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Abstract. Understanding the urban-rural patterns and driving drivers behind the recent decrease in 7 

particulate matter (PM) pollution across eastern China is essential for assessing the efficacy of 8 

environmental policies and ensuring equitable health co-benefits. By employing an interpretable, end-9 

to-end machine learning framework integrating satellite observations, meteorological factors, and 10 

auxiliary datasets, this study reveals changes in urban and rural PM pollution and the underlying drivers. 11 

During the period 2015-2023, the average decrease rates of PM10 and PM2.5 in eastern China were -12 

4.02±1.29 μg/m³/yr and -2.41±0.91μg/m³/ yr, respectively. The rate of decrease in urban areas was higher 13 

than that in rural areas, which played a dominant role in PM reduction. Significant reductions in PM 14 

concentrations were observed in urban core areas, suburbs, towns and regions with high agricultural 15 

pressure. The interpretability analysis showed that temperature and interannual variability were the main 16 

drivers of PM pollution reduction. However, only interannual variability showed a significant decreasing 17 

trend in its effect on PM pollution, while other driving factors showed periodic variations. Furthermore, 18 

there were differences in the drivers of PM reduction between urban and rural areas, particularly with 19 

interannual variability in particular contributing to PM pollution reduction in urban areas, but having a 20 

lesser impact in most rural areas. This study reveals the urban-rural patterns of PM pollution reduction 21 

in eastern China, and highlights the need for differentiated air pollution control strategies in urban and 22 

rural areas. 23 

1 Introduction 24 

 Air pollution caused by PM2.5 and PM10 (airborne particulate matter with diameters less than 2.5μm 25 

and 10μm, respectively) has adversely affected China's atmospheric environment (Huang et al., 2014a; 26 

Zhang et al., 2012). PM pollution is now considered the greatest environmental risk factor for global 27 
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human health (Apte et al., 2015), as exposure to PM can trigger various respiratory and cardiovascular 28 

diseases (Burnett Richard et al., 2014; West et al., 2016; Cohen et al., 2017). The indirect health risks 29 

associated with PM exposure (Yin et al., 2020) contribute to millions of premature deaths annually in 30 

China (Burnett et al., 2018). To mitigate the escalating risks of particulate matter exposure and reduce 31 

the public health burden, the Chinese government introduced the "Air Pollution Prevention and Control 32 

Action Plan" in 2013 (State Council of the People’s Republic of China, 2013). This initiative aims to 33 

implement policies to improve energy efficiency, reduce energy-related pollution, and curb 34 

anthropogenic emissions to control particulate matter pollution in the atmosphere (State Council of the 35 

People’s Republic of China, 2014). As a result of this initiative, China's atmospheric particulate matter 36 

pollution has improved significantly (Cheng et al., 2021). Between 2013 and 2017, the annual average 37 

concentration of PM2.5 decreased by 28-40% (Zheng et al., 2018; Ministry of Ecology and Environment 38 

of the People’s Republic of China, 2017), and the population-weighted national annual average 39 

concentration of PM2.5 decreased by 32% (Xue et al., 2019). Data from the National Air Quality 40 

Monitoring Network show that between 2013 and 2020, the annual average PM2.5 concentration in urban 41 

areas of China decreased from 72 μg/m³ to 33 μg/m³ (Song et al., 2023). As a result, the Clean Air Action 42 

has achieved remarkable results in reducing PM pollution (Zhang et al., 2019b). 43 

 It is widely accepted that improvements in air quality can be attributed to both reductions in 44 

anthropogenic emissions (Geng et al., 2019; Zheng et al., 2023; Zhao et al., 2018) and changes in 45 

meteorological conditions (An et al., 2019; Cao and Yin, 2020; Chen et al., 2020a). To assess the driving 46 

factors behind changes in PM concentration trends, it is essential to distinguish between anthropogenic 47 

emissions and meteorological factors (Zhong et al., 2018). Zhong et al. (2021) found that PM2.5 48 

concentrations decreased by 44% from 2013 to 2019, and by 34% when the influence of meteorological 49 

conditions was excluded, thus demonstrating the effectiveness of emission reduction measures. Qiu et al. 50 

(2022) used the GEOS-Chem chemical transport model to simulate the impact of anthropogenic 51 

emissions on PM pollution trends and provided recommendations for attributing PM pollution trends to 52 

emission changes. Vu et al. (2019) used machine learning to assess the impact of air quality trends in 53 

Beijing and found that PM2.5 and PM10 concentrations decreased by 34% and 24%, respectively, after 54 

excluding meteorological influences, attributing the decrease to reduced coal burning. Zhai et al. (2019) 55 

used a stepwise multiple linear regression (MLR) model to quantify PM2.5 trends in China between 2013 56 
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and 2018, and found that meteorological conditions contributed about 12%. However, Xiao et al. (2021) 57 

used statistical methods to separate the contributions of emissions and meteorology to long-term PM2.5 58 

trends in East China, and found that meteorological contributions were even higher in certain years. 59 

Overall, distinguishing the contributions of anthropogenic emissions and meteorological changes to PM 60 

pollution is crucial to improve understanding of pollution processes and to inform pollution control 61 

policies and future air quality predictions. 62 

 However, the urban-rural patterns of PM pollution improvement remain poorly understood in 63 

existing research (Chen et al., 2020b). Many studies on PM pollution either focus on highly polluted 64 

regions (such as the Beijing-Tianjin-Hebei region) (Chen et al., 2019b; Chen et al., 2019c), or on 65 

developed regions with a high concentration of large cities (such as the Yangtze River Delta and the 66 

