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Abstract. We present a model describing the population dynamics of benthic biota, feeding from a common resource that is 

supplied by a flux of sinking organic carbon arriving on the seafloor. By using allometric relationships for the physiological 

processes of growth, mortality and respiration, and for food limitation, the model represents the population dynamics of 

organisms ranging in size from bacteria (10-14 g wet weight C) to large metazoans (103 gwwt C). The effect of temperature on 

physiological rates is also included. The only forcing information required is the ambient temperature and the rate of supply 10 

of sinking organic carbon. The model can be used for, and tuned to, specific locations. However, a parameter set is provided 

that is generally applicable. The ability of the model to simultaneously reproduce biomass size distributions at five contrasting 

sites is demonstrated for this parameter set. Other examples of use are also shown, using the model to explore global patterns 

of benthic biomass, and responding to a change in food supply. 

1 Introduction 15 

The surface ocean, or epipelagic, ecosystem has received considerable attention from modellers for a variety of reasons, 

spanning from the magnitude of biogeochemical fluxes (e.g. Burd, 2024) and fundamental questions of ecosystem structure 

(e.g. Woodson et al., 2018) and biodiversity (e.g. O’Dor et al., 2009) to more societal issues such as fisheries management 

(e.g. Karp et al., 2023) and climate modelling (Kwiatkowski et al., 2020). However, the seafloor, or benthic, ecosystem has 

received much less attention, particularly in the deeper regions away from the continental shelves. This is despite the regions 20 

deeper than 1000 m constituting over half of the earth’s surface area (Ramirez-Llodra et al. 2010; Harris et al. 2014). 

 

The benthic ecosystem of the deep ocean (aside from hydrothermal vents) is almost entirely dependent on external input for 

food, with the majority in the form of organic material sinking down from the waters above. This means that the benthic 

ecosystem is susceptible to changes in production of this organic material that may occur several kilometres above it (Ruhl et 25 

al., 2008), such as in response to climate change (Yool et al., 2017). Benthic ecosystems are also subject to direct pressures 

such as trawling, dredging, oil and gas activities, and seabed mining. To understand and to predict the future for benthic 

ecosystems we therefore need models that adequately capture their response to such drivers, across the full ecosystem and over 

appropriate timescales. 

 30 

Building models that capture the key interactions within an ecosystem is of value for three reasons: construction of a model 

forces us to identify the key processes and to articulate our understanding of them in a precise manner; the behaviour of the 

model allows us to identify gaps and uncertainties in that knowledge; and by linking the model to forecasts for how 

environmental drivers may change it allows us to make predictions for the fate of the ecosystem based across different 

scenarios. One modelling strategy is to represent an ecosystem as different functional groups, particularly those linked to 35 

particular fluxes of interest into and out of the sediment e.g. deposit feeders and aerobic/anaerobic bacteria (e.g. Butenschön 

et al., 2016; Ernsten et al., 2018). This approach is valuable, for example, in shelf systems where the interactions between 

sediment, overlying water and benthic ecosystem may need to be captured because the feedback on the overlying water column 

may be significant given the shallow depths. Shelf systems also benefit from a greater array of data to constrain a model as 
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they are more accessible for sampling than deeper waters. More generally, a paucity of data to constrain a model or limited 40 

understanding of causal relationships are common hindrances, particularly for deep-sea ecosystems because of the remote and 

challenging nature of the environment being studied. For situations where the ecosystem can be approximated as unchanging 

in time, statistical methods have been used (e.g. Reiss et al., 2014), particularly for modelling distributions of groups or 

individual species, but also for distributions of biomass (Wei et al., 2010; Jones et al., 2014). For deep-sea ecosystems where 

data are sparser, an inverse approach has been used to estimate fluxes between functional and size category components of the 45 

ecosystem at equilibrium (Soetaert & van Oevelen, 2009 ; Durden et al. 2017; de Jonge et al., 2020), with the size classes 

mirroring those represented by typical benthic sampling techniques. However, behaviour such as switch-feeding (e.g. 

alternating between suspension feeding and predation) in deep-sea fauna (Durden et al. 2015; Iken et al. 2001) complicates the 

use of discrete functional groups based on feeding types (Durden et al. 2017).  

 50 

Another approach, is to represent the community purely as a collection of different size classes of organisms (Kelly-Gerreyn 

et al., 2014; Blanchard et al., 2011; Laguionie Marchais et al., 2020) rather than as functional groups or species. As described 

below, this offers considerable simplification in model structure and paramaterisation. Furthermore, by using allometric 

relations to base the model on the represention of rates, rather than stocks, this approach also allows the response of ecosystems 

with time to be tracked.  55 

 

Considerable attention has been given to observations showing relationships which appear to scale in a consistent way with 

body size, both at a population (e.g. abundance - White et al 2007) and an individual (e.g. physiological rates - Gillooly et al. 

2001) level. This phenomenon has been widely observed, on land (e.g. Nagy 1987), in the air (e.g. Niven and Scharlemann, 

2005) and in the sea (e.g. Molony and Field 1989) including the deep ocean (Durden et al. 2019; McClain et al. 2012; Mahaut 60 

et al. 1995). That such behaviour has been observed across many habitats and orders of magnitude in size of organism 

unsurprisingly led to a search for a “Universal” law explaining such behaviour. Metabolic rate controls ecological processes 

at individual and ecosystem levels by determining resource uptake and allocation. The Metabolic Theory of Ecology (MTE; 

West et al., 1997; Brown et al., 2004) asserts that, to first order, this rate is controlled by the size of organism and the ambient 

temperature. This provides a potential explanation for the existence of a power law relationship between physiological rates 65 

and body size. However, there remains a discussion over the taxonomic or functional scale at which other features or processes 

might disrupt any universal scaling (Seibel and Drazen, 2007), the precise value of the scaling (Isaac and Carbone 2010, Brey 

2010; Glazier, 2022) and the extent to which such an approach applies to systems that are not in equilibrium (McCarthy et al., 

2019). 

 70 

Notwithstanding these caveats, an allometric approach still has considerable value when applied at broad ecosystem scales. 

To support use of an allometric approach, we give just a few examples for three key processes: growth, respiration and 

mortality. Motivated by predictions of MTE, Ernest et al. (2003) successfully tested the predicted scaling exponent of -0.25 

for growth rate, for organisms spanning 10-14-108g in size. More specific to this study, with a focus on macrobenthos, Cusson 

& Bourget (2005) brought together empirical relations from previous studies (their Table 8) that demonstrate similar evidence 75 

of scaling of growth rate with size. For respiration, Mahaut et al. (1995) found a power-law scaling with size for deep-sea 

organisms, spanning seven orders of magnitude. This was for a single location, however, so not suitable for testing a 

temperature dependence. For mortality, McCoy and Gillooly (2008, 2009) brought together estimates of natural mortality 

spanning 22 orders of magnitude including plants, fish, birds, mammals and invertebrates, finding that a power law scaling 

with size plus an exponential dependence on temperature captures the dominant pattern. A restriction of their data purely to 80 

invertebrates found a similar result (McCoy and Gillooly, 2009), still spanning 11 orders of magnitude in size. Again, focussed 

on marine benthic organisms, McClain et al., (2012) analysed data for growth, respiration and turnover (which can be a proxy 
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for mortality) and demonstrated a clear power law scaling with size, with additional support for an exponential relationship 

with temperature. There are, therefore, reasonable grounds for adopting an allometric approach.  

