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Abstract. Microphysical properties play crucial roles in physical processes related to the development of precipitation. In11
this study, Global Precipitation Measurement (GPM) dual-frequency precipitation radar (DPR) data were processed to12

demonstrate the microphysical properties of different precipitation systems (PSs) that are objectively classified with the k-13

means clustering algorithm. Four types of regular/non-extreme PS (high-latitude shallow PS, subtropical shallow PS,14
moderate PS, deep PS) and four types of extreme PS (extreme deep PS, strong PS, extreme strong PS, and marine extreme15

PS) were recognized. These eight types of PS exhibit differences in spatial-temporal features and convection characteristics,16

such as storm height, rain intensity, and vertical structures. For example, with the highest radar echo top and the largest mean17

mass-weighted mean diameter (Dm), the extreme strong PS mainly locate over tropical continent, while the high-latitude18
shallow PS have the least precipitation rate and mean normalized intercept parameter (Nw) values. The relationships between19

convection features and microphysical properties also vary among the eight types of PSs. For extreme PS, maximum20

precipitation rate near the surface generally exceeds 100 mm h-1 and balanced breakup and coalescence processes play a21

dominant role compared with non-extreme PS. In contrary, the coalescence processes dominate near the surface in two types22
of shallow PS. These results highlight the diversity of global precipitation microphysics and emphasize the necessity of23

global studies to increase the understanding of precipitation processes.24
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1. Introduction26

The microphysical characteristics of precipitation provide crucial information for describing precipitation. The deficiency of27

precipitation microphysical parameterization schemes is a significant factor contributing to precipitation errors in weather28

and climate models (Snook and Xue, 2008). Accurately obtaining spatial and temporal distributions and variations in29
precipitation microphysical parameters is essential for understanding the physical processes of precipitation, increasing the30

accuracy of quantitative precipitation estimation (QPE), and evaluating microphysical parameterizations in models (Chen et31

al., 2011; Zhang et al., 2023). Currently, observations and characteristics of precipitation microphysics at the global scale32

remain lacking because of the limited number of observation approaches.33
The drop size distribution (DSD) is a typical metric for depicting precipitation microphysics. DSD features can be derived34

from observations obtained via disdrometers, ground-based radar instruments, and space-based radar instruments. In radar35

instruments, the interaction of electromagnetic waves with hydrometeors is used to retrieve DSD parameters (Marzuki et al.,36

2023), whereas disdrometers measure raindrop counts to directly obtain DSDs at the surface. Disdrometers provide only37
point measurements at specific levels and cannot measure the vertical structure of DSDs. Moreover, disdrometers have not38

been deployed globally, especially over the ocean. Although ground-based radar instruments can measure the three-39

dimensional structure of precipitation, they can only be used in limited areas, and their observation accuracy is significantly40

affected by the terrain conditions within the observation area (Dai et al., 2020). In contrast, space-based radar instruments41
can provide the vertical structures of DSD parameters worldwide. This study focused on the microphysical characteristics of42

various precipitation systems (PSs) worldwide. Compared with other instruments, space-based radar instruments are the43

most suitable for researching global precipitation microphysics.44

In 1997, the Tropical Rainfall Measuring Mission (TRMM) satellite was launched by the National Aeronautics and Space45
Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). The precipitation radar (PR), which operates46

in the Ku-band (13.8 GHz), was carried by the TRMM (Iguchi et al., 2000). This marked the beginning of the observation of47

precipitation microphysics via space-based radar instruments. Notably, DSD parameters were retrieved from the radar48

reflectivity measured by the PR with the assumption that the DSD can be characterized by the diameter parameter itself49
(Iguchi et al., 2000). As a result, the DSDs obtained via retrieval exhibited large errors. In 2014, NASA and JAXA50

successfully launched the Global Precipitation Measurement (GPM) Core Observatory (GPM-CO). The GPM-CO carried51

the first spaceborne dual-frequency precipitation radar (DPR) system, operating in the Ku and Ka bands (13 and 35 GHz,52

respectively) (Skofronick-Jackson et al., 2017). The differential scattering during rainfall at these two frequencies is directly53
related to the size of raindrops (Gatlin et al., 2020). Via the use of this characteristic, Dm and Nw can be retrieved. The54

retrieved DSD parameters have been verified with ground-based observations and are better than those obtained via the55

TRMM PR algorithm (Sun et al., 2020). In addition, validation studies have confirmed the feasibility of using DPR56

observations for DSD parameter analysis (D’Adderio et al., 2018; Peinó et al., 2024). Peinó et al. (2024) used observational57
data from seven Parsivel disdrometers across different topographic zones in the western Mediterranean to validate GPM58
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DSD products. They reported that the GPM DPR products effectively captured the variations in DSDs observed under59
different rainfall intensities. Therefore, GPM DSD products have been widely employed to investigate the microphysical60

characteristics of precipitation in the literature (Wen et al., 2024, 2023) .61

However, previous studies involving GPM DSD products have focused mainly on specific locations or weather systems. For62
example, Li et al. (2024) studied the vertical structure and DSD characteristics of different precipitation types during the63

rainy season over South China and reported that the precipitation type and intensity affect the DSD parameters. In their study,64

under the same precipitation intensity, shallow convective precipitation exhibited the smallest Dm and largest Nw values,65

whereas deep convective precipitation exhibited the opposite phenomenon. Additionally, regarding stratiform precipitation,66
for PR > 3.5 mm h-1, Dm slightly increased, and in regard to shallow convective precipitation, Dm remained at approximately67

1.3 mm for PR > 2 mm h-1. Similarly, Wen et al. (2023) analyzed the seasonal variations in the vertical structure of68

precipitation microphysics in East China. They reported that the spatial distributions of Dm and Nw demonstrate obvious69

seasonal variations and that there are more small raindrops in convective precipitation in autumn and winter than during the70
other seasons. These studies revealed the variations in microphysical characteristics across different seasons and rainfall71

types. Additionally, regarding weather conditions, regional variations in the precipitation characteristics of tropical cyclones72

