
Authors’ Response to Reviews of

A Transformer-based agent model of GEOS-Chem v14.2.2 for
informative prediction of PM2.5 and O3 levels to future emission
scenarios: TGEOS v1.0
Dehao Li, Jianbing Jin*, Guoqiang Wang, Mijie Pang, Hong Liao*
Geoscientific Model Development Discussions, 10.5194/egusphere-2025-2186

RC: Reviewers’ Comment, AR: Authors’ Response, □ Manuscript Text

1. Overview

Response to Referee 1: We would like to thank the referee for the careful review throughout the paper and the
in-depth comments that help to improve our paper.

2. Major concerns

RC: My primary concern lies in the lack of appropriate model comparisons and insufficient clarity regarding
model performance. Specifically, I would like to understand why the authors chose to compare their
model against Multi-Layer Perceptron (MLP) and Random Forest (RF), rather than Convolutional Neural
Networks (CNNs), given that they mentioned DeepRSM (Xing et al., 2020) earlier in the text but did
not include it in their evaluation. Although the authors state that a series of (hyper)parameter tuning
experiments were conducted (L407), it remains unclear how these were performed. For example, using
300 trees and a maximum depth of 25 in the RF model can easily lead to overfitting. This raises the
question of whether these baseline models were properly tuned, which may have contributed to their
underperformance. Furthermore, while the authors report low RMSE and MAE of the TGEOS v1.0, it
is unclear what constitutes “low” in this context. Additional comparisons with values reported in other
relevant studies would strengthen the claims of model performance.

AR: Thank you very much for your thoughtful comment regarding model comparisons and performance in this
manuscript. First and foremost, we would like to clarity the model comparison between CNN and our
TGEOS. In this study, we did not select the CNN architecture employed in DeepRSM (Xing et al., 2020)
for comparison due to the distinct form of the input data derived from TGEOS. The input for our model
primarily consists of sequential samples from individual grid points, which is not well-suited for CNNs
to process effectively, as will be specifically discussed in our response to Point 3. After considering the
reviewer’s suggestions, we attempted to construct a CNN-based model to predict same target variables as
TGEOS for model comparison. The architectural overview of this model is illustrated in Figure 1. In this
CNN-based model, we transformed the feature input of each sample from its original dimension of (1, 1045)
into a matrix format of (9, 116). For the temporal features (i.e., months corresponding to each scenario in
this study), we individually convert them into embedding vectors—following an approach commonly used in
NLP—and subsequently concatenate these vectors with the flattened output of the final convolutional layer of
the CNN before feeding them into the fully connected layer. We optimized the hyperparameters using Optuna
and conducted tuning experiments based on seven key parameters: "Batch size", "Learning rate", "Epoch",
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"Kernel size", "Padding", "Number of channels 2 (number of second convolution channel)" and "Size of full
connect 1 (dim of first FC output)", with R² and MAE selected as the optimization objectives. To reduce
computational complexity, 40% of the dataset was randomly sampled for training in each epoch, while an
additional 10% was reserved for validation purposes. The detailed experimental options are presented in
Table 8.

Figure 1: Model architecture of CNN model.

Figure 2: Predictive performance of four models, with green represents RF predictions, blue denotes MLP
predictions, red denotes CNN predictions, and purple indicates TGEOS predictions. All indicators are
averaged in national scale and computed based on the six test scenarios.

Based on the aforementioned tuning parameters, we utilized the same training set as TGEOS for model
training and evaluated the model’s performance using the identical test set. As illustrated in Figure 2, the
performance of the four models on the test set is compared. On one hand, compared to the previously selected
MLP and RF models, the CNN-based model demonstrates superior performance, characterized by higher
R values as well as lower MAE. This advantage can be attributed to the CNN’s local convolution kernel,
which is capable of capturing patterns among adjacent data points. On the other hand, when compared
to TGEOS employed in this study, the CNN-based model underperforms across all evaluation metrics.
This is primarily due to TGEOS’s self-attention mechanism, which enables more effective dynamic and
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global modeling. In contrast to CNNs, which are constrained by fixed convolution kernels and limited
network depth, Transformer-based TGEOS exhibits a stronger capacity for capturing complex relationships
in high-dimensional data.

In addition, we appreciate the reviewer’s concern regarding the hyperparameter tuning process. To ensure
fair and robust comparisons, we used Optuna to perform automated hyperparameter tuning for four models,
including RF, MLP, CNN, and our proposed TGEOS model. The tuning results are presented in Fig .4 to 8.
For each model, we defined a relevant hyperparameter search space. Except for CNN model aforementioned,
in the RF model, we tuned the number of trees (n_estimators), maximum tree depth, and minimum samples
per leaf. In the MLP, we tuned the number of layers, hidden units, activation functions, learning rate, and
dropout rate. For each tuning epoch, 40% of the training set was randomly sampled for training, with
additional 10% was for validation. The test set was strictly reserved for final evaluation. Through this tuning
process, we ensured that each model was evaluated using its optimized configuration, thereby reducing the
risk of unfair comparisons due to under-tuned baselines. We will clarify these details in the revised manuscript
and include the hyperparameter search spaces in the supplementary material.

Regarding the reviewers’ concerns about the RF model, here we present the top five configurations of
hyperparameters with the highest scores in the tuning experiment. As shown in Table 1, the performance
of the RF model remains highly consistent across different hyperparameter configurations. The average R2

values fluctuate only slightly between 0.74, while the corresponding MAE values range from 5.100 g/m3.
This indicates that the model performance is relatively insensitive to variations in these hyperparameters once
the model reaches a sufficient level of complexity. In other words, the this model already possesses adequate
capacity to capture the underlying relationships in the dataset.

Table 1: Five hyperparameter combinations with best R2 and MAE.

N estimators Max depth Min samples
split

Min samples
leaf

Avg R2 Avg MAE

300 25 4 2 0.7404 5.059

200 50 5 10 0.7401 5.060

100 25 10 9 0.7382 5.070

100 15 6 6 0.7363 5.104

300 15 7 4 0.7336 5.116

Finally, we appreciate the reviewer’s interest in benchmarking against other emulating studies such as RSM
and NN-CTM, as TGEOS differs from these models in terms of time resolution, learning objectives, and
applicable scenarios, making direct comparison infeasible. For example, DeepRSM uses CMAQ as its target
and is designed specifically for response prediction under a uniform regional emission coefficient (Xing et al.,
2020), limiting its applicability to more detailed emission scenarios like DPEC-SSP/DPEC-CA scenarios used
in this study. Therefore, we did not consider it an appropriate direct baseline for comparison. Alternatively,
we compared TGEOS against several widely used machine learning models (MLP, RF and CNN) under the
same future scenario simulation framework to evaluate predictive skill of TGEOS.

While DeepRSM was trained based on a set of Latin Hypercube Sampled (LHS) emission perturbation
scenarios that gives the model some capacity to generalize across emission changes, the evaluation of
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DeepRSM was conducted on scenarios based on a specific historical year (2017), and the model was applied
primarily to reproduce air quality responses within that known temporal context. This differs from our
goal, where TGEOS is designed to emulate GEOS-Chem outputs under projected future emission scenarios.
For another thing, most of previous studies were developed specifically for the CMAQ model, while our
TGEOS model emulates outputs from the GEOS-Chem chemical transport model. These two CTMs differ
in their chemical mechanisms, spatial resolutions, input structures, and internal processing. Therefore, the
input–output relationships learned by these models are not directly transferable or comparable to those learned
by TGEOS. For these reasons, although we cited these papers to highlight prior efforts concerning the CTM
emulating works, we did not consider it an appropriate direct baseline for comparison. Alternatively, we
compared TGEOS against several widely used machine learning models (MLP, RF and CNN) under the same
future scenario simulation framework to evaluate predictive skill and computational efficiency.

To validate the performance of the TGEOS model in "emission-concentration" modeling against other
machine learning models, two widely used machine learning models, including multilayer perceptrons
(MLP) and random forests (RF)

::::
three

::::::
widely

:::::
used

:::::::
machine

:::::::
learning

:::::::::::
frameworks,

::::::
namely

:::::::::
Multilayer

:::::::::
Perceptrons

:::::::
(MLP),

:::::::
Random

:::::::
Forests

:::::
(RF),

:::
and

::::::::::::
Convolutional

::::::
Neural

::::::::
Network

::::::
(CNN)

:::::::::
employed

::
in

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::
(Xing et al., 2020; Xing et al., 2021), were simultaneously employed based on the

multi-scenario dataset mentioned in Section 2.1. For each ML model, we identified the model that
demonstrated optimal fitting performance for testing after conducting a series of parameter tuning
experiments.

:::
with

:::
the

::::
best

::::::::::
combination

:::
of

:::::::::::::
hyperparameters

:::::
after

:::::::::
fine-tuning

::::::
process

:::::
based

:::
on

::::::
Optuna

::::
tool. The MLP model uses 4 hidden layers with 2048, 1024, 512, and 256 neurons, applying ReLU
activation and Dropout to prevent overfitting. The optimizer is Adam with a learning rate of 1e−3, and
the loss function is Mean Squared Error (MSE). Training uses a batch size of 1024 and 100 epochs,
with a learning rate scheduler to adjust the learning rate dynamically. The RF model uses 300 trees
with a maximum depth of 25, a minimum sample split of 4, and a minimum sample per leaf of 2.
It uses parallel computation with all CPU cores and performs feature selection by choosing the top
500 important features.

