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1. Overview

Response to Referee 2: We would like to thank the referee for the careful review throughout the paper and the
in-depth comments that help to improve our paper.

2. Major concerns

RC: The extensive critique of Response Surface Models (RSM) in Sections 1 appears disconnected from the
proposed Transformer-based TGEOS framework. While RSMs rely on empirical statistical approximations
to reduce dimensionality, TGEOS operates as a pure deep learning emulator that directly maps high-
dimensional inputs to outputs. Thus, positioning TGEOS as addressing core RSM challenges misrepresents
its paradigm. The review should focus on deep learning emulator challenges and explicitly contextualize
innovations against relevant works like NN-CTM (Huang et al., 2021). Crucially, benchmarking against
only architecturally inferior models (RF/MLP) – rather than comparable deep learning approaches like
CNN-based Deep-RSM (Xing et al., 2020) or NN-CTM – undermines claims of Transformer superiority.

AR: We thank the reviewer for this comment. In this research, RSM techniques were selected for discussion due to
its ongoing development and established reliability within existing CTM simulators. RSMs were constructed
based on the nonlinear relationship between emissions and concentrations using statistical methods, enabling
rapid estimation of pollutant concentrations under varying emission scenarios. This characteristic makes
RSMs closely aligned with the TGEOS model used in this study at the application level, leading us to
focus primarily on the limitations of RSMs. In addition, we did not compare TGEOS with the previous
DL-based emulators, as TGEOS differs from these models in terms of time resolution, learning objectives,
and applicable scenarios, making direct comparison infeasible. For example, DeepRSM uses CMAQ as
its target and is designed specifically for response prediction under a uniform regional emission coefficient
(Xing et al., 2020), limiting its applicability to more detailed emission scenarios like DPEC-SSP/DPEC-CA
scenarios used in this study. Following the reviewer’s comments, we have revised the original manuscript
to ensure that the discussion encompasses existing CTM simulator technologies more broadly, rather than
focusing solely on RSMs. Details are shown in blew.

Introduction (L59-L106)

To address the computational challenge and efficiently retrieve the nonlinear relationship between
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emissions and concentrations, data-driven statistical emulators have been proposed to accelerate numerical
simulations (Castruccio et al., 2014). A reliable emulator can accurately depict intricate relationships
between inputs and outputs, such as from emissions to concentrations. It can also faithfully approximate
the fundamental mechanisms of atmospheric models, thereby generating numerical simulations that
exhibit a high degree of consistency to the model (Salman et al., 2024). Among all the emulators,
Response Surface Model (RSM) is the most widely used method. It is a statistical method developed
by the US EPA (EPA, 2006) that uses the maximum likelihood estimation - empirical best linear
unbiased predictors (MLE-EBLUPs) technique (Santner et al., 2003) to establish the complex relationships
between emission rates of several pollutants and the responses they produce on the pollutant concentrations
by fitting response surfaces of the nonlinear system (Box and Draper, 2007), and provide best estimate
of the pollutant. When given some unknown emission scenarios, RSM can rapidly retrieve the
changes of aimed concentrations without additional CTM simulation involved (Wang et al., 2011).
RSM technique has been successfully employed in the response modeling of PM2.5 (Wang et al.,
2011) and ozone (Xing et al., 2011) to precursor emissions in China for typical regions. Since
conventional RSM commonly requires a large number of CTM simulations to fit reliable response
surfaces (Xing et al., 2011; Zhao et al., 2015), notable advances focusing on enhancements in both
efficiency and accuracy in RSM technology have been achieved (Li et al., 2022). For example,
Extended Response Surface Models (ERSMs) (Zhao et al., 2015; Xing et al., 2017) allow for the
incorporation of a greater number of variables and geographical regions, improving alignment with
independent CTM simulations compared with traditional RSM (Zhao et al., 2015; Xing et al., 2017).
Moreover, the polynomial function based RSM (pf-RSM) is capable of quantifying the nonlinear
relationships between air pollutant concentrations and precursor emissions by fitting CTM simulations
to a series of polynomial functions and mitigating the computational burden through decreasing
the number of required CTMs up to 60% (Xing et al., 2018). Recently, many studies have used
novel machine learning techniques to accelerate the modeling process of RSM by further reducing
the number of required CTMs. For instance, Deep-RSM, developed by Xing et al. (2020) using
convolution neural networks (CNN), requires only two CTM cases (i.e., base and control scenarios)
to startup the model; Self-adaptive RSM (SA-RSM, Li et al. (2022)) further reduces the number of
required CTMs for pf-RSM modeling by employing a stepwise regression method to estimate the
coefficients of polynomial functions.

Although existing RSM techniques exhibit more efficiency than traditional CTM in predicting the
response of pollutant concentrations to a wide range of emission changes, there are still several
issues to be addressed. Firstly, due to the structural limitations that restrict the model from executing
multi-target predictions, existing techniques focus mainly on the response of average of the target
pollutants over a period of time, such as the monthly average (Huang et al., 2021). However, predicting
the singular monthly average of pollutant concentrations may overlook critical variations throughout
the month, such as extreme values (Guo et al., 2020; Zhao et al., 2022). Therefore, these approaches
fall short in providing a comprehensive evaluation of future pollution states, including the ability
to identify potential extreme pollution events under various emission scenarios. Secondly, RSM
techniques rely on the polynomial assumption, leading to its disadvantage to cope with high-dimension
problems. As the number of input variables increases, the complexity of RSM model grows, necessitating
a larger number of samples for accurate fitting (Zhao et al., 2015) and potentially leading to multi-collinearity
issues (Xing et al., 2018). This limitation restricts the applicability of RSM to more intricate emission
scenarios. Therefore, existing RSM studies have primarily concentrated on emissions of a few major
pollutants and the add-up emissions, failing to address air quality response under more detailed
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scenarios that incorporate sectoral emissions and a broader range of emission species. While ERSM
considers emission sectors (Zhao et al., 2015), the inherent limitations of RSM in handling high-dimensional
data result in a substantial requirement for CTM samples, thus confining its application to modeling
studies in smaller areas. Thirdly, current RSMs e.g. pf-RSM (Xing et al., 2018) and SA-RSM (Li et al.,
2022) account for each spatial grid independently while neglect the impact of surrounding emissions,
which have been shown to affect local pollutant concentrations (Cheng et al., 2019). While ERSM
(Zhao et al., 2015) has considered regional transport of emissions, it requires a substantial number of
scenario simulations to ensure the accuracy of the model (Zhao et al., 2015; Xing et al., 2017). For
example, modeling for a middle-scale region typically necessitates hundreds of scenarios as support
(Zhao et al., 2015). The computational burden significantly limits the application of this technology
on a national scale. In summary, given that existing techniques inadequately address the challenges
associated with high temporal-resolution prediction, inapplicability of multivariate scenarios, and
negligence of emission transport, developing a comprehensive national-level "emission-concentration"
predictive model poses a significant challenge.

::
To

::::::::
overcome

::::
the

::::::::::::
computational

::::::::
challenge

:::
and

:::::::::
efficiently

:::::::
retrieve

:::
the

::::::::
nonlinear

::::::::::
relationship

:::::::
between

::::::::
emissions

:::
and

:::::::::::::
concentrations,

:::::::::
data-driven

::::::::
statistical

::::::::
emulators

::::
have

:::::
been

:::::::
proposed

::
to

:::::::::
accelerate

::::::::
numerical

:::::::::
simulations

::::::::::
(Castruccio

::
et

:::
al.,

:::::
2014).

:::
As

:
a
:::::::::::::
simplified-form

::
of
::::::
CTM,

:
a
:::::::
reliable

:::::::
emulator

:::
can

:::::::::
effectively

::::::
capture

:::
the

::::::::
intricate

:::::::::::
relationships

:::::::
between

:::::::::
important

:::::
CTM

::::::
inputs

:::
and

::::::::::::
concentration

:::::::
outputs,

::::
and

::::::
rapidly

:::::::
estimate

:::::::::::::
"CTM-aligned"

::::::::::::
concentrations

::
of

:::::::::
pollutants.

::::::::
Response

::::::
Surface

::::::
Model

::::::
(RSM),

::::::
served

::
as

::::::::
statistical

:::::::::
surrogates

::::::::
developed

:::
by

:::
the

:::
US

::::
EPA

:::::
(EPA,

:::::
2006)

:::
to

:::::::
establish

:::
the

:::::::::::
relationships

:::::::
between

:::::::
emission

:::::
rates

:::
and

:::
the

::::::::::::
concentration

::::::::
responses

::
of

::::::
CTM,

:::
has

::::
been

:::::::::::
continuously

:::::::::
developed

:::::
since

:::
the

:::
past

:::::::
decade.

:::::
RSM

:::::::::
techniques

:::::
have

::::
been

::::::::::
successfully

:::::::::
employed

::
in

:::
the

::::::::
response

::::::::
modeling

::
of

::::::
PM2.5

:::::
(Wang

::
et

:::
al.,

:::::
2011)

::::
and

:::
O3 :::::

(Xing
::
et

:::
al.,

:::::
2011)

::
to

::::::::
precursor

::::::::
emissions

::
in
::::::
China

:::
for

:::::
typical

:::::::
regions.

:::
To

::::::
address

:::
the

:::::::
inherent

::::::::::::
computational

::::::
burden

::::::::
stemmed

:::::
from

:::::::::::
considerable

::::::::
advanced

:::::
CTM

:::::::
supports

:::
for

:::::
model

:::::::
building

:::::
(Xing

::
et
:::
al.,

::::::
2011),

::::::::
optimized

::::::::
versions

::
of

::::::::::
conventional

:::::
RSM

:::::
were

:::::::::
developed,

::::
such

::
as

:::::
ERSM

::::::
(Zhao

::
et

::
al.,

::::::
2015;

::::
Xing

::
et

:::
al.,

:::::
2017)

:::
and

:::::::
pf-RSM

:::::
(Xing

::
et
:::
al.,

::::::
2018).

::::::::
Recently,

:::::
novel

:::::::
machine

:::::::
learning

:::::
(ML)

:::::::::
techniques,

::::
for

::
its

::::
well

:::::::::::
performance

::
in
::::::::::

simulating
:::::::
complex

:::::::::
non-linear

:::::::::::
relationships

::
in

::::::::::
atmospheric

:::::::
systems

::::
(Liu

:::
et

:::
al.,

:::::
2021)

::::
and

:::::::
dealing

::::
with

:::::
tasks

::::::::
involving

:::::::
multiple

::::::::
variables

::::
and

::::::::
objectives

::::::::::
(Masmoudi

::
et
:::

al.,
::::::

2020;
::::::
Huang

::
et
::::

al.,
::::::
2021),

::::
have

:::::
been

::::::::
employed

:::
in

:::::
RSM

:::::::::
techniques

::
to

::::::
further

:::::::
optimize

:::::::::
modeling

::::::::
efficiency

::::
and

:::::::::
estimation

:::::::
accuracy

:::
of

:::::
RSMs

::::::
(Xing

::
et

:::
al.,

:::::
2020;

:::
Li

::
et

::
al.,

::::::
2022).

::::::
Based

:::
on

:::
this

:::::::::
advantage,

:::::
many

:::::::
studies

::::
have

::::::::
attempted

::
to
:::::

build
::::::::
effective

::::::::
emulators

:::::
using

::::
pure

:::
ML

:::::::
method

:::::::
(Huang

::
et

:::
al.,

::::::
2021;

::::::
Zhang

::
et

:::
al.,

:::::::
2023a).

::::
For

:::::::::
example,

:::::
Zhang

:::
et

::
al.

::::::::
(2023a)

::::
used

::::::::
ResCNN

:::::::::
framework

::
to

::::::
predict

:::::::
annual

:::::
PM2.5::::::::::::

concentration
::::
from

:::::
fossil

:::::::
energy

:::
use

::::
and

:::::
reveal

::
the

::::::::::
co-benefits

::
of

:::
the

::::::
energy

:::::::::
transition,

::::::::::::
demonstrating

:::
the

:::::::
potential

:::
of

:::
ML

:::::::
method

::
in

:::::::::
addressing

:::
the

:::::::
emulator

::::::::
modeling

::::
task.

::::::::
Although

:::::::
existing

:::::
CTM

::::::::
emulators

:::::::
exhibit

:::::
more

::::::::
efficiency

::::
than

:::::::::
traditional

:::::
CTM

:::
in

:::::::::
estimating

:::
the

:::::::
pollutant

:::::::::::::
concentrations

::
to

::
a
::::
wide

::::::
range

::
of

::::::::
emission

::::::::
changes,

:::::
there

:::
are

::::
still

::::::
several

::::::
issues

::
to

:::
be

::::::::
addressed.

:::::::
Firstly,

:::
due

::
to

:::
the

:::::::::
computing

:::::::::
limitations

::::
(Liu

:
et
:::
al.,

::::::
2022),

:::
the

:::::::
temporal

:::::::::
resolution

::
for

:::::
some

::::::::
emulators

::::
was

:::::::::
constrained

:::::
with

::::::
annual

:::::
scale,

:::::
which

::::::
greatly

:::::::
prevent

:::::
these

::::::::
emulators

:::::
from

::::::::
providing

::::::
detailed

::::::::::
estimations

::
of

:::
air

:::::::::
pollutants

::::
such

::
as

::::::::
extreme

:::::
values

::::::::::
throughout

:::
the

::::
year

:::::
(Guo

::
et

:::
al.,

:::::
2020;

::::
Zhao

::
et

:::
al.,

::::::
2022).

::::::::
Secondly,

:::::
while

:::::
some

::::::::
emulators

::::
have

:::
the

::::::
ability

::
to

::::
offer

:::::::::::
concentration

::::::::::
estimations

::::
with

::::
finer

::::::::
temporal

:::::::::
resolution,

::::
they

::::
still

::::
have

::::::::::
limitations.

:::
On

::::
one

:::::
hand,

::::::::::
RSM-based

::::::::
emulators

::::
rely

::
on

:::
the

::::::::::
polynomial

::::::::::
assumption,

::::::
leading

::
to

::
its

:::::::::::
disadvantage

::
to
:::::
cope

::::
with

:::::::::::::
high-dimension

::::::::
problems.

:::
As

::
the

:::::::
number

::
of

:::::
input

::::::::
variables

::::::::
increases,

:::
the

::::::::::
complexity

::
of

:::::
RSM

::::::
model

:::::
grows,

:::::::::::
necessitating

::
a
:::::
larger

::::::
number

::
of

:::::::
samples

:::
for

:::::::
accurate

:::::
fitting

::::::
(Zhao

::
et

:::
al.,

:::::
2015)

:::
and

:::::::::
potentially

:::::::
leading

::
to

::::::::::::::
multi-collinearity
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:::::
issues

:::::
(Xing

::
et
::::

al.,
::::::
2018).

:::
In

:::
the

:::::::
revised

::::::::::
manuscript,

:::
we

::::
will

:::::::
provide

::::::::
examples

::::::
(BTH,

::::::
YRD)

::
to

::::
avoid

:::::::::
ambiguity.

:::::
This

::::::::
limitation

:::::::
restricts

:::
the

:::::::::::
applicability

::
of

::::::::::
RSM-based

::::::::
emulators

::
to

:::::
more

:::::::
intricate

:::::::
emission

:::::::::
scenarios.

