
Response to the Referees – EXSoDOS 1.0: downscaling of weather 
extremes shifts for ensemble climate projections using ground-
based measurements, reanalysis and stochastic modelling 
 

General Introduction and Summary of Major Revisions 
We thank the three referees for their thorough and constructive reviews. In response, we 
improve the clarity, robustness, and positioning of the manuscript by (i) strengthening the 
quantitative evaluation of distributions and extremes, (ii) expanding the climate-change 
assessment with explicit tables summarizing changes in means and tails, (iii) clarifying and 
tabulating the methodological assumptions underlying EXSoDOS, and (iv) sharpening the 
novelty claim relative to existing downscaling approaches. We further (v) extend the 
validation scores and (vi) add robustness tests based on multi-period calibration and cross 
validation, (vii) clarify computational cost and data requirements, and (viii) expand the 
discussion of limitations, including stationarity assumptions, return period use limits, and 
the lack of spatial or multivariate dependence.  

Below, you find the point-by-point responses to the referee's comments.  

 

Referee 1 
 

Referee comment: Overall, the paper is well written, and the statistical technique 
developed appears robust. However, there are several issues that need to be addressed 
before I can recommend this manuscript for publication. 

Response: We thank the referee for the constructive comments, which helps us to improve 
the manuscript. 

Referee comment: The authors have chosen 5 sites to evaluate EXSoDOS and the 
manuscript clearly mentions why these cases were selected. However, in my opinion only 
five cases globally may be insufficient to fully assess the robustness of the approach. I 
recommend expanding the analysis to include 20–30 stations, with representation from 
additional regions. Specifically, it would be valuable to incorporate sites from North and 
South America, as well as Australia. Including a few stations located on islands and near 
the Southern Ocean would further strengthen the geographic diversity of the dataset. 
Within India, the current focus on Puri (a coastal city) could be complemented by selecting 
sites from different geographical settings, such as an inland city like Delhi or a location near 
the Himalayas. 



 

Response: We agree that five stations are insufficient for a comprehensive global 
robustness assessment. The primary objective of this manuscript is to demonstrate the 
EXSoDOS methodology, including calibration, validation, and application on single-station 
applications, rather than providing an exhaustive global benchmark. Adding more stations 
from multiple regions while keeping the single-station focus would make the manuscript 
too extensive. Yet, to further illustrate transferability, we added an additional use case in 
the Appendix, where precipitation is downscaled for seven randomly selected for USA with 
at least 60 years of observations. This additional example suggests that the workflow and 
performance are reproducible across regions with different climatic regimes. Nevertheless, 
we emphasize that for any new application, local validation remains indispensable 
because predictor–predictand relationships and data quality are location dependent. 

 

Proposed manuscript text (Sect. 2.6): 
"The selected use cases are intended to demonstrate the methodology and validation 
workflow rather than to provide an exhaustive global evaluation. For any new application, 
local validation remains essential because data quality and predictor–predictand 
relationships are location dependent." 

 

 

Figure S1. Idem as Fig. 4 and 5, but for combine results of 8 stations in USA, , namely 
USC00141593 (lat=39.5722, lon=-97.2836), USC00445050 (lat=38.0422, lon=-78.0061), 
USC00021664 (lat=32.0061, lon=-109.357, USC00130157 (lat=42.7536, lon=-92.8022), 
USC00250640 (lat=40.1306, lon=-99.8278), USC00410404 (32.1633, -95.83), 
USC00475808 (44.5378, -90.535). 



 

Figure S2. Idem as Fig. 6 and 7, but for combine results of 8 stations in USA. 

Referee comment: Section 3.1: The current description lacks sufficient detail. While the 
authors state that there are differences between the four columns in Figure 3, these 
distinctions are difficult to visualize due to the way the figure is presented. I recommend 
enhancing the analysis by including one or two additional metrics and discussing the 
potential limitations of the Perkins distribution overlap score. (...) 
Response: We thank the referee for this constructive comment. In response, we have 
substantially extended the quantitative validation in Sect. 3.1. In addition to the Perkins 
distribution overlap score, we now report a suite of complementary diagnostics that 
explicitly target both central tendencies and tail behaviour. These include the mean, 
standard deviation, 95th percentile, 1-year return level, annual number of dry days, 
quantile-based loss metrics, and Kolmogorov–Smirnov statistics. 

This extended set of metrics allows a more objective and transparent comparison between 
observations, ERA5, and the different downscaling configurations, and makes differences 
that are visually subtle in Fig. 3 quantitatively explicit. We further added a discussion of the 
limitations of the Perkins overlap score, in particular its insensitivity to compensating errors 
and its limited ability to diagnose discrepancies in the distribution tails. The revised 
analysis and the new Table 3 directly address these issues. 

 

Proposed manuscript text (Sect. 3.1): 
" While the Perkins distribution overlap score provides an integrated measure of similarity 
between two probability density functions, it is inherently insensitive to compensating 
errors and offers limited insight into discrepancies in the distribution tails. Therefore, we 
complement the Perkins score with additional diagnostics, including quantile-based loss 
metrics, Kolmogorov–Smirnov statistics, and explicit indicators of extremes such as high 
percentiles, return levels, and dry-day frequencies. Together, these metrics provide a more 
complete and objective assessment of both the central tendencies and the extreme 
behaviour of the downscaled variables." 



