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Abstract. Urban-rural patterns of particulate matter (PM) pollution reduction in China remain poorly 7 

understood. Using an interpretable end-to-end machine learning model framework from original satellite 8 

data, we identified changes in urban and rural PM pollution and the underlying drivers. During the period 9 

2015-2023, the average decrease rates of PM10 and PM2.5 in eastern China were -4.1±1.1 μg/m³/month 10 

and -2.4±0.8 μg/m³/month, respectively. The rate of decrease in urban areas was higher than that in rural 11 

areas, which played a dominant role in PM reduction. Significant reductions in PM concentrations were 12 

observed in urban core areas, suburbs, towns and regions with high agricultural pressure. The 13 

interpretability analysis showed that temperature and interannual variability were the main drivers of PM 14 

pollution reduction. However, only interannual variability showed a significant decreasing trend in its 15 

effect on PM pollution, while other driving factors showed periodic variations. Furthermore, there were 16 

differences in the drivers of PM reduction between urban and rural areas, particularly with interannual 17 

variability in particular contributing to PM pollution reduction in urban areas, but having a lesser impact 18 

in most rural areas. This study reveals the urban-rural patterns of PM pollution reduction in eastern China, 19 

and highlights the need for differentiated air pollution control strategies in urban and rural areas. 20 

1 Introduction 21 

 Air pollution caused by PM2.5 and PM10 (airborne particulate matter with diameters less than 2.5μm 22 

and 10μm, respectively) has adversely affected China's atmospheric environment (Huang et al., 2014a; 23 

Zhang et al., 2012). PM pollution is now considered the greatest environmental risk factor for global 24 

human health (Apte et al., 2015), as exposure to PM can trigger various respiratory and cardiovascular 25 

diseases (Burnett Richard et al., 2014; West et al., 2016; Cohen et al., 2017). The indirect health risks 26 

associated with PM exposure (Yin et al., 2020) contribute to millions of premature deaths annually in 27 
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China (Burnett et al., 2018). To mitigate the escalating risks of particulate matter exposure and reduce 28 

the public health burden, the Chinese government introduced the "Air Pollution Prevention and Control 29 

Action Plan" in 2013 (State Council of the People’s Republic of China, 2013). This initiative aims to 30 

implement policies to improve energy efficiency, reduce energy-related pollution, and curb 31 

anthropogenic emissions to control particulate matter pollution in the atmosphere (State Council of the 32 

People’s Republic of China, 2014). As a result of this initiative, China's atmospheric particulate matter 33 

pollution has improved significantly (Cheng et al., 2021). Between 2013 and 2017, the annual average 34 

concentration of PM2.5 decreased by 28-40% (Zheng et al., 2018; Ministry of Ecology and Environment 35 

of the People’s Republic of China, 2017), and the population-weighted national annual average 36 

concentration of PM2.5 decreased by 32% (Xue et al., 2019). Data from the National Air Quality 37 

Monitoring Network show that between 2013 and 2020, the annual average PM2.5 concentration in urban 38 

areas of China decreased from 72 μg/m³ to 33 μg/m³ (Song et al., 2023). As a result, the Clean Air Action 39 

has achieved remarkable results in reducing PM pollution (Zhang et al., 2019b). 40 

 It is widely accepted that improvements in air quality can be attributed to both reductions in 41 

anthropogenic emissions (Geng et al., 2019; Zheng et al., 2023; Zhao et al., 2018) and changes in 42 

meteorological conditions (An et al., 2019; Cao and Yin, 2020; Chen et al., 2020a). To assess the driving 43 

factors behind changes in PM concentration trends, it is essential to distinguish between anthropogenic 44 

emissions and meteorological factors (Zhong et al., 2018). Zhong et al. (2021) found that PM2.5 45 

concentrations decreased by 44% from 2013 to 2019, and by 34% when the influence of meteorological 46 

conditions was excluded, thus demonstrating the effectiveness of emission reduction measures. Qiu et al. 47 

(2022) used the GEOS-Chem chemical transport model to simulate the impact of anthropogenic 48 

emissions on PM pollution trends and provided recommendations for attributing PM pollution trends to 49 

emission changes. Vu et al. (2019) used machine learning to assess the impact of air quality trends in 50 