:::::::::
Therefore,

::::::::
existing

::::
RSM

:::::::
studies

::::
have

::::::::
primarily

:::::::::::
concentrated

:::
on

:::::::::
emissions

::
of

:
a
::::
few

:::::
major

:::::::::
pollutants

:::
and

:::
the

:::::::
add-up

::::::::
emissions

::::::
(Xing

::
et

:::
al.,

::::::
2020),

::::::
failing

::
to

:::::::
address

:::
air

::::::
quality

:::::::
response

:::::
under

:::::
more

:::::::
detailed

::::::::
scenarios

::::
that

::::::::::
incorporate

:::::::
sectoral

::::::::
emissions

::::
and

::
a

::::::
broader

::::::
range

::
of

:::::::
emission

:::::::
species.

:::
On

:::
the

:::::
other

:::::
hand,

::::
some

:::::::::
emulators

::::
were

::::::::::
constructed

:::::
based

:::
on

:::::
in-situ

:::::::::::
observations

::::
using

::::
ML

:::::::
method

::::::
(Zhang

::
et
::::

al.,
::::::
2023a),

::::::
which

::
is

::::
easy

:::
to

::::::
employ

::::
and

:::::
more

:::::::::
convenient

::::
than

:::::
those

:::::::::
RSM-based

:::::::::
emulators.

::::::::
However,

:::::
these

::::::
models

:::
are

::::::::::
constrained

::
by

:::
the

::::::
limited

:::::::
number

::
of

:::::::::::
observational

:::
data

:::::::
stations

:::
and

::::
are

:::::::
therefore

::::::
unable

::
to
:::::::::
effectively

::::::
assess

:::
air

::::::
quality

::
in

::::::
regions

::::::
where

:::::::::::
observational

:::::::::::
infrastructure

::
is

::::::
lacking

::::
(Xu

::
et

:::
al.,

::::::
2022).

:::::::::::
Furthermore,

::::
due

::
to

::::::::::
insufficient

:::::::::::
observational

::::
data,

:::::
these

::::::
models

:::::
often

::
do

::::
not

::::
have

:::::::
enough

::::::::::::
representative

:::::::
samples

::
to

:::::::
achieve

::::::::
accurate

:::::
model

::::::
fitting,

::::::
which

::::
leads

::
to

::::::::::
suboptimal

::::::::
predictive

:::::::::::
performance

:::::
(Tang

::
et
::::

al.,
:::::
2024).

:::
In

::::::::
addition,

:::::::::
traditional

:::
ML

:::::::
models,

::::
such

::
as

::::::::::
Multi-Layer

:::::::::
Perceptron

::::::
(MLP)

::::
and

:::::::
Random

:::::
Forest

:::::
(RF),

::::
may

:::
not

:::::
fully

::::::
capture

:::
the

::::::::
nonlinear

::::::::::
relationships

::
in

:::::::
complex

:::::::::::
atmospheric

:::::::
variables

::::::::::
(Masmoudi

::
et

::
al.,

:::::
2020;

:::::::::
Natarajan

:
et
:::
al.,

:::::
2024;

::::::::::
Abuouelezz

:
et
:::
al.,

::::::
2025),

::::::
which

::::::
further

:::::::::
undermine

::::
their

::::::::::
predictions.

:::::::
Thirdly,

:::::
some

::::::
current

::::::::
emulators

:::::::
account

:::
for

::::
each

:::::
spatial

::::
grid

::
or

::::::::::
observation

:::
site

::::::::::::
independently

:::::
while

::::::
neglect

:::
the

::::::
impact

::
of
:::::::::::
surrounding

::::::::
emissions

:::::
(Xing

::
et

::
al.,

:::::
2018;

:::
Li

:
et
:::
al.,

:::::
2022;

::::::
Zhang

::
et

:::
al.,

::::::
2023a),

:::::
which

:::::
have

::::
been

:::::
shown

::
to

:::::
affect

:::::
local

:::::::
pollutant

::::::::::::
concentrations

::::::
(Cheng

::
et
::::

al.,
::::::
2019).

::::::::
Although

::::::
certain

:::::::
studies

::::
have

:::::::::
employed

:::::::::::
convolutional

::::::
neural

:::::::
network

::::::
(CNN)

::::::::::
architectures

:::::::
capable

::
of

::::::::
capturing

::::
local

:::::::
features

::
to

:::::::
develop

::::::
models

:::::
(Xing

::
et
:::
al.,

:::::
2020;

:::::
Huang

:::
et

:::
al.,

:::::
2021;

::::
Liu

::
et

:::
al.,

::::::
2022),

::::
the

::::::::::::
computational

:::::::
resource

::::::::::
constraints

::::
have

::::::::
hindered

:::::
these

:::::::::::
"face-to-face"

:::::::
models

::::
from

:::::::::
processing

:::::
large

:::::::
volumes

:::
of

::::::
feature

::::::
inputs.

:::
As

::
a
:::::
result,

:::
the

::::::::::
application

::
of

::::
such

:::::::
models

::
is

::::::
limited

:::
in

:::::
terms

::
of
::::::::

emission
::::::

details
::::

and
::::::::
research

:::::::
domain.

:::
In

:::::::::
summary,

:::::
given

:::
that

:::::::
existing

:::::::::
techniques

:::::::::::
inadequately

::::::
address

:::
the

:::::::::
challenges

:::::::::
associated

::::
with

::::
high

::::::::::::::::
temporal-resolution

:::::::::
prediction,

::::::::::::
inapplicability

::
of

::::::::::
multivariate

::::::::
scenarios,

::::
and

:::::::::
negligence

::
of

::::::::
emission

::::::::
transport,

::
it

:::
still

:::
be

:
a

::::::::
significant

::::::::
challenge

:::
to

::::::
develop

::
a
::::::::::::
comprehensive

::::::::
emulator

:::::
using

::::
more

::::::::
advanced

:::::::
method.

Additionally, due to the distinct form of the input data derived from TGEOS, RF and MLP-rather than CNN
architecture that has been employed for emulator building (Xing et al., 2020; Huang et al., 2021)-were
selected for model comparison. Previous models represent both input and output features in matrix forms
(Xing et al., 2020; Huang et al., 2021), facilitating a "face-to-face" modeling approach that is well-suited for
CNNs, which is commonly used in image processing (Li et al., 2021). In contrast, the input of the TGEOS
consists of sequential samples from individual grids, for each sample containing 1045 features (mentioned in
Table 2 of the manuscript), making it incompatible with the CNN framework and thus not considered.

To highlight the advantages of the Transformer architecture, an attempt was made to construct a CNN-based
model for comparative analysis. The basic architecture of this model is illustrated in Figure 1. In this CNN-
based model, we transformed the feature input of each sample from its original dimension of (1, 1045) into a
matrix format of (9, 116). For the temporal features (i.e., month information corresponding to each scenario in
this study), we individually convert them into embedding vectors—following an approach commonly used in
NLP (Stankevičius and Lukoševičius, 2024)—and subsequently concatenate these vectors with the flattened
output of the final convolutional layer of the CNN before feeding them into the fully connected layer. The
same training and test set of TGEOS were used for model training and validation.

As illustrated in Figure 2, the performance of the four models on the test set is compared. On one hand,
compared to the previously selected MLP and RF models, the CNN-based model demonstrates superior
performance, characterized by higher R values as well as lower MAE. This advantage can be attributed to the
CNN’s local convolution kernel, which is capable of capturing patterns among adjacent data points. On the
other hand, when compared to TGEOS employed in this study, the CNN-based model underperforms across
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Figure 1: Basic architecture of CNN-based model.

all evaluation metrics. This is primarily due to TGEOS’s self-attention mechanism, which enables more
effective dynamic and global modeling. In contrast to CNNs, which are constrained by fixed convolution
kernels and limited network depth, Transformer-based TGEOS exhibits a stronger capacity for capturing
complex relationships in high-dimensional data.

Figure 2: Predictive performance of four models, with green represents RF predictions, blue denotes MLP
predictions, red denotes CNN predictions, and purple indicates TGEOS predictions. All indicators are
averaged in national scale and computed based on the six test scenarios.

We have updated the "Comparison of Different Machine Learning Models" section of the manuscript to
include a discussion on the CNN model. The details are provided below:

To validate the performance of the TGEOS model in "emission-concentration" modeling against other
machine learning models, two widely used machine learning models, including multilayer perceptrons
(MLP) and random forests (RF)

::::
three

::::::
widely

:::::
used

:::::::
machine

:::::::
learning

:::::::::::
frameworks,

::::::
namely

:::::::::
Multilayer

:::::::::
Perceptrons

:::::::
(MLP),

:::::::
Random

:::::::
Forests

:::::
(RF),

:::
and

::::::::::::
Convolutional

::::::
Neural

::::::::
Network

::::::
(CNN)

:::::::::
employed

::
in

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::
(Xing et al., 2020; Xing et al., 2021), were simultaneously employed based on the
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multi-scenario dataset mentioned in Section 2.1. For each ML model, we identified the model that
demonstrated optimal fitting performance for testing after conducting a series of parameter tuning
experiments.

:::
with

:::
the

::::
best

::::::::::
combination

:::
of

:::::::::::::
hyperparameters

:::::
after

:::::::::
fine-tuning

::::::
process

:::::
based

:::
on

::::::
Optuna

::::
tool. The MLP model uses 4 hidden layers with 2048, 1024, 512, and 256 neurons, applying ReLU
activation and Dropout to prevent overfitting. The optimizer is Adam with a learning rate of 1e−3, and
the loss function is Mean Squared Error (MSE). Training uses a batch size of 1024 and 100 epochs,
with a learning rate scheduler to adjust the learning rate dynamically. The RF model uses 300 trees
with a maximum depth of 25, a minimum sample split of 4, and a minimum sample per leaf of 2. It
uses parallel computation with all CPU cores and performs feature selection by choosing the top 500
important features.

:::
The

::::
CNN

::::::
model

:::::::
consists

::
of

:::
two

::::::::::::
convolutional

:::::
layers

::::::::
followed

::
by

::::
fully

:::::::::
connected

:::::
layers,

::::
with

:::
an

::::::::
additional

::::::::::
embedding

::::
layer

::
to
::::::::::
incorporate

::::::
month

::::::::::
information.

::::
The

::::
first

:::::::::::
convolutional

::::
layer

::::::
applies

:::
32

:::::
filters

:::
of

:::
size

::::
3×3

::::::::
(padding

::
=

::
1)

::
to

:::
the

:::::::::::::
single-channel

:::::
input,

::::::::
followed

::
by

::
a
::::::
second

:::::::::::
convolutional

::::
layer

::::
with

::::
128

:::::
filters

::
of

:::
the

:::::
same

::::
size.

:::::
Both

:::::::::::
convolutional

:::::
layers

:::
use

::::::
ReLU

:::::::::
activations.

:::
The

::::::
output

::::::
feature

::::
maps

:::
are

::::
then

:::::::::
processed

::
by

:::
an

:::::::
adaptive

::::::
average

:::::::
pooling

:::::
layer

::
to

:::::
reduce

:::
the

::::::
spatial

::::::::
resolution

::
to

::
29

::
×
::
3.

:::
To

:::::::
integrate

::::::::
temporal

::::::::::
information,

:
a
::::::
month

:::::::::
embedding

:::::
layer

::::
maps

::::::
month

::::::
indices

:::::
(1–12)

:::
to

:
a
::::::::::::
4-dimensional

::::::
vector.

::::
The

::::::
pooled

::::::::::::
convolutional

:::::::
features

:::
are

:::::::
flattened

::::
and

:::::::::::
concatenated

::::
with

::
the

::::::
month

::::::::::
embedding,

:::::::
forming

:::
the

::::
input

::
to
::
a
:::::::::
three-layer

::::
fully

:::::::::
connected

:::::::
network:

:::
the

::::
first

:::::
linear

::::
layer

:::::
maps

:::
the

:::::::::::
concatenated

:::::
vector

::
to

::::
256

::::
units,

:::
the

::::::
second

:::::::
reduces

::
it

::
to

::
64

:::::
units,

:::
and

:::
the

::::
final

::::::
output

::::
layer

::::::::
produces

::
12

:::::::::
regression

::::::
targets.

::::::
ReLU

::::::::
activation

::::::::
functions

:::
are

:::::::
applied

::::
after

:::
the

::::
first

:::
and

::::::
second

::::
fully

:::::::::
connected

::::::
layers.

:::
For

:::::
each

::::::
model,

::::::::::::::
hyperparameters

:::::
were

:::::::
obtained

:::::
after

:::::::::
fine-tuning

:::::
based

:::
on

::::::
Optuna

::::
tool.

Table S2 and S3 summarize the performance of the three models on the test set. We found that TGEOS
outperforms the other two models in both R2 and MAE metrics. To clearly illustrate the predictive
performance of different models, we presented a modified Taylor diagram (Taylor, 2005; Fang et al.,
2023) in Fig. 10. This diagram simultaneously displays the Mean Absolute Error (MAE) and correlation
coefficient (R) for predictions of PM2.5 and O3 indicators from three models in various regions. Our
findings indicate that the Random Forest (RF) model performs the poorest. This is primarily due to
its reliance on feature importance assessments during feature selection, which overlooks potential
underlying features in the data, adversely affecting the model’s fitting capability. Additionally, the
RF model is sensitive to the distribution of training data, leading to limited extrapolation abilities
and poor predictive performance for extreme values. In contrast, the Multi-Layer Perceptron (MLP)
shows a significant improvement in predictive performance relative to the RF model. Leveraging
its multi-layer neural network structure, the MLP can more effectively learn complex relationships
between multiple features. But this layered structure can struggle when dealing with high-dimensional
feature spaces, especially for highly stochastic indicators such as maximum values, where the MLP still
exhibits considerable prediction errors.

:::::::::
Compared

::
to

:::
the

::::::::
previously

:::::::
selected

:::::
MLP

:::
and

:::
RF

:::::::
models,

:::
the

:::::::::
CNN-based

::::::
model

:::::::::::
demonstrates

::::::::
superior

:::::::::::
performance,

:::::::::::
characterized

:::
by

::::::
higher

::
R

:::::
values

:::
as

::::
well

::
as

:::::
lower

:::::
MAE.

::::
This

::::::::
advantage

::::
can

::
be

::::::::
attributed

::
to

:::
the

::::::
CNN’s

::::
local

::::::::::
convolution

::::::
kernel,

::::::
which

:
is
:::::::
capable

::
of

::::::::
capturing

:::::::
patterns

:::::
among

::::::::
adjacent

:::
data

::::::
points.

Conversely, the Transformer-based TGEOS model demonstrates superior performance compared to
the other models, exhibiting higher R values (exceeding 0.98 and 0.97) and lower MAE values (less
than 4.0 g/m3 for the majority indicators). These results suggest a higher degree of reliability and
accuracy in its predictions. For several indicators where MLP performs poorly, TGEOS demonstrates
substantial improvements. The superiority of the Transformer model can be attributed to its greater
number of parameters and more complex architecture, which leverage powerful feature extraction
capabilities and self-attention mechanisms, allowing it to adapt to intricate patterns and relationships.
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::
In

:::::::
contrast

::
to

:::::
CNN,

::::::
which

:::
are

::::::::::
constrained

::
by

:::::
fixed

::::::::::
convolution

:::::::
kernels

:::
and

::::::
limited

::::::::
network

:::::
depth,

::::::
TGEOS

:::::::
exhibits

::
a
:::::::
stronger

::::::::
capacity

:::
for

::::::::
capturing

::::::::
complex

:::::::::::
relationships

::
in

:::::::::::::::
high-dimensional

::::
data.