(TCs) have been investigated over the North Indian Ocean (Kumar et al., 2023). Research has revealed that the nature of73

microphysical processes largely influences the growth of droplets in convective and stratiform rain. Wu et al. (2022)74
investigated the DSD characteristics of record-breaking Typhoon In-Fa (2021). Their findings revealed significant internal75

and regional differences in the microphysical characteristics of typhoon precipitation. When different precipitation types76

during Typhoon In-Fa were compared, convective precipitation (Nw values ranging from 3.80 to 3.96 m−3 mm−1) exhibited77

higher raindrop concentrations than did stratiform precipitation (Nw values ranging from 3.40 to 3.50 m−3 mm−1).78
Additionally, convective precipitation during Typhoon In-Fa indicated a greater (lower) raindrop concentration than that79

during Typhoon Taiwan (Hainan), while the raindrop diameter was smaller than those during both Typhoons Taiwan and80

Hainan. These studies primarily focused on the microphysical process and structure of various weather conditions, which81

provided insight into the formation process of precipitation. At present, there are few studies on the microphysical82
characteristics of large-scale and global PSs. On the one hand, as mentioned above, the DSD is influenced by numerous83

factors, such as precipitation type and season. There may be multiple precipitation types and DSDs in one area. On the other84

hand, few DSD datasets covering the whole world are available. Dolan et al. (2018) used twelve disdrometer datasets across85

three latitudinal zones—high-latitude, midlatitude, and low-latitude zones—to analyze DSD spatial variability. They86
reported that the DSD varies with latitude. At low latitudes, moderate Dm values (1.5–2 mm) and large log10(Nw) values (> 487

m−3 mm−1) dominated. At midlatitudes, high Dm values and small Nw values dominated. At high latitudes, low Dm and large88

Nw values prevailed. Although the dataset covered a wide range of precipitation regimes, it could not capture all rain regimes.89

Moreover, a regional DSD dataset cannot represent the DSD within a given latitudinal band because of the limitations of90
disdrometers. Hence, in this study, GPM DSD products were employed to investigate the microphysical characteristics of91

PSs at global scales.92

https://doi.org/10.5194/egusphere-2025-2199
Preprint. Discussion started: 10 July 2025
c© Author(s) 2025. CC BY 4.0 License.



5

This study aimed to classify different PSs on the basis of DPR observations via machine learning and to analyze the93
microphysical characteristics of different types if PSs. The results could address regional DSD variability and increase our94

understanding of the microphysical processes of different types of PSs. This study is organized in four sections. Section 295

provides detailed descriptions of the GPM data and machine learning models applied in this study. The main results are96
presented in Section 3, and finally, a summary is given in Section 4.97

2. Data and methods98

2.1. Data99

GPM observations cover the range from 65° S to 65° N (Hou et al., 2014; Tapiador et al., 2012). The GPM DPR operates in100
the Ka and Ku bands, with a spatial resolution of approximately 5 × 5 km2. The scanning of DPR is cross-track and has three101

scan patterns: normal scanning (NS), matching scanning (MS), and high sensitivity scanning (HS) (Das et al., 2022). Since102

the scanning pattern of the Ka-band was changed in 2018 (Awaka et al., 2021), the GPM 2A DPR (version 7) products103

considered the changes in the Ka-band scan pattern with a more accurate precipitation estimation algorithm. The product104
formats in version 7 have been changed from the original three types to two types: FS and HS. The FS product exhibits a105

new format and is defined as a full-scan dual-frequency product with a 125-m distance resolution. Compared with previous106

algorithms, the FS mode makes it possible for the first time to process a full-scan band of approximately 245 km in dual-107

band mode (Awaka et al., 2021). Therefore, the FS type was adopted in this study.108
In this study, five years (2018–2022) of 2A DPR products (version 7) were employed. The parameters used in this machine109

learning model include DSD parameters (Dm and Nw), near-surface precipitation rate (mm h-1), attenuation-corrected radar110

reflectivity (dBZ), reflectivity near the surface (Zsurf), and typeprecip (stratiform and convective precipitation pixels are111

distinguished by the typeprecip parameter), and airTemperature (this parameter can be used to distinguish between snow and112
rain).113

2.2. Precipitation system (PS)114

This paper presents a method based on the connected domain principle for identifying PSs similar to those contained the115

widely used TRMM/GPM Precipitation Feature dataset (Liu et al., 2008, 2020). Similar to the Precipitation Feature dataset116

(Liu et al., 2008), neighboring precipitation pixels, with a minimum precipitation rate of 0.1 mm h-1, are grouped into a PS.117
Each PS is required to have a minimum of four precipitation pixels.118

The DPR can observe the three-dimensional structure of precipitation and DPR products include radar reflectivity119

parameters and retrieved DSD parameters from 0 to 22 km with a range resolution of 125 m, resulting in a total of 176 layers120

of data. Consequently, for each PS type, DSD and radar reflectivity parameters such as the maximum and average values of121
each layer were calculated. The average Dm and Nw profiles were used for each PS, and if the profiles of the maximum Dm122

and Nw values in each layer were involved, MAX-Dm and MAX-Nw, respectively, were used. Given the potential123
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relationships of the convective intensity with microphysical parameters, Ze in the product was employed to calculate the124
maximum 20/30/40 dBZ echo top height (MAXHT20/30/40) for each type of PS (Liu, 2011; Liu et al., 2020; Ni et al., 2019;125

Roy et al., 2020), the echo top height of the PS (Htop) (Arulraj and Barros, 2021), and other convective parameters. To126

characterize the conditions of the PS, several additional features were calculated, such as the maximum precipitation rate127
near the surface (the maximum precipitation rate of the precipitation pixels included in the PS) and the precipitation area (the128

number of precipitation pixels contained in the PS). Considering that the GPM satellite exhibits a higher observation129

frequency in high-latitude regions (approximately 2–3 times that at the equator), the original dataset is prone to oversampling130

in these areas, which can introduce bias. To construct a balanced dataset suitable for clustering analysis, this study131
implemented a homogenization for the sampling. Specifically, the satellite's observation frequency was calculated as a132

function of latitude, and sample size for each latitude was adjusted using the ratio of its frequency to that at the equator.133

Subsequently, precipitation systems were randomly selected from each latitude to ensure a consistent scaled sample size,134

thereby effectively addressing the issue of uneven sampling. Finally, a total of 8,924,307 PSs were obtained for subsequent135
analysis.136

