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Abstract. Retrogressive Thaw Slumps (RTS) are slope failures triggered by permafrost thaw , occurring in ground-ice rich

regions in
:::
that

:::::
occur

:::
in

:::::::::::::
ground-ice-rich

:::::::
regions

::
of

:
the Arctic and on the Qinghai-Tibet Plateau (QTP). A strong warm-

ing trend has amplified RTS activity on the QTP in recent years. Although the region currently acts as a carbon sink, its

::::::::::::::::
permafrost-covered

::::
area

:
(40 % permafrost-covered area holds )

::::::::
contains substantial soil organic carbon (SOC) stocks. In-

tensifying thaw-driven mass wasting may transform the QTP into a net carbon source by mobilising previously frozen SOC5

and increasing decomposition. Despite this
::::::::
enhancing

:::::::::::::
decomposition.

:::
Yet, regional remote sensing studies have not yet quan-

tified RTS mass wasting, including material erosion volumes and
:::::::::
associated SOC mobilisation. Analysing time-series data

from digital elevation models (DEM
:::::
DEMs) enables direct observation of RTS activity by measuring changes in active area,

volume of eroded material
::::::
eroded

:::::::
material

:::::::
volume, and the overall magnitude of surface change. However, most available

DEM sources lack sufficient
::
the

:
spatial resolution and temporal frequency

::::::
required

:
for comprehensive RTS monitoring. In10

contrast, optical data provides
::::::
provide

:
higher spatial resolution and more frequent observations, but lacks

:::
lack

:
elevation in-

formation. We evaluated the mass wasting of RTS throughout
:::::
Here,

:::
we

::::::::
evaluated

::::
RTS

:::::
mass

:::::::
wasting

::::::
across the QTP from

2011 to 2020 by combining DEMs
::::::
derived from bistatic Interferometric Synthetic Aperture Radar (InSAR) observations of the

TanDEM-X mission with annual RTS inventories derived
::::::::
generated

:
from high-resolution optical satellite images

::::::
imagery

:
and

geophysical soil property data to estimate erosion volume, ground ice loss, and SOC mobilisation. By combining modelled15

soil property datasets with multimodal remote sensing data, we
:::
We

:
estimated that RTS activity in the QTP between

::
on

:::
the

::::
QTP

::::::
during 2011and

:
-
:

2020 relocated 5.02 25.35
0.75 ×

::::::::
5.0225.350.75 ×107 m3 formerly

::::::::
previously

:
frozen material, contributed to

3.58 28.20
0.28 × loss of ground ice and mobilised 2.78 7.98

0.11 ×:::::::
resulting

::
in

::
a

:::
loss

::
of

::::::::::
3.5828.200.28 ×106 m3

::
of

::::::
ground

:::
ice,

:::
and

:::::::::
mobilised

::::::::
2.787.98

0.11×:
108 kgC

:
of

:
organic carbon. We found a reliable power law scaling between the

::::::::
power-law

:::::::
scaling

::::::::::
relationship

:::::::
between RTS area in the optical RTS inventory and the calculated volume change

:
, with α =

::::::
-values

::::::
ranging

:::::
from

::::
1.20

::
±

::::
0.0120

:::
and 1.30 ± 0.01 (R22 = 0.87, p < 0.001) that potentially allows future research to transform the

::::::::
depending

:::
on

:::
the

:::::::::
regression
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:::::
model

:::::
used,

::::::
which

::::
may

::::::
readily

:::::::::
transform planimetric RTS area into volume estimates for large-scale and comprehensive

investigations on RTS mass wasting and SOC mobilisation in
:
at

:::::
scale

::
on

::::
the QTP. Despite the comparably

:::::::
relatively

:
recent

initiation and smaller size of RTS in
::::
RTSs

:::
on

::
the

:
QTP, material erosion and SOC mobilisation in

:::
over the past decade surpassed

some regions in the Siberian Arctic
::::::::
exceeded

:::::
levels

::
in

:::::
some

:::::::
Siberian

:::::
Arctic

:::::::
regions,

:
but remained up to 10 times lower than25

hotspots in the Canadian High Arctic. Although the current impact of RTS in QTP is
:::::
While

::::::
current

::::
RTS

:::::::
impacts

::
on

:::
the

:::::
QTP

::
are

:
relatively modest, affecting only 0.006

::
<

::::
0.01 % of the total permafrost area and contributing less than 1

::::::::::::
approximately

:::
0.1 % to the regional carbon budget, the increasing

::::::::::
accelerating rates of RTS activity suggest

:::::::
indicate that this phenomenon

could become more
::::::::::
increasingly

:
significant in the future. Our study underscores

::::::
findings

::::::::
highlight

:
the importance of regional

studies in understanding the impact of permafrost thaw on
::::::::
advancing

:::
our

::::::::::::
understanding

::
of
::::::::::
permafrost

::::::::::
thaw-driven

:::::::
changes

::
to30

the carbon dynamics of QTP
::::::
rapidly

:::::::
changing

::::::::::
permafrost

:::::::::
ecosystems.

1 Introduction

Permafrost regions are rapidly warming, causing widespread thaw and degradation (Biskaborn et al., 2019; Farquharson et al.,

2019; O’Neill et al., 2023). Permafrost
:::
The

::::::::::
permafrost thaw is triggered by

:
a
:
long-term air temperatures rise

::::::
increase

:::
in

::
air

:::::::::::
temperatures

:
(Smith et al., 2022) and is further amplified by various short-term disturbances, such as periods of extreme35

summer temperatures, high-intensity rainfall, hydrological changes, wildfires, and anthropogenic impacts (Grosse et al., 2011;

Hjort et al., 2022; Holloway et al., 2020; Bernhard et al., 2022b; Kokelj et al., 2015). Although approximately half of the global

soil organic carbon (SOC) stock is stored in permafrost soils in the northern hemisphere (Mishra et al., 2021; Schuur et al.,

2022), ongoing permafrost decline is expected to accelerate SOC decomposition and greenhouse gas emissions, potentially

triggering significant climate feedbacks (Schuur et al., 2022; Yi et al., 2025). Due to the lack of large-scale observations40

and the complexity of the
:::::::::
permafrost

::::
thaw

:
processes, climate models do not account for the potential of permafrost thaw

processes when estimating potential
::::
such

::::::::
processes

:::::
when

:::::::::
simulating

:
permafrost carbon feedbacks (Yi et al., 2025; Schuur

et al., 2015, 2022). Existing Earth system models exhibit significant limitations in the accounting of soil organic carbon (SOC)

and in the prediction of future changes
::
for

::::::
global

:::::::::
permafrost

::::::
regions

:
(Turetsky et al., 2020; Virkkala et al., 2021; Nitzbon et al.,

2020).45

The
:::::
largest

:::::::::::
high-altitude

:::::::::
permafrost

:::::
zone

::
is

:::
the Qinghai-Tibet Plateau (QTP) is the largest high-altitude permafrost zone

with a total extent of 1.06 × 106 km2 at mean elevations greater than 4000 m altitude (Wang and French, 1994; Liu and

Chen, 2000; Zou et al., 2017). Similarly to high-latitude permafrost regions,
::
the

:::::
QTP

::
is

:::
one

:::
of

:::
the

:::::
most

::::::::::::::
climate-sensitive

::::::
regions

::
on

:::::
Earth

:::::::::::::::::::
(Liu and Chen, 2000)

:::
and

:::
has

::::::::::
experienced

::
a

::::::::::
pronounced

:::::::
warming

:::::
trend

::
in

::::::
recent

:::::::
decades,

::::
with

:::
an

:::::::
average

:::::::
increase

::
in

::
air

:::::::::::
temperatures

::
of

::::::
0.035◦

:
Ca−1

::::::::::::::
(Yao et al., 2019).

::::
The

::::::::
warming

::::
trend

::::::
affects

:::
the

:::::::
thermal

::::
state

::
of

:::
the

::::::::::
permafrost:50

::::
both

:::::
active

:::::
layer

::::::::
thickness

::::::
(ALT)

:::
and

:::::::
ground

:::::::::::
temperatures

::::
have

:::::::::
increased,

::
as

::::
the

:::::::
regional

:::::::::
permafrost

::::::
extent

:::
has

::::::::
declined

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cheng and Wu, 2007; Wu and Zhang, 2008; Zhao et al., 2021; Ran et al., 2022)

:
.
::::::
Hence,

:::
the QTP stores large amounts of SOC,

but exhibits different characteristics from the Arctic, including a thicker active layer, higher ground temperatures, and relatively

low ground ice content (Wang et al., 2022). These properties, together with an observed trend of climate warming over the past
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several decades, make QTP a potential large carbon source and an important region to monitor permafrost thaw processes55

(Ran et al., 2022; Chen et al., 2024a; Yi et al., 2025). The QTP is susceptible to permafrost thaw processes that cast strong

impacts from permafrost degradation
:::
have

::
a
:::::::::
substantial

::::::
impact

::
on

:::
the

:::::::::::
environment

:::
and

:::::::::::
communities, including threats to local

transport and energy infrastructureand ecosystems ,
::::::::::
ecosystems

:::
and

:::::::::
hydrology, as well as to regional climate

:::::::
regional

::::::
carbon

::::::
budgets

:
and water storage (Luo et al., 2019; Li et al., 2022; Mu et al., 2017; Zhao et al., 2020; Kokelj and Jorgenson, 2013).

A common, highly visual, and dynamic example of a permafrost thaw process is Retrogressive Thaw Slumping
::::::::
capacities60

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Luo et al., 2019; Li et al., 2022; Mu et al., 2017; Zhao et al., 2020; Yi et al., 2025; Chen et al., 2024b).

::::::::::
Permafrost

::::
thaw,

:::::::
together

::::
with

:::
the

:::::
large

::::
SOC

:::::::
stocks,

:::::
makes

::::
the

::::
QTP

::
a
:::::::::
potentially

:::::::::::
considerable

::::::
carbon

::::::
source

::::
and

:::
an

::::::::
important

::::::
region

:::
to

:::::::
monitor

:::::::::
permafrost

::::
thaw

::::::::
processes

:::::::::::::::::::::::::::::::::::::::::::
(Ran et al., 2022; Chen et al., 2024a; Yi et al., 2025).

:

:::::::::::
Retrogressive

:::::
Thaw

:::::::
Slumps (RTS) , defined as a landsliding process

::
are

:::::::::
permafrost

:::::::::
landforms

::::
that

:::::
occur

:
in ice-rich per-

mafrost terrain that involves the thawing of ground ice , the collapse of surficial material, and the sliding and flowing downslope65

::::
when

::::::
ground

:::
ice

::
is

:::::::
exposed,

::::::::
allowing

::
for

:::::
rapid

::::
thaw

:::
and

:::::::::
downslope

:::::::::
movement of the resulting debris (Nesterova et al., 2024; Harris, 1988; CPA et al., 2024)

. This mass wasting process leads to the formation of thaw slumps as a thermokarst landform (Burn and Lewkowicz, 1990; Kokelj and Jorgenson, 2013)

.
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Burn and Lewkowicz, 1990; Kokelj and Jorgenson, 2013; Nesterova et al., 2024; Harris, 1988; CPA et al., 2024).

:
The land-

form can expand successively upslope with time due to continuous exposure and thawing of massive and segregated ground

ice, thus eroding steep headwalls and mobilising thawed material downslope and potentially into nearby streams and rivers70

(Nesterova et al., 2024; Kokelj et al., 2021). A gradual decline in headwall height with upslope growth and material accumula-

tion can also result in stabilisation and senescence (Burn and Lewkowicz, 1990; Van Der Sluijs et al., 2023), which can further

reactivate again
::::::::
reactivate

:
in complex polycyclic ways (see, e.g., Krautblatter et al. (2024); Tunnicliffe et al. (in preparation)

)
:::::::::::::::::::::::::::::::::::::::::::::::
(Krautblatter et al., 2024; Tunnicliffe et al., in preparation). Climate warming and human disturbance have intensified RTS

activity not only in the Arctic (Lantz and Kokelj, 2008; Bernhard et al., 2022a; Van Der Sluijs et al., 2023; Young et al., in75

review), but also particularly in the QTP, manifesting itself with increased numbers, sizes, and faster retreat rates , especially

in the last decade (Xia et al., 2024; Luo et al., 2022; Huang et al., 2021; Yang et al., 2025a).
::
on

:::
the

::::
QTP.

:::
In

:::::
recent

::::::
years,

:::
the

::::::
plateau

::::::::::
experienced

::::::
strong

::::::::
expansion

::::
and

:::::::
initiation

:::::
rates

::
of

::::
RTS

::::::
mainly

:::
on

:::::
gentle

:::::::::::
north-facing

:::::
slopes

::::
with

::::::::::
fine-grained

:::::
soils

:::
and

::::
high

::::::
ground

:::
ice

:::::::
content.

:::::
More

::::
than

::
30

:::
%

::
of

::
all

::::
RTS

:::::::
activity

::
is

::::::::
observed

::
in

:::
the

::::::
Beiluhe

:::::
River

:::::
Basin

:::::::
located

::
in

:::
the

::::::
central

::::
QTP,

::::::
where

::::
most

:::::::
activity

::::::
started

:::::
after

::::
2010

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Luo et al., 2019, 2022; Huang et al., 2020; Xia et al., 2022, 2024)

:
.
::::
RTS

::::::
retreat80

::::
rates

:::
are

::::::::
relatively

:::::
high,

::::
with

:::::
mean

::::
rates

:::
up

::
to

:::
25 ma−1

:::::
(2017

:
-
:::::
2019)

:::::::::::::::::
(Huang et al., 2021)

:
,
::::::
though

::::::
similar

::
to

:::::
other

::::::
highly

:::::
active

::::
RTS

::::
sites

::
in

::::::
Alaska,

:::::::::
northwest

:::::::
Canada,

:::
the

::::::::
Canadian

::::
High

::::::
Arctic,

::::
and

::::::
Siberia

::::::::::::::::::
(Hall et al., in review).

:

However, due to their complex spatiotemporal dynamics, monitoring RTS activity and assessing its
::::
their

:
impact on re-

gional carbon cycling remains challenging and is still associated with considerable uncertainties. Most studies have focused

on thermokarst hotspots in the central and northeast regions of the QTP, conducting local to subregional analyses using high-85

resolution satellite imagery and (semi)automatic detection algorithms (Luo et al., 2022; Huang et al., 2021; Xia et al., 2022).

A recent study provided an annual inventory of more than 3,000 RTS features across the QTP from 2016 to 2022, using high-

resolution optical PlanetScope imagery and a semiautomatic detection approach. This effort represents the first high-quality

regional-scale dataset that describes RTS initiation and planimetric expansion in recent years (Xia et al., 2022). Nevertheless,
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to quantify RTS-induced mass wasting and evaluate the potential implications on permafrost carbon emissions
::::::::::
mobilisation,90

additional datasets are still required - particularly those capturing lateral and vertical change and soil properties. By deriving

elevation change from pairs of high-resolution digital elevation models (DEMs) with a temporal baseline within the affected

planimetric RTS boundary, volume changes of the eroded material can be obtained by air- or spaceborne LiDAR, stereo opti-

cal photogrammetry
:
, or bistatic Interferometric Synthetic Aperture Radar (InSAR) measurements (Lantuit and Pollard, 2005;

Van Der Sluijs et al., 2018; Ramage et al., 2018; Dai et al., 2024; Bernhard et al., 2020).
::::
Data

:::::
from

:::
the

:::::::
German

::::::::::
TanDEM-X95

::::::::
mission’s

::::::
X-band

::::::
bistatic

:::::
SAR

::::::
enables

:::
the

:::::::
creation

::
of

:::::
global

::::::::::::
multitemporal

::::::
DEMs

::::
with

::::::::::::
approximately

::
10

:
m

:::::
spatial

:::::::::
resolution

:::
and

:
2
:::
-3 m

::::::
vertical

::::::::
accuracy

::::::::::::::::::
(Krieger et al., 2007)

:::
and

:::
has

::::
been

::::::
shown

::
to

:::
be

::::::
suitable

:::
for

:::::::::
pan-Arctic

::::::::::
monitoring

::
of

::::
RTS

:::::
mass

::::::
wasting

:::::::::::::::::::::::::::::::::::
(Bernhard et al., 2022b; Maier et al., 2025)

:
.
:
Using in-situ measurements or modelled estimates of SOC stocks and

ground ice content, we can combine this information with volumetric change estimates to estimate the amount of formerly

frozen organic carbon that has been mobilised. Such approaches have been applied to assess carbon mobilisation due to coastal100

erosion and slumping in Canada (Ramage et al., 2018), a severe heat wave in Siberia (Bernhard et al., 2022b), and more re-

cently at large thaw-driven mass wasting sites across the pan-Arctic (Dai et al., 2025). However, to date, there have been no

regional-scale
:::::::
empirical

:
estimates of either material erosion volume or SOC mobilisation for the QTP.

In this study, we present the first regional empirical analysis on RTS mass wasting quantifying how much material has

been eroded, how much ground ice has been lost and how much SOC has been mobilised due to RTS activity on the QTP105

during the last decade. Data from the German
:::
The

:::::::
volume

::
of

::::::
eroded

::::::::
material

::
of

:::
an

::::
RTS

::::::
scales

::::
with

:::
its

::::
area

:::::::::
following

::::::::
power-law

::::::::
relations

::::
that

::::::::::
characterise

:::
its

::::::
growth

:::::::::
dynamics.

