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Abstract 25 

Long–term data on PM2.5 chemical composition provide essential information for evaluating the effectiveness of air 

pollution control measures and understanding the evolving mechanisms of secondary species formation in the real atmosphere. 

This study presented field measurements of PM2.5 and its chemical composition at a regional background site in the Pearl River 

Delta (PRD) from 2007 to 2020. PM2.5 concentration declined significantly from 87.1 ± 15.5 μg m−3 to 34.0 ± 11.3 μg m−3 (–

4.0 μg m–3 yr–1). The proportion of secondary species increased from 57% to 73% with the improvement in air quality. Among 30 

these species, sulfate (SO4
2–) showed a sharp decline, while nitrate (NO3

–) exhibited a moderate decrease. Consequently, the 

proportion of NO3
– in 2020 doubled relative to 2007. In addition, we further found that SO4

2– reduction (–10% yr–1) lagged 

behind SO2 reduction (–13% yr–1), while NO3
− reduction (–6% yr–1) outpaced that of NO2 (–3% yr–1). These contrasting trends 

were associated with an increase in sulfur oxidation rate (SOR) and a decrease in nitrogen oxidation rate (NOR). Changes in 

PM2.5 chemical composition also influenced aerosol physicochemical properties, such as aerosol pH (0.04 yr–1), aerosol liquid 35 

water content (ALWC, –1.1 μg m–3 yr–1), and the light extinction coefficient (–21.44 Mm–1 yr–1). Given important roles of 

aerosol acidity and ALWC in the heterogeneous reactions, these changes may further inhibit the formation of secondary species 

in the atmosphere, particularly secondary organic aerosols. 
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1. Introduction 

Particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) is a major air pollutant with significant 40 

implications for global climate, air quality, and human health (Burnett et al., 2018; Chen et al., 2021; Ding et al., 2021; Pye et 

al., 2021; Vohra et al., 2022). PM2.5 comprises a complex mixture of primary and secondary components. Primary components, 

including primary organic aerosol (POA), elemental carbon (EC), and metal ions (e.g., K+, Ca2+, Na+, Mg2+ ), are mostly 

emitted from anthropogenic activities. Secondary components, such as secondary organic aerosols (SOA) and secondary 

inorganic aerosols (SIA; i.e., sulfate, nitrate, and ammonium), are formed through oxidation of gaseous pollutants (SO₂, NOx, 45 

and VOCs, etc.) and partition processes. China experienced rapid economic growth and urbanization in the past decades. To 

address severe air pollution, the Chinese government issued the Air Pollution Prevention and Control Action Plan in 2013 

(Geng et al., 2024). As a result, the chemical composition in PM2.5 over China changed significantly (Geng et al., 2019). This 

change has an important impact on aerosol acidity, ALWC, and light extinction (Nguyen et al., 2016; Pye et al., 2020; Liu et 

al., 2022).  50 

Acidity, defined as pH, is a crucial aerosol property that affects human health, ecosystems and climate (Nenes et al., 

2020; Su et al., 2020; Song et al., 2024). Low pH increases solubility of metals associated with mineral dust (Fang et al., 2017). 

Previous epidemiological studies revealed that exposure to acidic PM2.5 is relevant to high mortality and morbidity (Gwynn et 

al., 2000; Zhang et al., 2022a). Additionally, aerosol acidity and ALWC regulate the gas–particle partitioning of semi–volatile 

compounds, as well as chemical reaction rates in the atmosphere, highlighting their importance for the atmospheric lifetime of 55 

pollutants (Pye et al., 2020; Nenes et al., 2021). Aqueous uptake is an important formation pathway for secondary species (Yu 

et al., 2005; Kawamura and Bikkina, 2016; Liu et al., 2021). As an abundant medium, ALWC can enhance their formation 

(Carlton and Turpin, 2013; Zheng et al., 2015). By modifying particle ability to be activated into cloud condensation nuclei 

(CCN), ALWC can further influence the climate system (Duan et al., 2019). Furthermore, Attwood et al. (2014) reported that 

the changes in ALWC significantly influenced the aerosol light extinction and radiative forcing. Therefore, it is necessary to 60 

explore the trends of pH and ALWC under the changes in PM2.5 chemical composition. 

Aerosol pH and ALWC are determined by the presence of acidic components (i.e., sulfate and nitrate), alkaline 

components (i.e., ammonium) (Seinfeld et al., 1998), and meteorological conditions, such as temperature and relative humidity. 

(Wang et al., 2022a). However, aerosol acidity is more sensitive to dominant chemical species rather than meteorological 

conditions (Wu et al., 2023). According to sensitivity tests, T-H2SO4 (SO2 + SO4
2-) and T-NH3 (NH3 + NH4

+) have the most 65 

dominant negative and positive contributions to pH variation, respectively (Wu et al., 2023). The aerosol pH exhibited 

noticeable spatial heterogeneity. For example, the pH values in North China (e.g., Beijing (3.0–4.9), Zhengzhou (4.5), Anyang 
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(4.8)) (Liu et al., 2017; Wang et al., 2020) were generally higher than those in South China (e.g., Guangzhou (-0.04–0.81), 

Shanghai (3.06–3.30), South China Sea (1.7)) (Fu et al., 2015; Wang et al., 2022a; Zhou et al., 2022). This could be attributed 

to the higher fraction of sulfate observed in southern China (Geng et al., 2017; Liu et al., 2023) and the elevated ammonia 70 

emissions in northern China (Liu et al., 2023). Zhou et al. (2022) reported a downward trend of pH (from 3.33 to 3.06) at a 

rate of –0.24 yr–1 in the Yangtze River Delta (YRD) from 2011 to 2019. Conversely, Fu et al. (2015) reported an upward trend 

of pH (from –0.30 to 0.81) in the PRD during 2007–2012. However, this study did not cover the post–2013 period, a key period 

for air quality improvement. 