 
Mean Std P95 1y return 

Dry days 

[d/yr] 
Perkins 

QLoss Δ 

(ratio) 
KS stat (p) 

observed 3.3 (+0.0) 5.2 (+0.0) 21.4 (+0.0) 69.7 (+0.0) 281.6 (+0.0) 1 0.000 (1.000) 0.000 (1.00) 

ERA5 orig 2.9 (-0.4) 3.5 (-1.7) 13.4 (-8.0) 38.4 (-31.3) 218.2 (-63.5) 0.53 0.146 (1.086) 0.355 (0.00) 

ERA5 

upscaled 
2.8 (-0.5) 3.3 (-1.9) 12.1 (-9.3) 37.2 (-32.5) 206.1 (-75.5) 0.487 0.200 (1.118) 0.457 (0.00) 

ERA5 DS 3.3 (-0.0) 5.2 (+0.0) 21.8 (+0.4) 64.8 (-4.8) 283.8 (+2.2) 0.953 0.000 (1.000) 0.010 (0.68) 

ERA5 QM 3.1 (-0.2) 4.9 (-0.3) 20.5 (-0.9) 61.8 (-7.8) 282.3 (+0.7) 0.905 0.001 (1.001) 0.007 (0.92) 

Table 3: Validation metrics for precipitation distributions from observations (Observed), 
original ERA5 (ERA5 orig), upscaled ERA5 (ERA5 upscaled), fully correlated stochastic 
downscaling (ERA5 DS), and quantile-mapping-only downscaling (ERA5 QM). For the mean, 
standard deviation (Std), 95th percentile (P95), 1-year return level (1y return), and annual 
number of dry days, absolute values are reported with deviations from observations in 
brackets. We further report the Perkins overlap score, the quantile loss difference (with 
ratio in brackets), and the Kolmogorov–Smirnov statistic with the corresponding p-value. 

Referee comment: (...) Similarly, in Section 3.2, I suggest incorporating relevant statistical 
metrics (perhaps in the form of a table) to quantitatively assess aspects such as ‘increase’, 
‘decrease’, ‘less extreme’, and ‘shift of distribution’ 
Response: To make all statements on increases, decreases, and distributional shifts fully 
quantitative, we add a new table (Sect. 3.2) summarizing annual precipitation, dry days, 
standard deviation, 95th percentile, and 1year return levels for observations, original CMIP6 
output, and biascorrected and downscaled CMIP6 projections. Median values and 10–90% 
ensemble ranges are reported.  

Dataset 
Annual precip 

[mm/yr] 
Dry days [d/yr] Std P95 1y return 

Obs 1961–1990 1075 272.0 8.66 19.3 62.4 

Obs 1991–2020 1173 265 8.86 21.7 62.7 

CMIP6 1961–1990 861 (650–1106) 104 (36–178) 5.14 (4.45–7.52) 11.0 (6.9–13.4) 40.5 (26.9–72.1) 

CMIP6 1991–2020 894 (688–1185) 103 (36–176) 5.72 (4.20–8.61) 11.2 (7.3–15.0) 43.9 (27.8–79.6) 

CMIP6  2071–2100 920 (897–1348) 104 (27–179) 8.31 (6.23–12.12) 11.3 (9.34–18.0) 78.2 (51.8–103.5) 



CMIP6 BC DS 1961–1990 1228 (1200–1281) 267 (265–270) 9.64 (9.35–9.95) 21.3 (20.9–22.0) 73.4 (70.7–76.9) 

CMIP6 BC DS 1991–2020 1305 (1247–1316) 267 (266–270) 10.22 (9.76–10.42) 22.7 (21.7–23.2) 75.3 (74.0–77.9) 

CMIP6 BC DS 2071–2100 1400 (1110–1602) 271 (267–278) 11.47 (9.85–13.31) 24.9 (20.1–28.5) 85.6 (77.1–100.9) 

Table 4: Annual precipitation, dry days, standard deviation, percentile 95 value and 1-year 
return value of observed and modelled time series. We include the original CMIP6 climate 
projections (SSP585) including models listed in Tab. 1, and the bias-corrected and 
downscaled CMIP6 models (CMIP6 BC DS). Observations are also included as comparison. 
Results are shown for two historical time frames 1961–1990 and 1991–2020, and for one 
future timeframe 2071–2100. For the climate projections, we show median and percentile 
10–90 ranges of the model ensemble. 

Referee comment: The statistical framework relies on several assumptions that should be 
listed explicitly. 
 

Response: We summarize the key methodological assumptions underlying EXSoDOS as an 
additional subsection 2.7. The key assumptions include (i) stationarity of predictor–
predictand correlations, (ii) stochastic representation of subgrid variability, (iii) realism of 
bias-adjusted coarse scale predictors (perfect prognosis assumption), (iv) sufficient record 
length of observations to represent extremes up to ~10year return periods, and (v) 
independence across stations and variables. These assumptions are now presented in 
tabular form in the appendix. 

Assumption Description / rationale   Implications / how we check it 

A1. Perfect-prognosis (PP) 
assumption 

Predictors (after bias-adjustment) are 
assumed to be physically meaningful and 
transferable betweenreanalysis and GCMs 
(Maraun, 2016). 

We mitigate PP violations by (i) bias-
adjusting predictors with quantile-delta 
mapping (Cannon et al., 2015) per month 
and (ii) validating the full 
predictor→predictand chain against station 
observations. 

A2. Stationary predictor–
predictand dependence 

The month- and category-dependent 
correlation ρ between normalized predictor 
and predictand is assumed approximately 
invariant under climate change (Sect. 2.2.3). 

We test stability by calibrating on 
independent periods (1961–1990 vs 1991–
2020) and even/odd-year splits; 
correlations and resulting tails remain 
within sampling uncertainty. 

A3. Stochastic residual 
variability  

Unexplained sub-grid variability is treated as 
a stochastic residual r drawn from a 
standard normal and mapped back through 
the empirical CDF of observations (Eq. 10–
11). 

This implies that tail behavior beyond the 
observational record cannot be 
guaranteed; we therefore restrict 
interpretation to return periods supported 
by record length and report 



ensemble/sampling uncertainty. 

