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Abstract. Urban-rural patterns of particulate matter (PM) pollution reduction in China remain poorly 7 

understood. Using an interpretable end-to-end machine learning model framework from original satellite 8 

data, we identified changes in urban and rural PM pollution and the underlying drivers. During the period 9 

2015-2023, the average decrease rates of PM10 and PM2.5 in eastern China were -4.02±1.29 μg/m³/yr and 10 

-2.41±0.91μg/m³/ yr, respectively. The rate of decrease in urban areas was higher than that in rural areas, 11 

which played a dominant role in PM reduction. Significant reductions in PM concentrations were 12 

observed in urban core areas, suburbs, towns and regions with high agricultural pressure. The 13 

interpretability analysis showed that temperature and interannual variability were the main drivers of PM 14 

pollution reduction. However, only interannual variability showed a significant decreasing trend in its 15 

effect on PM pollution, while other driving factors showed periodic variations. Furthermore, there were 16 

differences in the drivers of PM reduction between urban and rural areas, particularly with interannual 17 

variability in particular contributing to PM pollution reduction in urban areas, but having a lesser impact 18 

in most rural areas. This study reveals the urban-rural patterns of PM pollution reduction in eastern China, 19 

and highlights the need for differentiated air pollution control strategies in urban and rural areas. 20 

1 Introduction 21 

 Air pollution caused by PM2.5 and PM10 (airborne particulate matter with diameters less than 2.5μm 22 

and 10μm, respectively) has adversely affected China's atmospheric environment (Huang et al., 2014a; 23 

Zhang et al., 2012). PM pollution is now considered the greatest environmental risk factor for global 24 

human health (Apte et al., 2015), as exposure to PM can trigger various respiratory and cardiovascular 25 

diseases (Burnett Richard et al., 2014; West et al., 2016; Cohen et al., 2017). The indirect health risks 26 

associated with PM exposure (Yin et al., 2020) contribute to millions of premature deaths annually in 27 
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China (Burnett et al., 2018). To mitigate the escalating risks of particulate matter exposure and reduce 28 

the public health burden, the Chinese government introduced the "Air Pollution Prevention and Control 29 

Action Plan" in 2013 (State Council of the People’s Republic of China, 2013). This initiative aims to 30 

implement policies to improve energy efficiency, reduce energy-related pollution, and curb 31 

anthropogenic emissions to control particulate matter pollution in the atmosphere (State Council of the 32 

People’s Republic of China, 2014). As a result of this initiative, China's atmospheric particulate matter 33 

pollution has improved significantly (Cheng et al., 2021). Between 2013 and 2017, the annual average 34 

concentration of PM2.5 decreased by 28-40% (Zheng et al., 2018; Ministry of Ecology and Environment 35 

of the People’s Republic of China, 2017), and the population-weighted national annual average 36 

concentration of PM2.5 decreased by 32% (Xue et al., 2019). Data from the National Air Quality 37 

Monitoring Network show that between 2013 and 2020, the annual average PM2.5 concentration in urban 38 

areas of China decreased from 72 μg/m³ to 33 μg/m³ (Song et al., 2023). As a result, the Clean Air Action 39 

has achieved remarkable results in reducing PM pollution (Zhang et al., 2019b). 40 

 It is widely accepted that improvements in air quality can be attributed to both reductions in 41 

anthropogenic emissions (Geng et al., 2019; Zheng et al., 2023; Zhao et al., 2018) and changes in 42 

meteorological conditions (An et al., 2019; Cao and Yin, 2020; Chen et al., 2020a). To assess the driving 43 

factors behind changes in PM concentration trends, it is essential to distinguish between anthropogenic 44 

emissions and meteorological factors (Zhong et al., 2018). Zhong et al. (2021) found that PM2.5 45 

concentrations decreased by 44% from 2013 to 2019, and by 34% when the influence of meteorological 46 

conditions was excluded, thus demonstrating the effectiveness of emission reduction measures. Qiu et al. 47 

(2022) used the GEOS-Chem chemical transport model to simulate the impact of anthropogenic 48 

emissions on PM pollution trends and provided recommendations for attributing PM pollution trends to 49 

emission changes. Vu et al. (2019) used machine learning to assess the impact of air quality trends in 50 

Beijing and found that PM2.5 and PM10 concentrations decreased by 34% and 24%, respectively, after 51 

excluding meteorological influences, attributing the decrease to reduced coal burning. Zhai et al. (2019) 52 

used a stepwise multiple linear regression (MLR) model to quantify PM2.5 trends in China between 2013 53 

and 2018, and found that meteorological conditions contributed about 12%. However, Xiao et al. (2021) 54 

used statistical methods to separate the contributions of emissions and meteorology to long-term PM2.5 55 

trends in East China, and found that meteorological contributions were even higher in certain years. 56 
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Overall, distinguishing the contributions of anthropogenic emissions and meteorological changes to PM 57 

pollution is crucial to improve understanding of pollution processes and to inform pollution control 58 

policies and future air quality predictions. 59 

 However, the urban-rural patterns of PM pollution improvement remain poorly understood in 60 

existing research (Chen et al., 2020b). Many studies on PM pollution either focus on highly polluted 61 

regions (such as the Beijing-Tianjin-Hebei region) (Chen et al., 2019b; Chen et al., 2019c), or on 62 

developed regions with a high concentration of large cities (such as the Yangtze River Delta and the 63 