Chemical composition in PM2.5 also affects atmospheric visibility through light scattering and absorption. Light 75 

scattering is dominated by hydrophilic components, such as organic mass (OM), (NH4)2SO4, and NH4NO3, while light 

absorption is largely driven by light–absorbing carbon (Wang et al., 2012). To estimate the light extinction coefficient (bext), 

the first Interagency Monitoring of Protected Visual Environments (IMPROVE) equation was developed by the U.S. National 

Park Service with support from the U.S. Environmental Protection Agency (EPA) (Malm et al., 1994; EPA, 2003), but this 

equation tended to underestimate (overestimate) the highest (lowest) bext values. Consequently, the revised IMPROVE 80 

equation was then proposed (Malm and Hand, 2007; Pitchford et al., 2007). However, the scattering/absorbing efficiency 

(MSE/MAE) in the revised equation is an approximation based on measurements from clean areas. In addition, the calculation 

of hygroscopic growth factor (f(RH)) in the revised equation depends on relative humidity (RH) and particle size distribution 

(or aerosols mass), but does not account for the chemical composition in aerosols, which has been shown to significantly affect 

f(RH) (Li et al., 2021). These simplifications could lead to large discrepancies in polluted regions. For instance, the deviations 85 

between observed and estimated bext values were reported as 15%, 36%, and 37% in Xi’an, Shanghai, and Guangzhou, 

respectively (Jung et al., 2009; Cao et al., 2012; Cheng et al., 2015). Thus, region-specific adjustments are necessary to reflect 

the impact of particle composition on these parameters from site to site.   

Many long-term monitoring programs have been implemented to formulate pollution control strategies and explore 

underlying factors of aerosol properties variation. For example, the IMPROVE program in the United States, initiated in 1985, 90 

tracks visibility trends and their driving factors (Hand et al., 2024). The Southeastern Aerosol Research and Characterization 

(SEARCH) network, established in 1998, provides detailed insights into aerosol chemistry and precursor gases (Blanchard et 

al., 2013). In Europe, the European Monitoring and Evaluation Program (EMEP) has operated since 2004 to address air 

pollution issues related to acidification, eutrophication, and climate impacts (EMEP, 2024). In China, long–term PM2.5 

monitoring began in Hong Kong, where the Environmental Protection Department (HKEPD) initiated comprehensive chemical 95 

composition measurements in 1999. Subsequent collaborations expanded the monitoring network to encompass the 

Guangdong–Hong Kong–Macao Greater Bay Area in 2015 (HKEPD, 2021; Chow et al., 2022).  
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As one of the most outstanding areas for air pollution improvement, the PRD region first met National Ambient Air 

Quality Standards (AQS) for annual average PM2.5 (35 μg m−3) in 2015 (Department of Ecology and Environment of 

Guangdong Province, 2016). PM2.5 in the PRD (32.2–46.1 μg m−3) was significantly lower than the YRD (44.8–67.1 μg m−3), 100 

the North China Plain (NCP) (64.0–101.9 μg m−3), and other regions (45.1–65.4 μg m−3) (Zhang et al., 2019). Regarding 

chemical composition, nitrate was the dominant species in the YRD and the NCP. However, OM constitutes the largest fraction 

in the PRD, similar to other low PM2.5 areas worldwide (Zhang et al., 2007; Ming et al., 2017; Geng et al., 2019; Wang et al., 

2022b; Yang et al., 2023). So far, long-term studies of PM2.5 chemical components in the PRD remain scarce. Fu et al. observed 

substantial reductions in organic carbon (OC) and SO4
2–, but relatively stable NO3

– during 2007–2011, alongside increased 105 

aerosol pH and decreased light extinction (Fu et al., 2014; 2015; 2016). However, this study did not cover the post–2013 period, 

a key period for air quality improvement. Yan et al. (2020) conducted a meta–analysis (2004−2019), identifying three stages 

of decline, rise, and stabilization in the fractions of secondary species. Chow et al. (2022) reported the reduction in NO3
– (66%), 

EC (60%), hopanes (75%), and K+ (60%) exceeding that of PM2.5 (40%), confirming effective control of vehicle emissions 

and biomass burning in Hong Kong (2008–2017). In addition, these studies observed an unproportional relationships between 110 

SO4
2–/SO2, as well as NO3

–/NO2, but the underlying reasons remain unclear. Furthermore, long-term trends of aerosol acidity, 

ALWC, and light extinction, which are highly dependent on PM2.5 chemical composition, were not fully investigated. These 

limitations underscore the need for a more comprehensive, long-term study to explore the underlying mechanisms behind these 

changes in the PRD. 

Our study presents a comprehensive analysis of 532 quartz filter–based PM2.5 samples collected over 14 years (2007–115 

2020, wintertime) at a regional background station. We examined the evolving PM2.5 chemical composition, focusing on both 

primary and secondary species. The unproportional relationships between SO4
2–/SO2, as well as NO3

–/NO2 will be discussed. 

In addition, we also analyzed variations of aerosol pH, ALWC, and light extinction under the influence of changes in PM2.5 

chemical composition. 

 120 

2. Methodology 

2.1 Field sampling 

The typical Asian monsoon climate influences the PRD region. In summertime, prevailing southwesterly winds bring 

humid and clean air mass from South China Sea or the northwestern Pacific Ocean. In contrast, during the fall and winter, 

prevailing northerly winds carry dry and polluted air mass from northern continent. Additionally, the region is often influenced 125 

by high–pressure ridges in the fall and winter, which results in a low boundary layer and a high frequency of inversion. These 
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conditions facilitate the accumulation of pollutants. Consequently, PM2.5 and other pollutants show a distinct summer–winter 

contrast, with significantly elevated pollutant levels in fall and winter (Fu et al., 2014; Chow et al., 2022). Our field campaigns 

were mainly conducted from October to December. 

The sampling site, Wanqingsha (WQS; 22.42°N, 113.32°E), is located in a rural area of Guangzhou and the center of 130 

the PRD region (Fig. 1). Local anthropogenic emissions have limited influence on this site due to low traffic flow and few 

factories in the surrounding area. This makes it an ideal background site for investigating regional air pollution. Twenty–four–

hour sampling was conducted using a PM2.5 sampler equipped with quartz filters (8 in.×10 in.) at a flow rate of 1.1 m3 min−1. 

The quartz filters were pre–baked at 450°C for four hours prior to field sampling and stored at −20°C after sampling until 

analysis. Blank samples were collected during the sampling periods. A total of 532 samples were collected and analyzed in 135 

this study. Gaseous pollutants data (SO2, NO2, NO, and O3) and meteorological parameters were obtained from an air quality 

monitoring station operated at WQS. The gaseous pollutant data during 2012–2013 were unavailable because the station was 

under maintenance. 