A4. Distributional 
representativeness of station 
record 

Station observations are assumed long and 
complete enough to represent climatological 
distributions and extremes over 30-year 
windows (WMO, 2017). 

We specify minimum record-length and 
completeness criteria, and we limit 
validation plots to return periods 
supported by sample size (Sect. 2.4). 

A5. QDM bias-adjustment 
stationarity 

Quantile-delta mapping assumes percentile-
dependent model bias is approximately 
stationary while climate change signals in 
quantiles are preserved (Cannon et al., 
2015). 

We discuss known limitations (e.g., trend 
inflation when mixing scales) and keep 
bias adjustment on the model grid before 
station downscaling (Maraun, 2013). 

A6. Single-site / single-variable 
application  

EXSoDOS is applied independently per 
station and variable and therefore does not 
enforce spatial or cross-variable coherence. 

We explicitly state this limitation and 
provide guidance on when multi-site or 
multivariate methods (e.g., copulas / 
correlation-preserving transforms; 
Switanek et al., 2022) are required (Sect. 
4). 

Table S1: Key assumptions of EXSoDOS stochastic downscaling 

Minor comments 

Referee comment: L22: “…generally underrepresented in climate projections.” Add 2–3 
references. 
  
Response: We add references supporting the underrepresentation of extremes in coarse-
resolution climate models, for example: IPCC (2021, WGI), Sillmann et al. (2013), and 
Fischer & Knutti (2015). Proposed manuscript change (Introduction): “…point-scale events 
like heavy precipitation, heavy wind, and extreme heat are not explicitly represented in 
climate projections (IPCC, 2021; Sillmann et al., 2013; Fischer and Knutti, 2015).” 

We note that we now state ‘not explicitly represented’ instead of ‘underrepresented’, in line 
with the public comments of Prof. Benestad who correctly points out that locally (point-
scaled) measured and grid-scale averaged values are different by nature. 

Referee comment: L38: “finer resolution grids”. It might be good to mention the resolution. 

  
Response: We now specify typical resolutions explicitly. Proposed manuscript change 
(Introduction): “…statistical downscaling methods have been developed to finer-resolution 
grids (e.g., ~1 km for CHELSA-W5E5; Karger et al., 2023) and point observation locations, 
whereas typical GCM resolutions are ~1–3°.” 

Referee comment: L53: “…normalized and correlated with each other.” Kindly add one 
sentence with a short explanation. 



  
Response: We add clarification in Sect. 2.2: “we map predictor and predictand values to 
standard normal space using their empirical CDFs (i.e., apply the probability integral 
transform and then the inverse normal CDF), estimate correlation in that space, and then 
map sampled values back through the inverse empirical CDF of observations.” 

Referee comment: L66: “EXSoDOS runs quickly…” Please add a metric here. 
  
Response: We add explicit runtime metrics and clarify what is included. Proposed 
manuscript change (Introduction): “For a single station, a full downscaling run for one 
scenario typically takes ~5–10 seconds, and a 10-member ensemble completes in <1 
minute on a modern CPU, excluding one-time data download and gridded bias-adjustment 
preprocessing. Downloading of source data (ERA5, CMIP6 climate models, station data) 
can take longer (network dependent) and QDM bias-adjustment (incl. ERA5 grid upscaling) 
on continental grids can take hours, which is performed once per model/grid.” 

Referee comment: L87: Is there any reason for the 50:50 split? Citation to a previous 
literature might be helpful. 

Response: We add the following reasoning to the manuscript: “For both calibration and 
validation, we require that the overall distribution and extremes to be represented on a 
climatological timescale. Over a 60-year period we have an equivalent of 30 year data for 
both, which is in line with WMO climatology assessment standards of the World 
Meteorological Organization (WMO, 2017).” 

Referee comment: L140: How sensitive are the results to the choice for 2 additional 
months. 

Response: Below, we show the sensitivity to the model with respect to the number of 
months used for calibration. The top panels show the results from original seasonal (3-
monthly) calibration, and the bottom panels show the results of using single months 
calibration. The single months calibration tends to enlarge the climate trends for intensities 
between 40-60mm/day, but dampen climate trends in the high extremes with return 
periods > than 5 years. We argue that the results using seasonal (3-monthly) calibration are 
more robust since it uses a larger sample size to determine distributions and correlations 
between predictors and predictands, while still providing samples representative for the 
time of the year. 



 

 

Figure: upper panels show the distribution (left) and return periods (right) from the original 
seasonal calibration, and lower panels show the results using single-month calibration. 

Proposed manuscript text (Sect. 2.2.1, end of first paragraph): “Calibration is performed 
per calendar month. To increase sample size while keeping seasonality, we include data 
from the adjacent months (±1 month), yielding an effective 3‑month seasonal window. A 
sensitivity test using single-month windows showed less robust tail estimates due to 
reduced calibration sample size per month, whereas the 3‑month window provides a larger 
sample size and smoother transitions between months (see Appendix Fig. R1).” 

Referee comment: L149: Are there existing literatures which support the choice of an 
exponential profile? 

Response: To the author’s best knowledge, exponential (or other non-linear) profiles 
haven’t been considered to create predictor categories or to employ quantile delta 
mapping bias correction. We add to the manuscript that: “We’ve introduced an exponential 
profile to represent the large variation in the tails of the distribution.” 



Referee comment: L192: How sensitive are the results to the choice of ‘c’? Can the authors 
include a figure? 

Response: Thanks for this remark. While the intension was to better relate predictands with 
their predictors, we realize that it leads to inconsistencies. For example, the rescaled 
variable y’ ~ y/x for x >> c will correlate differently with x compared to y’ ~ y  for x<<c.   
Therefore, we remove scaling of the predictand in the revised manuscript. Therefore, 
sensitivity to this parameter becomes obsolete.   