:::
The

:::::
model

:::::::
consists

:::
of

:::
two

::::::::::::
convolutional

:::::
layers

::::::::
followed

::
by

::::
fully

:::::::::
connected

:::::
layers,

::::
with

:::
an

::::::::
additional

::::::::::
embedding

::::
layer

::
to
::::::::::
incorporate

::::::
month

::::::::::
information.

::::
The

::::
first

:::::::::::
convolutional

::::
layer

::::::
applies

:::
32

:::::
filters

:::
of

:::
size

::::
3×3

::::::::
(padding

::
=

::
1)

::
to

:::
the

:::::::::::::
single-channel

:::::
input,

::::::::
followed

::
by

::
a
::::::
second

:::::::::::
convolutional

::::
layer

::::
with

::::
128

:::::
filters

::
of

:::
the

:::::
same

::::
size.

:::::
Both

:::::::::::
convolutional

:::::
layers

:::
use

::::::
ReLU

:::::::::
activations.

:::
The

::::::
output

::::::
feature

::::
maps

:::
are

::::
then

:::::::::
processed

::
by

:::
an

:::::::
adaptive

::::::
average

:::::::
pooling

:::::
layer

::
to

:::::
reduce

:::
the

::::::
spatial

::::::::
resolution

::
to

:::::
29×3.

:::
To

:::::::
integrate

::::::::
temporal

:::::::::::
information,

:
a
::::::
month

:::::::::
embedding

::::
layer

:::::
maps

::::::
month

::::::
indices

:::::
(1–12)

:::
to

:
a
::::::::::::
4-dimensional

::::::
vector.

::::
The

::::::
pooled

::::::::::::
convolutional

:::::::
features

:::
are

:::::::
flattened

::::
and

:::::::::::
concatenated

::::
with

::
the

::::::
month

::::::::::
embedding,

:::::::
forming

:::
the

::::
input

::
to
::
a
:::::::::
three-layer

::::
fully

:::::::::
connected

:::::::
network:

:::
the

::::
first

:::::
linear

::::
layer

:::::
maps

:::
the

:::::::::::
concatenated

:::::
vector

::
to

::::
256

::::
units,

:::
the

::::::
second

:::::::
reduces

::
it

::
to

::
64

:::::
units,

:::
and

:::
the

::::
final

::::::
output

::::
layer

::::::::
produces

::
12

:::::::::
regression

::::::
targets.

::::::
ReLU

::::::::
activation

::::::::
functions

:::
are

:::::::
applied

::::
after

:::
the

::::
first

:::
and

::::::
second

::::
fully

:::::::::
connected

::::::
layers.

:::
For

:::::
each

::::::
model,

::::::::::::::
hyperparameters

:::::
were

:::::::
obtained

:::::
after

:::::::::
fine-tuning

:::::
based

:::
on

::::::
Optuna

::::
tool.

Table S2 and S3 summarize the performance of the three models on the test set. We found that TGEOS
outperforms the other two models in both R2 and MAE metrics. To clearly illustrate the predictive
performance of different models, we presented a modified Taylor diagram (Taylor, 2005; Fang et al.,
2023) in Fig. 11. This diagram simultaneously displays the Mean Absolute Error (MAE) and correlation
coefficient (R) for predictions of PM2.5 and O3 indicators from three models in various regions. Our
findings indicate that the Random Forest (RF) model performs the poorest. This is primarily due to
its reliance on feature importance assessments during feature selection, which overlooks potential
underlying features in the data, adversely affecting the model’s fitting capability. Additionally, the
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RF model is sensitive to the distribution of training data, leading to limited extrapolation abilities
and poor predictive performance for extreme values. In contrast, the Multi-Layer Perceptron (MLP)
shows a significant improvement in predictive performance relative to the RF model. Leveraging
its multi-layer neural network structure, the MLP can more effectively learn complex relationships
between multiple features. But this layered structure can struggle when dealing with high-dimensional
feature spaces, especially for highly stochastic indicators such as maximum values, where the MLP still
exhibits considerable prediction errors.

:::::::::
Compared

::
to

:::
the

::::::::
previously

:::::::
selected

:::::
MLP

:::
and

:::
RF

:::::::
models,

:::
the

:::::::::
CNN-based

::::::
model

:::::::::::
demonstrates

::::::::
superior

:::::::::::
performance,

:::::::::::
characterized

:::
by

::::::
higher

::
R

:::::
values

:::
as

::::
well

::
as

:::::
lower

:::::
MAE.

::::
This

::::::::
advantage

::::
can

::
be

::::::::
attributed

::
to

:::
the

::::::
CNN’s

::::
local

::::::::::
convolution

::::::
kernel,

::::::
which

:
is
:::::::
capable

::
of

::::::::
capturing

:::::::
patterns

:::::
among

::::::::
adjacent

:::
data

::::::
points.

Conversely, the Transformer-based TGEOS model demonstrates superior performance compared to
the other models, exhibiting higher R values (exceeding 0.98 and 0.97) and lower MAE values (less
than 4.0 g/m3 for the majority indicators). These results suggest a higher degree of reliability and
accuracy in its predictions. For several indicators where MLP performs poorly, TGEOS demonstrates
substantial improvements. The superiority of the Transformer model can be attributed to its greater
number of parameters and more complex architecture, which leverage powerful feature extraction
capabilities and self-attention mechanisms, allowing it to adapt to intricate patterns and relationships.

::
In

:::::::
contrast

::
to

:::::
CNN,

::::::
which

:::
are

::::::::::
constrained

::
by

:::::
fixed

::::::::::
convolution

:::::::
kernels

:::
and

::::::
limited

::::::::
network

:::::
depth,

::::::
TGEOS

:::::::
exhibits

::
a
:::::::
stronger

::::::::
capacity

:::
for

::::::::
capturing

::::::::
complex

:::::::::::
relationships

::
in

:::::::::::::::
high-dimensional

::::
data.

Consequently, in high-dimensional tasks like air quality modeling, Transformer models have proven
to be more advantageous compared to their counterparts.

RC: I am also concerned about the authors’ treatment and definition of RSMs. In L63–68, RSMs are introduced
as a statistical method for “emission-concentration” estimates, but later DeepRSM is mentioned, and
then the authors refer to machine learning being effective for “emission-concentration” modeling without
relying on RSM (L111-114). It would be helpful if the authors could clarify what exactly qualifies as an
RSM in this context. Does a model need to be derived from CTM outputs to be considered an RSM? And if
the goal is simply to emulate CTM outputs, wouldn’t it be more appropriate to use the broader and more
inclusive term “emulator”?

AR: Thank you very much for your thoughtful comment regarding the treatment and definition of RSMs in our
manuscript. We appreciate the opportunity to clarify this important point.

In this study, we adopt the term “emulator” or “agent model” in a broad sense to denote surrogate models that
approximate the outputs of chemical transport models (CTMs) using key CTM inputs, such as emissions and
meteorological conditions. Both Response Surface Models (RSMs, e.g., DeepRSM) and the proposed TGEOS
model fall into this category of emulators. For one thing, the TGEOS model is built upon key GEOS-Chem
inputs (mainly concerning emission variations) and pollutant concentrations, and is specifically designed for
rapid prediction of air pollutants concentrations aligned with GEOS-Chem simulations under future emission
scenarios. For another thing, RSMs were constructed based on the nonlinear relationship between emissions
and concentrations using statistical methods, enabling rapid estimation of pollutant concentrations under
varying emission scenarios. This characteristic makes RSMs closely aligned with the TGEOS model used in
this study at the application level, leading us to focus primarily on the limitations of RSMs.

The construction of RSMs requires a large number of CTM simulations, resulting in substantial computational
costs, particularly when extended to multiple pollutants, precursors, and large spatial domains (Zhao et al.,
2015). To address this challenge, DeepRSM leverages machine learning techniques to streamline the RSM
framework. Its demonstrated success highlights the strength of ML in handling high-dimensional air quality
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modeling tasks. Building on this insight, several studies have developed CTM emulators based entirely on
machine learning (Huang et al., 2021; Liu et al., 2022), without reliance on traditional statistical structures
like RSMs, to directly predict pollutant concentrations. This illustrates the greater flexibility and efficiency of
ML-based approaches in emission–concentration emulator modeling. In other words, the statement in our
manuscript, “showcasing the efficacy of machine learning in "emission-concentration" modeling without
relying on RSM”, is intended to highlight the advantages of machine learning in high-dimensional air quality
modeling, and to emphasize its potential as an optimized alternative to conventional RSM methods, capable
of independently performing rapid “emission–concentration” calculations.

We have revised the description of the corresponding part in the manuscript, with details shown in blew.