 

Figure 1. The PRD region consists of Guangzhou (GZ), Shenzhen (SZ), Zhuhai (ZH), Dongguan (DG), Foshan (FS), Huizhou (HZ), 140 

Zhongshan (ZS), Zhaoqing (ZQ), and Jiangmen (JM). The sampling site WQS is located in the central area of this region. 
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2.2 Chemical analysis 

Because the determination of OC and EC are highly sensitive to analytical conditions, different thermal-optical methods 

may lead to discrepancies in the OC/EC measurements (Khan et al., 2012; Giannoni et al., 2016). To minimize potential 145 

measurement biases and enhance data comparability, we used the same thermal-optical carbon analyzer and followed the same 

analytical protocol throughout the study. Specifically, the OC and EC were determined by the thermal–optical transmittance 

(TOT) method (NIOSH, 1999) using an OC/EC analyzer (Sunset Laboratory Inc., USA), with a punch (1.5 × 1.0 cm) of the 

sampled filters. The samples were analyzed by stepwise heating. First, the sample was heated sequentially to 870 °C (310 °C 

for 60 s, 475 °C for 60 s, 620 °C for 60 s, and 870 °C for 90 s) under a pure helium (He) atmosphere. OC was volatilized and a 150 

portion of it underwent pyrolysis, forming pyrolyzed carbon during this period. After cooling, the sample was reheated under 

a 2% O2/He atmosphere up to 920 °C (625 °C for 30 s, 700 °C for 30 s, 775 °C for 30 s, 850 °C for 30 s, and 920 °C for 30 s) 

to oxidize EC and pyrolyzed carbon. 

For the water–soluble inorganic ions, a punch (5.06 cm2) of the filters was extracted twice with 10 mL ultrapure Milli–

Q water (18.2 MΩ cm/25 °C) each for 15 min using an ultrasonic ice–water bath. The total water extracts (20 mL) were filtered 155 

through a 0.22 μm pore size filter and then stored in a pre–cleaned HDPE bottle. The cations (i.e., Na+, NH4
+, K+, Mg2+, and 

Ca2+) and anions (i.e., Cl−, NO3
−, and SO4

2−) were analyzed with an ion–chromatography system (Metrohm, 883 Basic IC plus). 

Due to the negative mass artifacts associated with the volatilization of ammonium nitrate, the measured concentrations of NO3
− 

and NH4
+ may be underestimated (Chow et al., 2005; Yu et al., 2006). Cations were measured using a Metrohm Metrosep C4–

100 column with 2 mmol L−1 sulfuric acid as the eluent. Anions were measured using a Metrohm Metrosep A sup 5–150 160 

column equipped with a suppressor. The anion eluent was a solution of 3.2 mmol L−1 Na2CO3 and 1.0 mmol L−1 NaHCO3.  

 

2.3 Quality assurance/quality control (QA/QC) 

Prior to OC/EC analysis, we calibrated the instrument using glucose standards at multiple concentrations. The instrument 

responses were highly linear (R² > 0.99) and the relative errors between measured and prepared concentrations were within ± 165 

5%. The method detection limits (MDLs) were 0.01–0.05 μg m−3 for the OC, EC, cations, and anions. Ion balance was 

employed as a quality control check in the anion/cation analysis. A significant linear correlation (R2 = 0.97) was observed 

between anions and cations, with a slope of 0.82 for all PM2.5 samples. This slope, being close to unity, indicated that all the 

significant ions were resolved.  

Blank samples were analyzed in the same way as field samples. All the OC/EC and cation/anion data were corrected by 170 

subtracting the field blank samples. As shown in Fig. S1, all measured components exhibited minimal variability in the blank 
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filter samples. This indicated that the influence of analytical and sampling biases related to blank subtraction and experimental 

procedures was limited, further supporting the reliability of the long-term trends observed in this study. 

Before data analysis, all data were manually inspected and outliers (i.e., X75%+3(X75%−X25%)) were removed to rule out 

the influence of extreme concentrations on overall trends. The change rates were calculated using the slopes derived from 175 

Theil–Sen regression and evaluated for statistical significance via the non-parametric Mann–Kendall test, providing a robust 

and reliable assessment of temporal variations. 

 

2.4 Estimation of primary organic carbon (POC) and secondary organic carbon (SOC) 

EC is a product of carbon fuel–based combustion processes and is exclusively associated with primary emissions, 180 

whereas OC can be formed from both direct emissions and secondary pathways. Differentiation between POC and SOC is 

indispensable for probing atmospheric aging processes of organic aerosols, but all available methods for estimating POC and 

SOC are highly uncertain. The EC–tracer method was widely used (Turpin and Huntzicker, 1991; 1995). Given that EC is 

emitted exclusively from primary combustion sources (e.g., fossil fuel and biomass burning), it is commonly used as a tracer 

for POC. Under this assumption, POC is estimated by multiplying EC by a representative primary OC/EC ratio, and SOC is 185 

determined as the residual between total OC and estimated POC (eq. 1–2). One of the most commonly used approaches to 

determine (OC/EC)pri is the minimum OC/EC ratio approach (Castro et al., 1999), which assumes that the lowest observed 

OC/EC value corresponds to conditions dominated by primary emissions with negligible SOC formation. In addition, Pio et 

al. (2011) recommended using the 5% percentile of observed OC/EC values instead, and Wu and Yu (2016) proposed minimum 

R squared (MRS) method to obtain (OC/EC)pri. 190 

POC = (
𝑂𝐶

𝐸𝐶
)𝑝𝑟𝑖 × EC                                    (1) 

SOC = OC - POC                                 (2) 

However, a previous study revealed that EC–tracer method relied on the fixed (OC/EC)pri and tended to overestimate 

SOC (Kim et al., 2012). Recently, Liao et al. (2023) proposed Bayesian Inference (BI) approach and suggested it more 

accurately estimated POC and SOC compared to the conventional method. The BI approach adopts a probabilistic framework 195 

that combines prior knowledge (in the form of prior distributions of the K values) with observational data (OC, EC, and SIA) 

to estimate the source contributions to OC. The BI model assumes that observed OC is a linear combination of contributions 

from POC and SOC tracers (e.g., EC and SO₄²⁻), and it uses the Markov Chain Monte Carlo (MCMC) technique to derive 

posterior distributions for the K values. This treatment allows the approach to update parameter estimates based on actual 
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measurements and offers more flexibility. In this study, we used BI approach which has the convenience of relying only on 200 

the commonly available mass concentrations of EC and SO4
2– to estimate POC and SOC. They can be calculated as following: 

SOC = KEC × EC + KSO42– × SO4
2–                                 (3) 

POC = OC – SOC                                             (4) 

Where KEC and KSO42– are parameters calculated by BI approach in R language, the details can be found in previous research 

(Liao et al., 2023). The K values represent the proportionality constants that link OC to its respective tracers (e.g., KEC for EC-205 

to-POC and KSO42- for sulfate-to-SOC). The variations of K value are shown in Fig. S2.  