Pearl River Delta) (Gui et al., 2019; He et al., 2017). This focus is mainly due to the high concentrations 67 

of air pollutants in developed cities (Sicard et al., 2023), where PM pollution poses a significant public 68 

health threat to densely populated urban areas (Brauer et al., 2016; Southerland et al., 2022). Although 69 

PM pollution in urban areas highlights the importance of environmental governance, rural areas, with 70 

different consumption habits and living conditions (e.g., solid fuel burning in households) (Li et al., 71 

2014)), may experience air pollution that differs from urban areas (Wang et al., 2024a). In certain seasons 72 

and regions, PM exposure factors in rural areas are generally higher than those in urban areas, with 73 

exposure levels reaching up to 70% (Wang et al., 2024b). Therefore, the contribution of these regions to 74 

PM pollution improvement may differ (Li et al., 2024b). Without targeted assessments, perceptions of 75 

the relative importance of urban and rural areas in China's air pollution control efforts may be distorted, 76 

hindering the development of appropriate environmental policies and the promotion of green 77 

development in urban and rural construction (Yang et al., 2024). 78 

Currently, many studies have used machine learning models to obtain particulate matter 79 

concentration products and apply them to pollution assessment (Chen et al., 2019a; Huang et al., 2021). 80 

Among these, extreme tree models and data from the Himawari-8 satellite have demonstrated outstanding 81 

performance (Wei et al., 2021b; Wei et al., 2021a; Wei et al., 2021c). In particular, the extreme tree 82 

model demonstrates its unique advantages, including greater randomness and interference resistance, and 83 

outperforms other similar models in terms of performance (Wei et al., 2023). This study advances the 84 

understanding of the current status and driving factors of urban-rural PM pollution improvement using 85 
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interpretable machine learning methods. First, by integrating Himawari-8/9 satellite top-of-atmosphere 86 

reflectance (TOAR) data, meteorological data, and geographic information, we use a multiple-output 87 

extreme trees (MOET) model to capture the spatiotemporal distribution of PM (including PM10 and PM2.5) 88 

across China and assess the patterns of PM pollution improvement. We then use various machine learning 89 

interpretability techniques, such as relative importance, tree interpreters, and SHAP values, to quantify 90 

the contributions of anthropogenic emissions and meteorological changes to PM pollution improvement. 91 

To investigate potential differences in the results between urban and rural areas, we use land use data to 92 

distinguish urban from rural regions in eastern China. This study aims to address the following three 93 

questions: (1) What are the spatio-temporal patterns of PM pollution improvement in urban and rural 94 

areas of China? (2) What are the main driving factors behind the differences in PM pollution 95 

improvement between urban and rural areas? (3) What are the specific contributions of each driving 96 

factor to PM pollution improvement? Answering these questions is crucial for a comprehensive 97 

understanding of the dynamics of urban and rural atmospheric particulate pollution control in China. 98 

2 Data and Methods  99 

2.1 Satellite TOAR data and ground-based PM observations   100 

Previous studies have shown that satellite-observed top-of-atmosphere reflectance (TOAR) data 101 

can be used to estimate near-surface air pollutants (Chen et al., 2024a; Yang et al., 2023; Song et al., 102 

2024). In particular, the TOAR data from the Himawari-8 satellite have demonstrated excellent 103 

performance in pollutant estimation (Hu et al., 2022; Liu et al., 2019). The Advanced Himawari Imager 104 

(AHI) on board the Himawari-8/9 satellite is an advanced passive observation instrument with 16 105 

observation channels, providing a spatiotemporal resolution of up to 10 minutes and 0.5 km (Bessho et 106 

al., 2016). Based on the sensitivity of the AHI sensor (Yoshida et al., 2018), three visible channels (0.46 107 

μm, 0.51 μm, and 0.64 μm) and two near-infrared channels (0.86 μm and 2.3 μm) were used in this study. 108 

In addition, four angles related to aerosol inversion results: SAA (satellite azimuth angle), SAZ (satellite 109 

zenith angle), SOA (solar azimuth angle), and SOZ (solar zenith angle) were also included in the study. 110 

TOAR data from the AHI imager were obtained from the Himawari Monitor P-Tree System data 111 

download website of the Japan Meteorological Agency (https://www.eorc.jaxa.jp/ptree/index.html). The 112 

https://www.eorc.jaxa.jp/ptree/index.html
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time range for Himawari-8 data is from September 1, 2015, to September 30, 2022, while the time range 113 

for Himawari-9 data is from October 1, 2022, to August 31, 2023. 114 

The ground-based PM data were provided by the China National Environmental Monitoring Center 115 

(CNEMC) (http://www.cnemc.cn) and were calibrated and quality controlled according to the Chinese 116 

National Standard GB 3095-2012 (Ministry of Ecology and Environment of the People's Republic of 117 

China, 2012). In this study, hourly mean PM10 and PM2.5 data were collected from approximately 1,400 118 

stations in eastern China (102-136°E, 16-56°N) for the period from 1 September 2015 to 31 August 2023. 119 

Observations with PM2.5 concentrations above 600 μg/m³ or PM10 concentrations above 1,000 μg/m³, as 120 

well as those with concentrations below 1 μg/m³, were excluded (Shi et al., 2024). 121 