2.3. Methods137

In this study, two distinct machine learning models, namely k-means clustering and principal component analysis (PCA)138

were used. Both models were trained and evaluated via the Python scikit-learn package. These models are briefly described139
below. The k-means algorithm is one of the most popular clustering algorithms among machine learning algorithms. It is one140

of the most popular unsupervised clustering algorithms due to its efficiency (Jain, 2010). The algorithm follows a three-step141

process. Initially, it aims to select initial cluster centers by randomly obtaining sample coordinates from the dataset and142

assigning each sample to its nearest cluster center. Next, it computes the mean of all sample points assigned to each previous143
cluster center to establish new cluster centers. Finally, the algorithm aims to evaluate the differences between the new and144

old cluster centers. If differences are present, the last two steps are repeated until the cluster centers stabilize and no longer145

shift (Jain, 2010).146

PCA is a classical dimensionality reduction tool in machine learning (Gang and Bajwa, 2022). PCA is based on the linear147
combination of target features to construct the principal subspace, and the variance is then employed to measure the148

information content with the aim of identifying the linear subspace with the maximum variance (Marukatat, 2023). In149

summary, PCA aims to transform numerous pertinent features into a comparatively limited number of irrelevant ones,150

thereby retaining as much of the informational content of the original data as possible (Gang and Bajwa, 2022). Considering151
that there are 176 vertical layers of GPM DPR products, if all DSD data were used as input parameters, the clustering effect152

could be poor because of the high dimensionality. In this study, PCA was adopted to reduce the dimensionality of the data153

while striking a balance between information loss and the optimal number of parameters to be retained (Festa et al., 2023;154

Jolliffe and Cadima, 2016).155
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In this study, the maximum precipitation rate near the surface, Htop, the precipitation area, the proportion of stratiform156
precipitation, the proportion of convective precipitation, the DSD parameters (Dm and Nw) and the maximum radar157

reflectivity parameter (Ze) after dimensionality reduction via PCA were used as input parameters for the k-means clustering158

algorithm. These parameters were selected based on their critical role in comprehensively characterizing the features,159
structure, and microphysical processes of precipitation systems. Among them, the maximum surface precipitation rate and Ze160

reflect the intensity of the precipitation process and its echo characteristics, while the precipitation area directly characterizes161

the spatial differences in both the vertical and horizontal distributions of the system. The Htop not only reveals the vertical162

distribution but also captures the top-level information of the precipitation cloud through the maximum reflectivity height.163
Introducing the proportions of stratiform and convective precipitation facilitates the differentiation of precipitation types164

generated by distinct mechanisms, thereby elucidating their evolution patterns and dynamic characteristics. Furthermore, the165

DSD parameters (Dm and Nw) effectively describe the size distribution of precipitation particles and their intrinsic physical166

processes, providing an essential basis for an in-depth understanding of precipitation microphysics. Collectively,167
constructing a multidimensional precipitation feature space with these parameters enhances the accuracy and robustness of168

the clustering analysis.169

The quality of clustering was evaluated by analyzing different clustering structures derived from the same dataset. The most170

commonly employed performance metrics, such as the sum of squared errors (SSE), Davis Bouldin (DB) index, Calinski-171
Harabasz (CH) Score (El Khattabi et al., 2024) and silhouette index, can be utilized to assess the effectiveness and quality of172

clustering algorithms (Ay et al., 2023). In this case, the DB index was calculated by computing the average sum of the173

intraclass distances between any two clusters divided by the distance between the centers of those two clusters and obtaining174

the maximum value. The DB index can manage clusters of different sizes and densities with a high degree of robustness to175
noise and outliers.176

The DB index is calculated by computing the average sum of intraclass distances between clusters, divided by the distance177

between their respective centers, with the final value determined by the maximum across all clusters. A lower DB index178

indicates better clustering performance (Sowan et al., 2023). Additionally, the CH score, which assesses clustering179
compactness and separation, was also considered. Higher CH scores indicates better-defined clusters. Algorithms with180

clustering numbers ranging from 3 to 20 were executed, and the resulting change in the DB index and CH score was plotted181

(refer to Fig. S1 in the Supplementary Material). The results show that when K = 8, the DB index reaches its lowest value,182

while the CH score remains relatively high, indicating a well-balanced clustering structure. Therefore, the optimal number of183
clusters is eight. Combining all the features of the PSs described in Section 3, the Cluster 1-8 could be regarded as four non-184

extreme PS (high-latitude shallow PS, subtropical shallow PS, moderate PS, deep PS) and four extreme PS (extreme deep PS,185

strong PS, extreme strong PS, and marine extreme PS), which are listed here for the convenience of understanding the186

following context.187
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3. Results and discussion188

3.1. Global distributions189

Table 1 shows the statistics of various parameters for the eight types of PS. There numbers include abundant information and190

verify the rationality of the objectively clustering algorithm. First, the numbers of the various types of PSs differed191
significantly. The two types of shallow PSs (high-latitude shallow PS and subtropical shallow PS) accounted for 81.44% of192

the total PS count. The proportions of deep and moderate PSs were 2.41% and 15.50%, respectively. The other four types of193

PS are regarded as extreme PS (extreme deep PS, strong PS, extreme strong PS, and marine extreme PS) because their ratios194

of the total PS are less than 1%, accounted for only 0.39%, 0.22%, 0.02%, and 0.01%, respectively. In the non-extreme PS,195
MAXHT20 is generally positively related to the precipitation rate (Table 1). However, in the extreme PS, the correlation196

between the extreme precipitation rate and MAXHT20 is not clear. For example, that the mean value of the maximum197

precipitation rate in marine extreme PS was the highest among the eight types of PSs, although its MAXHT20 was less than198

that in extreme strong PS and close to that in extreme deep PS. This result is consistent with other studies noting a weak link199
between the heaviest rainfall and the highest storm top (Hamada et al., 2015). Although the convective intensity of extreme200

deep PS is not significantly higher than that of deep PS, it exhibits a substantially larger precipitation area and maximum201

precipitation rate.202

High-latitude shallow PS was most prevalent at midlatitudes and high latitudes, where snowfall and sleeting are more203
frequent than at low latitudes. Notably, high-latitude shallow PS were dominated by stratiform precipitation, with stratiform204

pixels accounting for 88.63%. Meanwhile, approximately 86.60% of the PS exhibited surface temperatures higher than 0 °C.205