:::::::
Several

::::::
studies

:::::::
adapted

:::
the

::::::::
so-called

:::::::::::
area-volume

::
or

:::::::::
allometric

::::::
scaling

::::
from

:::::::::
temperate

::::::::
landslide

:::::::
research

::::::::::::::::::::
(Jaboyedoff et al., 2020)

:
.
::::::::::
Commonly,

:::::::::::
area-volume

::::::
scaling

::
is

:::::::::
performed

:::::
using

:::
an

:::::::
ordinary

::::
least

:::::::
squares

:::::
(OLS)

::::::::
approach

:::
to

::
fit

:
a
::::::

linear
:::::
model

::
to
::::

the
:::::::::::::
log-transformed

::::
RTS

::::
area

::::
and

::::::
volume

::::::::
(change)

::
to

::::::
obtain

::::::
scaling

::::::::::
coefficients.

::::::::
However,

::::::
distinct

::::::::::
differences

::
in

::
the

:::::::::
estimated

::::::
scaling

::::
laws

:::
can

::
be

:::::::
present

:::::::
between

:::::::::
geographic

::::::
regions

::::
and110

:::::
based

::
on

:::
the

:::::::::::::
methodological

::::::::
approach

:::::
used.

::::::::::::::::::::
Bernhard et al. (2022a)

::::
used

::::::
instead

::
of

:::::
OLS

::
an

::::::::::
orthogonal

:::::::
distance

:::::::::
regression

::::::
(ODR)

:::::::::::::::::::::
(Boggs and Rogers, 1989)

::
to

::
fit

:::
the

::::::
straight

::::
line

::
to

::
the

::::::::::::::
log-transformed

::::
RTS

:::
area

::::
and

::::::
volume

::::::
change

:::::
based

::
on

:
TanDEM-

X mission’s X-band bistatic SAR enables the creation of multitemporal DEMs with approximately 10 spatial resolution and

2 -3 vertical accuracy (Krieger et al., 2007), suitable for
:::::
DEM

::::
pairs

:::::
(2010

:
-
::::::
2016)

::::::::
assuming

:::
that

::::
both

:::
δV

::::
and

:::
δA

:::
are

:::::::
affected

::
by

:::::::::::
measurement

:::::
error.

:::
The

:::::::
authors

:::::
report

::
a

::::::
scaling

:::::::::
coefficient

::
of

::::
1.15

::
for

:::::::
several

:::::
Arctic

:::::
sites.

::::::::::::::
Dai et al. (2025)

::::::
reported

::
a pan-115

Arctic monitoring of RTS mass wasting (Bernhard et al., 2022b; Maier et al., 2025). Combining the annual high-resolution

RTS delineations of Xia et al. (2024) and
:::::
scaling

:::::::::
coefficient

::
of

::::
1.30

:::::
based

:::
on

::::
OLS

::::
and

::::::::::
ArcticDEM

::::
pairs

:::::
(2012

::
-
:::::
2022)

:::::
while

::::::::::::::::
Kokelj et al. (2021)

:::
and

:::::::::::::::::::::::
Van Der Sluijs et al. (2023)

:::::
report

::::::::::
coefficients

::
of

::::
1.36

:::
and

:::::
1.41,

:::::::::::
respectively,

::
in

:::
the

::::::::
Canadian

::::::
Arctic

:::::
based

::
on

::::
OLS

::::
and

::::::::::::
pre-disturbance

::::::
terrain

::::::::::::
reconstruction

:::::
(until

:::::
2018).

::
A
::::::
recent

::::
study

:::::::::
estimated

:
a
::::::
scaling

:::::::::
coefficient

::
of

::::
1.20

:::
for

:::::
almost

:::::
1500

::::
RTS

:::
on the elevation change from

:::
QTP

:::::::::::::::
(Ma et al., 2025)

::::
based

:::
on

:::::
DEM

:::::::
mosaics

:::
and

::::::::::
commercial

::::::::::::
stereo-optical120

:::::
DEMs

::::
with

:::::::
varying

:::::
dates

:::::
(until

::::
2021

::
-
::::::
2025).

::::::
Robust

::::::::
empirical

::::::
scaling

:::::::::::
relationships

::::
can

::
be

::::::
helpful

:::
to

:::::::::
potentially

::::::::
constrain

:::::::::::
regional-scale

::::::::
estimates

:::
on

::::::::
material

::::::
erosion

::::
and

::::::
carbon

:::::::::::
mobilisation

:::::
when

::::
only

::::::::
optically

:::::::
derived

::::
RTS

::::
area

::::::::
estimates

::::
are

::::::::
available.

::::::::
However,

::::::::::
differences

::
in

:::
the

:::::::
scaling

::::::
model

:::
and

::::::::
temporal

::::
and

::::::
spatial

:::::::::
resolution

::
of

:::
the

::::::::
elevation

::::
data

::::::
impair

::::
the

::::::::::::
(inter-)regional

::::::::::::
transferability

::
of

:::
the

::::::::
estimated

::::::::::
coefficients.

:
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::
In

:::
this

:::::
study,

:::
we

:::::::
present

:::
the

:::
first

:::::::
regional

:::::::::
empirical

:::::::
analysis

::
on

::::
RTS

:::::
mass

:::::::
wasting

:::
due

::
to

::::
RTS

:::::::
activity

:::
on

:::
the

::::
QTP

::::::
during125

::
the

::::
last

::::::::
decade.

:::
The

::::::::
elevation

::::::
change

:::::
from

:
TanDEM-X-derived DEMs between 2011 and

::::
2011

:::
and

:
2020, we estimated the

volume change of the eroded material induced by RTS activity on ,
:::

in
::::::::::
combination

:::::
with

:::
the

::::::::::
high-quality

::::
RTS

:::::::::::
delineations

::
of

::::::::::::::
Xia et al. (2024)

:::
and

:::
soil

::::::::
property

:::::::
datasets

:::
for the QTP. Based on recently published datasets on the permafrost state and

soil conditions including active layer thickness, volumetric water / ground ice (GI)content, and SOC stocks, we modelled the

material erosion volumes into mobilised SOC fluxes for all RTS present on the QTP until 2020 (Ran et al., 2022; Zou et al., 2024; Wang et al., 2021)130

. We evaluated the uncertainty in the estimated erosion volume and the derived properties, examining how spatial resolution

affects errors in material erosion estimates. Similarly to temperate landslides, scaling laws between the planimetric area and

the erosion volume have been used to improve our understanding of the variability in geomorphology, process dynamics,

and the drivers and controls of RTS (Kokelj et al., 2021; Bernhard et al., 2022a; Van Der Sluijs et al., 2023). By examining the

allometric scaling of area and volume of RTS-induced material erosion in QTP we provide a basis for (1) the (sub)regional135

comparison of RTS dynamics and (2) providing empirical scaling relationships to potentially constrain regional-scale estimates

on material erosion and carbon mobilisation
::::
QTP,

:::::::
allowed

::
us

:::
to

:::::::
estimate

::::
the

::::::
volume

:::
of

::::::
eroded

:::::::
material

::::
and

:::
the

:::::::
related

::::::::
allometric

::::::
scaling

:::::::::::
coefficients,

:::::::::
associated

::::::
ground

:::
ice

::::
loss,

::::
and

:::::::::::
mobilisation

::
of

:::::
SOC. We aim to show that the combination

of multimodal and multitemporal datasets allows for a more detailed analysis of RTS mass wasting dynamics and further

increases our understanding of the regional carbon budget impacts.140

2 Data and methods

2.1 Study site

Our study region, the Qinghai-Tibet Plateau (QTP)
:::
QTP, is located between 26◦ N and 38◦ N in the south-west of China at

average elevations higher than 4000 m above sea level (Fig. 1 a). Permafrost covers 40 % of the plateau (Wang and French,

1994; Liu and Chen, 2000; Zou et al., 2017). The permafrost ground ice content averages around 30 %, decreasing spatially145

from north to south and west to east , holding a total water volume of 3330 in the top 10 (Zou et al., 2024) (Fig. 1 b). Compared

to the Arctic, the thickness of the active layer (ALT )
:::
ALT

:
is high (ALT = 2.34 m) (Ran et al., 2022), while permafrost thickness

is relatively low (<
:
60 - 350 m) (Zhao et al., 2020). A dry and cold climate in the northwest transitions to a warmer and wetter

climate in the southeast of the plateau (Chen et al., 2015). The QTP permafrost also stores large amounts of soil organic carbon

(SOC )
::::
SOC

:
with a median estimate of 1.41 × 1013 kgC (or 14.1 PgC) for the top 3 m and 4.92 × 1013 kgC (or 49.2 PgC)150

for the upper 25 m of soils (Wang et al., 2020; Chen et al., 2024a). The SOC stocks increase from west to east and from north

to south (Wang et al., 2021; Chen et al., 2024a) (Fig. 1 c).

Similar to the Arctic, the QTP is one of the most climate sensitive regions on Earth (Liu and Chen, 2000) and has experienced

a pronounced warming trend in recent decades, with an average increase in air temperatures of 0.035◦ (Yao et al., 2019). The

warming trend affects the thermal state of the permafrost: both ALT and ground temperatures have increased, as the regional155

permafrost extent declines (Cheng and Wu, 2007; Wu and Zhang, 2008; Zhao et al., 2021; Ran et al., 2022). In addition, the

ice-rich terrain in the QTP has become more prone to thermokarst development, likely to affect regional carbon budgets
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Figure 1. (a) Distribution
:::::::
Overview

:
of RTS on the

::::
study

::::::
region,

:::
the Qinghai-Tibet Plateau (QTP)Xia et al. (2024).

::
All

::::
data

:
is
::::::

gridded
::::

into

:::
50×

:::
50km2

:::
units

:::
for

:::::::::
visualisation

::::::::
purposes.

:::
(a)

:::::::::
Distribution

:::
and

:::::
spatial

::::::
density

::
of

::::
RTS

:::::::::::::
(Xia et al., 2024).

:
We divided the QTP into five

subregions (West, West-Central, Central, East, Northeast) based on spatial RTS clusters (Xia et al., 2024) and distributed validation sites

(400 km2) across the QTP. Distribution
:::
The

:::::::::
background

::::::
depicts

::
the

::::::
spatial

::::::::
distribution

:
of permafrost and seasonally frozen ground

:::::
terrain

on the QTP from Zou et al. (2017)
:::::::::::::
(Zou et al., 2017). (b) Volumetric

:::
The

:
ground ice content between

::
on

:::
the

::::
QTP

:::
for

::
an

::::::::
exemplary

:::::
depth

::::
layer

:
(2and

:
- 3 mdepth modelled with a random forest algorithm based on climate, terrain and soil variables and > 600 borehole records

:
)
:
is
::::::

highest
::
in
:::
the

::::::
central

:::
part

::
of

:::
the

::::::
plateau (Zou et al., 2024). (c) Soil organic carbon (SOC) stocks aggregated for the first 3 m depth

derived with a set of machine learning algorithms together with environmental variables and soil profile data from > 500 field measurements

(Wang et al., 2021) show an increasing trend from
::
the northwest to

::
the southeast QTP

::::::::::::::
(Wang et al., 2021).

and water storage capacities (Yi et al., 2025; Chen et al., 2024b). In recent years, the Plateau experienced strong expansion and

initiation rates of RTS mainly on gentle north-facing slopes with fine-grained soils and high ground ice content. More than 30 %

of all RTS activity is observed in a part of the central QTP, namely the Beiluhe River Basin (Luo et al., 2022; Huang et al., 2020; Xia et al., 2022, 2024)160

(Fig. 1 a). Observations and inventories of RTS activity and historical development are still scarce, but subregional studies

focussing mainly on thermokarst hotspots in central QTP indicate that most RTS activity started around 2010 (Luo et al., 2019, 2022; Xia et al., 2024)

. RTS retreat rates are relatively high, with mean rates up to 25 (2017 - 2019) (Huang et al., 2021), though similar to other highly

active RTS sites in Alaska, northwest Canada, the Canadian High Arctic, and Siberia (Hall et al., in review).
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2.2 Workflow and data processing165

Based on the spatial clustering of RTS identified by Xia et al. (2024), we divided the study area into five subregions, which

include the
::::::::
including:

:
West, West-Central, Central, Northeast and East

::::
East,

::::
and

::::::::
Northeast

:
(Fig. 1) to analyse

:::
a).

::::::
These

:::::::::
subregions

:::
are

::::
used

::
to
:::::::

analyse
:::
the

:
spatial patterns of material erosion and mobilisation of SOC induced by RTS activityin

:
,
:::
and

:::::::::::::::::
area-volume-scaling

:::::
across

:
the QTP. To validate the estimated volumes of RTS material erosion derived from integrated

optical and elevation remote sensing data, we established several validation sites that were spatially distributed throughout the170

QTP
::
the

:::::::::
following

::::::::
validation

::::
sites

::::::::
covering

::::
each

::::
400 km2

::::
(Fig.

::
1
:::
a):

:::::::
Western

:::::::
Kunlun,

::::::
Gaize,

:::::::
Southern

::::::
Nima,

:::::::
Beiluhe

:::::
River

:::::
Basin,

::::
and

:::::
Qilian

:::::::::
Mountain.

:::
We

::::::::
selected

::::
sites

:::::
based

:::
on

:::
(1)

:::
the

:::::::
presence

:::
of

::::
RTS

:::::::
activity

::::::
located

::::::
within

::::::
diverse

::::::::::
geographic

:::
and

::::::
terrain

:::::::::
conditions

::::::::
identified

::
by

::::::::::::::
Xia et al. (2024)

:
,
::
(2)

::::
the

:::::::::
availability

::
of

::::
field

::::::::::::
observations,

:::
and

:::
(3)

:::
the

::::::::
sufficient

::::::::
coverage

::
of

::::::::::
TanDEM-X

::::::::::
observations

::
to

::::::
ensure

:::::::::
consistent

:::
data

::::::
quality

:::
for

:::::::::
validation

:::::::
purposes.

2.2
::::::::
Workflow

::::
and

::::
data

:::::::::
processing175

We used bistatic TanDEM-X SAR observations to generate multi-temporal DEMs that span
::::
cover

:
all RTS locations in the

RTS inventory of Xia et al. (2024). The elevation change between
::
By

:::::::::::
differencing

:::::
DEMs

:::::
from 2011 and 2020 was retrieved

by a series of processing steps (e.g., Fig. 2 a). The active erosion area δ A was estimated after Xia et al. (2024), where

high resolution multispectral satellite imagery was used to detect and delineate RTS boundaries
:::
and

:::::::::
combining

:::
the

::::::::
resulting

:::::::
elevation

:::::::
change

::::
with

:::
the

::::::
annual

:::::::::::::
high-resolution

:::::
RTS

::::::::
inventory,

::::
we

::::::::
estimated

:::
the

:::::::
volume

::::::
change

:::
of

:::
the

::::::
eroded

::::::::
material180

::::::
induced

:::
by

::::
RTS

::::::
activity

:::
on

:::
the

::::
QTP (Fig. 2

::
a, b). These areas, in combination with soil property datasets for the QTP, allowed

us to estimate the volume of eroded material, associated ground ice loss, and mobilisation of SOC
:::::
Based

::
on

:::::
recent

:::::::
datasets

:::
on

::
the

::::::::::
permafrost

::::
state

:::
and

:::
soil

:::::::::
conditions

::::::::
including

:::::
active

:::::
layer

::::::::
thickness

::::::
(ALT),

:::::::::
volumetric

:::::
water

:
/
::::::
ground

:::
ice

::::
(GI)

::::::
content,

::::
and

::::
SOC

::::::
stocks,

:::
we

::::::::
modelled

:::
the

:::::::
material

:::::::
erosion

:::::::
volumes

::::
into

::::::
annual

::::
SOC

:::::::::::
mobilisation

::::
rates

:::
for

:::
all

::::
RTS

:::::::
present

::
on

:::
the

:::::
QTP

::::
until

::::
2020

:
(Fig. 2 c).185

We validated our approach (1) by manually delineating actively eroded sections of the RTS from elevation change products

and comparing their spatial overlap with optically derived RTS delineations; and (2) by comparing maximum elevation changes

from TanDEM-X DEMs with average headwall heights derived from very high-resolution (VHR) DEMs from 6 RTS in the

Beiluhe River Basin in Central QTP, obtained from drone photogrammetric surveys conducted in the summer of 2020
:::
We

::::::::
evaluated

:::
the

:::::::::
uncertainty

::
in

:::
the

::::::::
estimated

:::::::
erosion

::::::
volume

:::
and

:::
the

:::::::
derived

:::::::::
properties,

:::::::::
examining

::::
how

:::::
spatial

:::::::::
resolution

::::::
affects190

:::::
errors

::
in

:::::::
material

::::::
erosion

::::::::
estimates

:
(Fig. 2 d).

:::::
Similar

:::
to

::::::::
temperate

:::::::::
landslides,

::::::
scaling

::::
laws

::::::::
between

:::
the

:::::::::
planimetric

::::
area

::::
and

::
the

:::::::
erosion

::::::
volume

:::::
have

::::
been

::::
used

::
to

:::::::
improve

::::
our

:::::::::::
understanding

:::
of

:::
the

::::::::
variability

::
in
::::::::::::::

geomorphology,
:::::::
process

::::::::
dynamics,

::::
and

::
the

::::::
drivers

::::
and

:::::::
controls

::
of

::::
RTS.

