

1 **Measurement report: Variations and environmental impacts**
2 **of atmospheric N₂O₅ concentrations in urban Beijing during**
3 **the 2022 Winter Olympics**

4 Tiantian Zhang¹, Peng Zuo², Yi Chen², Tong Liu¹, Linghan Zeng², Weili Lin^{1,3*}, Chunxiang
5 Ye^{2*}

6 ¹NEAC Key Laboratory of Ecology and Environment in Minority Areas, College of Life and Environmental
7 Sciences, Minzu University of China, Beijing, 100081, China

8 ²State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental
9 Sciences and Engineering, Peking University, Beijing, 100871, China

10 ³Institute of National Security, Minzu University of China, Beijing, 100081, China

11 *Correspondence to:* Weili Lin (linwl@muc.edu.cn) and Chunxiang Ye (c.ye@pku.edu.cn)

12

13

14

15

16

17

18

19

20

21

22

23 A manuscript submitted to *ACP*

24

25 **Abstract.** The chemistry of nitrate radical (NO_3) and dinitrogen pentoxide (N_2O_5) plays a pivotal role in
26 tropospheric nighttime chemistry. Given their close linkage to precursor variations, emission reduction during
27 the 2022 Beijing Winter Olympics likely affected NO_3 and N_2O_5 behavior. In this study, we measured N_2O_5 ,
28 NO_2 , O_3 , etc. during and after the Olympics, and compared pollutant levels as well as the contributions of
29 reaction pathways to the loss of NO_3 and N_2O_5 . Throughout the entire observation period, NO_3 production rate
30 averaged $0.5 \pm 0.4 \text{ ppbv h}^{-1}$, and the N_2O_5 mixing ratio could reach up to 875 pptv within 1 minute, indicating
31 their active production. The relatively long nighttime N_2O_5 lifetime ($\tau_{\text{N}_2\text{O}_5}$), with an average of 11.9 ± 11.8
32 minutes, suggested a slow N_2O_5 loss rate during winter season. Despite low NO mixing ratio (below 3 ppbv),
33 it dominated NO_3 loss (79.0%). VOCs oxidation contributed 0.2%, primarily driven by styrene. During the
34 Olympics, emission reductions led to decreased NO and VOCs, which in turn reduced their reaction with NO_3 .
35 The heterogeneous uptake of N_2O_5 , another key NO_3 loss pathway—accounted for 20.8% of NO_3 loss during
36 the Olympics, but this contribution decreased to 10.6% after the Olympics. This uptake is crucial for nighttime
37 NO_3 removal and would be essential for winter nitrate formation in urban Beijing. Our results highlight that
38 under emission control scenarios, the relative importance of heterogeneous processes in nocturnal NO_3 cycling
39 increases, providing new insights into how emission reduction measures shape nighttime oxidation processes
40 in polluted urban environments.

41 1 Introduction

42 Nitrate radical (NO_3) and dinitrogen pentoxide (N_2O_5) play crucial roles in the nocturnal atmospheric chemical
43 cycle, controlling the removal and conversion of nitrogen oxides (NO_x) and volatile organic compounds (VOCs).
44 They significantly contribute to the formation of nitrate and secondary organic aerosols during the nighttime
45 (Crutzen, 1979; Wayne et al., 1991). NO_3 primarily originates from the reaction of NO_2 with O_3 (R1), while it
46 rapidly establishes a thermodynamic equilibrium (R2) with N_2O_5 . This tight coupling species are frequently
47 considered simultaneously in atmospheric chemistry studies. During daytime, however, the rapid photolysis of
48 NO_3 (R3) and its reaction with NO (R4) result in a short NO_3 lifetime ($< 5 \text{ s}$). Consequently, the concentrations
49 of NO_3 and N_2O_5 usually fall below the detection limit of analytical instruments during daylight hours.

50 The direct removal pathways of NO_3 include heterogeneous reactions on particulate matter surfaces and gas-
51 phase reactions with NO (R4) and VOCs (R5), which can influence the atmospheric lifetimes of nighttime NO_x
52 and VOCs (Ng et al., 2017; Wayne et al., 1991). NO_3 is also capable of reacting with alkenes in an addition
53 reaction (R5) and subsequently with O_2 to form peroxy radicals (RO_2), which further generates organic nitric
54 acid, one of the important sources of secondary organic aerosols (Fry and Sackinger, 2012; Hoyle et al., 2007;
55 Pye et al., 2010). The removal pathways of N_2O_5 represent indirect removal pathways for NO_3 chemistry (R6),
56 primarily involving reactions with water vapor and heterogeneous reactions on cloud droplets or particle
57 surfaces (Brown and Stutz, 2012; Chang et al., 2011).

64 In recent years, anthropogenic emission control measures have played a pivotal role in improving air pollution
65 in China **with notable declines in NO_x emissions** (Li et al., 2020; Zhang et al., 2016). However, NO_x emission
66 intensity remains relatively high (Li et al., 2024). Reactive nitrogen-containing compounds have emerged as a
67 prominent factor in China's complex air pollution scenario (Zhu et al., 2023). With advancements in
68 measurement techniques, several research teams have explored the core processes of reactive nitrogen species
69 in atmospheric pollution, particularly in regions with severe atmospheric pollution such as the North China
70 Plain, the Yangtze River Delta, and the Pearl River Delta (Li et al., 2020; Tham et al., 2016; Wang et al., 2018,
71 2020, 2024, 2013; Yun et al., 2018). While NO_3 reactivity is typically attenuated under low-temperature winter
72 conditions, thereby restricting its oxidative capacity, multiple studies—including winter campaigns such as Yun
73 et al., (2018) and Yan et al., (2023)—have demonstrated the significance of nocturnal NO_3 chemistry in cold
74 seasons.

75 Emerging evidence further highlights the sensitivity of nocturnal NO_3 chemistry to emission controls: increases
76 in nocturnal NO_3 production rates enhance nighttime oxidation capacity (Wang et al., 2023a), and urban
77 nocturnal NO_3 concentrations may even experience “explosive” growth under stringent emission reduction
78 policies (Wang et al., 2023b). In the Beijing region specifically, Yan et al., (2023) showed that the contribution
79 of nocturnal nitrogen chemistry to winter haze has increased in recent years. Despite these advances, gaps
80 remain in our understanding how short-term, large-scale emission control measures—such as those
81 implemented during major events—fluence the balance between $\text{NO}_3/\text{N}_2\text{O}_5$ production and loss, and their
82 subsequent impacts on nighttime secondary pollution.

83 The 2022 Beijing Winter Olympics (BWO) provided a unique opportunity to address this gap. To ensure high
84 air quality during the event, a series of strict emission reduction measures were implemented in Beijing and its
85 surrounding areas, leading to a significant decline in $\text{PM}_{2.5}$ concentrations (average $24 \mu\text{g m}^{-3}$) compared to
86 historical levels for the same period (Huang et al., 2024). Given the close linkage between $\text{NO}_3/\text{N}_2\text{O}_5$ and their
87 precursors (NO_2 , O_3 , and VOCs), these emission cuts were expected to alter the behavior of NO_3 and N_2O_5 .

88 In this study, we conducted field observations of N_2O_5 , NO_2 , O_3 , NO , VOCs, and meteorological parameters in
89 urban Beijing during (5–20 February 2022) and after (21 February–3 March 2022) the BWO. Our objectives

were to: (1) characterize the temporal variations of N_2O_5 and NO_3 in urban Beijing during winter; (2) quantify the contributions of different reaction pathways to NO_3 and N_2O_5 loss; and (3) assess how the BWO emission reduction measures modulated nocturnal $\text{NO}_3/\text{N}_2\text{O}_5$ chemistry. The findings provide critical insights into the response of nighttime reactive nitrogen chemistry to short-term emission controls, with implications for air quality management in polluted urban environments.

2 Methods

2.1 Site description

Field measurements were conducted from 5 February to 3 March 2022 at an urban site in Beijing. The observation location was situated on the rooftop of the NO. 1 Science Building at Peking University in Beijing (39.99° N, 116.31° E, 61.6 m asl). As shown in Figure 1, the location is proximal to the North Fourth Ring Road—one of Beijing's major traffic arteries—and within 1 km of two primary traffic corridors (east-west along the North Fourth Ring Road and north-south along Zhongguancun Street). The surrounding area features mixed land use, including residential complexes (within 500 m) and low-intensity commercial facilities (within 1 km), with no large industrial sources within a 5 km radius. This setting makes the site representative of a typical urban mixed-use area impacted by fresh anthropogenic emissions (e.g., traffic-related NO_x and VOCs), consistent with previous characterizations of this location (Hu et al., 2023; Wang et al., 2017a; Yao et al., 2023).

Figure 1. Measurement site, surroundings, and wind rose (winter 2022). Base map adapted from <https://map.baidu.com/>); wind rose generated from on-site meteorological observations.

Sampling inlets were installed 1.5 meters above the rooftop, approximately 20 meters above ground level. Throughout the measurement period, the prevailing wind direction was predominantly from the northwest, with an average wind speed of $2.0 \pm 2.0 \text{ m s}^{-1}$.

112 **2.2 Instrument setup**

113 **2.2.1 Measurement of NO₃ and N₂O₅**

114 Ambient concentrations of NO₃ and N₂O₅ were determined utilizing an in-house-developed cavity ring-down
115 spectroscopy (CRDS) analyzer, operating at a wavelength of 662 nm (Zhang et al., 2024). The analyzer employs
116 a dual-channel design for simultaneous detection: Channel 1 directly measures NO₃ concentrations under
117 ambient temperature conditions; Channel 2 maintained at 150 °C to thermally decompose N₂O₅ into NO₃,
118 enabling quantification of the total concentration of [NO₃ + N₂O₅].

119 During this observation campaign, the NO₃-specific detection channel (Channel 1) malfunctioned due to the
120 damage of the mirror, limiting measurements to the combined [NO₃ + N₂O₅] signal from Channel 2. NO₃
121 concentrations were subsequently derived using the thermodynamic equilibrium relationship between NO₃ and
122 N₂O₅ (Eq. (1) in Section 2.3), with input parameters including measured N₂O₅, NO₂ concentrations, and ambient
123 temperature. Under winter conditions (low temperature and relatively high NO₂ levels), the NO₃/N₂O₅ ratio is
124 inherently low (~1%), ensuring that [NO₃ + N₂O₅] is dominated by N₂O₅ and derived NO₃ concentrations are
125 reliable.

126 The limit of detection (LOD) of the CRDS system was calculated as 2.9 pptv, with a measurement uncertainty
127 of $\pm 13.7\%$ (Zhang et al., 2024). To ensure measurement accuracy, regular calibrations were performed using a
128 stable dynamic generation system for NO₃ and N₂O₅ standard gases (Zhang et al., 2026). The detailed technical
129 specifications of the instrument are provided in Text S1 of the Supporting Information.

130 **2.2.2 Measurement of other species**

131 Concentrations of NO, NO₂, O₃, VOCs, and meteorological parameters were measured using commercial or
132 well-validated analytical instruments, with details summarized in Table 1. NO and O₃ mixing ratios were
133 measured using commercial instruments, specifically the Model 42i-Y and Model 49i from Thermo Fisher
134 Scientific (USA). NO₂ mixing ratios were observed via a cavity-enhanced absorption spectroscopy (CEAS)
135 (Zhou et al., 2022). Calibrations of these instruments are performed weekly using the standard gases of known
136 concentrations, and the R² of the standard curve for each calibration is greater than 0.99. VOC concentrations
137 were determined using a gas chromatograph equipped with mass spectrometry and flame ionization detectors
138 (Wang et al., 2014). This system measures 99 VOC species with a time resolution of 1 hour, LOD range of 1–
139 26 pptv, and accuracy of 0.8–6.1%. Quality control included weekly zero/span checks (using ultra-high-purity
140 nitrogen and a multi-component VOC standard) and a post-campaign full calibration, which confirmed linearity
141 (R² > 0.996) and negligible intercepts for all target VOCs. The photolysis rate constants (j-values) were obtained
142 using a spectroradiometer (Metcon CCD-Spectrograph, Garmisch-Partenkirchen, Germany) (Bohn et al., 2008).
143 This instrument quantifies two primary photolysis channels (NO₃ + hν → NO₂ + O(³P)) and NO₃ + hν → NO +
144 O₂), with total j(NO₃) calculated as the sum of the two channel-specific rate constants (j(NO₃)_{total} = j(NO₃)_M

+ $j(\text{NO}_3)$ R. Meteorological parameters, including wind direction, wind speed, temperature (T), and relative humidity (RH), were monitored utilizing a sensor meteorological measurement system (Metone, USA). The PM_{2.5} concentration data were obtained from the Beijing Municipal Ecological and Environmental Monitoring Center (bjmemc.com.cn). Detailed information about these instruments is listed in Table 1.

