables robust estimation of
variability and extremes as well as their shifts between climatological periods. By relying
exclusively on globally available datasets (ERA5, CMIP6, and station observations), the
framework is fully transferable to any station location where sufficiently long records exist,
including data-sparse regions such as Mali.”

Section 2.2, first paragraph, highlighting that it builds further upon previous approaches:

“The stochastic downscaling strategy follows the general philosophy of perfect-prognosis
and analog-based approaches previously proposed in the literature (e.g. Volosciuk et al.,
2017; Switanek et al., 2022). EXSoDOS does not introduce a fundamentally new class of
stochastic models; instead, it adapts and extends these approaches within a unified

framework that is explicitly designed for multi-decadal extreme-event assessment across
historical and future climates.”

Referee comment: (...) Add quantitative benchmarks against at least one strong baseline on
the same stations/periods (e.g., BCSD-type with weather generator/analog; a Switanek-
style variant without pre-scaling). (...)

Response: We add head-to-head comparison with standard quantile mapping to the

distributions (Fig. 4) and return levels (Fig. 5), hence, without correlation sampling. The
results for precipitation look as follows:
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Referee comment: (...) Report distribution overlap, CRPS, and high-quantile loss (p = 0.95).

Response: We further extend the Perkins score table (Table 2) with additional statistics and
scores (also in line with the answer to comments to referee1):



Dry days . QLoss A

Mean Std P95 1y return [d/yr] Perkins (ratio) KS stat (p)
3.3 5.2 21.4 0.000

observed (+0.0) (+0.0) (+0.0) 69.7 (+0.0) | 281.6 (+0.0) 1 (1.000) 0.000 (1.00)
) 38.4 (- 2182 (- 0.146

ERA5 29 (-04 3.5(-1.7 13.4 (-8.0 0.53 0.355 (0.00

orie 04 -17) (B0 | 314 63.5) (1.086) (0.00)
ERAS 37.2 (- 206.1 (- 0.200

2.8(-0.5 3.3(-1.9 12.1 (9.3 0.487 0.457 (0.00

upscaled (-0.5) (-1.9) (-9:3) 32.5) 75.5) (1.118) ( )
5.2 21.8 0.000

ERA5 DS 3.3(-0.0) (+0.0) (+0.4) 64.8 (-4.8) 283.8 (+2.2) 0.953 (1.000) 0.010 (0.68)
0.001

ERA5QM | 3.1(-0.2) | 4.9(-0.3) | 20.5(-0.9) | 61.8(-7.8) | 2823 (+0.7) 0.905 (1.001) 0.007 (0.92)

Table 3: Validation metrics for precipitation distributions from observations (Observed),
original ERA5S (ERA5 orig), upscaled ERA5 (ERA5 upscaled), fully correlated stochastic
downscaling (ERA5 DS), and quantile-mapping-only downscaling (ERA5 QM). For the mean,
standard deviation (Std), 95th percentile (P95), 1-year return level (1y return), and annual
number of dry days, absolute values are reported with deviations from observations in
brackets. We further report the Perkins overlap score, the quantile loss difference (with
ratio in brackets), and the Kolmogorov-Smirnov statistic with the corresponding p-value.

While the results from to standard quantile mapping (ERA5 QM) show similar scores and
distributions to the full correlated sampling (ERA5 DS), the latter one is preferred, since the
former could lead to inflation of trends in extremes (Maraun, 2013). Inflation by standard
quantile mapping is also suggested by our sensitivity results comparing results over
different time frames 1961-1990 and 1991-2020, as discussed further below.

Referee comment: You assume correlations are static under climate change and manage
range shifts via detrending (temperature) and QDM. Please: Test correlation stability across
eras (1961-1990 vs 1991-2020); Discuss how non-stationarity would bias tail estimates
and provide indicators to detect failure; Consider a time-varying or regime/season-
partitioned correlation experiment.

Response: We test correlation stability across historical periods by calibrating the model
for different periods. The first one is the full 63-year period (1961-2024) as already done,
and then two additional model calibrations for the non-overlapping 30-year periods 1961-—
1990 and 1991-2020. These 3 models are calibrated on uneven years and then applied to
generate time series for even years. Conversely, 3 additional models are calibrated on even
years to generate uneven years (‘uneven models’).




In the table below, predictor-—predictand correlations for the lowest precipitation category
are reported for the different calibration sets.

may jun jul aug sep oct
1961-1990 even model 0.28 0.2 0.2 0.2 0.32 0.39
1961-1990 uneven model 0.29 0.22 0.2 0.23 0.39 0.4
1991-2020 even model 0.28 0.21 0.21 0.17 0.33 0.45
1991-2020 uneven model 0.32 0.25 0.17 0.17 0.32 0.44
1961-2023 even model 0.31 0.17 0.2 0.18 0.33 0.43
1961-2023 uneven years (reference) 0.3 0.22 0.21 0.2 0.34 0.42

Table S1: predictor-—predictand correlations for the lowest precipitation category in
different months in the rainy months of Sikasso.