A study confirmed that at high latitudes and in polar regions, more than 25% of precipitation falls as snow (Lerber et al.,206

2018). This is consistent with the observations from high-latitude shallow PS. Additionally, an analysis of high-latitude207
shallow PS by latitude revealed that with increasing latitude, the number of samples generally increased. Moreover, the208

number of PSs with echo top heights less than 2.5 km increased with latitude. During the winter season at 65°S, PSs with209

echo top heights below 2.5 km accounted for approximately 50% of the total PSs there. This is likely due to the influence of210

the low surface temperature and weak convection (refer to Fig. S2 in the Supplementary Material).211
Subtropical shallow PS primarily occurred over the ocean where is dominated by the subtropical high, with a relatively212

limited degree of overlap with moderate PS and deep PS (Fig. 1). The mean MAXHT20 value in subtropical shallow PS was213

only 3.29 km, and the proportion of convective precipitation was the highest among all the types of PSs, exceeding 90%.214

Compared with those of the other PSs, subtropical shallow PS exhibited the smallest precipitation area. Moreover, it was215
rarely found over land. These results support the conclusion that subtropical shallow PS is associated with isolated shallow216

convection over the ocean, which has been the topic of interest in previous studies (Chen and Liu, 2016; Chudler et al., 2022;217

Houze Jr. et al., 2015).218

The geographic distribution patterns of deep PS and moderate PS were approximately the same (Fig. 1). The number of219
occurrences in the maritime continent (MC), Indian Ocean, Atlantic Ocean, Amazon rainforests and Pacific Ocean were220
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relatively high. There regions are generally influenced by the Intertropical Convergence Zone (ITCZ). Nevertheless, the deep221
PS has higher land percentage. The mean values of the maximum precipitation rates in moderate PS and deep PS were 6.21,222

35.94 mm h-1, respectively, whereas those of MAXHT20 were 7.03 and 11.89 km, respectively.223

Strong PS, extreme deep PS, extreme strong PS, and marine extreme PS demonstrated low sample sizes. However, their224
precipitation areas are significantly larger than non-extreme PS (Table 1). The location of extreme deep PS is similar with225

moderate and deep PS, with larger values for most parameters. In the extreme strong PS, the proportion of land pixels226

reaches 81%, with significant concentrations in near-equatorial Africa, America, India, the southeastern U.S., and South227

America. The average maximum precipitation rate in extreme strong PS was 156.37 mm h-1, and MAXHT40 reached 12.32228
km, which is the highest among all the types of PSs. The high MAXHT40 value indicates strong updraft in the middle229

troposphere, which is favorable for hailstone formation. Therefore, the spatial distributions of hailstorms in extreme strong230

PS were very similar to those of hailstorms with large hailstones on the ground (Marra et al., 2017). Marine extreme PS was231

primarily situated in the near-equatorial marine region, with only 943 PSs and 90% is over the ocean. The mean maximum232
precipitation rate in marine extreme PS was 178.30 mm h-1, ranking first among the eight types of PSs. Although the233

MAXHT20 value in marine extreme PS reached 12.81 km, the MAXHT40 value in marine extreme PS was approximately234

half of that in extreme strong PS, indicating low convection activity in the middle and upper levels. Oceanic extreme PS235

(extreme deep PS and marine extreme PS) with a high fraction of ocean pixels, exhibit a significantly larger precipitation236
coverage area than continental extreme PS (strong PS and extreme strong PS). This spatial distribution aligns with previous237

findings that the most extensive PS are predominantly located in oceanic regions. Furthermore, continental extreme PS238

display markedly stronger convective intensity. This disparity is largely attributable to the observation that the heaviest PS239

generally occur over tropical land, the Western Pacific warm pool, the North American Great Plains, and Argentina, whereas240
the most severe convective storms are predominantly observed over continental areas (Liu and Zipser, 2015).241
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242
Figure 1. Spatial distributions (2° × 2°) of the PS counts from 2018 to 2022243

244
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Table 1. Precipitation parameters for the different types of PSs. (* indicate that in high-latitude shallow PS and245

subtropical shallow PS, approximately 80% of the samples do not reach 40 dBZ. Therefore, the mean MAXHT40 for these246

samples is recorded as 0.)247

high-

latitude

shallow

PS

subtropical

shallow PS

Moderate

PS
deep PS

extreme

deep PS

strong

PS

extreme

strong

PS

marine

extreme

PS

Mean MAXHT20 (km) 3.40 3.29 7.03 11.89 12.67 15.39 17.21 12.85

Mean MAXHT30 (km) 2.63 2.67 5.11 8.65 8.52 13.68 16.31 9.18

Mean MAXHT40 (km) 0.00* 0.00* 3.44 5.53 5.71 8.64 12.32 6.04

Stratiform percentages (%) 88.63 9.46 54.38 53.22 69.90 57.42 53.02 66.83

Convective percentages (%) 5.85 89.95 42.83 44.52 28.16 39.91 44.06 31.56

Land percentages (%) 21.61 6.97 27.96 42.31 15.61 65.37 80.98 10.45

Ocean percentages (%) 78.39 93.03 72.04 57.69 84.39 34.63 19.02 89.55

Mean precipitation (mm h-1) 1.60 2.35 6.21 35.94 156.67 135.46 156.37 178.30

precipitation Standard deviation (mm h-1) 1.63 1.92 8.89 50.44 98.44 106.95 103.50 98.61

Number of samples 4,184,547 3,083,077 1,383,261 215,611 34,982 19,790 2,096 943

Mean precipitation area (km2) 610.57 239.23 2761.46 7009.37 37076.93 18485.91 22521.51 36044.11