:

2.2.1 Digital Elevation Model generation and processing

The
::
We

::::
used

:::::::
satellite

:::::::::::
observations

::::
from

:::
the

:
German Synthetic Aperture Radar (SAR) satellite mission TanDEM-X allows us195

to generate temporally resolved digital elevation models based on bistatic SAR interferometry (InSAR) (Krieger et al., 2007;
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Figure 2. Data processing and validation: (a) DEM generation from TanDEM-X SAR observations based on bistatic interferometric SAR

(InSAR) processing and post-processing with data tiling, averaging, and differencing including coregistration routines resulting in elevation

change maps between time T1 and T2. (b) We extract the elevation change (T2-T1) within the boundaries of the temporally matching optical

RTS labels of Xia et al. (2024) divided into negative elevation change (ablation) and positive elevation change (deposition of thawed material)

within the RTS delineation. (c) Estimation of the properties of RTS mass wasting including material erosion calculated from negative

elevation change within the RTS boundary, ground ice (GI) lossbased on ground ice content from Zou et al. (2024) and the ALT dataset

from Ran et al. (2022), and SOC mobilisationincorporating SOC stocks from Wang et al. (2021) and an extrapolation approach adapted

from Bernhard et al. (2022b) and Ramage et al. (2018). (d) Validation at selected sites by (1) evaluating how accurately we can estimate
::

the

::::
active

::::::
erosion

:::
area

:
δ A and

::
the

:::::::
material

:::::
erosion

::::::
volume δ V based on the optical labels

:::
RTS

:::::::::
delineations

:
and (2) by comparing

:::::::::
approximate

headwall heights obtained from
:::::::::::::::
very-high-resolution

:
(VHR)

:
DEMs of six RTS in the Beiluhe River Basin from photogrammetric drone

surveys in 2020 to our results.

Bojarski et al., 2021). We excluded observations with height-of-ambiguity (HoA) values below 15 and above 80 m to guaran-

tee a vertical accuracy between 2 and 3 m in flat areas (Martone et al., 2012; Bernhard et al., 2020). Bernhard et al. (2020)

found in Arctic thermokarst landscapes that observations during summer can challenge RTS monitoring due to increased

elevation uncertainties and errors attributed to late winter snow, as well as dense and wet tundra vegetation that changes200

the dielectric properties of signals. Therefore, studies relying on SAR-based DEMs for RTS monitoring typically use only

winter observations (Bernhard et al., 2022a; Maier et al., 2025), where the assumption is that X-band radar waves penetrate

dry snowpacks up to several metres (Leinss and Bernhard, 2021; Millan et al., 2015). However, in the QTP, we can only
:::
We

::::
used

::::::::::
TanDEM-X

::::::::::
observations

:::::::::
throughout

:::
the

::::
year

::
to achieve full spatial coverage if we use year-round observations. Compared
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to Arctic permafrost regions, the QTPis characterised by different climate and vegetation that mitigates some problems. For205

example, the maximum accumulation of snow on the QTP between December and February has a low mean snow depth of

< 1 to 11 (< 1 standard deviation (SD)) and a maximum accumulation of < 2 (Che et al., 2008; Yang et al., 2020) which is

well below the height sensitivity of TanDEM-X DEM. The central QTP, where most RTS are located, has the lowest average

snow depth observed in recent decades on the Plateau (Ma et al., 2023). In addition, the vegetation characteristics support our

approach of incorporating year-round TanDEM-X observations for DEM generation. The vegetation in which most RTS are210

located is characterised by
::
on

:::
the

:::::
QTP,

:::::::
although

:::::::
previous

::::::
studies

::
in

:::
the

::::::
Arctic

::::
have

::::
used

::::
only

:::::
winter

::::
data

::
to

:::::
avoid

:::::
errors

::::::
caused

::
by

:::::
dense

:::
and

:::
wet

::::::
tundra

:::::::::
vegetation

:::::
during

:::
the

:::::::
growing

::::::
season

::
or

::::::
melting

:::::
snow

:::::
packs

:::::::::::::::::::::::::::::::::::::::
(Bernhard et al., 2020, 2022a; Maier et al., 2025)

:
.
:::
The

::::::::
potential

:::::
errors

:::::::::
introduced

:::
by

:::::::::
vegetation

::::::::::::
characteristics

:::
and

:::::
snow

:::::
cover

:::
are

:::::
likely

::
to
:::

be
::::::::
negligible

:::
in

:::
this

:::::
study

::::
due

::
to

::
the

::::::::::
commonly low canopy heights , such as alpine meadowsand steppes

::
of

:::
the

:::::
local

::::::::
vegetation

:::::::
(alpine

::::::::
meadows, arid desert,

or even bare ground(Wang et al., 2016; Xia et al., 2024)
::::
bare

:::::::
ground)

:::::::::::::::::::::::::::::
(Wang et al., 2016; Xia et al., 2024),

::::
and

::::::
shallow

:::::::
average215

::::
snow

::::::
depths

::::
well

:::::
below

:::
the

::::::
height

::::::::
sensitivity

::
of

:::
the

::::::::::
TanDEM-X

::::::
DEMs

:::::::::::::::::::::::::::::
(Che et al., 2008; Yang et al., 2020).

Using the global 12 m spatial resolution TanDEM-X DEM as a reference, pairs of bistatic SAR observations were processed

with the GAMMA Remote Sensing software (Werner et al., 2000) following a standard InSAR processing workflow, to generate

a series of DEM products
::::::::
following

::
a

:::::::
standard

::::::
InSAR

:::::::::
processing

::::::::
workflow

:
(Fig. 2 a).

:::
Key

::::
steps

:::::::
include

:::
the

:::::::::
generation

::
of

::
a

:::::::::
differential

::::::::::::
interferogram,

:::::
phase

:::::::::::
unwrapping,

:::::::::::::
phase-to-height

::::::::::
conversion,

::::::
update

::
of

::::
the

::::::::
reference

:::::
DEM

::::
with

:::
the

:::::::::
computed220

:::::
height

:::::::::
difference,

:::
and

:::
the

:::::::::::::::
orthorectification

::
or

:::::::::
geocoding

::
of

:::
the

:::::::
resulting

:::::
DEM

::
to

::::
map

::::::::::
coordinates.

:::::::
Further

::::::::::
information

:::::
about

::
the

:::::
DEM

:::::::::
generation

:::::::
pipeline

:::
can

:::
be

:::::
found

::
in

::::::::::::::::::
Bernhard et al. (2020)

:::
and

::::::::::::::::
Maier et al. (2025).

:
SAR shadow and layover areas, as

well as the regions in the SAR images that experienced low coherence (< 0.3), were not considered in subsequent processing

(Bernhard et al., 2020; Maier et al., 2025). Based on the interferometric coherence, the observation’s HoA and the multilooking

window (4 × 4 pixels), we
::
We

:
estimated the associated random elevation error σh of each pixel for all generated DEMs

:::::
using225

::
the

:::::::::::::
interferometric

::::::::::
coherence,

:::::
height

:::
of

:::::::::
ambiguity,

::::
and

:::
the

::::::::
multilook

::::::::
window

::
of

::::
4×4

::::::
pixels

:
(Krieger et al., 2007; Rosen

et al., 2000; Rodriguez and Martin, 1992). Following Maier et al. (2025), we
:::
We

:
reprojected all DEM products to a common

horizontal coordinate system, WGS 84 / NSIDC EASE-Grid 2.0 Global (EPSG:6933) with
::
an ellipsoidal vertical reference,

resampled to 10 m spatial resolution
:
,
:
and split all data into 100

:::
100-km2 tiles

::::
-tiles

:
with a small spatial overlap to avoid

:::
any

edge effects. We corrected the DEMs for vertical offsets and tilts and co-registered the DEM pairs using the Python package230

xDEM (Hugonnet et al., 2021). Due to the non-uniform temporal coverage of TanDEM-X observations in
::
on

:
the QTP, we

decided to calculate the elevation change δh between two time periods. We averaged all available DEMs for the time period

T1 that spans one summer period (01/2011 - 04/2012) and for T2 that spans two summer seasons (09/2017 - 01/2020). In case

of the existence of several DEMs in the same location during the same time period, we calculated a weighted average per pixel

based on interferometric coherence before computing the elevation difference T2
:
- T1 for each tile with RTS activitybased235

on the RTS inventory of Xia et al. (2024). The
:
.
:::
For

::::::
stable

::::::
terrain,

:::
the

:
resulting elevation change maps are

:::::::
products

:::::
were

normally distributed around zero with a SD
:::::::
standard

::::::::
deviation

:
representing the achievable vertical accuracy of the DEM

pair. δh ∼ 0 m indicates stable terrain, while negative and positive values reflect material ablation and deposition of thawed

materials, respectively.
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2.2.2 Multimodal RTS mass wasting quantification240

Xia et al. (2024) created a high-quality regional inventory of annual RTS delineations between 2016 and 2022 based on a

semi-automated deep learning approach with
::::::
optical high-resolution PlanetScope imagery (Xia et al., 2022) (Fig. 2 b). The

DEMs of T2 consist of up to two summer seasons of RTS activity, depending on the availability and spatial distribution of

the observations. If the data from T2 consisted only of observations from one year, the optical RTS label from the matching

year was selected as RTS delineation for mass wasting calculations. If observations from several years contributed to the DEM245

of T2, we assigned the optical RTS shape that matched the last observation year to ensure a conservative estimation of the

eroded volume. Spectral information in optical images distinguishes undisturbed from disturbed terrain, using differences in

::::::::::
bare-ground

:::
and

:
vegetation cover. RTS delineations derived from optical imagery often encompass

:::::::::
incorporate a broader area

than the active ablation zone, including zones of recent activity and depositional sections of the slump floor (i.e., features

not directly involved in ongoing material loss), while excluding stable zones of past disturbance masked by lush vegetation250

growth. Therefore, we calculated the volume of eroded material δV for each RTS by summing only the negative elevation

changes δh < 0 m :::::::
δh < 0 m multiplied by the area of the DEM pixel (Fig. 2 c).

δV =
∑

δ h < 0 m < 0
:::

m · 100 m2100
:::

m2 (1)

Adapted from temperate landslide research, we applied a relationship between area and material erosion volume , the so-called

area-volume or allometric scaling , to investigate RTS properties and to be able to compare morphological enlargement255

characteristics with other studies (Jaboyedoff et al., 2020; Kokelj et al., 2021; Bernhard et al., 2022a; Van Der Sluijs et al., 2023)

. Following the methodology of Bernhard et al. (2022a), we use

:::
The

::::::
DEMs

:::
of

:::
T2

::::
may

::::::
consist

:::
of

::
up

:::
to

:::
two

::::::::
summer

::::::
seasons

:::
of

::::
RTS

:::::::
activity,

:::::::::
depending

:::
on

:::
the

::::::::::
availability

::::
and

::::::
spatial

:::::::::
distribution

::
of

:::
the

:::::::::::
observations.

::
If
:::
the

::::
data

:::::
from

::
T2

::::::::
consisted

::
of

:::::::::::
observations

::::
from

:::::
only

:::
one

::::
year,

:::
the

::::::
optical

::::
RTS

::::::::::
delineation

::::
from

:::
the

::::::::
matching

::::
year

::::
was

:::::::
selected

:::
as

:::
the

::::
RTS

:::::::::
delineation

:::
for

::::
the

::::
mass

:::::::
wasting

::::::::::
calculation.

::
If
:::::::::::
observations

::::
from

:::::::
several260

::::
years

::::::::::
contributed

::
to

:::
the

:::::
DEM

:::
of

:::
T2,

:::
we

:::::::
assigned

::::
the

::::::
optical

::::
RTS

:::::::::
delineation

::::
that

:::::::
matched

::::
the

::::
most

::::::
recent

:::::
DEM

::
to

::::::
ensure

::
we

::::::::
captured

:::
the

::::
full

:::::::::
planimetric

::::::
extent

::
of

:::
the

:::::
RTS.

::::::::::::
Nevertheless,

::
if

:::::::
multiple

:::::::::::
observations

::::::::::
contributed

::
to

:::
the

:::
T2

::::::
DEM,

:::
the

::::::::
multi-year

::::::::
averaged

::::::
erosion

:::::::
volume

::::
may

:::::::::::
underestimate

:::
the

::::::
actual

::::::
volume

::
of

:::::::
erosion.

:

::::
Since

::::::::
previous

::::::
studies

:::
on

:::::::::
allometric

::::::
scaling

::::
use

:::::::
different

::::::::
methods

::
to

::
fit

::
a
:::::::
straight

:::
line

:::
to

:::
the

:::::::::::::
log-transformed

:::::
RTS

::::
area

:::
and

:::::::
volume

:::::::
change,

:::
we

:::::
apply

::::
two

:::::::
common

:::::::
models:

::::
We

:::
use

:::
(1)

:
an orthogonal distance regression model to fit a straight265

line in log space (Boggs and Rogers, 1989) and
::::::
(ODR)

:::::
model

::::::::::::::::::::::
(Boggs and Rogers, 1989)

::::
used

:::
by

:::::::::::::::::::
Bernhard et al. (2022a)

:::
for

::::::
several

:::::
North

::::::::
American

::::
and

:::::::
Siberian

::::
RTS

:::::
sites,

::::
and

:::
(2)

::
an

::::::::
ordinary

::::
least

:::::::
squares

:::::
(OLS)

::::::::
approach

:::::::
applied

:::
by,

:::
for

::::::::
example,

::::::::::::::::
Kokelj et al. (2021),

:::::::::::::::::::::::
Van Der Sluijs et al. (2023),

::::
and

:::::::::::::
Dai et al. (2025)

:
,
::
to

:
predict the eroded volume δV based on the plani-

metric area δA with an exponential scaling coefficient α and a scaling factor c (Jaboyedoff et al., 2020) for the time interval

T1 - T2.
:
:270

δV = c · δAα. (2)
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Notably
::
In

:::::::::
particular, δA stands for the RTS area that undergoes a negative elevation change or ablation and, therefore, is

actively eroding within the monitoring period of T1-T2. Instead, the RTS delineations of Xia et al. (2024) based on optical

imagery distinguished between disturbed zones and intact vegetation.
::
T1

:
-
:::
T2.

:
To test the influence of slightly different defini-

tions of the RTS area
::::::
between

::::::::::
delineations

:::
on

::::::
optical

::::::
images

::::
and

:::
the

:::::::
elevation

::::::
change

:::::
maps, we also performed area-volume275

scaling with the entire RTS delineation area AXia, which does not include purely active erosion, but
::::
only

::::::
include

:::::
zones

:::
of

::::::
ablation

:::
δA

:::
but

:::::
often also bare soils disturbed by mud flows and the deposition of thawed material in the slump floor (Fig. 2 b).

To estimate how much SOC is stored in the previously frozen permafrost soils mobilised by RTS activity during the study

period, ground conditions must be known or modelled (Fig. 2 c). Therefore, we integrate existing datasets for
:::
the QTP that

define (1) ALT
::::::::::::::
(Ran et al., 2022), (2) GI content between 2 and 10 m

::::::::::::::
(Zou et al., 2024), and (3) SOC stocks between 0 and 3 m280

depth
:::::::::::::::
(Wang et al., 2021). All datasets are sampled in 1

::
1-km2cells. (1)

:::::
-cells. Ran et al. (2022) estimated permafrost thermal

state variables
:
, including ALT for the pan-Arctic permafrost region and

::
the

:
QTP with 452 field measurements with statistical

learning models that achieve a root mean square error (RMSE) < 1 m . (2)
::
(1).

:
Zou et al. (2024) estimated the volumetric

water / ground ice content up to 10 m depth with a random forest algorithm based on climate, terrain and soil variables and 664

borehole records with R2 > 0.8
:::
R2

::
>

:::
0.8 for all depth layers (Fig. 1 b). (3),

::::
(2)).

:
Wang et al. (2021) applied a set of machine285

learning algorithms together with environmental variables and soil profile data from 572 field measurements to predict the

spatial distribution of SOC in the upper 3 m, including an uncertainty layer in
::
on

:
the QTP. The model achieved R2

::
R2

:
values

between 0.66 for the upper 30 cm and 0.54 for the first metre (Fig. 1 c
:
,
:::
(3)). Since the SOC stocks dataset is limited to the

upper 3 m, we apply an exponential decay model to extrapolate the values to lower depths where we propagate the uncertainty

estimates of 2 - 3 m (Bernhard et al., 2022b). Based on the assumptions that (1) ground ice starts at the depth where the active290

layer ends and (2) SOC is not present in any form in the massive ground ice, we sampled the negative elevation change within

each RTS label to calculate the SOC mobilisation per RTS

SOCRTS =
∑

n(δA)
n(δA)
::::

∑
d
n=10
d=1
:::

[SOC(d < ALT)+SOC(d > ALT)(1100:::
− GI

100
GI
::

)] 100 m2 (3)

with the number of pixels n, the RTS ablation area δA
:::
[m],

:::
the

:::::
depth

::
of

:::
the

:::::
active

::::
layer

::::
ALT

:::
(>

::
0 m

:
),

::::::
ground

:::
ice

::::::
content

:::
GI

:::
[%] and soil depth d

::
(0

::
<

::
d

::
<

::
10

:
m

:
). If the depth d is lower

:::::
higher

:
than the ALT, then only the part of the eroded material that295

is not massive ground ice is added to the total SOC mobilisation. Similarly, we estimate the volume of RTS-induced ground

ice loss across the depth layers by multiplying
:::::
scaling

:
the eroded material by 1− GI

100 .
::::::::
100−GI.