Because SOC represents only the carbonaceous portion of the organic aerosol, while SOA includes the entire mass of 

organic compounds formed through secondary processes, including associated non-carbon atoms (e.g., hydrogen, oxygen, 

nitrogen). To better evaluate the atmospheric mass loading of organic aerosols and their mass proportions in PM2.5, it is 

important to convert SOC to SOA. Given intense photochemical reactions and larger fractions of aged aerosols in the PRD, a 210 

higher conversion factor of 2.4 was employed to convert SOC to SOA (Yan et al., 2020). 

 

2.5. Prediction of aerosol acidity and ALWC 

The thermodynamics model ISORROPIA-II has been widely used to calculate aerosol pH (Nenes et al., 1998; Fountoukis 

and Nenes, 2007; Wen et al., 2018; Zhou et al., 2022). Meteorological parameter (temperature and relative humidity), aerosol 215 

phase water-soluble ions (SO4
2−, NO3

−, Cl−, NH4
+, Na+, K+, Mg2+, Ca2+) and gaseous precursors (HNO3, HCl, NH3) are needed 

for the model execution. Given high relative humidity (RH) in the PRD region, the model was run by assuming aerosol 

solutions were metastable (only a liquid phase) in forward mode; previous studies suggested this would produce better 

performance than the stable state solution (solid + liquid) (Guo et al., 2015; Bougiatioti et al., 2016). A recent study suggested 

that the model was run in the forward mode but did not include gas-phase data, which may capture the general trend of aerosol 220 

acidity but underestimate pH (Fang et al., 2025).  

We used the data collected in Guangzhou Institute of Geochemistry (GIG) to run the model, and the result (G1) showed 

there was a great agreement in gaseous ammonia between simulation and observation (Fig. S3). Due to the lack of gas-phase 

concentrations during our campaign period in WQS, we ran the model by performing iterations to avoid the underestimation 

of pH. Only aerosol phase data were used as input for the first run. Then we added the output gas-phase concentrations from 225 

the first run to the initial aerosol-phase chemical concentrations to derive total (gas and aerosol phase) concentrations, which 

serve as input for the second run and so on. To determine an optimal number of iterations, we ran GIG data (without gas-phase 

data) to compare with G1. Our result indicated four iterations generated the closest outcome to G1 when gas-phase data was 

unavailable (Fig. S4). 
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 230 

3. Results and discussion  

3.1 Long–term trends of PM2.5 and its chemical composition in wintertime  

In response to severe particle pollution, the Chinese government issued the Air Pollution Prevention and Control Action 

Plan in 2013. Due to the strengthened emission controls in the PRD, primary pollutants have been reduced significantly over 

the past decades (Bian et al., 2019). Based on daily PM2.5 concentrations in our samples, we divided the data into five groups 235 

according to interim targets recommended by the Worle Health Organization (WHO) in 2021 (World Health Organization, 

2021): IT0 ( PM2.5 > 75 μg m−3), IT1 (75 μg m−3 > PM2.5 > 50 μg m−3), IT2 (50 μg m−3 > PM2.5 > 37.5 μg m−3), IT3 (37.5 μg 

m−3 > PM2.5 > 25 μg m−3), and IT4 (25 μg m−3 > PM2.5). The majority of samples fell into T0 and T1 categories (41%–100%) 

before 2013, while this ratio quickly decreased (8%–60%) during 2013–2020 (Fig. S5), indicating successful implementation 

of air pollution mitigation strategies after 2013.  240 

Annual average concentrations of PM2.5 and its chemical composition are presented in Fig. 2a and Table S1. The 

variations in mass fractions of these components are shown in Fig. S6. It is worth noting that the year 2020 was characterized 

by unprecedented emission reductions associated with COVID-19 lockdowns (Wang et al., 2021), which may have temporarily 

affected the trends in PM2.5 and its chemical composition. As shown in Table S2, a sensitivity analysis was conducted to 

evaluate the uncertainty introduced by including 2020 in the long-term trends analysis. The results suggested that this 245 

anomalous year would not introduce large bias on the overall long-term trends. From 2007 to 2020, PM2.5 concentrations 

exhibited a significant decline from 87.1 ± 15.5 μg m−3 to 34.0 ± 11.3 μg m−3, at a rate of –4.0 μg m–3 yr–1 (p < 0.01). This 

trend aligns with the previous results from meta–analysis (–3.9 μg m−3 yr
–1) and regional simulation (–4.0 μg m−3 yr

–1) in the 

PRD (Zhang et al., 2019; Yan et al., 2020), affirming WQS can serve as a regional background site. During this period of air 

quality improvement, OM (defined as OC  1.6) (Yang et al., 2023) remained the most abundant component (25%–47%) in 250 

PM2.5, followed by SO4
2− (16%–26%), NO3

− (7%–18%), NH4
+ (7%–10%) and EC (3%–8%). Other ions, such as Cl−, Na+, K+, 

Mg2+, and Ca2+, contributed less than 3% each to the mass of PM2.5 (Fig. S6). In China, desulfurization regulation for power 

plants was enforced around 2005, resulting in a notable decline (–7%) in the proportion of SO4
2− (Fig. 2b-c). However, the 

installation of denitrification devices on power plants began in late 2011 and started to take effect in 2012. With the delayed 

implementation of NOx emissions control measures compared to those for SO2 (Fu et al., 2014; Reuter et al., 2014; Geng et 255 

al., 2017; Qu et al., 2017), the mass fractions of NO3
− increased by 10%. By the end of 2020, the proportion of NO3

− had 

doubled compared to 2007, approaching the level of SO4
2−. The proportion of OM also increased from 35.5% to 42.7%. 
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Consequently, future air pollution control efforts need to focus on reducing OM and NO3
− concentrations to continue improving 

air quality in the PRD region. 