2.2 Meteorological data and geographic information data 122 

Studies assessing the impact of meteorological factors on PM pollution have identified tempe123 

rature, humidity, and wind as the main variables influencing PM2.5 concentrations, with their effec124 

ts significantly outweighing those of other factors. Among these, temperature has the most signific125 

ant and stable influence (Chen et al., 2018b). In this study, meteorological data were obtained fro126 

m the ERA-5 reanalysis dataset provided by the European Centre for Medium-Range Weather For127 

ecasts (https://cds.climate.copernicus.eu/cdsapp#!/dataset/). The dataset includes boundary layer hei128 

ght (BLH), relative humidity (RH), surface pressure (SP), 2-metre air temperature (T2M), wind di129 

rection (WD), wind speed (WS), and net solar radiation at the surface (NSR), with spatial resoluti130 

ons of 0.1° × 0.1° or 0.25° × 0.25° (Hersbach et al., 2020). Geographic information can also influ131 

ence pollutant concentrations to some extent due to variations in meteorological conditions (Chen 132 

et al., 2018a; Chen et al., 2021). The geographic information data used in this study include eleva133 

tion (HEIGHT), land cover type (LUCC), and population density (RK). HEIGHT is derived from 134 

SRTM-3 elevation data, with a spatial resolution of 90 meters and a temporal resolution of 1 year.135 

 The download URL is https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003. LUCC is source136 

d from the dataset (MCD12Q1), with a spatial resolution of 500 meters and a temporal resolution 137 

of 1 year. The download URL is https://doi.org/10.5067/MODIS/MCD12Q1.006, used to describe 138 

land surface types and land use conditions. RK is derived from the 2015 United Nations adjusted 139 

population density data, with a spatial resolution of 0.1° × 0.1° and a temporal resolution of 1 ye140 

ar, available at https://doi.org/10.7927/H4PN93PB. It is provided by the Social and Economic Data141 

http://www.cnemc.cn/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/
https://doi.org/10.5067/MODIS/MCD12Q1.006
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 and Applications Center (SEDAC) of the National Aeronautics and Space Administration (NAS142 

A). 143 

2.3 Data integration and development of the Multiple-Output Extreme Trees Model 144 

The resolution of the meteorological and geographic information data was adjusted to 0.05° × 0.05° 145 

using bilinear interpolation. All data were then matched with station data according to the 0.05° × 0.05° 146 

grid of the Himawari-8 satellite. The specific matching method is described in detail in Chen et al. (2022c) 147 

and Song et al. (2022b). 148 

The DOET model is developed on the basis of the Extreme Trees (ET) model (Geurts et al., 2006), 149 

which is capable of simultaneously handle multi-target variable output tasks. The ET model is similar to 150 

the Random Forest (RF) model, both of which consist of multiple decision trees. However, whereas the 151 

RF model randomly samples data with replacement, the ET model uses all available samples. After 152 

determining the samples and features, the ET model constructs decision trees based on optimal partition 153 

attributes. This process is repeated until a sufficient number of decision trees have been constructed to 154 

form the ET model. Finally, the average regression results of all decision trees in the ET are used as the 155 

final output. Several studies have confirmed that the ET model has excellent fitting performance (Qin et 156 

al., 2020; Zhang et al., 2022a; Chen et al., 2022a). 157 

In this study, three model parameters were optimized: the number of trees (n_estimators), the 158 

maximum depth of the model (max_depth), and the minimum number of samples required to split a node 159 

(min_samples_split). After balancing the accuracy and efficiency of the model, these parameters were 160 

set to 70, 100, and 5, respectively. The model, which uses satellite observations, meteorological data, 161 

and geographical information to estimate near-surface PM concentrations, can be expressed as: 162 

(𝑃𝑃𝑃𝑃10,𝑃𝑃𝑃𝑃2.5) = 𝑓𝑓 �
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1,2,3,4,6,𝐵𝐵𝐵𝐵𝐵𝐵,𝑅𝑅𝑅𝑅, 𝑆𝑆𝑆𝑆,𝑇𝑇2𝑀𝑀,𝑊𝑊𝑊𝑊,𝑊𝑊𝑊𝑊,𝑁𝑁𝑁𝑁𝑁𝑁,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑅𝑅𝑅𝑅,

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑,ℎ𝑜𝑜𝑜𝑜𝑜𝑜, 𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆 �       (1) 163 

Here, 𝑓𝑓 represents the DOET model, and  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1,2,3,4,6 denotes the radiance values of the three 164 

visible channels (0.46 μm, 0.51 μm, and 0.64 μm) and the two near-infrared channels (0.86 μm and 2.3 165 

μm). 𝐵𝐵𝐵𝐵𝐵𝐵,𝑅𝑅𝑅𝑅, 𝑆𝑆𝑆𝑆,𝑇𝑇2𝑀𝑀,𝑊𝑊𝑊𝑊, 𝑊𝑊𝑊𝑊 and NSR are meteorological variables, while 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 166 

𝑅𝑅𝑅𝑅 represent geographical information. The variables lon (Longitude), lat (Latitude), SAA, SAZ, SOA 167 

and SOZ representing spatial information. The variables year, mon (month), doy (day of the year), and 168 

hour are temporal information reflecting the influence of anthropogenic emissions on PM pollution (Wei 169 
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et al., 2020). Time variables (year, month) effectively characterize cyclical patterns and long-term trends 170 

in human activity, serving as reliable proxy indicators in pollution analysis (Song et al., 2023). Monthly 171 

cycles directly reflect seasonal rhythms: winter heating spikes PM2.5 and SO₂ levels (Liu et al., 2017), 172 

agricultural phases amplify ammonia emissions (Ma et al., 2025), and transportation peaks during 173 

holidays elevate NO₂ concentrations (Hua et al., 2021). Annual trends capture industrial evolution and 174 

policy impacts, such as the PM2.5 reduction after implementing the "Air Pollution Prevention Action 175 