Pearl River Delta) (Gui et al., 2019; He et al., 2017). This focus is mainly due to the high concentrations 64 

of air pollutants in developed cities (Sicard et al., 2023), where PM pollution poses a significant public 65 

health threat to densely populated urban areas (Brauer et al., 2016; Southerland et al., 2022). Although 66 

PM pollution in urban areas highlights the importance of environmental governance, rural areas, with 67 

different consumption habits and living conditions (e.g., solid fuel burning in households) (Li et al., 68 

2014)), may experience air pollution that differs from urban areas (Wang et al., 2024a). In certain seasons 69 

and regions, PM exposure factors in rural areas are generally higher than those in urban areas, with 70 

exposure levels reaching up to 70% (Wang et al., 2024b). Therefore, the contribution of these regions to 71 

PM pollution improvement may differ (Li et al., 2024b). Without targeted assessments, perceptions of 72 

the relative importance of urban and rural areas in China's air pollution control efforts may be distorted, 73 

hindering the development of appropriate environmental policies and the promotion of green 74 

development in urban and rural construction (Yang et al., 2024). 75 

Currently, many studies have used machine learning models to obtain particulate matter 76 

concentration products and apply them to pollution assessment (Chen et al., 2019a; Huang et al., 2021). 77 

Among these, extreme tree models and data from the Himawari-8 satellite have demonstrated outstanding 78 

performance (Wei et al., 2021b; Wei et al., 2021a; Wei et al., 2021c). In particular, the extreme tree 79 

model demonstrates its unique advantages, including greater randomness and interference resistance, and 80 

outperforms other similar models in terms of performance (Wei et al., 2023). This study advances the 81 

understanding of the current status and driving factors of urban-rural PM pollution improvement using 82 

interpretable machine learning methods. First, by integrating Himawari-8/9 satellite top-of-atmosphere 83 

reflectance (TOAR) data, meteorological data, and geographic information, we use a multiple-output 84 

extreme trees (MOET) model to capture the spatiotemporal distribution of PM (including PM10 and PM2.5) 85 
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across China and assess the patterns of PM pollution improvement. We then use various machine learning 86 

interpretability techniques, such as relative importance, tree interpreters, and SHAP values, to quantify 87 

the contributions of anthropogenic emissions and meteorological changes to PM pollution improvement. 88 

To investigate potential differences in the results between urban and rural areas, we use land use data to 89 

distinguish urban from rural regions in eastern China. This study aims to address the following three 90 

questions: (1) What are the spatio-temporal patterns of PM pollution improvement in urban and rural 91 

areas of China? (2) What are the main driving factors behind the differences in PM pollution 92 

improvement between urban and rural areas? (3) What are the specific contributions of each driving 93 

factor to PM pollution improvement? Answering these questions is crucial for a comprehensive 94 

understanding of the dynamics of urban and rural atmospheric particulate pollution control in China. 95 

2 Data and Methods  96 

2.1 Satellite TOAR data and ground-based PM observations   97 

Previous studies have shown that satellite-observed top-of-atmosphere reflectance (TOAR) data 98 

can be used to estimate near-surface air pollutants (Chen et al., 2024a; Yang et al., 2023; Song et al., 99 

2024). In particular, the TOAR data from the Himawari-8 satellite have demonstrated excellent 100 

performance in pollutant estimation (Hu et al., 2022; Liu et al., 2019). The Advanced Himawari Imager 101 

(AHI) on board the Himawari-8/9 satellite is an advanced passive observation instrument with 16 102 

observation channels, providing a spatiotemporal resolution of up to 10 minutes and 0.5 km (Bessho et 103 

al., 2016). Based on the sensitivity of the AHI sensor (Yoshida et al., 2018), three visible channels (0.46 104 

μm, 0.51 μm, and 0.64 μm) and two near-infrared channels (0.86 μm and 2.3 μm) were used in this study. 105 

In addition, four angles related to aerosol inversion results: SAA (satellite azimuth angle), SAZ (satellite 106 

zenith angle), SOA (solar azimuth angle), and SOZ (solar zenith angle) were also included in the study. 107 

TOAR data from the AHI imager were obtained from the Himawari Monitor P-Tree System data 108 

download website of the Japan Meteorological Agency (https://www.eorc.jaxa.jp/ptree/index.html). The 109 

time range for Himawari-8 data is from September 1, 2015, to September 30, 2022, while the time range 110 

for Himawari-9 data is from October 1, 2022, to August 31, 2023. 111 

The ground-based PM data were provided by the China National Environmental Monitoring Center 112 

(CNEMC) (http://www.cnemc.cn) and were calibrated and quality controlled according to the Chinese 113 

https://www.eorc.jaxa.jp/ptree/index.html
http://www.cnemc.cn/
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National Standard GB 3095-2012 (Ministry of Ecology and Environment of the People's Republic of 114 

China, 2012). In this study, hourly mean PM10 and PM2.5 data were collected from approximately 1,400 115 

stations in eastern China (102-136°E, 16-56°N) for the period from 1 September 2015 to 31 August 2023. 116 

Observations with PM2.5 concentrations above 600 μg/m³ or PM10 concentrations above 1,000 μg/m³, as 117 

well as those with concentrations below 1 μg/m³, were excluded (Shi et al., 2024). 118 