1 Introduction (L59-L106)

To address the computational challenge and efficiently retrieve the nonlinear relationship between
emissions and concentrations, data-driven statistical emulators have been proposed to accelerate numerical
simulations (Castruccio et al., 2014). A reliable emulator can accurately depict intricate relationships
between inputs and outputs, such as from emissions to concentrations. It can also faithfully approximate
the fundamental mechanisms of atmospheric models, thereby generating numerical simulations that
exhibit a high degree of consistency to the model (Salman et al., 2024). Among all the emulators,
Response Surface Model (RSM) is the most widely used method. It is a statistical method developed
by the US EPA (EPA, 2006) that uses the maximum likelihood estimation - empirical best linear
unbiased predictors (MLE-EBLUPs) technique (Santner et al., 2003) to establish the complex relationships
between emission rates of several pollutants and the responses they produce on the pollutant concentrations
by fitting response surfaces of the nonlinear system (Box and Draper, 2007), and provide best estimate
of the pollutant. When given some unknown emission scenarios, RSM can rapidly retrieve the
changes of aimed concentrations without additional CTM simulation involved (Wang et al., 2011).
RSM technique has been successfully employed in the response modeling of PM2.5 (Wang et al.,
2011) and ozone (Xing et al., 2011) to precursor emissions in China for typical regions. Since
conventional RSM commonly requires a large number of CTM simulations to fit reliable response
surfaces (Xing et al., 2011; Zhao et al., 2015), notable advances focusing on enhancements in both
efficiency and accuracy in RSM technology have been achieved (Li et al., 2022). For example,
Extended Response Surface Models (ERSMs) (Zhao et al., 2015; Xing et al., 2017) allow for the
incorporation of a greater number of variables and geographical regions, improving alignment with
independent CTM simulations compared with traditional RSM (Zhao et al., 2015; Xing et al., 2017).
Moreover, the polynomial function based RSM (pf-RSM) is capable of quantifying the nonlinear
relationships between air pollutant concentrations and precursor emissions by fitting CTM simulations
to a series of polynomial functions and mitigating the computational burden through decreasing
the number of required CTMs up to 60% (Xing et al., 2018). Recently, many studies have used
novel machine learning techniques to accelerate the modeling process of RSM by further reducing
the number of required CTMs. For instance, Deep-RSM, developed by Xing et al. (2020) using
convolution neural networks (CNN), requires only two CTM cases (i.e., base and control scenarios)
to startup the model; Self-adaptive RSM (SA-RSM, Li et al. (2022)) further reduces the number of
required CTMs for pf-RSM modeling by employing a stepwise regression method to estimate the
coefficients of polynomial functions.

Although existing RSM techniques exhibit more efficiency than traditional CTM in predicting the
response of pollutant concentrations to a wide range of emission changes, there are still several
issues to be addressed. Firstly, due to the structural limitations that restrict the model from executing
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multi-target predictions, existing techniques focus mainly on the response of average of the target
pollutants over a period of time, such as the monthly average (Huang et al., 2021). However, predicting
the singular monthly average of pollutant concentrations may overlook critical variations throughout
the month, such as extreme values (Guo et al., 2020; Zhao et al., 2022). Therefore, these approaches
fall short in providing a comprehensive evaluation of future pollution states, including the ability
to identify potential extreme pollution events under various emission scenarios. Secondly, RSM
techniques rely on the polynomial assumption, leading to its disadvantage to cope with high-dimension
problems. As the number of input variables increases, the complexity of RSM model grows, necessitating
a larger number of samples for accurate fitting (Zhao et al., 2015) and potentially leading to multi-collinearity
issues (Xing et al., 2018). This limitation restricts the applicability of RSM to more intricate emission
scenarios. Therefore, existing RSM studies have primarily concentrated on emissions of a few major
pollutants and the add-up emissions, failing to address air quality response under more detailed
scenarios that incorporate sectoral emissions and a broader range of emission species. While ERSM
considers emission sectors (Zhao et al., 2015), the inherent limitations of RSM in handling high-dimensional
data result in a substantial requirement for CTM samples, thus confining its application to modeling
studies in smaller areas. Thirdly, current RSMs e.g. pf-RSM (Xing et al., 2018) and SA-RSM (Li et al.,
2022) account for each spatial grid independently while neglect the impact of surrounding emissions,
which have been shown to affect local pollutant concentrations (Cheng et al., 2019). While ERSM
(Zhao et al., 2015) has considered regional transport of emissions, it requires a substantial number of
scenario simulations to ensure the accuracy of the model (Zhao et al., 2015; Xing et al., 2017). For
example, modeling for a middle-scale region typically necessitates hundreds of scenarios as support
(Zhao et al., 2015). The computational burden significantly limits the application of this technology
on a national scale. In summary, given that existing techniques inadequately address the challenges
associated with high temporal-resolution prediction, inapplicability of multivariate scenarios, and
negligence of emission transport, developing a comprehensive national-level "emission-concentration"
predictive model poses a significant challenge.

::
To

::::::::
overcome

::::
the

::::::::::::
computational

::::::::
challenge

:::
and

:::::::::
efficiently

:::::::
retrieve

:::
the

::::::::
nonlinear

::::::::::
relationship

:::::::
between

::::::::
emissions

:::
and

:::::::::::::
concentrations,

:::::::::
data-driven

::::::::
statistical

::::::::
emulators

::::
have

:::::
been

:::::::
proposed

::
to

:::::::::
accelerate

::::::::
numerical

:::::::::
simulations

::::::::::
(Castruccio

::
et

:::
al.,

:::::
2014).

:::
As

:
a
:::::::::::::
simplified-form

::
of
::::::
CTM,

:
a
:::::::
reliable

:::::::
emulator

:::
can

:::::::::
effectively

::::::
capture

:::
the

::::::::
intricate

:::::::::::
relationships

:::::::
between

:::::::::
important

:::::
CTM

::::::
inputs

:::
and

::::::::::::
concentration

:::::::
outputs,

::::
and

::::::
rapidly

:::::::
estimate

:::::::::::::
"CTM-aligned"

::::::::::::
concentrations

::
of

:::::::::
pollutants.

::::::::
Response

::::::
Surface

::::::
Model

::::::
(RSM),

::::::
served

::
as

::::::::
statistical

:::::::::
surrogates

::::::::
developed

:::
by

:::
the

:::
US

::::
EPA

:::::
(EPA,

:::::
2006)

:::
to

:::::::
establish

:::
the

:::::::::::
relationships

:::::::
between

:::::::
emission

:::::
rates

:::
and

:::
the

::::::::::::
concentration

::::::::
responses

::
of

::::::
CTM,

:::
has

::::
been

:::::::::::
continuously

:::::::::
developed

:::::
since

:::
the

:::
past

:::::::
decade.

:::::
RSM

:::::::::
techniques

:::::
have

::::
been

::::::::::
successfully

:::::::::
employed

::
in

:::
the

::::::::
response

::::::::
modeling

::
of

::::::
PM2.5

:::::
(Wang

::
et

:::
al.,

:::::
2011)

::::
and

:::
O3 :::::

(Xing
::
et

:::
al.,

:::::
2011)

::
to

::::::::
precursor

::::::::
emissions

::
in
::::::
China

:::
for

:::::
typical

:::::::
regions.

:::
To

::::::
address

:::
the

:::::::
inherent

::::::::::::
computational

::::::
burden

::::::::
stemmed

:::::
from

:::::::::::
considerable

::::::::
advanced

:::::
CTM

:::::::
supports

:::
for

:::::
model

:::::::
building

:::::
(Xing

::
et
:::
al.,

::::::
2011),

::::::::
optimized

::::::::
versions

::
of

::::::::::
conventional

:::::
RSM

:::::
were

:::::::::
developed,

::::
such

::
as

:::::
ERSM

::::::
(Zhao

::
et

::
al.,

::::::
2015;

::::
Xing

::
et

:::
al.,

:::::
2017)

:::
and

:::::::
pf-RSM

:::::
(Xing

::
et
:::
al.,

::::::
2018).

::::::::
Recently,

:::::
novel

:::::::
machine

:::::::
learning

:::::
(ML)

:::::::::
techniques,

::::
for

::
its

::::
well

:::::::::::
performance

::
in
::::::::::

simulating
:::::::
complex

:::::::::
non-linear

:::::::::::
relationships

::
in

::::::::::
atmospheric

:::::::
systems

::::
(Liu

:::
et

:::
al.,

:::::
2021)

::::
and

:::::::
dealing

::::
with

:::::
tasks

::::::::
involving

:::::::
multiple

::::::::
variables

::::
and

::::::::
objectives

::::::::::
(Masmoudi

::
et
:::

al.,
::::::

2020;
::::::
Huang

::
et
::::

al.,
::::::
2021),

::::
have

:::::
been

::::::::
employed

:::
in

:::::
RSM

:::::::::
techniques

::
to

::::::
further

:::::::
optimize

:::::::::
modeling

::::::::
efficiency

::::
and

:::::::::
estimation

:::::::
accuracy

:::
of

:::::
RSMs

::::::
(Xing

::
et

:::
al.,

:::::
2020;

:::
Li

::
et

::
al.,

::::::
2022).

::::::
Based

:::
on

:::
this

:::::::::
advantage,

:::::
many

:::::::
studies

::::
have

::::::::
attempted

::
to
:::::

build
::::::::
effective

::::::::
emulators

:::::
using

::::
pure

:::
ML

:::::::
method

:::::::
(Huang

::
et

:::
al.,

::::::
2021;

::::::
Zhang

::
et

:::
al.,

:::::::
2023a).

::::
For

:::::::::
example,

:::::
Zhang

:::
et

::
al.