:::
To

::::::::
illustrate,

::
if

:::
we

::::::
sample

::
at

::
an

:::::::::
exemplary

::::
RTS

:::::::
location

::
an

:::::
ALT

:
=
:::
1.8

:
m

:::
and

::::::::
GI2−3 m :

=
:::
31

::
%

:::
we

:::::
round

:::
the

:::::
ALT

::
to

:
2
:
m

:
.
:::
For

::
0
:
-
::
2 m

:::::
depth,

:::
we

::::::::
compute

::
the

:::::
SOC

:::::::::::
mobilisation

::::::
without

::::::
scaling

:::
for

:::::::
ground

:::
ice

::::
since

:::
we

:::::::
assume

::
no

::::::::
presence

::
of

:::::::
massive

:::
ice

::
in

:::
the

:::::
active

:::::
layer.

::::
For

:::
the

::::
depth

:::::
layer

:
2
::
-
:
3
:
m

::
we

::::::
reduce

:::
the

::::
SOC

:::::::::::
mobilisation

::
by

:::
31

::
%.

:
300

We report the total estimates of the volume of eroded material, the mobilisation of SOC, and the loss of ground ice as the

sum over all RTS in the study region and throughout the study period. By dividing SOC mobilisation by the number of years

between T1 and T2, we estimate SOC fluxes per year
:
a
::::::
yearly

::::
SOC

:::::::::::
mobilisation

:::
rate. However, the values might be partially

biased since we cannot distinguish between RTS that have been active for the entire study period and those that may have only
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been active for a shorter period of time (Bernhard et al., 2022b). We normalise our results by
::
the

::::
size

::
of

:::
the study area and

:::
the305

number of RTS to ensure comparability
::
to

:::
the

:::::
results

:::
of

:::::::
previous

::::::
studies.

2.2.3 RTS material erosion error assessment and validation

Since we aim to integrate two datasets with distinctly different spatial resolutions (DEM
:::::
raster: 10 m, optical RTS inventory

::::::
vectors: 3 m), we have to account for the ambiguity produced. Negative elevation change pixels might only partially intersect

the RTS delineation instead of being entirely contained. We chose to rasterise the optical RTS delineations into two parts:310

an upper-bound RTS area δA+ ::::
δA+

:
that includes all intersected pixels, and a lower-bound area δA− ::::

δA− with only fully

contained pixels. Together with the estimated elevation error σh of the DEM we then compute the upper and lower volume

limits δV+/− ::::::
change

::::::
bounds

:

δV + =
∑

n(δA+)

(δh<0m −σh) · 100 m2

::::::::::::::::::::::::::::::

(4)

:::
and315

δV − =
∑

n(δA−)

(δh<0m +σh) · 100 m2

::::::::::::::::::::::::::::::

(5)

that indicate the uncertainty induced by differences in spatial resolution, boundary mismatch, and vertical DEM error.

δV + =
∑

n(δA+)

(δh<0m −σh) · 100 m2

δV − =
∑

n(δA−)

(δh<0m +σh) · 100 m2320

Together with the uncertainty estimates of the SOC stocks, we propagate the error bounds to all reported quantities. The lower

spatial resolution of the DEMs derived from TanDEM-X together with a typical height sensitivity of approximately 2 to 3 on flat

terrain (Krieger et al., 2007) could create discrepancies since the size and depth of small RTS approach monitoring limitations.

If an RTS that is present in the optical RTS inventory is smaller or shallower than a certain threshold related to the spatial

resolution and vertical sensitivity of the DEM, the resulting elevation change would not show any distinguishable difference325

from the DEM background noise. Moreover, manually delineating the RTS boundaries depends on the level of expertise and

(field-based) familiarity, as well as the data source and ontological definitions (Maier et al., 2025; Van Der Sluijs et al., 2023; Nitze et al., 2024b)

. In optical imagery, annotators use a snapshot in time and distinguish disturbed ground from intact vegetation to define the

boundaries of an RTS ; on elevation change maps, we identify the cumulative RTS activity over time by the regions that show

ablation (= negative elevation change)
::
We

:::::::
assume

:::
the

::::
RTS

::::
area

:::::
AXia :

is
:::::::::
error-free,

::::::
despite

::::::
biases

:::
and

:::::::::
subjective

:::::::::
influences

::
in330

::::
both

::::::::
automated

::::
and

::::::
manual

::::
RTS

::::::::::::
segmentation,

:::::
which

:::
are

:::::::
difficult

::
to

:::::::
measure

::::::::::::::::::::::::::::::::
(Nitze et al., 2024b; Maier et al., 2025).
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To understand the impact of these potential drawbacks on our proposed multimodal RTS monitoring method
:
In

::::::::
addition

::
to

:::::::
reporting

::::
data

:::::::::::
uncertainties, we performed a two-fold validation at five sites spread over the QTP

::::::::
validation

::::
sites

:
(Fig. 1 a).

First, we
:
:
:::
(1)

:::
We

:
manually delineated the RTS ablation

::::
area

:
in the elevation change maps, where a distinct pattern of

negative elevation change is visible to the human eye. All
::
At

:::
all

:::::::::
validation

:::::
sites,

:::
the

:
elevation change maps consist of335

:::::::
consisted

:::
of

::::::::::
TanDEM-X

:
DEMs from 2011 and 2019. We statistically compared the RTS labels from the optical inventory

of Xia et al. (2024)
:::::::::
delineations

:::
of

:::
the

::::
RTS

::::::::
inventory

::::::::::::::
(Xia et al., 2024) from the same year (2019), the year before (2018) and

the year after (2020) to the DEM-based delineations
::::::::
manually

:::::::::
delineated

:::::::
ablation

:::::
zones

::
to

:::::::::
investigate

:::
the

:::::::::
agreement

:::::::
between

::
the

:::::::
datasets

:
in terms of absolute numbers,

::::
RTS

:::::::::
quantities,

::::::::
(ablation)

:
area, and derived material erosion volume (Fig. 2 d).

Furthermore, we performed a comparison between
:::
(2)

::
At

:::
the

:::::::
Beiluhe

:::::
River

:::::
Basin

::::
site,

:::
we

::::::::
compared

:::
the

:
TanDEM-X-derived340

DEMs and very high resolution
:::::::
elevation

::::::
change

::::
with

::::
very

:::::::::::::
high-resolution (VHR) photogrammetric DEMs from in situ drone

campaigns of a total coverage of 68520
::
an

:::::
in-situ

:::::
drone

:::::::::
campaign

:::::::
covering

::
in

::::
total

:::
six

:::::
RTSs in August 2020. We used a

:
A
:
DJI

P4 Multispectral
:::
was

::::
used to obtain the multispectral drone images. The resulting DEM has

:::::
DEMs

::::
have

:
a spatial resolution of

< 1 m and a georeferencing accuracy of 0.2 m RMSE. Since no VHR DEM was available for T1, we could not perform DEM

differencing and directly validate our volume change estimates. Furthermore, only data from six RTS in the central cluster were345

available for independent validation. Based on the VHR DEM and its hillshade version
:::::::
hillshade

:::::
VHR

::::::
DEMs, we manually

delineated the approximate location of the headwall with the help of transect profiles .
::::
(Fig.

::
2

::
d).

:
We defined small buffer zones

(∼ 5 m) and randomly distributed points (n = 100 per RTS) on both sides of the headwalls that represent the elevation of stable

ground hstable and the RTS slump floor hRTS, respectively. We computed the average headwall height hVHR :::::
hVHR per RTS as

the difference median of
::::::
median

:::::::::
difference

:::::::
between hstable and hRTS(Fig. 2 d) . We compare the VHR headwall heights

:::
The350

::::::::
monitored

::::
RTS

:::::
were

::::::::
relatively

:::::
small

::
(<

::::
104 m2

:
)
:::
and

:::::::
shallow

::::::::::
(hVHR < 4 m

:
).
::::::::
Defining

:
a
::::::::
headwall

:::::::
position

:::
and

::::::::
applying

:::
the

::::
same

:::::::::::
methodology

::::
with

::::::::::
TanDEM-X

::::::
DEMs

::
is
:::
not

:::::::
feasible

::::
due

::
to

:::
the

::::::
coarser

:::::::::
resolution.

:::::::::
Therefore,

:::
we

:::::
chose

::
to

::::::::
compare

:::
the

::::::::
estimated

:::::::
headwall

:::::::
heights

:::::
based

:::
on

:::
the

::::
VHR

::::::
DEMs

:
with the maximum negative elevation change δhmax that we estimated

based on TanDEM-X DEMs.

3 Results355

After we present regional estimates of RTS-induced material erosion and carbon mobilisation, and the spatial distribution

within QTP, we provide a detailed analysis of the heterogeneity of RTS activity on subregional scale. We report the results of

the area-volume scaling performed between the RTS area and the erosion volume and investigate the accuracy of the proposed

method with independent data at several test sites distributed throughout the region
:::::::
elevation

:::::::
change

:::::
maps,

::::::::
assuming

::::
that

:::
the

:::::
largest

::::::
height

:::
loss

::::::
aligns

::::
with

:::
the

:::::
largest

::::::::
material

::::::
ablation

::::
and

::
is

::::::
located

:::::
close

::
to

:::
the

:::::::
headwall.360
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3
::::::
Results

3.1 RTS mass wasting on the QTP between 2011 and 2020

Out of 3,613
::::
3613

:
RTS delineations of Xia et al. (2024) that we matched with the generated elevation change maps, we

excluded 2 % (71 RTS) from further analysis due to low SAR coherence or SAR layover / shadow regions. For these discarded

RTS, reliable erosion volume estimates are not possible due to
::::
were

:::
not

:::::::
possible

::
to

:::::::
achieve

:::
due

::
to

:::
the

:
low confidence in DEM365

quality.

Figure 3. Total RTS mass wasting in
:
on

:
the QTP between 2011-2020: RTS mass wasting activity is the highest

::::
2011

:
-
:::::
2020.

::
All

::::
data

:::
are

::::::::
aggregated in central QTP

:::::
50×50 km

:
-
:::
tiles

:::
for

:::::::::
visualisation

:::::::
purposes.

::
For

::
all

::::
mass

::::::
wasting

::::::::
quantities

:::::::
including (a) Material

::::::
material erosion

volumefrom RTS activity. ,
:
(b) Total

:::
total GI lossfrom RTS activity. ,

:::
and

:
(c) Total

:::
total

:
SOC mobilisationfrom RTS activity,

:::
the

:::::
central

::::
QTP

::::
shows

:::
the

::::::
highest

:::::
values.All data are aggregated in 50-km-grids for visualisation purposes.

We estimated a total volume of eroded material δV between 2011 and 2020
::
of

:::::::::
5.02 25.35

0.75 ×107 m3 induced by RTS activity in

QTP of 5.02 25.35
0.75 ×

::
on

:::
the

::::
QTP

:::::::
between

:::::
2011

:::
and

:::::
2020 (Fig. 3

:
a). Approximately 50 %

:::
half of the volume change originates

from 0 -1 m, 28 % from 1 - 2 m, and 13 % from 2 - 3 m depth. On average, 65 % of the delineated RTS areas from the optical

inventory of Xia et al. (2024) have actively eroded
::::
entire

:::::::::
delineated

:::::
areas

:::::
AXia ::

of
:::
the

::::
RTS

::::::::
inventory

:::::
were

:::::::
actively

:::::::
eroding370

between 2011 and 2020. The median active erosion
:::::::
ablation area δA per RTS was 5200 m2 compared to the entire optical RTS

delineation area
:::
full

::::::::::
delineation AXia (including the accumulation and inactive parts of an RTS) of 8000 m2. We estimated a

median volume loss of 6534 ± 2284 m3corresponding to a relative error in elevation change of ∼ 35%. The median elevation

loss that roughly indicates the RTS headwall height was 1.2 ± 0.4 . When fitting a linear model to the log-transformed area δA
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and material erosion volume δV
::::
based

:::
on

:::
(1)

::::
OLS

:::
and

:::
(2)

:::::
ODR, we found a power law relationship

::::::::
power-law

:::::::::::
relationships375

for the area-volume scaling of RTS on the QTP of

δV = 0.09 · δA1.30±0.01

with R2 = 0.87 (p<0.001,
:
(Fig. S1 a) . We

::
of

δVODR = (0.09± 0.01) · δA1.30±0.01 with R2 = 0.87 (p < 0.001)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6)

:::
and380

δVOLS = (0.22± 0.01) · δA1.20±0.01 with R2 = 0.87 (p < 0.001).
:::::::::::::::::::::::::::::::::::::::::::::::::::::::

(7)

:::
For

:::::
ODR,

:::
we obtain the same scaling coefficient to predict volume change based on

:::::
(αODR::

=
::::
1.30,

::
c
:
=
:::::
0.05,

:::
Fig.

:::
S6

::
a)

:::::
when

::
we

:::
use

:
the entire area of the RTS delineations AXia (

::::
AXia::::::

instead
::
of
::::::
solely

:::
the

:::::::
ablation

:::
area

:::
δA

:::
yet

::
a
:::::
lower

::::::
scaling

:::::::::
coefficient

::
for

::::::::::::
computations

:::::
based

::
on

::::
OLS

::::::
(αOLS::

=
::::
1.11,

:
c
::
=
::::
0.29,

:
Fig. S3

::
S6 a). However, the fit is slightly noisier and manifests itself in

a lower confidence (R2
::::

2
ODR = 0.75,

::::::
R2
ODR :

=
::::
0.77). An α value of

::::::
between

::::
1.11

::::
and 1.30 indicates that RTS in QTP during the385

last decade
::
on

:::
the

:::::
QTP followed a relationship between linear growth

:
a
:::::::
growing

::::
scar

::::
zone

::::
with

:::::::
constant

:::::
depth

:
(α = 1.0) and

exponential growth (α >
::::::
growth

::::
with

:
a
:::::::
constant

::::::::::
width-depth

::::
ratio

:::::
(α = 1.5)

:::::
during

:::
the

::::
last

:::::
decade

:
and falls in the range of soil

landslides (1.1 - 1.4) based on the investigated scaling relations of landslides in temperate locations (Jaboyedoff et al., 2020)

::::::
climate

::::::
regions

::::::::::::::::::::::::::::::::::::::::::
(Jaboyedoff et al., 2020; Van Der Sluijs et al., 2023).

The median GI content at the RTS locations extracted from Zou et al. (2024) was 31 %. We also estimated that 3.5828.200.28390

×
:::
We

::::::::
estimated

:::
that

::::::::::
3.5828.200.28 ×106 m3

:
of

:
massive ground ice has been lost

::
on

:::
the

:::::
entire

:::::
QTP during the last decade (Fig. 3 b).

We calculated that ∼
::::::::::::
Approximately 64 % of the thawed ground ice was located in the first metre under the active layer (2 -

3 m), 32 % between 3 and 5 m and the remaining 4 % below 5 m depth. Based on data on SOC stocks of Wang et al. (2021)

::
the

:::::
SOC

::::::
stocks

::::::
dataset

:::::::::::::::::
(Wang et al., 2021), we calculated a total SOC mobilisation from RTS erosion of 2.787.980.11 ×

::
of

::::::::
2.787.980.11×108 kgC (Fig. 3 c) . We found annual RTS-induced SOC fluxes

:::
and

::::::
annual

::::
SOC

::::::::::
mobilisation

::::
rates

:
of 0.35 × 108 kgCa−1.395

The first metre of soil contributed ∼
:::::::::::
approximately

:
76 %, the second ∼ 14 %, and the third ∼ 8 % to the total SOC mobilisation.

Xia et al. (2024) found the highest number of RTS (∼ 75 % )
::
of

::::
RTS

:::::::
activity

:
in the central Plateau

::::
QTP, including the

highest area expansion rates. Figure 4 displays
:::::
shows

:
a similar pattern of 78 %

::
of material erosion volume, 89 %

:
of

:
ground

ice loss and 81 %
:
of

:
SOC mobilisation attributed to the Central

::::::
central QTP. We normalised the total quantities per subregion

by RTS count and analysed the distributions to ensure better comparability. We found that even though the central Plateau400

exhibited the highest absolute amounts due to the highest density of RTS, the volume distribution per RTS was highest in the

northeast QTP (Fig. 4 a). The scaling coefficients range from α
:::::
αODR = 1.27 - 1.29 (R2

::::
1.34

:::
(R2 = 0.77 - 0.89, p <

:
0.001)

:::
and

::::::
αOLS :

=
:::::

1.11
:
-
:::::

1.23
:::
(R2

::
=
:::::

0.79
:
-
:::::

0.90,
::
p
::
<

::::::
0.001)

:
in the West , West-Central and Central subregions to α

:
to
:::::

East

:::::::::
subregions

::
to

:::::
αODR = 1.47 ± 0.05 (R2

::
R2

:
=
:
0.87, p < 0.001) in Northeast QTP. This points to a greater elastic distortion

in the degree to which the concavity increases volumetrically with changing area for the mountainous northeast QTP (see405

Van Der Sluijs et al. (2023) for coefficient interpretation, Fig. S1 and Fig. S3)
:::
and

:::::
αOLS::

=
::::
1.34

::::::
± 0.04

:::
(R2

::
=
:::::
0.87,

:
p
::
<

::::::
0.001)
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Figure 4. RTS mass wasting quantities
::
in

:::
the

::::
QTP

::::::::
subregions

:
between 2011 and 2020in QTP subregions: First

:::
The

:::
first

:
row displays a

box plot of the quantity’s distribution per
:::
plots

:::
for

:::::
values

::::::::
associated

::::
with

::::::::
individual RTS, the second row

::
bar

:::::
charts

:::
for the total quantity

per subregion
:::::::
quantities

:::::
across

:::
the

::::::::
subregions, and the third row additional data

:::
that

:::
vary

:::::::
between

:::
the

::::::
columns.