149 **Table 1 Species measured in the field work**

Species	Time resolution (s)	Limit of Detection/working range	Methods	Accuracy (%)	References
O ₃	60	1 ppbv (parts per billion by volume)	UV photometry	± 1 %	-
NO ₂	30	8 pptv	CEAS	< 6 %	(Zhou et al., 2022)
NO	60	50 pptv	chemiluminescence	± 1 %	-
N ₂ O ₅	60	2.9 pptv	CRDS	± 18 %	(Zhang et al., 2024)
VOCs	3600	1–26 pptv	GC-MS/FID	0.8 % – 6.1 %	(Wang et al., 2014)
T	60	-50–50°C	A three-element composite thermistor	± 0.1°C	www.metone.com
RH	60	0–100 %	Thin film polymer capacitor	± 0.2 %	www.metone.com

150 **2.3 Calculation methods**

151 When N₂O₅ concentrations are obtained, the concentration of NO₃ can be determined by dividing the
152 concentration of N₂O₅ by the equilibrium constant K_{eq} and the concentration of NO₂ (Osthoff et al., 2006; Wang
153 et al., 2017b), which is specified in Eq. (1).

154
$$[\text{NO}_3] = \frac{[\text{N}_2\text{O}_5]}{K_{\text{eq}}[\text{NO}_2]} \quad (1)$$

155 Here, K_{eq} represents the temperature-dependent equilibrium constant established when NO₃ attains steady-
156 state equilibrium with N₂O₅, and is given by $5.50 \times 10^{-27} \times \exp(10724/T)$, where T is the temperature in Kelvin
157 (Wang et al., 2024).

158 The primary source of NO₃ and N₂O₅ is the chemical reaction of NO₂ with O₃. Consequently, the concentrations
159 of NO₂ and O₃ are key factors influencing the production rate of NO₃ ($P(\text{NO}_3)$). This production rate is
160 mathematically represented by Eq. (2) (Brown et al., 2011). Assuming that the formation and loss processes of
161 NO₃ and N₂O₅ are in a state of dynamic equilibrium, the lifetime of N₂O₅, denoted as $\tau_{\text{N}_2\text{O}_5}$, can be expressed
162 as the ratio of its concentration to the rate of NO₃ production, as determined by Eq. (3) (Brown and Stutz, 2012;

163 Lin et al., 2022; Wang et al., 2017a).

164 $P(\text{NO}_3) = k_{\text{NO}_2+\text{O}_3} \times [\text{NO}_2] \times [\text{O}_3]$ (2)

165 $\tau_{\text{N}_2\text{O}_5} = \frac{[\text{N}_2\text{O}_5]}{P(\text{NO}_3)} = \frac{[\text{N}_2\text{O}_5]}{k_{\text{NO}_2+\text{O}_3} \cdot [\text{NO}_2] \cdot [\text{O}_3]}$ (3)

166 The total reactivity of NO_3 (k_{NO_3}) represents the sum of all first-order loss processes for NO_3 , including
167 photolysis, reaction with NO , reaction with VOCs, and indirect loss via N_2O_5 heterogeneous uptake. It is
168 calculated using Eq. (4) (Wang et al., 2020): The nocturnal NO_3 loss rate, denoted as $L(\text{NO}_3)$, is calculated via
169 Eq. (5).

170 $k_{\text{NO}_3} = j(\text{NO}_3) + k_{\text{NO}_3+\text{NO}} \cdot [\text{NO}] + k_{\text{NO}_3+\text{VOC}_i} \cdot [\text{VOC}_i] + k_{\text{N}_2\text{O}_5} \cdot K_{\text{eq}} \cdot [\text{NO}_2]$ (4)

171 $L(\text{NO}_3) = \sum k_i [\text{VOC}_i] \cdot [\text{NO}_3] + k_{\text{NO}_3+\text{NO}} \cdot [\text{NO}] [\text{NO}_3] + k_{\text{N}_2\text{O}_5} \cdot [\text{N}_2\text{O}_5]$ (5)

172 Here, $j(\text{NO}_3)$ denotes the photolysis rate constant for NO_3 decomposition. The rate coefficients $k_{\text{NO}_2+\text{O}_3}$ and
173 $k_{\text{NO}_3+\text{NO}}$ correspond to the rate coefficients for reaction Eqs. (1) and (4), respectively, as referenced in Atkinson
174 et al., (2004). The reactivity of NO_3 with VOCs ($k_{\text{NO}_3+\text{VOC}_i}$) is characterized by a first order loss rate constant,
175 calculated as the product of the reaction rate constant k_i and the VOC concentrations $[\text{VOC}_i]$.

176 $k_{\text{N}_2\text{O}_5}$ represents the total first-order loss rate coefficient for the heterogeneous uptake of N_2O_5 at the aerosol
177 surface, which is governed by the uptake coefficient $\gamma(\text{N}_2\text{O}_5)$, the aerosol surface area density S_a ($\mu\text{m}^2 \text{cm}^{-3}$),
178 and the mean molecular speed of N_2O_5 , c , as described in Eq. (6).

179 $k_{\text{N}_2\text{O}_5} = \frac{1}{4} c S_a \gamma(\text{N}_2\text{O}_5)$ (6)

180 The mean molecular speed c is calculated as $\sqrt{8RT/(\pi M)}$, where R is the gas constant ($8.314 \text{ J mol}^{-1} \text{ K}^{-1}$), T is
181 temperature (K), and M is the molar mass of N_2O_5 ($0.108 \text{ kg mol}^{-1}$). $\gamma(\text{N}_2\text{O}_5)$ is a critical parameter describing
182 the efficiency of N_2O_5 uptake on aerosol surfaces, influenced by aerosol composition (e.g., organic coatings,
183 nitrate/sulfate content) and meteorological conditions (RH, temperature) (Bertram et al., 2009; Tang et al., 2014;
184 Yu et al., 2020). It was determined using the steady-state method (Brown et al., 2016; Lin et al., 2022; Lu et al.,
185 2022), which relies on linear regression of $K_{\text{eq}}[\text{NO}_2]\tau(\text{N}_2\text{O}_5)^{-1}$ and $\frac{1}{4}cS_aK_{\text{eq}}[\text{NO}_2]$ (Eq. (7)).

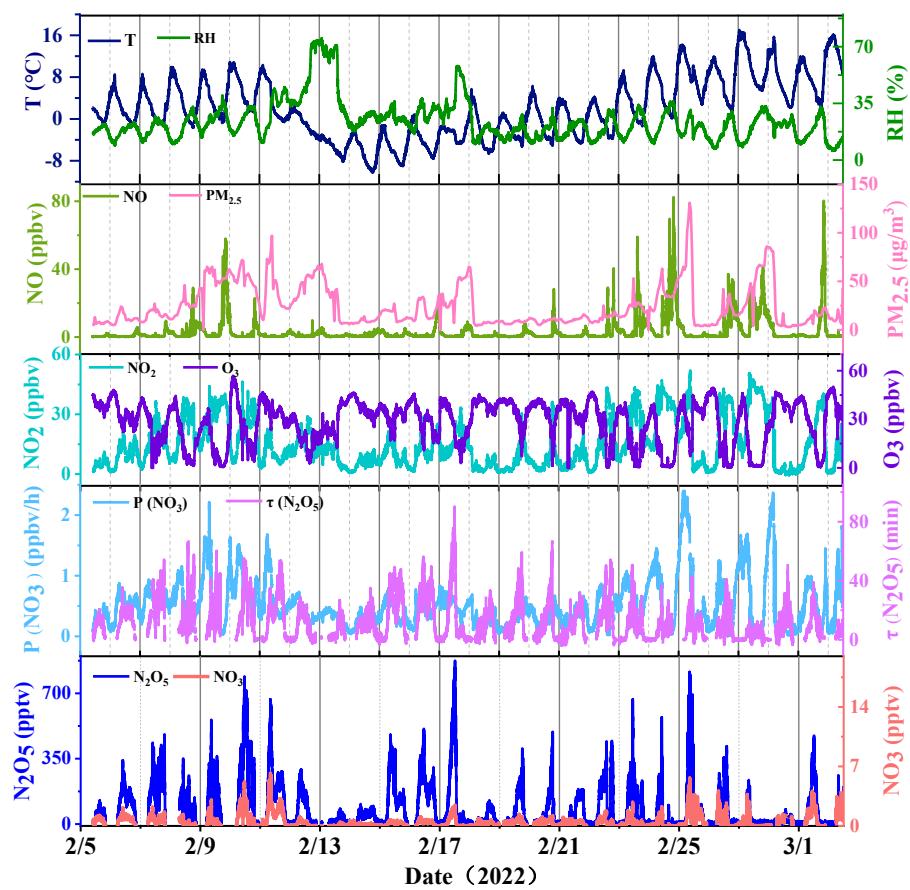
186 $K_{\text{eq}}[\text{NO}_2]\tau(\text{N}_2\text{O}_5)^{-1} = \frac{1}{4}cS_a\gamma(\text{N}_2\text{O}_5)K_{\text{eq}}[\text{NO}_2] + k_{\text{NO}_3}$ (7)

187 Here, the slope of the regression equals $\gamma(\text{N}_2\text{O}_5)$, and the intercept equals k_{NO_3} . To minimize interference from
188 non-steady-state conditions, data fitting was performed under the following constraints:

189 (1) Meteorological constraint: RH < 70% (avoiding excessive water vapor interference); (2) Chemical
190 constraints: NO < 1 ppbv (suppressing NO-NO₃ titration), [N₂O₅] > LOD (2.9 pptv, ensuring reliable
191 equilibrium calculations); (3) Timing constraint: Data selected 2–3 hours post-sunset (when the NO₃-N₂O₅
192 equilibrium is most stable). Negative intercepts (physically implausible, arising from k_{NO_3}) were excluded,
193 resulting in 23 valid data points for $\gamma(N_2O_5)$ calculation.

194 **Aerosol surface area density (S_a)**

195 Due to the unavailability of direct particle size distribution measurements, S_a was derived from PM_{2.5}
196 concentrations using an empirical formula validated for winter Beijing conditions (Zhang et al., 2022):


197 $S_a = 60.03 \times [PM_{2.5}]^{0.62}$ (8)

198 This formula exhibits a strong linear correlation ($R^2 = 0.82$) with PM_{2.5} and is applicable for PM_{2.5}
199 concentrations < 200 $\mu\text{g m}^{-3}$ —consistent with the PM_{2.5} range observed in this study (average: $24 \pm 21 \mu\text{g m}^{-3}$,
200 maximum: $131 \mu\text{g m}^{-3}$).

201 **3 Results**

202 **3.1 Measurements overview**

203 Figure 2 illustrates time-series variations in the mixing ratios of N₂O₅ and associated trace gases, alongside
204 meteorological parameters, captured during the 2022 Beijing Winter Olympics (BWO) at a temporal resolution
205 of 1 minute. Valid data were systematically acquired over a 26-day span, from 5 February to 3 March. In
206 alignment with the 2022 Beijing Winter Olympics timeline, the observation interval was bifurcated into two
207 distinct periods: (1) the Olympic Games Period (OGP; spanning 5–20 February), and (2) the Post-Olympics
208 Period (POP; extending from 21 February to 3 March). Comprehensive statistical metrics for each period are
209 meticulously detailed in Table 2.

210

211 **Figure 2. Time series for N_2O_5 , NO_3 , related trace gases, and meteorological data (T and RH) measured**
 212 **in Beijing from 5 February to 3 March 2022.**

213 **3.1.1 Meteorological conditions and $\text{PM}_{2.5}$**

214 Meteorological conditions differed notably between the OGP and POP, driving variations in pollutant dispersion
 215 and chemical reactivity:

216 **Temperature:** Nocturnal temperatures during the OGP were predominantly below freezing (average: $-1.4 \pm$
 217 3.6°C), while the POP saw a marked warming trend—nocturnal temperatures rose to $3.5 \pm 3.5^\circ\text{C}$ (all-day
 218 average: $5.6 \pm 3.9^\circ\text{C}$, vs. $-0.4 \pm 3.9^\circ\text{C}$ in the OGP).

219 **Relative Humidity (RH):** The OGP exhibited higher RH (nocturnal average: $29 \pm 13\%$) compared to the POP
 220 (nocturnal average: $20 \pm 4\%$). A heavy snowfall event occurred during 13–14 February (OGP), coinciding with
 221 peak RH ($> 60\%$) and a transient increase in $\text{PM}_{2.5}$ concentration ($68 \mu\text{g m}^{-3}$).

222 **PM_{2.5}:** The overall average $\text{PM}_{2.5}$ concentration across the entire observation period was $24 \pm 21 \mu\text{g m}^{-3}$,
 223 consistent with the improved air quality during the BWO (Huang et al., 2024). While $\text{PM}_{2.5}$ levels were similar

224 between the OGP (nocturnal average: $26 \pm 2 \mu\text{g m}^{-3}$) and POP (nocturnal average: $23 \pm 2 \mu\text{g m}^{-3}$), the POP
 225 experienced a severe pollution episode with $\text{PM}_{2.5}$ peaking at $131 \mu\text{g m}^{-3}$ —likely driven by relaxed emissions
 226 and stagnant meteorological conditions.