Plan" (Geng et al., 2024; Geng et al., 2021). As standardized, quantifiable metrics, time variables 176 

circumvent data limitations for complex activities (e.g., energy consumption, economic behaviors, urban 177 

sprawl), enable cross-regional comparisons without normalization, and reveal pollution responses to 178 

socioeconomic rhythms and policy efficacy (Dai et al., 2021; Shi et al., 2021). Specifically, year and 179 

month (mon) are used to represent the interannual and intra-annual variations in anthropogenic emissions, 180 

respectively (Zhang et al., 2019a; Park et al., 2019). The estimation workflow is illustrated in Figure 1. 181 

The specific estimation process of the DOET model is as follows: firstly, meteorological factors, 182 

geographic information, and satellite TOAR data are input into the DOET model and matched with PM 183 

observation data. Then, the DOET model fits the PM observation data with the input variables to obtain 184 

two ET estimation models (PM10 and PM2.5). Finally, the two ET models are integrated to obtain the 185 

DOET model, and the estimation results of PM10 and PM2.5 are output simultaneously to save 186 

computation time. Finally, the obtained PM10 and PM2.5 data are subjected to further analysis. 187 

Additionally, we performed weather normalization on the PM data to mitigate the impact of 188 

meteorological events (Grange and Carslaw, 2019). 189 
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 190 
Figure 1. Workflow of PM data estimation and pollution driving factors assessment. 191 

Model performance was evaluated using 10-fold cross-validation (Rodriguez et al., 2010), 192 

incorporating sample-based, space-based, and time-based validation methods (Wei et al., 2019). 193 

Evaluation metrics used included the coefficient of determination (R²), root mean square error (RMSE), 194 

and mean absolute error (MAE) for both PM10 and PM2.5 (Chen et al., 2023). 195 

𝑅𝑅2 = 1 − 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

                                                        (2) 196 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1                                                 (3) 197 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)2   𝑛𝑛
𝑖𝑖=1                                            (4) 198 

In Equation (2), 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟  represents the error between the estimated value of the model and the 199 

average value of the observed values of PM10 and PM2.5, 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 represents the error between the observed 200 

values of PM10 and PM2.5 and the average value of the observed values of PM10 and PM2.5 from CNEMC. 201 

In Equation (3-5), 𝑦𝑦𝚤𝚤�  represents the PM10 and PM2.5 estimated value of the DOET model, 𝑦𝑦𝑖𝑖 represents 202 

the observed value of PM10 and PM2.5 from CNEMC. 203 

2.4 Machine learning interpretability variables   204 

To investigate the influence of potential driving factors on PM pollution improvement in eastern 205 

China, we employed relative importance (Berner et al., 2020), tree interpreter (Wang et al., 2022b), and 206 
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SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) to distinguish the contributions of 207 

meteorological changes and anthropogenic emissions to PM pollution improvement. Relative importance 208 

was assessed using the permutation importance value of the DOET model, defined as the average 209 

reduction in model accuracy when a single feature value is randomly shuffled (Yang et al., 2022).  210 

The permutation importance of each variable was calculated using the “permutation_importance” 211 

library in Python. To reduce uncertainty, the training process was repeated 20 times for each grid point 212 

to obtain robust estimates of relative importance (Qu et al., 2023). The tree interpreter was applied using 213 

the 'tree_interp_functions' library in Python, which is designed for predictions based on decision tree 214 

ensemble models and facilitates the decomposition of each prediction into bias and feature contribution 215 

components. The detailed calculation method and code for the tree interpreter can be obtained from the 216 

following URL:https://github.com/andosa/treeinterpreter/tree/master.  217 

SHAP values are based on Shapley value theory, which explains model predictions by calculating 218 

the relative contribution of each feature to the output (He et al., 2024). These values reflect not only the 219 

influence of features on individual samples but also indicate the positive and negative contributions of 220 

these influences. SHAP explanations can be applied to any machine learning model, including neural 221 

networks and ensemble models, and provide comprehensive and accurate interpretability results. Thus, 222 

the SHAP method provides superior explanations for both local and global model effects (Liu et al., 2023; 223 

Hou et al., 2022). In Python, “tree_SHAP” is specifically tailored for decision tree-based machine 224 

learning models, such as the Extreme Tree model, to provide greater accuracy and faster computation.  225 

The interpretability variables described above were applied to the monthly averaged PM10 and PM2.5 226 

datasets generated by the DOET model. 227 

2.5 Land cover type classification   228 

Zhang et al. (2022b) proposed a method to differentiate urban and rural areas based on the gradient 229 

of human land use pressure. In this study, the MCD12Q1 land cover map, with a spatial resolution of 500 230 

meters was used. For grids measuring 5×5 km, urban and rural classifications were determined by the 231 

coverage of specific land cover categories (e.g., urban land and cropland), which reflect the transition 232 

from urban to rural areas and correspond to different levels of human activity. As shown in Table 1 and 233 