2.2 Meteorological data and geographic information data 119 

Studies assessing the impact of meteorological factors on PM pollution have identified tempe120 

rature, humidity, and wind as the main variables influencing PM2.5 concentrations, with their effec121 

ts significantly outweighing those of other factors. Among these, temperature has the most signific122 

ant and stable influence (Chen et al., 2018b). In this study, meteorological data were obtained fro123 

m the ERA-5 reanalysis dataset provided by the European Centre for Medium-Range Weather For124 

ecasts (https://cds.climate.copernicus.eu/cdsapp#!/dataset/). The dataset includes boundary layer hei125 

ght (BLH), relative humidity (RH), surface pressure (SP), 2-metre air temperature (T2M), wind di126 

rection (WD), wind speed (WS), and net solar radiation at the surface (NSR), with spatial resoluti127 

ons of 0.1° × 0.1° or 0.25° × 0.25° (Hersbach et al., 2020). Geographic information can also influ128 

ence pollutant concentrations to some extent due to variations in meteorological conditions (Chen 129 

et al., 2018a; Chen et al., 2021). The geographic information data used in this study include eleva130 

tion (HEIGHT), land cover type (LUCC), and population density (RK). HEIGHT is derived from 131 

SRTM-3 elevation data, with a spatial resolution of 90 meters and a temporal resolution of 1 year.132 

 The download URL is https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003. LUCC is source133 

d from the dataset (MCD12Q1), with a spatial resolution of 500 meters and a temporal resolution 134 

of 1 year. The download URL is https://doi.org/10.5067/MODIS/MCD12Q1.006, used to describe 135 

land surface types and land use conditions. RK is derived from the 2015 United Nations adjusted 136 

population density data, with a spatial resolution of 0.1° × 0.1° and a temporal resolution of 1 ye137 

ar, available at https://doi.org/10.7927/H4PN93PB. It is provided by the Social and Economic Data138 

 and Applications Center (SEDAC) of the National Aeronautics and Space Administration (NAS139 

A). 140 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/
https://doi.org/10.5067/MODIS/MCD12Q1.006
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2.3 Data integration and development of the Multiple-Output Extreme Trees Model 141 

The resolution of the meteorological and geographic information data was adjusted to 0.05° × 0.05° 142 

using bilinear interpolation. All data were then matched with station data according to the 0.05° × 0.05° 143 

grid of the Himawari-8 satellite. The specific matching method is described in detail in Chen et al. (2022c) 144 

and Song et al. (2022b). 145 

The DOET model is developed on the basis of the Extreme Trees (ET) model (Geurts et al., 2006), 146 

which is capable of simultaneously handle multi-target variable output tasks. The ET model is similar to 147 

the Random Forest (RF) model, both of which consist of multiple decision trees. However, whereas the 148 

RF model randomly samples data with replacement, the ET model uses all available samples. After 149 

determining the samples and features, the ET model constructs decision trees based on optimal partition 150 

attributes. This process is repeated until a sufficient number of decision trees have been constructed to 151 

form the ET model. Finally, the average regression results of all decision trees in the ET are used as the 152 

final output. Several studies have confirmed that the ET model has excellent fitting performance (Qin et 153 

al., 2020; Zhang et al., 2022a; Chen et al., 2022a). 154 

In this study, three model parameters were optimized: the number of trees (n_estimators), the 155 

maximum depth of the model (max_depth), and the minimum number of samples required to split a node 156 

(min_samples_split). After balancing the accuracy and efficiency of the model, these parameters were 157 

set to 70, 100, and 5, respectively. The model, which uses satellite observations, meteorological data, 158 

and geographical information to estimate near-surface PM concentrations, can be expressed as: 159 

(𝑃𝑃𝑃𝑃10,𝑃𝑃𝑃𝑃2.5) = 𝑓𝑓 �
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1,2,3,4,6,𝐵𝐵𝐵𝐵𝐵𝐵,𝑅𝑅𝑅𝑅, 𝑆𝑆𝑆𝑆,𝑇𝑇2𝑀𝑀,𝑊𝑊𝑊𝑊,𝑊𝑊𝑊𝑊,𝑁𝑁𝑁𝑁𝑁𝑁,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑅𝑅𝑅𝑅,

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑,ℎ𝑜𝑜𝑜𝑜𝑜𝑜, 𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆 �       (1) 160 

Here, 𝑓𝑓 represents the DOET model, and  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1,2,3,4,6 denotes the radiance values of the three 161 

visible channels (0.46 μm, 0.51 μm, and 0.64 μm) and the two near-infrared channels (0.86 μm and 2.3 162 

μm). 𝐵𝐵𝐵𝐵𝐵𝐵,𝑅𝑅𝑅𝑅, 𝑆𝑆𝑆𝑆,𝑇𝑇2𝑀𝑀,𝑊𝑊𝑊𝑊, 𝑊𝑊𝑊𝑊 and NSR are meteorological variables, while 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 163 

𝑅𝑅𝑅𝑅 represent geographical information. The variables lon (Longitude), lat (Latitude), SAA, SAZ, SOA 164 

and SOZ representing spatial information. The variables year, mon (month), doy (day of the year), and 165 

hour are temporal information reflecting the influence of anthropogenic emissions on PM pollution (Wei 166 

et al., 2020). Time variables (year, month) effectively characterize cyclical patterns and long-term trends 167 

in human activity, serving as reliable proxy indicators in pollution analysis (Song et al., 2023). Monthly 168 
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cycles directly reflect seasonal rhythms: winter heating spikes PM2.5 and SO₂ levels (Liu et al., 2017), 169 

agricultural phases amplify ammonia emissions (Ma et al., 2025), and transportation peaks during 170 

holidays elevate NO₂ concentrations (Hua et al., 2021). Annual trends capture industrial evolution and 171 

policy impacts, such as the PM2.5 reduction after implementing the "Air Pollution Prevention Action 172 