::::::::
(2023a)

::::
used

::::::::
ResCNN

:::::::::
framework

::
to

::::::
predict

:::::::
annual

:::::
PM2.5::::::::::::

concentration
::::
from

:::::
fossil

:::::::
energy

:::
use

::::
and

:::::
reveal

::
the

::::::::::
co-benefits

::
of

:::
the

::::::
energy

:::::::::
transition,

::::::::::::
demonstrating

:::
the

:::::::
potential

:::
of

:::
ML

:::::::
method

::
in

:::::::::
addressing

:::
the

7



:::::::
emulator

::::::::
modeling

::::
task.

::::::::
Although

:::::::
existing

:::::
CTM

::::::::
emulators

:::::::
exhibit

:::::
more

::::::::
efficiency

::::
than

:::::::::
traditional

:::::
CTM

:::
in

:::::::::
estimating

:::
the

:::::::
pollutant

:::::::::::::
concentrations

::
to

::
a
::::
wide

::::::
range

::
of

::::::::
emission

::::::::
changes,

:::::
there

:::
are

::::
still

::::::
several

::::::
issues

::
to

:::
be

::::::::
addressed.

:::::::
Firstly,

:::
due

::
to

:::
the

:::::::::
computing

:::::::::
limitations

::::
(Liu

:
et
:::
al.,

::::::
2022),

:::
the

:::::::
temporal

:::::::::
resolution

::
for

:::::
some

::::::::
emulators

::::
was

:::::::::
constrained

:::::
with

::::::
annual

:::::
scale,

:::::
which

::::::
greatly

:::::::
prevent

:::::
these

::::::::
emulators

:::::
from

::::::::
providing

::::::
detailed

::::::::::
estimations

::
of

:::
air

:::::::::
pollutants

::::
such

::
as

::::::::
extreme

:::::
values

::::::::::
throughout

:::
the

::::
year

:::::
(Guo

::
et

:::
al.,

:::::
2020;

::::
Zhao

::
et

:::
al.,

::::::
2022).

::::::::
Secondly,

:::::
while

:::::
some

::::::::
emulators

::::
have

:::
the

::::::
ability

::
to

::::
offer

:::::::::::
concentration

::::::::::
estimations

::::
with

::::
finer

::::::::
temporal

:::::::::
resolution,

::::
they

::::
still

::::
have

::::::::::
limitations.

:::
On

::::
one

:::::
hand,

::::::::::
RSM-based

::::::::
emulators

::::
rely

::
on

:::
the

::::::::::
polynomial

::::::::::
assumption,

::::::
leading

::
to

::
its

:::::::::::
disadvantage

::
to
:::::
cope

::::
with

:::::::::::::
high-dimension

::::::::
problems.

:::
As

::
the

:::::::
number

::
of

:::::
input

::::::::
variables

::::::::
increases,

:::
the

::::::::::
complexity

::
of

:::::
RSM

::::::
model

:::::
grows,

:::::::::::
necessitating

::
a
:::::
larger

::::::
number

::
of

:::::::
samples

:::
for

:::::::
accurate

:::::
fitting

::::::
(Zhao

::
et

:::
al.,

:::::
2015)

:::
and

:::::::::
potentially

:::::::
leading

::
to

::::::::::::::
multi-collinearity

:::::
issues

:::::
(Xing

::
et
::::

al.,
::::::
2018).

:::
In

:::
the

:::::::
revised

::::::::::
manuscript,

:::
we

::::
will

:::::::
provide

::::::::
examples

::::::
(BTH,

::::::
YRD)

::
to

::::
avoid

:::::::::
ambiguity.

:::::
This

::::::::
limitation

:::::::
restricts

:::
the

:::::::::::
applicability

::
of

::::::::::
RSM-based

::::::::
emulators

::
to

:::::
more

:::::::
intricate

:::::::
emission

:::::::::
scenarios.

:::::::::
Therefore,

::::::::
existing

::::
RSM

:::::::
studies

::::
have

::::::::
primarily

:::::::::::
concentrated

:::
on

:::::::::
emissions

::
of

:
a
::::
few

:::::
major

:::::::::
pollutants

:::
and

:::
the

:::::::
add-up

::::::::
emissions

::::::
(Xing

::
et

:::
al.,

::::::
2020),

::::::
failing

::
to

:::::::
address

:::
air

::::::
quality

:::::::
response

:::::
under

:::::
more

:::::::
detailed

::::::::
scenarios

::::
that

::::::::::
incorporate

:::::::
sectoral

::::::::
emissions

::::
and

::
a

::::::
broader

::::::
range

::
of

:::::::
emission

:::::::
species.

:::
On

:::
the

:::::
other

:::::
hand,

::::
some

:::::::::
emulators

::::
were

::::::::::
constructed

:::::
based

:::
on

:::::
in-situ

:::::::::::
observations

::::
using

::::
ML

:::::::
method

::::::
(Zhang

::
et
::::

al.,
::::::
2023a),

::::::
which

::
is

::::
easy

:::
to

::::::
employ

::::
and

:::::
more

:::::::::
convenient

::::
than

:::::
those

:::::::::
RSM-based

:::::::::
emulators.

::::::::
However,

:::::
these

::::::
models

:::
are

::::::::::
constrained

::
by

:::
the

::::::
limited

:::::::
number

::
of

:::::::::::
observational

:::
data

:::::::
stations

:::
and

::::
are

:::::::
therefore

::::::
unable

::
to
:::::::::
effectively

::::::
assess

:::
air

::::::
quality

::
in

::::::
regions

::::::
where

:::::::::::
observational

:::::::::::
infrastructure

::
is

::::::
lacking

::::
(Xu

::
et

:::
al.,

::::::
2022).

:::::::::::
Furthermore,

::::
due

::
to

::::::::::
insufficient

:::::::::::
observational

::::
data,

:::::
these

::::::
models

:::::
often

::
do

::::
not

::::
have

:::::::
enough

::::::::::::
representative

:::::::
samples

::
to

:::::::
achieve

::::::::
accurate

:::::
model

::::::
fitting,

::::::
which

::::
leads

::
to

::::::::::
suboptimal

::::::::
predictive

:::::::::::
performance

:::::
(Tang

::
et
::::

al.,
:::::
2024).

:::
In

::::::::
addition,

:::::::::
traditional

:::
ML

:::::::
models,

::::
such

::
as

::::::::::
Multi-Layer

:::::::::
Perceptron

::::::
(MLP)

::::
and

:::::::
Random

:::::
Forest

:::::
(RF),

::::
may

:::
not

:::::
fully

::::::
capture

:::
the

::::::::
nonlinear

::::::::::
relationships

::
in

:::::::
complex

:::::::::::
atmospheric

:::::::
variables

::::::::::
(Masmoudi

::
et

::
al.,

:::::
2020;

:::::::::
Natarajan

:
et
:::
al.,

:::::
2024;

::::::::::
Abuouelezz

:
et
:::
al.,

::::::
2025),

::::::
which

::::::
further

:::::::::
undermine

::::
their

::::::::::
predictions.

:::::::
Thirdly,

:::::
some

::::::
current

::::::::
emulators

:::::::
account

:::
for

::::
each

:::::
spatial

::::
grid

::
or

::::::::::
observation

:::
site

::::::::::::
independently

:::::
while

::::::
neglect

:::
the

::::::
impact

::
of
:::::::::::
surrounding

::::::::
emissions

:::::
(Xing

::
et

::
al.,

:::::
2018;

:::
Li

:
et
:::
al.,

:::::
2022;

::::::
Zhang

::
et

:::
al.,

::::::
2023a),

:::::
which

:::::
have

::::
been

:::::
shown

::
to

:::::
affect

:::::
local

:::::::
pollutant

::::::::::::
concentrations

::::::
(Cheng

::
et
::::

al.,
::::::
2019).

::::::::
Although

::::::
certain

:::::::
studies

::::
have

:::::::::
employed

:::::::::::
convolutional

::::::
neural

:::::::
network

::::::
(CNN)

::::::::::
architectures

:::::::
capable

::
of

::::::::
capturing

::::
local

:::::::
features

::
to

:::::::
develop

::::::
models

:::::
(Xing

::
et
:::
al.,

:::::
2020;

:::::
Huang

:::
et

:::
al.,

:::::
2021;

::::
Liu

::
et

:::
al.,

::::::
2022),

::::
the

::::::::::::
computational

:::::::
resource

::::::::::
constraints

::::
have

::::::::
hindered

:::::
these

:::::::::::
"face-to-face"

:::::::
models

::::
from

:::::::::
processing

:::::
large

:::::::
volumes

:::
of

::::::
feature

::::::
inputs.

:::
As

::
a
:::::
result,

:::
the

::::::::::
application

::
of

::::
such

:::::::
models

::
is

::::::
limited

:::
in

:::::
terms

::
of
::::::::

emission
::::::

details
::::

and
::::::::
research

:::::::
domain.

:::
In

:::::::::
summary,

:::::
given

:::
that

:::::::
existing

:::::::::
techniques

:::::::::::
inadequately

::::::
address

:::
the

:::::::::
challenges

:::::::::
associated

::::
with

::::
high

::::::::::::::::
temporal-resolution

:::::::::
prediction,

::::::::::::
inapplicability

::
of

::::::::::
multivariate

::::::::
scenarios,

::::
and

:::::::::
negligence

::
of

::::::::
emission

::::::::
transport,

::
it

:::
still

:::
be

:
a

::::::::
significant

::::::::
challenge

:::
to

::::::
develop

::
a
::::::::::::
comprehensive

::::::::
emulator

:::::
using

::::
more

::::::::
advanced

:::::::
method.