 85 

Kelly-Gerreyn et al. (2014) constructed a dynamic model for benthic organisms based on allometry such that physiological 

rates vary with body size (Benthic Organisms Resolved in Size – hereafter “BORIS-1”). BORIS-1 was capable of reproducing 

the size distribution of organisms at three sites contrasting in depth between 150m and 1600m. This model assumed that all 

organisms were detritivores, eating from a common pool of detritus supplied by organic material sinking to the seafloor, the 

particulate organic carbon (POC) flux. BORIS-1 demonstrated that an allometric model with a small number of physiological 90 

processes (ingestion, assimilation and respiration/mortality) that are common to all organisms but scale with body size can 

capture the size-distribution of biomass seen in observations. However, the model has several limitations. The first is that it 

only represents a limited range of sizes (8.9×10-7 to 2.9×10-2 g wet weight). It was therefore necessary to assume a specific 

fraction of POC flux that was consumed and respired by organisms not represented by the model, and hence not available to 

the modelled organisms. The omitted organisms included both smallest (e.g. bacteria) and largest (e.g. large sea cucumbers) 95 

size ranges. The physiological rates were also not dependent on temperature even though there is evidence that physiological 

rates typically increase as the environment warms (e.g. Gillooly et al., 2001). The mortality rate also had a dependency on the 

POC flux in BORIS-1. This resulted in estimates of longevity that unrealistically varied across several orders of magnitude for 

the same organism at different locations.  

 100 

This paper presents an expanded and updated version of BORIS-1 that addresses these limitations. The resulting model, 

BORIS-2, spans the full range of organism sizes, includes the physiological role of temperature, and is parameterised using a 

larger dataset that includes observations from a greater range of sites with contrasting environments conditions, including the 

abyssal ocean. A single parameter set that allows the model to capture the ecosystem structure across these sites is given and 

examples are demonstrated for how the model may be used to study both local and global questions. It is worth stressing that 105 

the aim of BORIS-2 is to capture broad ecosystem behaviour, i.e. macroecology, across the full range of body sizes, not to 

capture the dynamics of specific species. 

2 BORIS-2 model description 

BORIS-2 represents benthic organisms spanning in size from bacteria to large metazoans (Figure 1). It does so by dividing 

benthic organisms into size classes and using an allometric approach. The size classes are defined on the basis of individual 110 

wet weight body mass (units grams wet weight – gwwt). From the smallest to the largest, each size class spans twice the range 

of the former. More specifically, the mean body mass of organisms within a size class spans from 1.3×10-14 gwwt (13 fg) for 

the smallest to 3.6×103 gwwt (3.6 kg) for the largest. The lower limit of the smallest class is 0.88×10-14 gwwt (9 fg) and the 

upper limit of the largest is 5.1×103 gwwt (5.1 kg). The size classes are chosen to be consistent with those used for size-spectra 

biomass data (e.g. Laguionie Marchais et al., 2020) and BORIS-1 (Kelly-Gerreyn et al., 2014). The smallest size class is based 115 

on the smallest observed bacteria (Luef et al., 2015), using a conversion from gC to gwwt of 11.5 (Brey, 2010). The largest 

size class is chosen to be broadly representative of benthic habitats. It is consistent with a detailed assessment of invertebrates 

for a well-studied abyssal site, the Porcupine Abyssal Plain (one of the sites described in Section 2.4). These upper and lower 

biomass limits, together with the factor of two scaling used between biomass size classes, sets the number of model size classes 

to 59. For application of BORIS-2 to specific locations where larger organisms are known, the upper size limit is easily 120 

changed. The BORIS-2 size range currently spans over 18 orders of magnitude.  
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2.1 Ecological interactions 

BORIS-2 comprises a set of differential equations describing the time-varying behaviour of N=59 size classes ingesting a 

common resource, R, that represents the stock of detrital food available to the benthic community (i.e., in / on the seafloor or 

in the benthic boundary layer). The model does not capture any direct predation or cannibalism, and instead represents a 125 

community of detritivorous heterotrophs. The total biomass represented by all organisms per square metre in each size class i 

of nominate mass Mi (units: grams wet weight - gwwt) is represented as Bi (units: gwwt/m2) which varies with time, t (units: 

d), according to the equation 

𝑑𝐵𝑖

𝑑𝑡
=  𝑔𝑖 . 𝑓(𝑅, 𝐵𝑖) . 𝐵𝑖
⏞          
𝑔𝑟𝑜𝑠𝑠 𝑔𝑟𝑜𝑤𝑡ℎ

− 𝑟𝑖  . 𝐵𝑖⏞  
𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛

− 𝑚𝑖  . 𝐵𝑖⏞  
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

     (1) 

where gi is the maximum specific growth rate and ri and mi  are the specific rates of respiration and mortality, respectively. All 130 

of gi, ri and mi have units of 1/d. The function f(R,Bi) represents how growth is limited by increasing population size and/or 

decreasing resource availability (see Section 2.2). The associated equation controlling the amount of resource, R (units: 

gwwt/m2), is 

𝑑𝑅

𝑑𝑡
= 𝐹 −∑ [𝑔𝑖 . 𝑓(𝑅, 𝐵𝑖) . 𝐵𝑖

⏞          
𝑔𝑟𝑜𝑠𝑠 𝑔𝑟𝑜𝑤𝑡ℎ

− 𝑚𝑖  . 𝐵𝑖⏞  
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

]

𝑁

𝑖=1

      (2) 

where F is the POC flux to the seafloor through gravitational sinking of detritus (gwwt/m2/d). Note that at equilibrium the rate 135 

of supply of organic material, F, equals the respiration by the whole ecosystem, ∑ 𝑟𝑖  . 𝐵𝑖
𝑁
𝑖=1 . It is assumed that the long-term 

burial of organic material in sediment is negligible compared to POC and total respiration fluxes. (Section 4.1 discusses how 

this assumption might be relaxed.) A linear mortality term, mi.Bi, is used in BORIS-2. (The reason for using this rather than 

the quadratic µi.Bi
2 parameterisation used in BORIS-1 is given in the Appendix).  

2.2 Growth limitation: food scarcity and interference 140 

The resource limitation function, f(R,Bi), reflects the impact on growth arising from competition for limited resources. This 

function is chosen to capture two effects. First, low availability of food, R, should lead to a reduced rate of intake and growth. 