Plan" (Geng et al., 2024; Geng et al., 2021). As standardized, quantifiable metrics, time variables 173 

circumvent data limitations for complex activities (e.g., energy consumption, economic behaviors, urban 174 

sprawl), enable cross-regional comparisons without normalization, and reveal pollution responses to 175 

socioeconomic rhythms and policy efficacy (Dai et al., 2021; Shi et al., 2021). Specifically, year and 176 

month (mon) are used to represent the interannual and intra-annual variations in anthropogenic emissions, 177 

respectively (Zhang et al., 2019a; Park et al., 2019). The estimation workflow is illustrated in Figure 1. 178 

The specific estimation process of the DOET model is as follows: firstly, meteorological factors, 179 

geographic information, and satellite TOAR data are input into the DOET model and matched with PM 180 

observation data. Then, the DOET model fits the PM observation data with the input variables to obtain 181 

two ET estimation models (PM10 and PM2.5). Finally, the two ET models are integrated to obtain the 182 

DOET model, and the estimation results of PM10 and PM2.5 are output simultaneously to save 183 

computation time. Finally, the obtained PM10 and PM2.5 data are subjected to further analysis. 184 

Additionally, we performed weather normalization on the PM data to mitigate the impact of 185 

meteorological events (Grange and Carslaw, 2019). 186 

 187 
Figure 1. Workflow of PM data estimation and pollution driving factors assessment. 188 
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Model performance was evaluated using 10-fold cross-validation (Rodriguez et al., 2010), 189 

incorporating sample-based, space-based, and time-based validation methods (Wei et al., 2019). 190 

Evaluation metrics used included the coefficient of determination (R²), root mean square error (RMSE), 191 

and mean absolute error (MAE) for both PM10 and PM2.5 (Chen et al., 2023). 192 

𝑅𝑅2 = 1 − 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

                                                        (2) 193 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1                                                 (3) 194 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)2   𝑛𝑛
𝑖𝑖=1                                            (4) 195 

In Equation (2), 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟  represents the error between the estimated value of the model and the 196 

average value of the observed values of PM10 and PM2.5, 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 represents the error between the observed 197 

values of PM10 and PM2.5 and the average value of the observed values of PM10 and PM2.5 from CNEMC. 198 

In Equation (3-5), 𝑦𝑦𝚤𝚤�  represents the PM10 and PM2.5 estimated value of the DOET model, 𝑦𝑦𝑖𝑖 represents 199 

the observed value of PM10 and PM2.5 from CNEMC. 200 

2.4 Machine learning interpretability variables   201 

To investigate the influence of potential driving factors on PM pollution improvement in eastern 202 

China, we employed relative importance (Berner et al., 2020), tree interpreter (Wang et al., 2022b), and 203 

SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) to distinguish the contributions of 204 

meteorological changes and anthropogenic emissions to PM pollution improvement. Relative importance 205 

was assessed using the permutation importance value of the DOET model, defined as the average 206 

reduction in model accuracy when a single feature value is randomly shuffled (Yang et al., 2022).  207 

The permutation importance of each variable was calculated using the “permutation_importance” 208 

library in Python. To reduce uncertainty, the training process was repeated 20 times for each grid point 209 

to obtain robust estimates of relative importance (Qu et al., 2023). The tree interpreter was applied using 210 

the 'tree_interp_functions' library in Python, which is designed for predictions based on decision tree 211 

ensemble models and facilitates the decomposition of each prediction into bias and feature contribution 212 

components. The detailed calculation method and code for the tree interpreter can be obtained from the 213 

following URL:https://github.com/andosa/treeinterpreter/tree/master.  214 

SHAP values are based on Shapley value theory, which explains model predictions by calculating 215 

https://github.com/andosa/treeinterpreter/tree/master


9 
 

the relative contribution of each feature to the output (He et al., 2024). These values reflect not only the 216 

influence of features on individual samples but also indicate the positive and negative contributions of 217 

these influences. SHAP explanations can be applied to any machine learning model, including neural 218 

networks and ensemble models, and provide comprehensive and accurate interpretability results. Thus, 219 

the SHAP method provides superior explanations for both local and global model effects (Liu et al., 2023; 220 

Hou et al., 2022). In Python, “tree_SHAP” is specifically tailored for decision tree-based machine 221 

learning models, such as the Extreme Tree model, to provide greater accuracy and faster computation.  222 

The interpretability variables described above were applied to the monthly averaged PM10 and PM2.5 223 

datasets generated by the DOET model. 224 

2.5 Land cover type classification   225 

Zhang et al. (2022b) proposed a method to differentiate urban and rural areas based on the gradient 226 

of human land use pressure. In this study, the MCD12Q1 land cover map, with a spatial resolution of 500 227 

meters was used. For grids measuring 5×5 km, urban and rural classifications were determined by the 228 

coverage of specific land cover categories (e.g., urban land and cropland), which reflect the transition 229 

from urban to rural areas and correspond to different levels of human activity. As shown in Table 1 and 230 