Correlations appear stable among the different calibrations for the different months, hence
suggests invariance under climate change. However, these changes may still lead to
different results in the extremes. In addition, differences also result from differences in
cumulative distribution functions of the predictand used for the calibration. To test the
sensitivity to the changes in the correlations and predictand CDFs, we generated time
series for each of these model sets. The results in distribution and return levels can be
found in the respective figures below.



Reference year 1976 (1961-1990) Reference year 2006 (1991-2020)
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Figure: distributions (upper panels) and return levels (lower panels) for observations (Obs),
ERAS5 (ERA5), and downscaled results from models with the differerent calibration sets
(models). We show results for even (even) and odd (uneven) years. Left panels show results
for 1971-1990 and right panels show results for 1991-2020.

So we find that variations in distributions of model output (even/odd; different calibration
sets) are in accordance to variations in the distributions of observation samples (even vs.
0dd;991-2020 vs 1961-1990). Differences are most pronounced in the tails—and the
different calibration sets lead to a variability of comparable magnitude. In the revised
manuscript, these robustness results are included in the Appendix (new Appendix B: cross-
validation and multi-period calibration), where we provide: (i) the full set of distribution and
return-level plots for the 6 simulations (3 calibration periods x even/odd ), and (ii) a short
summary in the main text (Sect. 3.1) stating that model uncertainty is comparable to
sampling variability in the observations.

Referee comment: Validation up to ~5-10 years is reasonable given record length, but many
users need 20-50-year guidance. Either demonstrate an EVT coupling (e.g., GPD) for tails or
state explicit use-limits and uncertainty when extrapolating.



Response: We now explicitly state these user-limitations and uncertainty considerations in
the revised manuscript in two places: (1) Sect. 2.4, where we explain that validation plots
are restricted to return periods supported by record length and the calibration/validation
split; and (2) Sect. 4, where we note that return periods beyond ~10 years require either
substantially longer observational records or an explicit extreme-value extrapolation step
(e.g., GPD/GEV), which is outside the scope of EXSoDOS v1.0. We also emphasize that
users should interpret changes in the far tail as conditional on both model (GCM)
uncertainty and methodological choices (e.g., detrending/retrending; see response to
related comment further below).

Referee comment: EXSoDOS is applied per station and per predictor, which does not
preserve spatial dependence or compound hazards (e.g., hot-humid heat stress, rain-
wind). Please expand the limitations and—ideally—include a small proof-of-concept using
a copula or simple correlation-preserving extension. Provide guidance on when multi-site
methods are required.

Thank you for raising this important remark. EXSoDOS is indeed only applied per station
and per predictor, which is applicable for single-site long-term records especially in data-
scarce regions. If one needs coherent time series for multiple sites and/or multiple
variables, one should introduce spatial and/or inter-variable dependence. This can be
achieved with an extension that accounts for correlations among different predictors and
predictands at different sites, ie., transforming (normalized) variables to an approximately
independent space using the estimated correlation matrix (or a Gaussian copula), applying
EXSoDOS per component, and transforming back to correlated space. This strategy is
conceptually similar to the multi-site approach in Switanek et al. (2022). We add this
discussion as a limitation and outlook in Sect. 4, including guidance that multi-site
methods are required whenever impacts depend on spatially aggregated hazards (e.g.,
catchment rainfall, regional wind farms) or compound events (e.g., rain-wind, hot-humid
heat stress).

Referee comment: Beyond literature review, please include at least one head-to-head
comparison with an established method (e.g., standard quantile mapping, ISIMIP
approach).

Response: Thanks for this suggestion. As shown in the results above, we include a
comparison with a standard quantile mapping approach in the results. The method with
EXSoDOS correlated sampling is preferred since it avoids inflation of trends on the
predictand by the predictors (Maraun, 2013), as already mentioned in the text at L.130. We
now illustrate inflation with the results for quantile mapping as shown in the figures below
(in analogy to the results for the full correlated sampling above).
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Figure: idem as figure above, but with quantile mapping instead of correlated sampling.

We find an increase in return levels in the tails (return period >= 1 year) of the predictor
(ERA5 even and uneven) between the different time frames 1961-1990 and 1991-2020
(black lines). The increase in predictor return levels leads to an increase in modelled
predictand return levels when using the quantile mapping approach (green and orange lines
and spreads). However, return levels in the tails (return period >= 1 year) remain stable
according to local observations for even years, and a decrease was found for uneven years.
This discrepancy suggests inflation of outcomes by the quantile mapping approach, and
such inflation is avoided when applying correlated sampling.