227 The aerosol surface area density, a key parameter for N_2O_5 heterogeneous uptake calculations (Eq. (8)), was
 228 derived from $\text{PM}_{2.5}$ concentrations. The overall average S_a was $402 \pm 215 \mu\text{m}^2 \text{cm}^{-3}$, with values in the OGP
 229 (nocturnal average: $417 \pm 208 \mu\text{m}^2 \text{cm}^{-3}$) slightly higher than in the POP (nocturnal average: $385 \pm 205 \mu\text{m}^2 \text{cm}^{-3}$), reflecting the influence of $\text{PM}_{2.5}$ and RH-driven aerosol growth.
 230

231
 232 **Table 2. Summary of observed parameters for the two periods (mean \pm standard deviation).**

Species	All time	OGP		POP	
		All day	Nighttime	All day	Nighttime
O_3 (ppbv)	28.6 ± 12.8	29.9 ± 9.5	27.4 ± 10.3	26.7 ± 10.6	19.8 ± 12.1
NO_2 (ppbv)	14.8 ± 11.5	12.6 ± 8.2	14.5 ± 9.3	18.2 ± 12.3	20.7 ± 13.1
NO (ppbv)	3.5 ± 7.2	1.9 ± 2.3	1.0 ± 1.2	5.7 ± 6.1	4.8 ± 6.0
N_2O_5 (pptv)	86.7 ± 116.5	87.3 ± 71.6	137.6 ± 112.7	62.1 ± 57.7	97.8 ± 90.3
NO_3 (pptv)	0.6 ± 0.7	0.4 ± 0.4	0.6 ± 0.6	0.3 ± 0.4	0.5 ± 0.6
Total VOCs (ppbv)	17.36 ± 10.10	15.67 ± 7.45	16.02 ± 7.74	19.72 ± 11.93	19.68 ± 12.17
$\text{PM}_{2.5}$ ($\mu\text{g m}^{-3}$)	24 ± 21	25 ± 2	26 ± 2	23 ± 3	23 ± 2
T (°C)	2.1 ± 5.7	-0.4 ± 3.9	-1.4 ± 3.6	5.6 ± 3.9	3.5 ± 3.5
RH (%)	24 ± 12	27 ± 13	29 ± 13	19 ± 4	20 ± 4
$P(\text{NO}_3)$ (ppbv h^{-1})	0.5 ± 0.4	0.5 ± 0.2	0.5 ± 0.2	0.6 ± 0.4	0.5 ± 0.3
$\tau_{\text{N}_2\text{O}_5}$ (min)	11.9 ± 11.8	10.9 ± 17.0	17.0 ± 17.0	7.4 ± 4.4	11.6 ± 6.8

233
 234 **3.1.2 Precursor gases (NO, NO_2 , O_3)**

235 Concentrations of NO_x ($\text{NO} + \text{NO}_2$) and O_3 —key precursors for $\text{NO}_3/\text{N}_2\text{O}_5$ production (Reaction R1)—
 236 exhibited distinct differences between the OGP and POP, directly reflecting the impact of emission controls:

237 **NO:** The OGP observed significantly lower NO concentrations compared to the POP—nocturnal NO averaged
 238 $1.0 \pm 1.2 \text{ ppbv}$ (OGP) vs. $4.8 \pm 6.0 \text{ ppbv}$ (POP). This contrast confirms BWO emission reductions effectively
 239 curbed primary NO emissions (e.g., traffic, industry), which further modulated O_3 and NO_2 dynamics.

240 **NO₂:** Inverse to NO, NO_2 concentrations were higher in the POP. Nocturnal NO_2 averaged $20.7 \pm 13.1 \text{ ppbv}$ in
 241 the POP, compared to $14.5 \pm 9.3 \text{ ppbv}$ in the OGP. The increase in NO_2 during the POP is attributed to enhanced
 242 NO oxidation by O_3 , driven by higher post-Olympic NO emissions.

243 **O₃:** Nocturnal O₃ levels were substantially higher in the OGP (27.4 ± 10.3 ppbv) than in the POP (19.8 ± 12.1
244 ppbv), despite similar all-day averages (OGP: 29.9 ± 9.5 ppbv; POP: 26.7 ± 10.6 ppbv). The lower nocturnal
245 O₃ in the POP results from intensified O₃ titration by elevated NO, a process that simultaneously increases NO₂
246 concentrations. Notably, the overall mean O₃ concentration (28.6 ± 12.8 ppbv) was lower than spring values in
247 Beijing (Wang et al., 2018), consistent with reduced photochemical O₃ production in winter.

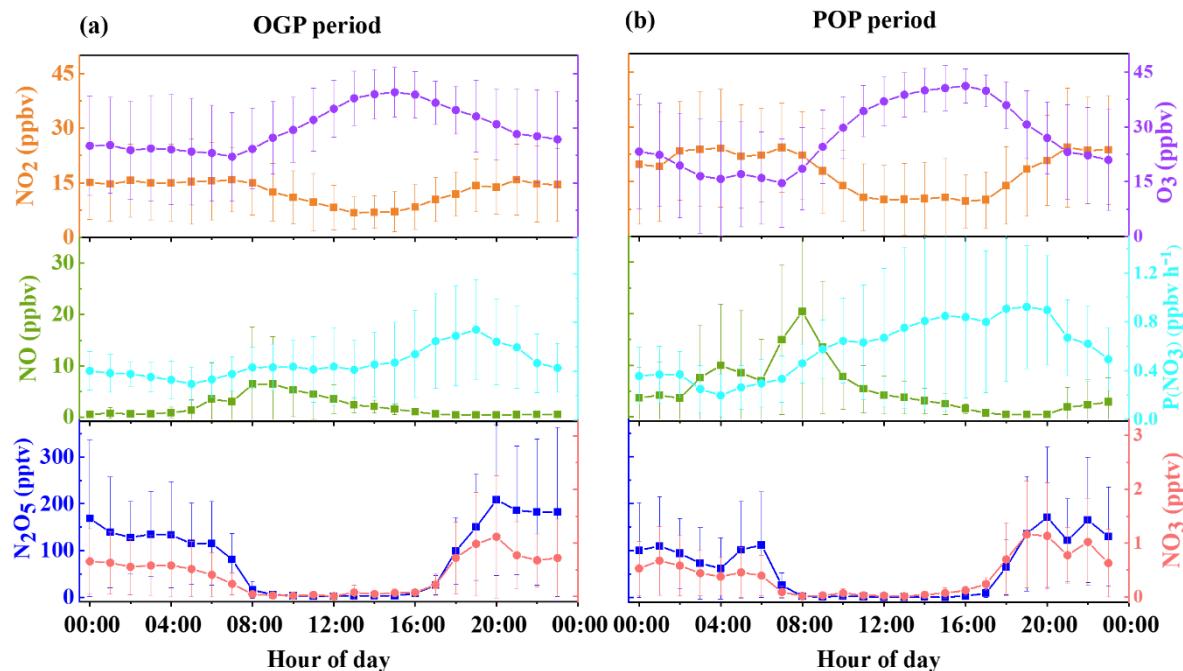
248 The average NO_x concentration (18.2 ± 16.6 ppbv) during the study was also substantially lower than autumn
249 values at this site (typically > 30 ppbv) (Li et al., 2022; Wang et al., 2017a), further highlighting the
250 effectiveness of winter emission controls.

251 **3.1.3 N₂O₅ and NO₃ concentrations**

252 N₂O₅ concentrations exhibited significant temporal variability throughout the observation period, with a mean
253 daily value of 86.7 ± 116.5 pptv and a maximum of 874.9 pptv (00:15 LST on 18 February, OGP)—coinciding
254 with moderate NO₂ (14.6 ppbv)、O₃ (26.8 ppbv) and extremely low NO (0.4 ppbv) that minimized NO₃ titration.

255 NO₃ concentrations were derived from the NO₃-N₂O₅ equilibrium (Eq. (1)), with a mean value of 0.6 ± 0.7 pptv
256 (maximum: 4.6 pptv). Nocturnal NO₃ levels followed the same trend as N₂O₅: higher in the OGP (0.6 ± 0.6
257 pptv) than in the POP (0.5 ± 0.6 pptv). This derived NO₃ concentration is notably lower than observations in
258 Shanghai (16 ± 9 pptv) (Wang et al., 2013), likely due to Beijing's lower winter temperatures (which suppress
259 NO₃ production) and higher NO emissions (which enhance NO₃ loss).

260 **3.1.4 NO₃ production rate and N₂O₅ lifetime**


261 The NO₃ production rate, calculated via Eq. (2) as the product of the NO₂ + O₃ reaction rate constant and
262 precursor concentrations, averaged 0.5 ± 0.4 ppbv h⁻¹ across the entire observation period, with a maximum of
263 2.4 ppbv h⁻¹. This value aligns with winter observations in the Beijing area (0.4 ppbv h⁻¹) (Wang et al., 2021)
264 and summer measurements at Mount Tai (0.45 ± 0.40 ppbv h⁻¹) (Wang et al., 2017c), but is lower than autumn
265 values in Beijing (2.25 ± 2.02 ppbv h⁻¹) (Wang et al., 2017a) and summer measurements in Taizhou (1.2 ± 0.3
266 ppbv h⁻¹) (Li et al., 2020). The relatively low $P(\text{NO}_3)$ in this study is primarily driven by winter's low
267 temperatures, which reduce the NO₂ + O₃ reaction rate constant: for example, at identical NO₂ (15 ppbv) and
268 O₃ (30 ppbv) concentrations, increasing temperature from -1 °C to 5 °C raises the rate constant from 1.59×10^{-17}
269 to 1.94×10^{-17} cm³ molecule⁻¹ s⁻¹, leading to a 19% increase in $P(\text{NO}_3)$ (from 0.70 to 0.83 ppbv h⁻¹).

270 The N₂O₅ lifetime, a key indicator of N₂O₅ removal efficiency (Eq. (3)), averaged 11.9 ± 11.8 minutes across
271 the study—longer than summer values in Beijing (270 ± 240 seconds) (Wang et al., 2018) and rural Wangdu
272 (77–172 seconds) (Tham et al., 2016), but shorter than observations in the Hong Kong boundary layer (Brown
273 et al., 2016). This prolonged winter $\tau_{\text{N}_2\text{O}_5}$ suggests slower nocturnal NO₃/N₂O₅ loss, consistent with lower
274 winter temperatures and reduced heterogeneous reactivity.

275 Notably, $\tau_{N_2O_5}$ differed significantly between the OGP and POP: the nocturnal mean lifetime was 17.0 ± 17.0
 276 minutes in the OGP, compared to 11.6 ± 6.8 minutes in the POP—a ~5-minute reduction. This difference is
 277 primarily driven by variations in N_2O_5 concentrations (rather than $P(NO_3)$), which was similar between periods:
 278 OGP nocturnal $P(NO_3) = 0.5 \pm 0.2$ ppbv h^{-1} ; POP = 0.5 ± 0.3 ppbv h^{-1}).

279 3.2 Mean diurnal variations

280 Figure 3 displays the average diurnal variations in NO, NO_2 , N_2O_5 , NO_3 , O_3 mixing ratios, and $P(NO_3)$ during
 281 the study period. Specifically, panel (a) presents the daily mean patterns for the OGP, whereas panel (b) depicts
 282 those for the POP. Notable differences in concentration but similar diurnal trends were observed between the
 283 two periods.

284
 285 **Figure 3. Mean diurnal variations in NO, NO_2 , N_2O_5 , NO_3 , O_3 mixing ratios and $P(NO_3)$ during (a) the**
 286 **Olympic Games Period (OGP) and (b) the Post-Olympics Period (POP). Data represent hourly means**
 287 **with error bars indicating the standard deviation; non-physical values < 0 (for NO_3) have been excluded.**

288 **3.2.1 Diurnal cycles of precursor gases (NO, NO_2 , O_3)**

289 The diurnal variations of NO, NO_2 , and O_3 exhibit strong interdependencies, consistent with well-documented
 290 atmospheric chemical processes (e.g., O_3 titration by NO, NO_2 photolysis) and anthropogenic emission patterns.

291 Nocturnal NO mixing ratios were substantially lower in the OGP than in the POP, with OGP nighttime values
 292 remaining below 2 ppbv (average: 1.0 ± 1.2 ppbv) and POP values frequently exceeding 4 ppbv (average: 4.8 ± 6.0 ppbv). Both periods showed two distinct daily peaks in NO, aligned with morning (06:00–08:00 LST)

294 and evening (18:00–20:00 LST) traffic rush hours—confirming traffic as the primary NO source. The morning
295 peak was particularly pronounced in the POP, reaching 20.4 ppbv at 08:00 LST (vs. 6.4 ppbv at 06:00 LST in
296 the OGP), directly attributable to relaxed post-Olympic traffic emission controls.