Beijing and found that PM2.5 and PM10 concentrations decreased by 34% and 24%, respectively, after 51 

excluding meteorological influences, attributing the decrease to reduced coal burning. Zhai et al. (2019) 52 

used a stepwise multiple linear regression (MLR) model to quantify PM2.5 trends in China between 2013 53 

and 2018, and found that meteorological conditions contributed about 12%. However, Xiao et al. (2021) 54 

used statistical methods to separate the contributions of emissions and meteorology to long-term PM2.5 55 

trends in East China, and found that meteorological contributions were even higher in certain years. 56 
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Overall, distinguishing the contributions of anthropogenic emissions and meteorological changes to PM 57 

pollution is crucial to improve understanding of pollution processes and to inform pollution control 58 

policies and future air quality predictions. 59 

 However, the urban-rural patterns of PM pollution improvement remain poorly understood in 60 

existing research (Chen et al., 2020b). Many studies on PM pollution either focus on highly polluted 61 

regions (such as the Beijing-Tianjin-Hebei region) (Chen et al., 2019a; Chen et al., 2019b), or on 62 

developed regions with a high concentration of large cities (such as the Yangtze River Delta and the 63 

Pearl River Delta) (Gui et al., 2019; He et al., 2017). This focus is mainly due to the high concentrations 64 

of air pollutants in developed cities (Sicard et al., 2023), where PM pollution poses a significant public 65 

health threat to densely populated urban areas (Brauer et al., 2016; Southerland et al., 2022). Although 66 

PM pollution in urban areas highlights the importance of environmental governance, rural areas, with 67 

different consumption habits and living conditions (e.g., solid fuel burning in households) (Li et al., 68 

2014)), may experience air pollution that differs from urban areas (Wang et al., 2024a). In certain seasons 69 

and regions, PM exposure factors in rural areas are generally higher than those in urban areas, with 70 

exposure levels reaching up to 70% (Wang et al., 2024b). Therefore, the contribution of these regions to 71 

PM pollution improvement may differ (Li et al., 2024b). Without targeted assessments, perceptions of 72 

the relative importance of urban and rural areas in China's air pollution control efforts may be distorted, 73 

hindering the development of appropriate environmental policies and the promotion of green 74 

development in urban and rural construction (Yang et al., 2024). 75 

This study advances the understanding of the current status and driving factors of urban-rural PM 76 

pollution improvement using interpretable machine learning methods. First, by integrating satellite 77 

observation data, meteorological data, and geographic information, we use a multiple-output extreme 78 

trees (MOET) model to capture the spatiotemporal distribution of PM (including PM10 and PM2.5) 79 

across China and assess the patterns of PM pollution improvement. We then use various machine learning 80 

interpretability techniques, such as relative importance, tree interpreters, and SHAP values, to quantify 81 

the contributions of anthropogenic emissions and meteorological changes to PM pollution improvement. 82 

To investigate potential differences in the results between urban and rural areas, we use land use data to 83 

distinguish urban from rural regions in eastern China. This study aims to address the following three 84 

questions: (1) What are the spatio-temporal patterns of PM pollution improvement in urban and rural 85 
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areas of China? (2) What are the main driving factors behind the differences in PM pollution 86 

improvement between urban and rural areas? (3) What are the specific contributions of each driving 87 

factor to PM pollution improvement? Answering these questions is crucial for a comprehensive 88 

understanding of the dynamics of urban and rural atmospheric particulate pollution control in China. 89 

2 Data and Methods  90 

2.1 Satellite TOAR data and ground-based PM observations   91 

Previous studies have shown that satellite-observed top-of-atmosphere reflectance (TOAR) data 92 

can be used to estimate near-surface air pollutants (Chen et al., 2024a; Yang et al., 2023; Song et al., 93 

2024). In particular, the TOAR data from the Himawari-8 satellite have demonstrated excellent 94 

performance in pollutant estimation (Hu et al., 2022; Liu et al., 2019). The Advanced Himawari Imager 95 

(AHI) on board the Himawari-8 satellite is an advanced passive observation instrument with 16 96 

observation channels, providing a spatiotemporal resolution of up to 10 minutes and 0.5 km (Bessho et 97 

al., 2016). Based on the sensitivity of the AHI sensor (Yoshida et al., 2018), three visible channels (0.46 98 

μm, 0.51 μm, and 0.64 μm) and two near-infrared channels (0.86 μm and 2.3 μm) were used in this study. 99 

TOAR data from the AHI imager were obtained from the Himawari Monitor P-Tree System data 100 

download website of the Japan Meteorological Agency (https://www.eorc.jaxa.jp/ptree/index.html).  101 

The ground-based PM data were provided by the China National Environmental Monitoring Center 102 

(CEMC) (http://www.cnemc.cn) and were calibrated and quality controlled according to the Chinese 103 

National Standard GB 3095-2012 (Ministry of Ecology and Environment of the People's Republic of 104 

China, 2012). In this study, hourly mean PM10 and PM2.5 data were collected from approximately 1,400 105 

stations in eastern China (102-136°E, 16-56°N) for the period from 1 September 2015 to 31 August 2023. 106 