RC: The manuscript does not sufficiently demonstrate the advantages of using the Transformer architecture,
nor does it clearly describe the model’s structure. Beyond the comparative limitations mentioned in
point 1, the authors do not provide any analysis of computational complexity between Transformers and
CNNs. Instead, they state that CNN “may increase the demand for computational resources, especially
when addressing considerable features” (Lines 208–219), without supporting this claim with the data.
Additionally, the input to a Transformer is typically a sequence of tokens, yet the authors refer to them as

“channels,” which may cause confusion. In image-based applications, Vision Transformers (ViTs) have
shown strong performance, and it is unclear why the authors didn’t explore spatial structures through
CNNs or ViTs.
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AR: We appreciate the reviewer’s concern regarding the rationale for using a Transformer architecture. First
and foremost, upon reviewing Lines 208–219 of the manuscript, we would like to acknowledge that our
original wording may have caused confusion, and we appreciate the opportunity to clarify. In this section,
our statement about increased computational cost was not intended to refer to CNNs in general, but rather to
CNN-based field-to-field modeling approaches, such as those used in (Xing et al., 2020; Huang et al., 2021;
Liu et al., 2022). In their work, both the input and output are represented as high-resolution 3D matrices
(spatial fields), which require significant GPU memory and computational resources—especially when the
number of input variables increases. As a result, they limited their model to only a few types of emission fields
as inputs (Xing et al., 2020), or solely average predictions (Liu et al., 2022). In contrast, our dataset includes
over 100 variables, including sectoral emissions and multiple meteorological parameters. Representing
these as full spatial fields and training a CNN-based model in a field-to-field form was not feasible under
our available computational resources. Therefore, instead of modeling spatial fields directly, we adopted a
high-dimensional sequential modeling strategy. Our dataset is not field-based but rather consists of structured
multivariate sequences, in which spatial and feature-level information (e.g., emissions, meteorology, and
concentrations at multiple grid points) is flattened and treated as a sequence of tokens fed into TGEOS model.
This approach offers a more scalable solution while preserving the ability to capture complex relationships
among variables across grid points.

Although the input features are derived from multiple spatial grid points (e.g., a central location and its
adjacent neighbors), they are organized as flattened feature vectors rather than structured fields. This flattening
also removes the explicit spatial topology (e.g., 2D grid layout) that is critical to models like CNNs and ViTs
commonly used for field-based image data (Li et al., 2021). In contrast, the Transformer model was originally
designed for sequential data (Vaswani, 2017) and has since shown great promise in multivariate time series
modeling (Li and Moura, 2019; Zerveas et al., 2021). Compared to CNNs or MLPs, Transformers are better
suited for capturing long-range dependencies, complex inter-feature relationships, and global patterns without
the limitations of fixed local receptive fields (Zhao et al., 2021; Khan et al., 2022). As a result, we chose to
use the Transformer architecture to build the model for its flexibility and its proven effectiveness in modeling
complex dependencies in high-dimensional, structured input data. The Since our data do not possess spatial
locality in the image sense, but rather form feature sequences across domains. The explicit model’s structure
of TGEOS is presented blew.

Figure 3: Model architecture of TGEOS v1.0.

To further elucidate the model structure, we conducted a comparative analysis of the computational complexity
across different models employed in this study, focusing on three key metrics: the number of parameters,
inference speed, and memory usage. It is well-documented that Transformer architectures generally impose a
higher computational cost compared to other model types. As evidenced by multiple studies (e.g., Dosovitskiy
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et al. (2020);Wu et al. (2021);Zerveas et al. (2021)), Transformers typically require more parameters and
consume greater memory due to the quadratic complexity inherent in the self-attention mechanism. This
characteristic often leads to extended training durations and increased GPU memory utilization, particularly
when processing long input sequences or high-dimensional features. Nevertheless, Transformers offer
substantial benefits in capturing global dependencies and modeling intricate feature interactions—capabilities
that are essential for our task, which involves structured multivariate data with implicit spatial relationships.

Table 2: Comparison of complexity of the four models.

Model Total parameters Training time Inference time

RF - 181.6 min 1.24s

MLP 4.91 M 144.1 min 0.83s

CNN 2.91 M 161.2 min 3.99s

TGEOS 22.66 M 192.2 min 1.26s

In addition, we also thank the reviewer for pointing out the potential confusion in our terminology. We
agree that the term “channel” may be misleading in the context of Transformer architectures, especially since
“channels” are more commonly used in CNNs to describe the depth dimension of image-like inputs. In our
work, each input sample is represented as a high-dimensional feature vector consisting of variables from
multiple grid points or adjacent spatial locations. When reshaped for input into the Transformer, this feature
vector is treated as a sequence of tokens, where each “token” corresponds to a distinct spatial or physical
feature (e.g., emissions, meteorological variables at a specific grid or neighbor location). Thus, the input to
the Transformer is a 2D tensor of shape (sequence length, embedding dimension), consistent with standard
Transformer input conventions in NLP and time-series modeling. The term “channel” was originally used in
an informal sense to refer to different input components, but we acknowledge that it may cause confusion
and will revise the manuscript to adopt more accurate terminology, such as “tokens”, “input embeddings”, or
“feature sequences”, to align with Transformer literature and avoid misinterpretation.

We have revised our manuscript in accordance with the aforementioned discussions, correcting these inappro-
priate statements and clarifying the advantages of the Transformer architecture compared to other models in
order to justify our architectural choice.

2.2.1 Model architecture (L206-L227)

In previous "emissions-concentration" modeling, field-to-field modeling using the convolution neural
networks (CNN) model has been widely used because of the efficient usage of the spatial relationship be-
tween features and concentrations (Xing et al., 2020; Huang et al., 2021). However, this approach may
increase the demand for computational resources, especially when addressing considerable features.

::
In

::::
their

:::::
study,

::::
both

::::::
inputs

:::
and

:::::::
outputs

::::
were

::::::::::
represented

::
as

:::::::::::::
high-resolution

:::::::::::::::
three-dimensional

::::::
spatial

:::::
fields,

:::::
which

::::::::
demands

:::::::::
substantial

::::
GPU

:::::::
memory

:::
and

::::::::::::
computational

:::::::::::::::::
power—particularly

::
as

:::
the

::::::
number

::
of

:::::
input

:::::::
variables

:::::::
grows.

::::::::::::
Consequently,

:::::
their

:::::
model

::::
was

:::::::::
restricted

::
to

::::
only

::::
five

:::::
types

::
of

::::::::
emission

:::::
fields,

::::::
without

:::
the

::::::::
capacity

::
to

:::::::::
incorporate

::
a

::::::
broader

:::::
range

::
of

::::::::
pollutant

::::::
species

::
or

:::::
more

:::::
finely

:::::::
resolved

::::::
sectoral

:::::::::
emissions.

::::
By

:::::::
contrast,

::::
our

::::::
dataset

:::::::::
comprises

::::
more

:::::
than

:::
one

:::::::
hundred

:::::::::
variables,

::::::::
including

::::::::::::
sector-specific

::::::::
emissions

:::
and

::
a

::::
wide

:::::
range

::
of

:::::::::::::
meteorological

:::::::::
parameters.

::::::::::::
Representing

::
all

::
of

:::::
these

::
as

:::
full

::::::
spatial

:::::
fields

:::
and

::::::::
applying

:
a
:::::
CNN

::
in

::
a
::::::::::
field-to-field

:::::::
manner

::::::
would

::::
have

::::::::
exceeded

:::
our

::::::::
available
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:::::::::::
computational

::::::::
capacity.

::
To

:::::::
address

::::
this,

::
we

:::::::
adopted

:
a
:::::::::::::::
high-dimensional

::::::::
sequential

::::::::
modeling

::::::::::
framework.

:::::
Rather

::::
than

:::::
using

:::::::::
field-based

:::::::::::::
representations,

:::
our

::::::
dataset

::
is

::::::::
organized

::
as

::::::::
structured

::::::::::
multivariate

:::::::::
sequences,

:::::
where

::::::
spatial

:::
and

::::::::::
feature-level

::::::::::
information

::::
(e.g.,

:::::::::
emissions,

:::::::::::
meteorology,

:::
and

::::::::
pollutant

::::::::::::
concentrations

:
at
::::::::

multiple
::::
grid

::::::
points)

::
is

:::::::
flattened

::::
into

:
a
::::::::
sequence

::
of

::::::
tokens

:::
for

:::::
input

:::
into

:::
the

::::::::
TGEOS

::::::
model.

::::
This

:::::
design

:::::::
enables

::::::::
scalability

:::::
while

:::::::::::
maintaining

::
the

::::::
ability

::
to

::::::
model

:::::::
complex

:::::::::::
inter-variable

:::::::::::
relationships

:::::
across

::::::
spatial

::::::::
locations.