297 NO_2 concentrations displayed an inverse diurnal trend to O_3 , with nocturnal levels consistently higher than
298 daytime values (OGP: 14.5 ± 9.3 ppbv nighttime vs. 12.6 ± 8.2 ppbv all-day; POP: 20.7 ± 13.1 ppbv nighttime
299 vs. 18.2 ± 12.3 ppbv all-day). This pattern arises from reduced daytime NO_2 photolysis ($\text{NO}_2 + \text{hv} \rightarrow \text{NO} + \text{O}$)
300 and enhanced nocturnal NO oxidation. The POP saw higher NO_2 concentrations across all hours, with the
301 nocturnal peak (24.3 ppbv at 21:00 LST) exceeding the OGP peak (15.9 ppbv at 21:00 LST) by ~35%—a result
302 of elevated NO emissions driving more O_3 -to- NO_2 conversion.

303 O_3 exhibited a classic mid-afternoon peak in both periods, rising gradually after sunrise (07:00 LST) as
304 photochemical production intensified, and peaking between 15:00–16:00 LST (OGP: 39.9 ppbv; POP: 41.2
305 ppbv). Nocturnal O_3 levels, however, differed sharply: the OGP maintained higher nighttime O_3 (27.4 ± 10.3
306 ppbv) compared to the POP (19.8 ± 12.1 ppbv), with the POP O_3 concentration dropping to a minimum of 14.6
307 ppbv at 07:00 LST (vs. 22.2 ppbv in the OGP). This discrepancy stems from intensified O_3 titration by NO in
308 the POP—higher NO concentrations rapidly consume O_3 via $\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2$, reducing the O_3 pool
309 available for NO_3 production (Reaction R1).

310 **3.2.2 Diurnal cycles of NO_3 production rate**

311 $P(\text{NO}_3)$ exhibited a strong diurnal pattern tied to the availability of its precursors (NO_2 and O_3) and the
312 suppression of daytime NO_3 loss.

313 In both periods, $P(\text{NO}_3)$ peaked shortly after sunset (19:00 LST), when O_3 concentrations remained relatively
314 high (OGP: 33.3 ppbv; POP: 30.6 ppbv) and NO emissions (and thus NO_3 titration) were still low. The OGP
315 peak $P(\text{NO}_3)$ was 0.74 ppbv h^{-1} , slightly lower than the POP peak (0.92 ppbv h^{-1})—a difference driven by the
316 POP's higher NO_2 concentrations (18.4 ppbv at 19:00 LST vs. 14.2 ppbv in the OGP) offsetting its lower
317 O_3 . Throughout the night, $P(\text{NO}_3)$ gradually declined in both periods: by 04:00 LST, it dropped to 0.33 ppbv h^{-1}
318 (OGP) and 0.20 ppbv h^{-1} (POP), mirroring the nocturnal decrease in O_3 .

319 Notably, $P(\text{NO}_3)$ showed a strong first-order exponential decay correlation with NO concentrations (Figure S2):
320 when $\text{NO} < 5 \text{ ppbv}$, $P(\text{NO}_3)$ decreased sharply with increasing NO (from 1.2 ppbv h^{-1} to 0.5 ppbv h^{-1}); when
321 $\text{NO} > 10 \text{ ppbv}$, $P(\text{NO}_3)$ stabilized at $< 0.3 \text{ ppbv h}^{-1}$. This confirms NO is a dominant inhibitor of NO_3
322 production—even small NO increases (e.g., POP rush hours) rapidly consume NO_3 as it forms.

323 **3.2.3 Diurnal cycles of N_2O_5 and NO_3**

324 N_2O_5 and NO_3 exhibited nearly identical diurnal patterns in both periods, reflecting their tight thermodynamic

325 equilibrium (Reaction R2) and shared dependence on precursor availability and loss pathways:

326 **Post-sunset accumulation:** Both species began accumulating rapidly after sunset (18:00 LST), as photolysis
327 (a major daytime NO_3 loss pathway) ceased. They reached peak concentrations around 20:00 LST—shortly
328 after the $P(\text{NO}_3)$ peak—with OGP peaks (N_2O_5 : 208.2 pptv; NO_3 : 1.1 pptv) exceeding POP peaks (N_2O_5 : 171.2
329 pptv; NO_3 : 1.0 pptv) by ~22%. This difference is driven by the OGP's lower NO concentrations, which reduce
330 NO_3 titration (Reaction R4) and allow more N_2O_5 to form via equilibrium.

331 **Nocturnal decline:** After the 20:00 LST peak, N_2O_5 and NO_3 concentrations gradually decreased in the OGP,
332 falling to near-detection limits by sunrise (07:00 LST). The POP, however, showed a steeper decline between
333 02:00–04:00 LST: N_2O_5 dropped from 94.1 pptv to 61.8 pptv, and NO_3 from 0.6 pptv to 0.3 pptv—attributed to
334 elevated nocturnal NO emissions in the POP (peaking at 9.9 ppbv at 04:00 LST) that accelerate NO_3 loss.

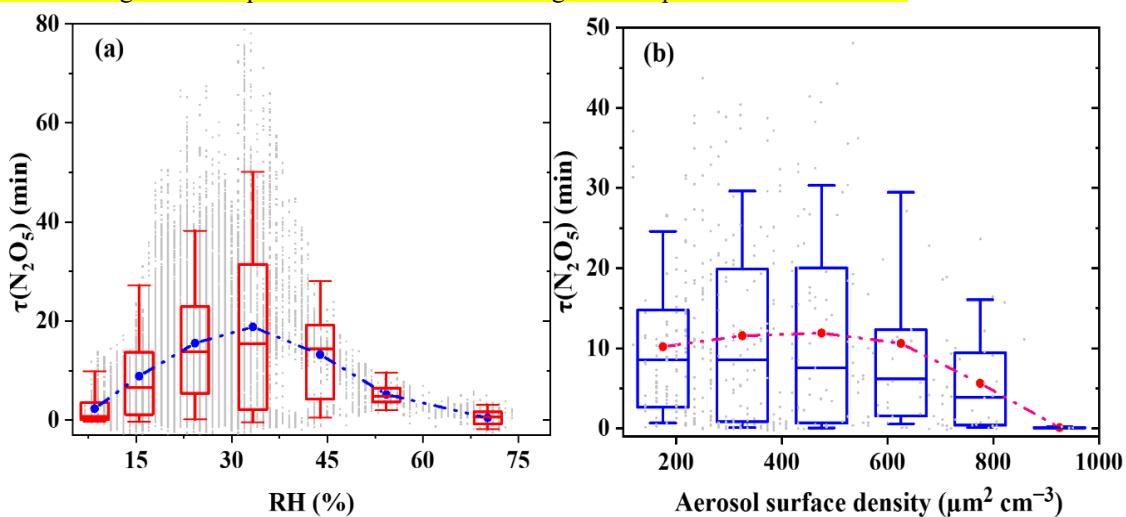
335 **Morning secondary peak (POP only):** A notable secondary peak in N_2O_5 (112.1 pptv at 06:00 LST) and NO_3
336 (0.5 pptv at 06:00 LST) occurred in the POP, coinciding with a transient increase in O_3 (1.3 ppbv) and decrease
337 in NO (2.9 ppbv) before morning rush hour. This peak is absent in the OGP, likely because lower POP emission
338 controls led to a larger “pre-rush” O_3 pool that drives NO_3 production, while OGP NO emissions remained too
339 low to support such a transient precursor balance.

340 The daily average variation trends of both N_2O_5 and NO_3 aligned with those reported for the Yangtze River
341 Delta and North China regions (Li et al., 2020; Wang et al., 2022, 2017b). While the chemical conditions in this
342 study bore similarities to those in summer Beijing, the meteorological conditions differed, notably characterized
343 by higher relative humidity during the summer. The average nocturnal N_2O_5 concentration over the observation
344 period was 113.7 ± 103.3 pptv, which was higher than that observed in the Changping area of Beijing (Wang et
345 al., 2018), indicating that the loss process of NO_3 and N_2O_5 in Beijing during winter is more sluggish compared
346 to that in the summer.

347 4 Discussion

348 4.1. Factoring influencing N_2O_5 lifetime

349 RH and S_a are well-recognized as pivotal factors regulating N_2O_5 lifetime in nocturnal atmospheric chemistry,
350 as they directly modulate the efficiency of N_2O_5 heterogeneous uptake—the primary indirect loss pathway for
351 NO_3 (Brown et al., 2017; Lin et al., 2022). The correlation between these parameters and $\tau_{\text{N}_2\text{O}_5}$ is presented in
352 Figure 4.


353 4.1.1 Relationship between $\tau_{\text{N}_2\text{O}_5}$ and RH

354 As shown in Figure 4(a), the correlation between $\tau_{N_2O_5}$ and RH exhibits a humidity-dependent dual pattern. At
 355 RH < 35%, $\tau_{N_2O_5}$ increased with RH—slight humidity rises softened hydrophobic organic coatings on aerosols
 356 (from traffic VOC oxidation), thereby reducing N_2O_5 heterogeneous uptake. RH > 35%, the heterogeneous
 357 uptake rate of N_2O_5 increases, and $\tau_{N_2O_5}$ decreases with increasing RH.

358 **RH < 35%:** Counterintuitive $\tau_{N_2O_5}$ increases with rising RH. Minimal aerosol liquid water content drives
 359 hydrophobic organic components—primarily oxidation products of traffic-related anthropogenic VOCs
 360 (AVOCs, e.g., styrene, propylene)—to condense into dense, impermeable coatings on particle surfaces
 361 (Bertram et al., 2009; Folkers et al., 2003; McNeill et al., 2006; Tang et al., 2014). These coatings act as a
 362 diffusion barrier, preventing N_2O_5 from reaching reactive aqueous sites (e.g., nitrate/sulfate-rich droplets) and
 363 lowering the heterogeneous uptake coefficient $\gamma(N_2O_5)$ (Anttila et al., 2006; Yu et al., 2020). For example, at
 364 RH = 25%, $\tau_{N_2O_5}$ averaged 15.5 minutes, 43% longer than the 8.9 minutes observed at RH = 15%.

365 **RH > 35%:** $\tau_{N_2O_5}$ decreases with increasing RH (conventional trend). Above 35% RH, the relationship aligns
 366 with physical expectations: $\tau_{N_2O_5}$ declines as RH increases, driven by two synergistic effects. First, hygroscopic
 367 growth of aerosols (e.g., ammonium sulfate, sodium chloride) increases S_a , providing more reactive surface
 368 sites for N_2O_5 uptake. Second, elevated aerosol liquid water content accelerates N_2O_5 hydrolysis, which
 369 becomes the dominant N_2O_5 loss pathway (Brown et al., 2016; Chang et al., 2011). This effect is particularly
 370 pronounced when RH > 60%: during the snowfall events on 13–14 February 2022, $\tau_{N_2O_5}$ approached zero (0.8
 371 ± 0.3 minutes), as high RH (> 85%) maximized both aerosol growth and hydrolysis efficiency.

372 Notably, scattered data points in the 30–40% RH range (e.g., $\tau_{N_2O_5}$ ranging from 2 to 33 minutes at RH = 35%)
 373 suggest interference from transient factors—such as sudden NO spikes or shifts in aerosol organic
 374 composition—which obscure the RH- $\tau_{N_2O_5}$ relationship. A more comprehensive discussion of these
 375 confounding factors requires consideration of the organic composition of the aerosol.

376 **Figure 4. The relationship between $\tau_{\text{N}_2\text{O}_5}$ and S_a as well as RH during the observation period.**

377 **4.1.2 Relationship between $\tau_{\text{N}_2\text{O}_5}$ and S_a**

378 Figure 4(b) depicts the dependence of $\tau_{\text{N}_2\text{O}_5}$ on S_a , reflecting the interplay between S_a and other regulating
379 factors (e.g., RH, organic coatings).

380 **$S_a < 325 \mu\text{m}^2 \text{cm}^{-3}$:** $\tau_{\text{N}_2\text{O}_5}$ gradually increases with rising S_a . For low S_a values, $\tau_{\text{N}_2\text{O}_5}$ gradually rises from ~10
381 to 12 minutes as S_a increases. This non-monotonic pattern is driven by the co-occurrence of low S_a with
382 extremely dry conditions (RH < 25% for 68% of data points in this S_a range).

383 **$S_a = 500\text{--}1000 \mu\text{m}^2 \text{cm}^{-3}$:** Robust negative correlation. Above a threshold S_a of ~500 $\mu\text{m}^2 \text{cm}^{-3}$, a clear negative
384 correlation emerges: $\tau_{\text{N}_2\text{O}_5}$ decreases from ~12 to 6 minutes as S_a increases. This aligns with physical
385 expectations, as higher S_a provides more reactive surface area for N_2O_5 heterogeneous uptake (Lin et al., 2022;
386 Wang et al., 2020; Zhou et al., 2018a).