>273.15 K frequency (%) 86.60 99.16 99.83 99.97 99.97 99.99 99.99 100.00

2.5 km Mean MAX-log10(Nw) [m−3

mm−1]
3.47 3.70 4.06 4.49 5.20 4.72 4.88 6.07

2.5 km Mean MAX-Dm [mm] 1.03 1.17 2.26 2.82 2.71 3.04 3.11 2.61

2.5 km Mean log10(Nw) [m−3 mm−1] 3.23 3.45 3.36 3.39 3.83 3.36 3.35 4.45

2.5 km Mean Dm [mm] 0.85 0.89 1.36 1.50 1.30 1.61 1.71 1.32

3.2. Global distributions of microphysical features248

Fig. 2 and Fig. 3 show the global distributions of the microphysical parameters for the eight types of PSs. To avoid the249

influence of ground clutter, in each PS, the mean Dm and Nw values at 2.5 km above the ground surface were analyzed.250
Notably, there was a significant degree of spatial heterogeneity in each panel. The general conclusion is that continental PSs251

exhibit a higher Dm than do oceanic PSs. Usually, continental rainfall is associated with high convective activity in which252
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clouds produce large raindrops. Over land, small raindrops are lifted by updrafts, whereas large raindrops are formed from253
the melting of larger ice crystals. In contrast, oceanic rainfall is accompanied by the formation of weak updrafts and the254

development of a low melting layer, which impedes the formation of large raindrops and results in a high concentration of255

small raindrops (Saha et al., 2022; Seela et al., 2018). Moreover, Dm decreases with increasing latitude, a trend that is256
especially notable in high-latitude marine regions (refer to Fig. S2c in the Supplementary Material). Cha et al. (Cha and Yum,257

2021) noted that snow primarily comprises small particles (diameter < 1 mm). In high-latitude shallow PS, snowfall may258

become more frequent from the middle to high latitudes, which can result in a decrease in Dm. Notably, the height and259

thickness of the melting layer may influence raindrop growth (Hu et al., 2024). With increasing latitude, the melting layer260
becomes thinner, thus reducing the conditions necessary for raindrop growth, which may lead to the formation of a larger261

number of small raindrops. In the oceanic regions within subtropical shallow PS, the higher sea surface temperature in the262

tropics is more conducive to convection formation and development. Moreover, Dm varies among the eight clusters in a263

specific region. For example, in the Amazon region, moderate PS exhibits a lower Dm than deep PS does.264
Similar to Dm, there is a distinct contrast in Nw between continents and oceans. Continental rainfall is usually associated with265

the cold rain mechanism, whereby raindrops grow as ice particles. In contrast, oceanic rainfall is associated with a warm rain266

regime, in which raindrops grow via a collision-agglomeration mechanism. Consequently, Nw over land is less than that over267

oceans (Suh et al., 2016). For the same PS, Nw is high in areas with small Dm values and conversely low in areas with large268
Dm values. For example, in extreme deep PS, the Dm value over the eastern near-equatorial Pacific Ocean, which reaches269

approximately 1.18 mm, is smaller than that of the other oceanic regions. However, Nw is significantly greater than those in270

the other regions. In strong PS, the Dm values in near-equatorial Africa and the eastern United States are greater than those in271

other regions, but the Nw values are lower than those in other regions. It is possible that Dm and Nw may be negatively272
correlated for the same PS.273
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274
Figure 2. Spatial distributions of the mass-weighted mean diameter (Dm) for the eight PS clusters at a height of 2.5 km.275
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276
Figure 3. Similar to Fig. 2. but for log10(Nw).277

3.3. Vertical structure of the different PS types278

The contoured frequency by altitude diagrams (CFADs) of Dm, Nw, and the maximum radar reflectivity for the eight clusters279

are shown in Fig. 4/5/6. Figure 4 shows the CFAD of the maximum radar reflectivity profiles. The results revealed high echo280

tops for deep PS, extreme deep PS, strong PS, and extreme strong PS, and low echo tops for high-latitude shallow PS and281
subtropical shallow PS. Extreme strong PS attained an echo top height greater than 18 km, and it also exhibited the strongest282

convection at the middle level. Its geographic distribution was exclusively terrestrial, which is consistent with other studies283

concluding that deep convective cores occur mostly over land (Houze Jr. et al., 2015). Extreme deep PS and marine extreme284

PS exhibited sharper decreasing trends from 6–12 km than that in extreme strong PS. Therefore, extreme strong PS285
encompassed a greater amount of supercooled liquid droplets or large ice‒water vapor condensates produced by strong286
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convective updrafts than that in extreme deep PS and marine extreme PS (Jiang, 2012). Owing to the lack of strong updrafts287
in extreme deep PS and marine extreme PS, the reflectivity rapidly decreased with height above the freezing level. Table 1288

indicates that the land proportion of extreme strong PS was much greater than that of extreme deep PS and marine extreme289

PS. Additionally, land indicates a dry adiabatic lapse rate, which results in greater buoyancy and allows for stronger updrafts290
to lift ice crystals higher into the atmosphere. As a result, the maximum radar reflectivity in the middle levels at high291

altitudes decreased more slowly in extreme strong PS. High-latitude shallow PS and subtropical shallow PS yielded low echo292

tops of less than 6 km, indicating low convective intensity. Therefore, subtropical shallow PS could be identified as being293

associated with isolated shallow convection over the ocean, especially the region dominated by the subtropical high.294

295
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Figure 4. Contoured frequency by altitude diagrams (CFADs) of the maximum radar reflectivity for the eight distinct PS296
clusters. The solid lines indicate the 25th percentiles; the dashed-dotted lines indicate the 50th percentiles; the dotted lines297

indicate the 75th percentiles.298

299
Figure. 5. Similar to Fig. 4, but for Dm.300
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301
Figure. 6. Similar to Fig. 4, but for log10(Nw).302

Figure 5 shows the CFAD of Dm for the eight types of PSs. Generally, deep convections (deep PS, extreme deep PS, strong303