Consequently, in high-dimensional tasks like air quality modeling, Transformer models have proven
to be more advantageous compared to their counterparts.

RC: The exclusive use of 2017 MERRA-2 meteorology across all 36 emission scenarios creates critical limi-
tations. (1) Artificial performance inflation: Model validation (Section 3) only tests emission sensitivity
under identical meteorological conditions, ignoring O’s established sensitivity to temperature/radiation.
This likely overstates accuracy for real-world applications where meteorology co-varies. (2) Unverified
generalizability: No experiments challenge the model with meteorological variability (e.g., heatwaves),
leaving robustness under climate fluctuations untested. (3) Neglect of emission-climate feedbacks: The
abstract positions TGEOS for "future emission scenarios", yet fixed meteorology cannot capture feedbacks
like emission-driven aerosol-radiation interactions affecting O3. Given the study’s policy-assessment
ambitions, this design flaw is critical. Cross-meteorological sensitivity tests should quantify key indicator
fluctuations to establish operational reliability.

AR: We appreciate the reviewer for the insightful comment. At the beginning, we fully acknowledge that the use
of a fixed 2017 meteorological field limits TGEOS’s ability to capture meteorology–emission interactions or
emission–climate feedbacks. Indeed, this design precludes assessing the influence of future climate variability
(e.g., temperature/radiation changes, extreme events) on pollutant concentrations.

However, the primary objective of TGEOS in this study is to support air quality predictions under future
emission scenarios, with a specific focus on isolating the concentration responses attributable to emission
changes. So we intentionally did not include climate change effects in this work. The “fixed meteorology
(based on a certain meteorological year or meteorological field) with different emission scenarios” framework
has been widely adopted in future air quality assessment studies. For example, Shi et al. (2021) simulated
future air quality in China under carbon neutrality using the WRF-Comprehensive Air Quality Model with
Extensions (WRF-CAMx) with the meteorology fixed at 2019; Liu et al. (2022) adopted machine learning
approach to explore the interaction patterns between air-quality improvement and climate change mitigation
in China, using 2017 meteorology ; Wang et al. (2023) used GEOS-Chem model with identical meteorology
of year 2015 to assess the changes in concentrations of PM2.5 and O3 and associated health impacts. In
addition, many studies, namely He et al. (2018), Xiao et al. (2021) and Bhattarai et al. (2024), have also
employed similar designs to quantify the contribution of emissions to future air pollutant concentrations. This
approach enables a clean separation of emission-driven changes in pollutant levels, thereby allowing a clearer
estimation of mitigation benefits without the confounding influence of meteorological variability.

Additionally, simultaneously incorporating both emissions and meteorology changes in future projections is a
technically challenging task. From the modeling perspective, it requires training the emulator to represent
complex, nonlinear interactions between meteorology and emissions across a much larger parameter space.
From the data perspective, the resolution of the currently available future meteorological data is excessively
coarse (native 100-km resolution), and the number of available meteorological variables is limited (mainly
focus on temperature and precipitate (Zhang et al., 2025)) , which makes it challenging to comprehensively
represent the future meteorological field required for GEOS-Chem input.

To provide a preliminary evaluation of TGEOS’s generalization capability across different meteorology
scenarios, we designed a cross-meteorology sensitivity experiment, as summarized in Table 1.

* Group 1: The baseline TGEOS, trained exclusively on scenarios with 2017 meteorology (identical to
the model described in the manuscript).
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* Group 2: An extended TGEOS, trained on scenarios with 2017 meteorology and supplemented by
nine additional scenarios with 2014 meteorology.

* Test set: Six scenarios with 2022 meteorology.

The results of the two groups are shown in Fig. 3 and Fig. 4. Although the baseline TGEOS (Group
1) exhibited reduced performance when applied to 2022 meteorology compared to its performance under
2017 meteorology (R2> 0.9 in the manuscript), it still achieved acceptable predictive skill, with R2 values
exceeding 0.8. In contrast, the extended TGEOS (Group 2) consistently outperformed Group 1, demonstrating
that incorporating more meteorological conditions into the training set could stably enhance the model’s
robustness under unseen climatic conditions. It should be noted that reconciling the combined effects of
emissions and meteorology is inherently challenging, and a sufficiently large number of simulated samples
across diverse meteorology scenarios is essential to achieve reliable predictions. Here only a limited set of
samples was used to illustrate the feasibility of the proposed approach. Developing the capability for rapid air
quality predictions across varying meteorological scenarios will be the central focus of our next work.

Table 1: Design of cross-meteorology sensitivity experiments.

Experiment Scenario number Description

Group1 36 36 scenarios as depicted in Table 1 of the manuscript

Group2 45
36 scenarios of Group1, 9 scenarios with emissions of SSP1_2030,
SSP1_2040, SSP1_2050, SSP4_2030, SSP4_2040, SSP4_2050,
SSP5_2030, SSP5_2040, SSP5_2050 with meteorology of 2014

Test 6
6 scenarios with emissions of SSP2_2030, SSP2_2040, SSP2_2050,
SSP3_2030, SSP3_2040, SSP3_2050, with meteorology of 2022

Finally, we have revised in Conclusion section of the manuscript to emphasize the limitation of the
meteorology-fixed methodology.

The TGEOS model still have some limitations to be improved. Firstly, it should be noted that the pre-
dictions generated by TGEOS remain incapable of accurately representing actual air pollutant concen-
trations, even though TGEOS is highly consistent with GEOS-Chem, since systematic biases have been
demonstrated to exist within GEOS-Chem itself (Travis and Jacob, 2019; Miao et al., 2020). Therefore,
correcting errors in TEGOS based on near-real observations or reanalysis data is of paramount impor-
tance and constitutes a priority for our subsequent research. Additionally, due to the considerable effect
of meteorological conditions on the generation (Shi et al., 2020), spatiotemporal patterns (Zhang et al.,
2013; Chen et al., 2020), and concentration levels (Wang et al., 2019) of PM2.5 and O3 concentrations,
and meteorological conditions other than 2017 are not considered in this study. Consequently, there
is also a need to incorporate various climate scenarios that represent meteorological variations to
enhance the TGEOS’s predictive capability regarding future air quality under more complex scenarios
with variations in emissions and meteorology.

:::::::::::
Additionally,

::
in

:::::
order

::
to

:::::
isolate

:::
the

::::::
impact

::
of

::::::::
emission

::::::
changes

::
to
::::::
future

::
air

::::::
quality

::
as

:::::::
previous

::::::
studies

:::
did

::::::::::::::::::::::::::::
(Shi et al., 2021; Shi et al., 2023),

:::
the

::::::::::
meteorology

::::
used

::
in

:::
this

:::::
study

::::
was

::::
fixed

::
at
::::::

2017.
::::
The

::::::::
identified

::::::::::
meteorology

:::::
limits

:::::::::
TGEOS’s

::::::
ability

::
to

:::::::
generate

::::::
reliable

::::::::::
estimations

:
in
::::::::::::::::
cross-meteorology

::::::::
scenarios,

:::
and

::
to
:::::::
capture

::::::::::::::::::
meteorology–emission

::::::::::
interactions
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Figure 3: Results of two experiments for PM2.5 in SSP3_2030 scenario. a1 to a4 shows predictions of
mean, max, 25 percentile and 75 percentile based on TGEOS with Group1 training strategy. b1 to b4 shows
predictions using TGEOS with Group2 training strategy.

Figure 4: Same as Fig. 3, but for O3 predictions in SSP3_2030 scenario.
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:::
and

::::::::::::::::
“emission–climate”

:::::::::
feedbacks. Consequently, there is also a need to incorporate various climate

scenarios that represent meteorological variations to enhance the TGEOS’s predictive capability regard-
ing future air quality under more complex scenarios with variations in emissions and meteorology.

RC: The dataset design introduces potential leakage between training (DPEC-SSP SSP1/4/5 + DPEC-CA
+ tuning) and testing (DPEC-SSP SSP2/3) sets. (1) Structural homology: All scenarios derive from
the DPEC framework, sharing inherent inventory structures, sectoral mappings, and spatial patterns.
(2) Meteorological invariance: Identical 2017 meteorology further constrains emission-concentration
mapping diversity. (3) Unverified independence: The sole qualitative comparison (otp2030 vs. SSP2_2050)
lacks quantitative validation. No analysis demonstrates statistical separability between DPEC-SSP, DPEC-
CA, and tuning scenarios. Sampling only three years (2030/2040/2050) within these correlated DPEC
trajectories risks distributional overlap. This undermines claims of rigorous holdout testing, especially
given the high R² values (0.96+) that may reflect dataset artifacts rather than true generalizability.

AR: Thank the reviewer for this comment. We acknowledge that in the test set (SSP2/SSP3), certain grid cells
exhibit emission or concentration levels very similar to those in the training set. This is primarily because,
within the DPEC framework, emission changes are implemented in a spatially coherent and relatively smooth
manner, which reflects the realistic evolution characteristics of emissions in the future related to policies. As
a result, even though these scenarios differ in their long-term emission trajectories, localized changes remain
gradual, leading to the potential convergence between training and testing sets. Furthermore, in regions with
intrinsically low emission levels, such as western China, differences in both emissions and concentrations
across scenarios are rather minimal. Consequently, the model can achieve high predictive accuracy in these
areas even under unknown scenarios, which partly contributes to the strong performance observed in the test
set.

As discussed in Section 2.1.1 of the manuscript, we had added 10 random scenarios based on perturbation
method to enhance generalizability of TGEOS. These scenarios are independent from DEPC framework and
we believe the model has the ability to make preliminary predictions under emission scenarios out of DPEC
framework. Thus, we further evaluated TGEOS under two sets of randomly perturbed emission scenarios
using same tuning method but with different scales (0.9 and 1.1) to assess TGEOS’s robustness beyond the
structured future scenarios. As presented in Fig. 5 and 6. For O3, the model maintained high predictive
accuracy across both perturbation sets, demonstrating strong generalization to altered emission patterns. For
PM2.5, although overall performance remained high (R² > 0.89), the predictive skill declined compared to
that achieved on the future-scenario test set, with noticeable biases in high-concentration predictions. This
poorer performance is likely due to the more complex formation pathways of PM2.5 as a secondary pollutant
(Shi et al., 2024), combined with the fact that the training set primarily comprised 25 future scenarios with
relatively smooth spatial emission variations. We anticipate that incorporating additional perturbed-emission
scenarios into the training set would further enhance TGEOS’s robustness and predictive capability.

In response to the reviewer’s concern regarding potential data leakage, we specifically examined eight key
emission variables that predominantly influence PM2.5 and O3 concentrations (Pinder et al., 2007; Wang
et al., 2013; Lu et al., 2019; Skyllakou et al., 2021; Lai et al., 2021), and analyzed the distributions across
three emission scenario sets: DPEC-SSP, DPEC-CA, and tuning scenarios. As illustrated in Fig.7 and
Fig.8, although the magnitudes are generally comparable, noticeable differences among the three curves are
evident for each emission variable, thereby confirming the separability of these datasets. For the otp2030
and SSP2_2050 scenarios, we further conducted the Kolmogorov–Smirnov (K–S) test, with the results
summarized in Table 2. Given the large sample size, the p-values for all emission variables are approximately
zero (Demir, 2022), making the KS statistic (D-value) a more meaningful indicator. Our analysis shows

10



Figure 5: Density scatter plots between GEOS-Chem simulations and TGEOS predictions for four indicators
of PM2.5 and O3 concentrations in tun0.9 scenario, where a1 to a4 denotes the mean, maximum, 25th
percentile, and 75th percentile of January PM2.5 concentration; b1 to b4 denotes the corresponding statistics
for July O3 concentration.

Figure 6: Same as Fig. 5 but for tun1.1 scenario.
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that the emissions of the two scenarios differ to varying extents, with all D values being greater than zero.
As discussed earlier, the convergence of future emission trends and the presence of grid cells less sensitive
to emission perturbations contribute to the similarity among future emission scenarios. This similarity is
reflected in relatively small D values (typically < 0.3). Nevertheless, for most emission variables, D values
exceed 0.1, suggesting that non-negligible differences still exist between the two scenarios.

Figure 7: Kernel Density Estimation (KDE) curves for ALK4 transportation (a), BC industry (b), CO
transportation (c), and NH3 agriculture (d) emissions in three scenario sets on semi-logarithmic scales.

We have revised the responding part of the manuscript to present the the difference between training and test
set, and compare two scenarios based on spatial distribution and K-S test. Details are illustrated in blew.

3.1 Differences between training and test set (L265-L274)

In case of potential data leakage due to similar concentration and emission levels in some emission
scenarios, we analyzed the spatial distribution of the mean values of PM2.5 and O3 under the stochastically
selected SSP2_2050 scenario of the test set, along with the otp2030 scenario of the training set that
exhibiting the highest similarity in concentration levels of SSP2_2050 scenario. Focusing on the North
China Plain (NCP) region where both PM2.5 and O3 pollution are severe, the absolute difference in
concentration between two scenarios was demonstrated. Concurrently, distributions of six emission
variables of two scenarios with significant impacts on PM2.5 and O3 concentrations (Hu et al., 2023),
as well as the differences, were also analyzed. The spatial distribution of the concentration, emission,
and absolute difference levels of PM2.5 are shown in Fig. 2, and those of O3 are illustrated in Fig.
S1. These pictures indicated that the concentrations of pollutants, as well as emission variables, of
the training and test set are exclusive despite some distributional similarities, particularly for samples
from highly polluted regions.
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Figure 8: Same as Fig. 7, but for NO transportation (a), SO2 power (b), PM2.5 residential (c), and XYLE
industry (d).

::::
Since

::::::::
emission

:::::::::
trajectories

::::
with

::::::::
different

::::::::
reduction

::::
rates

::::
may

::::::::
converge

::
at

::::::
certain

::::
time

::::::::
horizons,

::::
there

:::::
exists

:
a
::::::::
potential

:::
risk

:::
of

::::
data

::::::
leakage

:::::::
arising

::::
from

::::::::::
similarities

::
in

::::::::
emission

:::
and

::::::::::::
concentration

:::::
levels

:::::
across

::::::::
scenarios.

:::
To

:::::::
address

:::
this

::::::::
concern,

:::
we

:::::::
analyzed

:::
the

::::::
Kernel

:::::::
Density

:::::::::
Estimation

::::::
(KDE)

::::::
curves

::
for

:::
six

:::
key

::::::::
emission

::::::::
variables,

:::::
which

:::::::
strongly

::::::::
influence

:::::
PM2.5:::

and
:::
O3::::::::::::

concentrations
::::::::::::::
(Hu et al., 2023),

::
of

:::
the

:::::::
training

:::
and

::::
test

:::
set,

::
as

:::::::::
illustrated

::
in

::::
Fig.

::::
S5.

