
Reply to editor and reviewers 

Dear editor and reviewers, 

We sincerely thank you for your valuable and insightful comments, which have 

greatly helped improve the clarity and quality of our manuscript. In the response, we 

have carefully revised the relevant sections. We believe these revisions have 

strengthened the manuscript. Below, we provide detailed responses to each of the 

reviewers’ comments. 

#RC1 

The paper investigates the microphysical properties of global precipitation systems 

(PSs) using GPM Dual-frequency Precipitation Radar (DPR) data from 2018–2022. 

An objective k-means clustering approach (with PCA for dimensionality reduction) is 

applied to classify precipitation systems into eight distinct types: 

• Non-extreme PSs: high-latitude shallow, subtropical shallow, moderate, deep. 

• Extreme PSs: extreme deep, strong, extreme strong, marine extreme. 

Key findings: 

• Continental PSs generally have larger mean drop diameters (Dm) than oceanic PSs, 

while oceanic PSs have higher normalized intercept parameters (Nw). 

• Extreme PSs show balanced raindrop breakup and coalescence, while shallow PSs 

are dominated by coalescence. 

• Clear land–ocean contrasts and latitudinal variations are found in microphysical 

structures. 

• Diurnal and seasonal cycles differ by PS type, with continental systems peaking in 

the afternoon/summer, while shallow oceanic PSs peak at night. 

The manuscript is generally well written and presents novel results. However, it 

would benefit from a few clarifications and structural improvements. I therefore 

recommend a minor revision addressing the following points: 

Reply: We sincerely thank for the positive evaluation and comments. Accordingly, we 

have revised the manuscript to improve the logical flow of sections, clarified key 

methodological details, and ensured that all figures and tables are clearly labeled and 

referenced.  

- The methodology and results section would benefit from a clearer and more logical 

narrative. At present, the text shifts between clustering, physical interpretation, and 

microphysical discussion in a way that can confuse the reader. A more transparent 

structure would be to explicitly present the workflow as follows: 

 



1. Application of clustering algorithm 

State clearly that the clustering was applied to the precipitation feature (PF) database, 

which contains ~9 million PFs identified from GPM DPR data. PF input variables 

include: precipitation rate, radar echo top heights, drop size distribution (Dm, Nw), 

convective/stratiform fractions, and spatial metrics. 

Reply: We revised the sections 2.3 to include the sample counts and input features. It 

is worth noting that the parameters are not from the Precipitation Feature (PF) 

database of Liu et al. (2008), because the PF dataset does not include the profiles of 

Dm and Nw with 176 levels. Therefore, we reproduced the PS dataset to better derive 

the required parameters. We referred the new dataset as PS rather than PF to 

distinguish it from the original PF dataset.  

2. Selection of optimal number of clusters 

Explain that the Davis–Bouldin index and Calinski–Harabasz score were evaluated 

for different values of k, and the minimum DB index at k=8 was taken as evidence 

that eight classes provided the best compromise between compactness and separation. 

Clarify if the Elbow Method applied to the Within-Cluster Sum of Squares suggests 

the same number of classes. This will justify the choice of k=8. 

Reply: Thank you for this valuable comment. We have also applied the Elbow 

Method to evaluate the Within-Cluster Sum of Squares (SSE). However, as shown in 

Reply-Figure 1, the SSE decreases continuously with increasing numbers of clusters, 

without exhibiting a clear inflection point. Compared with the Davis–Bouldin index 

(DBI) and Calinski–Harabasz score (CHS), the Elbow Method provides less 

conclusive guidance for determining the optimal number of clusters in our case. 

Therefore, we relied primarily on the DBI and CHS, both of which consistently 

indicated that k=8 offers the best compromise between compactness and separation. 



 

Reply-Figure 1. Changes in SSE error, DB index and CH sorce with the 

number of clusters from 2 to 20. 

 

3. Characterization of each cluster 

Emphasize that each cluster is then characterized by its distinctive features, such as 

mean Dm or cloud top height... Based on these distinguishing characteristics, the 

clusters are named descriptively (e.g., “shallow,” “deep,” “extreme strong,” “marine 

extreme”). This step should be made explicit, because the current version sometimes 

reads as if the naming were imposed rather than derived. 

Reply: We thank the reviewer for this very helpful suggestion. In the revised 

manuscript, we have moved the description of the naming of the eight clusters to 

Section 3.1 and clarified the basis for assigning these names, improving the 

readability and flow of the text. 

 

4. Emergent spatial and temporal patterns 



Only after the clusters are defined should the manuscript show that these objectively 

derived groups exhibit coherent spatial distributions (e.g., shallow clusters dominating 

high latitudes, extreme clusters in the tropics). This is an important and interesting 

result: the clustering, based purely on precipitation properties, also reflects 

geophysical organisation in space, suggesting that the classification captures 

physically meaningful regimes. 