Figure S1, urban areas in this study include both urban core areas and suburban regions, while rural areas 231 

are categorized into six types: towns, high agricultural pressure areas, low agricultural pressure areas, 232 

forests and grasslands. 233 

Table 1. Definitions of urban and rural land cover classes 234 

Urban-Rural Land Cover Class Definition 

Urban 50%<Urban grid 

Suburban 25%<Urban grid<50% 

Towns 12.5%<Urban grid<25% 

High Agricultural Pressure Areas 50%<Cropland grid 

Low Agricultural Pressure Areas 12.5%< Cropland grid grid<50% 

Forests 50%<Forest grid 

Grasslands 50%<Grassland grid 

Other 
Remaining unclassified grids (e.g., desert or 

tundra) 
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3 Results 235 

3.1 PM estimation model performance and PM distribution characteristics   236 

For the period from September 2015 to August 2023 in eastern China, a total of 6,772,429 samples 237 

were matched. After parameter optimization and feature training, the optimal DOET model was derived, 238 

and long-term time-series spatial distribution products for PM10 and PM2.5 in eastern China were 239 

generated. Figure 2 shows the results of 10-fold cross-validation based on sample, spatial and temporal 240 

validations. Overall, the DOET model showed a high level of accuracy in the estimation of PM data. The 241 

sample-based 10-fold cross-validation results (Figure 2C and 2F) yielded an R² of 0.87, with RMSE 242 

(MAE) values of 25.82 (14.87) μg/m³ for PM10 and 14.36 (8.44) μg/m³ for PM2.5. The slope of the fitting 243 

line between observed and estimated values was 0.84. The performance of the DOET model in this study 244 

is comparable to that reported in other studies that estimated PM using Himawari-8 TOAR data (Wang 245 

et al., 2021; Chen et al., 2024b; Yin et al., 2021).   246 

The 10-fold cross-validation results based on spatial and temporal validation were slightly lower 247 

than those based on samples (Figures 2D-E and 2G-H). Spatial validation assessed the performance of 248 

the model in estimating PM concentrations in areas without monitoring stations, after training the model 249 

with samples from areas with stations. Temporal validation involved training the model with samples 250 

from specific years and testing it with data from years not used in training. For these two validation 251 

methods, the R² values for PM10 were 0.83 and 0.41, with RMSE values of 29.99 μg/m³ and 55.44 μg/m³, 252 

respectively. For PM2.5, the R² values were 0.83 and 0.52, with RMSE values of 16.46 μg/m³ and 28.11 253 

μg/m³, respectively. The DOET model is relatively robust based on sample and spatial validation results. 254 



11 
 

 255 
Figure 2. Spatial distribution of PM10 and PM2.5 and cross validation results of the DOET model. The dashed 256 

lines represent the 1:1 line, while the solid lines show the fitted line between observed and estimated values. 257 

By inputting TOAR, meteorological elements and geographical information into the optimally 258 

parameterized DOET model, a pollutant estimation dataset for eastern China was generated for the period 259 

September 2015 to August 2023. Due to the incomplete spatial coverage of TOAR data in different 260 

months and hours (Song et al., 2024), the study first calculated monthly averages, which were then used 261 

to derive annual averages. This step helps to minimize errors due to insufficient spatial coverage of the 262 

samples (Ding et al., 2024). As shown in Figures 2A and 2B, the Beijing-Tianjin-Hebei region, the 263 

Sichuan Basin, the Guanzhong region, and central China are hotspots for PM10 and PM2.5 pollution (Wei 264 

et al., 2021a), with concentrations reaching up to 100 μg/m³ for PM10 and 60 μg/m³ for PM2.5. In addition, 265 

the Inner Mongolia region and northern Gansu, which are frequently affected by dust storms, are also 266 

characterized by high PM10 concentrations (Li et al., 2012). O Overall, the PM10 and PM2.5 concentrations 267 

generated by the DOET model accurately reflect the spatial distribution characteristics of PM in eastern 268 

China, and the estimation results are consistent with those of previous studies (Yang et al., 2023; Chen 269 
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et al., 2022b; Song et al., 2022a). 270 

3.2 Urban-rural differences in PM pollution trends in recent years  271 

The spatial distribution characteristics of PM10 and PM2.5 trends from 2015 to 2023 were analysed, 272 

and the results (Figures 3C-F) show a remarkable improvement of PM pollution in eastern China, as 273 

indicated by a significant decreasing trend in PM concentrations. The average decrease for PM10 was -274 

4.02±1.29 μg/m³/yr, while for PM2.5, it was -2.41±0.91 μg/m³/ yr. However, this widespread decrease in 275 

PM concentrations showed considerable spatial heterogeneity between urban and rural areas. The urban 276 

and rural decrease trends for PM10 were -4.99±1.68 μg/m³/ yr and -3.98±1.26 μg/m³/ yr, respectively, 277 

while for PM2.5, they were -3.43±1.10 μg/m³/ yr and -2.38±0.88 μg/m³/ yr, respectively. This suggests 278 

that the decrease in PM concentrations in rural areas was close to the regional average in eastern China, 279 

while the decrease in urban areas was more pronounced than the overall trend. We supplemented our 280 

analysis by examining the relative change trends through benchmark concentration standardization. 281 

Initially, the standard deviation of PM concentrations was computed for each grid point to assess spatial 282 

variability. Subsequently, the annual mean PM data were used to calculate yearly relative changes 283 

normalized against benchmark concentrations. Finally, a comprehensive trend analysis was performed 284 

on these standardized values. The results are presented in Figure S2. Consistent with the overall trends 285 

in PM concentrations, the relative change rates of PM2.5 were quantified as −38.24 ± 3.40%/yr in rural 286 

areas and −40.93 ± 1.91%/yr in urban areas. Similarly, PM10 exhibited relative change trends of −34.03 287 