Figure S1, urban areas in this study include both urban core areas and suburban regions, while rural areas 234 

are categorized into six types: towns, high agricultural pressure areas, low agricultural pressure areas, 235 

https://github.com/andosa/treeinterpreter/tree/master


10 
 

forests and grasslands. 236 

Table 1. Definitions of urban and rural land cover classes 237 

Urban-Rural Land Cover Class Definition 

Urban 50%<Urban grid 

Suburban 25%<Urban grid<50% 

Towns 12.5%<Urban grid<25% 

High Agricultural Pressure Areas 50%<Cropland grid 

Low Agricultural Pressure Areas 12.5%< Cropland grid grid<50% 

Forests 50%<Forest grid 

Grasslands 50%<Grassland grid 

Other 
Remaining unclassified grids (e.g., desert or 

tundra) 

3 Results 238 

3.1 PM estimation model performance and PM distribution characteristics   239 

For the period from September 2015 to August 2023 in eastern China, a total of 6,772,429 samples 240 

were matched. After parameter optimization and feature training, the optimal DOET model was derived, 241 

and long-term time-series spatial distribution products for PM10 and PM2.5 in eastern China were 242 

generated. Figure 2 shows the results of 10-fold cross-validation based on sample, spatial and temporal 243 

validations. Overall, the DOET model showed a high level of accuracy in the estimation of PM data. The 244 

sample-based 10-fold cross-validation results (Figure 2C and 2F) yielded an R² of 0.87, with RMSE 245 

(MAE) values of 25.82 (14.87) μg/m³ for PM10 and 14.36 (8.44) μg/m³ for PM2.5. The slope of the fitting 246 

line between observed and estimated values was 0.84. The performance of the DOET model in this study 247 

is comparable to that reported in other studies that estimated PM using Himawari-8 TOAR data (Wang 248 

et al., 2021; Chen et al., 2024b; Yin et al., 2021).   249 

The 10-fold cross-validation results based on spatial and temporal validation were slightly lower 250 

than those based on samples (Figures 2D-E and 2G-H). Spatial validation assessed the performance of 251 

the model in estimating PM concentrations in areas without monitoring stations, after training the model 252 

with samples from areas with stations. Temporal validation involved training the model with samples 253 

from specific years and testing it with data from years not used in training. For these two validation 254 

methods, the R² values for PM10 were 0.83 and 0.41, with RMSE values of 29.99 μg/m³ and 55.44 μg/m³, 255 
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respectively. For PM2.5, the R² values were 0.83 and 0.52, with RMSE values of 16.46 μg/m³ and 28.11 256 

μg/m³, respectively. The DOET model is relatively robust based on sample and spatial validation results. 257 

 258 
Figure 2. Spatial distribution of PM10 and PM2.5 and cross validation results of the DOET model. The dashed 259 

lines represent the 1:1 line, while the solid lines show the fitted line between observed and estimated values. 260 

By inputting TOAR, meteorological elements and geographical information into the optimally 261 

parameterized DOET model, a pollutant estimation dataset for eastern China was generated for the period 262 

September 2015 to August 2023. Due to the incomplete spatial coverage of TOAR data in different 263 

months and hours (Song et al., 2024), the study first calculated monthly averages, which were then used 264 

to derive annual averages. This step helps to minimize errors due to insufficient spatial coverage of the 265 

samples (Ding et al., 2024). As shown in Figures 2A and 2B, the Beijing-Tianjin-Hebei region, the 266 

Sichuan Basin, the Guanzhong region, and central China are hotspots for PM10 and PM2.5 pollution (Wei 267 

et al., 2021a), with concentrations reaching up to 100 μg/m³ for PM10 and 60 μg/m³ for PM2.5. In addition, 268 

the Inner Mongolia region and northern Gansu, which are frequently affected by dust storms, are also 269 

characterized by high PM10 concentrations (Li et al., 2012). O Overall, the PM10 and PM2.5 concentrations 270 
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generated by the DOET model accurately reflect the spatial distribution characteristics of PM in eastern 271 

China, and the estimation results are consistent with those of previous studies (Yang et al., 2023; Chen 272 

et al., 2022b; Song et al., 2022a). 273 

3.2 Urban-rural differences in PM pollution trends in recent years  274 

The spatial distribution characteristics of PM10 and PM2.5 trends from 2015 to 2023 were analysed, 275 

and the results (Figures 3C-F) show a remarkable improvement of PM pollution in eastern China, as 276 

indicated by a significant decreasing trend in PM concentrations. The average decrease for PM10 was -277 

4.02±1.29 μg/m³/yr, while for PM2.5, it was -2.41±0.91 μg/m³/ yr. However, this widespread decrease in 278 

PM concentrations showed considerable spatial heterogeneity between urban and rural areas. The urban 279 

and rural decrease trends for PM10 were -4.99±1.68 μg/m³/ yr and -3.98±1.26 μg/m³/ yr, respectively, 280 

while for PM2.5, they were -3.43±1.10 μg/m³/ yr and -2.38±0.88 μg/m³/ yr, respectively. This suggests 281 

that the decrease in PM concentrations in rural areas was close to the regional average in eastern China, 282 

while the decrease in urban areas was more pronounced than the overall trend. We supplemented our 283 

analysis by examining the relative change trends through benchmark concentration standardization. 284 

Initially, the standard deviation of PM concentrations was computed for each grid point to assess spatial 285 

variability. Subsequently, the annual mean PM data were used to calculate yearly relative changes 286 

normalized against benchmark concentrations. Finally, a comprehensive trend analysis was performed 287 

on these standardized values. The results are presented in Figure S2. Consistent with the overall trends 288 

in PM concentrations, the relative change rates of PM2.5 were quantified as −38.24 ± 3.40%/yr in rural 289 

areas and −40.93 ± 1.91%/yr in urban areas. Similarly, PM10 exhibited relative change trends of −34.03 290 