In this study, we employed an informative prediction model based on Transformer architecture com-
prising the encoder for feature extraction and the regressor for target mapping. In order to align with
the shape of the dataset, the model was designed with 1048 input channels and 12 output channels

::
the

:::::
model

::::
was

:::::::::
configured

::::
with

::
an

:::::
input

::::::
feature

:::::::::
dimension

::
of

:::::
1045

:::
and

:::
an

:::::
output

:::::::::
dimension

::
of

:::
12. . Six

Encoder layers were configured with the model, each of which primarily incorporates a multi-head
self-attention mechanism with eight attention heads and a feed-forward network. The multi-head self-
attention mechanism was employed to capture the dependency relationships among various positions
within the input sequence, while the feed-forward network facilitates additional nonlinear transforma-
tions on the features at each position (Vaswani, 2017). By leveraging the multi-head self-attention
mechanism, the model can compute the similarity (or attention weights) of each feature in relation to all
other features, thus producing a weighted representation for each position and determining the extent to
which each position relies on information from others. Moreover, the feed-forward network, consisting
of two fully connected layers, enhanced feature representation and improves the model’s learning
efficacy by incorporating nonlinear activation functions. In this implementation, the ReLU activation
function was selected due to its ability to prevent negative values and expedite the model’s training
process (Nair and Hinton, 2010). Additionally, each sub-module incorporated residual connections and
layer normalization to mitigate the risks of gradient disappearance or explosion. The output from the
Encoder undergoes global pooling to decrease model complexity. Finally, the regressor was comprised
of fully connected layers that map the Encoder output to the specified output channels

::::::::
sequences .

3. Minor concerns

RC: L81 (“to startup the model”): “Startup” is not typically used as a verb in this context.

AR: Thank you for pointing this out. We have revised this part and will pay attention to the use of "startup" in the
future.

RC: L167-168 (“fine-tuning experiments”): I understand that the authors are referring to “fine-tuning ex-
periments” in the context of data assimilation (Text S1), but in a machine learning/AI context, the term

“fine-tuning” is typically associated with pretraining followed by fine-tuning, which may cause confusion
for readers.

AR: Thank you for your insightful comment. We agree that the term “fine-tuning” may be misleading in the
context of machine learning, where it typically refers to adapting a pretrained model to a specific task. In
our manuscript, the intended meaning was closer to “perturbation scenarios using data assimilation tuning
method”. To avoid confusion, we have revised the term to “perturbation scenarios” in Line 167–168 and
clarified the description in Text S1 accordingly.

2.1.1 Multi-scenario inventory (L167-L172)

In addition, in order to improve the generalization ability of the model, we designed random scenarios
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based on fine-tuning experiments
::
11

:::::::::::
perturbation

::::::::
scenarios

:::::
using

::::
data

::::::::::
assimilation

::::::
tuning

:::::::
method

:::::::
(denoted

::
as

::::::::
"Tuning

:::::::::
scenarios"

::
in

:::::
Table

::
1) , including emission scenarios with different emission

factors ranging from 0 to 2.0 for each emission species and emission sector, so that the model can better
understand the relationships between various features and model performance can be substantially
improved.

::::::
thereby

:::::::::
expanding

::::::::
coverage

::
of

:::
the

:::::
input

::::::
space

:::
and

::::::::
reducing

:::
the

::::
risk

:::
of

:::::::::::
extrapolation

::
to

::::::
unseen

::::::
values,

:::::::::
especially

:::
for

:::::
those

::::::::::
predictions

:::::
under

::::
high

::::::::
emission

:::::::::
scenarios.

::::::
These

::::::::
emission

:::::
factors

:::::
were

:::::::::
generated

:::
for

::::::::::
representing

:::
the

::::::
spatial

:::::::::
variability

::::
that

::::::
widely

::::
used

:::
in

::::
data

::::::::::
assimilation

::::::::::::::
(Jin et al., 2023).

:::
The

:::::::
detailed

:::::::
process

::
for

:::::::::
generating

:::::
these

::::::::
stochastic

::::::::
emission

::::::
factors

::
is

::::::::
discussed

::
in

::
the

::::
Text

::
1.

RC: L175-176 (“we set the maximum value of each coefficient matrix to 2.0”): Any justifications?

AR: Thank you for this comment. We set this value to 2.0 because we investigated it the raw ratio matrices in
advance, and found that over 80% of grids had coefficients below 2.0, with most values in key emission
regions concentrated between 0.3 and 1.5. Coefficients exceeding 2.0 occurred almost exclusively in very
low-emission grid cells (typically < 0.1 ton per grid and located in western China), where differences between
DPEC and MEIC inventories in absolute terms are small but amplified in ratio form. Although some previous
studies have adopted lower thresholds (e.g., 1.2 for (Xing et al., 2011)), other research suggests that future
emissions in certain heavily polluted regions could plausibly exceed 1.5 Brean et al. (2023), making 2.0 a
more flexible yet still reasonable threshold.

2.1.1 Multi-scenario inventory (L173-L179)

For each emission scenario, we divided it by the 2017 MEIC inventory to obtain a series of monthly
coefficient matrices for the emissions of various species in five sectors. It is worth noting that since the
units of DEPC and MEIC data are tons per grid, significant variation are exhibited between adjacent
grids. Thus, we set the maximum value of each coefficient matrix to 2.0 when making the DPEC
scenarios to avoid abnormal emission coefficients due to magnitude differences. Subsequently, we
multiplied the generated coefficient matrices to the corresponding part of the original inventory used
for GEOS-Chem input to obtain the multi-scenario inventory that reflect the control of each scenario.
The new inventory was employed in GEOS-Chem simulating to obtain PM2.5 and O3 concentrations
under future emission scenarios.

::::
Since

:::
the

::::
unit

::
of

:::::::::::::
DPEC-SSP/CA

:::::::::
emissions

:
is
::::::
t/grid,

:::::
which

::
is

:::::::::::
incompatible

:::
for

:::::::::::
GEOS-Chem

:::::::
running,

::
we

:::::
used

:::::
MEIC

::::::::
inventory

::::
with

:::::
t/grid

::
as

::::
unit

::
at

:::::
2017

::
as

:
a
::::::::::
benchmark

:::::::
(denoted

::
as

:::::::::
b-MEIC),

:::
and

:::::
make

::::::::::
elementwise

::::::::
divisions

:::::::
between

:::::
DPEC

::::
and

:::::::
b-MEIC

::
to

::::::
obtain

:
a
:::::
series

::
of

::::::::
monthly

:::::::
emission

:::::::::
coefficient

:::::::
matrices

:::
for

::::::
various

:::::::
species

::
in

::::
five

::::::
sectors,

:::::::
namely

::::::
power,

::::::::
industry,

:::::::::
residential,

::::::::::::
transportation,

::::
and

:::::::::
agriculture.

:::::
Since

:::
the

::::::::
majority

::
of

:::::
grids

::::
with

:::::::
emission

::::::
factor

::::::
smaller

::::
than

:::
2.0

:::::::
(>80%)

:::
and

:::
to

::::::
prevent

::::::::
abnormal

:::::
values

::::
due

::
to

:::::::::
magnitude

:::::::::
difference

:::
of

:::
two

::::::::::
inventories,

::::
the

::::::::
threshold

::
of

::::::::
emission

::::::
factors

:::
was

:::::::::
artificially

:::
set

::
to

::::
2.0.

::::::::::::
Subsequently,

:::
we

::::
took

:::
the

::::::
Schur

:::::::
product

::
of

:::
the

:::::::::
coefficient

:::::::
matrices

::::
and

:::::::::::
corresponding

::::
part

::
of

::::::
MEIC

::::::::
inventory

::::
used

:::
for

:::::::::::
GEOS-Chem

:::::
input,

:::::
with

:::
unit

::
of
::::::::

kg/m²/s,
::
to

:::::::
generate

:::::::
emission

:::::::::
inventories

::::::::
projected

::::
with

::::::::::::::
DPEC-SSP/CA.

RC: L181 (“GEOS-Chem chemistry transport model”): It should be chemical transport model (based on the
definition https://geoschem.github.io/overview.html).

AR: Thank you for pointing this out. We have corrected “chemistry transport model” to “chemical transport
model” in Line 181 to align with the official definition from the GEOS-Chem documentation.
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2.1.2 GEOS-Chem configuration (L181)

The GEOS-Chem chemistry
:::::::
chemical transport model (http://www.geos-chem.org, version 14.2.2) was

used to simulate the spatiotemporal distribution of surface PM2.5 and O3 concentrations under different
emission scenarios based on year 2017.

RC: L195 (“8 key meteorological parameters”): In Table 2, it says “(2) 9 meteorological parameters.”

AR: Thank you for pointing out this inconsistency. There are actually 9 meteorological parameters mentioned in
this article, namely 2-meter air temperature (T2M), 10-meter northward wind (V10M), 10-meter eastward
wind (U10M), planetary boundary layer height (PBLH), 2-meter specific humidity (QV2M), total precipitation
(PRECTOT), relative humidity (RH), evaporation from turbulence (EVAP), and surface pressure (PS). We
have corrected the text in Line 195 to match Table 3, now referring to “9 meteorological parameters” for
consistency and accuracy, and supplement some details.

Table 3: Targets and features for TGEOS model.