Reply: Thank you for your valuable comment. We have revised the manuscript and 

provided a more detailed explanation in Section 3.1. In this section, we clarified both 

the naming rules of the clusters and their spatial distributions. 

- The methodology should also clarify how the stratiform, convective, land, and 

marine percentages are computed. Are these: 

(a) computed for each PF individually and then averaged across all PFs in a cluster, or 

(b) computed directly from the total number of pixels across all PFs in a cluster? 

Reply: In this study, the percentages of stratiform, convective, land, and marine pixels 

were first calculated individually for each PS and then averaged across all PSs within 

a cluster, rather than computed from the total number of pixels across all PSs. We 

have clarified this point in the corresponding section of the manuscript. 

 

- Extreme events context: The discussion of extreme precipitation systems should be 

better grounded in previous literature, particularly Zipser et al. (2006), Ni et al. (2017), 

and Bang and Cecil (2021), which provide benchmarks for extreme convective 

systems observed by satellites. 

Reply: Thank you for this valuable suggestion. We have revised Section 3.1 to 

strengthen the discussion of extreme convective systems by incorporating relevant 

findings from previous literature.  

- Logical inconsistency (line 287): The argument is circular. Earlier, weak updrafts 

were inferred from low 40 dBZ echo heights. Later, the rapid decrease in reflectivity 

with height is attributed again to weak updrafts. This leads to a logical loop and 

should be clarified. 

Reply: Thank you for pointing it. We have clarified the description to avoid circular 

reasoning. The observations of lower 40 dBZ echo tops and the rapid decrease in 

reflectivity are now presented as indicators of weaker updrafts, rather than using one 

to justify the other.  

 - Balanced processes would result in no change in the reflectivity and Dm.  

Reply: Thank you for this helpful comment. We have added this clarification in the 

revised manuscript, noting that the balanced processes would result in no change in 

reflectivity and Dm. 

- Phase-change influence (line 303): The observed change in Dm likely corresponds 

to changes in precipitation phase across the melting layer. Please reference Mroz et al. 

(2024). Additional CFADs of Z, Dm, and Nw as a function of temperature or height 



relative to the freezing level would strengthen the analysis and could be added as 

supplementary material. 

Reply: Thank you for raising this valuable point. We fully agree that the rapid 

changes correspond to changes in precipitation phase across the melting layer because 

of the changes of effective dielectric constant, particle size etc. We added discussion 

about this point in the section 3.3 and conclusion section. Nevertheless, as we did not 

include the ERA5 temperature profiles in the Precipitation System dataset, it would 

take too much time to redownload the DPR dataset and reproduce the dataset. 

Therefore, we did not plot the CFAD in the temperature coordinate. We will carefully 

address this issue in future work.  

- Algorithm-induced correlations (section 3.4): The observed correlations between 

Dm and Nw may be artifacts of retrieval assumptions, since the GPM algorithm 

enforces a correlation between Dm and precipitation rate (see Chase et al., 2020). This 

must be acknowledged explicitly. 

Reply: Thank you for your valuable comment. We have acknowledged in the revised 

manuscript (Section 3.4) that the observed correlations between Dm and Nw may be 

partly influenced by algorithm-induced assumptions.  

- Extreme precipitation rates: DPR is not well-suited for quantifying extreme rain 

rates because Ku/Ka frequencies are strongly affected by attenuation and multiple 

scattering in heavy precipitation. Values above ~100 mm h⁻¹ should be treated with 

caution and interpreted in light of retrieval limitations (see Battaglia et al.). 

Reply: We have addressed this point in the Conclusion section of the manuscript. 

Since the study does not further discuss precipitation rates beyond the quantifications 

presented in Table 1, we note the limitations of DPR in measuring extreme rain rates, 

particularly above ~100 mm h⁻¹, due to attenuation and multiple scattering. 

- Language and Clarity Issues: Many sentences exceed 40 words; shortening them 

would improve readability. Descriptions of Figs. 7–8 are overly detailed in-text.  

Reply: We have revised the manuscript to improve language clarity by shortening 

long sentences and reducing overly detailed descriptions in Figs. 7–8. Specifically, we 

have shortened sentences exceeding 40 words and reduced the in-text descriptions of 

Figs. 7–8. 

#RC 2 

Major comments: 

1. The stated purpose of the analysis is to evaluate distributions of Dm and Nw within 

precipitation systems that are classified globally using machine learning. A significant 

flaw in the methodology is that both of these parameters are included as features in the 

classification algorithms. Thus, the classification of the types is partly (with unknown, 

possibly varying weight) determined by the parameters that are to be evaluated. The 

parameters differ amongst the classifications because it was predetermined to be so. 