387 Quantitative discrepancies between our results and summer studies (e.g., Zhou et al., 2018 reported $\tau_{\text{N}_2\text{O}_5} < 5$
388 minutes at $S_a > 600 \mu\text{m}^2 \text{cm}^{-3}$ in urban Beijing) are attributed to seasonal differences in aerosol liquid water
389 content. Winter's lower RH (average: $24 \pm 12\%$) reduces aerosol liquid water content, lowering $\gamma(\text{N}_2\text{O}_5)$ and
390 slowing N_2O_5 loss—even at high S_a . This highlights the need for season-specific parameterizations of $S_a\text{-}\tau_{\text{N}_2\text{O}_5}$
391 relationships in air quality models.

392 **4.2 NO₃ and N₂O₅ loss pathways**

393 To quantify the mechanisms governing NO₃ and N₂O₅ removal, we calculated total NO₃ reactivity via Eq. (4)
394 and dissected the contributions of individual loss pathways. The reaction rate constants for the interaction
395 between VOCs and the oxidizing agent NO₃ were obtained from the literature ((Atkinson and Arey, 2003;
396 Brown et al., 2011) or extracted from the National Institute of Standards and Technology database (accessible
397 via <http://webbook.nist.gov/chemistry/>). For certain VOC species where quantitative laboratory reaction rate
398 constants were unavailable, these values were estimated based on the reaction rate constants of analogous
399 species.

400 **4.2.1 NO₃ Loss via VOC oxidation and N₂O₅ uptake**

401 VOC-driven NO₃ loss is negligible in winter urban Beijing, but distinct patterns emerge in the concentrations
402 and reactivity of different VOC categories. Detailed statistical data regarding VOC concentrations (e.g., styrene,
403 isoprene, and other anthropogenic species) and their corresponding NO₃ reaction rates—are provided in Table
404 S1 (auxiliary material). Time series plots of the concentrations of several highly reactive VOCs (Figure S3)
405 show that the styrene concentration peaks at 86 pptv, while the isoprene concentration peaks at 96 pptv.
406 Comparative analysis reveals these high-VOC periods coincide with enhanced NO (e.g., NO spikes to 24.8

407 ppbv on February 24, POP), suggesting VOCs and NO share a common emission source (traffic exhaust)—
408 consistent with the site's proximity to urban traffic corridors (Section 2.1).

409 **High-concentration AVOCs contribute minimally.** The most abundant VOCs—ethane (3.8 ± 1.8 ppbv),
410 propane (2.1 ± 1.3 ppbv), and acetone (1.4 ± 0.8 ppbv)—exhibit extremely low k_{NO_3} (e.g., $k(\text{NO}_3 + \text{propane}) =$
411 $9.49 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K (Atkinson and Arey, 2003). As a result, their combined contribution to
412 total VOC-driven NO_3 reactivity is $< 5\%$ ($0.04 \times 10^{-3} \text{ s}^{-1}$), emphasizing that high VOC concentration does not
413 equate to strong NO_3 reactivity. When all AVOCs are considered, they dominate NO_3 reactivity (~70.4% of total
414 VOC-driven NO_3 loss), exceeding the contribution of biogenic VOCs (BVOCs, ~29.6%) (Figure S4).

415 **Reactive VOCs dominate VOC-driven NO_3 loss.** Despite their low concentrations, styrene and isoprene
416 account for ~74% of total VOC-driven NO_3 reactivity (Figure S4), due to their high k_{NO_3} .

417 **Styrene:** Average reactivity = $0.34 \times 10^{-3} \text{ s}^{-1}$ ($k = 1.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$), contributing ~44% of VOC
418 reactivity. Styrene emissions in Beijing are primarily from vehicle exhaust, with minor contributions from
419 evergreen plant emissions (Li et al., 2014).

420 **Isoprene:** Average reactivity = $0.25 \times 10^{-3} \text{ s}^{-1}$, contributing ~30% of VOC reactivity. Isoprene has dual sources:
421 traffic exhaust (anthropogenic) and deciduous/evergreen plant emissions (biogenic), with biogenic sources
422 dominating in winter (Cheng et al., 2018; Yuan et al., 2009).

423 Notably, biogenic VOCs (BVOCs) other than isoprene (e.g., limonene, α -pinene) were not detected, leading to
424 potential underestimation of BVOC reactivity. For example, the rate constant for limonene ($\sim 1.6 \times 10^{-11} \text{ cm}^3$
425 $\text{molecule}^{-1} \text{ s}^{-1}$) is $\sim 20\times$ higher than isoprene's, so including it could increase the total VOC reactivity.

426 $\gamma(\text{N}_2\text{O}_5)$ —a key parameter describing the efficiency of N_2O_5 uptake on aerosol surfaces—was calculated via
427 Eq. (7) (steady-state method) with strict data selection, and the calculation results for S_a are presented in Figure
428 S5. For most of the time, $\gamma(\text{N}_2\text{O}_5)$ ranged from 0.01 to 0.12 (average: 0.032 ± 0.049 ; Table S2), consistent with
429 observations in urban Beijing (0.01–0.09) (Li et al., 2022; Wang et al., 2017a; Xia et al., 2021; Zhou et al.,
430 2018b) but higher than rural sites: Wangdu (Hebei), 0.006–0.034 (Tham et al., 2018); Hong Kong boundary
431 layer, 0.014 ± 0.007 (Brown et al., 2016); Rural Germany, 0.028 ± 0.029 (Phillips et al., 2016). The elevated
432 $\gamma(\text{N}_2\text{O}_5)$ in our study is attributed to urban aerosols' higher water content and reactive composition (e.g., nitrate,
433 sulfate, and organic acids), which enhance N_2O_5 hydrolysis efficiency (Bertram et al., 2009; Tang et al., 2014).

434 **4.2.2 Temporal Variations in NO_3 Reactivity**

435 To characterize how NO_3 loss dynamics respond to emission controls and transient environmental events, we
436 analyzed the time series of total NO_3 reactivity—the sum of all first-order loss pathways, including reaction
437 with NO, heterogeneous uptake of N_2O_5 , oxidation by VOCs, and photolysis (daytime only). This analysis is

438 supported by Figure 5 (time series of total k_{NO_3} and key environmental drivers).

439

440

441 **Figure 5. Time series variation of k_{NO_3} (reactions with NO and VOCs, heterogeneous uptake of N_2O_5 and**

442 photolysis of NO_3).

443 **OGP:** Total k_{NO_3} averaged 1.14 s^{-1} , with minimal day-to-day variability. A notable exception occurred on 13
444 February, when a heavy snowfall event ($\text{RH} = 71\%$, $\text{PM}_{2.5} = 61 \mu\text{g m}^{-3}$) triggered a transient spike in k_{NO_3} to
445 2.35 s^{-1} —nearly double the OGP average. This spike was driven by enhanced N_2O_5 heterogeneous uptake
446 (Section 4.1.1), as high RH increased aerosol liquid water content and reactive surface sites.

447 **POP:** Total k_{NO_3} surged to 3.06 s^{-1} ($2.7\times$ higher than OGP), driven by a $3.7\times$ increase in NO reactivity (from
448 0.81 s^{-1} to 3.00 s^{-1} ; Table 3). The elevated NO reactivity aligns with post-Olympic NO emission rebound
449 (Section 3.1.2), which intensified NO_3 titration (Reaction R4) and crowded out N_2O_5 uptake.

450 Figure 5 also captures the response of k_{NO_3} to transient NO spikes—critical drivers of non-steady-state NO_3
451 loss. For example, on 24 February (POP), a sudden NO burst (24.8 ppbv, Figure S6) caused total k_{NO_3} to jump
452 from 1.3 s^{-1} to 26.5 s^{-1} within 30 minutes, with no corresponding change in RH or S_a . This confirms that NO
453 can override the effects of meteorological factors on k_{NO_3} in winter urban environments.

454 To dissect the drivers of total k_{NO_3} variation, Table 3 presents the contributions of individual reactivity
455 components (NO reaction, N_2O_5 uptake, VOC oxidation) for both periods:

456 **OGP (Table 3):** Reactivity was dominated by two pathways. (1) NO reaction: Contributed 0.81 s^{-1} (71.1% of
457 total k_{NO_3}), reflecting moderate NO emissions under Olympic controls. (2) N_2O_5 uptake: Contributed 0.32 s^{-1}
458 (28.1% of total k_{NO_3}), with the 13 February snowfall event pushing this contribution to 86% (2.35 s^{-1}). VOC

459 oxidation remained negligible at $0.8 \times 10^{-3} \text{ s}^{-1}$ ($< 0.1\%$ of total k_{NO_3}), consistent with winter's low VOC
460 emissions and low NO_3 -VOC reaction rates (Section 4.2.1). For instance, even the styrene contributed only $\sim 44\%$
461 of total VOC reactivity, which remained orders of magnitude lower than NO-driven reactivity.

462 **POP (Table 3):** A dramatic shift in reactivity partitioning occurred. (1) NO reaction: Exploded to 3.00 s^{-1} (98.0%
463 of total k_{NO_3}), a $3.7\times$ increase from the OGP. This was driven by post-Olympic NO emissions, which intensified
464 NO_3 titration and crowded out other loss pathways. (2) N_2O_5 uptake: Plummeted to 0.06 s^{-1} (2.0% of total k_{NO_3}),
465 an 81% decrease from the OGP. The decline stemmed from lower POP RH (19% vs. 27% in OGP), which
466 reduced aerosol liquid water content and suppressed N_2O_5 hydrolysis (Reaction R6). This RH-dependent
467 hydrolysis inhibition is further validated by Figure S7 (auxiliary material): the figure presents the correlation
468 between N_2O_5 hydrolysis rate and RH during the POP, showing a strong positive linear relationship ($R^2 = 0.81$).
469 The reduced hydrolysis efficiency directly limited N_2O_5 's role as an indirect NO_3 sink, contributing to its
470 diminished share of NO_3 loss in the POP. VOC oxidation increased slightly to $1.4 \times 10^{-3} \text{ s}^{-1}$ ($< 0.1\%$ of total
471 k_{NO_3}), reflecting a modest rebound in anthropogenic VOC emissions (Table 2: total VOCs = 19.68 ppbv vs.
472 16.02 ppbv in OGP) but remained functionally irrelevant to NO_3 loss.

473 **Table 3 Statistics of k_{NO_3} across various pathways and time periods**

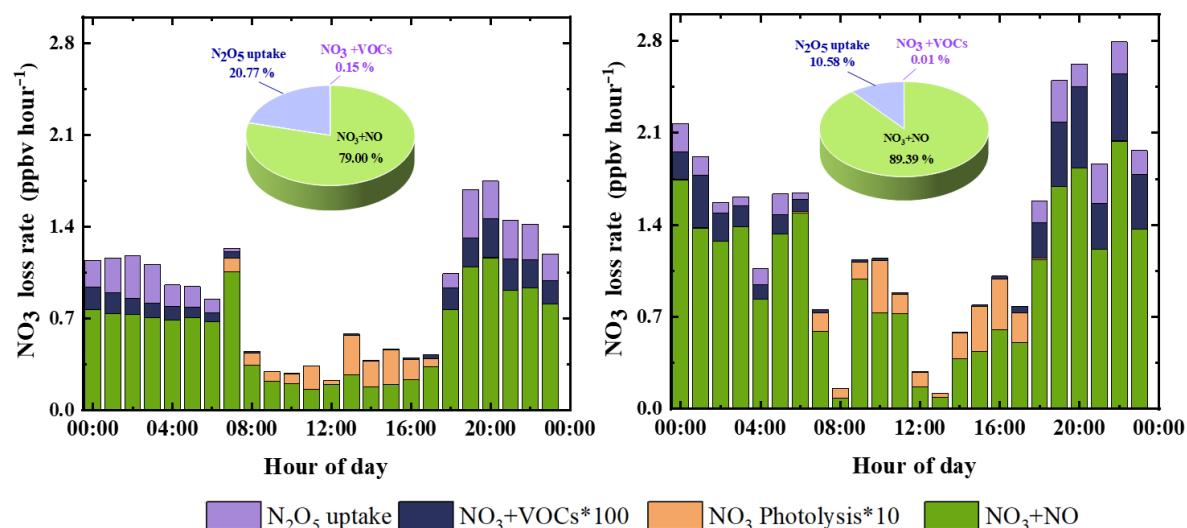
$k_{\text{NO}_3} (\text{s}^{-1})$	OGP	POP
NO ₃ +NO	0.81	3.00
NO ₃ +VOCs	0.8×10^{-3}	1.4×10^{-3}
N_2O_5 uptake	0.32	0.06
Total	1.14	3.06

474 The combined analysis of Figure 5 (total trend) and Table 3 reveals two critical findings:

475 **Emission controls rewire reactivity partitioning:** Olympic NO_x reductions reduced NO's dominance as a NO_3
476 sink, allowing N_2O_5 uptake to emerge as a significant secondary pathway. Relaxing controls reversed this shift,
477 reestablishing NO as the near-exclusive NO_3 loss mechanism.