Second, any increase in the number of organisms (for which Bi is a proxy) looking for food should reduce the likelihood of 

any individual finding it, a phenomenon known as interference (e.g. DeAngelis et al., 1975). More specifically, we assume the 

parameterisation 145 

f(R,Bi) = 1/(1+aiBi/R)        (3) 

The parameter ai is present to account for how interference may scale with size. For example, larger organisms can search a 

given area more quickly than a smaller one, in general, either because motility generally increases with size or more simply 

because they occupy a greater area. Note that ai is unitless. The function f(R,Bi) varies between 0 and 1, with a value of zero 

entirely ceasing production and a value of one leading to growth at the maximum rate, gi. To demonstrate that the function has 150 

the required properties, first consider the case where R is very abundant such that (R>>aiBi). Then f(R,Bi) ~1 and there is no 

limitation of growth. If resource is scarce such that R<aiBi, then f(R,Bi) ~ R/(aiBi) which is always a value less than one but 

increases and decreases linearly with both resource, R, and abundance of organisms, represented by Bi. Note that for simplicity 

we currently only incorporate competition for resources within a size class. This is the simplest assumption given that different 

size classes seek food at different spatial scales. What is a meal for a bacterium is unlikely to be a meal for a holothurian. It 155 

would, however, be straightforward to include competition from other size classes simply by using a sum over those classes 

in the denominator. The form of the interference parameter, ai, is discussed in the next section. 
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2.3 Allometric and temperature influences 

In BORIS-2 allometry is used to describe four physiological or physiologically-affected processes across the range of body 

sizes. The physiological processes are growth (gi), respiration (mi) and mortality (ri). The physiologically affected process is 160 

growth limitation, controlled by parameter ai. All of these are assumed to be determined by size (body mass) and environmental 

temperature. 

 

The effect of temperature is assumed to be identical for all four processes and represented by a function, θ(T), which is taken 

to be 165 

θ(T) = exp[-E./k]        (4) 

with  

 = 1/(T+Tabs) - 1/(Tref+Tabs)        (5) 

where T is temperature (units: oC), Tref  (units: oC) is a reference temperature, Tabs = 273.15 K converts T and Tref to units of 

Kelvin (K), and k is Boltzmann’s constant (8.62x10-5 eV/K). This is a widely used formulation applied both in empirical studies 170 

(e.g. Brey, 2010) and papers developing ideas around the Metabolic Theory of Ecology (e.g. Gillooly et al. 2001).  E (units: 

eV) is often described as an activation energy. We discuss the value chosen for E in Section 2.4.2. Tref is chosen to be 20oC. 

While this may seem an arbitrary choice of reference temperature, it has no impact on rates. Using a different Tref simply 

requires a numerical change in parameters (g0, r0, m0 and a0) to compensate for the change.  

It is assumed that the three physiological rates (gi, mi and ri) scale with body size in an identical way. This is necessary as 175 

otherwise it is not possible for the ecosystem to achieve steady state in all size classes simultaneously. A different scaling with 

size for these processes would mean that even if growth, respiration and mortality balance for one size of organism, they would 

not balance for others. As the link between interference and physiology is more tentative, ai is allowed to scale independently. 

More specifically, growth, respiration and mortality have common scaling exponent β, whereas interference scales with 

exponent α: 180 

gi = θ(T).g0.M          (6) 

ri = θ(T).r0.M          (7) 

mi = θ(T).m0.M         (8) 

ai = θ(T).a0.M          (9) 

The values chosen for the 7 parameters used in the model (g0, r0, m0, a0, , , E) are given in Section 2.5 (and Table 1), together 185 

with a description of the data used to constrain them. The performance of the model using this parameter set is then described 

in Section 2.6 and the uncertainties associated with their values are discussed in Section 2.7. Before then a steady state solution 

for the model is presented, both for its own use and as a source of useful information for constraining parameter values. 

 

2.4 Steady state solution 190 

The model has a steady state solution which can be written in a simple form. This provides a means to initialise simulations, 

to validate dynamical model runs (if run to equilibrium) or to accelerate model runs where time-scales are longer than organism 

response times. 

Indicating steady state values with an asterisk, the steady state solution is 
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𝑅∗ =
𝐹

∑
𝑟𝑖.(𝑔𝑖−𝑟𝑖−𝑚𝑖)

𝑎𝑖.(𝑟𝑖+𝑚𝑖)

𝑁

𝑖=1

        (10) 195 

𝐵𝑖
∗ =

(𝑔𝑖−𝑟𝑖−𝑚𝑖)

𝑎𝑖.(𝑟𝑖+𝑚𝑖)
. 𝑅∗        (11) 

This steady state solution provides a few insights into the behaviour of the model. First, both resource, R, and biomass in all 

size classes, Bi, increase linearly with F. This is not surprising as we would expect abundance of detritus and biomass to 

increase with increasing food supply. Second, Bi scales with size with the same exponent, -, as 1/ai (i.e. Bi
*∝M -). This is 

because gi, ri and mi all scale the same with size, as mentioned above, and so the scaling of (gi-mi-ri) in the numerator for Bi
* 200 

is cancelled by the identical scaling of (ri+mi) in the denominator. Hence, the biomass spectral slope is effectively set by 

interference. Although this might be unexpected it should be noted that the processes contributing to ai are still very poorly 

known and its scaling is likely to be influenced by physiological processes, such as respiration associated with enhanced 

movement for example. The theoretical model of Damuth (2007) is potentially relevant here as it links competition for 

resources to allometric scaling and community wide energy use. Nevertheless, understanding the likely influences on 205 

interference is clearly a useful avenue for future research. 

 

Returning to the steady state solution, substituting Equations 6-9 into Equations 10 and 11 gives 

𝐵𝑖
∗ = (

1

𝑟0.𝜃(𝑇)
) . (

𝑀𝑖
−𝛼

∑ 𝑀
𝑗
𝛽−𝛼𝑁

𝑗=1

) . 𝐹       (12) 

𝑅∗ = (
𝑎0.(𝑟0+𝑚0)

𝑟0.(𝑔0−𝑟0−𝑚0
) . (

1

∑ 𝑀
𝑗
𝛽−𝛼𝑁

𝑗=1

) . 𝐹      (13) 210 

In addition to showing explicitly that Bi scales as -, as already mentioned, Equation 12 also reveals that the steady state 

biomass is independent of growth and mortality except for the scaling () and temperature dependence (θ(T)) that they share 

with respiration. While this might seem at first surprising, it is because of the fundamental constraint that total respiration must 

match the POC flux, F, of arriving new organic material, i.e. 𝐹 = ∑ 𝑟𝑖  . 𝐵𝑖
∗𝑁

𝑖=1
. At equilibrium, any change in growth or 

mortality arising from changing either g0 or m0, respectively, is compensated by a change in food resource (R), rather than in 215 

Bi, to maintain this balance. This balance is also reflected in the influence of r0 in Equation 12, with an increase in it 

corresponding to a compensating decrease in Bi
*. Similarly, if the specific respiration rate increases as a result of temperature 

increase (see Equation 7) then the higher physiological overhead means that a lower Bi
* is maintained. Finally, it is worth 

noting that although the mass scaling of interference, , influences Bi
*, a0 does not. 