::::
The

::::::
results

:::::::
indicate

::::
that,

:::::::
although

::::
the

::::::
general

:::::::::
distribution

::::::
trends

:::
are

::::::
similar,

:::
the

:::::::
densities

::
at
::::::::
different

:::::::
emission

::::::
levels

::::
vary

::::::::::
significantly

:::::::
between

:::
the

:::
two.

::::::::::::
Furthermore,

::::::::
focusing

:::
on

:::
the

:::::
North

::::::
China

:::::
Plain

::::::
(NCP)

:::::
where

:::::
both

:::::
PM2.5::::

and
:::
O3::::::::

pollution

::
are

::::::::::
particularly

:::::::
severe,

:::
we

::::::::
examined

:::
the

::::::
spatial

::::::::::
distribution

::
of

:::::
mean

::::::
PM2.5:::

and
:::

O3:::::::::::::
concentrations,

::
six

::::::
critical

:::::::::
emissions

::
as

::::
well

:::
as

::::::::::::
corresponding

:::::::
absolute

:::::::::
differences

:::::
under

::::
the

:::::::::::
stochastically

:::::::
selected

:::::::::
SSP2_2050

::::
test

:::::::
scenario,

::
in

::::::::::
comparison

::::
with

:
a
:::::::
training

:::::::
scenario

:::::::::
(otp2030).

:::
The

:::::::
otp2030

::::::::
scenario

:::
was

::::::
selected

:::
by

:::::::::
calculating

:::
the

:::::::::
Euclidean

:::::::
distance

:::::::
between

:::
the

:::::
mean

:::::
PM2.5::::

and
::
O3::::::

values
::
of

::::::::::
SSP2_2050

:::
and

:::::
those

::
of

:::::
each

::::::
training

::::::::
scenario,

::::
and

:::::::::
identifying

::::
the

:::::::
scenario

::::
with

:::
the

:::::::::
minimum

::::::::
distance.

::::
The

:::::
results

:::
are

:::::::::
illustrated

:::
in

:::
Fig.

:::
2
:::
for

::::::
PM2.5:::

and
::::

Fig.
::::

S4
:::
for

::::
O3.

::::::
These

:::::::
pictures

::::::::
indicated

::::
that

:::
the

::::::::::::
concentrations

::
of

:::::::::
pollutants,

::
as

::::
well

:::
as

:::::::
emission

:::::::::
variables,

::
of

:::
the

:::::::
training

::::
and

:::
test

:::
set

:::
are

::::::::
exclusive

::::::
despite

::::
some

::::::::::::
distributional

:::::::::
similarities,

::::::::::
particularly

:::
for

:::::::
samples

::::
from

::::::
highly

:::::::
polluted

:::::::
regions.

::
In

::::::::
addition,

:::
we

:::::::::
conducted

::::::::::::::::::
Kolmogorov-Smirnov

::::::
(K-S)

::::
tests

:::
on

::
a
::::
total

:::
of

:::
12

::::::::
emission

::::::::
variables,

:::::::::
comprising

:::
the

:::::::::::::
aforementioned

:::
six

:::::::::
emissions

::
as

::::
well

::
as

:::
an

:::::::::
additional

::
set

:::
of

:::
six

:::::::::
emissions,

::::
with

:::
the

:::::
results

:::::::::::
summarized

::
in

:::::
Table

::
2.

::::::
Given

:::
the

:::::
large

::::::
sample

::::
size,

:::
the

::::::::
p-values

:::
for

::
all

::::::::
emission

::::::::
variables

::
are

::::::::::::
approximately

::::
zero

:::::::::::::
(Demir, 2022),

::::::
making

:::
the

:::
KS

:::::::
statistic

::::::::
(D-value)

:
a
:::::
more

:::::::::
meaningful

::::::::
indicator.

:::
Our

:::::::
analysis

::::::
shows

:::
that

:::
the

::::::::
emissions

::
of
:::
the

::::
two

::::::::
scenarios

:::::
differ

::
to

::::::
varying

:::::::
extents,

::::
with

:::
all

:
D
::::::
values
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Table 2: Results of K-S test for eight emission variables of otp2030 and SSP2_2050 scenarios.

Variable K-S stat p-value

NO transportation 0.220 0.000

NO industry 0.109 0.000

NO power 0.100 0.000

NH3 agriculture 0.071 0.000

SO2 power 0.461 0.000

BC industry 0.224 0.000

OC residential 0.347 0.000

CO transportation 0.255 0.000

PM2.5 residential 0.348 0.000

XYLE industry 0.019 0.085

ALK3 transportation 0.393 0.000

ALK4 transportation 0.433 0.000

::::
being

:::::::
greater

::::
than

::::
zero.

:::
It

:
is
::::::::::

noteworthy
::::
that

::::::::
emission

:::::::
changes

:::
are

::::::::
primarily

:::::::::::
concentrated

::
in

:::::
major

:::::::
emission

::::::
regions

::
of

:::::::
eastern

:::::
China,

:::::::
whereas

::
in

:::::
many

:::::::
western

:::
and

:::::::
southern

:::::::
regions

::
the

:::::::::
variations

:::::
across

:::::::
scenarios

:::
are

:::::::::
negligible.

:::::
This

::::::
spatial

:::::::::::
heterogeneity

:::::::
implies

:::
the

:::::::
presence

::
of

:::::::::
redundant

:::::::
samples

::
in

:::
the

::::::
dataset,

:::::
which

:::::
could

:::
in

:::
turn

:::::::::
contribute

::
to

::::::::
statistical

:::::::::
similarities

::::::::
between

::::::::
scenarios

::::
when

:::::::::::
comparisons

::
are

:::::
made

::::::::
(D-value

:
<
:::::
0.3).

:::::::::::
Nevertheless,

:::
for

::::
most

::::::::
emission

::::::::
variables,

::
D

:::::
values

::::::
exceed

::::
0.1,

:::::::::
suggesting

:::
that

::::::
certain

:::::::::
differences

::::
still

::::
exist

:::::::
between

:::
the

::::
two

::::::::
scenarios.

RC: The claim that TGEOS predicts "probability distributions" is inconsistent with its methodology. (1)
Temporal distribution gap: The model outputs six statistical indicators (e.g., monthly percentiles) per grid
cell. However, no validation confirms these reconstruct temporal distributions at individual locations. (2)
Spatial vs. temporal conflation: Section 3.3 analyzes spatial probability distributions aggregated across
regions, which fundamentally differ from the temporal distributions implied by Section 3.2’s grid-level
statistics. This conceptual ambiguity obscures what "probability distribution" signifies in results. While
the six indicators efficiently summarize central tendency and spread, presenting them as full probability
distributions overstates methodological capabilities without empirical proof of distributional accuracy at
the intended spatiotemporal scale.

AR: We appreciate the reviewer’s comment and agree that our terminology could be made more precise. Our
primary goal was not to reconstruct full temporal probability distributions from limited statistics, but rather
to predict a set of monthly-scale concentration indicators that closely match those derived from GEOS-
Chem simulations under future emission scenarios. These six indicators are computed from daily mean
concentrations within each month and are intended to capture essential statistical properties of pollutant levels,
such as the 75th percentile and maximum concentration, that are particularly relevant for policy evaluation
and extreme-event assessment (Reich et al., 2012; Zhang et al., 2022).
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While this approach necessarily ignores the exact day-to-day temporal sequence, it enables a fast but
informative representation of pollution conditions at the monthly scale. For example, in a given GEOS-Chem
simulation, the peak PM2.5 concentration for a future scenario may occur on 23 January. Although TGEOS
cannot specify this exact date, since obtaining daily-resolved future concentrations is not technically feasible,
it can still capture the magnitude of this potential extreme event through the prediction of monthly maximum.
Moreover, we fit approximate probability distribution curves using these indicators to provide intuitive
visualization of distribution patterns and potential extremes for future PM2.5 and O3. These PDF fittings
are not intended as complete reconstruction of the true distribution, but rather as means of summarizing the
predicted concentration characteristics that close to GC outputs.

Regarding Section 3.2, our intention was to demonstrate the spatial agreement between TGEOS predictions
and GEOS-Chem simulations, including both elevated pollution months and other seasons. We were not
implying temporal distribution reconstruction in this section. Given that the model did not incorporate initial
concentration fields, each month’s prediction was treated independently.

To avoid ambiguity, we have revised the manuscript to replace “predict probability distributions” with “predict
key statistical summaries of monthly concentration distributions,” and explicitly clarify the application scope
for the TGEOS.

1 Introduction (L129-L131)

First, TGEOS is able to predict the probability distribution of future air quality under different emission
scenarios. Compared to solely average estimated by previous RSM methods, probability distribution
can provide informative frequency distributions of pollutants (yang et al., 2022).

::::
First,

:::::::
TGEOS

::
is

:::
able

::
to
::::::
predict

:::
the

::::
key

::::::::
statistical

::::::::
indicators

::
of

:::::::
monthly

:::::::::::::
concentrations,

:::
and

:::::::
provide

:::::::::::::
approximations

::
of

:::::::::
probability

::::::::::
distributions

:::::
under

::::::::
different

:::::::
emission

:::::::::
scenarios.

:::::::::
Compared

::
to

:::::
solely

::::::
average

:::::::::
estimated

::
by

:::::::
previous

::::::
RFMs,

:::::::::
probability

::::::::::
distribution

:::
can

:::::::
provide

:::::::::
informative

:::::::::
frequency

::::::::::
distributions

:::
of

::::::::
pollutants

:::::
(yang

:
et
:::
al.,

::::::
2022). .

3. Minor concerns

RC: Lines 8: The term "online predictions" is ambiguous and potentially misleading. The claimed probability
distributions are reconstructed from six statistical indicators rather than dynamically generated in real-
time.

AR: We appreciate the reviewer’s comment and agree that the term “online predictions” may be ambiguous in this
context. Our intention was not to imply dynamical or streaming predictions, but rather that the model timely
generates monthly statistical indicators for each grid cell given future emission scenarios. These indicators
reflect statistical features of PM2.5 and O3 concentrations to comprehensively present future air pollutants.
To avoid confusion, we have revised the wording in the manuscript to use a more precise term. Details are
shown below:

1. Abstract (L8)

In this study, an informative future air quality prediction model "TGEOS v1.0" based on the Transformer
framework is developed as an efffcient agent model of GEOS-Chem v14.2.2. TGEOS is able to swiftly
and accurately conduct online predictions of probability distributions for PM2.5 and O3 concentrations

::::::::
efficiently

:::::::
estimate

::::
key

::::::::
statistical

:::::::::
indicators

::
of

::::::
PM2.5 :::

and
:::
O3::::::::::::

concentrations under future emission
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scenarios and capture potential extreme pollution events.

2. Prediction of probability distribution of PM2.5 and O3 (Section 2.3, L401)

Furthermore, the TGEOS model shows a high level of similarity to the GC model in predicting pollutant
distribution and extreme events, making it a valuable tool for online

::::
rapid assessments of related

emission reduction policies to enhance decision-making efficiency.

3. Conclusion (L435)

TGEOS has successfully established the complex relationship between precursor emissions and con-
centrations of PM2.5 and O3 pollutants, which can be used for rapid online assessment of the effects of
different emission control schemes.

RC: Lines 12: The interpretation of correlation coefficients (0.97 for PM2.5, 0.96 for O3) is unclear. Specify
whether these values represent spatial correlation between models, probability distribution accuracy, or
overall model performance metrics.

AR: We thank the reviewer for pointing out the ambiguity. The reported correlation coefficients (0.97 for PM2.5

and 0.96 for O3) in Section 3.3 refer to the model performance of averaged TGEOS predictions across all grid
cells within each key pollution region. Specifically, for each region, we computed the Pearson correlation
coefficient between predicted and simulated values at each grid cell, and then averaged these values. The
0.97 (PM2.5) and 0.96 (O3) values correspond to the lower limit of calculated regional averages across the
key regions. To avoid conclusion, we have revised the definition of these correlation coefficients to more
understandable metrics representing the overall model performance for national winter PM2.5 and summer
O3 in the test set. We have revised the corresponding part of the manuscript, with details shown in blew.

Abstract (L11-L13)

The spatial and probability distributions predicted by TGEOS are in good agreement with GEOS-Chem,
with the

::::::
general correlation coefficients for PM2.5 and O3 exceed 0.97 and 0.96, respectively.

::::
0.98

::
in

:::::::::::
high-pollution

:::::::
months.

RC: Line 56: The 350-hour computational benchmark lacks critical context. Specify whether this duration
includes: (a) Standalone nested-domain simulation (0.5°×0.625° over China); (b) Coupled global (2°×2.5°)
+ nested simulations (0.5°×0.625° over China); (c) Hardware specifications (CPU/GPU model, and
software)

AR: We thank the reviewer for pointing out the lack of computational context. The reported 350-hour computa-
tional benchmark refers to a standalone nested-domain GEOS-Chem simulation over China at 0.5° × 0.625°
resolution. This duration was measured from the 2017 baseline scenario simulation and is representative
for all nested-domain simulations in our study. All simulations used identical configurations: GEOS-Chem
version 14.2.2, compiled with OpenMP parallelization (OMP_NUM_THREADS = 32), executed on a Linux
cluster node equipped with two Intel(R) Xeon(R) E5-2620 v4 CPUs (8 cores per socket, 32 logical processors
total) and 62 GB RAM. The manuscript Line 56 was revised as:

Typically, for GEOS-Chem version 14.2.2, on a computational cluster utilizing 32 cores
::
on

:
a
::::::::::::
computational

:::::
cluster

:::::::::
mentioned

::
in

:::::::
Section

::::
2.1.2 , a 1-year

::::::
one-year

::::::::::
standalone full-chem nested simulation of China
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at a resolution of 0.5 × 0.625 requires approximately 350 hours, and this duration is expected to increase
when conducting simulations at finer resolutions or over extended time periods.

And the specifications of computation device in this study has been listed in Section 2.1.2 of the manuscript:

2.1.2. GEOS-Chem configuration (L190-L191)

For anthropogenic emissions out of China, we used data from the Community Emissions Data
System (CEDS) inventory (Hoesly et al., 2018).

::
All

:::
the

::::
GC

::::::::::
simulations

::
in
::::

this
::::::::

research
:::::
relied

::
on

::::::::
identical

:::::::::::::
configurations:

::::::::::::
GEOS-Chem

::::::
version

:::::::
14.2.2,

::::::::
compiled

:::::
with

::::::::
OpenMP

::::::::::::
parallelization

:::::::::::::::::::::
(OMP_NUM_THREADS

:
=
::::
32),

:::::::
executed

:::
on

:
a
:::::
Linux

::::::
cluster

::::
node

::::::::
equipped

::::
with

:::
two

:::::::
Intel(R)

:::::::
Xeon(R)

:::::::
E5-2620

::
v4

::::::
CPUs

::
(8

::::
cores

:::
per

:::::::
socket,

::
32

::::::
logical

:::::::::
processors

:::::
total)

:::
and

:::
62

:::
GB

:::::
RAM.

RC: Line 102: The term "middle-scale region" requires quantitative definition.