PS, extreme strong PS, and marine extreme PS) produce different Dm values in the regions above and below approximately 5304

km. Moreover, strong PS and extreme strong PS exhibited wider distributions than those of extreme deep PS and marine305

extreme PS. For deep PS, strong PS, and extreme strong PS, Dm below 4.8 km did not change much or slightly increased306
along with height, but the value decreased between 4.8 and 6.9 km. In extreme strong PS, the vertical structure of Dm was307

more complex. Extreme strong PS exhibited three regimes according to the variations in Dm. The first regime was observed308

between 0 and 4.1 km, where Dm increases with altitude. This is consistent with other papers involving the use of ground-309

based radar observations and reporting that Dm of deep convective precipitation decreases with decreasing height near the310
surface (Marzuki et al., 2023). The observed decrease in Dm may be related to the continued breakdown of large isolated311
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raindrops in the atmosphere. The second regime was observed above the freezing level, from 4.1 to 10 km, where Dm312
decreases with altitude. In this regime, the updraft in deep convection was decreased (Uma and Rao, 2009). The decline in313

updraft decreased the size of the particles that can be retained in the cloud. Finally, the third regime was observed between314

10 and 18 km, where Dm increases with altitude and where strengthened updrafts are often observed (Becker and315
Hohenegger, 2021). Although both high-latitude shallow PS and subtropical shallow PS were shallow PSs, subtropical316

shallow PS had a wider distribution of Dm than high-latitude shallow PS. One possible reason is that in shallow oceanic317

convection, the breaking of large raindrops broadens the DSD.318

Figure 6 shows the CFAD of log10(Nw) for the different types of PSs. In general, Nw decreases with increasing altitude. The319
distribution range of Nw for shallow PSs was relatively small. Moreover, the Nw distribution range of subtropical shallow PS320

was larger than that of high-latitude shallow PS. Among PSs with intense convection, PSs with a greater proportion of land321

coverage exhibited more concentrated Nw values, whereas PSs with a greater proportion of ocean coverage exhibited higher322

Nw values. For example, the Nw values of strong PS and extreme strong PS were smaller and narrower than those of ocean-323
dominated deep PS, extreme deep PS and marine extreme PS. This finding is consistent with the conclusions of other studies324

(Kumar et al., 2024). One possible explanation is that the slower updrafts over ocean regions result in higher concentrations325

of smaller condensates at lower altitudes.326

3.4. DSD characteristics at a height of 2.5 km327

Figure 7a-h show the frequency distributions of the mean Dm and log10(Nw) values observed at 2.5 km above ground level.328

The mean Dm values for the eight types of PSs were 0.85, 0.89, 1.36, 1.50, 1.30, 1.61, 1.71, and 1.32 mm, and the329

corresponding log10(Nw) values were 3.23, 3.45, 3.36, 3.39, 3.83, 3.36, 3.35, and 4.45 m−3mm−1, respectively, as detailed in330

Table 1. Generally, all the distributions shown in Fig. 7a-h greatly deviate from the parameters of continental convection and331
maritime convection defined by Bringi et al. (2003). One reason is that the mean values of Dm and Nw for one PS were332

considered here, whereas Bringi et al. (2003) separated the observation samples into stratiform and convection samples.333

Moreover, the DSDs observed by disdrometers are generally cumulative observations of a single storm at one fixed location334

and differ from the results for each PS in this study, which represent the instantaneous occurrence of a storm. With the most335
intense convection at the middle level, extreme strong PS was the closest to continental convection (Fig. 7d), whereas marine336

extreme PS was the closest to maritime convection (Fig. 7e). For most PSs, Dm and Nw were negatively correlated, with337

greater dispersion of Dm than that of Nw. Moreover, the shallow PSs, such as high-latitude shallow PS, exhibited lower Dm338

and Nw values and more concentrated distributions than those of the deep PSs, such as those in deep PS.339
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340
Figure 7. (a-h) Two-dimensional frequency distributions of Dm and log10(Nw) at a height of 2.5 km, and (i-l) statistical341
values of log10(Nw) and Dm for each PS (the bar indicates one standard deviation). (i) Mean values of Dm and log10(Nw), (j)342

MAX-Dm and MAX-log10(Nw), (k) MAX-log10(Nw) and Dm at its corresponding position, and (l) MAX-Dm and log10(Nw)343

at its corresponding position for each PS. (the blue and orange rectangles denote the maritime and continental convective344

clusters, respectively, in Dm and log10(Nw) space from Bringi et al. (2003)).345
To further compare the mean Dm and Nw values of the different clusters, Figure 7i shows a summary of the mean Dm and Nw346

values, with the standard deviation for each type of PS. Marine extreme PS showed a significant abnormal value of Nw,347

whereas the Nw value of extreme deep PS slightly deviated from those of the other PS. However, if only three extremely348

deep PSs with the highest echo tops, as detailed in Table 1 (strong PS, extreme strong PS, and marine extreme PS), were349
considered, it could be concluded that the larger the Dm value is, the smaller the Nw value. Moreover, the other PSs exhibited350

very similar Nw values. These results might suggest that in deep convection, the DSD parameters at the near-surface level are351

related to convection intensity parameters. Ni et al. (2019) revealed that the dual-frequency ratio between the Ku and Ka352
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bands at 12 km was positively correlated with intensity parameters such as MAXHT20/30, partly because stronger updrafts353
could hold larger ice particles in clouds. However, in swallow convection systems such as those in high-latitude shallow PS354

and subtropical shallow PS, the relationship did not hold, which rendered the relationship between microphysical parameters355

and convection parameters complex.356
Note that although the mean Dm and Nw values represent the overall features of DSDs in one PS, they do not capture the357

variety of DSDs in each PS. For example, the DSD might differ between convective and stratiform regions, where the Nw–358

Dm relationships might vary. To comprehensively demonstrate the microphysical features of PSs, Figure 7j shows the mean359

MAX-Dm and MAX-Nw values of each PS at 2.5 km above ground level. For extreme PS (extreme deep PS, strong PS,360
extreme strong PS, and marine extreme PS), a negative correlation was found between MAX-Dm and MAX-Nw, similar to361

the mean Dm and Nw values shown in Fig. 7h. However, for the non-extreme PS, MAX-Dm and MAX-Nw exhibited positive362

correlations. A similar relationship is also shown in Fig. 7k, which suggests a relationship between MAX-Nw and the363

corresponding Dm value in the MAX-Nw pixels of each PS. Nevertheless, as shown in Fig. 7k, the Dm values of all eight364
types of PSs were very close. Nevertheless, it could be also found that in the non-extreme PS the Dm increases with MAX-Nw,365

while in the extreme PS, the Dm decreases with MAX-Nw. Figure 7l shows the relationship between MAX-Dm and the366

corresponding Nw value in the MAX-Dm pixels of each PS. Interestingly, for all eight types of PSs, MAX-Dm and Nw showed367

significantly negative correlations. Note that MAX-Dm and MAX-Nw in Fig. 7j are the maximum values for one PS and368
usually do not occur in the same pixel. Figure 7k-l show the Nw–Dm relationship observed at the same location. Overall, the369

conclusions generally indicated that deep PSs yield larger MAX-Nw or MAX-Dm values than shallow convection PSs do.370