 260 

Figure 2. (a) Trends of PM2.5 and its major components. Bars represent concentrations of chemical compositions and circles 

represent concentrations of PM2.5 in different studies. (b), (c) The comparison of the mass fractions of major components in 2007 and 

2022. 

 

The chemical composition of PM2.5 can be categorized into primary species and secondary species. Primary species 265 

consist of POA, EC, and metal ions (e.g., Cl−, Na+, K+, Mg2+, Ca2+ etc.). Secondary species include SOA and SIA (SO4
2−, NO3

−, 

and NH4
+). Our results indicated that secondary species consistently dominated over primary species in PM2.5 composition, 

accounting for 54% to 79% of the total mass (Fig. 3a). Additionally, secondary species declined at a faster rate (–2.45 μg m−3 

yr
–1, p < 0.01) compared to primary species (–1.48 μg m−3 yr

–1, p < 0.01), indicating reduction of secondary species had more 

contribution in particulate pollution mitigation. Although Yan et al. (2020) also observed a decline trend in concentrations of 270 

secondary species after 2008 in the PRD, the proportion of secondary species was stable around 80%, which was higher than 
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our study. This might stem from the fact that the EC–tracer method applied by the previous study would overestimate SOC, 

which made secondary species increase (Kim et al., 2012). Our result showed that the average concentration of SOC estimated 

by the BI approach was ~30% lower than that by the EC–tracer method. In addition, the correlation between oxalic acid (a 

typical secondary organic molecular marker) and SOC estimated by the BI approach (r = 0.62, p < 0.05) was stronger than that 275 

with SOC estimated by the EC-tracer method (r = 0.54, p < 0.05), indicating the estimation from BI approach was more reliable 

(Fig. S7). We calculated K values on an annual basis to estimate SOC, whereas Yan et al. used a fixed value of (OC/EC)pri (the 

minimum value of all collected data) to estimate SOC. As a result, the proportion of secondary species in this study showed 

greater variability than that of Yan et al. In addition, we analyzed the proportion of secondary species under different pollution 

levels. Fig. 3b showed that the mass fraction of secondary species increased significantly from 57% to 73% with the 280 

improvement of air quality (from IT0 to IT4). This meant secondary species play an increasingly prominent role under lower 

pollution conditions. 

 

Figure 3. The variations in primary and secondary species during 2007–2020 (a) and their variations under different pollutants levels 

(b). Bars represent concentrations of them and circles represent the mass proportion of secondary species in PM2.5. Secondary species 285 

(account for 54%–79%) dominated over primary species. The proportion of secondary species increased from 57% to 73% with 

improvement of air quality (From IT0 to IT4). The error bars represent the standard deviation of the total concentration, calculated 

as the sum of primary and secondary species.  
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3.2 Annual variations of primary species and secondary species in wintertime 290 

3.2.1 Primary species 

The trends of individual components in PM2.5 can be seen in Fig. S8–9. POA exhibited the most significant decline at a 

rate of –0.97 μg m–3 yr–1 (–9% yr–1, p < 0.01). EC serves as a tracer for primary combustion, K+ serves as a tracer for biomass 

burning, and Ca2+ could be applied to track dust-related sources (Turpin and Huntzicker, 1991; Zhu et al., 2017). Our result 

showed that the relative reductions in EC (–9% yr–1), K+ (–12% yr–1) and Ca2+ (–11% yr–1) were greater than that of PM2.5 (–295 

7% yr-1), confirming that control measures for these sources had been effective. Cl– and Na+ also showed decline trends at rates 

of –0.10 μg m–3 yr–1 (–10% yr–1), –0.05 μg m–3 yr–1 (–9% yr–1), respectively (p < 0.01). Marine emission is considered the 

biggest source of Cl– in fine particle. However, anthropogenic sources such as coal combustion and biomass burning also had 

non–negligible impacts on it (Luo et al., 2019). After excluding the influence of anthropogenic sources (Text S1 and Fig. S10), 

Cl⁻ showed only a slight decline (–2% yr⁻¹), suggesting that the contribution from marine emissions to PM2.5 remained stable 300 

in general. 

 

3.2.2 Secondary species 

SO4
2– showed a clear decrease at a rate of –1.13 μg m–3 yr–1 (–10% yr–1, p < 0.01), whereas NO3

– and NH4
+ showed 

moderate declines (–0.40 μg m–3 yr–1, –6% yr–1; –0.31 μg m–3 yr–1, –6% yr–1, respectively, p < 0.05). Previous studies reported 305 

that the volatilization of ammonium nitrate during sampling can cause negative mass artifacts, leading to the underestimation 

of both NO3
– (8%–16%) (Chow et al., 2005) and NH4

+ (10%–28%) (Yu et al., 2006). The volatilization is highly dependent 

on relative humidity and temperature. However, such losses are expected to be systematic over time and therefore are unlikely 

to significantly affect the general trends in this study, because our measurements were conducted in the same season. Strong 

correlations between SO4
2–/SO2, as well as between NO3

–/NO2 were observed (Fig. S11), suggesting that reductions of SO4
2– 310 

and NO3
– were mainly driven by their gaseous precursors. With RH rising, the slopes of SO4

2–/SO2, as well as NO3
–/NO2, 

increased, indicating enhanced conversion of primary pollutants to secondary species. The generally lower intercepts observed 

in the NO3
–/NO2 regression compared to those in the SO4

2–/SO2 regression can be explained by the semi-volatile nature of 

nitrate (Yu et al., 2006). The formation of HNO3, gaseous precursor of NO3
-, is suppressed under very low NO2 level. Therefore, 

the reaction in R2 tends to proceed to the left. This facilitates partitioning of NO3
- into gas phase, leading to less accumulation 315 

of NO3
- in particle phase. In contrast, sulfate is the least volatile among all the inorganic aerosol components (Kang et al., 

2022), allowing it to be stably retained in the particle phase once formed. Notably, SO4
2– reduction (–10% yr