478 **Extreme events disrupt baseline reactivity:** High-RH events (e.g., snowfall) and NO spikes can temporarily
479 alter reactivity partitioning, but their effects are transient—baseline dynamics remain governed by long-term
480 emission conditions.

481 **4.2.3 NO_3 loss budget**


482 Figure 6 illustrates the diurnal variation and relative contributions of NO_3 loss pathways, with distinct
483 differences between the OGP and POP that reflect the impact of Olympic emission controls.

484 **OGP: Balanced NO and N_2O_5 uptake pathways.** NO dominated NO_3 loss (79.0%), but N_2O_5 uptake emerged

485 as a significant secondary pathway (20.8%), with VOC oxidation contributing < 0.2%. The N_2O_5 uptake
 486 pathway peaked at 19:00 LST (0.37 ppbv h^{-1}), coinciding with high $[\text{N}_2\text{O}_5]$ (149.9 pptv). This contribution is
 487 comparable to winter observations in urban Beijing (Li et al., 2022).

488 **POP: NO dominates NO_3 loss.** NO's contribution to NO_3 loss rose to 89.4%, with a peak loss rate of 2.04 ppbv
 489 h^{-1} at 22:00 LST—driven by post-Olympic NO emissions that increased significantly (Table 2). In contrast,
 490 N_2O_5 uptake declined to 10.6%, as lower RH reduced $\gamma(\text{N}_2\text{O}_5)$ and S_a reactivity. Notably, the POP's NO_3 loss
 491 rate (1.61 ppbv h^{-1}) was 30% higher than the OGP's (1.14 ppbv h^{-1}), confirming that relaxed emissions
 492 accelerated nocturnal NO_3 removal.

493 Compared to summer studies (Lin et al., 2022), winter's low VOC reactivity and high NO emissions make NO
 494 the unambiguous primary NO_3 sink in urban Beijing. This seasonal contrast underscores the need for season-
 495 specific air quality management strategies—prioritizing NO_x reduction in winter and VOC reduction in summer.

496
 497 **Figure 6. Mean daily variation and reactivity share of different loss pathways.**

498 **4.3 Linkage to Olympic Emission Controls and Precursor Dynamics**

499 The 2022 Beijing Winter Olympics provided a unique “natural experiment” to quantify how short-term, large-
 500 scale emission controls modulate nocturnal $\text{NO}_3\text{-N}_2\text{O}_5$ chemistry. Below, we dissect the impacts of these
 501 controls on precursor concentrations and loss pathway hierarchies, and explore the interacting roles of NO_2 and
 502 O_3 in shaping $\text{NO}_3\text{-N}_2\text{O}_5$ dynamics.

503 **4.3.1 Impact of Emission Controls on $\text{NO}_3\text{-N}_2\text{O}_5$ Chemistry**

504 The Olympic emission control measures—including traffic restrictions (e.g., odd-even license plate policy),
 505 industrial shutdowns, and reduced coal combustion—induced significant changes in precursor concentrations
 506 and $\text{NO}_3\text{-N}_2\text{O}_5$ behavior.

507 **Precursor modulation:** OGP emissions of NO_x and VOCs were substantially lower than the POP. Nocturnal
508 NO decreased by 79% (1.0 vs. 4.8 ppbv), and NO_2 by 30% (14.5 vs. 20.7 ppbv). Nocturnal total VOCs decreased
509 by 18% (16.02 vs. 19.68 ppbv), with reactive AVOCs (styrene) declining by 40%.

510 Lower NO emissions weakened its role as a “ NO_3 scavenger,” allowing more NO_3 to partition into N_2O_5 via
511 Reaction R2. This explains why the OGP’s nocturnal $[\text{N}_2\text{O}_5]$ (137.6 pptv) was 41% higher than the POP’s (97.8
512 pptv), despite similar NO_3 production rates ($P(\text{NO}_3) = 0.5 \text{ ppbv h}^{-1}$ for both periods).

513 **Loss pathway shift:** Reduced NO emissions elevated the relative importance of N_2O_5 uptake in NO_3 loss—its
514 contribution increased from 10.6% (POP) to 20.8% (OGP). This shift demonstrates that emission controls can
515 “rewire” nocturnal loss hierarchies, making heterogeneous processes more significant as primary pollutant
516 emissions decline. This finding extends previous studies (Xia et al., 2020; Zhou et al., 2018a) which focused on
517 ClNO_2 formation but did not quantify N_2O_5 ’s role under low-NO conditions.

518 4.3.2 Precursor (NO_2 , O_3) Influences on NO_3 - N_2O_5 Dynamics

519 NO_2 and O_3 , the primary precursors of NO_3 via Reaction R1, exert dual and interactive controls on NO_3 - N_2O_5
520 chemistry that depend on emission conditions.

521 **NO_2 : Equilibrium driver and precursor tradeoff.** NO_2 plays two conflicting roles: it is both a precursor for
522 NO_3 (via R1) and a partner in the NO_3 - N_2O_5 equilibrium (via R2). During the OGP, higher nocturnal NO_2 (14.5
523 ppbv) shifted the equilibrium toward N_2O_5 , as low NO prevented rapid NO_3 loss. This created a “ N_2O_5 surplus,”
524 with $[\text{N}_2\text{O}_5]$ exceeding the POP’s by 41%. In contrast, the POP’s higher NO_2 (20.7 ppbv) paired with elevated
525 NO (4.8 ppbv) created a “dual sink” effect: more NO_3 was produced via R1, but immediately titrated by NO
526 via R4—limiting N_2O_5 accumulation. This tradeoff highlights NO_2 ’s context-dependent role in NO_3 - N_2O_5
527 dynamics.

528 **O_3 : Production regulator and persistence enhancer.** OGP’s higher nocturnal O_3 (27.4 vs. 19.8 ppbv in the
529 POP) initially boosted NO_3 production ($P(\text{NO}_3) = 0.5 \text{ ppbv h}^{-1}$), but lower NO prevented rapid NO_3 loss. This
530 “ NO_3 surplus” prolonged N_2O_5 lifetime: the OGP’s nocturnal $\tau_{\text{N}_2\text{O}_5}$ (17.0 minutes) was 46% longer than the
531 POP’s (11.6 minutes). This indirect effect of O_3 —enhancing N_2O_5 persistence by supporting NO_3 production
532 without accelerating loss—has not been fully quantified in previous winter studies, emphasizing the need to
533 consider O_3 alongside NO_x in nocturnal chemistry models.

534 4.4 Broader Atmospheric Implications

535 Our findings advance understanding of winter urban nocturnal chemistry and provide critical insights for air
536 quality management in polluted regions like Beijing. Three key implications emerge:

537 **Emission control efficacy and regional nitrate transport.** Olympic controls demonstrated that reducing NO_x
538 (not just VOCs) can enhance N_2O_5 accumulation—potentially extending the lifetime of reactive nitrogen and
539 increasing regional nitrate transport. N_2O_5 is a stable reservoir species that can be transported long distances
540 before hydrolyzing to form nitrate aerosols; thus, increased N_2O_5 under NO_x reduction may shift winter nitrate
541 pollution from local to regional scales. This suggests that future NO_x mitigation strategies should consider
542 regional coordination to address long-range transport of reactive nitrogen.

543 **Model parameterization improvements.** Our results provide two critical constraints for air quality models,
544 which often underestimate winter N_2O_5 chemistry.

545 **S_a threshold:** S_a exerts significant control over $\tau_{\text{N}_2\text{O}_5}$ only when $S_a > 500 \mu\text{m}^2 \text{cm}^{-3}$; below this threshold, organic
546 coatings and NO dominate.

547 **$\gamma(\text{N}_2\text{O}_5)$ range:** The average $\gamma(\text{N}_2\text{O}_5)$ of 0.032 ± 0.049 (with values up to 0.22 under high RH) is higher than
548 the constant $\gamma(\text{N}_2\text{O}_5) = 0.02$ (Chang et al., 2011) often used in models. Incorporating these season-specific
549 parameters will improve predictions of winter nitrate formation.

550 **Winter mitigation priority: NO_x over VOCs.** Despite their high reactivity, VOCs contribute $< 0.5\%$ of NO_3
551 loss in winter urban Beijing—far less than NO (79.0–89.4%). This confirms that NO_x (not VOCs) should be
552 prioritized for mitigating winter nocturnal nitrogen pollution. For example, further reducing traffic-related NO
553 emissions (a major source in urban Beijing) would not only lower direct NO pollution but also enhance N_2O_5
554 uptake—a pathway that converts reactive nitrogen to nitrate, which is less toxic and more easily removed via
555 wet deposition.

556 **5 Summary and conclusions**

557 This study conducted continuous field observations of N_2O_5 , NO_3 , and their precursor species (NO, NO_2 , O_3 ,
558 VOCs) in urban Beijing from 5 February to 3 March 2022, covering the 2022 Beijing Winter Olympics (BWO).
559 By analyzing pollutant variations, quantifying the contributions of $\text{NO}_3/\text{N}_2\text{O}_5$ loss pathways, and linking
560 observations to BWO emission control measures, we clarified the response of winter nocturnal reactive nitrogen
561 chemistry to short-term anthropogenic emission reductions.

562 During the observation period, $P(\text{NO}_3)$ averaged $0.5 \pm 0.4 \text{ ppbv h}^{-1}$, with N_2O_5 mixing ratios peaking at 875
563 pptv (1-minute resolution) and derived NO_3 concentrations reaching a maximum of 4.6 pptv; $\tau_{\text{N}_2\text{O}_5}$ averaged
564 11.9 ± 11.8 minutes, longer than summer values in Beijing due to slower winter N_2O_5 loss driven by low
565 temperatures and reduced heterogeneous reactivity. BWO emission controls significantly modulated precursor
566 concentrations: nocturnal NO ($1.0 \pm 1.2 \text{ ppbv}$) and total VOCs ($16.02 \pm 7.74 \text{ ppbv}$) in the OGP were 79% and
567 18% lower than in the POP, respectively, while nocturnal O_3 was 38% higher in the OGP ($27.4 \pm 10.3 \text{ ppbv}$ vs.

568 19.8 ± 12.1 ppbv in the POP) as reduced NO minimized O₃ titration—these changes directly led to 41% higher
569 nocturnal N₂O₅ concentrations in the OGP (137.6 ± 112.7 pptv vs. 97.8 ± 90.3 pptv in the POP).

570 RH and S_a exerted context-dependent control over $\tau_{N_2O_5}$: at RH < 35%, $\tau_{N_2O_5}$ increased with RH as slight
571 humidity rises softened hydrophobic organic aerosol coatings (derived from traffic VOC oxidation) and reduced
572 N₂O₅ heterogeneous uptake; at RH > 35%, $\tau_{N_2O_5}$ decreased with RH due to hygroscopic aerosol growth and
573 enhanced N₂O₅ hydrolysis, approaching zero during snowfall events (RH > 85%). For S_a , a threshold of ~500
574 $\mu\text{m}^2 \text{cm}^{-3}$ was identified—below this value, organic coatings and NO dominated $\tau_{N_2O_5}$; above it, S_a became the
575 primary regulator, with $\tau_{N_2O_5}$ decreasing as S_a increased.

576 NO was the dominant NO₃ sink in both periods, though its contribution varied with emission controls: it
577 accounted for 79.0% of NO₃ loss in the OGP, with N₂O₅ heterogeneous uptake (20.8%) as a significant
578 secondary pathway, while its contribution rose to 89.2% in the POP (driven by 3.8× higher NO emissions) and
579 N₂O₅ uptake declined to 10.6% (due to lower RH reducing aerosol reactivity). The N₂O₅ heterogeneous uptake
580 coefficient ($\gamma(N_2O_5)$) averaged 0.032 ± 0.049 in the OGP, higher than rural sites due to urban aerosols' higher
581 water content and reactive components (e.g., nitrate, sulfate). Despite the high reactivity of species like styrene
582 and isoprene, VOC oxidation contributed < 0.2% to NO₃ loss in both periods, confirming its negligible role in
583 winter NO₃ dynamics in urban Beijing.

584 These findings hold key implications for air quality management: BWO NO_x reductions enhanced N₂O₅
585 accumulation, potentially extending reactive nitrogen lifetime and shifting winter nitrate pollution from local
586 to regional scales—highlighting the need for regional coordination in NO_x mitigation; the identified S_a threshold
587 (500 $\mu\text{m}^2 \text{cm}^{-3}$) and $\gamma(N_2O_5)$ range (0.01–0.12) provide critical constraints for air quality models, which often
588 rely on oversimplified $\tau_{N_2O_5}$ and $\gamma(N_2O_5)$ parameters; and given NO's dominance in NO₃ loss and N₂O₅
589 dynamics, NO_x (not VOCs) should be prioritized for winter nocturnal nitrogen pollution control in Beijing—
590 reducing traffic-related NO emissions would simultaneously lower direct pollution and enhance N₂O₅ uptake,
591 promoting nitrate removal via wet deposition.