Overall, extreme PS exhibited negative correlations between Nw and Dm, whereas non-extreme PS demonstrated positive371

correlations.372
Ryu et al. (2021) analyzed DSDs during three types of heavy rainfall events with different rain intensities. They also373

reported that Dm increases with increasing rainfall intensity, whereas Nw decreases with increasing rainfall intensity. In this374

study, we saw a positive relationship between the increase in Dm and MAXHT20 in extreme PS. However, extreme strong375

PS attained the highest MAXHT20 value, but its precipitation rate was lower than that of extreme deep PS and marine376
extreme PS. These results suggest a complex relationship between the microphysical parameters and convection features,377

especially in deep and intense convection systems. Notably, in extreme convection, with strong convection at the top of the378

storm, attenuation becomes notable at low storm levels, which might influence the retrieval of microphysical parameters. To379

assess the impact of attenuation on the Dm-Nw relationship, ground-based observations of microphysical properties from380
disdrometers are needed. Finally, we considered the PS as a whole and did not account for the variations in the Dm and Nw381

values of each PS. The microphysical characteristics varied among different pixels. The mean or maximum values of Dm and382

Nw only reflect part of the total process. Therefore, analyses on the basis of pixel-level observations would improve this383

work.384
To gain further insight into the primary microphysical processes associated with the various PS, we employed an385

investigative approach analogous to that utilized by Kumjian and Prat (2014). To prevent the influence of ground-based386
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clutter, ΔZe and ΔDm values were calculated as the difference between Ze and Dm at 2 and 3 km above the ground.387
Specifically, ΔZe = Ze2km - Ze3km and ΔDm = Dm2km - Dm3km are calculated. Fig. 8 shows the frequency pattern of ΔZe versus388

ΔDm for the eight types of PSs. An increase (decrease) in Ze and Dm indicates that coalescence (breakup) processes dominate.389

Balanced breakup and coalescence processes result in an increase in Ze but a decrease in Dm. In contrast, a decrease in Ze and390
an increase in Dm are due to predominate evaporation or size sorting processes (Wen et al., 2023).391

The microphysical processes of the different types of PSs were significantly distinct. Notably, the microphysical processes392

were dominated by coalescence in the two types of shallow PS (Fig. 8a-b). Previous studies have demonstrated that high-393

latitude shallow PS are more likely to experience the condensation of rain droplets into snow due to the low temperatures in394
these regions. (Thompson et al., 2015). Meanwhile, the coalescence process plays an important role in tropical oceanic395

shallow convective precipitation (subtropical shallow PS) as demonstrated by Li et al. (2024). Balanced breakup and396

coalescence processes in the microphysical processes of extreme PS accounted for more than 40% of the total microphysical397

processes, significantly exceeding other three types of microphysical processes. The microphysical processes may reach an398
equilibrium state under high rainfall rates, in which the coalescence and breakup of raindrops are nearly balanced. Extreme399

deep PS and marine extreme PS encompassed a higher percentage of coalescence processes than strong PS and extreme400

strong PS did, whereas strong PS and extreme strong PS encompassed a higher percentage of breakup processes.401

402
Figure 8. Frequency pattern of ΔZe versus ΔDm between 2 and 3 km for the eight PS clusters.403
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3.5. Seasonal and diurnal cycles404

In this study, seasons were categorized by fixed calendar months. The Northern Hemisphere seasons were defined as spring405

(March–May), summer (June–August), autumn (September–November), and winter (December–February). Conversely, the406

Southern Hemisphere seasons followed the opposite pattern: spring (September–November), summer (December–February),407
autumn (March–May), and winter (June–August). Based on this classification, the subsequent analysis examines seasonal408

and diurnal variations in PS frequency and microphysical parameters. Figure 9 shows the cycles of PS occurrence. Overall,409

the seasonal and diurnal cycles differed among the eight types of PSs. Moderate PS, deep PS, strong PS, and extreme strong410

PS exhibited cycles like those of continental convection systems, with peaks in the afternoon and in summer. Dominated by411
tropical shallow convection over the ocean (Fig. 1), subtropical shallow PS occurred mostly between 0 and 5 a.m. and was412

more frequent during the autumn season than during the other seasons, with the lowest occurrence during the spring season.413

The other types of PS (high-latitude shallow PS, extreme deep PS, and marine extreme PS) did not show obvious diurnal414

cycles, except that high-latitude shallow PS indicated a low peak at approximately 6 am in winter and a valley before noon in415
summer. High-latitude shallow PS occurred infrequently in winter. Extreme deep PS occurred more frequently in summer416

and autumn, with fewer occurrences in winter. Note that marine extreme PS did not demonstrate obvious seasonal417

discrepancies, but shown a peak at night in the summer. Specifically, strong PS and extreme strong PS with a higher418

proportion over land exhibit a peak occurrence around 3 p.m. in the afternoon, while extreme deep PS and marine extreme419
PS with a higher proportion over the ocean shows no distinct peak, with its frequency distributed relatively evenly420

throughout the day. This difference reflects the land-ocean contrast in extreme PS, which is consistent with findings from421

other related studies (Wang and Tang, 2020).422

423
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424
Figure 9. Diurnal variations in the sample sizes of the eight distinct PS clusters across the four seasons.425

Figures 10 and 11 show the seasonal and diurnal cycles of Dm and Nw, respectively. The diurnal cycles of Dm were similar426

with those of PS occurrence to some extent. For example, in moderate PS, deep PS and strong PS, both the occurrence and427