 220 

2.5 Observational constraints and choice of parameter values 

Only the mass scaling associated with interference, , can be directly constrained individually from data. For the six other 

parameters (g0, r0, m0, a0, , E) there is a range of different data that can provide constraints, but none directly match specific 

parameters. Instead, relationships between parameters must be used to link the different bits of data together as a collective 

constraint. Unfortunately, published empirical relationships cannot be used directly for growth, respiration and mortality in 225 

BORIS-2. While previous studies have highlighted observational evidence for allometric relationships, they have either 

focussed on just one physiological rate (e.g. Mahaut et al., 1995; Cusson & Bourget, 2005), or, in the case where they have 

studied several (e.g. McClain et al., (2012)), have not addressed the question of whether the relationships for different rates 

are consistent i.e. whether they can balance simultaneously for organisms of different sizes. For a dynamic model (and for real 

organisms and populations) this is essential and so we have used the observed allometry as a starting point but allowed 230 

flexibility in details to allow the necessary balance to be achieved. The following describes the parameter choices and the data 

used to support them. Table 1 has a summary of parameter values and Figures 2 and 3, and Table 2, summarise the 

observational constraints and associated model diagnostics used to select them. The code needed to generate Figures 2 and 3 
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is also available to allow the model to be re-tuned given additional data, different locations or different priorities (Martin et 

al., 2025). 235 

 

As stated above, only , can be directly constrained. The steady state solution (section 2.4) shows that it must scale in the 

opposite way to biomass distributions. Suitable observations from five sites are used to select the value; a summary is found 

in Table 2. The Clarion Clipperton Zone (CCZ) is a vast abyssal plain in the northeast Pacific. The data used here come from 

a site (17.2° N 122.6° W) of depth 4150 m with a low temperature (1.5 oC). Fladden Ground (FG) is in a shelf sea (153 m) 240 

and, unsurprisingly, with higher temperature (8 oC). The Faroe-Shetland Channel (FSC) is a connection between the North 

Atlantic and the Arctic, with the lowest temperature (-1 oC) despite a depth of only 1623 m. The Oman Margin (OM) is a slope 

site (507 m) and has the highest water temperature (13 oC). The final site is the Porcupine Abyssal Plain (PAP), which is the 

deepest (4850 m), with reasonably cold temperature (2.6 oC). A general decrease of temperature with depth is overlain with 

considerable variability due to local hydrography (notably FSC and OM). In addition to spanning a range of contrasting 245 

temperatures and depths, the data from the five sites also covers complementary size ranges of organisms. CCZ data are based 

on photographically surveyed megabenthos. FG, FSC, and OM data are based on physically sampled meio- to macrobenthos. 

PAP is based on physically sampled macrobenthos and photographically surveyed megabenthos. For CCZ, the data can be 

found in Benoist (2020), with sampling and methodology described in Simon-Lledó et al. (2019) and Benoist et al., (2019). 

Details on data for FG, FSC and OM can be found in Kelly-Gerreyn et al. (2014). Additional information on the sampling and 250 

laboratory methodology can be found in Kaariainen et al. (2006). The benthic ecosystem of the PAP site has been studied for 

decades (Hartman et al., 2021). The data used here, and presented in Benoist (2020), combines analyses of macrobenthos and 

megabenthos. Descriptions of observational approach and the analysis methodology for the megabenthos can be found in 

Morris et al. (2016) and Durden et al. (2020b). For macrobenthos, this information can be found in Benoist (2020) and Ruhl 

et al. (2023). Further details on the treatment of size-resolved data, e.g. to remove biases such as under-sampled size groups, 255 

can be found in Edwards et al., (2017, 2020) and Ruhl et al. (2023). Observations of biomass versus size for each of the sites 

are shown in Figure 2. These are referred to as biomass spectra and the gradient of the relationship (when plotted log-log as 

here) as the spectral slope, or scaling exponent. Despite some variability, all sites exhibit an increase of biomass with body 

size, and in a manner that is consistent with a power law relationship. Figure 2 also shows the exponents found by fitting a 

power law to the observations from each site individually. Note that values are given for  (the negative of the biomass scaling). 260 

There is no strong relationship between fitted exponent and environmental parameters, though the smaller magnitude scaling 

exponents for the two shallow sites is something that has previously been seen in physiological rates rather than biomass 

(Mahaut et al., 1995). The OM site additionally has a low oxygen concentration (Demopoulos et al., 2003) which has been 

suggested to have a disproportionate impact on larger organisms (Quiroga et al., 2005) and which could therefore be 

responsible for flattening the slope relative to other sites. Nevertheless, here we take the simplest assumption that all sites are 265 

showing sufficiently similar behaviour in scaling to assume a common scaling exponent across the sites, leaving an 

investigation of departures from this for other studies. Figure 2g shows the simultaneous fit to data from all sites. It is seen that 

observations from the five sites cover different size ranges such that the composite dataset spans a substantially wider size 

range than any individual site. Furthermore, the relationship of biomass with size appears consistent across the wider range. If 

the data from all sites is combined then the scaling exponent for a power law fit to all five sites simultaneously indicates a 270 

value for  of -0.26 (s.d. 0.016, r2=0.76, p<0.001). Using multiple sites simultaneously gives more confidence that the 

parameter set presented can be used globally. 

 

As stated above, in choosing the remaining six parameter values it is necessary to link together constraints from different 

observations. Those constraints are described below (and visually summarised in Figure 3) but first it is worth stating that there 275 

is no objective way to use these multiple constraints. As will be seen below, the strength of some constraints is greater than 
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others and trying to construct some overall cost function to optimise parameters would require considerable subjectivity in 

how the constraints were translated into costs and weighted relative to each other. For this reason, and because of the limited 

number of parameters and ability to calculate the outcome of a given parameter set extremely quickly, values have instead 

been chosen by trial and error for the six parameters g0, r0, m0, a0, , E. A summary of values can be found in Table 1. While 280 

future users of BORIS-2 may choose to use a different approach to selecting parameter values, it will be seen in Section 2.6 

that the current set does a reasonable job and Section 2.7 describes the consequences associated with adjusting these values. 