± 6.55%/yr (rural) and −39.07 ± 2.78%/yr (urban). These findings demonstrate that, when accounting for 291 

region-specific baseline concentrations across different land cover types, urban areas continue to show a 292 

more substantial reduction in PM pollution compared to rural areas. 293 

From a broader perspective of the changes in particulate matter concentrations in eastern China, the 294 

urban decrease trends for PM10 and PM2.5 were -0.47 μg/m³/month and -0.33 μg/m³/month, respectively, 295 

while the rural decrease trends were -0.37 μg/m³/month and -0.22 μg/m³/month, respectively. These 296 

results indicate that the reduction trend in rural areas was slower than in urban areas. By 2023, particulate 297 

matter concentrations in urban areas had decreased from about 20 μg/m³ higher than in rural areas to 298 

levels almost equal to those in rural areas.   299 
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Urban and rural areas, categorized by land cover type, comprised eight different categories. The 300 

study assessed their respective roles in PM concentration reduction trends and found that all eight 301 

categories showed declining PM trends. However, the regions with the highest PM reduction trends were 302 

mainly four types: urban core areas, suburbs, towns and agricultural land 1 (high agricultural pressure). 303 

In contrast, the reduction trends were less pronounced in agricultural land 2 (low agricultural pressure), 304 

forests, grassland and other areas.  305 

 306 
Figure 3. Analysis of PM concentration trends in eastern China from September 2015 to August 2023. Panels 307 

A, C, D, and G represent PM10, while panels B, E, F, and H represent PM2.5. In the legends of panels G-H, 308 

blue indicates urban areas, and red indicates rural areas. In G and H, the upper part of the box represents 309 

the upper quartile of the trend, and the lower part represents the lower quartile of the trend; the dotted line 310 

range represents the upper and lower limits of the trend values; the red dot represents the average value of 311 

the trend. 312 

The trends in PM10 and PM2.5 concentrations were categorized into four levels based on percentiles: 313 

slow decline (grid points with a decline trend below the 25th percentile), moderate decline (grid points 314 

with a decline trend between the 25th and 75th percentiles), rapid decline (grid points with a decline 315 

trend between the 75th and 95th percentiles), and sharp decline (grid points with a decline trend above 316 
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the 95th percentile). As shown in Figure 4, the regions with the most significant changes in urban and 317 

rural PM trends are mainly concentrated in the Beijing-Tianjin-Hebei region, the Guanzhong region and 318 

Central China.   319 

In areas with slow and moderate declines, forests and grasslands accounted for the highest 320 

proportions, ranging from 23.51% to 32.56% and 23.92% to 39.25%, respectively, followed by the 321 

agricultural 1 and agricultural 2, which accounted for about 20%. In regions with rapid decline, the first 322 

type of agricultural land had the highest proportion, ranging from 30 to 40%. Urban core, suburban and 323 

towns had higher proportions in the fast decline regions, accounting for 6.44%, 6.01% and 6.83% of the 324 

PM10 decline trends and 7.52%, 6.34% and 7.21% of the PM2.5 decline trends respectively. In particular, 325 

the agricultural 1 had the largest share in the strong decrease regions. 326 

 327 

Figure 4. Spatial distribution of particulate matter trend percentiles and pie charts. The individual color 328 

scales in the figure represent different areas. 329 

3.3 Assessing potential driving factors for PM pollution improvement and quantifying their 330 

contributions  331 

A DOET model based on monthly PM data was developed to identify the key drivers of urban and 332 

rural particulate matter pollution changes in China. Monthly mean PM10 and PM2.5 concentrations were 333 
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correlated with meteorological factors and two temporal variables (year and month) representing the 334 

effects of meteorological changes and anthropogenic influences, respectively (see Methods for details). 335 

The model was cross-validated using a random training set (70%) and a validation set (30%). As shown 336 

in Figure S3, the DOET model explains more than 60% of the PM10 trends and 80% of the PM2.5 trends 337 

in eastern China.  338 

The relative importance of each variable in the DOET model was determined using the 339 

permutation_importance library. Inter-annual variability, intra-annual variability, air pressure and 340 

temperature were identified as significant contributors to the improvement of urban and rural PM 341 

pollution in eastern China (relative importance > 10%). Among them, interannual variability was the 342 

most influential factor for PM10 (26.14±13.35%), followed by temperature (19.95±15.06%) (Figure 5A). 343 

In contrast, for PM2.5, interannual variability ranked second (30.79±12.86%), while temperature had a 344 

stronger effect (38.90±17.73%) (Figure 5B). The spatial distribution of the relative importance of the 345 

four main contributing factors, shown in Figures 5C-R, indicates that regions with high relative 346 

importance values overlapped with PM pollution hotspots. Furthermore, as shown in Figure S4, the 347 

driving factors for urban and rural PM pollution improvement differed significantly between land cover 348 

types. 349 

 350 
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Figure 5. Spatial distribution of the relative influence of each variable on PM pollution. In panels (A-B), the 351 

red variables are related to emissions and the blue variables are related to meteorology. 352 

 The relative contributions of each variable in the DOET model to the PM concentration values were 353 

obtained using the permutation_importance library. The results showed that the improvement in urban 354 

and rural PM pollution was primarily driven by interannual variation (Figure 5), followed by temperature, 355 

which is consistent with the relative importance results in Figure 5. Figure S5-S6 illustrate how variations 356 

in the values of the driving factors influence their relative contributions to PM concentrations. In 357 

particular, PM concentrations showed a clear inverse relationship with temperature and interannual 358 

variations, especially for PM2.5. Relative humidity also showed clear differences in its contribution to 359 