AR: We thank the reviewer for pointing out the ambiguity. By “middle-scale region,” we refer to mega-urban
agglomerations like the North China Plain (NCP) and Yangtze River Delta (YRD) regions in China, typically
covering multiple cities and spanning several hundred kilometers across, and suffering from severe air
pollution. We have avoided such vague expressions in the revised manuscript

RC: Table 1: The relationship between DPEC-SSP (socioeconomic pathways) and DPEC-CA (policy scenarios)
remains unexplained. Justify scenario combinations’ scientific relevance to climate modeling objectives.
Expand all acronyms (e.g., SSP1-5, SSP1-26-BHE control, early_peak-net_zero-clean_air control) in
table/footnotes.

AR: We thank the reviewer for this comment. On one hand, the DPEC-SSP scenarios (SSP1–SSP5) are derived
from the Shared Socioeconomic Pathways (SSP) framework and represent long-term global socioeconomic
trajectories (e.g., low-emission sustainable development under SSP1, fossil-fuel intensive pathway under
SSP5). Within DPEC, five CMIP6 climate scenarios (i.e., SSP1-26, SSP2-45, SSP3-70, SSP4-60, SSP5-85)
and three groups of pollution control scenarios (i.e., Business-As-Usual, BAU; Enhanced-control-policy, ECP;
Best-Health-Effect, BHE) are considered to represent five future emission scenarios in China under different
socioeconomic and technological assumptions (Tong et al., 2020). On the other hand, the DPEC-CA scenarios
are based on SSP1 assumption without considering additional climate or air pollution control policies, and
constructed to reflect policy-driven “clean air” emission control pathways in China like carbon peak policies
and carbon neutrality target (Cheng et al., 2023). For example, the on-time peak-clean air (mentioned as “otp”
in the manuscript) scenarios will implement the Best-Health-Effect (BHE) local pollution control by 2060 but
further deploy carbon reduction measures in 2020-2030, to achieve the carbon peak around 2030. Compared
with DPEC-SSP, DPEC-CA scenarios represent more strict emission control policies and can provide more
“low-value” samples for the whole training set. By combining DPEC-SSP and DPEC-CA, the model will
consider both global socioeconomic influences and China-specific policy interventions to the emission levels,
which strengthen the predictive ability of TGEOS for future air quality assessments.

In addition, we would like to clarify that the objective of this study is air quality modeling rather than climate
modeling. While climate scenarios can influence long-term air quality, the present work does not explicitly
incorporate climate variability or emission–climate feedbacks. Instead, we focus on future emission-driven
changes in pollutant concentrations. The DPEC-SSP and DPEC-CA scenarios were selected because they
provide a scientifically consistent and policy-relevant representation of China’s future emissions at high
spatial resolution, including both baseline socioeconomic pathways and alternative policy controls. These
scenarios are widely recognized as a reliable basis for projecting China’s future emission trajectories (Cheng
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et al., 2021). By using them, our study can efficiently and systematically explore the potential air quality
outcomes under different emission futures. Therefore, the integration of DPEC-SSP and DPEC-CA in this
work is motivated not by climate modeling objectives, but by the need to ensure credible emission inputs for
rapid air quality assessments.

Acronym expansion (to be added in table footnotes): SSP1-5: five CMIP6 climate scenarios under Shared
Socioeconomic Pathways (SSPs).

SSP1-26-BHE control: scenario combined with SSP1-26 climate scenario and Best-Health-Effect (BHE)
pollution control scenario.

SSP2-45-ECP control: scenario combined with SSP2-45 climate scenario and Enhanced-control-policy (ECP)
pollution control scenario.

SSP3-70-BAU control: scenario combined with SSP3-70 climate scenario and Business-As-Usual (BAU)
pollution control scenario.

SSP4-60-BAU control: scenario combined with SSP4-60 climate scenario and Business-As-Usual (BAU)
pollution control scenario.

SSP5-85-BHE control: scenario combined with SSP5-85 climate scenario and Best-Health-Effect (BHE)
pollution control scenario.

clean_air: scenarios shares the same socio-economic development and energy transitions as the SSP1, but the
optimal end-of-pipe pollution control will be implemented during 2020–2060 to explore the contribution and
potential of stricter clean air actions to future air quality improvement.

on-time_peak_clear-air: scenarios driven by SSP1 socio-economic development, and will deploy various
carbon reduction measures in 2020–2030 to achieve carbon peak around 2030, but there are no additional
climate targets after 2030 to reinforce the low-carbon transition; configurations on end-of-pipe pollution
control is consistent with the clean air scenario.

early_peak-net_zero-clean_air: scenarios driven by SSP1 with intensified carbon reduction measures in
2020–2030 to boost an earlier carbon peak around 2025, and after 2030, more ambitious low-carbon transition
will be intensified to achieve carbon neutrality by 2060 (Cheng et al., 2023).

The Detailed explanation of clean_air, on-time_peak_clear-air, and early_peak-net_zero-clean_air scenarios
are discussed in Cheng et al. (2023).

We have revised the corresponding part of the manuscript, with details shown in blew.

2.1.1 Multi-scenario inventory (L154-L166)

As a prerequisite to simulate future air quality, we produced a multi-scenario emission inventory
of 36 emission scenarios, including 24 future emission scenarios, 11 fine-tuned scenarios and 1
background scenario. Detailed information on the inventory is shown in Table 1. We first used
24 future emission scenarios based on the DPEC (Dynamic Projection model for Emissions in
China) platform (http://meicmodel.org.cn) to initially construct the data set. As a dy-
namic model developed by Tsinghua University (Tong et al., 2020), DPEC can reflect the dynamic
changes of China’s future emissions under various socioeconomic and policy control scenarios,
and provide detailed gridded emission data, including emissions with different control scenarios,
emission sectors and spatial coordinate information. Specifically, we designed two scenario sets of
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DPEC-SSP and DPEC-CA to represent emission scenarios under different social-economic scenarios
and different emission reduction policies, respectively. DPEC-SSP was selected from DPECv1.0
(Tong et al., 2020) and consists of five sub-scenario sets (SSP1-5). Data of 2030, 2040 and 2050
were selected in each sub-scenario, and each of them was treated as an independent emission scenario
for our multi-scenario inventory. DPEC-CA was selected from DPECv1.2 (Cheng et al., 2023) and
was composed of three sub-scenario sets including "clean air", "on-time peak-clean air", and "early
peak-net zero-clean air". Similarly, we selected three years of data for each sub-scenario set as
independent emission scenarios.

:::
The

::::::::::::::
DPEC-provided

::::::::
scenarios

:::
are

::::::
widely

::::::::::
recognized

::
as

:
a
:::::::

reliable

::::
basis

:::
for

:::::::::
projecting

::::::
China’s

::::::
future

:::::::
emission

::::::::::
trajectories

:::::::::::::::::
(Cheng et al., 2021).

::::::
Firstly,

:::
we

::::::::::
constructed

:
a
:::::::
scenario

:::
set

::::::
named

::::::::::::
"DPEC-SSP"

::
to

::::::::
represent

::::::::
emission

::::::::
scenarios

:::::
under

::::::::
different

:::::::::::::
socio-economic

:::::::
scenarios

::::
and

:::::::
different

::::::::
emission

::::::
control

::::::::
policies.

:::::::::
DPEC-SSP

::::
was

:::::::
selected

:::::
from

:::::::::
DPECv1.0

:::::
(Tong

::
et

::
al.,

::::::
2020)

:::
and

:::::::
consists

::
of

::::
five

::::::::::
sub-scenario

::::
sets

::::::
(SSP1

::
to

:::::
SSP5)

:::
as

:::::::::::
combinations

::
of

::::::::
different

::::::
climate

:::::::
scenarios

:::::
(i.e.,

::::::::
SSP1-26,

::::::::
SSP2-45,

::::::::
SSP3-70,

::::::::
SSP4-60,

::::::::
SSP5-85)

:::
and

::::::::
pollution

::::::
control

::::::::
scenarios

::::
(i.e.,

::::::::::::::::
Business-As-Usual,

:::::::::::::::::::::
Enhanced-control-policy,

::::::::::::::::
Best-Health-Effect).

::::::::
Sectoral

::::::::
emissions

::
of

:::::
2030,

:::::
2040

:::
and

::::
2050

:::::
were

::::::
selected

::
in
:::::
each

:::::::::::
sub-scenario,

:::
and

::::
each

::
of

:::::
them

:::
was

::::::
treated

::
as

::
an

:::::::::::
independent

:::::::
emission

:::::::
scenario

:::
for

::
the

:::::::::::::
multi-scenario

::::::::
inventory.

:::::::::::
Furthermore,

::
to

:::::::
capture

:::::::::::
policy-driven

:::::
“clean

::::
air”

::::::::
pathways

::::
such

::
as

::::::
carbon

:::::::
peaking

:::
and

::::::
carbon

:::::::::
neutrality

::::::
targets

::
in

::::::
China,

::::::
another

:::::::
scenario

::::
set,

:::::::::
DPEC-CA,

::::
was

::::::::
developed

:::::
based

:::
on

:::::::::
DPECv1.2

::::::
Cheng

::
et

:::
al.,

::::::
2023)

::::::
dataset.

::::
The

::::::::::
DPEC-CA

:::
was

:::::::::
composed

::
of

:::::
three

::::::::::
sub-scenario

::::
sets

::::::::
including

:::::
"clean

::::
air",

::::::::
"on-time

:::::::::
peak-clean

::::
air",

::::
and

:::::
"early

::::::::
peak-net

::::::::
zero-clean

::::
air".

::::
Each

::
of

:::::
these

:::::::
scenario

::::
was

::::::::::
constructed

::
on

:::::
SSP1

::::::::::
assumption,

:::::::
without

::::::::::
introducing

:::::::::
additional

::::::
climate

::
or

::
air

::::::::
pollution

:::::::
control

:::::::
policies,

::
to

::::::
reflect

:::::::
different

:::::::::
short-term

::::::
carbon

::::::::
emission

::::::::
reduction

:::::::
policies

::
in

:::::
China.

::::::::::
Compared

::::
with

::::::::::
DPEC-SSP,

:::::::::
DPEC-CA

::::::::
scenarios

::::::::
represent

:::::
more

::::::::
stringent

::::::::
emission

::::::
control

::::::
policies

::::
and

:::
can

::::::
provide

:::::
more

::::::::::
“low-value”

:::::::
samples

::
to

:::::
enrich

:::::::
training

:::
set.

:::::::
Similar

::
to

::::::::::
DPEC-SSP,

::::
three

::::
years

::::::
(2030,

:::::
2040,

:::
and

:::::
2050)

:::::
were

:::::::
selected

::::
from

::::
each

:::::::::
DPEC-CA

:::::::::::
sub-scenario,

::::
with

::::
each

::::
year

::::::
treated

::
as

::
an

::::::::::
independent

::::::::
emission

::::::::
scenario.

RC: Lines 167-172: Explain how MEIC-2017-based perturbations enhance generalizability for 2030-2050
predictions. Address potential biases from applying contemporary (2017) emission factors to distant future
scenarios (13-33 year gap).

AR: We thank the reviewer for this question. All future emission scenarios in our study are constructed based
on the 2017 MEIC inventory, with each grid cell treated independently. Introducing perturbations relative
to MEIC-2017 enhances model generalizability by providing multiple emission levels per grid cell in the
training data, thereby expanding coverage of the input space and reducing the risk of extrapolation to unseen
values, especially for those predictions under high emission scenarios. We acknowledge that this approach
may introduce biases for distant future years, as spatial emission patterns may change over time. However,
the primary aim of this study is to quantify the concentration response to changes in emission magnitudes
rather than to provide precise forecasts of absolute future air quality.

RC: Text S1 (Line 16): Correct "Fig ??" with the appropriate figure identifier. Verify all figure citations for
accuracy.

AR: We thank the reviewer for pointing this out. The placeholder “Fig ??” in Text S1 (Line 16) will be replaced
with the correct identifier. We will also carefully review all figure citations throughout the manuscript and
supplementary material to ensure their accuracy.

For instance, in the tun0.6 scenario depicted in Fig ??
::::::::
mentioned

::
in
:::::

Table
::
1 , coefficient matrix for

each emission variable was created from multiple sampling of the MND with 0.6 as the mean.
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RC: Lines 173-179: Clarify why DPEC-SSP/CA emissions were scaled using 2017 MEIC ratios rather than
used directly. Define the "five sectors" referenced. Justify setting coefficient maximums to 2.0. Quantify
the percentage of coefficients exceeding this threshold and discuss sensitivity to alternative values (e.g., 1.5
or 2.5). Specify what constitutes the "original inventory."

AR: We appreciate the reviewer’s request for clarification and provide the following details:

(1) Rationale for not directly using DPEC-SSP/CA emissions: The DPEC-SSP/CA scenario inventories
are provided in units of tons per grid cell, whereas the “original inventory” referred to in our manuscript is
expressed in kg/m²/s. To reconcile these formats, we obtained DPEC and MEIC inventories (both in tons per
grid cell) from their respective official sources and computed a grid-wise ratio matrix. This matrix captures
future emission trends for each sector and species, and was then applied to the MEIC emissions in rate form
(kg/m²/s) used for GEOS-Chem input.

(2) Definition of “five sectors”: These correspond to power, industry, residential, transportation, and agricul-
ture.

(3) Justification for a maximum coefficient of 2.0: Inspection of the raw ratio matrices showed that over 80%
of grid cells had coefficients below 2.0, with most values in key emission regions concentrated between 0.3
and 1.5. Coefficients exceeding 2.0 occurred almost exclusively in very low-emission grid cells (typically <
0.1 ton per grid), where differences between DPEC and MEIC inventories in absolute terms are small but
amplified in ratio form. Thus, slightly adjusting the coefficient threshold has negligible influence on the
resulting GEOS-Chem simulations. Although some previous studies have adopted lower thresholds (e.g., 1.2,
(Xing et al., 2011)), other research suggests that future emissions in certain heavily polluted regions could
plausibly exceed 1.5 Brean et al. (2023), making 2.0 a more flexible yet still reasonable limit.

We revised Section 2.1 to include these clarifications, with details below:

2.1.1 Multi-scenario inventory (L173-L179)

For each emission scenario, we divided it by the 2017 MEIC inventory to obtain a series of monthly
coefficient matrices for the emissions of various species in five sectors. It is worth noting that since
the units of DEPC and MEIC data are tons per grid, significant variation are exhibited between
adjacent grids. Thus, we set the maximum value of each coefficient matrix to 2.0 when making the
DPEC scenarios to avoid abnormal emission coefficients due to magnitude differences. Subsequently,
we multiplied the generated coefficient matrices to the corresponding part of the original inventory
used for GEOS-Chem input to obtain the multi-scenario inventory that reflect the control of each
scenario. The new inventory was employed in GEOS-Chem simulating to obtain PM2.5 and O3
concentrations under future emission scenarios.