:::
For

::
all

::::
plots,

:::
the

::::::::
computed

::::::::
uncertainty

::
is

::::::
reported

::::
with

::::
error

::::
bars.

:
(a) RTS material erosion and area-volume scaling coefficients for the subregions with R2

::::::

2-values

between 0.77 /
::::
0.79 (p < 0.001, West) and 0.89 /

::::
0.90 (p < 0.001, Central)

:::::::
computed

:::::
based

::
on

::::
ODR

:::::
(black

::::
dots)

:
/
::::
OLS

:::::
(purple

::::
dots). (b) RTS

ground ice
::
GI loss and the distribution of GI content (Zou et al., 2024). (c) RTS induced

:::::::::
RTS-induced SOC mobilisation and the distribution

of SOC stocks 0 - 3 m (Wang et al., 2021). Number of RTS nRTS per subregion: West = 170, West-Central = 523, Central = 2688, East = 76,

Northeast = 140.

::
in

:::
the

::::::::
northeast

::::
QTP. Based on Zou et al. (2024), the GI content is highest in the central subregions (median of 32.8 % in

central and 32.6 % in
:::
the west-central QTP)and lowest ,

::::::
where

:::
we

:::
also

::::::
found

:::
the

::::::
highest

::::
total

::::
and

:::::::
average

::::::
ground

:::
ice

::::
loss

::::
(Fig.

:
4
:::

b).
::::
The

::::::
lowest

::
GI

:::::::
content

::::
was

::::::
present

:
in the northeast (median of 0 %, mean of 10.7 %). We found the highest total

and per-RTS loss in ground ice in the central subregion, but the total amount is relatively low for the entire QTP compared to410
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the eroded volume (Fig. 4 b). The total amount of SOC mobilised from RTS activity for the QTP subregions shows a pattern

similar to material erosion and ground ice loss: Central
::
the

::::::
central

:
QTP dominates all RTS mass wasting quantities through

the largest number of RTS present. However, the distribution of SOC mobilisation follows the spatial trend present in the SOC

stocks from Wang et al. (2021) and the
:::
The average SOC mobilisation per RTS increases from the west to the northeast of the

QTP (Fig. 4 c). Details can be found in the Supplement (Table S1 and S2).415

3.2 Assessment of InSAR DEM- and optical-based monitoring of RTS mass wasting in
::
on

:
the QTP

We manually delineated the ablation zones for 307 RTS scars on
::
For

::::
the

::::::::
validation

:::::
sites,

:::
we

:::::::::
compared

:::
the

:::::::::::
delineations

:::::
(2018

:
-
:::::
2020)

:::
of

:::
the

::::
RTS

::::::::
inventory

:::::::::::::::
(Xia et al., 2024)

::
to

:::
the

:::::::
ablation

:::::
zones

:::
we

::::::::
manually

:::::::::
identified

::
on

:::
the

:
elevation change

maps
::::
based

:::
on

::::::::::
TanDEM-X

::::::
DEMs (2011 - 2019)at all validation sites and statistically analysed the potential differences from

the RTS labels (2018, 2019, 2020) in the optical inventory of Xia et al. (2022). For the optical RTS labels from 2019 (n = 445),420

we found an overall good agreement for the total number of RTS found in both datasets with
:
.
:::
Out

:::
of

:
a
::::
total

::
of

::::
445

::::
RTS

::
in

:::
the

::::
RTS

::::::::
inventory,

:::
we

::::::::
identified

::::
290

::
in

:::
the

:::::::::::::
lower-resolution

::::::::
elevation

::::::
change

::::::
maps,

:::::
which

::::::::
accounts

:::
for an F1 score of 0.63. 290

RTS were present in both datasets, 17 could only be detected in the DEMs, whereas
::
17

::::
RTS

::::
were

::::::
missed

::
in
:::
the

::::
RTS

:::::::::
inventory,

::::
while

:
155 RTS

::::::
present

::
in

:::
the

::::
RTS

::::::::
inventory

:
were not distinguishable from background noise in the elevation change mapsand

only present in the optical inventory. Most of the validation sites showed good agreement (
:
a
::::
good

:::::::::
agreement

:::::::
between

:::
the

::::
two425

:::::::
datasets.

::::::::
However,

::
in

:::::::
Western

:::::::
Kunlun

::
(A

:::
in Fig. 5

:
1 a) except for the site in western QTP where only 55 % of the RTS were

visible in both datasets
:
in

:::
the

::::
RTS

::::::::
inventory

:::::
were

::::::::
detectable

:::
in

:::
the

:::::::
elevation

:::::::
change

::::
maps. More details on individual results

at the test sites can be found in the Supplement
::
S3 (Table S3). Figure 5 b shows an example RTS in the Beiluhe River Basin

in Central QTP including the delineations of the optical inventory (Xia et al., 2022) of the summers one year before, the same

year and one year after the SAR observation used for the DEM generation, as well as the manually delineated ablation zone430

visible on the elevation change map
::
a,

::
b).

A RTS delineation based on multispectral imagery defines the boundary of the thaw feature by the difference in the spectral

signal between disturbed and intact vegetation, whereas elevation maps showcase RTS activity by elevation loss (ablation at

the headwall) and gain (accumulation at the floor). Typically, a larger planimetric area is present in RTS delineations based on

optical images that often comprise most of the recently active slump floor and accumulation zone compared to the DEM-based435

boundaries. However, the overlap at the headwall between the two delineations is adequate, and
:::::::
Visually,

:::
the

::::::::::
delineations

:::::
from

::
the

:::::
RTS

::::::::
inventory

::
fit

::::
well

::::
with

:::
the

::::::
spatial

:::::::
patterns

::
of

:::
the

::::::::::
TanDEM-X

::::::::
elevation

::::::
change

::::
map,

:::::
with most of the ablation is part

of the optical label
::::
zone

:::::
being

:::::::
covered. Due to the lower spatial resolution of the DEM, the differences between the optical

delineations
::::::::::
delineations

::::
from

:::
the

::::
RTS

::::::::
inventory of 2018, 2019, and 2020 are rather small in this example (Fig 5 b). Comparing

the RTS delineation
:::
The

::::
total

::::
RTS area AXia with the active erosion area visible on the elevation changemap, we see that the440

delineations for 2019
:::::::
consists

::
of

:::
the

:::::::
material

::::::
erosion

::::
zone

::
(=

::::::::
negative

:::::::
elevation

:::::::
change)

:::::
which

::::
was

:::::::
growing

:::::::
between

::::
2018

:
and

2020include substantially more ablation area than what is distinguishable as RTS-induced erosion on the elevation change maps

(Fig. 5 b, c) ,
:::
and

:::
the

:::::::
material

:::::::::::
accumulation

:::::
zone

::
(=

::::::
positive

::::::::
elevation

:::::::
change)

:::::
which

::::::
stayed

::::::::
relatively

:::::::
constant

:::::
across

:::::
time.

:::
For

::
all

::::::::
analysed

:::::
years,

:::
the

::::
total

::::
RTS

::::
area

::::
was

::::::::
distinctly

:::::
larger

::::
than

:::
the

::::
sum

::
of

:::
the

::::::::
manually

:::::::::
delineated

::::::
erosion

:::::
areas.

::::::
When

::::
only
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:::::::::
considering

:::
the

:::::::
ablation

:::::
zone

:::::
within

:::
the

::::
RTS

::::::::::
delineation,

:::
the

:::::::::
difference

:::
was

:::::::
smaller

:::
(Fig.The distribution of the ablation area445

of the optical RTS labels is rather similar despite the difference in observation time (Fig 5 d
:
b). The median actively eroded area

per RTS in the validation sample based on manual delineations in the elevation change maps is 12, 978 ,
:::::
actual

:::::::
average

::::
RTS

::::::
ablation

::::
area

:::::
based

:::
on

:::
the

::::::
manual

:::::::::
delineation

::::
was

:::::
1.29×104 m2

:
, which is relatively close to the optical RTS labels: 9,748

::::
RTS

::::::::
inventory:

::::::
0.98×104 m2 in 2018, 11,325

:::::
1.13×104 m2 in 2019, and 13,512

:::::
1.35× 104 m2 in 2020

:
, accounting for 62 to 64 % of

the total optical delineation area . The lower threshold for distinguishing an RTS from background noise is substantially higher450

in the elevation change maps based on 10--resolution
::::
RTS

::::
area

:::::
AXia.

::::::::
However,

::
in

:::
the

::::::::::::
high-resolution

:::::::::::
PlanetScope

::::::
images

::::
used

::
as

:::
the

::::
basis

:::
for

:::
the

::::
RTS

:::::::::
inventory,

:::::::::::
considerably

::::::
smaller

::::
RTS

::::
can

::
be

::::::::
identified

:::::::::
compared

::
to

:::
the

:
TanDEM-X DEMs(red solid

line in .
::::
This

:::::
leads

::
to

::
a

:::::
lower

::::
limit

::
of

::::
RTS

:::::::
ablation

:::::
areas

::
of

:::::::::::::
approximately

::
< 103 m2

::
for

::::::::::
TanDEM-X

:::::
based

::::
RTS

::::::::::
monitoring

:
(Fig 5 d, 1100 )than in the 3--resolution PlanetScope images (Xia et al., 2022). In

:
).
::::::::
However,

::
in

:
our analysis of the entire QTP,

only 6 % of 3613 RTS have ablation areas below this threshold.455

:::::
value.

:
The total volume of material erosion (

::::::::
computed

::::
with

::::
the

::::
RTS

::::::::
inventory

::::::
differs

::::
only

:::::::::
minimally

:::::
from

:::
the

:::::::
volume

::::::::
calculated

:
based on the ablation area) diverges in both directions for the delineations of different years

:::::
manual

:::::::::::
delineations

(Fig. 5 e). We estimated a total volume δV based on the ablation area covered by optical labels of 8.47
::
×106 m3, 9.98

:
×106 m3,

and 10.97 × 106 m3 for
:::
the

::::
RTS

::::::::
inventory

::::::::::
delineations

::
of

:
2018, 2019, and 2020, respectively. Compared to the actual total

volume based on the manual delineation of the ablation areas in the elevation change maps of ,
:::::::::
compared

::
to

::
an

::::::
erosion

:::::::
volume460

::
of 9.94 × , the optical label of 2019 shows the best fit106 m3

::::::
defined

:::
by

:::
the

::::::
manual

::::::::::
delineations. The uncertainty of volume

change isgreater for optical RTS labels
::
the

:::::::::
estimated

:::::::
material

::::::
erosion

:::::::
volume

::
is,

::::::::
however,

:::::
larger

:::
for

:::
the

::::::
results

:::::
based

:::
on

:::
the

::::::::::
delineations

::
of

:::
the

::::
RTS

::::::::
inventory

:
compared to the validation

:::::
results

:::::
based

:::
on

::::::::
manually

:::::::::
delineated

:::::::
ablation

::::
areas

:
(Table S3).

For all regions that did not undergo any erosion in the RTS scar or in the vicinity, we assume that the elevation change is

normally distributed around zero with a standard deviation of approximately 2 - 3 in flat terrain for TanDEM-X-derived DEMs465

. For volume estimation based on optical delineations, stable areas containing noise are likely included since most optical RTS

boundaries are larger than the actual active erosion area. Although this minimally affects the total volume change estimate due

to the low magnitude in negative elevation change, it adds additional random errors, thus contributing to the overall uncertainty

budget.
:::
b).

:

To
::
We

::::
used

:::::
VHR

::::::
DEMs

::
to

:
further validate our results, we used very high-resolution (VHR) DEMs generated on the basis470

of drone stereo photogrammetry from August 2020. .
:

Fig. 5 f shows a reasonable
::
an

::::::::
adequate

:
fit between the maximum

elevation changes within the 6 RTS based on the combination of
:::::
δhmax::::::::

computed
::::
with

:
TanDEM-X derived DEMs and optical

RTS delineations
::::::
DEMs and

:::
the

::::::::::
delineations

::
of

:::
the

::::
RTS

:::::::::
inventory

:::
and the average headwall height calculated from the VHR

DEM
::::::
DEMs

::
at

:::
six

::::
RTS

::::::::
locations. Details can be found in the Supplement in Table S4. However, the small sample size does

not allow meaningful statistical analysis and, therefore, only allows for a qualitative comparison.475
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4 Discussion

4.1 Comparing RTS activityand
:
, material erosionin QTP to Arctic thermokarst ,

::::
and

:::::::::::
area-volume

:::::::
scaling

:::::
across

::::::::::
permafrost regions

We present the first regional study that estimates the volume of material erosion, ground ice loss, and SOC mobilisation

from RTS activity in the QTP over the last decade to improve our knowledge of the characterisation of RTS mass wasting480

and its influence on the permafrost carbon cycle. Some site-specific and regional studies have investigated the volume of

RTS material erosion
:::::::
Previous

:::::::
research

:::
has

:::::::::::
investigated

:::::::
material

::::::
erosion

::::::::
volumes (Lantuit and Pollard, 2005; Kokelj et al.,

2015; Günther et al., 2015) and the allometric scaling relations
:::::::::
allometric

::::::
scaling

:::::::::::
relationships for thaw-driven mass wast-

ing (Kokelj et al., 2021; Van Der Sluijs et al., 2023), most of them for
:::::::
primarily

::
in
:

regions < 10,000 . Instead, 104 km2
::
in

::
the

::::::
Arctic

:::::::::::::::::::::::::::::::::::::::
(Kokelj et al., 2021; Van Der Sluijs et al., 2023)

:::
and

:::::::
recently

::
on

:::
the

:::::
QTP

::::::::::::::
(Ma et al., 2025).

:::
At

:
a
:::::
larger

::::::
spatial

:::::
scale,485

:::::::::
comparable

:::
to

:::
our

:::::
study,

:
Bernhard et al. (2022a) estimated annual material erosion rates for ten regions spread throughout

the Pan-Arctic permafrost region in
::::
sites

::::::
across

:
Canada, Alaska, and Siberiawith a total study ,

::::::::
covering

::
a
::::
total

:
area of

220,000 km2,
:
using DEMs derived from TanDEM-X observations, while .

::::::::
Similarly,

:
Dai et al. (2025) used ArcticDEM time

series to assess volumetrics , scaling relationships, and SOC mobilisation for large thaw-driven mass wasting sites across the

Arctic , but not QTP. In
:::
and

::::::::::
area-volume

::::::
scaling

::::::
across

:::::
other

:::::
Arctic

:::::
sites.

:::
On

:::
the QTP, we found RTS material erosion rates490

of 6.3632.10.95 ×
::::

32.1
0.95×106 m3 a−1. Bernhard et al. (2022a) estimated erosion rates between

:
,
:::::::
whereas

::::::::::::::::::::
Bernhard et al. (2022a)

::::::::
estimated

::::
rates

:::::::
ranging

::::
from

:
< 0.5 ×106 m3 a−1 in Alaska (Fig. 6, location A

:
5) and the Siberian Arctic (F

:
6 - H) and

::
8)

::
to

7.16 × 106 m3 a−1 in the Canadian Arctic (A
:
1 - D

:
4) between 2010 and 2017. With 5.2 RTS per 100 km2 between 2010 and

2020,
::
the

:
QTP has an RTS density approximately half of what Bernhard et al. (2022a)

:::
that

:
observed between 2010 and 2017 on

Banks Island (location B) , however,
::
2)

::::::::::::::::::::
(Bernhard et al., 2022a),

:::
yet more than double that of all other Arctic sites investigated.495

Normalised by study area, the RTS in QTP relocated
::::
Over

:::
the

::::
past

:::::::
decade,

::::
RTS

:::
on

:::
the

:::::
QTP

::::::::
displaced

:
101.8 m3 a−1 km2

materialduring the last decade, which is more than
::::::
roughly

:
4, 6, and 10 times less than the Canadian hotspots for hillslope

RTS (Lewkowicz and Way, 2019) on
:::::::
hillslope

::::
RTS

::::::::
hotspots,

:::
the

:
Peel Plateau (D

:
4), Ellesmere Island (A

:
1), and Banks Island

(B
:
2), respectively (Fig 6 b). All

:::::::::::::::::::::::
(Lewkowicz and Way, 2019)

:
.
::::
The remaining sites investigated by Bernhard et al. (2022a) in

the Canadian (C) , Alaskan (E),
:
3)

:
and Siberian (F

:
6 - H) Arctic showed less than half the magnitude of the volume change500

rates observed in the QTP. Most of these sites are mainly
::
8)

:::::
Arctic

:::
are

:
characterised by smaller and shallower RTS located on

lake shores in relatively flat terrain (Nesterova et al., 2020)
:::
and

::::::::
exhibited

:::
less

::::
than

::::
half

:::
the

:::::::
volume

::::::
change

::::
rates

::::::::
observed

:::
on

::
the

:::::
QTP

::::
(Fig

:
6
::
b).

Allometric scaling has recently been applied to thaw-driven mass wasting to improve understanding of the
:::::::::::
Area-volume

::
or

::::::::
allometric

::::::
scaling

:::::::::::
relationships

:::::::
describe volumetric enlargement characteristics of RTS and their potential drivers .

:::
such

::
as

::::
that505

:::::
higher

::
α

::::::::::
coefficients

:::::::
indicate

:::::
larger

::::::::
headwalls

::::
and

::::::::
concavity

:::::
depth

:::
per

::::
unit

::::
area

::::::
growth

:::::::::::::::::::::::
(Van Der Sluijs et al., 2023).