Observations with PM2.5 concentrations above 600 μg/m³ or PM10 concentrations above 1,000 μg/m³, 107 

as well as those with concentrations below 1 μg/m³, were excluded (Shi et al., 2024). 108 

2.2 Meteorological data and geographic information data 109 

Studies assessing the impact of meteorological factors on PM pollution have identified temperature, 110 

humidity, and wind as the main variables influencing PM2.5 concentrations, with their effects 111 

significantly outweighing those of other factors. Among these, temperature has the most significant and 112 
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stable influence (Chen et al., 2018b). In this study, meteorological data were obtained from the ERA-5 113 

reanalysis dataset provided by the European Centre for Medium-Range Weather Forecasts 114 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/). The dataset includes boundary layer height (BLH), 115 

relative humidity (RH), surface pressure (SP), 2-metre air temperature (T2M), wind direction (WD), 116 

wind speed (WS), and net solar radiation at the surface (NSR), with spatial resolutions of 0.1° × 0.1° or 117 

0.25° × 0.25° (Hersbach et al., 2020). Geographic information can also influence pollutant concentrations 118 

to some extent due to variations in meteorological conditions (Chen et al., 2018a; Chen et al., 2021). The 119 

geographic information data used in this study include elevation (HEIGHT), land cover type (LUCC), 120 

and population density (RK). 121 

2.3 Data integration and development of the Multiple-Output Extreme Trees Model 122 

The resolution of the meteorological and geographic information data was adjusted to 0.05° × 0.05° 123 

using bilinear interpolation. All data were then matched with station data according to the 0.05° × 0.05° 124 

grid of the Himawari-8 satellite. The specific matching method is described in detail in Chen et al. (2022c) 125 

and Song et al. (2022b). 126 

The DOET model is developed on the basis of the Extreme Trees (ET) model (Geurts et al., 2006), 127 

which is capable of simultaneously handle multi-target variable output tasks. The ET model is similar to 128 

the Random Forest (RF) model, both of which consist of multiple decision trees. However, whereas the 129 

RF model randomly samples data with replacement, the ET model uses all available samples. After 130 

determining the samples and features, the ET model constructs decision trees based on optimal partition 131 

attributes. This process is repeated until a sufficient number of decision trees have been constructed to 132 

form the ET model. Finally, the average regression results of all decision trees in the ET are used as the 133 

final output. Several studies have confirmed that the ET model has excellent fitting performance (Qin et 134 

al., 2020; Zhang et al., 2022a; Chen et al., 2022a). 135 

In this study, three model parameters were optimized: the number of trees (n_estimators), the 136 

maximum depth of the model (max_depth), and the minimum number of samples required to split a node 137 

(min_samples_split). After balancing the accuracy and efficiency of the model, these parameters were 138 

set to 70, 100, and 5, respectively. The model, which uses satellite observations, meteorological data, 139 

and geographical information to estimate near-surface PM concentrations, can be expressed as: 140 
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ሺ𝑃𝑀ଵ଴,𝑃𝑀ଶ.ହሻ141 

ൌ 𝑓൫𝑇𝑂𝐴𝑅ଵ,ଶ,ଷ,ସ,଺,𝐵𝐿𝐻,𝑅𝐻, 𝑆𝑃,𝑇2𝑀,𝑊𝐷,𝑊𝑆,𝐻𝑒𝑖𝑔ℎ𝑡, 𝐿𝑈𝐶𝐶,𝑅𝐾,𝑦𝑒𝑎𝑟,𝑚𝑜𝑛,𝑑𝑜𝑦,ℎ𝑜𝑢𝑟൯      ሺ1ሻ 142 

Here, 𝑓 represents the DOET model, and  𝑇𝑂𝐴𝑅ଵ,ଶ,ଷ,ସ,଺ denotes the radiance values of the three 143 

visible channels (0.46 μm, 0.51 μm, and 0.64 μm) and the two near-infrared channels (0.86 μm and 2.3 144 

μm). 𝐵𝐿𝐻,𝑅𝐻, 𝑆𝑃,𝑇2𝑀,𝑊𝐷 and 𝑊𝑆  are meteorological variables, while 𝐻𝑒𝑖𝑔ℎ𝑡, 𝐿𝑈𝐶𝐶  and 𝑅𝐾 145 

represent geographical information. The variables year, mon (month), doy (day of the year), and hour 146 

are temporal information reflecting the influence of anthropogenic emissions on PM pollution (Wei et 147 

al., 2020). Specifically, year and month (mon) are used to represent the interannual and intra-annual 148 

variations in anthropogenic emissions, respectively (Zhang et al., 2019a; Park et al., 2019). The 149 

estimation workflow is illustrated in Figure 1. 150 

 151 
Figure 1. Workflow of PM data estimation and pollution driving factors assessment. 152 

Model performance was evaluated using 10-fold cross-validation (Rodriguez et al., 2010), 153 

incorporating sample-based, space-based, and time-based validation methods (Wei et al., 2019). 154 