Referee comment: L213: I would like to see a figure/chart before and after detrending. 

Response: We thank the referee for this interesting question. We suppose that it was 
referred to ‘retrending’ mentioned on L213 instead of ‘detrending’. 

Below, you find the results for precipitation where predictors have been detrended, but no 
retrending was done on the final output predictands. It shows that the overall climate 
change signals are much less pronounced before retrending than after retrending, and a 
smaller ensemble spread on the distribution and return levels were found. 

 

Referee comment: L305-320, 325-330: Kindly add a few more citations for each case. 

We make sure that each case have two references as follows: 

“…many native vegetation (crop) species require the occurrence of freezing temperatures 
to ensure proper dormancy release and phenological development of many perennial plant 
species (e.g. Evans et al., 2014; IPCC, 2021).” 

“For Spangdalhem (Germany) also in Europe, wind speed variability and extremes directly 
affect wind energy yield and structural loads on turbines (Tobin et al., 2015; Pryor et al., 
2012).” 



“…one of the global hotspots of extreme heat, particularly in the Middle East and South 
Caucasus regions (Perkins-Kirkpatrick and Lewis, 2020; Wouters et al., 2022).” 

“Coastal India is highly vulnerable to extreme heat stress due to the combined effects of 
high temperature and humidity, with documented impacts on mortality and labour 
productivity (Im et al., 2017; Raymond et al., 2020).” 

“As rainfall is a dichotomous variable, its inter-annual variability in time and space is 
difficult to assess. In Mali—and particularly in the Sikasso region—rainfall is a key driver of 
agricultural production, which remains a major source of livelihood for the local 
population. Variations in rainfall occurrence and intensity directly affect crop yields and 
water availability and can exacerbate vulnerability to climate hazards such as droughts and 
floods. Rainfall variability and the increasing relevance of heavy-rainfall extremes across 
the Sahel have been widely documented, with important implications for agriculture and 
flood risk (Panthou et al., 2014; Sanogo et al., 2015)” 

 

Referee comment: Figure 3: Needs a legend. 

Response: Thank you for your suggestion. We will add a legend for the revised manuscript. 

Referee comment: Figures 3, 5, 6: I recommend using Kelvin as the unit of temperature. 

Response: We prefer to stick to degrees Celsius, which is the unit for which weather station 
data is provided by the archives and weather institutes. 

Referee comment: Figure 5: Check units of ‘wind speed’ and ‘precipitation’ 

Response: We checked and confirmed the validity of the wind speed and precipitation units 
and confirmed that they are correct. 

Referee comment: Figure 6, 7: Kindly consider using one common legend for the entire 
figure. 

Response: Thanks for the suggestion. We include one legend for all the panels together in 
the revised manuscript. 

 

Referee 2 

Referee comment: This manuscript proposes a new stochastic model to improve the 
prediction accuracy of climate extremes. The methodology is innovative, and the 



manuscript is well-written and easy to follow. However, I believe the following issues 
should be addressed before publication on Geoscientific Model Development. 

Response: We thank the reviewer for their constructive comments, which we address 
below. 

Referee comment: As the authors mentioned in Lines 213-215, the statistical relationship 
was assumed to remain unchanged under climate change. To test the robustness of the 
relationship, could the authors conduct cross-validation (e.g. 5-fold or leave-one-out) to 
evaluate the stability and generalizability of the statistical relationship? 

 

Response: We provide robustness tests for precipitation using three calibration periods 
(1961–1990, 1991–2020, and the full record 1961–2023), even/odd year splits, resulting in 6 
simulations per case. The spread across simulations is related to, and of the same order 
as, the variability over different sampling in the measurements (cfr. variability of 
observations across time period and even/odd years). Such a spread needs to be taken into 
account in climate change assessments. We include these results as an Appendix. 



Figure: distributions (upper panels) and return levels (lower panels) for observations (Obs), 
ERA5 (ERA5), and downscaled results from models with the differerent calibration sets 
(models). We show results for even (even) and odd (uneven) years. Left panels show results 
for 1971-1990 and right panels show results for 1991-2020. 

Station selection and landsurface characteristics 
 

Referee comment: In addition, I am concerned about the representativeness of the five 
stations selected (Section 2.6.1). Why the five cases were selected to show the general 
utility of the model? 

Response: We opted to focus on the description of the model and to demonstrate with the 
five cases its procedure for applications including the calibration, validation and validation. 
We chose five stations, rather arbitrarily, to demonstrate the utility for each of the variables. 
The locations are arbitrary in diverse locations in the world. The five cases are all linked to a 
particular challenge to climate change, which we further elaborate with 2 reference per 
case, see our reply to the first referee. Given these 5 cases, one can now employ the same 
model and procedure to any station elsewhere. To further show the 
applicability/transferability of EXSoDOS to other stations, we make a sixth case in the 
appendix which show results for 8 stations with 60-year data that are randomly chosen for 
the US, see below. 

 

Figure S1. Idem as Fig. 4 and 5, but for combine results of 8 stations in USA.  



 

Figure S2. Idem as Fig. 6 and 7, but for combine results of 8 stations in USA, namely 
USC00141593 (lat=39.5722, lon=-97.2836), USC00445050 (lat=38.0422, lon=-78.0061), 
USC00021664 (lat=32.0061, lon=-109.357, USC00130157 (lat=42.7536, lon=-92.8022), 
USC00250640 (lat=40.1306, lon=-99.8278), USC00410404 (32.1633, -95.83), 
USC00475808 (44.5378, -90.535). 