Dm have peaks in the around 15 pm. One connection between these two parameters is that environments that favor storm428

occurrence could also facilitate the development of stronger updrafts, which could promote the formation of large particles in429
clouds. Nevertheless, discrepancies are obvious between the cycles of occurrence and Dm. For example, the Dm in the430

extreme strong PS did not show obvious diurnal variations. The high-latitude shallow PS shows a peak in the summer (Fig.431

10a), which is not found in the diurnal cycle of occurrence (Fig. 9a). In subtropical shallow PS, the diurnal cycle of Dm (Fig.432

10b) was the opposite to that of PS occurrence (Fig. 9b). The diurnal cycles of Nw were basically different with those of Dm433
and occurrence. In subtropical shallow PS, moderate PS, deep PS, and strong PS, the Nw peaked in the morning.434
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Nevertheless, the diurnal cycles of subtropical shallow PS, moderate PS, and deep PS also differed. For example, Nw of435
subtropical shallow PS at night was low, whereas Nw of shallow convective PS and moderate PS at night was very close to436

its peak. Extreme deep PS and marine extreme PS did not exhibit obvious diurnal cycles of Nw. The extreme strong PS437

shown low values of Nw in the afternoon and little variations at night. For high-latitude shallow PS, diurnal variation is not438
clear except in the summer when the Nw in the afternoon is the lowest.439

440
Figure 10. Similar to Fig. 9 but for mean Dm value.441
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442
Figure 11. Similar to Fig. 9 but for the mean log10(Nw) value.443

Similar to the diurnal cycles, the annual cycles of Dm and Nw were opposite in subtropical shallow PS, moderate PS, and444

deep PS, of which Dm was the lowest and Nw was the largest in winter. Nevertheless, there were also differences in the445

annual cycles of the three types of PSs. For example, in subtropical shallow PS, Dm was the largest in summer, followed by446

autumn and spring, whereas the Nw values during the three seasons were very close. Among the extreme PS, Nw and Dm did447
not exhibit obvious annual cycles. For high-latitude shallow PS, the highest Dm value occurs in summer and the Dm in winter448

and spring were comparable. However, the annual cycle of Nw attained the largest value in winter and the lowest value in449

summer.450
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4. Conclusions451

In this study, GPM DPR data were used to objectively classify global PS and analyze the microphysical characteristics of the452

different types of PS. The main conclusions are as follows:453

1). By conducting an objective classification of global PSs via key parameters such as the convective intensity, radar454
reflectivity, and DSD parameters, eight distinct types of PSs were identified. These systems were classified on the basis of455

their unique microphysical and convection properties, providing a detailed understanding of the different precipitation456

processes worldwide. The eight types of PSs identified are as four types of regular/non-extreme PS (high-latitude shallow PS,457

subtropical shallow PS, moderate PS, deep PS) and four types of extreme PS (extreme deep PS, strong PS, extreme strong458
PS, marine extreme PS).459

2). MAXHT20 is generally correlated with the precipitation rate, but this relationship is not clear for extreme PS. The460

relationship between MAXHT20 and Dm does not follow a simple linear pattern. For extreme PS, MAXHT20 is positively461

related to Dm at 2.5 km above the ground surface. This may reflect the relationship between higher cloud tops and greater462
liquid water contents in strongly convective PSs. However, for non-extreme PS, the relationship between MAXHT20 and Dm463

is more complex and may be influenced by variations in the physical processes of the different PS.464

3). For the same type of PS, Dm over land is greater than that over the ocean. Additionally, Dm exhibits latitudinal variability,465

particularly in high-latitude shallow PS, where Dm decreases with increasing latitude. Additionally, continental rainfall is466
associated with lower Nw values due to the cold rain mechanism, whereas oceanic rainfall is associated with higher Nw467

values resulting from a warm rain regime. Shallow PS generally exhibit narrow distributions of both Dm and Nw, particularly468

in high-latitude shallow PS. Among the strong PS, PS with a higher land proportion exhibit more concentrated Nw values,469

whereas those with a greater ocean proportion exhibit larger Nw values. However, the distribution of Dm is the opposite: PS470
with a higher ocean proportion exhibit more concentrated Dm values than land-dominated PSs do.471

4). The different PS exhibit distinct microphysical processes. In shallow convective PS, such as subtropical shallow PS and472

high-latitude shallow PS, coalescence processes largely shape the microphysical characteristics, indicating the aggregation of473

small raindrops in these PS. In contrast, extreme PSs are characterized by balanced breakup and coalescence processes,474
highlighting a more complex interaction between raindrop formation and breakup. These results emphasize the varying475

mechanisms that govern microphysical behavior across the different types of PSs. PS types with high precipitation rates are476

dominated primarily by balanced breakup and coalescence processes, whereas shallow PSs are characterized mainly by477

coalescence.478
5). The seasonal and diurnal cycles of PSs and their microphysical parameters vary significantly, with distinct patterns479

observed in different clusters: clusters dominated by continental convection indicate peaks in the afternoon and summer,480

whereas tropical and high-latitude systems exhibit unique seasonal and diurnal cycles, often with opposite trends between481

Dm and Nw.482
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Classifying PS is essential for increasing the understanding of the microphysical processes that govern cloud development483
and precipitation formation across various climatic regimes. This classification enables the identification of specific484

mechanisms that influence rainfall characteristics, such as droplet formation, growth, and distribution, which are vital for485

accurate weather predictions and climate modeling. This study revealed the global distribution characteristics of different486
types of PS and elucidated the variations in microphysical properties across regions with distinct climatic and geographic487

conditions.488

In this study, each PS was treated as integrated entity, without considering the variations in Dm and Nw within each system.489

Microphysical properties can vary significantly at the pixel level, and relying solely on average or maximum Dm and Nw490
values captures only part of the overall process. Future work should focus on analyzing pixel-level observations to better491

understand the characteristics of microphysical parameters within PS. Furthermore, investigating the relationships between492

microphysical parameters and convective parameters will be a key focus of future research. By analyzing the interactions493

between these parameters, it is possible to reveal the influences of microphysical characteristics on convective intensity and494
precipitation patterns, providing a more detailed perspective for accurately predicting and understanding precipitation495

phenomena.496
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