 

Perhaps the strongest observational constraint comes from the requirement that the supply of organic carbon to the ecosystem 

(the POC flux, F) balances the total respiration of the organisms present at steady state. For the model, respiration is given by 285 

the sum over size classes of the product of the specific respiration rate and biomass in each size class, riBi. Therefore, 

observations of POC flux, co-located with the previously described size-resolved estimates of biomass, provide a useful 

constraint on r0 and . There are several sources of data for POC flux. First, and most directly, for the PAP site there is a long 

time-series of sediment trap data (Lampitt & Pebody, 2023). Although there are sediment traps at both 3000 m and 4750 m, 

the latter is thought to be biased by sediment resuspension as it is near to the seafloor. For this reason, it is better to use the 290 

estimate from the 3000 m trap. For the year 2012 (to best match the biomass observations) the annual carbon flux is 1.91 

gC/m2/yr. The associated flux at the seafloor can be roughly estimated using a widely used power law scaling (Martin et al., 

1987), such that the flux at the seafloor at 4850 m equals 1.91 gC/m2/yr *(3000 m/4850 m)0.858 = 1.3 gC/m2/yr. An alternative 

way to estimate the sinking flux at the seafloor is to use the Lutz et al. (2007) algorithm, which uses net primary production, 

sea surface temperature and depth at a given location to estimate the flux. This allows estimates to be made for all 5 sites (not 295 

just PAP) – see Table 2. Finally, Sediment Community Oxygen Consumption (SCOC) data (Stratmann et al., 2019) also allows 

the sinking flux to be estimated, making the same assumption that the respiration must balance this flux, in this case when 

averaged over the year. As SCOC is usually measured using chambers of ~50 cm across, the estimates exclude or bias the 

contribution from larger organisms – not just those too large to fit but also those too scarce to be robustly sampled in such an 

area - and care is needed in accounting for this (Laguionie Marchais et al., 2020). More generally, all of these sources of POC 300 

flux data have significant associated uncertainties, which is why POC flux was not fixed when deriving parameter values for 

the general use model configuration described here. Instead the model can be used to estimate the POC flux and compared to 

these different observational estimates as a broader constraint. All observational estimates of POC flux used to constrain model 

parameters, as well as the model values, are shown in Figure 3b. These values are also given in Table 2. Note that even if there 

was no scatter on the observations for POC flux it would still not be able to use the data to independently choose values for  305 

and r0. It is possible to simultaneously vary  and r0 in a way that the total respiration remains unchanged. Another constraint 

is needed. 

 

The inherent relationships between the three physiological rates allow other observational constraints to be found, for g0, m0 

and E, as well as for  and r0. Observations indicating that physiological rates decrease with size were described in Section 1. 310 

Additionally, the maximum growth rate, g, must equal or exceed the sum of the respiration, r, and mortality, m, for all sizes 

for life to be sustainable. Together, these two statements imply that all rates must sit within a ‘window’ of parameter space 

(rate versus size, Figure 3c). The top left corner is set by the upper limit for the specific growth rate of the smallest size class 

of organism. The bottom right corner is set by the lower limit for the specific mortality or respiration rate (whichever is 

smallest) of the largest size class. In practice, the comparison to POC fluxes described above indicates that respiration is a 315 

considerably larger rate than mortality, so mortality defines the bottom right corner of the ‘window’. (Note that varying the 

scaling exponent  tilts the gradients of the lines in Figure 3c.) We therefore follow a similar approach to that of Mahaut et al. 

(1995) and Kelly-Gerreyn et al. (2014), by using constraints at smallest and largest sizes of organism. Having so many degrees 

of magnitude in size in the model means that care is needed for the parameter values to be realistic at the two extremes of the 
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sizes reproduced. Using constraints at intermediate sizes risks significant under- or over-estimates for largest and smallest 320 

organisms through under-constrained extrapolation. First, for benthic bacteria, we take a rough upper limit of 0.1 /d maximum 

specific growth rate from Dixon and Turley (2001). This is marked in Figure 3c. As mentioned, this additionally constrains 

respiration and mortality whose combined sum must be lower than the maximum growth rate. Second, the data collated by 

McClain et al. (2012) indicates lifetimes for the largest organisms (few kg wwt) of order 50 years. This is also marked in 

Figure 3c and lifetimes for the largest organisms at each site are also given in Figure 3e. Note that both of these constraints 325 

need to be treated a little flexibly as it is not realistic to set a precise limit in either case. There are two final, but more subjective 

constraints, to allow the choice of values for , g0, r0, m0 and E. First, the ratio (r0+mo)/g0 represents the fraction of the maximum 

growth rate, g0, achieved by organisms when the system is in equilibrium. This should take a value less than 1 for food to be 

limiting, as is expected for the seafloor (Smith et al., 2008). Second, decreasing E brings the lines for the different sites closer 

together, as the inter-site differences due to temperature are diminished. Doing so also reduces the inter-site differences in 330 

model POC flux for the same reason because of the need to match total respiration. In summary, we take =−, g0=0.017 /d, 

r0=0.015 /d, m0=0.0003 /d and E=0.35 eV. 

 

Once values for , , g0, r0, m0 and E have been chosen, the remaining parameter to constrain is a0. This parameter influences 

the amount of detritus available as food, R, in the model. This can be seen in the steady state solution (Equation 13), where R 335 

increases linearly with a0. To constrain a0, we make use of the compilation of Parameswaran et al., (2024) who created an atlas 

of Total Organic Carbon at the seafloor surface, using a neural network approach applied to globally distributed estimates 

calculated over the top 10 cm of sediment. This data source was chosen in preference to the alternative product of Atwood et 

al., (2020) as the latter used estimates over the top 1m of sediment, which are an order of magnitude larger than those in 

Parameswaran et al., (2024) and likely to represent carbon resources unavailable to the majority of detritivores on the seafloor. 340 

The estimates for Total Organic Carbon (TOC) using Parameswaran et al., (2024) for the five sites are shown in Figure 3d. 

These are not directly comparable with R, however. There is considerable evidence that not all of sediment TOC is readily 

available as a food resource, with typically 5% (e.g. De Jonge et al., 2020; Van Oevelen et al., 2011a, 2011b) regarded as 

‘labile’ i.e. easily consumed (see Discussion for more on this). We therefore multiply our model estimates for R at the 5 sites 

by a factor of 20 to give an estimate of TOC for comparison to the observational values. Estimates for TOC based on 345 

Parameswaran et al., (2024) are given in Figure 3e and Table 2, together with model estimates for R and TOC. There is 

considerable variability; in observations, model values and their relative sizes. A weaker constraint for a0 is the turnover time 

for R i.e. the time it would take for R to be replaced by the POC flux (Figure 3d). A minimum turnover time of several years 

would be expected for the system to be able to achieve steady state on an annual basis. On the basis of these two constraints, 

a value of 500 is taken for a0.  350 

 

2.6 Model performance 

The parameter values chosen for the model, based on the above constraints, are shown in Table 1. The observations at all 5 

sites show a power law distribution of biomass with size, and the model performs well in capturing this characteristic at each 

site (Figure 2). Note that the matching of magnitudes in biomass for each size class across sites in Figure 2f arises from the 355 

normalisation for the simultaneous fit, not directly from model parameter value choices. Although the choice of E influences 

the differences in biomass across sites, they are also influenced by inter-site differences in POC flux. For POC flux (Figure 3b 

and Table 2), although there is some variability within the observations, the model and observational estimates agree 

reasonably well and vary in a similar way across the sites. All have lowest fluxes at the deepest sites (CCZ, PAP), highest at 

the shallowest (FG), and the fluxes at these two extremes differ by 1-2 orders of magnitude. For the physiological rates, in 360 