± 6.55%/yr (rural) and −39.07 ± 2.78%/yr (urban). These findings demonstrate that, when accounting for 288 

region-specific baseline concentrations across different land cover types, urban areas continue to show a 289 

more substantial reduction in PM pollution compared to rural areas. 290 

From a broader perspective of the changes in particulate matter concentrations in eastern China, the 291 

urban decrease trends for PM10 and PM2.5 were -0.47 μg/m³/month and -0.33 μg/m³/month, respectively, 292 

while the rural decrease trends were -0.37 μg/m³/month and -0.22 μg/m³/month, respectively. These 293 

results indicate that the reduction trend in rural areas was slower than in urban areas. By 2023, particulate 294 

matter concentrations in urban areas had decreased from about 20 μg/m³ higher than in rural areas to 295 

levels almost equal to those in rural areas.   296 

Urban and rural areas, categorized by land cover type, comprised eight different categories. The 297 

study assessed their respective roles in PM concentration reduction trends and found that all eight 298 
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categories showed declining PM trends. However, the regions with the highest PM reduction trends were 299 

mainly four types: urban core areas, suburbs, towns and agricultural land 1 (high agricultural pressure). 300 

In contrast, the reduction trends were less pronounced in agricultural land 2 (low agricultural pressure), 301 

forests, grassland and other areas.  302 

 303 
Figure 3. Analysis of PM concentration trends in eastern China from September 2015 to August 2023. Panels 304 

A, C, D, and G represent PM10, while panels B, E, F, and H represent PM2.5. In the legends of panels G-H, 305 

blue indicates urban areas, and red indicates rural areas. In G and H, the upper part of the box represents 306 

the upper quartile of the trend, and the lower part represents the lower quartile of the trend; the dotted line 307 

range represents the upper and lower limits of the trend values; the red dot represents the average value of 308 

the trend. 309 

The trends in PM10 and PM2.5 concentrations were categorized into four levels based on percentiles: 310 

slow decline (grid points with a decline trend below the 25th percentile), moderate decline (grid points 311 

with a decline trend between the 25th and 75th percentiles), rapid decline (grid points with a decline 312 

trend between the 75th and 95th percentiles), and sharp decline (grid points with a decline trend above 313 

the 95th percentile). As shown in Figure 4, the regions with the most significant changes in urban and 314 

rural PM trends are mainly concentrated in the Beijing-Tianjin-Hebei region, the Guanzhong region and 315 
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Central China.   316 

In areas with slow and moderate declines, forests and grasslands accounted for the highest 317 

proportions, ranging from 23.51% to 32.56% and 23.92% to 39.25%, respectively, followed by the 318 

agricultural 1 and agricultural 2, which accounted for about 20%. In regions with rapid decline, the first 319 

type of agricultural land had the highest proportion, ranging from 30 to 40%. Urban core, suburban and 320 

towns had higher proportions in the fast decline regions, accounting for 6.44%, 6.01% and 6.83% of the 321 

PM10 decline trends and 7.52%, 6.34% and 7.21% of the PM2.5 decline trends respectively. In particular, 322 

the agricultural 1 had the largest share in the strong decrease regions. 323 

 324 

Figure 4. Spatial distribution of particulate matter trend percentiles and pie charts. The individual color 325 

scales in the figure represent different areas. 326 

3.3 Assessing potential driving factors for PM pollution improvement and quantifying their 327 

contributions  328 

A DOET model based on monthly PM data was developed to identify the key drivers of urban and 329 

rural greening changes in China. Monthly mean PM10 and PM2.5 concentrations were correlated with 330 

meteorological factors and two temporal variables (year and month) representing the effects of 331 

meteorological changes and anthropogenic influences, respectively (see Methods for details). The model 332 
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was cross-validated using a random training set (70%) and a validation set (30%). As shown in Figure 333 

S3, the DOET model explains more than 60% of the PM10 trends and 80% of the PM2.5 trends in eastern 334 

China.  335 

The relative importance of each variable in the DOET model was determined using the 336 

permutation_importance library. Inter-annual variability, intra-annual variability, air pressure and 337 

temperature were identified as significant contributors to the improvement of urban and rural PM 338 

pollution in eastern China (relative importance > 10%). Among them, interannual variability was the 339 

most influential factor for PM10 (26.14±13.35%), followed by temperature (19.95±15.06%) (Figure 5A). 340 

In contrast, for PM2.5, interannual variability ranked second (30.79±12.86%), while temperature had a 341 

stronger effect (38.90±17.73%) (Figure 5B). The spatial distribution of the relative importance of the 342 

four main contributing factors, shown in Figures 5C-R, indicates that regions with high relative 343 

importance values overlapped with PM pollution hotspots. Furthermore, as shown in Figure S4, the 344 

driving factors for urban and rural PM pollution improvement differed significantly between land cover 345 

types. 346 

 347 

Figure 5. Spatial distribution of the relative influence of each variable on PM pollution. In panels (A-B), the 348 

red variables are related to emissions and the blue variables are related to meteorology. 349 
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 The relative contributions of each variable in the DOET model to the PM concentration values were 350 

obtained using the permutation_importance library. The results showed that the improvement in urban 351 

and rural PM pollution was primarily driven by interannual variation (Figure 5), followed by temperature, 352 

which is consistent with the relative importance results in Figure 5. Figure S5-S6 illustrate how variations 353 

in the values of the driving factors influence their relative contributions to PM concentrations. In 354 

particular, PM concentrations showed a clear inverse relationship with temperature and interannual 355 

variations, especially for PM2.5. Relative humidity also showed clear differences in its contribution to 356 