:::::
Since

:::
the

:::
unit

:::
of

:::::::::::::
DPEC-SSP/CA

::::::::
emissions

::
is

:::::
t/grid,

:::::
which

::
is

:::::::::::
incompatible

::::
for

:::::::::::
GEOS-Chem

::::::::
running,

:::
we

::::
used

::::::
MEIC

:::::::::
inventory

::::
with

:::::
t/grid

:::
as

::::
unit

::
at

::::
2017

::
as

::
a
::::::::::
benchmark

::::::::
(denoted

::
as

:::::::::
b-MEIC),

:::
and

:::::
make

:::::::::::
elementwise

::::::::
divisions

:::::::
between

::::::
DPEC

::::
and

:::::::
b-MEIC

::
to

:::::
obtain

::
a

:::::
series

::
of

:::::::
monthly

::::::::
emission

:::::::::
coefficient

:::::::
matrices

:::
for

::::::
various

::::::
species

::
in

::::
five

::::::
sectors,

::::::
namely

::::::
power,

:::::::
industry,

::::::::::
residential,

::::::::::::
transportation,

::::
and

:::::::::
agriculture.

::::::
Since

:::
the

:::::::
majority

::
of

:::::
grids

::::
with

:::::::
emission

:::::
factor

:::::::
smaller

::::
than

:::
2.0

::::::
(>80%)

::::
and

::
to

::::::
prevent

::::::::
abnormal

::::::
values

:::
due

::
to
:::::::::

magnitude
:::::::::
difference

::
of

:::
two

::::::::::
inventories,

::::
the

::::::::
threshold

::
of

::::::::
emission

::::::
factors

::::
was

:::::::::
artificially

:::
set

:::
to

:::
2.0.

:::::::::::::
Subsequently,

:::
we

::::
took

::
the

::::::
Schur

::::::
product

::
of

:::
the

:::::::::
coefficient

:::::::
matrices

::::
and

::::::::::::
corresponding

:::
part

:::
of

:::::
MEIC

::::::::
inventory

::::
used

:::
for

:::::::::::
GEOS-Chem

:::::
input,

::::
with

:::
unit

::
of

:::::::
kg/m²/s,

::
to

:::::::
generate

::::::::
emission

:::::::::
inventories

::::::::
projected

::::
with

:::::::::::::
DPEC-SSP/CA.

RC: Line 184-185: Report the spin-up time for the global GEOS-Chem simulations providing boundary
conditions.
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AR: We appreciate the reviewer’s comment. For the global GEOS-Chem simulations (2° × 2.5°) that provided
boundary conditions to the nested-domain runs, we used a spin-up period of 6 months to minimize the
influence of initial conditions.

RC: Lines 185-187: Elaborate how MERRA-2 meteorology was integrated into GEOS-Chem. Confirm whether
meteorology was prescribed identically across all 36 emission scenarios. Discuss the limitation of using
static 2017 meteorology for future scenarios, as it ignores potential meteorology-emission feedbacks and
climate variability, particularly for ozone sensitivity.

AR: We thank the reviewer for the comment. The MERRA-2 meteorological fields were integrated into GEOS-
Chem through the standard HEMCO interface, providing assimilated meteorology at 0.5° × 0.625° (nested
domain) and 2° × 2.5° (global) resolution, with a 3-hour temporal resolution. All 36 emission scenarios in
this study were simulated with identical 2017 MERRA-2 meteorology. As mentioned in major comment 2,
the methodology of varying emission under fixed meteorological condition is commonly applied in explor-
ing future air quality. This design was intentional to isolate the impact of emissions on concentrations by
removing meteorological variability, allowing for a more controlled assessment of emission–concentration
relationships. We acknowledge that using fixed-year meteorology does not capture climate variability or emis-
sion–meteorology feedbacks, such as the influence of temperature and radiation changes on ozone formation,
or aerosol–radiation interactions under future scenarios. We have revised the manuscript to explicitly state
this limitation in the part of Conclusion Section and note that incorporating variable meteorology in future
work would enable the evaluation of combined emission and climate drivers on air quality.

4 Conclusions (L457-L462)

Additionally, due to the considerable effect of meteorological conditions on the generation (Shi et al.,
2020), spatiotemporal patterns (Zhang et al., 2013; Chen et al., 2020), and concentration levels (Wang
et al., 2019) of PM2.5 and O3 concentrations, and meteorological conditions other than 2017 are not
considered in this study. Consequently, there is also a need to incorporate various climate scenarios
that represent meteorological variations to enhance the TGEOS’s predictive capability regarding future
air quality under more complex scenarios with variations in emissions and meteorology.

::::::::::
Additionally,

::
in

::::
order

::
to

::::::
isolate

:::
the

:::::
impact

:::
of

:::::::
emission

:::::::
changes

::
to

:::::
future

:::
air

::::::
quality

::
as

:::::::
previous

::::::
studies

:::
did

::::
(Shi

:
et
:::
al.,

:::::
2020;

:::::
Wang

::
et

:::
al.,

:::::
2023),

:::
the

:::::::::::
meteorology

:::
for

:::
GC

::::::::::
simulations

::
of

::
all

::::::::
scenarios

::::
was

::::
fixed

::
at
:::::
2017.

::::
The

::::::::
identified

::::::::::
meteorology

:::::
limits

:::::::::
TGEOS’s

::::::
ability

::
to

:::::::
generate

:::::::
reliable

:::::::::
estimations

:::
in

:::::::::::::::
cross-meteorology

::::::::
scenarios,

:::
and

::
to

::::::
capture

:::::::::::::::::::
meteorology–emission

::::::::::
interactions

:::
and

::::::::::::::::
“emission–climate”

:::::::::
feedbacks.

::::::::::::
Consequently,

::::
there

::
is

:::
also

::
a
::::
need

::
to

::::::::::
incorporate

::::::
various

::::::
climate

::::::::
scenarios

::::
that

:::::::
represent

:::::::::::::
meteorological

::::::::
variations

::
to

:::::::
enhance

::
the

:::::::::
TGEOS’s

::::::::
predictive

::::::::
capability

::::::::
regarding

::::::
future

::
air

::::::
quality

:::::
under

:::::
more

:::::::
complex

::::::::
scenarios

::::
with

::::::::
variations

::
in

::::::::
emissions

::::
and

:::::::::::
meteorology.

RC: Lines 190-191: Justify the use of different emission inventories for China (MEIC) and other regions
(CEDS). Address potential inconsistencies in source sectors, speciation, or spatial/temporal resolution
between inventories.

AR: We appreciate the reviewer’s comment. As this study focuses on the China region, we used the MEIC
inventory because it provides more accurate and precise emissions for China, with sectoral and species
definitions consistent with those in the DPEC inventory (Li et al., 2017; Tong et al., 2020). This consistency
facilitates the construction of multiple emission scenarios for our model. The CEDS inventory was used only
for the global 2° × 2.5° simulations to generate boundary conditions for the nested-domain runs. These global
simulations were performed with fixed emissions and served as a common set of boundary fields for all 36
emission scenarios.
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RC: Lines 192-203: Describe GEOS-Chem inputs/outputs (emissions, meteorology, concentrations) in Section
2.1, and TGEOS training inputs/outputs in Section 2.2. Specify the spatiotemporal resolution of all
TGEOS input features (emissions, meteorology) and output targets. Clarify if training is grid-cell-based.
If so, justify why only the 8 nearest neighbors are sufficient to represent regional transport. List the "8
key meteorological parameters" explicitly. State that "dust components were excluded" means PM2.5

predictions exclude dust aerosols—highlight that this deviates from standard PM2.5 definitions and
significantly impacts regions like Northwest China.

AR: We thank the reviewer for the detailed suggestions. We will revise Sections 2.1 and 2.2 to clarify the
following: (1) GEOS-Chem inputs/outputs: As we mentioned in Section 2.1.2, the nested-domain GEOS-
Chem simulations (0.5° × 0.625° over China) used anthropogenic emissions from multi-scenario inventory
(0.25° × 0.25° over China) as substitutes for MEIC in China, along with identical biogenic emissions from
MEGAN and other natural sources. MERRA-2 meteorological fields in 2017 provided the meteorology
inputs, along with identical boundary condition and restart files as the concentration inputs. The model
outputs included hourly concentrations of O3 and daily concentrations of PM2.5 components.

(2) TGEOS training inputs/outputs: As we described in Table 2, the TGEOS model was trained on a
grid-cell basis, with each sample containing local and surrounding (8-neighbor) emissions for 105 sectoral
anthropogenic sources, 9 key meteorological parameters, spatial coordinates (latitude, longitude), as well
as the simulating months. The emissions and meteorology were interpolated into 0.5° × 0.625° for model
input. Output targets were 12 monthly statistical indicators (mean, min, max, median, 25 and 75 percentiles)
for PM2.5 and O3 at the same grid cell with spatial resolution of 0.5° × 0.625°. The temporal resolution of
all input features was monthly, with concentration data derived from hourly/daily GEOS-Chem outputs and
meteorology data stemmed from MERRA-2 reanalysis after interpolation.

(3) Spatiotemporal resolution: We adopted the 8 nearest neighbors to efficiently represent regional transport
influence while keeping feature dimensionality tractable. On one hand, we focused on short-range regional
transport effects in this study. Given the relatively coarse spatial resolution of 0.5° × 0.625°, the 8 surrounding
grid cells already cover a substantial geographic area of 200–250 km2, within which emissions typically exert
the most significant influence on local pollutant concentrations (Liu et al., 2019). On the other hand, taking
more grids into account could bring about redundancy features and thus affect model performance.

(4) There are actually 9 meteorological parameters mentioned in this article, namely 2-meter air temperature
(T2M), 10-meter northward wind (V10M), 10-meter eastward wind (U10M), planetary boundary layer
height (PBLH), 2-meter specific humidity (QV2M), total precipitation (PRECTOT), relative humidity (RH),
evaporation from turbulence (EVAP), and surface pressure (PS). We have corrected the text in Line 195 to
match Table 2, now referring to “9 meteorological parameters” for consistency and accuracy.

(4) By “dust components were excluded,” we mean that PM2.5 predictions in this study exclude dust aerosol
species (DST1–DST4 in GEOS-Chem). We acknowledge that this differs from the standard PM2.5 definition
and may lead to underestimation in dust-influenced regions such as Northwest China. However, our research
focused on variations of anthropogenic emissions to air pollutants concentrations, large predictive bias may
arise in the northern China such as NCP and FWP when considering the impact of dust.

We have revised the corresponding part of the manuscript, with details shown in blew.

2.1.2 GEOS-Chem configuration

The GEOS-Chem chemistry
:::::::
chemical transport model (http://www.geos-chem.org, version 14.2.2)

was used to simulate the spatiotemporal distribution of surface PM2.5 and O3 concentrations under
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different emission scenarios based on year 2017. The nested model was configured with a horizontal
resolution 0.5° latitude by 0.625° longitude covering China (from 17.5 to 54°N and 72 to 136°E) and
47 vertical layers. Boundary condition files for model startup were offered by 1-year global GC simu-
lation with a horizontal resolution of 2° latitude by 2.5° longitude. Assimilated meteorological data
from the NASA Global Modeling and Assimilation Office’s Modern-Era Retrospective analysis for
Research and Applications Version 2 (MERRA-2) (Gelaro et al., 2017) were selected as meteorology
fields entering the model.

::::::::::
Assimilated

:::::::::::::
meteorological

::::
data

::::
from

::::
the

::::::
NASA

::::::
Global

::::::::
Modeling

::::
and

::::::::::
Assimilation

:::::::
Office’s

:::::::::::
Modern-Era

:::::::::::
Retrospective

::::::::
analysis

:::
for

::::::::
Research

:::
and

:::::::::::
Applications

:::::::
Version

::
2

::::::::::
(MERRA-2)

:::::::::::::::::
(Gelaro et al., 2017)

:::::
were

:::::::
selected

:::
as

::::::::::
meteorology

::::::
fields

:::::::
entering

:::
the

::::::
model

:::::::
through

:::::::
HEMCO

::::::::
interface,

::::
with

:::
the

::::::
3-hour

:::::::
temporal

::::::::
resolution

::::
and

:::
0.5°

::
×

::::::
0.625°

::::::
spatial

::::::::
resolution.

::::::::::
Consistent

::::
with

:::::::
previous

::::::
studies

::
on

:::::
future

:::
air

::::::
quality

:::::::::
assessment

::::::::::::::::::::::::::::::::::::::::
(Shi et al., 2021; Shi et al., 2022; Shi et al., 2023),

::
the

:::::::::::::
meteorological

:::::
inputs

:::::
were

::::
fixed

::
at
:::::
2017

:::
for

::
all

::::::::::
simulations

::
in

::::
this

:::::
study

::
to

::::::
isolate

:::::::::::
concentration

::::::
changes

::::::::::
attributable

:::::
solely

::
to

::::::::
emission

:::::::::
variations. The Multi-resolution Emission Inventory for China

(MEIC, http://meicmodel.org/) (Li et al., 2017) and the multi-scenario emission inventories with a hori-
zontal resolution of 0.25° latitude by 0.25° (as detailed in 2.1.1) were used as the monthly anthropogenic
emissions to simulate PM2.5 and O3 concentrations under various emission scenarios. For anthro-
pogenic emissions out of China, we used data from the Community Emissions Data System (CEDS) in-
ventory (Hoesly et al., 2018).

:::
All

:::
the

:::
GC

::::::::::
simulations

::
in

:::
this

:::::::
research

:::::
relied

:::
on

:::::::
identical

::::::::::::
configurations:

:::::::::::
GEOS-Chem

::::::
version

::::::
14.2.2,

::::::::
compiled

::::
with

::::::::
OpenMP

::::::::::::
parallelization

:::::::::::::::::::::
(OMP_NUM_THREADS

::
=

:::
32),

:::::::
executed

:::
on

:
a
:::::
Linux

::::::
cluster

::::
node

::::::::
equipped

::::
with

::::
two

:::::::
Intel(R)

:::::::
Xeon(R)

:::::::
E5-2620

:::
v4

:::::
CPUs

::
(8

:::::
cores

:::
per

::::::
socket,

::
32

::::::
logical

:::::::::
processors

:::::
total)

:::
and

:::
62

:::
GB

:::::
RAM.

2.1.3 Multi-scenario dataset

As demonstrated in Table 2, Sectoral emission data for 26 precursors across all grid cells in each
scenario were utilized as training features. To account for pollutant transport from adjacent areas,
emission data from the 8 grid cells surrounding the target grid were also incorporated as training
features. Concurrently, 8 key meteorological parameters, previously demonstrated to exhibit significant
correlations with PM2.5 and O3 concentrations (Shi et al., 2020; Zhang et al., 2022a), for both
the target and neighboring grids derived from MERRA-2 data from 2017 were included as training
features. Furthermore, local and peripheral spatial location information was incorporated as a training
feature to enable the model to capture spatial patterns in pollutant emissions and concentrations.
Finally, twelve statistical indicators, including the 25 quantile, 75 quantile, median, average, maximum,
and minimum values that derived from the daily averaged concentrations of PM2.5 and O3 of a month,
were utilized as training targets to represent the probability distribution of pollutant concentrations.
It should be noted that this study mainly concentrates on the prediction of air quality in different
scenarios of anthropogenic emissions, so the dust components were excluded during subsequent
data processing.

::::::
Before

:::::
model

:::::::
training

::::
and

:::::::::
evaluation,

:::
we

::::::::::
constructed

::
a
::::::::::::
multi-scenario

::::::
dataset

:::
by

:::::::::
combining

::::::::
emissions

::::
with

:::
the

::::::::::::
corresponding

:::
GC

::::::::::
simulations,

::
as

::::::::::
summarized

:::
in

::::
Table

::
1.
:::::
Each

::::::
sample

::
in

:::
this

::::::
dataset

::
is

::::::
defined

::
on

::
a
:::::::
grid-cell

:::::
basis.