592 **Data availability.** Data are available at <https://doi.org/10.5281/zenodo.15381990> (T. Zhang et al., 2025).

593 **Supplement.** The following file is available free of charge. Supplement of “Measurement report: Variations
594 and environmental impacts of atmospheric N₂O₅ concentrations in urban Beijing during the 2022 Winter
595 Olympics”

596 **Author Contributions.** TZ, WL, and CY designed the research. WL, and CY organized this field campaign.
597 TZ, PZ, YC, TL and LZ carried out the field measurements and provided the field measurement dataset. TZ
598 performed data analysis, interpreted the data and wrote the manuscript with revision mainly from WL. All
599 authors have given approval to the final version of the manuscript.

600 **Competing interests.** The contact author has declared that none of the authors has any competing interests.

601 **Disclaimer.** Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims in
602 published maps and institutional affiliations.

603 **Acknowledgment.** The authors would like to thank the field campaign team for the data that they contributed
604 during the 2022 Beijing Winter Olympics.

605 **Financial support.** This study was financially supported by the National Natural Science Foundation of China
606 (42405083), the National Key Research and Development Program (2024YFC3711902).

607 **References**

608 Anttila, T., Kiendler-Scharr, A., Tillmann, R., and Mentel, T. F.: On the Reactive Uptake of Gaseous Compounds
609 by Organic-Coated Aqueous Aerosols: Theoretical Analysis and Application to the Heterogeneous
610 Hydrolysis of N_2O_5 , *J. Phys. Chem. A*, 110, 10435–10443, <https://doi.org/10.1021/jp062403c>, 2006.

611 Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, *Chem. Rev.*, 103, 4605–
612 4638, <https://doi.org/10.1021/cr0206420>, 2003.

613 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M.
614 J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase
615 reactions of O_x , HO_2 , NO_x and SO_x species, *Atmos. Chem. Phys.*, 4, 1461–1738,
616 <https://doi.org/10.5194/acp-4-1461-2004>, 2004.

617 Bertram, T. H., Thornton, J. A., Riedel, T. P., Middlebrook, A. M., Bahreini, R., Bates, T. S., Quinn, P. K., and
618 Coffman, D. J.: Direct observations of N_2O_5 reactivity on ambient aerosol particles, *Geophys. Res. Lett.*,
619 36, L19803, <https://doi.org/10.1029/2009GL040248>, 2009.

620 Bohn, B., Corlett, G. K., Gillmann, M., Sanghavi, S., Stange, G., Tensing, E., Vrekoussis, M., Bloss, W. J.,
621 Clapp, L. J., Kortner, M., Dorn, H.-P., Monks, P. S., Platt, U., Plass-Dülmmer, C., Mihalopoulos, N., Heard,
622 D. E., Clemitshaw, K. C., Meixner, F. X., Prevot, A. S. H., and Schmitt, R.: Photolysis frequency
623 measurement techniques: results of a comparison within the ACCENT project, *Atmos. Chem. Phys.*, 8,
624 5373–5391, <https://doi.org/10.5194/acp-8-5373-2008>, 2008.

625 Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, *Chem. Soc. Rev.*, 41, 6405,
626 <https://doi.org/10.1039/c2cs35181a>, 2012.

627 Brown, S. S., Dubé, W. P., Peischl, J., Ryerson, T. B., Atlas, E., Warneke, C., de Gouw, J. A., te Lintel Hekkert,
628 S., Brock, C. A., Flocke, F., Trainer, M., Parrish, D. D., Feshenfeld, F. C., and Ravishankara, A. R.: Budgets
629 for nocturnal VOC oxidation by nitrate radicals aloft during the 2006 Texas Air Quality Study, *J. Geophys.
630 Res.*, 116, 1–15, <https://doi.org/10.1029/2011JD016544>, 2011.

631 Brown, S. S., Dubé, W. P., Tham, Y. J., Zha, Q., Xue, L., Poon, S., Wang, Z., Blake, D. R., Tsui, W., Parrish, D.
632 D., and Wang, T.: Nighttime chemistry at a high altitude site above Hong Kong, *J. Geophys. Res. Atmos.*,

633 121, 2457–2475, <https://doi.org/10.1002/2015JD024566>, 2016.

634 Brown, S. S., An, H., Lee, M., Park, J.-H., Lee, S.-D., Fibiger, D. L., McDuffie, E. E., Dubé, W. P., Wagner, N.
635 L., and Min, K.-E.: Cavity enhanced spectroscopy for measurement of nitrogen oxides in the Anthropocene:
636 results from the Seoul tower during MAPS 2015, *Faraday Discuss.*, 200, 529–557,
637 <https://doi.org/10.1039/C7FD00001D>, 2017.

638 Chang, W. L., Bhave, P. V., Brown, S. S., Riemer, N., Stutz, J., and Dabdub, D.: Heterogeneous Atmospheric
639 Chemistry, Ambient Measurements, and Model Calculations of N_2O_5 : A Review, *Aerosol Sci. Technol.*, 45,
640 665–695, <https://doi.org/10.1080/02786826.2010.551672>, 2011.

641 Cheng, X., Li, H., Zhang, Y., and Li, Y.: Atmospheric isoprene and monoterpenes in a typical urban area of
642 Beijing: Pollution characterization, chemical reactivity and source identification, *J. Environ. Sci.*, 71, 150–
643 167, <https://doi.org/10.1016/j.jes.2017.12.017>, 2018.

644 Crutzen, P. J.: The Role of NO and NO_2 in the Chemistry of the Troposphere and Stratosphere, *Annu. Rev. Earth*
645 *Planet. Sci.*, 7, 443–472, <https://doi.org/10.1146/annurev.ea.07.050179.002303>, 1979.

646 Folkers, M., Mentel, Th. F., and Wahner, A.: Influence of an organic coating on the reactivity of aqueous aerosols
647 probed by the heterogeneous hydrolysis of N_2O_5 , *Geophys. Res. Lett.*, 30, 2003GL017168,
648 <https://doi.org/10.1029/2003GL017168>, 2003.

649 Fry, J. L. and Sackinger, K.: Model investigation of NO_3 secondary organic aerosol (SOA) source and
650 heterogeneous organic aerosol (OA) sink in the western United States, *Atmos. Chem. Phys.*, 12, 8797–
651 8811, <https://doi.org/10.5194/acp-12-8797-2012>, 2012.

652 Hoyle, C. R., Berntsen, T., Myhre, G., and Isaksen, I. S. A.: Secondary organic aerosol in the global aerosol -
653 chemical transport model Oslo CTM2, *Atmos. Chem. Phys.*, 7, 5675–5694, <https://doi.org/10.5194/acp-7-5675-2007>, 2007.

654 Hu, H., Wang, H., Lu, K., Wang, J., Zheng, Z., Xu, X., Zhai, T., Chen, X., Lu, X., Fu, W., Li, X., Zeng, L., Hu,
655 M., Zhang, Y., and Fan, S.: Variation and trend of nitrate radical reactivity towards volatile organic
656 compounds in Beijing, China, *Atmos. Chem. Phys.*, 23, 8211–8223, <https://doi.org/10.5194/acp-23-8211-2023>, 2023.

657 Huang Z., Hu W., Jin R., Hou S., LI P., Bi K., He C., Wang Y., Duan P., Liu D., Wu L., Deng J., Sun Y., and Fu
658 P.: Chemical composition and sources of fine particles in Beijing around the Winter Olympics, *China*
659 *Environ. Sci.*, 44, 5344–5356, <https://doi.org/10.19674/j.cnki.issn1000-6923.20240604.002>, 2024.

660 Li, H., Zheng, B., Lei, Y., Hauglustaine, D., Chen, C., Lin, X., Zhang, Y., Zhang, Q., and He, K.: Trends and
661 drivers of anthropogenic NO_x emissions in China since 2020, *Environ. Sci. Ecotechnol.*, 21, 100425,
662 <https://doi.org/10.1016/j.ese.2024.100425>, 2024.

663 Li, L., Li, H., and Zhang, X.: Pollution characteristics and health risk assessment of benzene homologues in
664 ambient air in the northeastern urban area of Beijing, China, *J. Environ. Sci.*, 26, 214–223,
665 [https://doi.org/10.1016/S1001-0742\(13\)60400-3](https://doi.org/10.1016/S1001-0742(13)60400-3), 2014.

666 Li, Z., Xie, P., Hu, R., Wang, D., Jin, H., Chen, H., Lin, C., and Liu, W.: Observations of N_2O_5 and NO_3 at a
667 suburban environment in Yangtze river delta in China: Estimating heterogeneous N_2O_5 uptake coefficients,

670 J. Environ. Sci., 95, 248–255, <https://doi.org/10.1016/j.jes.2020.04.041>, 2020.

671 Li, Z., Wang, D., Xie, P., Hu, R., Chen, H., and Lin, C.: Nighttime N₂O₅ chemistry in an urban site of Beijing
672 in winter based on the measurements by cavity ring-down spectroscopy, Air Qual. Atmos. Hlth., 15, 867–
673 876, <https://doi.org/10.1007/s11869-021-01125-4>, 2022.

674 Lin, C., Hu, R., Xie, P., Lou, S., Zhang, G., Tong, J., Liu, J., and Liu, W.: Nocturnal atmospheric chemistry of
675 NO₃ and N₂O₅ over Changzhou in the Yangtze River Delta in China, J. Environ. Sci., 114, 376–390,
676 <https://doi.org/10.1016/j.jes.2021.09.016>, 2022.

677 Lu, X., Qin, M., Xie, P., Duan, J., Fang, W., and Liu, W.: Observation of ambient NO₃ radicals by LP-DOAS at
678 a rural site in North China Plain, Sci. Total Environ., 804, 149680,
679 <https://doi.org/10.1016/j.scitotenv.2021.149680>, 2022.

680 McNeill, V. F., Patterson, J., Wolfe, G. M., and Thornton, J. A.: The effect of varying levels of surfactant on the
681 reactive uptake of N₂O₅ to aqueous aerosol, Atmos. Chem. Phys., 6, 1635–1644,
682 <https://doi.org/10.5194/acp-6-1635-2006>, 2006.

683 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M.,
684 Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L.,
685 Kiendler-Scharr, A., Lee, B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang,
686 B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J.,
687 Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.: Nitrate radicals and biogenic volatile organic
688 compounds: oxidation, mechanisms, and organic aerosol, Atmos. Chem. Phys., 17, 2103–2162,
689 <https://doi.org/10.5194/acp-17-2103-2017>, 2017.

690 Osthoff, H. D., Sommariva, R., Baynard, T., Pettersson, A., Williams, E. J., Lerner, B. M., Roberts, J. M., Stark,
691 H., Goldan, P. D., Kuster, W. C., Bates, T. S., Coffman, D., Ravishankara, A. R., and Brown, S. S.:
692 Observation of daytime N₂O₅ in the marine boundary layer during New England Air Quality Study–
693 Intercontinental Transport and Chemical Transformation 2004, J. Geophys. Res. Atmospheres, 111,
694 <https://doi.org/10.1029/2006JD007593>, 2006.

695 Phillips, G. J., Thieser, J., Tang, M. J., Sobanski, N., Schuster, G., Fachinger, J., Drewnick, F., Borrmann, S.,
696 Bingemer, H., Lelieveld, J., and Crowley, J. N.: Estimating N₂O₅ uptake coefficients using ambient
697 measurements of NO₃, N₂O₅, ClNO₂ and particle-phase nitrate, Atmos. Chem. Phys., 1–9,
698 <https://doi.org/10.5194/acp-2016-693>, 2016.

699 Pye, H. O. T., Chan, A. W. H., Barkley, M. P., and Seinfeld, J. H.: Global modeling of organic aerosol: the
700 importance of reactive nitrogen (NO_x and NO₃), Atmos. Chem. Phys., 10, 11261–11276,
701 <https://doi.org/10.5194/acp-10-11261-2010>, 2010.

702 Tang, M. J., Schuster, G., and Crowley, J. N.: Heterogeneous reaction of N₂O₅ with illite and Arizona test dust
703 particles, Atmos. Chem. Phys., 14, 245–254, <https://doi.org/10.5194/acp-14-245-2014>, 2014.

704 Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N., Bohn, B., Li, X., Kecorius,
705 S., Größ, J., Shao, M., Wiedensohler, A., Zhang, Y., and Wang, T.: Significant concentrations of nitryl
706 chloride sustained in the morning: investigations of the causes and impacts on ozone production in a

707 polluted region of northern China, *Atmos. Chem. Phys.*, 16, 14959–14977, <https://doi.org/10.5194/acp-16-14959-2016>, 2016.

709 Tham, Y. J., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C., Kecorius, S., Wiedensohler, A.,
710 Zhang, Y., and Wang, T.: Heterogeneous N_2O_5 uptake coefficient and production yield of ClNO_2 in polluted
711 northern China: roles of aerosol water content and chemical composition, *Atmos. Chem. Phys.*, 18, 13155–
712 13171, <https://doi.org/10.5194/acp-18-13155-2018>, 2018.