Evaluation metrics used included the coefficient of determination (R²), root mean square error (RMSE), 155 

and mean absolute error (MAE) for both PM10 and PM2.5 (Chen et al., 2023). 156 

𝑅ଶ ൌ 1 െ
௦௦ೝ೐ೞ
ௌௌ೟೚೟

                                                        (2) 157 
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𝑀𝐴𝐸 ൌ
ଵ

௡
∑ |𝑦పෝ െ 𝑦௜|
௡
௜ୀଵ                                                 (3) 158 

𝑅𝑀𝑆𝐸 ൌ ටଵ

௡
∑ ሺ𝑦పෝ െ 𝑦௜ሻଶ   ௡
௜ୀଵ                                            (4) 159 

2.4 Machine learning interpretability variables   160 

To investigate the influence of potential driving factors on PM pollution improvement in eastern 161 

China, we employed relative importance (Berner et al., 2020), tree interpreter (Wang et al., 2022b), and 162 

SHAP values (Lundberg and Lee, 2017) to distinguish the contributions of meteorological changes and 163 

anthropogenic emissions to PM pollution improvement. Relative importance was assessed using the 164 

permutation importance value of the DOET model, defined as the average reduction in model accuracy 165 

when a single feature value is randomly shuffled (Yang et al., 2022).   166 

The permutation importance of each variable was calculated using the “permutation_importance” 167 

library in Python. To reduce uncertainty, the training process was repeated 20 times for each grid point 168 

to obtain robust estimates of relative importance. The tree interpreter was applied using the 169 

'tree_interp_functions' library in Python, which is designed for predictions based on decision tree 170 

ensemble models and facilitates the decomposition of each prediction into bias and feature contribution 171 

components. (https://github.com/andosa/treeinterpreter/tree/master).  172 

SHAP values are based on Shapley value theory, which explains model predictions by calculating 173 

the relative contribution of each feature to the output (He et al., 2024). These values reflect not only the 174 

influence of features on individual samples but also indicate the positive and negative contributions of 175 

these influences. SHAP explanations can be applied to any machine learning model, including neural 176 

networks and ensemble models, and provide comprehensive and accurate interpretability results. Thus, 177 

the SHAP method provides superior explanations for both local and global model effects (Liu et al., 2023; 178 

Hou et al., 2022). In Python, “tree_SHAP” is specifically tailored for decision tree-based machine 179 

learning models, such as the Extreme Tree model, to provide greater accuracy and faster computation.  180 

The interpretability variables described above were applied to the monthly averaged PM10 and PM2.5 181 

datasets generated by the DOET model. 182 

2.5 Land cover type classification   183 

Zhang et al. (2022b) proposed a method to differentiate urban and rural areas based on the gradient 184 
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of human land use pressure. In this study, the MCD12Q1 land cover map, with a spatial resolution of 500 185 

meters was used. For grids measuring 5×5 km, urban and rural classifications were determined by the 186 

coverage of specific land cover categories (e.g., urban land and cropland), which reflect the transition 187 

from urban to rural areas and correspond to different levels of human activity. As shown in Table 1 and 188 

Figure S1, urban areas in this study include both urban core areas and suburban regions, while rural areas 189 

are categorized into six types: towns, high agricultural pressure areas, low agricultural pressure areas, 190 

forests and grasslands. 191 

Table 1. Definitions of urban and rural land cover classes 192 

Urban-Rural Land Cover Class Definition 

Urban 50%<Urban grid 

Suburban 25%<Urban grid<50% 

Towns 12.5%<Urban grid<25% 

High Agricultural Pressure Areas 50%<Cropland grid 

Low Agricultural Pressure Areas 12.5%< Cropland grid grid<50% 

Forests 50%<Forest grid 

Grasslands 50%<Grassland grid 

Other 
Remaining unclassified grids (e.g., desert or 

tundra) 

3 Results 193 

3.1 PM estimation model performance and PM distribution characteristics   194 

For the period from September 2015 to August 2023 in eastern China, a total of 6,772,429 samples 195 

were matched. After parameter optimization and feature training, the optimal DOET model was derived, 196 

and long-term time-series spatial distribution products for PM10 and PM2.5 in eastern China were 197 

generated. Figure 2 shows the results of 10-fold cross-validation based on sample, spatial and temporal 198 

validations. Overall, the DOET model showed a high level of accuracy in the estimation of PM data. The 199 

sample-based 10-fold cross-validation results (Figure 2C and 2F) yielded an R² of 0.87, with RMSE 200 