Target number Training targets Feature number Training Features

12

Monthly average, maximum,
minimum, median, 25 and 75
percentiles of PM2.5 and O3

concentrations

1045

(1) power, industry, residential, transportation, and agriculture
emissions: NH3, PM2.5, OC, PM10, BC, CO, NO, SO2,
RCHO, XYLE, ALK2, CCHO, OLE2, ALK5, HCHO, TOLU,
ALK4, ALK3, EOH, ETHE, MOH, ALK1, MEK, OLE1,
ACET, MACR, as well as 8 adjacent sectoral emissions.
(2) 2-meter air temperature (T2M), 10-meter northward wind (V10M),
10-meter eastward wind (U10M), planetary boundary layer height (PBLH),
2-meter specific humidity (QV2M), total precipitation (PRECTOT),
relative humidity (RH), evaporation from turbulence (EVAP),
and surface pressure (PS), as well as 8 adjacent meteorology.
(3) local and adjacent longitude and latitude values, and month
in each scenario.

RC: L213 (“an informative prediction model”): I am not entirely sure how the authors define the term
“informative,” which appears multiple times throughout the manuscript, including in the title and abstract.
It would be helpful to clarify what is meant by “informative” in this context.

AR: Thank you for pointing this out. In this context, we used the term “informative” to convey that the TGEOS
v1.0 model not only provides average values as other models do (Liu et al., 2022), but also predict multiple
statistical concentration indicators (e.g., 75-percentile and max values). We agree that the term may be vague.
To improve clarity, we have clarified the meaning of “informative” in the introduction part of the manuscript.

1 Introduction (L127-L143)

In this study, we proposed an highly-efficient and informative air quality agent prediction model
(TGEOS v1.0), which is based on Transformer architecture as a GEOS-Chem agent model. It is
referred to as "TGEOS" throughout this paper. Relative to earlier studies, this research offers several
significant benefits. First, TGEOS is able to predict the probability distribution of future air quality
under different emission scenarios. Compared to solely average estimated by previous RSM methods,
probability distribution can provide informative frequency distributions of pollutants (Yang and Wu,
2022). The probability distributions have been used to represent future states of PM2.5 (Li et al., 2024)
and O3 (Zeng et al., 2022) concentrations in diverse emission scenarios, and to explore any extreme
pollution events that are typically represented by the high-end tail of the probability distribution curve
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(Zhang et al., 2018; Lu et al., 2020a), as well as the related health impact (Tian et al., 2022).

Second, TGEOS is suitable for concentration prediction in more comprehensive scenarios that include
multiple precursor emissions from multiple sectors. Specifically, in contrast to RSMs with scarce
emission variables, sectoral emissions for 26 precursor emissions encompassing over 18 VOC species
are incorporated into this model, which enhances the model’s capacity to address more flexible demands
of policymakers towards interested emission scenarios. Third, given the significant influence of
regional transport on local pollutant concentrations (Qiao et al., 2021) and the inability of current
technologies to simultaneously consider the impact of regional transport and detailed emission variables,
the effects of adjacent grids consist of emission, meteorological conditions, as well as geo-spatial
data are taken into account to ensure the accuracy of predictions. In addition, with the use of the
Transformer framework, TGEOS demonstrates significantly enhanced predictive accuracy compared
to established machine learning models like Multi-Layer Perceptron (MLP) and Random Forest (RF).

::
In

:::
this

:::::
study,

:::
we

:::::::
proposed

:::
an

:::::::
efficient

:::::::
emulator

::
of

:::::::::::
GEOS-Chem

:::::::
v14.2.2

:::::
based

::
on

::::::::::
Transformer

:::::::::::
architecture,

::::
with

:::
the

::::::::
capability

::
to
:::::::

provide
::::::::::::
"GC-aligned"

:::
air

::::::
quality

:::::::::
predictions

::::::
under

:::::
future

::::::::
emission

::::::::
scenarios

::
in

::::::
China.

::
It

::
is

:::::::
referred

::
to

:::
as

::::::::
"TGEOS"

::::::::::
throughout

:::
this

::::::
paper.

::::::::
Superior

::
to

::::::
earlier

:::::::
studies,

:::::::
TGEOS

:
is
:::::::

capable
:::
to

::::::
provide

::::::::::
informative

::::::::::
predictions

:::::
about

::::::
critical

:::::::::
statistical

::::::::
indicators

:::
of

:::::::
monthly

::::::
PM2.5

:::
and

:::
O3::::::::::::

concentrations
:::::
(e.g.,

:::::::::::
75-percentile

::::
and

::::
max

:::::::
values),

:::
and

:::::
then

::::
have

:
a
:::::::

general
::::::::::::
understanding

::
of

:::::::::
probability

::::::::::
distribution

::
of

:::::
future

:::
air

:::::::::
pollutants.

:::::::::
Compared

::
to

:::::
solely

:::::::
average

::::::::
estimated

:::
by

:::::::
previous

:::::::
methods

:::::::::::::::::::::::::::
(Liu et al., 2022; Liu et al., 2023),

::::::::::
probability

::::::::::
distributions

:::
can

:::::::
provide

:::::::::
informative

::::::::
frequency

::::::::::
distributions

::
of
:::::::::

pollutants
:::::::::::::::::::

(Yang and Wu, 2022).
::::::

Many
::::::
studies

:::::
have

::::
used

::::::::::
probability

::::::::::
distribution

:::::
curves

::
to

::::::::
represent

:::::
future

:::::
states

::
of

::::::
PM2.5 :::::::::::::

(Li et al., 2024)
:::
and

:::
O3 :::::::::::::::

(Zeng et al., 2022)
::::::::::::
concentrations

::
in

::::::
diverse

:::::::
emission

:::::::::
scenarios,

:::
and

::
to

:::::::
explore

:::
any

:::::::
extreme

::::::::
pollution

:::::
events

::::
that

:::
are

:::::::
typically

::::::::::
represented

::
by

:::
the

::::::::
high-end

:::
tail

:::
of

:::
the

:::::::::
probability

::::::::::
distribution

:::::
curve

:::::::::::::::::::::::::::::::::
(Zhang et al., 2018; Zhang et al., 2020),

::
as

:::
well

:::
as

:::
the

:::::
related

::::::
health

::::::
impact

:::::::::::::::
(Tian et al., 2022).

::::::
Second,

:::::::
TGEOS

::
is

:::::::
suitable

::
for

::::::::::::
concentration

::::::::
prediction

::
in
:::::
more

::::::::::::
comprehensive

::::::::
scenarios

::::
that

::::::
include

:::::::
multiple

::::::::
precursor

:::::::::
emissions

::::
from

:::::::
multiple

:::::::
sectors.

:::::::::::
Specifically,

:::
in

:::::::
contrast

::
to

:::::::
previous

:::::::::
emulators

::::::
limited

::
by

::::::
scarce

::::::::
emission

::::::::
variables

:::::::::::::::::::::
(Xing et al., 2011, 2020),

:::::::
sectoral

:::::::::
emissions

:::
for

:::
26

::::::::
precursor

::::::::
emissions

::::::::::::
encompassing

::::
over

:::
18

:::::
VOC

:::::::
species

:::
are

:::::::::::
incorporated

::::
into

::::
this

::::::
model,

::::::
which

::::::::
enhances

::
the

:::::::
model’s

::::::::
capacity

::
to

::::::
address

:::::
more

:::::::
flexible

:::::::
demands

:::
of

:::::::::::
policymakers

:::::::
towards

::::::::
interested

::::::::
emission

::::::::
scenarios.

:::::
Third,

:::::
given

:::
the

:::::::::
significant

::::::::
influence

::
of

:::::::
regional

::::::::
transport

::
on

::::
local

::::::::
pollutant

::::::::::::
concentrations

:::::::::::::::
(Qiao et al., 2021)

:::
and

:::
the

:::::::
inability

:::
of

::::::
current

:::::::::::
technologies

::
to

::::::::::::
simultaneously

::::::::
consider

:::
the

::::::
impact

::
of

:::::::
regional

:::::::
transport

::::
and

:::::::
detailed

::::::::
emission

::::::::
variables,

:::
the

::::::
effects

::
of

::::::::
adjacent

::::
grids

:::::::
consist

::
of

::::::::
emission,

::::::::::::
meteorological

:::::::::
conditions,

::
as
::::
well

:::
as

:::::::::
geo-spatial

::::
data

:::
are

::::
taken

::::
into

:::::::
account

::
to

:::::
ensure

:::
the

::::::::
accuracy

::
of

:::::::::
predictions.

:::
In

:::::::
addition,

::::
with

:::
the

:::
use

::
of

:::
the

::::::::::
Transformer

::::::::::
framework,

:::::::
TGEOS

::::::::::
demonstrates

:::::::::::
significantly

::::::::
enhanced

::::::::
predictive

::::::::
accuracy

::::::::
compared

::
to

:::::
other

:::::::
machine

:::::::
learning

:::::::
models.

RC: L215: The authors mention that the number of features is 1045 (Table 2), yet the number of input channels
is reported as 1048. It would be helpful to clarify how this inconsistency is handled in practice.

AR: We appreciate the reviewer’s careful reading and have corrected this mistake accordingly. The number “1048”
was a typographical error and the correct number of input feature dimension is 1045, as stated in Table 2. We
have corrected this inconsistency in the revised manuscript.
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2.2.1 Model architecture (L215)

In order to align with the shape of the dataset, the model was designed with 1048 input channels and
12 output channels.

:
an

:::::
input

::::::
feature

:::::::::
dimension

::
of

:::::
1045

:::
and

::
an

::::::
output

:::::::::
dimension

::
of

:::
12.