:::::::
Several

::::::
studies

::::
have

::::::::::
investigated

:::
the

::::::::
power-law

::::::::::
relationship

:::::::
between

::::
RTS

::::
area

:::
and

:::::::
volume

:::::
using

:::::::
different

::::::::::::
methodologies

:::
and

::::::::
datasets,

::::::::::
complicating

::::::
direct

::::::::::::
transferability

:::::::
between

:::::::
results.

:::::::
Similar

::
to

::::
our

::::::::
approach,

::::::::::::::::::::
Bernhard et al. (2022a)

:::
and

:::::::::::::::
Dai et al. (2025)

::::::::
calculated

::::::::
elevation

:::::::
change

::::
over

::
a
::::
time

::::::
period

:::
T1

::
-
:::
T2,

::::::::
whereas

:
Kokelj et al. (2021) and Van Der Sluijs et al. (2023)
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calculated the material erosion volume based on the difference between a
::::::
derived

:::::::
erosion

:::::::
volumes

:::
by

:::::::::
subtracting

:
a
:::::::::
simulated510

::::::::::::
pre-disturbance

:::::
DEM

::::
(T1)

:::::
from

:::
the high-resolution DEM capturing

:
of

:
the disturbed state (T2) and a simulated "

:::::
using

:::::::
masking

:::
and

:::::::::::::
re-interpolation

::::::::::
techniques.

::::::::::::::
Ma et al. (2025)

:::::::
followed

::
a
:::::::

similar
::::::::
approach

:::
yet

:::::
used

:::
30-m

:::::::::
-resolution

::::::
mosaic

::::::
DEMs

:::
as

::
the

:
pre-disturbance " DEM that represents the terrain before a RTS landform developed

::::
state

:
(T1)through masking and

re-interpolation of the T2 high-resolution DEM. Based on the fitting of a Ordinary Least Square model , the studies estimated α
:
.

:::
The

::::::
studies

::::
also

::::
used

:::::::
different

:::::
model

:::::
fitting

::::::::::
approaches:

:::::
OLS

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kokelj et al., 2021; Van Der Sluijs et al., 2023; Dai et al., 2025)515

:::
and

:::::
ODR

:::::::::::::::::::
(Bernhard et al., 2022a)

:
.
::::::::::::::
Ma et al. (2025)

:::
did

:::
not

::::::::
explicitly

:::::
report

:::
the

::::::
model

::::::
choice.

::::
We

:::::::
therefore

:::::::
assume

::::
that

:::
the

::::::
authors

::::
used

:::
the

:::::
more

:::::::
common

:::::
OLS.

::::::::::::::::::::
Bernhard et al. (2022a)

:::::::
estimated

:::
an

::::::
overall

:::::
Arctic

::::::
αODR::

=
:::::
1.15±

::::
0.01

::::::
(nRTS::

=
:::::
1854)

::::
while

:::::::::::::::
Dai et al. (2025)

::::
found

::::
with

:::::
αOLS::

=
::::::
1.30±

::::
0.01

:::::
(nRTS::

=
:::::
2747)

:
a
:::::::::
noticeably

::::::
higher

:::::::::
coefficient.

:::::::::::::::::
Kokelj et al. (2021)

:::
and

::::::::::::::::::::::
Van Der Sluijs et al. (2023)

::::::::
estimated

:::::
αOLS-values of 1.41 (nRTS:::::

nRTS = 71) for active RTS and 1.36 ± 0.01 (nRTS ::::
nRTS = 1,522)

for all RTS (including inactive and old landforms) in the Northwestern Territories, Canada (C and D),
::::
1522)

:::
in

:::
the

::::
low520

::::::::
Canadian

::::::
Arctic,

:
respectively (Fig. 6 c). The RTS in the investigated sites, Peel Plateau (D) and Tuktoyaktuk Coastlands

(c), have significantly different morphologies and mass wasting characteristics (Fig. 6 b). However, the two studies have fitted

only one model for all RTS in both sites, while ,
::

3
::
+

:::
4). Bernhard et al. (2022a) calculated the power law scaling separately

with α
:::::::::
power-law

::::::
scaling

:::::::::
separately

:::
and

::::::
found

:::::
αODR = 1.26 ± 0.02 for Peel Plateau (nRTS :::::

(nRTS = 438) and α
:::
for

:::
the

::::
Peel

::::::
Plateau

:::
(3)

:::
and

::::::
αODR = 1.16 ± 0.03 for the Tuktoyaktuk Coastlands (nRTS:::::

(nRTS = 212) . That study, similar to our method,525

calculates the change in the volume of material erosion between two DEMs from time T1 and T2 and the ablation area visible

in the elevation change maps. Except for Banks Island (B, α = 1.37 ± 0.01, nRTS = 679) , Bernhard et al. (2022a) found

scaling coefficients below α < 1.3 for all other Arctic sites. The power scaling relationship between area and volume for

RTS in the
:::
for

:::
the

::::::::::
Tuktoyaktuk

:::::::::
Coastlands

::::
(4).

::::
This

:::::
range

::
of

::::::
scaling

::::::::::
coefficients

:::
for

::::::
similar

::::::
regions

:::
as

::::
well

::
as

:::
our

::::::
results

:::
for

QTP (
:::
Fig.

::
4
:
a
::::
and

:::
S1)

:::::::::
highlights

:::
the

::::::::
challenge

::
in
::::::::::

comparing
::::::
scaling

::::::
studies

:::::
based

:::
on

:::::::
different

:::::::::::::
methodologies

:::
and

::::::::
datasets.530

::::::::
Moreover,

::::::
minor

:::::::::
differences

::
in

:::
the

::::::
scaling

:::::::::
coefficient

::::
have

::::::
strong

:::::::
impacts

::
on

:::
the

:::::::
scaling:

::
A

::::::::
difference

:::
of,

:::
for

::::::::
example,

:::
0.1

::
in

α = 1.30± 0.01, nRTS = 3, 043) is relatively high compared to most of the Arctic sites (Fig. 6 c). Xia et al. (2024) found that

::::
leads

::
to

::
a

::::::::
factor-two

:::::::
increase

::
in
:::
the

:::::::
volume

:::::::::
estimation

:::::::::::::::::::::::
(Van Der Sluijs et al., 2023).

:

::
On

::::
the

::::
QTP,

:
more than half of the RTS

::
in

:::
the

::::::::
inventory

:::
of

::::::::::::::
Xia et al. (2024) initiated in 2016 (Fig. S2) , the first year of

the study period, while Luo et al. (2022) found that > 80 % of the investigated RTS in
:::
RTS

::
in

:::
the

:
central QTP formed in535

2010 and 2016 during extremely warm summers . This would indicate
:
in

:::::
2010

::::
and

:::::
2016.

::::
This

::::::::
indicates

:
that our scaling

results are based on planimetric areas and volumes representing the full
::::
rather

::::
the

:::::
entire

:
RTS landform and its lifecycle

:
,

similar to the methodology used by Kokelj et al. (2021)and Van Der Sluijs et al. (2023) . Since we compute the scaling relation

in a log-scale, the computation is very sensitive to only slight differences in the scaling coefficient. A difference of 0.1 in

α leads to a factor two increase in the volume estimation (Van Der Sluijs et al., 2023). The areas affected by RTS in this540

study are generally smaller than in the Arctic (Liu et al., 2024), and have shallowed depth, whereby the resolution of the

DEM produced might not correctly capture the area and volume change for these small areas skewing the scaling models. In

temperate landslides, it is known that scaling relationships change depending on the average depth of the landslide population

(Chen et al., 2019). Furthermore, the mentioned permafrost thaw studies used DEM data from different study periods, a smaller
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number of samples, and even different methodologies to compute RTS erosion volumes. Area-volume scaling also depends on545

how the actively eroding RTS scar zone is delineated. While there are commonly accepted definitions of RTS geomorphology

(CPA et al., 2024; Harris, 1988), different data sources show different aspects of RTS activity, and even experts working on

similar data can differ strongly in their delineations based on their own ontological understandings of what constitute RTS and

their past project goals and procedures (Nesterova et al., 2024; Nitze et al., 2024b; Maier et al., 2025).

Therefore, we should only see these results and comparisons as another indicator that RTS development in the QTP is on a550

level similar to the known hotspots in the Arctic permafrost region. More research is needed, especially on the subregional and

local scale, to validate our scaling coefficients with the RTS material erosion data from QTP.
:
,
:::::::::::::::::::::::
Van Der Sluijs et al. (2023)

:::
and

:::::::::::::
Ma et al. (2025).

:::::::::
Compared

::
to

::::::
Arctic

:::::::::
permafrost

:::::::
regions,

:::
our

::::::
results

::::::
(αODR :

=
::::::
1.30±

::::
0.01,

:::::
αOLS::

=
::::::
1.20±

::::
0.01,

:::::
nRTS::

=
:::::
3043)

::
are

::::::
higher

::::
than

::::
the

::::::
scaling

::::::::::
coefficients

:::::::
reported

:::
by

::::::::::::::::::::
Bernhard et al. (2022a)

::
yet

:::::
lower

::::
than

:::
the

:::::::::
estimates

::
of

::::::::::::::
Dai et al. (2025)

:
,
::::::::::::::::::::::
Van Der Sluijs et al. (2023)

:
,
:::
and

::::::::::::::::
Kokelj et al. (2021)

:
. When comparing material erosion and area-volume scaling within

::
in555

the QTP subregions, we see almost as strong
:::::::::
pronounced

:
differences as between the QTP and the Arctic (Fig. 4 a). As

Xia et al. (2024) found the highest numbers of RTS clustered in the central QTP , this region also dominates the volume

of material erosion
:::
The

::::::
central

:::::
QTP

::::::::
dominates

:::
the

:::::::
number

::
of

::::
RTS

::::
and

:::
the

::::::::
associated

:::::
total

:::::::
material

::::::
erosion

::::::::::::::
(Xia et al., 2024).

However, the western and northeastern regions have substantially higher α coefficients
:::::::
northeast

::::
QTP

:::
has

::
a

::::::::::
substantially

::::::
higher

::::::
scaling

:::::::::
coefficient, indicating larger headwalls and concavity depth per unit area growth. Terrain slope increases towards560

the west and northeast at RTS locations (Xia et al., 2024), potentially favouring
:::::
hence,

:::::::::
potentially

:::::
more

:::::::
efficient

::::::::
material

::::::::::
mobilisation

::
at

:::
an

::::::::
individual

:::::
RTS

:::::
level.

:::
The

:::::::::::
mountainous

:::::::::::
northeastern

::::::
plateau

::::::::::
potentially

::::::
favours

:
the development of rela-

tively larger and deeper RTS .
:::
(see

:::::::::::::::::::::::
Van Der Sluijs et al. (2023)

:::
for

:::::::::
coefficient

:::::::::::
interpretation,

::::
Fig.

:::
S1

:
f
:::
and

::::
Fig.

::
S6

:::
f). However,

the driving factors underlying the observed differences between the QTP and the Arctic
:::::
across

:::::::::
permafrost

::::::::::::
(sub-)regions are

likely multifaceted, including variations in RTS longevity and lifecycle stage, ground ice
::
GI

:
content, vegetation and soil prop-565

erties, or
:::
and proximity to water bodies. Detailed investigations into these factors remain the subject of prospective research.

Our
:::
RTS

:::
on

:::
the

:::::
QTP

:::
are

:::::::
reported

::
to

:::
be

::::::::
generally

:::::::
smaller

:::
and

:::::
more

:::::::
shallow

::::
than

::
at

::::::
Arctic

:::::::
hotspots

::::::::::::::
(Liu et al., 2024)

:
.
::
It

::
is

:::::::
therefore

:::::::
possible

::::
that

:::
the

::::::
coarse

::::::::
resolution

::
of

:::
the

::::::::::
TanDEM-X

:::::
DEM

::::::
might

:::
not

:::::::
correctly

:::::::
capture

:::
the

::::
area

:::
and

:::::::
volume

::::::
change

::
for

:::::
these

:::::
small

::::::
areas,

:::::::
skewing

:::
the

:::::::
scaling

:::::::
models.

::::::::
However,

:::::
using

:::::::::::::
high-resolution

::::::::::::
stereo-optical

:::::::
DEMs,

::::::::::::::
Ma et al. (2025)

:::::
found

:
a
:::::::
scaling

:::::::::
coefficient

::::::
similar

::
to

::::
our

:::::
αOLS ::

of
::::
1.20

:::
±

::::
0.01

:::::
(nRTS::

=
::::::

1429).
:::::::::::
Area-volume

:::::::
scaling

::::
also

:::::::
depends

:::
on

::::
how570

::
the

:::::::
actively

:::::::
eroding

:::::
RTS

::::
scar

::::
zone

::
is
::::::::::
delineated.

:::::
While

:::::
there

:::
are

::::::::::
commonly

:::::::
accepted

::::::::::
definitions

::
of

::::
RTS

::::::::::::::
geomorphology

:::::::::::::::::::::::::
(CPA et al., 2024; Harris, 1988)

:
,
:::::::
different

::::
data

:::::::
sources

:::::
show

:::::::
different

:::::::
aspects

::
of

::::
RTS

:::::::
activity,

::::
and

::::
even

:::::::
experts

:::::::
working

:::
on

::::::
similar

::::
data

:::
can

:::::
differ

:::::::
strongly

::
in
:::::
their

::::::::::
delineations

:::::
based

:::
on

::::
their

::::
own

::::::::::
ontological

:::::::::::::
understandings

::
of

::::
what

::::::::::
constitutes

::::
RTS

::::::::::::::::::::::::::::::::::::::::::::::::::
(Nesterova et al., 2024; Nitze et al., 2024b; Maier et al., 2025).

:::::
More

::::::::
research

:
is
:::::::

needed
::
in

:::
this

:::::::
regard,

:::
and

::::
our novel dataset

offers a critical resource for future investigations into the mechanisms driving RTS mass wasting
::::::
material

:::::::
erosion on the QTP.575

Our results are consistent with previous observations showing a marked
:::::
other

::::::
studies

:::::::
showing

:
a
:::::::
notable increase in RTS

:::::
(mass

:::::::
wasting) activity across the QTP, particularly over the past decade (Xia et al., 2024, 2022; Luo et al., 2022), but the sizes are

:::::::::::::::::::::::::::::::::::::::::
(Ma et al., 2025; Xia et al., 2022; Luo et al., 2022)

:::
with

:::::
RTS

::::
sizes

:::::
being

:
generally smaller and the headwall retreat rates are

lower than those found in other Arctic regions (Yi et al., 2025; Luo et al., 2022; Lewkowicz and Way, 2019; Runge et al., 2022;
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Nesterova et al., 2024; Huang et al., 2021). The magnitude of newly formed RTS during the last decade potentially offsets the580

relatively low concavity depths, so that the total mass-wasting activity and material erosion volume during the last decade show

a magnitude comparable to the thermokarst landscapes in the high Arctic.

4.2
::::::

Setting
::::

into
::::::::
context: Magnitude of

::::
RTS

:
SOC mobilisation and effects on the regional carbon budget of

QTP
::::::
ground

:::
ice

::::
loss

To place our research in context, we compare our estimates of SOC mobilisation with some regional-scale studies on the585

Taymyr Peninsula in the Siberian Arctic (Bernhard et al., 2022b) and on the Yukon coast in North America (Ramage et al., 2018)

. Ramage et al. (2018) investigated SOC mobilisation from 49 coastal RTS between 1972 and 2011 from a high-resolution

airborne LiDAR DEM and the reconstruction of a pre-disturbance surface (Ramage et al., 2018) while Bernhard et al. (2022b)

, similar to this study, processed multi-temporal stacks of TanDEM-X-derived DEMs for the time periods 2010 - 2016

(nRTS = 76) and 2017 - 2020 (nRTS = 1404) to investigate the impact of a summer heat wave on hillslope RTS (Table ??).590

Comparison of QTP estimates on annual SOC mobilisation rates with similar remote sensing studies: Bernhard et al. (2022b)

found a strong increase in RTS initiations (17-fold) and SOC mobilisation (28-fold) due to a summer heatwave in 2020 on the

Taymyr peninsula in Siberia (Fig. 6 a, location G) between 2011 and 2020. Ramage et al. (2018) investigated the impact on

SOC mobilisation from RTS to ocean export in parts of the Yukon coast in the Canadian Arctic between 1972 and 2011.

The material erosion volume and SOC mobilisation induced by RTS activity in the QTP show magnitudes relatively similar595

to the mass wasting of RTS in the Siberian Arctic before the summer when the extreme heat wave occurred. The heat wave

triggered a surge in RTS activity with an increase in new initiations (17 times), in the average volume change rate (2.3 times),

and in SOC mobilisation (28 times) and resulted in quantities much higher than those observed in the QTP. Comparison with

the results of Ramage et al. (2018) is more difficult due to different DEM differencing methods, time frames, SOC stocks, and

the definition of the study site. Although the average material erosion rate and the SOC mobilisation rate per RTS is lower600

than in the QTP, the SOC fluxes normalised by the study area are 7 × higher for the Yukon coast. However, this can probably

be explained by the substantially smaller size of the study area where the authors only accounted for small coastal strips

excluding the hinterlands while our study and Bernhard et al. (2022b) focus on broader inland regions. Another substantial

difference is the contribution of the uppermost soil layer (0 - 1 ) to the SOC mobilisation. In both QTP and the Taymyr

Peninsula, approximately three quarters of the estimated mobilisation of SOC comes from the uppermost metre of soil. On the605

Yukon coast, approximately half of the mobilised SOC can be accounted for in the upper layer. Possibly, deeper RTS form

in the landscape settings of the Canadian Arctic, where RTS activity is tightly interconnected with coastal erosion processes,

ground ice distributions, and overall landscape configuration. Furthermore, studies have used different types of data for SOC

stocks that likely have a strong influence on the RTS-induced SOC mobilisation estimates.