:::
All

::::::::
emission

:::
data

:::::
were

::::::::::
interpolated

::
to

:
a
::::::
spatial

::::::::
resolution

::
of

::::
0.5°

::
×

:::::
0.625°

:::
to

:::::
match

:::
the

:::
GC

:::::::::::
simulations.

:::::::
Detailed

::::::::::
descriptions

::
of

:::
the

:::::
input

:::::::
features

:::
and

::::::
output

:::::
targets

:::
are

::::::::
provided

::
in

:::::
Table

::
2.

:::
For

:::::
each

:::
grid

::::
cell,

::::
105

:::::::
sectoral

::::::::
emissions

::::
were

:::::::
selected

:::
as

::::::::
predictors

::
to

::::::::
represent

::::
local

::::::::
emission

::::::::::
conditions.

:::
At

::::
this

:::::::::
resolution,

::
a
::
3
::
×

::
3
::::
grid

:::::::
domain

::::::
already

::::::
covers

::
a

:::::::::
geographic

:::::
extent

:::
of

::::::::::::
approximately

::::::::
200–250

::::
km2,

::::::
within

::::::
which

::::::::
emissions

::::::::
typically

::::
exert

:::
the

:::::
most

:::::::::
pronounced

:::::::::
influence

::
on

:::::
local

::::::::
pollutant

::::::::::::
concentrations

:::::::::::::::
(Liu et al., 2019).

::::
To

:::::::
account

:::
for

:::::::
regional

:::::::
transport

::
of

::::::::::
precursors,

::
we

::::
also

:::::::::::
incorporated

:::
the

::::::::
emissions

::
of

:::
the

:::::
eight

::::::::::
neighboring

::::
cells.

:::
In

:::::::
addition,

:::
nine

::::
key

:::::::::::::
meteorological

::::::::
variables,

:::::::::
previously

:::::::::
identified

::
as

:::::::
strongly

:::::::::
correlated

:::::
with

:::::
PM2.5::::

and
:::
O3

23



::::::::::::
concentrations

::::
(Shi

::
et

:::
al.,

:::::
2020;

::::::
Zhang

::
et

:::
al.,

:::::::
2022a),

::::
were

::::::::
included

::
for

:::::
each

::::
local

::::
and

::::::::::
neighboring

:::::
grids,

::::::
based

::
on

:::
the

:::::
2017

:::::::::
MERRA-2

:::::::::
reanalysis

::::::::
processed

::::
into

:::::::
monthly

::::::::
averages.

::::::
Spatial

::::::::::
information

::
of

::::
both

:::
the

:::::
local

:::
and

:::::::
adjacent

:::::
grids

::::
was

::::::
further

:::::::::::
incorporated

::
to

::::::
enable

:::
the

:::::
model

:::
to

::::::
capture

::::::
spatial

:::::::::::
heterogeneity

::
in

:::::::::
emissions

::::
and

::::::::
pollutant

::::::::::::
concentrations.

:::::
The

:::::::
training

::::::
targets

::::::::
consisted

:::
of

::::::
twelve

::::::::
statistical

::::::::
indicators

:::
on

::
a
:::::::
monthly

::::::
scale,

::::::::
including

::::
the

::::
25th

::::
and

::::
75th

::::::::::
percentiles,

::::::::
median,

:::::
mean,

:::::::::
maximum,

:::
and

:::::::::
minimum,

:::::::
derived

:::::
from

:::
the

::::
daily

::::::::
averaged

:::::::::::::
concentrations

::
of

::::::
PM2.5::::

and
:::
O3 ::

in
:::
the

:::
GC

::::::
outputs

:::
for

:::::
each

::::::::
scenario.

::
It

::
is

::::::::
important

:::
to

:::::::::
emphasize

:::
that

::::
our

:::::::
analysis

::::::
focuses

:::
on

:::
air

::::::
quality

::::::::
responses

::
to

::::::::::::
anthropogenic

:::::::
emission

::::::::
changes.

::::::::::::
Consequently,

::::::::::
dust-related

::::::::::
components

::::
were

::::::::
excluded

:::::
during

:::::::::::::
preprocessing,

:::::
since

::::
dust

:::::::::
intrusions

:::
can

:::::::::
introduce

:::::
large

::::::::
predictive

::::::
biases

:::
in

:::::::
northern

::::
and

::::::
western

::::::
China,

:::::
where

::::
they

:::::
make

:::::::::
substantial

:::::::::::
contributions

::
to

::::::
PM2.5 ::::::::::::

concentrations
:::::::::::::::
(Pang et al., 2023).

RC: Lines 231-232: The claim that "pollutants generally conform to either a standard normal or skewed
distribution" lacks validation.

AR: We thank the reviewer for pointing this out. In this study, our assessment of distribution type was based on
the comparison between the mean and median of the pollutant concentrations. For O3, the mean and median
values were nearly identical, indicating symmetry consistent with a normal distribution. For PM2.5, the mean
was consistently greater than the median, indicating positive skewness consistent with a right-skewed Gamma
distribution. These findings are in line with previous studies such as Zhang et al. (2018); Zeng et al. (2021),
which also reported normal-like distributions for O3 and skewed Gamma-like distributions for PM2.5 in
similar contexts. We will revise the manuscript to explicitly describe this assessment method and reference
the supporting literature.

We selected six indicators for each pollutant as our prediction targets since the distributions of these
two pollutants generally conform to either a standard normal or skewed distribution. The probability
distribution curve would be quantified with these 6 indicators in the following test.

:::::::
Previous

:::::::
research

:::
has

:::::::
indicated

::::
that

:::::
PM2.5:::

and
:::
O3::::::::::::

concentrations
::::
tend

::
to

::::::
follow

:::::::::::
characteristic

::::::::
statistical

::::::
patterns

:::::::::::::::::::::::::::::::::
Zhang et al. (2018); Zhang et al. (2021),

::::
with

:::::
PM2.5:::::::::

generally
:::::::::
displaying

:
a
:::::::::::

right-skewed
:::::::::::

Gamma-like
::::::::::

distribution
::::
and

:::
O3::::::::::::

approximating
::

a

::::::
normal

::::::::::
distribution.

:::::
This

:::::::::
distinction

::
is

:::
also

:::::::
evident

::::
from

:::
the

::::::::::
comparison

:::
of

::::
their

:::::
mean

::::
and

::::::
median

::::::
values.

::::::
Based

:::
on

:::
this

:::::::
insight,

:::
we

:::::
used

:::
the

:::::::::::::::
TGEOS-predicted

::::::::
statistical

:::::::::
indicators

::
to

:::::::::::
approximate

:::::::
regional

:::::::::
probability

::::::::::
distribution

:::::::
curves.

:::::::::::
Specifically,

::::
the

:::::
mean,

:::::
25th,

::::
and

:::::
75th

:::::::::
percentiles

:::::
were

::::::
applied

::
to

:::::::
capture

:::
the

::::::
overall

:::::
shape

:::
of

:::
the

:::::::::::
distributions,

:::::
while

:::
the

:::::::::
minimum

:::
and

:::::::::
maximum

::::::
values

::::
were

::::::::::
incorporated

:::
to

:::::::
constrain

:::::
their

::::::
ranges.

RC: Lines 239-242: Justify: (1) Why SSP1/SSP5 were excluded despite representing critical low/high-emission
pathways; (2) Whether "low/high" refers to base year or future projections.

AR: We thank the reviewer for this comment. In this study, SSP1, SSP4, and SSP5 were included in the training
set to enrich the range of low and high emission samples available for model learning. These scenarios
were therefore not used for testing, unlike SSP2 and SSP3, which served as independent test scenarios to
evaluate model generalization. The terms “low” and “high” emission levels are defined relative to the 2017
baseline year. SSP2 generally represents a lower-emission trajectory, while SSP3 represents a higher-emission
trajectory compared to 2017 (Tong et al., 2020).

RC: Line 267-268: Define the quantitative metric used to identify otp2030 as the scenario "most similar" to
SSP2_2050.

AR: We thank the reviewer for this observation. In the manuscript, the scenario "most similar" to SSP2_2050,
namely otp2030, is identified based on a quantitative similarity metric. Specifically, we calculate the Euclidean
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distance between mean values of PM2.5 and O3 in SSP2_2050 scenario and those in each training scenario.
The otp2030 scenario exhibits the minimum distance to SSP2_2050, indicating the highest similarity in the
selected features. We will revise the manuscript to explicitly state the quantitative metric.

RC: Line 305-315: Explain why a single fixed initial condition (from the "background scenario") was used
for all GEOS-Chem simulations despite varying emissions. This likely introduces errors, especially when
simulated concentrations diverge significantly from initial states. Clarify why SSP3 concentrations align
better with this initial state than SSP2.

AR: We thank the reviewer for this comment. We acknowledge that employing fixed initial conditions may
introduce biases, particularly during the early stages of each simulation. Nevertheless, such effects are
primarily relevant for short-term or global-scale applications. These discrepancies are typically dampened
through multiple physical and chemical adjustment processes, enabling the model to converge toward a state
consistent with the prescribed emissions and meteorology. Previous studies have shown that the influence of
initial condition discrepancies is largely dissipated within approximately 10 days of simulation spin-up in
regional-scale simulations (Appel et al., 2012; Demir, 2022). Therefore, the impact of initialization errors on
the monthly statistical indicators considered in this study is expected to be acceptable.

Furthermore, the objective of this study is not to reproduce short-term dynamical variability but to provide
rapid predictions of concentration distributions under future emission scenarios. The use of a single fixed initial
condition ensures consistency across all 36 emission scenarios, such that differences in simulated pollutant
concentrations can be attributed solely to emission perturbations rather than heterogeneous initial states.
Within this framework, adopting fixed initial conditions represents a scientifically defensible simplification
that balances computational feasibility with robustness of the comparative analysis.

Regarding the comment that pollutant concentrations under the SSP3 scenario aligns more closely with
the initial model conditions compared to the SSP2 scenario. This is due to the fact that the SSP3 scenario
(SSP3-70-BAU) employs a Business-As-Usual (BAU) emission control strategy, which implies a consistently
increasing and high-emission trajectory. The initial conditions of the model are derived from the background
scenario with the simulation year of 2017. Consequently, the projected emission levels in the SSP3 scenario
exhibit a relatively small deviation from the pollutant concentrations in 2017 (Tong et al., 2020). In contrast,
the SSP2 scenario (SSP2-45-ECP) implements the Enhanced Control Policy (ECP), which enforces stringent
emission reductions (Tong et al., 2020), thereby leading to notable discrepancies between the simulated
pollutant concentrations and the initial conditions during the early simulation period.

The error graphs of PM2.5 indicators for SSP240andSSP340areshowninFig.3a3tod3andFig.S2a3tod3.WefoundthemodelexhibitsrelativelylargeerrorsinpredictingthemonthlymaximumconcentrationsofPM2.5.Thisisattributedtotheinherentrandomnessofthesepeakvaluescomparedtootherindicators, whichposeschallengesforaccurateprediction.Furthermore, ouranalysisindicatesthepresenceofbothoverestimationandunderestimationwithintheseerrorgraphs.Ononehand, theGCsimulationsforeachscenariointhisstudyaredrivenbyafixedinitialconcentrationfilederivedfromabackgroundscenario, withmonthlyconcentrationpredictionstreatedasindependentandnotaccountingfortheinfluenceoftheinitialconcentrationfield.ThisapproachmayintroducediscrepanciesbetweenthemodelpredictionsandtheactualGCsimulations, particularlywhenthepollutantconcentrationlevelsdeviatesignificantlyfromthoseintheinitialconcentrationfile.ThisphenomenonelucidateswhythepredictiveperformanceundertheSSP2scenario, asillustratedinF ig.5andS6, issomewhatinferiortothatobservedundertheSSP3scenario, aswellasthepatternsofoverestimationandunderestimationevidentintheerrormapsforeachscenario.Inthisstudy, theGCsimulationsforeachscenariowereinitializedfromafixedconcentrationfieldderivedfromthe2017backgroundscenario.Asmonthlyconcentrationsweretreatedasindependentanddidnotincorporatetheinfluenceofinitialfields, discrepanciesmayarisebetweenmodelpredictionsandGCoutputs, especiallywhenfutureconcentrationlevelsdeviatesubstantiallyfromtheinitialstate.ThiseffecthelpsexplaintherelativelypoorerpredictiveperformanceunderSSP2scenarios(Figs.5), aswellastheobservedpatternsofsystematicover − andunderestimationintheerrordistributions.Specifically, intheSSP2scenario(SSP2− 45− ECP ), stringentenvironmentalpoliciesareprojectedintheshortandmediumterm(Tonget al., 2020), therebywideningthegapbetweenfutureandhistoricalemissionsandamplifyingpredictiveerrors, particularlyduringtheearlysimulationperiod.Incontrast, undertheSSP3scenario(SSP3− 70−BAU), characterizedbypessimisticdevelopmenttrajectoriesandlimitedinvestmentsinenvironmentalprotection(Tonget al., 2020), emissionsareprojectedtochangeslightly, resultinginsmallerdifferencesfromhistoricalconditions(Figs.6).Consequently, predictionsinSSP3scenariosarelessaffectedbyinitializationeffectsthanthoseinSSP2.


RC: Lines 319-320: Supplement Figures with equivalent spatial maps of the original GEOS-Chem simulated
seasonal indicators for direct comparison with TGEOS predictions.

AR: We appreciate the reviewer’s suggestion. Due to space limitation, we did not demonstrate these GEOS-Chem
simulated indicators for direct comparison with TGEOS predictions. Subsequently, we have supplemented
the current figures with corresponding spatial maps of these indicators simulated by GEOS-Chem, enabling a
direct side-by-side comparison with TGEOS predictions.

RC: Line 342-343: Detail the probability distribution fitting procedure: Specify the distribution type fitted to the
regional data. Clarify the data used: Is the PDF based on daily concentrations across all grid cells within
a region over a month? List exactly which of the 12 indicators were used as distribution parameters.

AR: We thank the reviewer for requesting clarification. In our analysis: For PM2.5, we fitted a right-skewed
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Gamma distribution; for O3, we fitted a normal distribution. For each region, the probability density function
(PDF) was fitted using the monthly-scale indicators averaged over all grid cells in the region. These monthly
indicators were computed from daily mean concentrations at each grid cell and served as prediction targets for
the model. The fitting procedure primarily used the 25th percentile, 75th percentile, and mean as parameters to
characterize the distribution shape, with the maximum and minimum values used to constrain the distribution
boundaries.

3.3 Prediction of probability distribution of PM2.5 and O3 (L342-L343)

For each region, we calculated the average of twelve statistical indicators across all grid points and
subsequently utilized these averaged indicators to fit the probability distribution curves for PM2.5 and
O3.

:::
For

::::
each

::::::
region,

:::
the

:::::::::
probability

::::::
density

:::::::
function

::::::
(PDF)

:::::
curves

:::::
were

::::
fitted

:::::
using

:::
the

:::::::::::::::
TGEOS-predicted

:::::::
monthly

::::::::
indicators

::::::::
averaged

::::
over

:::
all

::::
grid

::::
cells

:::
in

:::
the

::::::
region.