(MAE) values of 25.82 (14.87) μg/m³ for PM10 and 14.36 (8.44) μg/m³ for PM2.5. The slope of the fitting 201 

line between observed and estimated values was 0.84. The performance of the DOET model in this study 202 

is comparable to that reported in other studies that estimated PM using Himawari-8 TOAR data (Wang 203 

et al., 2021; Chen et al., 2024b; Yin et al., 2021).   204 
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The 10-fold cross-validation results based on spatial and temporal validation were slightly lower 205 

than those based on samples (Figures 2D-E and 2G-H). Spatial validation assessed the performance of 206 

the model in estimating PM concentrations in areas without monitoring stations, after training the model 207 

with samples from areas with stations. Temporal validation involved training the model with samples 208 

from specific years and testing it with data from years not used in training. For these two validation 209 

methods, the R² values for PM10 were 0.83 and 0.41, with RMSE values of 29.99 μg/m³ and 55.44 μg/m³, 210 

respectively. For PM2.5, the R² values were 0.83 and 0.51, with RMSE values of 16.46 μg/m³ and 28.11 211 

μg/m³, respectively. The results of the sample-based, spatial, and temporal validation indicate that the 212 

proposed DOET model exhibits robust stability. 213 

 214 

Figure 2. Spatial distribution of PM10 and PM2.5 and cross validation results of the DOET model. The dashed 215 

lines represent the 1:1 line, while the solid lines show the fitted line between observed and estimated values. 216 

By inputting TOAR, meteorological elements and geographical information into the optimally 217 

parameterized DOET model, a pollutant estimation dataset for eastern China was generated for the period 218 

September 2015 to August 2023. Due to the incomplete spatial coverage of TOAR data in different 219 

months and hours (Song et al., 2024), the study first calculated monthly averages, which were then used 220 

to derive annual averages. This step helps to minimize errors due to insufficient spatial coverage of the 221 
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samples (Ding et al., 2024). As shown in Figures 2A and 2B, the Beijing-Tianjin-Hebei region, the 222 

Sichuan Basin, the Guanzhong region, and central China are hotspots for PM10 and PM2.5 pollution (Wei 223 

et al., 2021), with concentrations reaching up to 100 μg/m³ for PM10 and 60 μg/m³ for PM2.5. In addition, 224 

the Inner Mongolia region and northern Gansu, which are frequently affected by dust storms, are also 225 

characterized by high PM10 concentrations (Li et al., 2012). O Overall, the PM10 and PM2.5 226 

concentrations generated by the DOET model accurately reflect the spatial distribution characteristics of 227 

PM in eastern China, and the estimation results are consistent with those of previous studies (Yang et al., 228 

2023; Chen et al., 2022b; Song et al., 2022a). 229 

3.2 Urban-rural differences in PM pollution trends in recent years  230 

The spatial distribution characteristics of PM10 and PM2.5 trends from 2015 to 2023 were analysed, 231 

and the results (Figures 3C-F) show a remarkable improvement of PM pollution in eastern China, as 232 

indicated by a significant decreasing trend in PM concentrations. The average decrease for PM10 was -233 

4.1±1.1 μg/m³/month, while for PM2.5, it was -2.4±0.8 μg/m³/month. However, this widespread decrease 234 

in PM concentrations showed considerable spatial heterogeneity between urban and rural areas. The 235 

urban and rural decrease trends for PM10 were -5.2±1.7 μg/m³/month and -4.1±1.1 μg/m³/month, 236 

respectively, while for PM2.5, they were -3.6±1.1 μg/m³/month and -2.3±0.8 μg/m³/month, respectively. 237 

This suggests that the decrease in PM concentrations in rural areas was close to the regional average in 238 

eastern China, while the decrease in urban areas was more pronounced than the overall trend. 239 

From a broader perspective of the changes in particulate matter concentrations in eastern China, the 240 

urban decrease trends for PM10 and PM2.5 were -0.47 μg/m³/month and -0.33 μg/m³/month, respectively, 241 

while the rural decrease trends were -0.37 μg/m³/month and -0.22 μg/m³/month, respectively. These 242 

results indicate that the reduction trend in rural areas was slower than in urban areas. By 2023, particulate 243 

matter concentrations in urban areas had decreased from about 20 μg/m³ higher than in rural areas to 244 

levels almost equal to those in rural areas.   245 

Urban and rural areas, categorized by land cover type, comprised eight different categories. The 246 

study assessed their respective roles in PM concentration reduction trends and found that all eight 247 

categories showed declining PM trends. However, the regions with the highest PM reduction trends were 248 

mainly four types: urban core areas, suburbs, towns and agricultural land 1 (high agricultural pressure). 249 