To our knowledge, no study has quantified the mobilisation of SOC for RTS in QTP. Jiao et al. (2022) investigated one610

large RTS in the Beiluhe River Basin between 2021 and 2022 and found 1.9 ma−1 vertical deformation at the headwall and

a total volume change of 1412
:::::
1.41×103 m3 a−1. The active layer at the RTS location was 1.95 m with a ground ice layer

between 2.2 and 3.5 m depth and an ice content of 68 to 88 % at depths of 2.2 to 4 m obtained at a borehole near the RTS.
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Compared to our results in the central QTP (Fig. 4, Table S1), the investigated RTS has a typical headwall height and material

erosion volume (δh = 1.45 m, δhmax:::::
δhmax = 2.35 m, δV = 1,971

:::::
1.97×103 m3 a−1). The measured GI content near the RTS is615

substantially higher than the average GI content we used in our estimations (GI = 32.4 %). Zou et al. (2024) estimated a ground

ice reserve of 3330 between 2 and 10 depth peaking in west-central QTP. The GI content is strongly related to the landscape’s

geomorphologyand 85 %
:
.
:::
The

::::::::
majority

::
of

:::
GI

::
on

:::
the

:::::
QTP is found on gentle shaded slopes at elevations between 4400 and

5100 m (Fan et al., 2023) typical for central subregions and most RTS locations (Fig. S2
::
S5 b - d). However, some studies also

found GI content higher than 80 % in
:::
the northeast QTP (Wang et al., 2018; Fan et al., 2023) and a mean GI content of ∼ 16 %620

in the Beiluhe River Basin (Lin et al., 2020). RTS only form in locations where massive ground ice is present in depths that

can be exposed by, for example, active layer detachments (Nesterova et al., 2024). We might underestimate local ground ice

conditions , as we base our calculations on a dataset with a spatial resolution (of 1 ) too coarse to capture the heterogeneities

present in local ground ice conditions and microtopography (Yi et al., 2025), which in turn could lead to an overestimation of

SOC mobilisation.625

Parts of the mobilised SOC become available for microbial decomposition and are released as carbon dioxide or methane

into the atmosphere (Bröder et al., 2021; Vonk et al., 2013), while a considerable proportion may remain stabilised by mineral

interaction and is further sequestered within the redistributing and accumulating sediments, for example, debris tongues

(Thomas et al., 2023). Although earth system models do not account for the potential carbon feedbacks from permafrost thaw

today, the increasing intensity of Arctic RTS mass wasting is projected to have considerable potential for large contributions to630

permafrost carbon feedback by the end of the century (Turetsky et al., 2020). However, these projections are highly uncertain,

as more recent investigations of large RTS across the pan-Arctic show that the proportion of carbon released by RTS over the

last decade is considerably lower than the initial model estimates (Dai et al., 2025). From 1961 to 2010, the alpine grasslands in

the QTP acted as a carbon sink with a mean annual budget of 101 to 118 × (or 10.1 to 11.8 ) (Piao et al., 2012; Yan et al., 2015)

. Due to the increase in greening and wetting of the QTP, recent studies even estimate that the QTP region is a carbon sink635

of 344 × (or 34.4 ) (Chen et al., 2024a; Wang et al., 2023). Our results indicate that RTS-induced SOC mobilisation only

accounted for under 1 % of the total carbon budget in the QTP. Although most RTS in the QTP are relatively small and shallow

compared to their Arctic counterparts, their rapidly increasing number could become a significant factor in the thawing of

previously frozen SOC stocks, especially from the thick carbon-rich active layer, resulting in substantial regional carbon losses.

In situ observations from northeast QTP showed a 23 to 37 % loss in surface (> 20 ) (Mu et al., 2017, 2020; Liu et al., 2018)640

and slightly less (∼ 20 - 28 %) for SOC stocks in deeper soils (Wu et al., 2018; Yi et al., 2025). Furthermore, vegetation

restoration appears to be slower in the QTP than in the Arctic, and exposed areas disturbed by thermokarst can remain

bare for decades (Liu et al., 2018; Mu et al., 2017; Li et al., 2025). Wang et al. (2020) estimated for QTP 0.19 to 0.38 × (or

1.9 - 3.8 ) from formerly frozen SOC will be subject to decomposition upon permafrost thaw until 2100 under moderate and

high-emission climate scenarios that could switch QTP from a carbon sink to a source. However, these model-based estimations645

come with large uncertainties, as do our SOC mobilisation estimates for the QTP. Large-scale
::::
since

:::::::::
large-scale datasets that es-

timate SOC stocks and ground ice content
:::
soil

::::::::
properties

:
in permafrost regions are based on limited observations and also have

coarse spatial resolutions
:::::
coarse

:::::
spatial

:::::::::
resolution that typically do not

:::
well

:
represent fine-scale soil conditions well (Hugelius
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et al., 2014; Mishra et al., 2021; Wang et al., 2021; Zou et al., 2024). With increased soil depth, estimates of soil properties

become even more scarce (Chen et al., 2024b; Ding et al., 2019). Since we observed negative elevation changes of more than650

3 m in RTS in
::
on

:::
the QTP, we used a simple exponential model to extrapolate SOC stocks to deeper soil layers. Probably,

this model is too simple and does not capture the spatial variability of soil conditions in the complex permafrost landscape

(Bernhard et al., 2022b). However, we found that only 2 % of SOC mobilised by RTS activity contributed to the total loss of

SOC stocks at soil depths
::
the

::::
total

:::::::::
estimated

::::::::
mobilised

::::
SOC

:::::
came

::::
from

:::::
soils below 3 m

:::::
depth.

Furthermore, the
:::
The processes and fate of the unfrozen mobilised SOC remain highly uncertain as multiple complex ecosys-655

tem interactions and hydrothermal processes are involved (Yi et al., 2025). Parts of mobilised SOC remain
::::::::
potentially

:
on the

slump floor and are available for microbial decomposition and release as greenhouse gases (Wang et al., 2024)or deposited

and even stabilised (Thomas et al., 2023; Liu et al., 2021, 2018; Mu et al., 2017), while other .
:::::
Other

:
parts, together with

:::
the

thawed material, are
::::::::
deposited

:::
and

::::::::
stabilised

::
at

:::
the

::::::
slump

::::
floor

::::::::::::::::::::::::::::::::::::::::::::::::::
(Thomas et al., 2023; Liu et al., 2021, 2018; Mu et al., 2017)

::
or laterally transported downslope into adjacent river and lake systems and SOC can undergo

:::::::::
undergoing

:
complex water chem-660

istry processes such as dissolution or sedimentation (Lewkowicz and Way, 2019). We only quantified the magnitude of SOC

mobilised by RTS activity in QTP over the last decade, and exploring the
:::
and

:::
its

::::::
spatial

::::::
pattern

::::::
which

::::::
closely

:::::::
follows

:::
the

:::::
spatial

:::::
trend

::
of

:::::::
existing

:::::
SOC

:::::
stocks

:::
on

:::
the

:::::
QTP

:::::::::::::::
(Wang et al., 2021)

:
.
:::::::::
Exploring

:::
the complex pathways of mobilised SOC is

beyond the scope of this study. However, based on the results of our study, we recommend further research into the fate of the

mobilised SOC. Figure 5 b clearly shows areas of material ablation, but also regions of material deposition on the slump floor665

are visible. In future investigations, insights could potentially be generated into how much relocated material and SOC are

deposited within an RTS and how much is transported laterally into hydrological networks. In addition, the balance between

areas of negative and positive elevation change might be another avenue to improve spatially explicit GI information for the

QTP.

::
To

:::
our

::::::::::
knowledge,

:::
no

:::::
study

::::
has

::::::::
quantified

::::
the

::::
SOC

:::::::::::
mobilisation

:::::
based

:::
on

::::::::
empirical

:::::
RTS

::::::
erosion

::::::::
material

::::::::::
volumetrics670

::
for

:::
the

::::::
entire

::::
QTP.

::::::::::::::
Ma et al. (2025)

::::::::
modelled

:
a
::::
total

::::::
annual

:::::
SOC

:::
loss

:::
of

:::::
4.12×107 kgCa−1

:::::
(95%

:::
CI:

::::::
3.06×107 kgCa−1

::
–

:::::
5.12×107 kgCa−1)

:::::
from

::::
RTS

::::
mass

:::::::
wasting

:::::::
between

:::::
1989

:::
and

:::::
2022

:::::
based

::
on

::::::
optical

::::
RTS

::::::::::
inventories

:::
and

:::::::::
allometric

::::::
scaling

:::::::
relations,

::::::
which

::
is

::
of

::
a
::::::
similar

:::::::::
magnitude

:::
as

:::
our

::::::
results

:::::
(3.53

::::::

10.13
0.15 ×107 kgCa−1

:
).

:::::::::::::::::::
Bernhard et al. (2022b)

:
,
::::::
similar

::
to

::::
this

:::::
study,

::::::::
processed

:::::::::::::
multi-temporal

::::::
stacks

::
of

:::::::::::::::::
TanDEM-X-derived

::::::
DEMs

:::
for

::::
the

::::
time

:::::::
periods

:::::
2010

:
-
:::::
2016

::::::
(nRTS ::

=
:::
76)

::::
and

::::
2017

:
-
:::::

2020
::::::
(nRTS ::

=
:::::
1404)

::
to

:::::::::
investigate

:::
the

:::::::
impact

::
of

:
a
::::::::

summer
::::
heat

::::
wave

:::
on

::::
RTS

:::::
mass

:::::::
wasting

:::
and

:::::
SOC

:::::::::::
mobilisation675

::
on

:::
the

:::::::
Taymyr

::::::::
Peninsula

::
in

:::::::
Siberia.

::::::::
Compared

:::
to

::::
rates

::
on

:::
the

:::::
QTP,

::::
RTS

::
on

:::
the

:::::::
Taymyr

::::::::
Peninsula

:::::::::
mobilised

:
a
::::::
similar

:::::::
amount

::
of

:::::::
material

:::
on

:::::::::
individual

::::
RTS

::::
level

:::::
prior

::
to
::::

the
::::::::
heatwave

:::
yet

:::::::
already

::
14

::::::
times

::::
more

::::::
SOC.

::::::::
Following

::::
the

::::::::
heatwave,

:::::
both

:::::::
material

:::
and

::::
SOC

:::::::::::
mobilisation

::::::::
increased

::::::
further.

::::
The

::::::::
heatwave

::::::::
triggered

:
a
:::::
surge

::
in

::::
RTS

:::::::
activity,

::::::::
including

:
a
:::::::
17-fold

:::::::
increase

::
in

:::
new

:::::::::
initiations,

::
a

:::::::
2.3-fold

:::::::
increase

::
in

:::
the

::::::
average

:::::::
volume

::::::
change

::::
rate,

:::
and

:
a
:::::::
28-fold

:::::::
increase

::
in

::::
SOC

:::::::::::
mobilisation,

::::::::
resulting

::
in

::::::::
quantities

:::
far

::::::::
exceeding

:::::
those

::::::::
observed

::
on

:::
the

:::::
QTP.680

:::
Due

:::
to

:::
the

:::::::
increase

::
in
::::::::

greening
::::
and

:::::::
wetting

::
of

:::
the

:::::
QTP,

::::::
recent

::::::
studies

:::::::
estimate

::::
that

:::
the

:::::
QTP

::
is

:
a
:::::

large
::::::
carbon

::::
sink

:::
of

:::::
344×108 kgCa−1

::
(or

::::
34.4

:
TgCa−1)

::::::::::::::::::::::::::::::::
(Chen et al., 2024a; Wang et al., 2023)

:
.
::::::::
However,

::::::
several

::::::
studies

::::
that

:::::::::
conducted

::::
soil

:::::::
sampling

::::::
within

:::::::::
disturbed

:::::::::
permafrost

:::::
areas

:::
for

:::::::
several

::::::::::
consecutive

:::::
years

:::::
found

::::
that

:::
up

::
to
:::::::::

one-third
::
of

:::
the

:::::::
surface

:::::
SOC
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::::::
content

:::
(<

::
40

:
cm

:
)
:::
has

:::
the

::::::::
potential

::
to

::
be

::::
lost

:::
due

::
to

:::::
rapid

:::::::::
permafrost

::::
thaw

:::::::::::::::::::::::::::::::::::::::::
(Mu et al., 2017; Liu et al., 2018; Wu et al., 2018)

:
.
:::::::::::
Furthermore,

::::::::
vegetation

::::::::::
restoration

::::::
appears

::
to

:::
be

::::
slow

:::
on

:::
the

::::
QTP,

::::
and

:::::::
exposed

:::::
areas

::::::::
disturbed

::
by

::::::::::
thermokarst

::::
can

::::::
remain685

:::
bare

:::
for

::::::::
decades

:::::::::::::::::::::::::::::::::::::::
(Liu et al., 2018; Mu et al., 2017; Li et al., 2025)

:
.
::::
Even

:::::::
though

:::
our

::::::
results

:::::::
indicate

::::
that

:::::::::::
RTS-induced

:::::
SOC

::::::::::
mobilisation

::::
only

:::::::::
accounted

::::
for

::
∼

:::
0.1

:::
%

::
of

::::
the

::::
total

:::::
QTP

::::::
carbon

::::::
budget

::::::
during

::::
the

:::
last

:::::::
decade

:::
and

:::
is

:::::::::::::
proportionately

::::::::::
insignificant

::
to

:::::
many

::::::
Arctic

:::::::
regions,

:::
the

:::::::
sharply

:::::
rising

:::::::
number

::
of

::::
RTS

:::
on

:::
the

:::::
QTP

:::
and

::::
the

:::::::
majority

::
of

:::::
SOC

:::::::::::
mobilisation

::
in

::
the

::::::::::
uppermost,

::::::::::
carbon-rich

:::::
layers

::
of

:::
soil

:::
can

:::::::
become

:::::
more

::::::
relevant

:::
for

:::::::
regional

::::::
carbon

:::::::
budgets

::
in

:
a
::::::::
warming

:::::
future

:::::::
climate.

690

4.3 Limitations and Potential of a Multimodal Data Approach for RTS Mass Wasting Monitoring

Compared to the Arctic where the ArcticDEM strip data (Porter et al., 2018) offers an open source and high-resolution multi-

temporal DEM source based on stereo-optical satellite images (∼ 3 m) that is suitable for RTS monitoring (Dai et al., 2024; Nitze et al., 2021; Yang et al., 2023)

::::::::::::::::::::::::::::::::::::::::::::::::
(Dai et al., 2024, 2025; Nitze et al., 2021; Yang et al., 2023), on the QTP no similar high-resolution temporally resolved DEM

exists - except for the data from the TanDEM-X mission. Bistatic TanDEM-X observations uniquely enable DEM generation695

on a global scale. Even in regions with adverse geographic or climatic conditions for satellite remote sensing, e.g.
::
for

:::::::
example,

a high percentage of cloud cover or long periods of snow cover, bistatic radar observations can be used to produce high-quality

DEMs with acceptable spatial resolution for RTS monitoring (Krieger et al., 2007; Bojarski et al., 2021; Bernhard et al., 2022a;

Maier et al., 2025). However, the temporal resolution of
:::
the TanDEM-X observations is not equal for all regions of the world.

Some permafrost regions in the Arctic have been focus areas and DEMs of two to three time steps in the last decade exist. In700

:::
We

:::
can

:::::::
assume

:::
that

::::
RTS

:::::::
activity

::::
only

::::::
occurs

::
in

:::
the

:::::
warm

:::::::
summer

:::::::
months

:::
and

::
a
:::::
phase

::
of

::::::::
stability

:::::
occurs

::::::::
between

:::::::
October

:::
and

:::::
April

:::
due

::
to

:::
low

:::::::::::
temperatures

:::::::::::::::::::::::::::::::::::::::::::
(Chen et al., 2015; Che et al., 2008; Ma et al., 2023).

::::
Due

::
to

::::::
limited

::::
data

:::::::::
availability

:::
on the

QTP, data availability was limited and we had to aggregate observations from several years and seasons to ensure sufficient

coverage. For T1, we used observations between mid-winter 2011 and end of winter 2012
:::::::::
accounting

:::
for

::::::
exactly

::::
one

:::::::
summer

::
of

::::
RTS

::::::
activity, while for T2 we had to accept an even

:
a
:
larger time span (end of summer 2017 to mid-winter 2020) . We can705

assume that RTS activity only occurs in the warm summer months and a phase of stability occurs between October and April

due to low temperatures (Chen et al., 2015; Che et al., 2008; Ma et al., 2023) so for T2 we have two combined summers (2018

and 2019). However,
::::::::::
accumulating

:::
the

:::::
RTS

::::::
activity

:::
of

:::
two

:::::::
summer

:::::::
seasons,

::::::
which

:::::::::
potentially

::::::::
increased

::::::::::
imprecision

:::
in

:::
the

::::
mass

:::::::
wasting

::::::::
estimates.

:
Xia et al. (2024) found that the highest

:::
RTS

:
activity occurred before 2020; afterward

::::
2020.

:::::
Until

::::
2022,

only 59 new RTS were detected on the PlanetScope images. This could indicate that we captured most of the RTS activity710

that has occurred on the QTP during the last decade. However, to
::
For

:::::::
volume

:::::::::
estimation

:::::
based

:::
on

::::::::::
delineations

::
of

::::
the

::::
RTS

::::::::
inventory,

:::::
stable

:::::
areas

:::::::::
containing

::
no

::::::::
elevation

::::::
change

:::
but

::::::::::
background

:::::
noise

:::
are

:::::
likely

::::::::
included,

::::
since

:::::
most

::::::::::
delineations

:::::
based

::
on

::::::
optical

::::::
images

:::
are

:::::::
broader

::::
than

:::
the

:::::
actual

:::::
active

::::::
erosion

:::::
area.