Figure 3c the lines showing the rates should largely fall within ‘window’ marked by the two observational constraints marked 

as dotted black lines, as described in Section 2.5. It is seen that although this is broadly the case, the chosen parameter values 
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already lead to this ‘window’ being stretched. Maximum bacterial growth rate is roughly 0.2 /d across the sites, a little higher 

than the reference value of 0.1 /d. Life expectancies for the largest organisms are seen to span 29-60 yr and straddle the 

reference value of 50 yr. Estimates for TOC using the model vary from 50 gC/m2 to 26000 gC/m2. The observed range is  365 

smaller (from 320 to 2000 gC/m2) but given the large variability in observation and model estimates across sites, the match is 

reasonable; at some places the model exceeds the observed value and at others it is lower. The turnover time (Figure 3d) is 

seen to be estimated at ~20 yr, using either observed or model estimated POC flux. Overall, using this set of parameters, the 

model does a reasonable job of satisfying the constraints while simulating the biomass size distribution of the ecosystem at 

strongly contrasting locations. 370 

 

2.7 Uncertainty in parameter values 

Like any other ecosystem model, there is no single objective choice of parameter values here and it is always recommended 

that sensitivity studies are done to ascertain the robustness of any conclusions drawn when using BORIS-2. However, it is 

insightful to understand some of the restrictions on changing the values of the parameters.  375 

 

The most tightly constrained parameter is  which, as described earlier, is inferred from the mass scaling exponent for the 

biomass observations at the different sites. If  is estimated using data from just a single site (Figure 2a-e), the estimates vary 

from -0.19 (for FG) to -0.33 (for CCZ). The uncertainty is largest at OM (CI: [-0.3,-0.1]) and smallest at PAP (CI: [-0.28,-

0.24]). If data from all sites are combined, as described in Section 2.5, then  is estimated at -0.26. As the parameter set 380 

presented here is intended as one for general use, a sensitivity analysis was done on how the estimate varies if data from each 

site in turn is excluded. Excluding data from CCZ, FG, FSC, OM and PAP in turn gives an estimate for  that varies between 

-0.25 and -0.27. Hence, none of the individual sites is having a significant effect on the estimate of . 

 

 The chosen value of -0.1 for the exponent, , is at the lower end of observational estimates. Most of these cluster around -0.2 385 

to -0.25 (e.g. Mahout et al., 1995; Ernest et al., 2003). Lower values have been found though. McCoy & Gillooly (2009) 

reported an exponent of -0.18 for invertebrates. Lower still, McClain et al. (2012) found an exponent of -0.11 for growth of 

benthic organisms, though noted that this was inconsistent with the exponents they found for respiration and mortality (-0.2 

and -0.24 respectively). However, looking at Figure 3c it is apparent that a larger magnitude would lead to a lower average 

respiration rate across the size classes, as the respiration rate for the smallest size organism cannot get any bigger. An increase 390 

in the magnitude of  would, therefore, lead to a reduction in the model estimate of the POC flux and the quality of its fit to 

observations. For example, if  were changed to -0.18, then r0 would need to be reduced by a factor of 10 to meet the constraint 

arising from the maximum bacterial growth rate and the model POC flux estimates would decrease by a factor of 10, making 

them at least a factor of 5 lower than observations.  

 395 

The value chosen for E (0.35 eV) is also at the lower end of values derived from observations. For a range of organisms not 

restricted to marine ones, Savage et al. (2004) found a range of values from 0.35eV to 0.84 eV. McClain et al. (2012) estimated 

E as 0.47eV for respiration and mortality but, with less confidence, 0.16 eV for growth. McCoy & Gillooly (2009) found a 

value of 0.69 eV for respiration. For comparison, the canonical value for MTE is 0.63 eV (West et al., 1997; Brown et al. 

2004). The greatest influence of E is in accounting for significant differences in physiological rates between sites with strongly 400 

contrasting temperatures. Changing temperature from 0oC to 10oC with E=0.35 eV increases rates by a factor of 1.8. Using 

E=0.45 eV increases rates by a factor of 2. To illustrate the impact of such a change, the POC fluxes at PAP and CCZ – the 

two sites where the model flux is lower than all observations - decrease by ~20% if E=0.45 eV, worsening the fit to 

observations.  

 405 
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The greatest subjectivity in choice of parameter value is in deciding the ratio (r0+m0)/g0 which represents the fraction of the 

maximum growth rate that an organism achieves at equilibrium. Another perspective on this is that it represents the degree of 

food-limitation, with a value of 0 representative of total starvation and a value of 1 of a surfeit. We subjectively took this ratio 

to be 0.9, such that it is a food-limited ecosystem. It might be felt that this is not indicative of strong limitation, which might 

otherwise be expected in an ecosystem dependent on material that is already the meagre remains of food that was available to 410 

many other organisms as it sank down through the water column (Smith et al., 2008). However, because of the bacterial growth 

rate limitation, reducing this ratio further would lead to reductions in POC flux estimates. It should also be appreciated that 

two locations with high and low food supplies do not necessarily differ in the degree of food limitation, as the population sizes 

at the two sites will reflect the supplies.  

 415 

Although the parameter a0 effectively controls the amount of detrital food, R, at steady state, changing it does not affect the 

degree of growth limitation. A change in a0 results in a compensating change in R such that the ratio ai/R in the growth 

limitation term is unchanged. However, by influencing R, choosing a different value for a0 can affect the dynamics of the 

system when not in steady state. For example, it affects the turnover time of R i.e. the time it takes the POC flux to replenish 

R if removed. This can affect the recovery time to perturbations. Having slower recovery of R increases the recovery time for 420 

small organisms that would otherwise recover much quicker than large ones because of higher physiological rates. They cannot 

fully recover until R itself is recovered. Reducing a0 would lead to lower model estimates of TOC (though admittedly there is 

considerable variability in observations) and a faster turnover for R. Turnover times estimated using the model are shown in 

Figure 3d. They are consistently ~20 years. For the ecosystem to be in steady state on timescales of a year, the turnover times 

need to remain significantly larger than one year. 425 

 

3. Use of BORIS-2 

BORIS-2 runs easily and quickly in Matlab (it was developed, tested and run in version 9.12.0.2009381 (R2022a) Update 4), 

and a steady state solution (Section 2.4) is available for situations where equilibrium is the focus. The model requires only the 

seafloor temperature and POC flux for a location as inputs. If BORIS-2 is to be used at a specific location then it may be 430 

possible to estimate the local POC flux directly using in situ data from sediment traps (e.g. Durden et al. 2020a; Smith et al., 

2013), although the resuspension of material means that near seafloor data should be treated with care. Alternatively, if it is 

intended to use BORIS-2 over larger areas, such as basin scales, then POC flux can be estimated less directly using algorithms 

which estimate POC flux at any given depth using satellite remote sensing data (Lutz et al., 2007) or using global 

biogeochemical model output (e.g. Yool et al., 2017; Figure 3.21 of Cooley et al., 2022). Alternatively, observations of 435 

sediment community oxygen consumption (SCOC) rates (Smith et al., 2013; Stratmann et al., 2019), which would be expected 

to roughly balance POC input on timescales for which the system could be viewed as in steady state, could be used. We now 

give a few examples to illustrate the range of potential uses. 