In contrast, the reduction trends were less pronounced in agricultural land 2 (low agricultural pressure), 250 
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forests, grassland and other areas.  251 

 252 

Figure 3. Analysis of PM concentration trends in eastern China from September 2015 to August 2023. Panels 253 

A, C, D, and G represent PM10, while panels B, E, F, and H represent PM2.5. In the legends of panels G-H, 254 

blue indicates urban areas, and red indicates rural areas. 255 

The trends in PM10 and PM2.5 concentrations were categorized into four levels based on percentiles: 256 

slow decline (grid points with a decline trend below the 25th percentile), moderate decline (grid points 257 

with a decline trend between the 25th and 75th percentiles), rapid decline (grid points with a decline 258 

trend between the 75th and 95th percentiles), and sharp decline (grid points with a decline trend above 259 

the 95th percentile). As shown in Figure 4, the regions with the most significant changes in urban and 260 

rural PM trends are mainly concentrated in the Beijing-Tianjin-Hebei region, the Guanzhong region and 261 

Central China.   262 

In areas with slow and moderate declines, forests and grasslands accounted for the highest 263 

proportions, ranging from 20.5% to 31.5% and 27.7% to 36.5%, respectively, followed by the first and 264 

second types of agricultural land, which accounted for about 20%. In regions with rapid decline, the first 265 

type of agricultural land had the highest proportion, ranging from 30 to 40%. Urban core, suburban and 266 

rural areas had higher proportions in the fast decline regions, accounting for 6.7%, 7.0% and 8.8% of the 267 

PM10 decline trends and 9.5%, 7.5% and 8.8% of the PM2.5 decline trends respectively. In particular, 268 

the first type of agricultural land had the largest share in the strong decrease regions. 269 
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 270 

Figure 4. Spatial distribution of particulate matter trend percentiles and pie charts. The individual color 271 

scales in the figure represent different areas. 272 

3.3 Assessing potential driving factors for PM pollution improvement and quantifying their 273 

contributions  274 

A DOET model based on monthly PM data was developed to identify the key drivers of urban and 275 

rural greening changes in China. Monthly mean PM10 and PM2.5 concentrations were correlated with 276 

meteorological factors and two temporal variables (year and month) representing the effects of 277 

meteorological changes and anthropogenic influences, respectively (see Methods for details). The model 278 

was cross-validated using a random training set (70%) and a validation set (30%). As shown in Figure 279 

S2, the DOET model explains more than 60% of the PM10 trends and 80% of the PM2.5 trends in eastern 280 

China.  281 

The relative importance of each variable in the DOET model was determined using the 282 

permutation_importance library. Inter-annual variability, intra-annual variability, air pressure and 283 

temperature were identified as significant contributors to the improvement of urban and rural PM 284 

pollution in eastern China (relative importance > 10%). Among them, interannual variability was the 285 

most influential factor for PM10 (28.3±12%), followed by temperature (21.1±15%) (Figure 5A). In 286 
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contrast, for PM2.5, interannual variability ranked second (32±13.2%), while temperature had a stronger 287 

effect (>40%) (Figure 5B). The spatial distribution of the relative importance of the four main 288 

contributing factors, shown in Figures 5C-R, indicates that regions with high relative importance values 289 

overlapped with PM pollution hotspots. Furthermore, as shown in Figure S3, the driving factors for urban 290 

and rural PM pollution improvement differed significantly between land cover types. 291 

 292 

Figure 5. Spatial distribution of the relative influence of each variable on PM pollution. In panels (A-B), the 293 

red variables are related to emissions and the blue variables are related to meteorology. 294 

 The relative contributions of each variable in the DOET model to the PM concentration values were 295 

obtained using the permutation_importance library. The results showed that the improvement in urban 296 

and rural PM pollution was primarily driven by interannual variation (Figure 5), followed by temperature, 297 

which is consistent with the relative importance results in Figure 5. Figures S4-S5 illustrate how 298 

variations in the values of the driving factors influence their relative contributions to PM concentrations. 299 

In particular, PM concentrations showed a clear inverse relationship with temperature and interannual 300 

variations, especially for PM2.5. Relative humidity also showed clear differences in its contribution to 301 

PM10 and PM2.5: lower relative humidity was associated with higher PM10 concentrations, whereas higher 302 

PM2.5 concentrations were associated with higher relative humidity. The scatter plots illustrating the 303 
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relationships between other variables and their relative contributions to PM are shown in Figures S4-S5.   304 