::::::::
Although

:::
this

:::::::::
minimally

::::::
affects

:::
the

::::
total

::::::
volume

::::::
change

::::
due

::
to

::
the

::::
low

:::::::::
magnitude

::
in

:::::::
negative

::::::::
elevation

::::::
change,

::
it

::::
adds

::::::::
additional

:::::::
random

:::::
errors,

::::
thus

::::::::::
contributing

::
to
:::
the

::::::
overall

::::::::::
uncertainty

::::::
budget.715

::
To

:
monitor the dynamic lifecycles of these complex thermokarst features and understand their drivers and future devel-

opment, yearly records of RTS-induced material erosion volumes are highly desirable (Nesterova et al., 2024; Kokelj et al.,
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2021). The general scarcity of suitable DEM, as well as the temporal limitations, makes monitoring of RTS material erosion

and impact on carbon cycles solely based on DEM data challenging. Allometric or area-volume scaling relations, as presented

and discussed in this study, are typically used to investigate landscape evolution or RTS activity change over time, but can also720

be used to enable the investigation of not only planimetric area expansion from optical RTS inventories but also transform the

area change into volume change of eroded material and expand the analysis to yearly or even seasonal temporal scales. Our

study could for the first time derive
:::
We

:::::::
derived a statistically robust

::::::::::
area-volume

:
scaling relation for the

::::
entire

:
QTP region,

similar to regions elsewhere (Bernhard et al., 2022a; Van Der Sluijs et al., 2023; Dai et al., 2025). However, a small difference

in the scaling coefficient α has a large impact on the resulting volume change δV . We see substantial differences in the scaling725

relations between the different QTP subregions (Fig. S1 and S3 b - f
::
S6). When comparing our scaling results with the small

number of existing studies on allometric scaling of RTS in the Arctic, we could also see
:::
saw

:
distinct differences between our

results and studies investigating similar regions in the Arctic (Bernhard et al., 2022a; Van Der Sluijs et al., 2023; Kokelj et al.,

2021) . On the QTP, no study , to our best knowledge, has attempted a similar approach due to the lack of high-resolution and

multi-temporal DEM data. These limitations highlight that applying such a scaling law to optical RTS inventories
::
yet

:::::
clear730

:::::::::
similarities

::
to

:::
the

::::
only

:::::::
existing

:::::
study

:::
on

:::
the

::::
QTP

::::::::::::::
(Ma et al., 2025)

:
.
::::::::
Applying

:::::::::::
area-volume

::::::
scaling

:::::::::
especially

::
to

::::::::::
multimodal

::::
RTS

::::::
datasets

:
should be done carefully and rather to obtain regional estimates on material erosion volume and mass wasting

derivatives such as ground ice loss or SOC mobilisation. For subregional scale or even feature level, this approach has its clear

limitations due to the heterogeneity of RTS across large but even local scales. However, large-scale and even pan-Arctic RTS

inventories based on optical satellite images become more available and may allow for a similar approach of finding scaling735

relations for Arctic thermokarst regions if delineations coincide well ontologically, spatially and temporally with measured

elevation change (Yang et al., 2025b; Nitze et al., 2024a). We could show that remote sensing data with a spatial resolution of

∼ 10
::::::::::::::::::::::::::::::
(Yang et al., 2025b; Nitze et al., 2025)

:
.
:::::
Here,

:::
we

::::::
present

:
a
::::::
scaling

::::::::::
relationship

:::
for

:::
the

:::::
QTP

:::::
based

::
on

:::::::::
commonly

:::::::
applied

::::
OLS

::::::::
regression

:

δVOLS = (0.29± 0.01)·
:::::::::::::::::::

AXia
::::

1.11±0.01 with R2 = 0.77 (p < 0.001)
::::::::::::::::::::::::::::::::

(8)740

:::
that

::::
may

::::::
readily

:::::::::
transform

:::::::::
planimetric

:::::
RTS

:::
area

:::::::
derived

:::::
from

::::::::
vegetation

::::::::::
disturbance

:::
on

::::::
optical

::::::
remote

:::::::
sensing

::::::
images

::::
into

::::::
volume

::::::::
estimates

::
at

:::::
scale.

::::
We

::::::
showed

::::
that

::::
RTS

::::::::::
monitoring

::
on

::::::::
elevation

::::::
change

:::::
maps

::::::
based

::
on

::::::
DEMs

::::
with

::
a
:::
10-m misses

∼
::::::::
resolution

:::::
omits

::::::::::::
approximately

:
35 % of RTS features that could be found in higher resolution PlanetScope imageswhich,

however, only accounted for a difference of
:::
the

::::::
present

:::::::
features

:::::::::
compared

::
to

:::::::::
monitoring

::::
RTS

::::
with

::
3-m

::::::::::
multispectral

:::::::
images.

::::::::
However,

:::
the

::::::::
difference

::
in
:::::::::

estimated
:::::::
material

::::::
erosion

:::::::
volume

::::
from

:::
the

::::
two

:::::::
datasets

::
is < 1 % of the eroded material volume745

::::
since

:::::
most

::
of

:::
the

::::::
missed

::::
RTS

:::
are

:::::
small

:::
and

:::::::
shallow

:
(Fig. 5 c). Open-source and multi-temporal images, such as from ESA’s

Sentinel-2 satellites, with a similar spatial resolution as TanDEM-X DEMs could have a great potential to continuously mon-

itor RTS activity from the mid of the last decade to answer questions about volumetricsand ,
:
permafrost thaw impacts on

hydrological systems,
:
and carbon cycles based on reliable area-volume scaling laws.
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5 Conclusions750

RTS landforms are typically complex and highly dynamic, often remaining active for several years before stabilising and, in

some cases, reinitiating. To adequately capture their temporal evolution and interactions with changing climate, high-temporal-

resolution remote sensing data are essential. By combining modelled soil property datasets with multimodal remote sensing

data, we estimated that RTS activity in the QTP between 2011 and 2020 relocated 5.0225.35
0.75 ×

::::::

25.35
0.75 ×107 m3 formerly frozen

material, contributed to a loss of 3.5828.20
0.28 ×

::::::

28.20
0.28 ×106 m3 ground ice and mobilised 2.787.98

0.11 ×
:::::

7.98
0.11×108 kgC SOC .

::
on

:::
the755

::::
QTP

:::::::
between

::::
2011

::::
and

:::::
2020. Interregional comparisons of RTS dynamics are challenging due to varying spatial, temporal, and

methodological factors. However, RTS in
::
on the QTP exhibit mass-wasting activity

::::::::
dynamics comparable to Arctic regions of

high RTS activity
:::
RTS

::::::::
hotspots. Despite their comparably recent initiation and smaller size, QTP erosion and SOC mobilisation

::
on

:::
the

::::
QTP

:
in the past decade surpassed some regions in the Siberian Arctic , but remained up to 10 times lower than Canadian

high-Arctic hotspots
::::::::::
well-known

::::::::::
thermokarst

::::::
regions

::
in

:::
the

::::
high

::::::::
Canadian

::::::
Arctic. Although RTS-induced carbon mobilisation760

represents less than 1
:::
only

::::::::
accounts

:::
for

::::::::::::
approximately

:::
0.1 % of

::
the

:
QTP’s carbon budget, the acceleration of RTS activity

since the last decade could
::::::::
beginning

::
of

:::
the

:::
last

:::::::
decade

:::
can contribute to the anticipated shift of the region

::::::
region’s

::::
shift

:
from

a carbon sink to a source. By integrating remote sensing data with varying spatial and temporal resolutions and different

information layers, we demonstrated that erosion volumes can be accurately estimated, even when the delineations of the RTS

erosion-affected area vary. We found a reliable power law scaling between the
::::::::
power-law

:::::::
scaling

:::::
based

::
on

:::::::::
commonly

:::::::
applied765

::::
OLS

:::::::::
regression

:::::::
between

:::
the

::::::::
computed

::::::::
material

::::::
erosion

:::::::
volume

::::::
change

::::
and

:::
the

::::::::
(ablation)

:
area in the optical RTS inventory

and the computed material erosion volume change of α = 1.30 ± 0.01 (R2 = 0.87 for δA and R2 = 0.75 for AXia, p<0.001)

that potentially allows
:::::::::::::::::::::::
(δV = 0.05 · δA1.20 ± 0.01,

::::
Fig.

::
S1

::
a,
::::
and

::::::::::::::::::::::::
δV = 0.29 · AXia

1.11 ± 0.01,
:::
Fig.

:::
S6

::
a)

::::
that

::::::
enables

:
future

research to transform the planimetric area of RTS delineations into regional estimates of erosion volume and constrain RTS-

induced SOC mobilisation on the QTP. Improved estimates and allometric relationships will help close the knowledge gap in770

understanding the impact of permafrost thaw on the permafrost carbon cycle for the QTP and globally.

Code and data availability. The dataset containing all RTS boundaries of Xia et al. (2024) including the computed active erosion areas,

material erosion volumes, ground ice loss, and SOC mobilisation can be found under (https://doi.org/10.3929/ethz-b-000735734. The code

and example data for the RTS mass-wasting calculations based on the optical RTS inventory, the validation, and plotting can be found at

https://github.com/kathrinmaier/qtp-rts-mass-wasting. TanDEM-X CoSSC data can be requested from the German Aerospace Centre (DLR).775
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Figure 5. Assessing compatibility
::::::::::
Compatibility

:
and accuracy of multimodal remote sensing

::::::::
assessment

::::::::
aggregated

:
for RTS monitoring in

the QTP: (a) Map of
::
all validation sitesacross the QTP. Number of

:
:
:::
(a) RTS present in

:
at the optical RTS inventory (Xia et al., 2024) per

::::::
Beiluhe

::::
River

:::::
Basin site and number of the same RTS also detectable in the

::
an

:::::::::::
high-resolution

::::::
optical

:::::
image

::::
from

::::
2018

:::::
(ESRI

:::::::
Satellite

:::::::
Basemap)

::::
and

::
on

::
a

:::::::::
TanDEM-X elevation change maps

:::
map

:
(DEM

::::
2011

:
-
:::::

2019) . (b) Example of an RTS in the Beiluhe River Basin

with the RTS labels between
:::::::::
delineations

:
(2018and

:
-
:
2020

:
) from Xia et al. (2024) and the

:::
RTS

:::::::
inventory

::::::::::::::
(Xia et al., 2024)

::::
(solid

:::::
lines).

:::
The

manually delineated ablation zone on the elevation data on an TanDEM-X derived elevation change map
:::
area

:
(DEM2019:

= - DEM2011 ::::::
negative

:::::::
elevation

:::::
change)

:
is
::::::::

visualised
::
by

::
a
:::::
dashed

::::
line.

:::
The

::::
RTS

:::
has

:::::
grown

::::
over

::
the

::::::
course

::
of

::
the

::::
three

:::::
years and

::
its

:::::::
headwall

:::::::
extended

:::::::
upslope.

:::
The

:::::::::
delineations

::::
from

:::
the

:::
RTS

::::::::
inventory

::::
based

:
on ESRI satellite base layer

:::::
optical

:::::
images

::::
and

:::::::::
disturbances

::
of

:::
the

::::::::
vegetation

::::
cover

::::::
include

::
not

::::
only

::::::
ablation

:::::
zones

:::
but

:::
also

::::::
material

:::::::::::
accumulation

:::::
further

::::::::
downslope

:
(2025

:
=
::::::
positive

:::::::
elevation

::::::
change). (c) Area: Comparing the total

::
(b)

:::
Sum

::
of ablation and accumulation area based on the elevation loss / gain pixels for the RTS delineations (2018 - 2020) shows that

:
of

:
the

optical RTS delineations
:::::::
inventory.

::::::::::
Delineations

::
of

::
the

::::
RTS

:::::::
inventory

:
tend to cover a larger area than actual ablation area distinguishable on

the DEM(red-dotted line). (d) The distribution
::
(c)

::::::::
Distribution

:
of the RTS ablation areafrom 2019 is the closest to the actual mean ablation

area. Due to the lower
:::::
higher resolution of

::
the

:::::
optical

::::::
images

:::::::
compared

::
to

:::
the

:::::::::
TanDEM-X DEMs, small

:::::
smaller

:
RTS cannot

:::
can be captured

compared to
:::::::::
distinguished

::::
from

:
the optical RTS inventory

::::
image

::::::::::
background. Red dotted and solid lines indicate

::::
Only

::::
small

:::::::::
differences

::
can

:::
be

:::::::
observed

::::::
between

:
the mean, minimum / maximum values, respectively, based on DEM-annotated active RTS ablation area

::::
years. (e)

Material erosion volume: Total
::
(d)

:::
Sum

::
of material erosion volume calculated based on the

::::::::
delineations

::
of
:::
the RTS ablation area

:::::::
inventory

:::
and

::
the

:::::::
negative

:::::::
elevation

::::::
change.

:::
The

::::::
volume

:::::::
computed

:
from 2019 shows the best match

::::
2019

::::::::
delineation

:::
was

::::::
closest to

::
the

:
actual active

ablation area
:::::
erosion

::::::
volume

:
while estimates based on the labels from 2018 under- and from 2020 overestimate

::::::::::
overestimates

:
the

:::::
actual

:::::
erosion

:
volumechange, respectively. (f) We compare average headwall height of 6

::
(e)

::
For

:::
six RTS in

:
at the Beiluhe River Basin

::
site

:
(Central

QTP
::
D

::
in

:::
Fig.

::
1a),

:::
we

:::::::
compared

:::
the

::::::::
maximum

:::::::
elevation

:::
loss

:::::
δhmax::

of
:::
the

:::::::::
TanDEM-X

:::::::
elevation

::::::
change

:::::
within

::
the

:::::
2020

::::::::
delineation

::
of

:::
the

:::
RTS

:::::::
inventory

::
to
:::
the

::::::
average

:::::::
headwall

:::::
height

::::::
derived from

:::::::::
drone-based

::::::::::::
single-time-step

:
VHR DEM

:::::
DEMs

:
(
::::::
summer

:
2020)to .

:::
We

::::::
assume

:::
that the maximum elevation loss δhmax ::

can
::
be

::::
used

::
as

::
an

:::::::::::
approximation

:
of the TanDEM-X DEM and the 2019 optical

:::::::
headwall

:::::
height

::
of

::
an RTSdelineation. 37
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Figure 6. Comparison between RTS in
::
on

:::
the

:
QTP and in Arctic permafrost regions with respect to RTS material erosion and SOC

mobilisation
:::::::::
area-volume

::::::
scaling. (a) Map of

::
the

:
Arctic sites investigated by previous studies: Kokelj et al. (2021) and Van Der Sluijs

et al. (2023) estimated erosion volume and area-volume scaling for RTS landforms
:::::
(OLS) based on high-resolution airborne DEMs

:::
and

:::::::::::
pre-disturbance

:::::::::::
reconstruction

:
in northwestern Canada. Bernhard et al. (2022a) studied RTS area-volume relations based on TanDEM-X

DEMs
:::::
(ODR)

:
at eight sites in Canada, Alaska

::::
North

:::::::
America and Siberia between 2010 and 2016. Bernhard et al. (2022b) investigated the

effects of a summer heatwave on RTS-induced SOC mobilisation in Siberia. (b) RTS activity in the QTP is comparable to Arctic
:::::

density

:::
and

::::::
material

::::::
erosion

::::::
volume

::
per

::::
unit

:::
area

:::
for

::
all sites (Bernhard et al., 2022a):

::::::
reported

::
in

:::::::::::::::::
Bernhard et al. (2022a)

:
. RTS density and erosion

volume are consistently higher than
::
on the Siberian sites

::::
QTP

::::::::
compared

:
to
::::::

Siberia
:
and in

:
a
:::::
similar

:::::::::
magnitude

::
as the range of the North

American thermokarst hotspots
::::
sites. (c) Area-volume

:::
The

:::::::::
area-volume scaling coefficients α for

:::::
(ODR)

::::::
reported

::
by

::::::::::::::::::
Bernhard et al. (2022a)

::
are

:::
on

:
a
:::::
similar

:::::::::
magnitude

::
as

:::::
αODR::

of
:::
the QTPand Arctic .

::::
The

::::::
Siberian

:
sites : QTP’s

:::
have

:::::::
generally

:::::
lower

:
α-value of 1.30 falls within

the range of the investigated Arctic RTS, yet, is closest to the area-volume relation of
:::::
-values

:::::
while Banks Island (B

:
2) and Peel Plateau

(D
:
4) in Canada that are both

:::::
closest

::
to

:::
the

:::::
QTP’s

:::::
αODR.

:::::
Both

:::::::
Canadian

::::
sites

::
(2,

::
4)
:::

are
:
dominated by hillslope RTS compared to many

:
a
::::::::
prevalence

::
of

:
lakeshore RTS in the Siberian sites

:::::
Siberia

:
(F

:
6 - H

:
8).

::
The

:::::::::
coefficients

:::::
based

::
on

::::
OLS

:::::::
reported

::
by

:::::::::::::::
Kokelj et al. (2021)

:::
and

::::::::::::::::::::
Van Der Sluijs et al. (2023)

::
are

:::::::
distinctly

::::::
higher

:::
than

:::::
αOLS ::

on
:::
the

::::
QTP.
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