713 Wang, D., Xie, P., Hu, R., Li, Z., Chen, H., and Jin, H.: Reactivity and Loss Mechanisms of NO_3 and N_2O_5 at a
714 Rural Site on the North China Plain, *Atmosphere*, 13, 1268, <https://doi.org/10.3390/atmos13081268>, 2022.

715 Wang, H., Lu, K., Chen, X., Zhu, Q., Chen, Q., Guo, S., Jiang, M., Li, X., Shang, D., Tan, Z., Wu, Y., Wu, Z.,
716 Zou, Q., Zheng, Y., Zeng, L., Zhu, T., Hu, M., and Zhang, Y.: High N_2O_5 Concentrations Observed in
717 Urban Beijing: Implications of a Large Nitrate Formation Pathway, *Environ. Sci. Technol. Lett.*, 4, 416–
718 420, <https://doi.org/10.1021/acs.estlett.7b00341>, 2017a.

719 Wang, H., Lu, K., Guo, S., Wu, Z., Shang, D., Tan, Z., Wang, Y., Le Breton, M., Lou, S., Tang, M., Wu, Y., Zhu,
720 W., Zheng, J., Zeng, L., Hallquist, M., Hu, M., and Zhang, Y.: Efficient N_2O_5 uptake and NO_3 oxidation in
721 the outflow of urban Beijing, *Atmos. Chem. Phys.*, 18, 9705–9721, <https://doi.org/10.5194/acp-18-9705-2018>, 2018.

722 Wang, H., Chen, X., Lu, K., Hu, R., Li, Z., Wang, H., Ma, X., Yang, X., Chen, S., Dong, H., Liu, Y., Fang, X.,
723 Zeng, L., Hu, M., and Zhang, Y.: NO_3 and N_2O_5 chemistry at a suburban site during the EXPLORE-YRD
724 campaign in 2018, *Atmos. Environ.*, 224, 117180, <https://doi.org/10.1016/j.atmosenv.2019.117180>, 2020.

725 Wang, H., Lu, K., Chen, S., Li, X., Zeng, L., Hu, M., and Zhang, Y.: Characterizing nitrate radical budget trends
726 in Beijing during 2013–2019, *Sci. Total Environ.*, 795, 148869,
727 <https://doi.org/10.1016/j.scitotenv.2021.148869>, 2021.

728 Wang, H., Wang, H., Lu, X., Lu, K., Zhang, L., Tham, Y. J., Shi, Z., Aikin, K., Fan, S., Brown, S. S., and Zhang,
729 Y.: Increased night-time oxidation over China despite widespread decrease across the globe, *Nat. Geosci.*,
730 16, 217–223, <https://doi.org/10.1038/s41561-022-01122-x>, 2023a.

731 Wang, J., Wang, H., Tham, Y. J., Ming, L., Zheng, Z., Fang, G., Sun, C., Ling, Z., Zhao, J., and Fan, S.:
732 Measurement report: Atmospheric nitrate radical chemistry in the South China Sea influenced by the urban
733 outflow of the Pearl River Delta, *Atmos. Chem. Phys.*, 24, 977–992, <https://doi.org/10.5194/acp-24-977-2024>, 2024.

734 Wang, M., Zeng, L., Lu, S., Shao, M., Liu, X., Yu, X., Chen, W., Yuan, B., Zhang, Q., Hu, M., and Zhang, Z.:
735 Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for
736 online measurements of volatile organic compounds, *Anal. Methods*, 6, 9424–9434,
737 <https://doi.org/10.1039/C4AY01855A>, 2014.

738 Wang, S., Shi, C., Zhou, B., Zhao, H., Wang, Z., Yang, S., and Chen, L.: Observation of NO_3 radicals over
739 Shanghai, China, *Atmos. Environ.*, 70, 401–409, <https://doi.org/10.1016/j.atmosenv.2013.01.022>, 2013.

740 Wang, X., Wang, H., Xue, L., Wang, T., Wang, L., Gu, R., Wang, W., Tham, Y. J., Wang, Z., Yang, L., Chen, J.,
741 and Wang, W.: Observations of N_2O_5 and ClNO_2 at a polluted urban surface site in North China: High

742 and Wang, W.: Observations of N_2O_5 and ClNO_2 at a polluted urban surface site in North China: High

743 and Wang, W.: Observations of N_2O_5 and ClNO_2 at a polluted urban surface site in North China: High

744 N_2O_5 uptake coefficients and low ClNO_2 product yields, *Atmos. Environ.*, 156, 125–134,
745 <https://doi.org/10.1016/j.atmosenv.2017.02.035>, 2017b.

746 Wang, Y., Xi, S., Zhao, F., Huey, L. G., and Zhu, T.: Decreasing Production and Potential Urban Explosion of
747 Nighttime Nitrate Radicals amid Emission Reduction Efforts, *Environ. Sci. Technol.*, 57, 21306–21312,
748 <https://doi.org/10.1021/acs.est.3c09259>, 2023b.

749 Wang, Z., Wang, W., Tham, Y. J., Li, Q., Wang, H., Wen, L., Wang, X., and Wang, T.: Fast heterogeneous N_2O_5
750 uptake and ClNO_2 production in power plant and industrial plumes observed in the nocturnal residual layer
751 over the North China Plain, *Atmos. Chem. Phys.*, 17, 12361–12378, <https://doi.org/10.5194/acp-17-12361-2017>, 2017c.

752 Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-Mas, C. E., Hjorth, J., Le Bras, G., Moortgat, G. K.,
753 Perner, D., Poulet, G., Restelli, G., and Sidebottom, H.: The nitrate radical: Physics, chemistry, and the
754 atmosphere, *Atmos. Environ. Part Gen. Top.*, 25, 1–203, [https://doi.org/10.1016/0960-1686\(91\)90192-A](https://doi.org/10.1016/0960-1686(91)90192-A),
755 1991.

756 Xia, M., Peng, X., Wang, W., Yu, C., Sun, P., Li, Y., Liu, Y., Xu, Z., Wang, Z., Xu, Z., Nie, W., Ding, A., and
757 Wang, T.: Significant production of ClNO_2 and possible source of Cl_2 from N_2O_5 uptake at a suburban site
758 in eastern China, *Atmos. Chem. Phys.*, 20, 6147–6158, <https://doi.org/10.5194/acp-20-6147-2020>, 2020.

759 Xia, M., Peng, X., Wang, W., Yu, C., Wang, Z., Tham, Y. J., Chen, J., Chen, H., Mu, Y., Zhang, C., Liu, P., Xue,
760 L., Wang, X., Gao, J., Li, H., and Wang, T.: Winter ClNO_2 formation in the region of fresh anthropogenic
761 emissions: seasonal variability and insights into daytime peaks in northern China, *Atmos. Chem. Phys.*, 21,
762 15985–16000, <https://doi.org/10.5194/acp-21-15985-2021>, 2021.

763 Yan, C., Yee Jun, T., Nie, W., Xia, M., Wang, H., Guo, Y., Ma, W., Zhan, J., Li, Y., Deng, C., Li, Y., Zheng, F.,
764 Chen, X., Li, Q., Zhang, G., Mahajan, A., Cuevas, C. A., Huang, D., and Kulmala, M.: Increasing
765 contribution of nighttime nitrogen chemistry to wintertime haze formation in Beijing observed during
766 COVID-19 lockdowns, *Nat. Geosci.*, 16, <https://doi.org/10.1038/s41561-023-01285-1>, 2023.

767 Yao Y., Wang S., Wei N., Ye C., Zhang C., Gu X., Zhao W., and Zhang W.: Analysis of surface ozone sources
768 in Beijing during the 2022 Beijing Winter Olympic Games based on total peroxy radical measurement,
769 *Acta Sci. Circumst.*, 43, 290–297, <https://doi.org/10.13671/j.hjkxxb.2023.0070>, 2023.

770 Yu, C., Wang, Z., Xia, M., Fu, X., Wang, W., Tham, Y. J., Chen, T., Zheng, P., Li, H., Shan, Y., Wang, X., Xue,
771 L., Zhou, Y., Yue, D., Ou, Y., Gao, J., Lu, K., Brown, S. S., Zhang, Y., and Wang, T.: Heterogeneous N_2O_5
772 reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake
773 parameters, *Atmos. Chem. Phys.*, 20, 4367–4378, <https://doi.org/10.5194/acp-20-4367-2020>, 2020.

774 Yuan, Z., Lau, A. K. H., Shao, M., Louie, P. K. K., Liu, S. C., and Zhu, T.: Source analysis of volatile organic
775 compounds by positive matrix factorization in urban and rural environments in Beijing, *J. Geophys. Res.
776 Atmospheres*, 114, <https://doi.org/10.1029/2008JD011190>, 2009.

777 Yun, H., Wang, W., Wang, T., Xia, M., Yu, C., Wang, Z., Poon, S. C. N., Yue, D., and Zhou, Y.: Nitrate formation
778 from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China, *Atmos.
779 Chem. Phys.*, 18, 17515–17527, <https://doi.org/10.5194/acp-18-17515-2018>, 2018.

780

781 Zhang, H., Wang, S., and Hao, J.: Air pollution and control action in Beijing, *J. Clean. Prod.*, 112, 1519–1527,
782 <https://doi.org/10.1016/j.jclepro.2015.04.092>, 2016.

783 Zhang T., Zuo P., Ma J., Ye C., Lin W., and Zhu T.: Characterization and Application of an Online Measurement
784 System for NO₃ and N₂O₅ Based on Cavity Ring-Down Spectroscopy, *Acta Sci. Nat. Univ. Pekin.*, 60,
785 563–574, <https://doi.org/10.13209/j.0479-8023.2024.030>, 2024.

786 Zhang, T., Ma, J., Liu, T., Lin, W., Zuo, P., and Ye, C.: A dynamic generation system for NO₃ and N₂O₅ standard
787 gases, *Environ. Chem.*, 45, 1–7, <https://doi.org/10.7524/j.issn.0254-6108.2024091302>, 2026.

788 Zhou, J., Zhao, W., Zhang, Y., Fang, B., Cheng, F., Xu, X., Ni, S., Zhang, W., Ye, C., Chen, W., and Venables,
789 D. S.: Amplitude-Modulated Cavity-Enhanced Absorption Spectroscopy with Phase-Sensitive Detection:
790 A New Approach Applied to the Fast and Sensitive Detection of NO₂, *Anal. Chem.*, 94, 3368–3375,
791 <https://doi.org/10.1021/acs.analchem.1c05484>, 2022.

792 Zhou, W., Zhao, J., Ouyang, B., Mehra, A., Xu, W., Wang, Y., Bannan, T. J., Worrall, S. D., Priestley, M., Bacak,
793 A., Chen, Q., Xie, C., Wang, Q., Wang, J., Du, W., Zhang, Y., Ge, X., Ye, P., Lee, J. D., Fu, P., Wang, Z.,
794 Worsnop, D., Jones, R., Percival, C. J., Coe, H., and Sun, Y.: Production of N₂O₅ and ClNO₂ in summer in
795 urban Beijing, China, *Atmos. Chem. Phys.*, 18, 11581–11597, <https://doi.org/10.5194/acp-18-11581-2018>,
796 2018a.

797 Zhou, W., Zhao, J., Ouyang, B., Mehra, A., Xu, W., Wang, Y., Bannan, T. J., Worrall, S. D., Priestley, M., Bacak,
798 A., Chen, Q., Xie, C., Wang, Q., Wang, J., Du, W., Zhang, Y., Ge, X., Ye, P., Lee, J. D., Fu, P., Wang, Z.,
799 Worsnop, D., Jones, R., Percival, C. J., Coe, H., and Sun, Y.: Production of N₂O₅ and ClNO₂ in summer in
800 urban Beijing, China, *Atmos. Chem. Phys.*, 18, 11581–11597, <https://doi.org/10.5194/acp-18-11581-2018>,
801 2018b.

802 Zhu, T., Tang, M., Gao, M., Bi, X., Cao, J., Che, H., Chen, J., Ding, A., Fu, P., Gao, J., Gao, Y., Ge, M., Ge, X.,
803 Han, Z., He, H., Huang, R.-J., Huang, X., Liao, H., Liu, C., Liu, H., Liu, J., Liu, S. C., Lu, K., Ma, Q., Nie,
804 W., Shao, M., Song, Y., Sun, Y., Tang, X., Wang, T., Wang, T., Wang, W., Wang, X., Wang, Z., Yin, Y.,
805 Zhang, Q., Zhang, W., Zhang, Y., Zhang, Y., Zhao, Y., Zheng, M., Zhu, B., and Zhu, J.: Recent Progress in
806 Atmospheric Chemistry Research in China: Establishing a Theoretical Framework for the “Air Pollution
807 Complex”※, *Adv. Atmos. Sci.*, 1339–1361, 2023.