–1) lagged behind 
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SO2 reduction (–13% yr–1), while NO3
− reduction (–6% yr–1) outpaced that of NO2 (–3% yr–1) (Fig. 4). Other studies have also 

observed these disproportionate changes, but the reasons behind remained unclear (Blanchard et al., 2013; Geng et al., 2019; 

Yan et al., 2020; Chow et al., 2022).  320 

 

Figure 4. (a) Annual variations in SO4
2− and SO2. (b) Annual variations in NO3

− and NO2. The shaded region indicates the uncertainty 

bounds. One asterisk, two asterisks denote p value < 0.05, 0.01, respectively. In the PRD, SO4
2− and SO2 showed a more significant 

decline than NO3
− and NO2. The reduction of SO4

2− (–10% yr–1) was slower than SO2 (–13% yr–1), while reduction of NO3
− (–6% yr–

1) was faster than NO2 (–3% yr–1). 325 

 

Here, we calculated SOR and NOR (Li et al., 2023) described in equations (5–6), where n refers to the molar 

concentration. The higher SOR and NOR represent more efficient conversion of gaseous species into secondary aerosols. 

𝑆𝑂𝑅 =  
𝑛[𝑆𝑂4

2−]

𝑛[𝑆𝑂4
2−] +  𝑛[𝑆𝑂2]

                                     (5) 

𝑁𝑂𝑅 =  
𝑛[𝑁𝑂3

−]

𝑛[𝑁𝑂3
−] + 𝑛[𝑁𝑂2]

                     (6) 330 

As shown in Fig. 5a, the SOR value in 2020 (0.26 ± 0.09) was 44% higher than that in 2007 (0.18 ± 0.07). In general, 

SOR exhibited a significant upward trend during 2007–2020, increasing at a rate of 0.005 yr-1 (3% yr-1, p < 0.05). The more 

efficient SO4
2– formation from SO2 oxidation slowed down the reduction of SO4

2− alongside decreasing SO2 levels. Gas–phase 
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oxidation of SO2 followed by neutralization and aerosol phase condensation, is an important SO4
2− formation pathway (Berndt 

et al., 2023). Heterogeneous processes, including SO2 transfer to the aerosol phase, dissolution, and oxidation by oxidants such 335 

as H2O2 and O3, also contribute significantly in polluted regions (Wang et al., 2016; Liu et al., 2021). The solubility and 

effective Henry’s law constant of SO2 are positively pH-dependent (Seinfeld et al., 1998). Higher pH promotes the dissolution 

of SO2 in water, which will enhance SO4
2− formation. ALWC plays a key role in determining the aqueous oxidation rate and 

mass transfer. In addition, high temperature can facilitate both gas–phase and aqueous–phase reactions. As shown in Fig. S12, 

there were strong positive correlations between SOR and O3 (r = 0.45), temperature (r = 0.48), as well as ALWC (r = 0.23). 340 

But there was no significant correlation between SOR and pH. A possible explanation is that hydrogen ions facilitate aqueous-

phase oxidation of SO2 by H2O2, which will offset the effect of reduced SO2 solubility under low pH conditions (Liu et al., 

2021). To assess the impacts of these factors on SOR and eliminate dimensional and order of magnitude effects, a normalized 

multiple linear regression was developed as below: 

SOR = 0.025 × O3 + 0.017 × ALWC + 0.019 × Temperature + 0.190              (7) 345 

The prediction of SOR showed good agreement with the observations (Fig. S13a). The larger regression coefficients of O3 and 

temperature, along with their stronger correlations with SOR, suggested that the increase of SOR was mainly driven by the 

two factors. Our result showed that ALWC exhibited a downward trend (Fig. 6b), which exerted a negative influence on SOR. 

Although O3 concentration did not show an obvious trend at our measurement station (Fig. S14a), a previous study suggested 

that there was a rapid increase of O3 in the PRD after 2013 (Cao et al., 2024). Meanwhile, the temperature also rose slightly (p 350 

< 0.05) during the past decade (Fig. S14b). Consequently, a significant upward trend was observed in SOR.  

NOR did not show a clear temporal trend. However, the average NOR values before 2013 (NOR > 0.07) were 

significantly higher than those in subsequent years (NOR < 0.07) (Fig. 5b, t–test, p < 0.01), which explained the greater 

reduction in NO3
– compared to NO2. NO3

– can be formed during both daytime and nighttime. During the day, HNO3 is produced 

via the gas–phase reaction between OH and NO2 and then neutralized by NH3 to produce NO3
– (R1–R2) (Calvert and Stockwell, 355 

1983). During nighttime, NO2 can also be oxidized by O3 to generate NO3 which further reacts with NO2 to produce N2O5. 

Heterogeneous uptake of N2O5 is a vital nitrate formation pathway during nighttime (R3–R5) (Finlayson-Pitts et al., 1989). 

Fig. S15 showed that there were positive correlations between NOR and O3 (r = 0.12), pH (r = 0.25), as well as ALWC (r = 

0.55). Different from SOR, higher temperature prevents N2O5 formation and promotes evaporation of HNO3 from particle 

phase to gas phase, resulting a negative correlation between NOR and temperature (r = –0.18). The result of normalized 360 

multiple linear regression for NOR is as below: 

NOR = 0.012 × O3 + 0.025 × ALWC – 0.011 × Temperature + 0.008 × pH + 0.081         (8) 
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The prediction of NOR showed good agreement with the observations (Fig. S13b). The largest regression coefficient and the 

strongest correlation between ALWC and NOR suggested that the change in NOR was primarily driven by ALWC. The lower 

ALWC levels after 2013 (Fig. 6b) suppressed heterogeneous formation pathway of nitrate and enhanced the partitioning of 365 

nitrate from particle phase into gas phase, leading to the overall lower NOR after 2013. 

OH (g) + NO2 (g) + M → HNO3 (g) + M                            (R1) 

HNO3(g) + NH3 (g) ↔ NO3
–(aq) + NH4

+(aq)                          (R2) 

NO2 (g) + O3 (g) → NO3 (g)                                      (R3) 

NO2 (g) + NO3 (g) + M ↔ N2O5 (g)+ M                             (R4) 370 

N2O5 (g) + H2O (aq)+ Cl
–(aq) ↔ (2–∅)NO3

–(aq) + ∅ClNO2              (R5) 

The gas-particle conversion of NH3 could be affected by anions in particle–phase. Due to the decrease in 2 × n(SO4
2–) + 

n(NO3
–) (Fig. S16), less NH3 was needed to neutralize H2SO4 and HNO3. This resulted in a slight decline in NH4

+ (–0.31 μg 

m–3 yr–1, p < 0.01), while NH3 emissions remained steady (Geng et al., 2019).  