PM10 and PM2.5: lower relative humidity was associated with higher PM10 concentrations, whereas higher 360 

PM2.5 concentrations were associated with higher relative humidity. The scatter plots illustrating the 361 

relationships between other variables and their relative contributions to PM are shown in Figures S4-S5.   362 

Figure 6 shows the relative contributions of each variable, with the spatial distribution patterns of 363 

interannual variations being particularly noteworthy. For PM10, regions such as Guanzhong, North China, 364 

and Inner Mongolia were more susceptible to the influence of interannual variations. We hypothesize 365 

that the improvement in PM10 pollution be due not only be attributed to anthropogenic emission 366 

reductions but also to sandstorm events in recent years, which are important sources of PM10 (Wang et 367 

al., 2024c). However, the explanatory power of the model for PM10 trends in these areas remains 368 

relatively low, suggesting the need for further investigation into the specific causes. For PM2.5, the impact 369 

of interannual variability was observed mainly in the Guanzhong region, North China, and the Sichuan 370 

Basin, all of which are key areas for pollution control (Wang et al., 2022a; Yu et al., 2022). Contrary to 371 

the relative importance results, the dominant factor driving the improvement in urban and rural PM 372 

pollution was the influence of interannual variability (Figure S7), with other variables showing varying 373 

effects across different land cover types. 374 
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 375 
Figure 6. The spatial distribution of the relative contributions of each variable to PM pollution 376 

Finally, the “tree_SHAP” tool was used to decompose the SHAP values of each variable in the 377 

DOET model. By analyzing the positive and negative changes in the SHAP values, the influence of each 378 

variable on the PM pollution improvement - whether positive or negative - was quantified, thus 379 

complementing the assessment of driving factor contributions (Li et al., 2024a). As shown in Figure 7, 380 

the SHAP values show a strong negative correlation between PM concentrations and the contribution of 381 

interannual variability in eastern China. In particular, during the transition from 2019 to 2020, the 382 

contribution of interannual variations to PM concentrations shifted critically from positive to negative. 383 

Interestingly, despite the high relative importance and contribution of some variables, their SHAP values 384 

showed periodic fluctuations, alternating between positive and negative, such as for temperature (with a 385 

negative contribution in summer and a positive one in winter). This suggests that meteorological factors 386 

influence PM concentrations in a periodic manner, while the only factor that consistently contributes to 387 

the improvement of PM pollution is the interannual variation driven by anthropogenic influences. The 388 

Figure S8-S9 show the SHAP values of various variables for PM in urban and rural areas, respectively. 389 

The impact of various variables, including temperature, on PM is primarily evident in urban areas, where 390 

the magnitude of the values and the rate of change are both higher than in rural areas. 391 
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 392 

Figure 7. The SHAP values of each variable for PM. The solid line represents the SHAP values, and the dashed 393 

line indicates their trend of change. 394 

3.5 Trends in the contribution of driving factors to PM pollution improvement   395 

To further investigate the influence of potential driving factors on PM concentrations, we conducted 396 

a detailed analysis of the trends in the contributions of each variable was performed. As shown in Figures 397 

S10-S13, the monthly trends in the relative contributions and SHAP values of each variable were 398 

examined, categorized into significant changes (p < 0.05) and non-significant changes (p > 0.05). For the 399 

relative contributions (including PM10 and PM2.5), with the exception of interannual variations, all other 400 

variables showed a decreasing trend, although some regions showed an increasing trend. However, the 401 

contribution of interannual variability showed a significant decrease, indicating a reduced capacity of 402 

anthropogenic emissions to trigger PM pollution events. This phenomenon is more pronounced for the 403 

trends in SHAP values. In particular, only the contribution of interannual variations showed a significant 404 

decreasing trend, while the other variables showed non-significant decreasing trends, mainly due to the 405 

periodic variations in their contributions, as shown in Figure 7. This shows that the impact of a variable 406 

on PM pollution cannot only be assessed on the basis of its relative contribution, but its positive or 407 

negative influence on the improvement of PM pollution must also be considered.   408 

Given the significant decrease in the contribution of interannual variation, we further compared its 409 

trends across different land cover types in urban and rural areas, as this variable plays the most important 410 

role in PM pollution improvement. As shown in Figure 8 (A-B), the trends in relative contributions for 411 
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both PM10 and PM2.5 did not differ significantly between the eight land cover types, although urban areas 412 

showed the highest rate of decrease. However, the trends in SHAP values shown in Figures 8 (C-D) 413 

revealed that the reduction in the contribution of interannual variation was most pronounced in urban 414 

core areas, suburban areas, and towns. In contrast, the decrease in interannual contributions was more 415 

pronounced in agricultural areas than in urban areas, while other rural areas showed a weaker influence 416 

of interannual variations on PM pollution improvement. These results suggest that the improvement in 417 

PM pollution in urban areas is more closely related to anthropogenic influences, whereas this relationship 418 

is less pronounced in rural areas. 419 

 420 
Figure 8. Trends in the relative contribution (A-B) and SHAP values (C-D) of interannual variability of 421 

different land cover types. A and C represent the case for PM10, while B and D represent the case for PM2.5. 422 