Referee comment: What are the Plant Functional Types of these stations? Understanding 
the PFTs could help assess whether the model performance is influenced by land-surface 
characteristics. 

Response: We agree with the reviewer that land-surface characteristics including dominant 
vegetation/land cover can influence station-scale variability and extremes, and may 
therefore affect EXSoDOS performance. EXSoDOS implicitly captures local land-surface 
effects through the observed predictand record used for calibration/denormalization, but 
does not include explicit land-surface predictors. Reporting plant functional types is 
outside the scope of this paper, hence we do not include it in the manuscript. In the revised 
manuscript we add (Sect. 4, Limitations) a short statement that performance may depend 
on site characteristics, and more generally on general environmental and climatic context 
(e.g., adding boundary-layer stability or circulation indicators). We also clarify that 
extending the predictor set  is a promising avenue to better represent regime-dependent 
land–atmosphere interactions.  

 

Referee 3 

Referee comment: This manuscript introduces EXSoDOS, a stochastic point-scale 
downscaling framework for representing changes in weather extremes however, several 
methodological assumptions, validation choices, and claims of novelty need strengthening 
before publication. 



 

Response: We thank the referee for the constructive comments, which helps us to further 
sharpen assumptions, validation, and novelty. 

Referee comment: The paper positions EXSoDOS as novel, yet its design is close to prior 
stochastic “perfect-prog” approaches (analog/binning, weather generators, recent station-
scale frameworks). Please sharpen the novelty claim: Clarify what is conceptually new 
beyond the two-stage design and the pre-scaling trick; (...) 

Response: We agree that the downscaling algorithm itself is similar to previous methods. 
EXSoDOS is positioned as novel in its explicit focus on evaluating and assessing shifts in 
extremes across past and future climatological periods for multiple types of variables. This 
was achieved by its consistent use of globally available datasets with hyper-climatological 
temporal coverage (ie., >>30 years) including ERA5, CMIP6 and the station data, and its 
non-parametric treatment of distributions. To the authors’ best knowledge, downscaling 
time series that can evaluate both past (ie., between 1961-1990 and 1991-2020) and future 
climatological shifts (ie., towards the end of the 21st century) in weather extremes haven’t 
been done before. In contrast to previous methods, the method that allows seasonality and 
including data retrieval with global coverage, the downscaling and validation is transferable 
to any weather station, even in locations as shown for Sikasso in Mali for which data 
availability is scarce but where high-quality long-term observation records are available. 
The method uses observed CDF instead of fitting them to particular distributions, which 
avoids additional assumptions, hence it allows to simulate different types of variables 
(Tmin,Tmax,Tmean, precip, wind and heat stress temperature).  

 

We will highlight these novelty aspects more in the introduction and method section of the 
manuscript.  
 

In the introduction: 

“To fill this gap, we present EXSoDOS, a stochastic downscaling framework designed 
explicitly to evaluate shifts in local weather extremes across past and future climatological 
periods. While the underlying stochastic downscaling approach builds on established 
perfect-prognosis concepts, the novelty of EXSoDOS lies in its end-to-end design for 
consistent assessment of extreme-event variability and return levels across multiple 
decades, variables, and climate states. This is achieved through the combined use of 
globally available long-term datasets (station observations, ERA5 reanalysis, and CMIP6 
ensembles), a non-parametric treatment of distributions, and a workflow that allows direct 
comparison of observed, reconstructed, and projected extremes.” 



Section 2.1: “A key design criterion of EXSoDOS is the consistent use of datasets with 
hyper-climatological temporal coverage (≫30 years), which enables robust estimation of 
variability and extremes as well as their shifts between climatological periods. By relying 
exclusively on globally available datasets (ERA5, CMIP6, and station observations), the 
framework is fully transferable to any station location where sufficiently long records exist, 
including data-sparse regions such as Mali.” 

Section 2.2, first paragraph, highlighting that it builds further upon previous approaches:  

“The stochastic downscaling strategy follows the general philosophy of perfect-prognosis 
and analog-based approaches previously proposed in the literature (e.g. Volosciuk et al., 
2017; Switanek et al., 2022). EXSoDOS does not introduce a fundamentally new class of 
stochastic models; instead, it adapts and extends these approaches within a unified 
framework that is explicitly designed for multi-decadal extreme-event assessment across 
historical and future climates.” 

 

Referee comment: (...) Add quantitative benchmarks against at least one strong baseline on 
the same stations/periods (e.g., BCSD-type with weather generator/analog; a Switanek-
style variant without pre-scaling). (...) 

Response: We add head-to-head comparison with standard quantile mapping to the 
distributions (Fig. 4) and return levels (Fig. 5), hence, without correlation sampling. The 
results for precipitation look as follows: 

 

Referee comment: (...) Report distribution overlap, CRPS, and high-quantile loss (p ≥ 0.95). 

Response: We further extend the Perkins score table (Table 2) with additional statistics and 
scores (also in line with the answer to comments to referee1): 



 
Mean Std P95 1y return 

Dry days 

[d/yr] 
Perkins 

QLoss Δ 

(ratio) 
KS stat (p) 

observed 
3.3 

(+0.0) 

5.2 

(+0.0) 

21.4 

(+0.0) 
69.7 (+0.0) 281.6 (+0.0) 1 

0.000 

(1.000) 
0.000 (1.00) 

ERA5 orig 2.9 (-0.4) 3.5 (-1.7) 13.4 (-8.0) 
38.4 (-

31.3) 

218.2 (-

63.5) 
0.53 

0.146 

(1.086) 
0.355 (0.00) 

ERA5 

upscaled 
2.8 (-0.5) 3.3 (-1.9) 12.1 (-9.3) 

37.2 (-

32.5) 

206.1 (-

75.5) 
0.487 

0.200 

(1.118) 
0.457 (0.00) 