SOA is formed through the oxidation of VOCs, followed by partitioning from gas phase to particle phase. Although 375 

VOCs emission kept rising (Bian et al., 2019; Guo et al., 2024) and concentration of O3 fluctuated during the past decade, SOA 

declined significantly (–0.74 μg m–3 yr–1, p < 0.01). Previous studies have demonstrated that ALWC is a key factor driving the 

partitioning of organic compounds from the gas phase into the particle phase, thereby promoting SOA formation (Ervens et 

al., 2011; Carlton and Turpin, 2013; Attwood et al., 2014). Nguyen et al. (2015) observed concurrent decreasing trends in 

ALWC and OC in the Southeast U.S., and further suggested that anthropogenic inorganic species modulated SOA formation 380 

through ALWC effects. In addition, higher aerosol acidity has been shown to enhance SOA formation via acid-catalyzed 

reactions (Surratt et al., 2007). These findings indicated that the reduction in SOA during our study period aerosol could be 

attributed to the changes in acidity and ALWC, which will be discussed in Sect. 3.3. As SOA accounted for more than 50% of 

OM, more efforts are needed to reduce it. 
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 385 

Figure 5. The variations in SOR (a) and NOR (b). A dramatic increase in SOR was observed (0.005 yr-1, p < 0.05) and the SOR value 

in 2020 (0.26 ± 0.09) was 44% higher than that in 2007 (0.18 ± 0.07). Although there was no significant trend in NOR, the values 

before 2012 were higher than those after 2013. 

 

 390 

3.3 Impact of changes of major components on aerosol pH and ALWC  

ISORROPIA II, a thermodynamic equilibrium model for the K+ – Ca2+ – Mg2+– NH4
+ – Na+ – SO4

2− – NO3
− – Cl− – H2O 

aerosol system (Fountoukis and Nenes, 2007), has been widely applied to estimate aerosol pH and ALWC. Here, we applied 

ISORROPIA–Ⅱ to estimate aerosol pH and ALWC from 2007 to 2020. Due to the unavailability of gas–phase concentrations 

of HNO3, HCl, and NH3 during our campaign period, we conducted four iterations to produce the result optimally (Sect. 2.5). 395 

The annual variations in pH and ALWC are shown in Fig. 6. As discussed earlier, the reductions in acidic components (SO4
2– 

and NO3
–) were greater than that in the alkaline component (NH4

+), leading to a significant decrease in acidity. Aerosol pH 

increased from 1.51 ± 1.07 to 2.86 ± 0.49, at a rate of 0.04 yr–1 (p < 0.05). A sharp increase of aerosol pH occurred during 

2007–2012 due to rapid decline of SO4
2– during this period. As Fu et al. (2015) did not include the gas–phase data in pH 
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calculation, the pH values reported by them (-1.11–0.81) were significantly lower than those in this study (1.51–2.60) during 400 

the same period. The rapid reduction in hygroscopic components, especially SO4
2–, led the decline of ALWC (Attwood et al., 

2014). Our results showed that ALWC decreased from 20.6 ± 10.0 to 9.5 ± 3.9 μg m−3, at a rate of –1.1 μg m–3 yr–1 (p < 0.01). 

Unexpectedly, low ALWC was observed in 2008 when SIA concentrations, which enhance the hygroscopicity of particulate 

matter, were at very high levels. It might be associated with low RH (Table S1). To eliminate the influence of changes in 

meteorological conditions, we used annual average temperature and RH during the entire campaign period as input to 405 

recalculate pH and ALWC. The results showed a clear enhancement of ALWC in 2008 (Fig. S17), and the upward trend in pH 

and downward trend in ALWC still persisted. This demonstrated the long–term trends of pH and ALWC were mainly driven 

by the changes in chemical composition of PM2.5. As we discussed in Sect. 3.2.2, ALWC exhibited positive correlations with 

SOR and NOR. This indicated a positive feedback mechanism in which the reductions in hygroscopic components (e.g., sulfate 

and nitrate) leaded to lower ALWC, thereby suppressing SIA formation. Many studies have demonstrated that high aerosol 410 

acidity, ALWC, and O3 will facilitate SOA formation (Ervens et al., 2011; Carlton and Turpin, 2013; Nguyen et al., 2015; 

Zhang et al., 2022b; Ma et al., 2024; Zhang et al., 2024). Our results also showed that SOA was positively correlated with 

ALWC and O3, but negatively correlated with pH (Fig. S18). In this study, SOA declined significantly while the emission of 

VOCs (Bian et al., 2019; Guo et al., 2024) and O3 (Cao et al., 2024) kept rising in the PRD. Consequently, the trend of SOA 

was mainly driven by the reductions in aerosol acidity and ALWC. 415 
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Figure 6. (a) Annual average pH increased at a rate of 0.04 yr–1. (b) Annual average ALWC decreased at a rate of –1.1 μg m−3 yr–1. 