We also evaluate the effect of standard quantile mapping versus correlated downscaling on
future climate projections. See figures and table below. It is found that climate change
signals towards the end of the century are more pronounced with the quantile-mapping
approach, especially in the tails, which may be due to inflation of trends. Hence, the
method of statistical downscaling largely affects the outcomes, and needs to be accounted
for in climate change assessments.
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Figure: Fig. 6 and 7 for precipitation
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Figure: Idem as Fig. 6, 7 for precipitation but using quantile mapping for downscaling
towards station level (QM).
Annual preci Dry days
Dataset p P ry day Std P95 1y return
[mm/yr] [d/yr]
Obs 1961-1990 1075 272.0 8.66 19.3 62.4
Obs 1991-2020 1173 265 8.86 21.7 62.7

CMIP6 1961-1990

861 (650-1106)

104 (36-178)

5.14 (4.45-7.52)

11.0 (6.9-13.4)

40.5 (26.9-72.1)

CMIP6 1991-2020

894 (688-1185)

103 (36-176)

5.72 (4.20-8.61)

11.2(7.3-15.0)

43.9 (27.8-79.6)

CMIP6 2071-2100

920 (897-1348)

104 (27-179)

8.31(6.23-12.12)

11.3 (9.34-18.0)

78.2(51.8-
103.5)

CMIP6 BC DS 1961
1990

1228 (1200~
1281)

267 (265-270)

9.64 (9.35-9.95)

21.3(20.9-22.0)

73.4(70.7-76.9)




CMIP6 BC DS 1991 1305 (1247- 10.22 (9.76-
267 (266-270) 22.7(21.7-23.2) | 75.3(74.0-77.9)
2020 1316) 10.42)
CMIP6 BC DS 2071- 1400 (1110~ 11.47 (9.85- 85.6 (77.1-
271 (267-278) 24.9 (20.1-28.5)
2100 1602) 13.31) 100.9)

Table 4: Annual precipitation, dry days, standard deviation, percentile 95 value and 1-year
return value of observed and modelled time series. We include the original CMIP6 climate
projections (SSP585) including models listed in Tab. 1, and the bias-corrected and
downscaled CMIP6 models (CMIP6_BC_DS). Observations are also included as
comparison. Results are shown for two historical time frames 1961-1990 and 1991-2020
(green), and for one future timeframe 2071-2100. For the climate projections, we show
median and percentile 10-90 ranges of the model ensemble.

Annual preci
Dataset P P Dry days [d/yr] Std P95 1y return
[mm/yr]

CMIP6 BC QM 1961-

1990 1124 (1029-1158) 267 (263-271) 8.72 (8.35-9.05) 19.5 (18.2-20.5) 63.0 (60.4-66.1)
CMIP6 BC QM 1991-

2020 1182 (1140-1224) 268 (264-273) 9.40 (9.04-10.16) 20.6 (19.6-21.3) 70.1 (63.9-80.0)
CMIP6 BC QM 2071-

2100 1340 (1196-1549) 275 (270-289) 13.22(10.81-13.64) 22.5(19.7-28.1) 105.4 (89.3-114.8)

Table. Idem as table above, but for quantile mapping.

Refereree comment: ...and discuss when EXSoDOS is preferable relative to CORDEX or
CHELSA-WS5ES station-scale products.

Response: We include the following text in the conclusion: ‘EXSoDOS should be considered
when long-term station weather station data is available and when representation
extremes distribution (ie., tails) at point-scale is important to evaluate past and future
climate change. In other cases, one should use existing state-of-the-art archives like
CORDEX (Coppola et al., 2015) or CHELSA-W5ES (Karger et al., 2023) enabling grid-scale
climate reconstruction and projections down to 1km resolution.’

Referee comment; Specify minimum record length and completeness thresholds for
station data, missing-data handling, and whether calibration is seasonal vs annual. This will
aid reproducibility and user adoption.

Response: We add the following text to section 2.1: “The minimum record length needs to
be 60 years, for which one can address 2 x 30 years of records to evaluate the model




performance to capture past shifts in weather extremes. 30 years comes from the global
standard from the World Meteorological Organization (WMO 2017). One should only use
records with observational records covering >=90% of the sample period. We do not infill
gaps: missing values are treated as NaN and excluded from empirical CDF correlation
construction.”

As already stated in the text, the bias-correction of the predictor, and the calibration is
done on seasonal basis in which each month is bias-corrected / calibrated with the month
before, the month itself and the month after, see L140-143 (calibration of stochastic model)
L264-265 (bias adjustment of predictor).