ERA5 DS 3.3 (-0.0) 
5.2 

(+0.0) 

21.8 

(+0.4) 
64.8 (-4.8) 283.8 (+2.2) 0.953 

0.000 

(1.000) 
0.010 (0.68) 

ERA5 QM 3.1 (-0.2) 4.9 (-0.3) 20.5 (-0.9) 61.8 (-7.8) 282.3 (+0.7) 0.905 
0.001 

(1.001) 
0.007 (0.92)  

Table 3: Validation metrics for precipitation distributions from observations (Observed), 
original ERA5 (ERA5 orig), upscaled ERA5 (ERA5 upscaled), fully correlated stochastic 
downscaling (ERA5 DS), and quantile-mapping-only downscaling (ERA5 QM). For the mean, 
standard deviation (Std), 95th percentile (P95), 1-year return level (1y return), and annual 
number of dry days, absolute values are reported with deviations from observations in 
brackets. We further report the Perkins overlap score, the quantile loss difference (with 
ratio in brackets), and the Kolmogorov–Smirnov statistic with the corresponding p-value. 

While the results from to standard quantile mapping (ERA5 QM)  show similar scores and 
distributions to the full correlated sampling (ERA5 DS), the latter one is preferred, since the 
former could lead to inflation of trends in extremes (Maraun, 2013). Inflation by standard 
quantile mapping is also suggested by our sensitivity results comparing results over 
different time frames 1961-1990 and 1991-2020, as discussed further below. 

Referee comment: You assume correlations are static under climate change and manage 
range shifts via detrending (temperature) and QDM. Please: Test correlation stability across 
eras (1961–1990 vs 1991–2020); Discuss how non-stationarity would bias tail estimates 
and provide indicators to detect failure; Consider a time-varying or regime/season-
partitioned correlation experiment. 

Response: We test correlation stability across historical periods by calibrating the model 
for different periods. The first one is the full 63-year period (1961-2024) as already done, 
and then two additional model calibrations for the non-overlapping 30-year periods 1961­–
1990 and 1991–2020.  These 3 models are calibrated on uneven years and then applied to 
generate time series for even years. Conversely, 3 additional models are calibrated on even 
years to generate uneven years (‘uneven models’). 



In the table below, predictor­–predictand correlations for the lowest precipitation category 
are reported for the different calibration sets. 

 
may jun jul aug sep oct 

1961-1990 even model 0.28 0.2 0.2 0.2 0.32 0.39 

1961-1990 uneven model 0.29 0.22 0.2 0.23 0.39 0.4 

1991-2020 even model 0.28 0.21 0.21 0.17 0.33 0.45 

1991-2020 uneven model 0.32 0.25 0.17 0.17 0.32 0.44 

1961-2023 even model 0.31 0.17 0.2 0.18 0.33 0.43 

1961-2023 uneven years (reference) 0.3 0.22 0.21 0.2 0.34 0.42 

Table S1: predictor­–predictand correlations for the lowest precipitation category in 
different months in the rainy months of Sikasso. 

Correlations appear stable among the different calibrations for the different months, hence 
suggests invariance under climate change. However, these changes may still lead to 
different results in the extremes. In addition, differences also result from differences in 
cumulative distribution functions of the predictand used for the calibration. To test the 
sensitivity to the changes in the correlations and predictand CDFs, we generated time 
series for each of these model sets. The results in distribution and return levels can be 
found in the respective figures below. 



Figure: distributions (upper panels) and return levels (lower panels) for observations (Obs), 
ERA5 (ERA5), and downscaled results from models with the differerent calibration sets 
(models). We show results for even (even) and odd (uneven) years. Left panels show results 
for 1971-1990 and right panels show results for 1991-2020. 

So we find that variations in distributions of model output (even/odd; different calibration 
sets) are in accordance to variations in the distributions of observation samples (even vs. 
odd;991-2020 vs 1961-1990). Differences are most pronounced in the tails—and the 
different calibration sets lead to a variability of comparable magnitude. In the revised 
manuscript, these robustness results are included in the Appendix (new Appendix B: cross-
validation and multi-period calibration), where we provide: (i) the full set of distribution and 
return-level plots for the 6 simulations (3 calibration periods × even/odd ), and (ii) a short 
summary in the main text (Sect. 3.1) stating that model uncertainty is comparable to 
sampling variability in the observations.  

Referee comment: Validation up to ~5–10 years is reasonable given record length, but many 
users need 20–50-year guidance. Either demonstrate an EVT coupling (e.g., GPD) for tails or 
state explicit use-limits and uncertainty when extrapolating. 



Response: We now explicitly state these user-limitations and uncertainty considerations in 
the revised manuscript in two places: (1) Sect. 2.4, where we explain that validation plots 
are restricted to return periods supported by record length and the calibration/validation 
split; and (2) Sect. 4, where we note that return periods beyond ~10 years require either 
substantially longer observational records or an explicit extreme-value extrapolation step 
(e.g., GPD/GEV), which is outside the scope of EXSoDOS v1.0. We also emphasize that 
users should interpret changes in the far tail as conditional on both model (GCM) 
uncertainty and methodological choices (e.g., detrending/retrending; see response to 
related comment further below). 

Referee comment: EXSoDOS is applied per station and per predictor, which does not 
preserve spatial dependence or compound hazards (e.g., hot-humid heat stress, rain-
wind). Please expand the limitations and—ideally—include a small proof-of-concept using 
a copula or simple correlation-preserving extension. Provide guidance on when multi-site 
methods are required.  