Figure 6 shows the relative contributions of each variable, with the spatial distribution patterns of 305 

interannual variations being particularly noteworthy. For PM10, regions such as Guanzhong, North China, 306 

and Inner Mongolia were more susceptible to the influence of interannual variations. We hypothesize 307 

that the improvement in PM10 pollution be due not only be attributed to anthropogenic emission 308 

reductions but also to sandstorm events in recent years, which are important sources of PM10 (Wang et 309 

al., 2024c). However, the explanatory power of the model for PM10 trends in these areas remains 310 

relatively low, suggesting the need for further investigation into the specific causes. For PM2.5, the impact 311 

of interannual variability was observed mainly in the Guanzhong region, North China, and the Sichuan 312 

Basin, all of which are key areas for pollution control (Wang et al., 2022a; Yu et al., 2022). Contrary to 313 

the relative importance results, the dominant factor driving the improvement in urban and rural PM 314 

pollution was the influence of interannual variability (Figure S6), with other variables showing varying 315 

effects across different land cover types. 316 

 317 
Figure 6. The spatial distribution of the relative contributions of each variable to PM pollution 318 

Finally, the “tree_SHAP” tool was used to decompose the SHAP values of each variable in the 319 

DOET model. By analyzing the positive and negative changes in the SHAP values, the influence of each 320 

variable on the PM pollution improvement - whether positive or negative - was quantified, thus 321 
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complementing the assessment of driving factor contributions (Li et al., 2024a). As shown in Figure 7, 322 

the SHAP values show a strong negative correlation between PM concentrations and the contribution of 323 

interannual variability in eastern China. In particular, during the transition from 2019 to 2020, the 324 

contribution of interannual variations to PM concentrations shifted critically from positive to negative. 325 

Interestingly, despite the high relative importance and contribution of some variables, their SHAP values 326 

showed periodic fluctuations, alternating between positive and negative, such as for temperature (with a 327 

negative contribution in summer and a positive one in winter). This suggests that meteorological factors 328 

influence PM concentrations in a periodic manner, while the only factor that consistently contributes to 329 

the improvement of PM pollution is the interannual variation driven by anthropogenic influences. 330 

 331 

Figure 7. The SHAP values of each variable for PM. The solid line represents the SHAP values, and the dashed 332 

line indicates their trend of change. 333 

3.5 Trends in the contribution of driving factors to PM pollution improvement   334 

To further investigate the influence of potential driving factors on PM concentrations, we conducted 335 

a detailed analysis of the trends in the contributions of each variable was performed. As shown in Figures 336 

S7-S10, the monthly trends in the relative contributions and SHAP values of each variable were examined, 337 

categorized into significant changes (p < 0.05) and non-significant changes (p > 0.05). For the relative 338 

contributions (including PM10 and PM2.5), with the exception of interannual variations, all other variables 339 

showed a decreasing trend, although some regions showed an increasing trend. However, the contribution 340 

of interannual variability showed a significant decrease, indicating a reduced capacity of anthropogenic 341 
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emissions to trigger PM pollution events. This phenomenon is more pronounced for the trends in SHAP 342 

values. In particular, only the contribution of interannual variations showed a significant decreasing trend, 343 

while the other variables showed non-significant decreasing trends, mainly due to the periodic variations 344 

in their contributions, as shown in Figure 7. This shows that the impact of a variable on PM pollution 345 

cannot only be assessed on the basis of its relative contribution, but its positive or negative influence on 346 

the improvement of PM pollution must also be considered.   347 

Given the significant decrease in the contribution of interannual variation, we further compared its 348 

trends across different land cover types in urban and rural areas, as this variable plays the most important 349 

role in PM pollution improvement. As shown in Figure 8 (A-B), the trends in relative contributions for 350 

both PM10 and PM2.5 did not differ significantly between the eight land cover types, although urban areas 351 

showed the highest rate of decrease. However, the trends in SHAP values shown in Figures 8 (C-D) 352 

revealed that the reduction in the contribution of interannual variation was most pronounced in urban 353 

core areas, suburban areas, and towns. In contrast, the decrease in interannual contributions was more 354 

pronounced in agricultural areas than in urban areas, while other rural areas showed a weaker influence 355 

of interannual variations on PM pollution improvement. These results suggest that the improvement in 356 

PM pollution in urban areas is more closely related to anthropogenic influences, whereas this relationship 357 

is less pronounced in rural areas. 358 

 359 

Figure 8. Trends in the relative contribution (A-B) and SHAP values (C-D) of interannual variability of 360 

different land cover types. A and C represent the case for PM10, while B and D represent the case for PM2.5. 361 

In the legend, blue represents urban areas, and red represents rural areas. 362 
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4 Discussion and conclusion 363 

Due to the predominant distribution of environmental quality monitoring stations in urban areas 364 