Minor Comments

Referee comment: Figures: Panels (e.g., Figs 6-7) are visually dense; consider small
multiples per variable, clearer legends, and consistent units and station names (e.g.,
Spangdahlem vs Dahlem). Where bands are shown, label them explicitly as ensemble
percentile envelopes (10-90%) to avoid confusion with confidence intervals.

Response: We make the following changes to the figures (see example figures for
precipitation above):

- remove the statistics from the figures, and put them in separate tables (extended
with additional statistics for allowing for more quantitative assessment)

- explicitly mention the 10th-90™ percentile envelopes.

- adaptthe font size of legends and other elements.

Referee comment: Abbreviations: Spell out at first use (QDM, ERAS5).
Response: We spell out QDM on first occurrence in the revised manuscript.

Referee comment: Text quality: Fix typos (e.g., “envionmental” > environmental;
“algorythm” - algorithm) and standardize capitalization/diacritics.

Response: We correct these typos and increase the overall text quality in the revision

Referee comment: Data coverage: When citing a GHCN “=30-year” requirement, specify
the QC filters applied.

Response: we suggest the following QC filters at revision, namely:

Daily-minimum temperature: We will explicitly state that we use GHCN-Daily quality
control by excluding values carrying non-empty quality flags and removing physically



implausible values (e.g., Tmin <-90°C or > 60°C). We require sufficient completeness per
30-year window (=290% of days present).

Daily-maximum temperature: Same QC as for Tmin (exclude non-empty quality flags;
remove physically implausible values, e.g., Tmax < -90°C or > 70°C; require 280%
completeness per 30-year window; no long-gap infilling). We also ensure internal
consistency by removing days where Tmax < Tmin when both are available.

Wind speed: exclude values with non-empty quality flags, remove negative values, and
require 290% completeness. We additionally note that wind extremes are sensitive to
instrumentation and exposure changes; thus, station metadata changes (when available)
should be checked and the shift assessment interpreted cautiously.

Specific Questions for the Authors

Referee comment: Data-sparse regions: How does performance degrade with shorter or
lower-quality station records? Any guidance on minimum data length by variable?

Response: To perform climate-change analyses as presented in this study, one should
include 2 x 30 years of data to allow evaluation of past shifts under climate change, with at
least 90% of data coverage. One may consider shorter time periods, but then uncertainty
on high extremes will increase drastically.

Referee comment: Sub-daily extremes: Can EXSoDOS be adapted to sub-daily metrics
(e.g., hourly precipitation) and what changes would be required?

Response: Yes, it can be adapted by relating daily/hourly predictor variables to hourly
predictands. Long-term hourly observations are required in that case.

Referee comment: Circulation shifts: How would systematic circulation changes (e.g., jet
latitude, monsoon onset) alter predictor—-predictand correlations, and can your framework
detect/adapt to such shifts?

Response: You are right that circulation types can influence the predictor-to-predictand
correlation! This is also suggested by the changes in correlation among the different
months (see table S1 shown above) over which typical circulation types change. As such,
the EXSoDOS model takes into account the seasonal-dependent correlations and CDF
functions. However, these correlations and CDF functions are still considered static per
month, and changes in circulation types are only considered with respect to any changes in
the distributions of the coarse predictor variable. More precise circulation-dependent
assessment under climate change can be done by calibrating the model for different
circulation types and explicitly taking the weather type shifts into account from
ERA5/GCMs, or by taking into account more predictor variables (eg., pressure, ABL stability



parameters...) that link to different weather types. Machine learning algorithms (eg., neural
networks) could help to overarch the complexity of the statistical relationships.

Referee comment: Computational cost: How does runtime compare to alternative
downscaling methods (e.g., analog generators, quantile-mapping ensembles) for N
stations and M GCMs?

Response: The runtime of EXSoDOS only takes a 10 seconds for one simulationon a
modern computer. In the latest version, all processing is done as vectorize numpy/xarray
operations instead pandas operations. This allows us to process multiple stations at once,
as was done for 8 stations in US. The computational overhead by including additional
stations is neglegible, hence the method has potential to be upscaled towards continental
and global assessments. It should be noted that most of the computing time is spent on
fetching (days) and biascorrecting global datasets with the quantile delta mapping (hours),
but this needs to be done only once for larger continental areas. Furthermore, we find that
quantile mapping is slightly faster since it doesn’t require correlated random sampling. We
didn’t compare computational cost with other methods like weather generators, but we
expect the computational cost woule be similar.

Additional changes

In line with the public comments of Prof. Benestad. We will mention statistical downcaling
of probability distributions (eg., Benestad et al., 2025)
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