 

3.1 Using the steady state solution 440 

If it is of interest to know how benthic biomass (i.e. the total amount of organisms that can be sustained) varies geographically, 

it is useful to focus on the annual average biomass such that it can be assumed that the ecosystem is in steady state to first 

order. This assumption allows Equations 10 and 11 to be used for quicker calculations. In Figure 4, use is made of data for 

POC flux and temperature at the seafloor to produce a global map of benthic biomass. The POC flux data are generated using 

the Lutz et al. (2007) algorithm while seafloor temperature data come from the World Ocean Atlas (Reagan et al., 2024). 445 

Temperature is largely uniform, with little change across the abyssal plains, or even above seafloor ridges, due to the weak 

vertical gradients in temperature in the deep ocean. The pattern of low values in subtropics with higher values in tropical, 

subpolar, polar and coastal regions for the POC flux is similar to that seen in the export of organic material from the ocean 
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surface (e.g. Nowicki et al., 2022) but superimposed on this is the effect of depth. POC flux attenuates strongly with depth 

(Martin et al., 1987), and a logarithmic scale is needed to capture the variation in seafloor POC flux from shelf to abyssal 450 

regions. Because of the largely uniform distribution of seafloor temperature, that of seafloor biomass closely resembles that of 

the POC flux for much of the ocean. Only in the Mediterranean and Red Sea are the impacts of much higher temperatures 

visible as lower biomasses relative to the variations in POC fluxes because they need to balance greater physiological rates. 

 

3.2 Running the model dynamically 455 

The dynamic version of BORIS-2 runs easily on a standard laptop, taking just seconds for a thousand years. The forcing data 

on POC flux, F, and the temperature, T, can also both vary with time if required. This allows a variety of transient responses 

to be explored. 

 

For temperature, long-term temporal change in deep-water temperatures has been detected, but is of a very small magnitude 460 

(e.g., <0.002 °C/yr Garry et al., 2019). Stronger fluctuations at a site may arise near the boundaries of warm (e.g. Red Sea, 

Mediterranean Sea), cool (e.g. Atlantic, Pacific, Indian Oceans), or cold (e.g. Arctic and Southern Oceans) deep waters if their 

boundaries move in response to natural or climate-change related shifts. For example, at the Arctic-Atlantic transition in the 

Greenland-Iceland-Faroe-Shetland region a 10°C shift in bottom water temperature can occur over a short spatial (bathymetric) 

scale (e.g., Turrell et al., 1999) and a near 10°C shift can occur on short time scales (hours, e.g., Bett, 2001). Generally, though, 465 

because a 10oC change in temperature is required to create a roughly factor of 2 change in physiological rates, scenarios where 

time-varying temperature has a significant impact on biomass are likely to be rare for deeper, off-shelf locations.  

 

Significant changes in POC flux are more likely. For example, considerable uncertainty remains over the impact of climate 

change on export of organic carbon from the ocean surface but future changes of up to 41% are possible (Henson et al., 2022). 470 

Such changes in POC flux leaving the surface will impact the benthic ecosystem, which is dependent on the fraction of this 

export that reaches the seafloor. One application of the dynamic version of BORIS-2 therefore is in exploring climate change 

consequences for the benthos (e.g. Yool et al., 2017). A much simpler example of how the model can be used, to study 

responses to change in POC flux is shown in Figure 5. Here the ecosystem is initially in steady state but then the POC flux is 

doubled. As is apparent in Figure 2, the different sizes of organisms will have very different biomasses. Hence, for ease of 475 

comparison the biomasses and detritus are normalised by dividing by their final value. Similarly, the variation of physiological 

rates with size means that response times differ with size of organism. Using a log time scale allows this to be seen more 

clearly. The smallest size class tracks the response of the detritus closely because faster physiological rates allow these 

organisms to respond as quickly as the detritus changes. The larger organisms have slower rates and are seen to respond more 

slowly as a consequence. 480 

4 Discussion 

The BORIS-2 model has been presented. It allows simulations of the benthic community across the full size-range of 

organisms. A single parameter set has been provided for general use as it allows the model to reproduce observed biomass size 

distributions at five sites contrasting strongly in location, depth and temperature, while meeting other constraints on POC flux, 

expected physiological limitations of smallest and largest organisms and the amount of organic carbon available for food on 485 

the seafloor. It is intended that BORIS-2 be used in a macroecological manner, not to represent the dynamics of specific 

species. Physiological processes for organisms within the same size class can vary significantly so BORIS-2 is best suited for 

examining questions related to the overall community or the relative behaviour between size classes. As with any model there 

are aspects that represent limitations and, as a result, areas for further investigation. 
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4.1 Model assumptions 490 

BORIS-2 assumes all organisms are detritovores feeding from the same common resource, detrital organic carbon on the 

seafloor. In practice, a community will have organisms exhibiting a variety of feeding strategies of which detritivory is just 

one. Predation, for example, is not captured explicitly by BORIS-2. However, on seafloors deeper than the euphotic zone and 

outside of chemosynthetic systems, the benthic ecosystem is supported solely by the POC flux and predation is effectively a 

secondary transformation of that carbon. One interpretation is that BORIS implicitly captures predation in the mortality term 495 

but that the gains are distributed across all size ranges rather than received by specific ones. Even from that perspective, 

BORIS-2 may under-estimate predation because mortality is parameterised based on natural mortality rate data. In the absence 

of suitable data for predation rates and given the large uncertainties in natural mortality, the magnitude and significance of this 

underestimate are uncertain. Separate population dynamics for detritivore and predator components of the benthic community 

have been studied on the shelf (Blanchard et al., 2009) where it was found that predators might display a stronger increase of 500 

biomass with size than detritivores. A size-based model presented in the same work to explore this interaction further found 

that the presence of predators could cause a steepening of the biomass spectrum for detritivores where their size overlapped 

with the prey range for predators. However, the predators of benthic organisms were assumed to be largely pelagic – a condition 

that is not experienced in the deep ocean. While a similar coupled approach could be adopted in BORIS-2, the main difficulty 

in incorporating carnivory into BORIS-2 is the requirement for data on the relative abundance of predators versus non-505 

predators across size classes. Such data are scarce even on the shelf (e.g. Blanchard et al., 2009). Without such information it 

would be difficult to constrain sufficiently the model parameters.  