PM10 and PM2.5: lower relative humidity was associated with higher PM10 concentrations, whereas higher 357 

PM2.5 concentrations were associated with higher relative humidity. The scatter plots illustrating the 358 

relationships between other variables and their relative contributions to PM are shown in Figures S4-S5.   359 

Figure 6 shows the relative contributions of each variable, with the spatial distribution patterns of 360 

interannual variations being particularly noteworthy. For PM10, regions such as Guanzhong, North China, 361 

and Inner Mongolia were more susceptible to the influence of interannual variations. We hypothesize 362 

that the improvement in PM10 pollution be due not only be attributed to anthropogenic emission 363 

reductions but also to sandstorm events in recent years, which are important sources of PM10 (Wang et 364 

al., 2024c). However, the explanatory power of the model for PM10 trends in these areas remains 365 

relatively low, suggesting the need for further investigation into the specific causes. For PM2.5, the impact 366 

of interannual variability was observed mainly in the Guanzhong region, North China, and the Sichuan 367 

Basin, all of which are key areas for pollution control (Wang et al., 2022a; Yu et al., 2022). Contrary to 368 

the relative importance results, the dominant factor driving the improvement in urban and rural PM 369 

pollution was the influence of interannual variability (Figure S7), with other variables showing varying 370 

effects across different land cover types. 371 



17 
 

 372 
Figure 6. The spatial distribution of the relative contributions of each variable to PM pollution 373 

Finally, the “tree_SHAP” tool was used to decompose the SHAP values of each variable in the 374 

DOET model. By analyzing the positive and negative changes in the SHAP values, the influence of each 375 

variable on the PM pollution improvement - whether positive or negative - was quantified, thus 376 

complementing the assessment of driving factor contributions (Li et al., 2024a). As shown in Figure 7, 377 

the SHAP values show a strong negative correlation between PM concentrations and the contribution of 378 

interannual variability in eastern China. In particular, during the transition from 2019 to 2020, the 379 

contribution of interannual variations to PM concentrations shifted critically from positive to negative. 380 

Interestingly, despite the high relative importance and contribution of some variables, their SHAP values 381 

showed periodic fluctuations, alternating between positive and negative, such as for temperature (with a 382 

negative contribution in summer and a positive one in winter). This suggests that meteorological factors 383 

influence PM concentrations in a periodic manner, while the only factor that consistently contributes to 384 

the improvement of PM pollution is the interannual variation driven by anthropogenic influences. The 385 

Figure S8-S9 show the SHAP values of various variables for PM in urban and rural areas, respectively. 386 

The impact of various variables, including temperature, on PM is primarily evident in urban areas, where 387 

the magnitude of the values and the rate of change are both higher than in rural areas. 388 
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 389 

Figure 7. The SHAP values of each variable for PM. The solid line represents the SHAP values, and the dashed 390 

line indicates their trend of change. 391 

3.5 Trends in the contribution of driving factors to PM pollution improvement   392 

To further investigate the influence of potential driving factors on PM concentrations, we conducted 393 

a detailed analysis of the trends in the contributions of each variable was performed. As shown in Figures 394 

S10-S13, the monthly trends in the relative contributions and SHAP values of each variable were 395 

examined, categorized into significant changes (p < 0.05) and non-significant changes (p > 0.05). For the 396 

relative contributions (including PM10 and PM2.5), with the exception of interannual variations, all other 397 

variables showed a decreasing trend, although some regions showed an increasing trend. However, the 398 

contribution of interannual variability showed a significant decrease, indicating a reduced capacity of 399 

anthropogenic emissions to trigger PM pollution events. This phenomenon is more pronounced for the 400 

trends in SHAP values. In particular, only the contribution of interannual variations showed a significant 401 

decreasing trend, while the other variables showed non-significant decreasing trends, mainly due to the 402 

periodic variations in their contributions, as shown in Figure 7. This shows that the impact of a variable 403 

on PM pollution cannot only be assessed on the basis of its relative contribution, but its positive or 404 

negative influence on the improvement of PM pollution must also be considered.   405 

Given the significant decrease in the contribution of interannual variation, we further compared its 406 

trends across different land cover types in urban and rural areas, as this variable plays the most important 407 

role in PM pollution improvement. As shown in Figure 8 (A-B), the trends in relative contributions for 408 
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both PM10 and PM2.5 did not differ significantly between the eight land cover types, although urban areas 409 

showed the highest rate of decrease. However, the trends in SHAP values shown in Figures 8 (C-D) 410 

revealed that the reduction in the contribution of interannual variation was most pronounced in urban 411 

core areas, suburban areas, and towns. In contrast, the decrease in interannual contributions was more 412 

pronounced in agricultural areas than in urban areas, while other rural areas showed a weaker influence 413 

of interannual variations on PM pollution improvement. These results suggest that the improvement in 414 

PM pollution in urban areas is more closely related to anthropogenic influences, whereas this relationship 415 

is less pronounced in rural areas. 416 

 417 
Figure 8. Trends in the relative contribution (A-B) and SHAP values (C-D) of interannual variability of 418 

different land cover types. A and C represent the case for PM10, while B and D represent the case for PM2.5. 419 