::::
For

::::::
PM2.5,

::::
we

::::
fitted

::
a
:::::::::::
right-skewed

::::::
gamma

::::::::::
distribution;

:::
for

::::
O3,

::
we

:::::
fitted

::
a

::::::
normal

::::::::::
distribution.

::::
The

:::::
fitting

:::::::::
procedure

::::::::
primarily

::::
used

:::
the

::::
25th

:::::::::
percentile,

::::
75th

:::::::::
percentile,

:::
and

:::::
mean

::
as
::::::::::

parameters
::
to

::::::::::
characterize

:::
the

::::::::::
distribution

::::::
shape,

::::
with

::
the

:::::::::
maximum

::::
and

::::::::
minimum

::::::
values

::::
used

::
to

::::::::
constrain

:::
the

::::::::::
distribution

::::::::::
boundaries.

::::::
These

:::::::::
probability

:::::::::
distribution

::::::
curves

:::::::
derived

:::::
from

:::::::
monthly

::::::::
statistical

:::::::::
indicators

::::
can

::
be

:::::
used

::
to

:::::::::::
preliminarily

::::::
assess

::
the

:::::::
overall

:::::::::
distribution

:::
of

:::::::
pollutant

:::::::::::::
concentrations

::
for

::
a
:::::
given

::::::
month

::
or

::::::
quarter

:::::
under

:::::::
various

:::::
future

:::::::
emission

:::::::::
scenarios.

RC: Lines 344-345: Define the geographical boundaries for NCP, YRD, FWP, and SCB regions.

AR: We thank the reviewer for the suggestion. In our study, the four key regions are defined by rectangular lat–lon
boundaries, as follows:

* NCP (North China Plain): 34–42° N, 113–120° E;

* YRD (Yangtze River Delta): 26–34° N, 115–123° E;

* FWP (FenWei Plain): 33–38° N, 103–114° E;

* SCB (Sichuan Basin): 26–34° N, 103–107° E.

We have revised the corresponding part of the manuscript, with details shown in blew.

3.3 Prediction of probability distribution of PM2.5 and O3 (L340-L342)

In this study, we focus on the probability distributions predicted by TGEOS for four key polluted
areas: the North China Plain (NCP), Yangtze River Delta (YRD), Fenwei Plain (FWP), and Sichuan
Basin (SCB).

::
the

:::::
North

::::::
China

::::
Plain

:::::
(NCP,

:::::::
34–42°

::
N,

::::::::
113–120°

:::
E),

:::::::
Yangtze

:::::
River

::::
Delta

::::::
(YRD,

::::::
26–34°

::
N,

::::::::
115–123°

:::
E),

:::::::
Fenwei

:::::
Plain

:::::
(FWP,

:::::::
33–38°

::
N,

:::::::::
103–114°

:::
E),

:::
and

:::::::
Sichuan

::::::
Basin

:::::
(SCB,

:::::::
26–34°

::
N,

::::::::
103–107°

:::
E).

RC: Lines 364-367: The statement "O3 concentrations are relatively less influenced by emissions" due to
meteorology dominance is misleading. Precursor emissions (NOx, VOCs) critically influence O3 formation.
The core limitation is the use of identical 2017 meteorology for all scenarios, preventing assessment of
emission impacts under varying meteorology.

AR: We thank the reviewer for this observation. We agree that O3 concentrations are strongly influenced by
precursor emissions like NOx and VOCs, and that our original wording may have overstated the dominance of

26



meteorology. Our intent was to highlight that, in this study, the use of identical 2017 MERRA-2 meteorology
for all scenarios constrains the variability in meteorological drivers, making the relative differences between
scenarios primarily emission-driven. We revised the sentence to more accurately reflect this relationship.
Detail are blew:

Compared to the notable variations observed in PM2.5 levels, O3 concentrations are relatively less
influenced by emissions. This is largely due to the fact that ozone levels are predominantly determined
by meteorological conditions, particularly air temperature, while all scenarios in this study are modeled
using meteorological data from 2017, signiffcant fluctuations are not expected.

:::::
Since

:::
the

::::::::::::
meteorological

::::::::
conditions

::::
for

::
all

:::::::::
scenarios

:::
are

:::::
fixed

::
in

:::::
2017,

:::::
these

::::::::::::
concentration

:::::::::
variations

:::
can

:::
be

:::::::::
attributed

::
to

::::::
changes

::
in
:::::::::
emissions.

RC: Line 369: The notation "a2 to d2" lacks corresponding figure identification.

AR: We thank the reviewer for this observation. The notation "a2 to d2" refers to subpanels in Figure S17 and S20.
We have revised the text to explicitly link these notations to their corresponding figure, and check the entire
manuscript to ensure all subpanel references are clearly identified.

RC: Line 370: Define "high-emission samples". Quantify how many scenarios/samples represent high
emissions within the training dataset.

AR: We define high-emission samples as those whose total anthropogenic emissions of precursors exceed the 95th
percentile of the corresponding emission distribution across the entire training dataset. In the training dataset,
this criterion corresponds to 61888 high-emission samples approximately 4.6% of all training samples.

RC: Line 372-373: The attribution of O3 underestimation in SSP2_2050 to high precursor emissions (ALK4,
ALK5, TOLU) appears inconsistent. If elevated emissions cause this systemic bias, why is a similar or
stronger underestimation not observed under the even higher emissions of SSP3_2050 (Fig. S11)?

AR: We thank the review for this comment and acknowledge that our previous explanation was misleading. To
address this, we carefully examined the emission distributions in the SSP2_2050 scenario compared with the
training set. As shown in Fig. 9, we found that several precursor emissions, such as CO residential and NO
transportation, exhibited substantially higher density in the low-emission range (left tail of the distribution)
under SSP2_2050 (orange line) than in the training set (blue line). This indicates that the model has
limited training experience in this regime, which is likely a primary cause of the systematic underestimation.
Consistently, our residual analysis showed that the mean residuals of six residential emissions of CO, BC,
PM2.5, PM10 and SO2 were significantly below zero in the low-emission regime (Fig. 10), in line with
their density distributions (Fig. 9). Therefore, we infer that the anomalously low values of these emissions
contributed to the underestimation of O3 concentrations in the SSP2_2050 scenario. Although no studies
have demonstrated a direct causal link between these emissions and O3 concentration, but from a modeling
perspective, this phenomenon can be attributed to distributional shifts between training and test data rather
than to the physical or chemical effects of these species. Specifically, the SSP2_2050 scenario contains a
much larger proportion of samples in the low-emission regime, where training samples are sparse. In this
regime, the model is forced to extrapolate beyond its well-constrained domain and tends to regress toward the
mean patterns learned from the entire training set. As a result, even for features only weakly related to O3,
the distribution mismatch acts as an indicator of domain shift and leads to systematic deviations in model
predictions. We have revised the corresponding part of the manuscript, with details shown in blew.
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Additionally, we observed that the model performs slightly poorly in predicting the probability distribu-
tion of pollutants under certain high emission scenarios (a2 to d2). As discussed in section 3.3, this
discrepancy arises from the limited number of high-emission samples in the dataset, which undermines
the model’s generalization capabilities. It is also important to emphasize that when predicting O3 levels
under the SSP2_2050 scenario, the model demonstrates a systemic underestimation, as shown in Fig.
S11 (a1 to d1). A detailed analysis of the emission data for this scenario indicates that several key
precursors for O3 generation, including ALK4, ALK5, and TOLU, exhibit relatively high emission
levels in the SSP2_2050 scenario. The scarcity of high-emission samples for these species prevents
the model from adequately recognizing the importance of high-emission features to the target variable,
leading to a tendency for the model to underestimate predictions.

::
It

:
is
::::

also
:::::::::
important

::
to

:::::::::
emphasize

:::
that

:::::
when

::::::::
predicting

:::
O3:::::

levels
:::::
under

:::
the

::::::::::
SSP2_2050

::::::::
scenario,

:::::::
TGEOS

:::::
shows

:
a
:::::
clear

:::::::::::::
underestimation

::
in

:::
the

:::::
YRD

::::::
region

::::
(Fig.

::::
S20

::::
d1).

::::
To

:::::::::
investigate

::::
this,

:::
we

:::::::::
compared

:::
the

::::::::
emission

:::::::::::
distributions

::
of

:::::::::
SSP2_2050

::::
and

::
the

:::::::
training

:::
set.

:::
As

::::::
shown

:
in
::::
Fig.

:::
S9,

::::::
several

::::::::
precursor

::::::::
emissions

:::::
(e.g.,

:::
CO

:::::::::
residential,

:::
NO

::::::::::::
transportation)

::::::
exhibit

:::::
much

:::::
higher

::::::::
densities

::
in

:::
the

:::::::::::
low-emission

:::::
range

:::::
under

::::::::::
SSP2_2050

::::::
(orange

::::
line)

::::
than

::
in

:::
the

:::::::
training

:::
set

:::::
(blue

::::
line),

::::::
where

:::
the

::::::
model

:::
has

::::::
limited

:::::::
training

::::::::::
experience.

::::::::
Residual

::::::
analysis

:::::::
further

:::::::
confirms

::::
that

:::
the

:::::
mean

::::::::
residuals

::
of

:::::::
multiple

:::::::::
residential

:::::::::
emissions

::::
(CO,

::::
BC,

::::::
PM2.5,

:::::
PM10,

:::::
SO2)

:::
are

:::::::::::
significantly

::::::
below

::::
zero

::
in

::::
this

::::::
regime

:::::
(Fig.

::::::
S10),

:::::::::
consistent

::::
with

:::::
their

::::::
density

::::::::::
distributions.

::::
We

:::::::
therefore

:::::::
attribute

:::
the

::::::::::::::
underestimation

::
of

::
O3::

to
::::::::::::
distributional

::::
shifts

:::::::
between

:::::::
training

:::
and

:::
test

::::
data

:::::
rather

::::
than

:::
to

:::
the

:::::
direct

:::::::
physical

::
or

::::::::
chemical

::::::
effects

::
of

:::::
these

:::::::
species.

::
In

:::::::::
particular,

:::
the

:::::::::
SSP2_2050

::::::::
scenario

:::::::
contains

::
a

::::::::::
substantially

::::::
larger

::::::
fraction

:::
of

:::::::
samples

::
in

:::
the

::::::::::::
low-emission

::::::
regime,

::::::
forcing

:::
the

:::::
model

::
to

:::::::::
extrapolate

:::::::
beyond

::
its

::::::::::::::
well-constrained

::::::
domain

::::
and

::::::
regress

::::::
toward

::::
mean

:::::::
patterns

::::::
learned

::::
from

:::
the

:::::::
training

:::
set,

:::::::
thereby

:::::::
inducing

:::::
these

::::::::
prediction

::::::
biases.

Figure 9: Kernel Density Estimation (KDE) curves for residential emissions of CO (a), PM2.5 (b), SO2 (c),
and BC (d) emissions in SSP2_2050 scenario (orange line) and training set (blue line) on semi-logarithmic
scales. For convenience, only four emission variables were displayed.
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Figure 10: Scatterplot of residual distribution for CO (a), PM2.5 (b), SO2 (c), and BC (d) emissions in
SSP2_2050 scenario.

RC: Lines 384-385: Justify comparing extreme event probability changes to the "base scenario" (presumably
2017). Since meteorology is identical (2017), changes are solely emission-driven—state this explicitly to
clarify the comparison’s purpose.

AR: We thank the reviewer for the comment. The “base scenario” refers to the background scenario with 2017
simulated with emissions and MERRA-2 meteorology in 2017. Since all scenarios in this study were simulated
under identical meteorological conditions, the differences in extreme event probabilities are solely attributable
to changes in emissions. The purpose of this comparison is therefore to isolate the impact of emission
changes on the probability of extreme pollution events, without the confounding influence of meteorological
variability.

::::
Since

:::
the

::::::
future

::::::::
scenarios

::::
were

:::::
made

:::::
based

:::
on

::::
2017

::::::::::
background

::::::::
scenario

:::
and

:::::::
identical

:::::::::::
meteorology

::::
used

::
in

:::
the

::::::
dataset,

:::
the

::::::::::::
concentration

:::::::
changes

:::
are

:::::
solely

::::::::::::::
emission-driven. Our findings indicate that

under low-emission scenarios, the incidence of extreme PM2.5 events decreased most significantly in
the SCB and YRD regions, as illustrated in Fig. 9 b1 and c1.

RC: Line 385: The notation "(b1) and (c1)" lacks corresponding figure identification.

AR: We thank the reviewer for this observation. The notation “(b1)” and “(c1)” refers to subpanels in Figure 9
in the manuscript. We have revised the text to explicitly link these notations to their corresponding figure,
and check the entire manuscript to ensure all subpanel references are clearly identified. We have revised the
corresponding part of the manuscript.
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Our findings indicate that under low-emission scenarios, the incidence of extreme PM2.5 events
decreased most significantly in the SCB and YRD regions, as illustrated in (b1) and (c1)

::::
Fig.

:
9
:::
b1

:::
and

::
c1 .

RC: Line 437: Provide hardware specifications for the 2.51-second/year prediction benchmark (e.g., CPU/GPU
model, and software).

AR: We thank the reviewer for the comment. The 2.51-second/year prediction benchmark refers to the inference
time of the trained TGEOS model to one-year test scenario, obtained on a GPU-equipped server. Specifically,
the benchmark was measured on an NVIDIA GeForce RTX 4080 with 31 GB memory, using PyTorch 2.3.1
with CUDA 12.4 and Python 3.11.5, running under Ubuntu 20.04.6. We have added these hardware and
software specifications to the revised manuscript.

Model training and evaluation (section 2.2.2)

In this study, four machine learning models were employed independently to evaluate the performance
for each kind of model structure. Except for the TGEOS model discussed in this paper, three ML models,
namely RF, MLP and CNN, which had demonstrated good performance in air quality modeling (Huang
et al., 2021; Fang et al., 2023), were simultaneously employed based on the same training strategy.

:::::::
Training

:::
and

:::::::::
evaluation

::
of

::::
four

:::::::
models

::::
were

:::::::::
conducted

::
on

::
a
:::::::::::::
GPU-equipped

:::::
server.

:::::::::::
Specifically,

:::
the

:::::::::
benchmark

::::
was

::::::::
measured

:::
on

::
an

::::::::
NVIDIA

:::::::
GeForce

:::::
RTX

:::::
4080

::::
with

::
31

::::
GB

::::::::
memory,

:::::
using

:::::::
PyTorch

::::
2.3.1

::::
with

::::::
CUDA

::::
12.4

::::
and

::::::
Python

::::::
3.11.5,

::::::
running

:::::
under

:::::::
Ubuntu

:::::::
20.04.6.

RC: Ensure consistent formatting throughout: Use subscripts for chemical species (e.g., O3, PM2.5) and
superscripts for statistical terms (e.g., R²). Thoroughly check all text, figures, and tables.

AR: We thank the reviewer for this observation. We will thoroughly check the entire manuscript, including the
main text, figures, and tables, to ensure consistent formatting. Specifically, chemical species will be presented
with subscripts (e.g., PM2.5 and O3) and statistical terms with superscripts (e.g., R²). All inconsistencies will
be corrected in the revised version.
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