 

We further investigated changes in pH and ALWC under different pollution levels. As Fig. S19 presented, low pH 

occurred under elevated pollutant level (IT0), while pH values were close under other levels (IT1–IT4). Additionally, there 420 

was no significant difference between the recalculated pH (eliminating the influence of meteorological factors) and the original 

one, indicating limited impacts of variations of temperature and RH on aerosol acidity. ALWC showed a clear decline pattern 

with decreasing pollutant levels (IT0–IT4). A significant difference (18%–35%, p < 0.01) was observed between the 

recalculation and original results under IT2–IT4, indicating temperature and RH also exerted a significant influence on ALWC 

under lower pollution levels. 425 

 

3.4 Impact of changes in major components on extinction coefficient 

We adopted MSE/MAE suggested by Fu et al. (2016), as well as relationship between chemical composition and f(RH) 

suggested by Li et al. (2021), to reconstruct bext (herein called local parameter scheme) using equations (9-12). [AS], [AN], 

[SS], [LAC] refer to mass concentrations (μg m–3) of NH4SO4, NH4NO3, sea salt, and EC, respectively. The details of PM2.5 430 
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reconstruction method followed the previous study (Chow et al., 2015), i.e., AS = 1.375 × SO4
2–, AN = 1.29 × NO3

–, LAC = EC 

and SS = 1.8 × Cl–. RHref was threshold of high RH, 40% was used here.  

bext = 6.5 × [OM] +2.6 × f(RH) × [AS] + 2.4 × f(RH) × [AN] + 7.3 × f(RH)
ss

× [SS] + 7.7 × [LAC]      (9) 

f(RH) = [ (1-RH) (1-⁄  RHref)] 
-γ

       (10) 

γ = 0.48 × F + 0.59       (11) 435 

F = (OC+EC) (OC+EC+SO4
2-+NO3

- +NH4
+⁄ )       (12) 

Our results showed that bext in the PRD decreased significantly at a rate of -21.44 Mm–1 yr–1 (p < 0.01), aligning with the 

overall decline of PM2.5 (Fig. 7). However, the highest bext was unexpectedly observed in 2009, even though PM2.5 

concentration was lower than 2007 and 2008. This anomaly could result from the highest RH in 2009. As illustrated in Fig. 

S20, OM dominated bext (44%–61%), followed by (NH4)2SO4 (15%–28%) and NH4NO3 (6%–13%). The proportion of SIA (F) 440 

fluctuated during 2007–2020, which leaded to changes in f(RH) and then further influenced bext. As a result, we found that the 

chemical budget of bext from (NH4)2SO4 did not exhibit a continuous decline trend, while the mass concentration and proportion 

of SO4
2– in PM2.5 decreased significantly.  

We also calculated bext by the revised IMPROVE equation proposed in 2007 (Malm and Hand, 2007; Pitchford et al., 

2007), and compared to the local parameter scheme (Fig. S21). Generally, bext estimated by the revised IMPROVE equation 445 

(335.72 ± 219.64 Mm–1) was significantly higher than that estimated by local parameter scheme (262.67 ± 143.82 Mm–1). We 

further investigated this discrepancy under different pollution levels. With the improvement in air quality, the difference 

between the two schemes narrowed gradually (p < 0.01). Our results indicated that the revised IMPROVE equation tended to 

generate higher bext in elevated pollution periods. Thus, more site–specific parameters and local parameter scheme are needed 

in those polluted areas to predict bext more accurately. 450 

 

Figure 7. Light extinction coefficient (bext) in WQS during 2007–2020. It declined at a rate of –21.44 Mm
–1 yr

–1 significantly (p < 0.01) 

and its trend aligned with that of PM2.5. 
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4. Conclusions 455 

In this study, we conducted field measurements of PM2.5 mass concentrations and its chemical composition at the PRD 

regional background site during 2007–2020. PM2.5 levels showed a significant decline from 87.1 ± 15.5 μg m–3 to 34.0 ± 11.3 

μg m–3 at a rate of –4.0 μg m–3 yr–1. Secondary species (54%–79%) dominated over primary species, although the proportion 

was lower than that reported in a previous study (~80%) in the PRD. This discrepancy could be attributed to an overestimation 

of SOC caused by the EC-tracer method employed in the previous study. In addition, the mass fraction of secondary species 460 

increased with the improvement in air quality, suggesting greater attention should be given to them under cleaner conditions. 

Among primary species, POA, EC, K+ and Ca2+ exhibited significant declines. This indicated that control measures for 

combustion emissions, biomass burning and dust-related sources were effective. SIA displayed rapid downward trends among 

secondary species, particularly for SO4
2–. Due to the delayed control of NOx emissions compared to SO2, mass fractions of 

SO4
2– decreased from 26.0% to 18.6% while NO3

– increased from 7.7% to 17.5%. By the end of 2020, the proportion of NO3
− 465 

had doubled compared to 2007, approaching the level of SO4
2−. Although many previous studies have observed the 

disproportionate changes in SO4
2–/SO2 and NO3

–/NO2, underlying causes remained unclear. In this study, we found the 

disproportionate reductions in SO4
2– (–10% yr

–1) compared to SO2 (–13% yr–1), and in NO3
– (–6% yr–1) compared to NO2 (–

3% yr–1), which were attributed to an increase in SOR and a decrease in NOR, respectively. Correlation analysis indicated that 

SOR was primarily influenced by O3 and temperature, whereas NOR was driven by ALWC. 470 

 Aerosol pH and ALWC were estimated using ISORROAPIA–Ⅱ. Due to the unavailability of gas–phase concentrations 

of HNO3, HCl, and NH3 during our campaign period, we proposed a reliable approach involving four iterative calculations to 

obtain optimal results. Our results showed that aerosol pH increased from 1.51 ± 1.07 to 2.86 ± 0.49 at a rate of 0.04 yr–1. 

Consistent with previous studies, we found that the impacts of meteorological factors on aerosol pH were limited, while the 

changes in PM2.5 components significantly influence aerosol pH. ALWC decreased significantly at a rate of –1.1 μg m–3 yr–1 475 

and showed a clear decline pattern with decreasing pollutant levels. This might indicate presence of a positive feedback 

mechanism between ALWC and hygroscopic components. Given the critical roles of acidity and ALWC in the formation of 

secondary species, the reductions in acidity and ALWC caused by changes in PM2.5 major components may also suppress the 

formation of SOA in the atmosphere.  

In addition, air visibility greatly improved with decline of PM2.5 chemical components. We used a local parameter scheme 480 

to calculate bext and demonstrated that it decreased at a rate of –21.44 Mm–1 yr–1. The revised IMRPOVE formula will generate 
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higher bext values than local parameter scheme under high pollution conditions. Thus, more site–specific parameters and local 

parameter scheme are needed in polluted areas to predict bext more accurately. 

This study highlights that the changes in PM2.5 chemical composition can significantly affect key aerosol 

physicochemical properties, such as aerosol pH, ALWC, and light extinction coefficient. The variations in aerosol pH and 485 

ALWC can, in turn, influence the formation of secondary species. Since the importance of secondary species will become 

more prominent with continuous air quality improvement, more efforts should focus on them in the future. 
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