Thank you for raising this important remark. EXSoDOS is indeed only applied per station 
and per predictor, which is applicable for single-site long-term records especially in data-
scarce regions. If one needs coherent time series for multiple sites and/or multiple 
variables, one should introduce spatial and/or inter-variable dependence. This can be 
achieved with an extension that accounts for correlations among different predictors and 
predictands at different sites, ie., transforming (normalized) variables to an approximately 
independent space using the estimated correlation matrix (or a Gaussian copula), applying 
EXSoDOS per component, and transforming back to correlated space. This strategy is 
conceptually similar to the multi-site approach in Switanek et al. (2022). We add this 
discussion as a limitation and outlook in Sect. 4, including guidance that multi-site 
methods are required whenever impacts depend on spatially aggregated hazards (e.g., 
catchment rainfall, regional wind farms) or compound events (e.g., rain–wind, hot–humid 
heat stress). 

Referee comment: Beyond literature review, please include at least one head-to-head 
comparison with an established method (e.g., standard quantile mapping, ISIMIP 
approach). 

Response: Thanks for this suggestion. As shown in the results above, we include a 
comparison with a standard quantile mapping approach in the results. The method with 
EXSoDOS correlated sampling is preferred since it avoids inflation of trends on the 
predictand by the predictors (Maraun, 2013), as already mentioned in the text at L.130. We 
now illustrate inflation with the results for quantile mapping as shown in the figures below 
(in analogy to the results for the full correlated sampling above). 

 



Figure: idem as figure above, but with quantile mapping instead of correlated sampling. 

We find an increase in return levels in the tails (return period >= 1 year) of the predictor 
(ERA5 even and uneven) between the different time frames 1961-1990 and 1991-2020 
(black lines). The increase in predictor return levels leads to an increase in modelled 
predictand return levels when using the quantile mapping approach (green and orange lines 
and spreads). However, return levels in the tails (return period >= 1 year) remain stable 
according to local observations for even years, and a decrease was found for uneven years. 
This discrepancy suggests inflation of outcomes by the quantile mapping approach, and 
such inflation is avoided when applying correlated sampling. 

We also evaluate the effect of standard quantile mapping versus correlated downscaling on 
future climate projections. See figures and table below. It is found that climate change 
signals towards the end of the century are more pronounced with the quantile-mapping 
approach, especially in the tails, which may be due to inflation of trends. Hence, the 
method of statistical downscaling largely affects the outcomes, and needs to be accounted 
for in climate change assessments. 

 



 

Figure: Fig. 6 and 7 for precipitation 

 

Figure: Idem as Fig. 6, 7 for precipitation but using quantile mapping for downscaling 
towards station level (QM). 

Dataset 
Annual precip 

[mm/yr] 
Dry days 

[d/yr] 
Std P95 1y return 

Obs 1961–1990 1075 272.0 8.66 19.3 62.4 

Obs 1991–2020 1173 265 8.86 21.7 62.7 

CMIP6 1961–1990 861 (650–1106) 104 (36–178) 5.14 (4.45–7.52) 11.0 (6.9–13.4) 40.5 (26.9–72.1) 

CMIP6 1991–2020 894 (688–1185) 103 (36–176) 5.72 (4.20–8.61) 11.2 (7.3–15.0) 43.9 (27.8–79.6) 

CMIP6  2071–2100 920 (897–1348) 104 (27–179) 8.31 (6.23–12.12) 11.3 (9.34–18.0) 
78.2 (51.8–
103.5) 

CMIP6 BC DS 1961–
1990 

1228 (1200–
1281) 

267 (265–270) 9.64 (9.35–9.95) 21.3 (20.9–22.0) 73.4 (70.7–76.9) 



CMIP6 BC DS 1991–
2020 

1305 (1247–
1316) 

267 (266–270) 
10.22 (9.76–
10.42) 

22.7 (21.7–23.2) 75.3 (74.0–77.9) 

CMIP6 BC DS 2071–
2100 

1400 (1110–
1602) 

271 (267–278) 
11.47 (9.85–
13.31) 

24.9 (20.1–28.5) 
85.6 (77.1–
100.9) 

Table 4: Annual precipitation, dry days, standard deviation, percentile 95 value and 1-year 
return value of observed and modelled time series. We include the original CMIP6 climate 
projections (SSP585) including models listed in Tab. 1, and the bias-corrected and 
downscaled CMIP6 models (CMIP6_BC_DS). Observations are also included as 
comparison. Results are shown for two historical time frames 1961–1990 and 1991–2020 
(green), and for one future timeframe 2071–2100. For the climate projections, we show 
median and percentile 10–90 ranges of the model ensemble. 

 

Dataset 
Annual precip 

[mm/yr] 
Dry days [d/yr] Std P95 1y return 

CMIP6 BC QM 1961–
1990 

1124 (1029–1158) 267 (263–271) 8.72 (8.35–9.05) 19.5 (18.2–20.5) 63.0 (60.4–66.1) 

CMIP6 BC QM 1991–
2020 

1182 (1140–1224) 268 (264–273) 9.40 (9.04–10.16) 20.6 (19.6–21.3) 70.1 (63.9–80.0) 

CMIP6 BC QM 2071–
2100 

1340 (1196–1549) 275 (270–289) 13.22 (10.81–13.64) 22.5 (19.7–28.1) 105.4 (89.3–114.8) 

Table. Idem as table above, but for quantile mapping. 

Refereree comment: ...and discuss when EXSoDOS is preferable relative to CORDEX or 
CHELSA-W5E5 station-scale products. 

Response: We include the following text in the conclusion: ‘EXSoDOS should be considered 
when long-term station weather station data is available and when representation 
extremes distribution (ie., tails) at point-scale is important to evaluate past and future 
climate change. In other cases, one should use existing state-of-the-art archives like 
CORDEX (Coppola et al., 2015) or CHELSA-W5E5 (Karger et al., 2023) enabling grid-scale 
climate reconstruction and projections down to 1km resolution.’ 