Reply: Thank you for this valuable comment. As mentioned in the last paragraph of the 

introduction section, this study includes two purposes. The first is to objectively classify 



global PSs and the second is to analyze the microphysical characteristics of different PSs. 

In literature, most papers used subjective methods to recognize various precipitation types, 

such as use storm height to define deep convection, use precipitation rate to define 

extreme precipitation etc. Using single threshold is limited because the precipitation 

systems are quite complex. Therefore, we choose to classify the PS with as much 

parameters as possible and the k-means clustering was conducted using a combination of 

multiple precipitation characteristics, including microphysical parameters (Dm and Nw), 

structural parameters (Htop, MAXHT20/30/40), and macroscopic properties (precipitation 

area, near-surface precipitation rate, and the convective/stratiform fraction) etc. The 

subsequent analysis of Dm and Nw is intended to characterize the overall microphysical 

features of the already-defined PS types, rather than to provide an independent statistical 

test of Dm–Nw differences among classes. 

 

This approach is popular used in literature. For example, Ryu et al. (2021) used the Dm 

and Nw to objectively classify three types of heavy rainfall and then discussed the 

microphysical properties of three types of heavy rainfall. Overall, as Dm and Nw are key 

descriptors of precipitation microphysics, they are naturally included in both the 

clustering framework and the physical interpretation of the resulting PS types. 

2. To be clear, I am not a radar meteorologist. Generally, though, I believe radar retrievals 

of microphysical properties, e.g., Dm, would require attention to the fact that the 

coefficients in the DeltaZe power law relations are not necessarily constant. This would 

be particularly true in cold clouds where ice particles exhibit various sizes, yes, but also 

vary in density, habit, and orientation. Cold clouds are definitely sampled here. The 

methods used to calculate the microphysical parameters presented is largely omitted from 

this manuscript, as is any justification or explanation of their global applicability. How do 

you know the differences presented are not artifacts of the retrieval and what are the 

limitations of the global product? 

Reply: We thank the reviewer for the insightful comment. We would like to clarify that 

the microphysical parameters used in this study, including Dm and Ze, are from the GPM 

DPR satellite products rather than calculated through our own algorithms. The focus of 

this study is on applying these existing products to classify and analyze global 

precipitation systems, rather than developing or validating retrieval algorithms. Besides, 

amounts of validation work of the GPM DPR products have been widely conducted 

globally (Adirosi et al., 2021; Chase et al., 2020; Gatlin et al., 2020; Huang et al., 2021; 

Peinó et al., 2024; Seela et al., 2024). These researches have confirmed that research 

using these products are reliable.  

 

Similar works using the DPR products are commonly used in the literature; for example, 

Li et al. (2024) and Wen et al. (2023) also analyzed microphysical parameters from DPR 

or other satellite products without providing in-depth explanations of the retrieval 

methodology. In response to the reviewer’s concern, we have revised the data description 

section to explicitly reference the relevant algorithm documentation and literature that 

describe the retrieval of these parameters in the GPM DPR products. 



3. The application of the unsupervised classification is overly complicated. First, there is 

the PCA. The only reason given to use this is to reduce dimensionality for feature 

selection supplied to the k-means algorithm. For cloud research, it would be more 

conventional and straight-forward to reduce the height dimension using an integrating 

variable, like total water path. There might be some particular reason for using PCs, but 

none is actually given.  

Then, once the clusters are identified, they are (subjectively?) named in such a way that 

implies they could easily be distinguished with a simple threshold. So why not just apply 

a geographical and cloud top height threshold to isolate a series of recognizable systems 

rather than expecting an unsupervised classification to reproduce them?  

You might even lose something with the unsupervised approach if cloud types you would 

want to contrast are actually quite similar. An example of this that appears in the paper 

are land vs marine systems, which are subset after the fact because the clustering (largely) 

did not differentiate them. 

Reply: We appreciate the thoughtful comments. First, the application of PCA is necessary 

in this study. The PSs are characterized by multiple variables with vertical structures, and 

directly including all height-resolved profiles would lead to a very high-dimensional 

feature space, which would substantially reduce the robustness and efficiency of the 

k-means algorithm. PCA provides an objective way to retain the dominant modes of 

vertical variability while filtering out redundant information. Unlike vertically integrated 

variables (e.g., total water path), which aggregate information and may obscure vertical 

contrasts, PCA preserves key vertical structure signals that are physically relevant to 

precipitation processes. Meanwhile, total water path is physically meaningful. In contrast, 

vertically integrated Ze/Dm/Nw are rarely used in literature because it is difficult to explain 

their physical meanings.  