In the legend, blue represents urban areas, and red represents rural areas. In Figure 8, the upper part of the 420 

box represents the upper quartile of the trend, and the lower part represents the lower quartile of the trend; 421 

the dotted line range represents the upper and lower limits of the trend values; the red dot represents the 422 

average value of the trend. 423 

 424 

4 Discussion and conclusion 425 

Due to the predominant distribution of environmental quality monitoring stations in urban areas 426 
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(Park et al., 2020), discussions on air pollution patterns between urban and rural regions have been 427 

limited (Hammer et al., 2020). In this study, we used a regression-based machine learning DOET 428 

algorithm to integrate station-observed PM concentrations, satellite-observed TOAR, meteorological 429 

factors, and geographic information data. This approach enabled us to generate long-term, high spatio-430 

temporal resolution datasets of near-surface PM10 and PM2.5, with a spatial resolution of 5 km, an hourly 431 

temporal resolution, and coverage across the entire eastern China region. Using the generated PM data 432 

in conjunction with a constructed urban-rural land type framework, we successfully captured the broad 433 

trends and patterns of PM10 and PM2.5 concentration changes from urban and suburban areas to different 434 

types of rural regions. 435 

Based on the estimated dataset and interpretable parameters, the study identified significant large-436 

scale improvements in PM pollution in eastern China from 2015 to 2023, indicating notable 437 

achievements from the implementation of clean air measures. The study noted that the second phase of 438 

the clean air action plan, implemented from 2018 to 2020, also produced positive results, following the 439 

success of the first phase from 2013 to 2017 (Geng et al., 2024). Our results show that under the urban-440 

rural framework, PM reductions are generally higher in urban areas than in rural areas. However, the 441 

highly polluted agricultural areas in rural regions also showed significant improvements in PM pollution. 442 

In fact, during air pollution prevention and control efforts, China's main emission reduction measures 443 

focused on coal consumption and energy-intensive industries such as steel and cement, and these 444 

measures were often effective in urban areas (Yun et al., 2020; Huang et al., 2014b; Wang et al., 2013). 445 

This does not mean that rural areas have been neglected, as evidenced by reductions in biomass burning 446 

(Shen et al., 2019). The finding that interannual variability is the main driver of PM pollution 447 

improvement is consistent with these facts. It is worth noting that the rate of PM concentration decline 448 

is faster in urban areas than in rural areas, bringing the concentration levels of the two areas closer 449 

together. Given the more pronounced decrease in the contribution of inter-annual variations in urban 450 

areas, future efforts to prevent and control air pollution should maintain the current intensity or balance 451 

investments between urban and rural areas. 452 

Our results indicate that meteorological factors with distinct seasonal variations, such as 453 

temperature, boundary layer height, and relative humidity, have a cyclical influence on PM pollution. 454 

For example, summer weather conditions, such as abundant precipitation, high relative humidity and 455 
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abundant water vapour favour PM dispersion, while winter weather conditions are less conducive to 456 

pollutant dispersion and spring is often characterised by frequent dust events. Therefore, due to their 457 

periodic positive and negative contributions and variability, meteorological conditions do not provide 458 

stable improvements in PM pollution. Moreover, the contribution of meteorological conditions to PM 459 

concentrations does not show a significant trend. Thus, given the high contribution of inter-annual 460 

variability to the improvement of PM pollution, the impact of meteorological conditions on the inter-461 

annual variability of PM pollution in China should not be overemphasised.  462 

Although this study evaluated the patterns of PM pollution improvement and its driving factors in 463 

urban and rural areas of eastern China, the contribution of interannual variations driven by anthropogenic 464 

influences was represented by a time variable in our analysis. In the future, key factors driving changes 465 

in air pollutants, such as energy management, urban traffic management, agricultural nitrogen deposition 466 

effects and biomass burning, need to be further incorporated into the attribution analysis to distinguish 467 

and quantify the contributions of different anthropogenic emission reduction measures to PM pollution 468 

improvement. Given the different drivers of PM pollution improvement in urban and rural areas, it is 469 

essential to implement tailored strategies in both regions to achieve more effective and comprehensive 470 

air pollution prevention and control measures in the future. 471 

Data availability 472 

The hourly ground station observations of near-surface PM10 and PM2.5 concentrations are obtained from 473 

the China National Environmental Monitoring Center (CNEMC), which can be accessed on its official 474 

website (http://www.cnemc.cn/en/). Himawari-8 TOAR data provided by the Japan Meteorological 475 

Agency, download from: http://www.eorc.jaxa.jp/ptree/index.html. Meteorological variables were 476 

derived from the reanalysis data set provided by the European Centre for Medium-Range Weather 477 

Forecasts (ECMWF) (https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). MODIS Land 478 

use/cover change (LUCC) product can be downloaded from 479 

https://doi.org/10.5067/MODIS/MCD12C1.061. The 2015 UN-adjusted population density data (RK) 480 

can be downloaded from https://doi.org/10.7927/H4PN93PB. SRTM-3 elevation data jointly measured 481 

by NASA and the U.S. Department of Defense’s National Imagery and Mapping Agency (NIMA) 482 

(HEIGHT) can be downloaded from https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003.  The 483 
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particulate matter data generated in the manuscript can be obtained at the following URL: 484 

https://doi.org/10.5281/zenodo.17090707.  485 

Code availability 486 

The codes are available from the corresponding author upon request. 487 
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