Referee comment; Specify minimum record length and completeness thresholds for 
station data, missing-data handling, and whether calibration is seasonal vs annual. This will 
aid reproducibility and user adoption.  

Response: We add the following text to section 2.1: “The minimum record length needs to 
be 60 years, for which one can address 2 x 30 years of records to evaluate the model 



performance to capture past shifts in weather extremes. 30 years comes from the global 
standard from the World Meteorological Organization (WMO 2017). One should only use 
records with observational records covering >=90% of the sample period. We do not infill 
gaps: missing values are treated as NaN and excluded from empirical CDF correlation 
construction.” 

As already stated in the text, the bias-correction of the predictor, and the calibration is 
done on seasonal basis in which each month is bias-corrected / calibrated with the month 
before, the month itself and the month after, see L140-143 (calibration of stochastic model) 
L264-265 (bias adjustment of predictor). 

 

Minor Comments  

Referee comment: Figures: Panels (e.g., Figs 6–7) are visually dense; consider small 
multiples per variable, clearer legends, and consistent units and station names (e.g., 
Spangdahlem vs Dahlem). Where bands are shown, label them explicitly as ensemble 
percentile envelopes (10–90%) to avoid confusion with confidence intervals.  

Response: We make the following changes to the figures (see example figures for 
precipitation above):  

- remove the statistics from the figures, and put them in separate tables (extended 
with additional statistics for allowing for more quantitative assessment)  

- explicitly mention the 10th-90th percentile envelopes. 
- adapt the font size of legends and other elements. 

Referee comment: Abbreviations: Spell out at first use (QDM, ERA5).  

Response: We spell out QDM on first occurrence in the revised manuscript. 

Referee comment: Text quality: Fix typos (e.g., “envionmental” → environmental; 
“algorythm” → algorithm) and standardize capitalization/diacritics.  

Response: We correct these typos and increase the overall text quality in the revision 

Referee comment: Data coverage: When citing a GHCN “≥30-year” requirement, specify 
the QC filters applied.  

Response: we suggest the following QC filters at revision, namely:  

Daily-minimum temperature: We will explicitly state that we use GHCN-Daily quality 
control by excluding values carrying non-empty quality flags and removing physically 



implausible values (e.g., Tmin < −90°C or > 60°C). We require sufficient completeness per 
30-year window (≥90% of days present). 

Daily-maximum temperature: Same QC as for Tmin (exclude non-empty quality flags; 
remove physically implausible values, e.g., Tmax < −90°C or > 70°C; require ≥80% 
completeness per 30-year window; no long-gap infilling). We also ensure internal 
consistency by removing days where Tmax < Tmin when both are available. 

Wind speed: exclude values with non-empty quality flags, remove negative values, and 
require ≥90% completeness. We additionally note that wind extremes are sensitive to 
instrumentation and exposure changes; thus, station metadata changes (when available) 
should be checked and the shift assessment interpreted cautiously. 

Specific Questions for the Authors  

Referee comment: Data-sparse regions: How does performance degrade with shorter or 
lower-quality station records? Any guidance on minimum data length by variable?  

Response: To perform climate-change analyses as presented in this study, one should 
include 2 x 30 years of data to allow evaluation of past shifts under climate change, with at 
least 90% of data coverage. One may consider shorter time periods, but then uncertainty 
on high extremes will increase drastically. 

Referee comment: Sub-daily extremes: Can EXSoDOS be adapted to sub-daily metrics 
(e.g., hourly precipitation) and what changes would be required?  

Response: Yes, it can be adapted by relating daily/hourly predictor variables to hourly 
predictands. Long-term hourly observations are required in that case. 

Referee comment: Circulation shifts: How would systematic circulation changes (e.g., jet 
latitude, monsoon onset) alter predictor–predictand correlations, and can your framework 
detect/adapt to such shifts?  

Response: You are right that circulation types can influence the predictor-to-predictand 
correlation! This is also suggested by the changes in correlation among the different 
months (see table S1 shown above) over which typical circulation types change. As such, 
the EXSoDOS model takes into account the seasonal-dependent correlations and CDF 
functions. However, these correlations and CDF functions are still considered static per 
month, and changes in circulation types are only considered with respect to any changes in 
the distributions of the coarse predictor variable. More precise circulation-dependent 
assessment under climate change can be done by calibrating the model for different 
circulation types and explicitly taking the weather type shifts into account from 
ERA5/GCMs, or by taking into account more predictor variables (eg., pressure, ABL stability 



parameters...) that link to different weather types. Machine learning algorithms (eg., neural 
networks) could help to overarch the complexity of the statistical relationships.  

Referee comment: Computational cost: How does runtime compare to alternative 
downscaling methods (e.g., analog generators, quantile-mapping ensembles) for N 
stations and M GCMs?  

Response: The runtime of EXSoDOS only takes a 10 seconds for one simulation on a 
modern computer. In the latest version, all processing is done as vectorize numpy/xarray 
operations instead pandas operations. This allows us to process multiple stations at once, 
as was done for 8 stations in US. The computational overhead by including additional 
stations is neglegible, hence the method has potential to be upscaled towards continental 
and global assessments. It should be noted that most of the computing time is spent on 
fetching (days) and biascorrecting global datasets with the quantile delta mapping (hours), 
but this needs to be done only once for larger continental areas. Furthermore, we find that 
quantile mapping is slightly faster since it doesn’t require correlated random sampling. We 
didn’t compare computational cost with other methods like weather generators, but we 
expect the computational cost woule be similar. 

Additional changes 

In line with the public comments of Prof. Benestad. We will mention statistical downcaling 
of probability distributions (eg., Benestad et al., 2025) 
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