 

Second, the reviewer suggests that simple geographical or cloud-top-height thresholds 

could be used to isolate recognizable precipitation systems. However, no universally 

accepted global classification scheme for precipitation systems based on fixed thresholds 

currently exists. Precious research usually focused on specific precipitation types with 

one or two precipitation features. However, precipitation characteristics are influenced by 

multiple interacting factors, including environmental moisture, thermodynamic structure, 

circulation regime, and topography, all of which vary substantially across regions. A 

threshold-based approach would therefore introduce strong subjectivity and may fail to 

capture transitional or mixed regimes that do not conform to predefined criteria. 

 

In contrast, the unsupervised clustering approach integrates multiple precipitation features 

and objectively obtains various types of precipitation systems. The naming of clusters is 

performed after clustering, based on their emergent physical characteristics, which does 

not influence the clustering itself. Meanwhile, the clusters are named with reference to 

previous literature. While some clusters can indeed be broadly interpreted using simple 

descriptors (e.g., “shallow” or “deep”), this does not imply that such PSs could be 



classified using a single threshold. 

 

We are not sure what the reviewer specifically means by the “You might even lose 

something with the unsupervised approach if cloud types you would want to contrast are 

actually quite similar.”. We would like to clarify that the unsupervised clustering 

approach in our study does indeed distinguish between continental and marine 

precipitation systems based on the combined precipitation-related features. As we have 

known, the discrepancies of precipitation between land and ocean is the one of the most 

significant characteristics of global precipitation distributions. For example, the 

hailstorms rarely occur over ocean because the middle level of marine convection tend to 

be significantly weaker than those over land. The input features of clustering algorithm do 

not include land-ocean information. However, it separates continental and marine 

precipitation system well, which proves that the clustering algorithm is reliable.  

 

Minor comments: 

L54: define terms 

Reply: Defined. 

 

L102: So many acronyms. Are all these PR PS MS NS HS FS SSE DB CH CFAD etc 

really needed? Some like FS are never even defined. Some are defined in the abstract 

but not elsewhere. Some are defined multiple times and may not be necessary (like 

PS). Some are defined and hardly used (like CH). 

Reply: We appreciate this valuable comment. In the revised manuscript, we have 

carefully reviewed all acronyms and simplified their usage. For acronyms that are 

rarely used, we have spelled them out in full spell throughout the manuscript.  

 

L115-116: “those contained the widely” revise. 

Reply: Revised. 

 

L135: It’s unclear if PSs are individual synoptic systems, cloud systems, or just 

samples that may have included multiple samples of a given cloud. 

Reply: This definition is provided in the first paragraph of Section 2.2. Following the 

reviewer’s comment, we have further clarified the definition of PS in the revised 

manuscript to avoid confusion regarding the physical meaning of PS.  

 

Sect. 2.3: More details on how PCA was used to augment k-means would be helpful. 

All parameters or only Ze were put through PCA? How many PCs? How was 

time-height handled? 

Reply: We have revised the section 2.3 to clearly clarify the use of PCA. PCA was 

applied to the vertical profiles of three parameters: Ze, Dm, and Nw. The purpose of 

PCA was to reduce the vertical dimension, compressing the original 176 height levels 

into a single representative component for each variable. Only one principal 

component was retained for each profile, as it explains the dominant variance of the 



vertical structure and serves as a compact descriptor for clustering. The PCA was 

applied once, independently for each parameter, and no temporal dimension was 

involved in the PCA procedure. Time was not treated as an input dimension; only the 

vertical (height) dimension was reduced. 

 

L140-141: some repetition in these statements 

Reply: Revised. 

 

L185-187: Is “extreme” really the right word for the four classes that are described as 

such? Those clusters are infrequent, but that is not the same as extreme, even if some 

may have some extreme characteristic amongst or within features. This way of 

isolating extreme isn’t as statistically tractable as analyses of distributions of the cloud 

water parameters. So it seems like we need to understand extreme in this context 

means, and why we should be interested in it. 

Reply: The term “extreme” is widely used in the atmospheric science community. 

Generally, an “extreme” event is defined based on its rarity. However, the percentile 

thresholds used to define extremes vary depending on the context. In the research of 

extreme precipitation, thresholds such as 1%, 0.1% or even 0.01% percentile are 

commonly employed. For example, Hamada et al. (2015) selected the uppermost 0.1% 

of Precipitation Features (PF) to define extreme rainfall events and extreme 

convective events. In this study, the four types of extreme PS account for 0.39%, 

0.22%, 0.023%, and 0.0105% of all PSs. Therefore, it is reasonable to define these 

low-occurrence PS types as extreme PS.  

 

L212: “where is dominated” a word is missing or something here 

Reply: Corrected. 

 

There are lots of unsourced and highly generalized statements (e.g., L253-254, 

265-266) 

Reply: The statements at L253–254 have been removed in the revised manuscript. 

The statements at L265–266 are now properly supported with relevant references. 

 

L258: extra space 

Reply: Deleted. 
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