In the legend, blue represents urban areas, and red represents rural areas. In Figure 8, the upper part of the 423 

box represents the upper quartile of the trend, and the lower part represents the lower quartile of the trend; 424 

the dotted line range represents the upper and lower limits of the trend values; the red dot represents the 425 

average value of the trend. 426 

 427 

4 Discussion and conclusion 428 

Due to the predominant distribution of environmental quality monitoring stations in urban areas 429 
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(Park et al., 2020), discussions on air pollution patterns between urban and rural regions have been 430 

limited (Hammer et al., 2020). In this study, we used a regression-based machine learning DOET 431 

algorithm to integrate station-observed PM concentrations, satellite-observed TOAR, meteorological 432 

factors, and geographic information data. This approach enabled us to generate long-term, high spatio-433 

temporal resolution datasets of near-surface PM10 and PM2.5, with a spatial resolution of 5 km, an hourly 434 

temporal resolution, and coverage across the entire eastern China region. Using the generated PM data 435 

in conjunction with a constructed urban-rural land type framework, we successfully captured the broad 436 

trends and patterns of PM10 and PM2.5 concentration changes from urban and suburban areas to different 437 

types of rural regions. 438 

Based on the estimated dataset and interpretable parameters, the study identified significant large-439 

scale improvements in PM pollution in eastern China from 2015 to 2023, indicating notable 440 

achievements from the implementation of clean air measures. The study noted that the second phase of 441 

the clean air action plan, implemented from 2018 to 2020, also produced positive results, following the 442 

success of the first phase from 2013 to 2017 (Geng et al., 2024). Our results show that under the urban-443 

rural framework, PM reductions are generally higher in urban areas than in rural areas. However, the 444 

highly polluted agricultural areas in rural regions also showed significant improvements in PM pollution. 445 

In fact, during air pollution prevention and control efforts, China's main emission reduction measures 446 

focused on coal consumption and energy-intensive industries such as steel and cement, and these 447 

measures were often effective in urban areas (Yun et al., 2020; Huang et al., 2014b; Wang et al., 2013). 448 

This does not mean that rural areas have been neglected, as evidenced by reductions in biomass burning 449 

(Shen et al., 2019). The finding that interannual variability is the main driver of PM pollution 450 

improvement is consistent with these facts. It is worth noting that the rate of PM concentration decline 451 

is faster in urban areas than in rural areas, bringing the concentration levels of the two areas closer 452 

together. Given the more pronounced decrease in the contribution of inter-annual variations in urban 453 

areas, future efforts to prevent and control air pollution should maintain the current intensity or balance 454 

investments between urban and rural areas. 455 

Our results indicate that meteorological factors with distinct seasonal variations, such as 456 

temperature, boundary layer height, and relative humidity, have a cyclical influence on PM pollution. 457 

For example, summer weather conditions, such as abundant precipitation, high relative humidity and 458 
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abundant water vapour favour PM dispersion, while winter weather conditions are less conducive to 459 

pollutant dispersion and spring is often characterised by frequent dust events. Therefore, due to their 460 

periodic positive and negative contributions and variability, meteorological conditions do not provide 461 

stable improvements in PM pollution. Moreover, the contribution of meteorological conditions to PM 462 

concentrations does not show a significant trend. Thus, given the high contribution of inter-annual 463 

variability to the improvement of PM pollution, the impact of meteorological conditions on the inter-464 

annual variability of PM pollution in China should not be overemphasised.  465 

Although this study evaluated the patterns of PM pollution improvement and its driving factors in 466 

urban and rural areas of eastern China, the contribution of interannual variations driven by anthropogenic 467 

influences was represented by a time variable in our analysis. In the future, key factors driving changes 468 

in air pollutants, such as energy management, urban traffic management, agricultural nitrogen deposition 469 

effects and biomass burning, need to be further incorporated into the attribution analysis to distinguish 470 

and quantify the contributions of different anthropogenic emission reduction measures to PM pollution 471 

improvement. Given the different drivers of PM pollution improvement in urban and rural areas, it is 472 

essential to implement tailored strategies in both regions to achieve more effective and comprehensive 473 

air pollution prevention and control measures in the future. 474 

Data availability 475 

The hourly ground station observations of near-surface PM10 and PM2.5 concentrations are obtained from 476 

the China National Environmental Monitoring Center (CNEMC), which can be accessed on its official 477 

website (http://www.cnemc.cn/en/). Himawari-8 TOAR data provided by the Japan Meteorological 478 

Agency, download from: http://www.eorc.jaxa.jp/ptree/index.html. Meteorological variables were 479 

derived from the reanalysis data set provided by the European Centre for Medium-Range Weather 480 

Forecasts (ECMWF) (https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). MODIS Land 481 

use/cover change (LUCC) product can be downloaded from 482 

https://doi.org/10.5067/MODIS/MCD12C1.061. The 2015 UN-adjusted population density data (RK) 483 

can be downloaded from https://doi.org/10.7927/H4PN93PB. SRTM-3 elevation data jointly measured 484 

by NASA and the U.S. Department of Defense’s National Imagery and Mapping Agency (NIMA) 485 

(HEIGHT) can be downloaded from https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003. The 486 

http://www.cnemc.cn/en/
http://www.eorc.jaxa.jp/ptree/index.html
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
https://doi.org/10.5067/MODIS/MCD12C1.061
https://doi.org/10.7927/H4PN93PB
https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003
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particulate matter data generated in the manuscript can be obtained at the following URL: 487 

https://doi.org/10.5281/zenodo.17090707. 488 

Code availability 489 

The codes are available from the corresponding author upon request. 490 
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