RC: L230: Figure 1 should be improved to provide more detailed information (e.g., Transformer Module).

AR: Thank you for your helpful suggestion. We have added a new figure to provide more detailed information
about the model architecture (Figure 3). The added figure now includes a clear breakdown of key components
such as the input embedding, multi-head self-attention, feedforward network, and output layers. We believe
this revision improves the clarity and completeness of the model description.

RC: Dataset and methodology: The manuscript does not provide basic information such as hyperparameter
tuning procedures and sample size.

AR: Thank you for pointing this out. We have supplemented the aforementioned deficiencies, as outlined below.
They will be included in the supplementary.

Table 4: Hyperparameters tuning for TGEOS.

Name Tuning range Best value

Batch size 128, 256, 512, 1024 512

Learning rate 1× 10−5, 1× 10−4, 1× 10−3 1× 10−4

Epoch 30, 50, 100, 200 100

Number of attention heads 4, 6, 8 8

Number of Encoder layers 2, 4, 6 6

Hidden dim 128, 256, 512 512

Table 5: Other hyperparameter options for TGEOS.

Hyperparameter Option

Optimizer Adam

Loss function MSE

Sample size for training 1,108,440

Sample size for test 221,688

RC: Results and discussions: The model evaluation primarily relies on R2 and MAE. It is recommended to
include metrics that assess the model’s ability to predict extreme values, such as precision and recall for
exceedance events.

AR: Thank you for this valuable suggestion. We will update the figures with extra metrics, namely MBE and
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Table 6: Hyperparameters tuning for RF model.

Name Tuning range Best value

N estimators 50, 100, 300, 500 300

Max depth range(10, 50, 5) 25

Min samples split range(2, 10, 1) 4

Min samples leaf range(1, 10, 1) 2

Table 7: Hyperparameters tuning for MLP model.

Name Tuning range Best value

Batch size 128, 256, 512, 1024 1024

Learning rate 1× 10−5, 1× 10−4, 1× 10−3 1× 10−4

Epoch 30, 50, 80, 100 100

Hidden dims [1024, 512], [2048, 1024, 512],
[2048, 1024, 512, 256]

[2048, 1024, 512, 256]

Dropout rate range(0.1, 0.6, 0.1) 0.2

Activation function ReLU, Tanh, GELU ReLU

precision and recall for predictions exceeding the 90th percentile. We have revised corresponding part of the
manuscript. Details are shown in blew:

As illustrated in Fig. 5(a), 6(a), and S10(a), there exists a robust statistical correlation between
the PM2.5 indicators predicted by TGEOS and the actual GC simulations across varying emission
scenarios, with R² values ranging from 0.976 to 0.995. These results substantiate that PM2.5 accurately
captures the principal trends and patterns of PM2.5 as simulated by GC. Moreover, the evaluation of
model prediction errors, as quantified by the Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE), reveals relatively low error levels, with RMSE values ranging from 0.985 to 2.110
and MAE values between 0.685 and 3.243. This underscores the reliability of TGEOS predictions
in relation to those achieved by the GC simulations. In other words, the predictive capabilities of
TGEOS are characterized by a high degree of accuracy and reliability.

:::
As

::::::::
illustrated

::
in
::::

Fig.
:::::

5(a),

::::
6(a),

:::
and

:::::::
S10(a),

::::
there

::::::
exists

:
a
::::::
robust

::::::::
statistical

:::::::::
correlation

::::::::
between

:::
the

:::::
PM2.5:::::::::

indicators
::::::::
predicted

::
by

:::::::
TGEOS

:::
and

:::
the

::::::
actual

:::
GC

::::::::::
simulations

:::::
across

:::::::
varying

::::::::
emission

::::::::
scenarios,

::::
with

:::
R²

:::::
values

:::::::
ranging

::::
from

:::::
0.976

::
to

::::::
0.995.

::::::
These

::::::
results

::::::::::
substantiate

::::
that

:::::
PM2.5:::::::::

accurately
::::::::
captures

:::
the

:::::::
principal

::::::
trends

:::
and

:::::::
patterns

::
of

::::::
PM2.5::

as
:::::::::
simulated

::
by

::::
GC.

::::
The

:::::::::
evaluation

::
of

::::::
model

::::::::
prediction

::::::
errors,

::
as

:::::::::
quantified

::
by

:::
the

::::::
RMSE

:::
and

::::::
MAE,

::::::
reveals

::::::::
relatively

:::
low

:::::
error

:::::
levels,

::::
with

::::::
RMSE

::::::
values

:::::::
ranging

::::
from

:::::
0.985

::
to

:::::
2.110

:::
and

:::::
MAE

:::::
values

:::::::
between

:::::
0.685

::::
and

:::::
3.243,

::::::::::::
demonstrating

:::
the

::::::::
predictive

::::::::::
capabilities

::
of

:::::::
TGEOS

::::
with

:
a
::::
high

::::::
degree

:::
of

::::::::
accuracy

:::
and

:::::::::
reliability.

::::
The

:::::
MBE

::::::
values

:::
are

:::::::
ranging

:::::
from

::::::
-1.453

::
to

:::::
1.420

::
for

::::::
PM2.5,

::::::
-0.033

::
to
::::::

1.125
::
for

::::
O3,

:::::::::
indicating

:
a
:::::
slight

::::::
overall

:::::::::
deviations

::
in

::::::::::::
concentration

:::::::::
predictions
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Table 8: Hyperparameters tuning for CNN model.

Name Tuning range Best value

Batch size 128, 256, 512, 1024 256

Learning rate 1× 10−4, 1× 10−3, 1× 10−2 1× 10−2

Epoch 30, 50, 80 80

Kernel size 2, 3, 5 3

Padding 0, 1, 2 1

Number of channels 2 32, 64, 128 128

Size of FC 1 128, 256, 512 256

::::::::
compared

::
to

::::::::::::
corresponding

::::
GC

::::::::::
simulations.

:::::::::::
Considering

:::
that

::::
this

::::
bias

::
is

::::::::
relatively

:::::
small

::::::::
compared

::
to

:::
the

:::::::::
magnitude

::
of

:::
the

:::::::::::::
concentrations,

:::
the

::::::
model

:::
can

:::
be

::::::::
regarded

::
as

::::::
nearly

::::::::
unbiased.

:::
In

:::::::
addition,

::
to

:::::::
evaluate

:::
the

::::::::
capability

:::
of

:::::::
TGEOS

::
in

::::::::
capturing

:::::::
extreme

::::::
events,

:::
we

:::::::::
employed

::::::::::
exceedance

::::::
metrics

:::::
based

::
on

:::
the

::::
90th

:::::::::
percentile

::::::::
threshold

::
of

:::
the

::::::::::::
concentration

::::::::::
distribution.

::::
The

::::::
results

::::::
indicate

::::
that

:::
the

:::::
model

:::::::
achieves

::::
high

::::::::
precision

:::
and

:::::
recall

:::::
score

:::
for

::::
both

:::::
PM2.5::::

and
:::
O3 ::::::::

indicators,
::::
with

:::
all

:::::
these

:::::
values

:::::
larger

::::
than

::::
0.85.

:::::
These

::::::
values

::::::
suggest

::::
that

:::
the

:::::::
majority

::
of

:::
the

::::::::
predicted

:::::::::
exceedance

::::::
events

:::::::::
correspond

::
to

:::::
actual

:::::::::::
exceedances,

:::::
while

:::::
nearly

:::
all

:::
true

::::::::::
exceedance

:::::
events

:::
are

::::::::::
successfully

::::::::
detected.

::::
The

::::
high

:::
and

:::::::
balanced

::::::
values

::
of

::::
both

::::::
metrics

::::::::::
demonstrate

::::
that

:::::::
TGEOS

::
is

::::::
capable

::
of

:::::::::
accurately

:::::::::
identifying

:::::::
extreme

:::::::::
high-value

::::::::::
occurrences

::::
with

:::
low

:::::
false

:::::
alarm

::::
and

::::
miss

:::::
rates.

:::::::::
Moreover,

::::
this

::::::::::
performance

:::::::::
highlights

::
the

::::::::::
robustness

::
of

:::
the

::::::
model

::
in

:::::::::::
reproducing

:::
the

:::::
upper

:::
tail

:::
of

:::
the

::::::::::
distribution,

::::::
which

::
is
::::::::::
particularly

::::::::
important

:::
for

::::::::::
applications

:::::::
focusing

:::
on

:::::::
extreme

:::::::
pollution

::::::
events.

In fact, the model’s ability to predict extreme values has been presented by estimating key indicators, such as
the 75th percentile, and maximum values of daily concentrations within a month. Our results show that the
model performs well in predicting these indicators, with R2 exceeding 0.9 in most scenarios. However, the
model’s predictions for the maximum values are relatively less accurate due to the inherently high uncertainty
associated with extremes. Moreover, it is important to note that the extreme values predicted by TGEOS
may still reflect the biases inherited from the GEOS-Chem simulation itself (Heald et al., 2012; Travis and
Jacob, 2019), and thus may not fully represent the true observed extremes. To address this limitation, we
have initiated a follow-up study in which we developed a bias correction module that can be integrated into
TGEOS to improve the prediction accuracy. We believe this direction holds great potential and will be a focus
of our future work, and we sincerely hope you will stay tuned for our upcoming studies.
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