(Park et al., 2020), discussions on air pollution patterns between urban and rural regions have been 365 

limited (Hammer et al., 2020). In this study, we used a regression-based machine learning DOET 366 

algorithm to integrate station-observed PM concentrations, satellite-observed TOAR, meteorological 367 

factors, and geographic information data. This approach enabled us to generate long-term, high spatio-368 

temporal resolution datasets of near-surface PM10 and PM2.5, with a spatial resolution of 5 km, an hourly 369 

temporal resolution, and coverage across the entire eastern China region. Using the generated PM data 370 

in conjunction with a constructed urban-rural land type framework, we successfully captured the broad 371 

trends and patterns of PM10 and PM2.5 concentration changes from urban and suburban areas to different 372 

types of rural regions. 373 

Based on the estimated dataset and interpretable parameters, the study identified significant large-374 

scale improvements in PM pollution in eastern China from 2015 to 2023, indicating notable 375 

achievements from the implementation of clean air measures. The study noted that the second phase of 376 

the clean air action plan, implemented from 2018 to 2020, also produced positive results, following the 377 

success of the first phase from 2013 to 2017 (Geng et al., 2024). Our results show that under the urban-378 

rural framework, PM reductions are generally higher in urban areas than in rural areas. However, the 379 

highly polluted agricultural areas in rural regions also showed significant improvements in PM pollution. 380 

In fact, during air pollution prevention and control efforts, China's main emission reduction measures 381 

focused on coal consumption and energy-intensive industries such as steel and cement, and these 382 

measures were often effective in urban areas (Yun et al., 2020; Huang et al., 2014b; Wang et al., 2013). 383 

This does not mean that rural areas have been neglected, as evidenced by reductions in biomass burning 384 

(Shen et al., 2019). The finding that interannual variability is the main driver of PM pollution 385 

improvement is consistent with these facts. It is worth noting that the rate of PM concentration decline 386 

is faster in urban areas than in rural areas, bringing the concentration levels of the two areas closer 387 

together. Given the more pronounced decrease in the contribution of inter-annual variations in urban 388 

areas, future efforts to prevent and control air pollution should maintain the current intensity or balance 389 

investments between urban and rural areas.   390 

Our results indicate that meteorological factors with distinct seasonal variations, such as 391 
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temperature, boundary layer height, and relative humidity, have a cyclical influence on PM pollution. 392 

For example, summer weather conditions, such as abundant precipitation, high relative humidity and 393 

abundant water vapour favour PM dispersion, while winter weather conditions are less conducive to 394 

pollutant dispersion and spring is often characterised by frequent dust events. Therefore, due to their 395 

periodic positive and negative contributions and variability, meteorological conditions do not provide 396 

stable improvements in PM pollution. Moreover, the contribution of meteorological conditions to PM 397 

concentrations does not show a significant trend. Thus, given the high contribution of inter-annual 398 

variability to the improvement of PM pollution, the impact of meteorological conditions on the inter-399 

annual variability of PM pollution in China should not be overemphasised.  400 

Although this study evaluated the patterns of PM pollution improvement and its driving factors in 401 

urban and rural areas of eastern China, the contribution of interannual variations driven by anthropogenic 402 

influences was represented by a time variable in our analysis. In the future, key factors driving changes 403 

in air pollutants, such as energy management, urban traffic management, agricultural nitrogen deposition 404 

effects and biomass burning, need to be further incorporated into the attribution analysis to distinguish 405 

and quantify the contributions of different anthropogenic emission reduction measures to PM pollution 406 

improvement. Given the different drivers of PM pollution improvement in urban and rural areas, it is 407 

essential to implement tailored strategies in both regions to achieve more effective and comprehensive 408 

air pollution prevention and control measures in the future. 409 

Data availability 410 

The hourly ground station observations of near-surface PM10 and PM2.5 concentrations are obtained from 411 

the China National Environmental Monitoring Center (CNEMC), which can be accessed on its official 412 

website (http://www.cnemc.cn/en/). Himawari-8 TOAR data provided by the Japan Meteorological 413 

Agency, download from: http://www.eorc.jaxa.jp/ptree/index.html. Meteorological variables were 414 

derived from the reanalysis data set provided by the European Centre for Medium-Range Weather 415 

Forecasts (ECMWF) (https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). MODIS Land 416 

use/cover change (LUCC) product can be downloaded from 417 

https://doi.org/10.5067/MODIS/MCD12C1.061. The 2015 UN-adjusted population density data (RK) 418 

can be downloaded from https://doi.org/10.7927/H4PN93PB. SRTM-3 elevation data jointly measured 419 
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by NASA and the U.S. Department of Defense’s National Imagery and Mapping Agency (NIMA) 420 

(HEIGHT) can be downloaded from https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003.  421 

Code availability 422 

The codes are available from the corresponding author upon request. 423 
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