 

An additional facet of the ecosystem that is simplified by BORIS-2 is how the organisms obtain their food. In reality, they 

may be more or less mobile, allowing them to search for food. They may also be able to filter organic matter from seawater as 510 

suspension feeders, intercepting food before it hits the seafloor or exploiting resuspended or advected material. In theory, the 

parameter a0 could be modified to reflect greater mobility while the growth parameter, g0, could be adjusted to capture the 

effect of suspension feeding. Once again though, to incorporate such changes would require additional data on the relative 

abundance of organisms with these different characteristics across size ranges. 

 515 

A final assumption of BORIS-2 worth discussing is that no organic material is either refractory or buried. For burial, a fraction 

of the POC flux and/or the mortality could alternatively be regarded as buried and removed from the system. Note that the 

POC flux would then have to balance the sum of burial and respiration, so a lower respiration would be required to balance 

the same POC flux. However, estimates for burial suggest that at most 10% of the POC flux would be buried (Dunne et al., 

2007), so adding this process is unlikely to have significant effects on model dynamics or parameter values. For this reason, it 520 

is omitted. Regarding refractory organic carbon, it was described in Section 2.4 that it has been assumed that only 5% of the 

total organic carbon in the surface sediment is readily available to the benthic ecosystem represented by the model. The other 

95% is regarded as refractory. Consider two scenarios. The first is that the POC flux arriving at the seafloor is entirely labile 

and refractory carbon is created only by the seafloor ecosystem. In this case, it would be possible to modify BORIS-2 such 

that a fraction of mortality passed into a refractory carbon pool rather than into R. In the second scenario, the POC flux has a 525 

refractory component. This could be directed straight into a refractory pool. Reality is likely to be some combination of these 

two scenarios. At steady state, all of the organic carbon entering the refractory pool must either be respired or transformed to 

labile material and hence returned to R. In the hypothetical case of no respiration, then the flux of organic material into and 

out of the refractory pool should balance, such that the net flux is zero. In reality, some of the refractory carbon will be respired, 

and this could be incorporated in BORIS-2 in the same way as burial, as a simple extra loss; applied to the POC flux or creation 530 

of refractory material by the benthic community as appropriate. In the absence of data from multiple sites for the amount of 

refractory carbon arriving as POC flux or created by the benthic ecosystem, and the fraction of this that is eventually respired 
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or buried, the dynamics of the refractory pool are omitted. An additional aspect of the refractory carbon dynamics is that there 

will be a bacterial population carrying out the respiration that is also not captured by BORIS-2. This means that observational 

estimates of bacterial abundance in seafloor sediments are likely to be higher than those predicted by BORIS-2. With a large 535 

pool of refractory carbon (Section 2.4) and associated bacterial doubling time up to thousands of years (Jørgensen & Marshall, 

2016), this additional population is likely to be much larger than represented by the smaller size classes of the model that are 

feeding on R. For example, bringing together observations from a site in the abyssal Pacific to apply a linear inverse model for 

the benthic system including refractory carbon, de Jonge et al. (2020) estimated the prokaryotic biomass to be roughly 

equivalent to that for megafauna. In BORIS-2, the biomasses for the equivalent (smallest and largest) size classes differ by a 540 

factor of 105. This is not a straightforward comparison though as the prokaryotes in the de Jonge (2020) study feed from both 

labile and refractory material. If future data suggest that bacteria need to be taken out of the allometric framework and treated 

separately, the biomass estimates of remaining organisms are unlikely to change by more than a factor of two (the extreme 

case of bacteria having total biomass equal to all other organisms present), with relative biomass of classes unchanged. To 

make such a change though would require information on the flux or fraction of organic carbon entering the refractory pool, 545 

and the physiological rates of the bacteria ingesting and respiring it. Note that the very definition of “refractory” is itself an 

uncertainty. The wide flexibility in the structure of molecules of organic carbon means that POC varies widely in how “labile” 

or “refractory” it is. It is not a simple binary, so this adds a further layer of uncertainty. 

4.2 Other possible model extensions 

An aspect of BORIS-2 which may benefit future development is the restricted number of external influences. There are 550 

currently only two: the supply of detrital material to the seafloor (POC flux) is the food source for all organisms and ambient 

temperature is the only control other than size on metabolic rates. 

 

The effect of oxygen concentration in seawater is not currently included in BORIS-2. Although it has been questioned whether 

there is clear evidence for an oxygen effect on metabolism (Siebel and Drazen, 2007), a lack of clear response to low oxygen 555 

by benthic communities might be as a result of a shift in community composition towards organisms more efficient at extracting 

oxygen from waters with low concentrations (Childress and Seibel, 1998). That said, under reduced oxygen concentrations 

there is evidence that macrobenthos shift to smaller body sizes (Pearson & Rosenberg, 1978), while meiobenthos may shift to 

large body sizes (Moore & Bett, 1989). There may even be a tendency for megabenthos to be eliminated (Pearson & Rosenberg, 

1978), though they may be enhanced at the peripheries of oxygen minimum zones (OMZs; Levin, 2003). Given the anticipated 560 

expansion of oxygen minimum zones through climate change (Busecke et al., 2022), it is worth noting that commonly applied 

thresholds for hypoxia range from 0.3-4 mgO2/L, with a modal value of 2 mgO2/ L. However, the lethal and sublethal levels 

for individual taxa vary greatly (Vaquer & Duarte, 2008). In a formal environmental monitoring context (e.g. EU Water 

Framework Directive), oxygen concentrations below 4 mg O2/L are considered to be of concern (Best et al., 2007). There is 

therefore value in finding a way to incorporate an oxygen effect in BORIS-2 if sites <4 mgO2/L are of interest, and particularly 565 

if concentrations are likely to be below 2 mgO2/L. 

 

The impact of seafloor type is another area where BORIS-2 may benefit from further analysis and expansion. At present, for 

simplicity, BORIS-2 makes no distinction in the nature of the seabed environment, other than bottom water temperature and 

POC flux. The implicit assumption is that it is applied in a sedimentary environment. In practice, the seafloor represents a 570 

range of environments varying on scales from a single manganese nodule to an ocean basin. Seafloor type can influence both 

motility (with some suspension feeders favouring hard substrata) and the efficiency with which food can be obtained (such as 

hills or trenches which can focus bottom currents carrying suspended POC). Whether BORIS-2 can be configured for different 
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seabed environments by suitably adjusting parameter values and/or by splitting the ecosystem into populations with different 

feeding traits is left for future developers. 575 

5 Conclusions 

• Based on allometric scaling of metabolic processes, the BORIS-2 benthic ecosystem model is capable of simulating 

population dynamics of organisms ranging in size from bacteria to large metazoans, over 18 orders of magnitude. 

• The only external information required is the POC flux to the seafloor and the ambient temperature. 

• It can be run dynamically but a steady state solution also exists and is given. 580 

• A parameter set is provided suitable for general use globally and capable of simultaneously providing a good 

reproduction of observed biomass size spectra at five locations contrasting in depth, food supply, temperature, and 

oxygen concentration. 

• This model offers considerable flexibility in application, at a range of scales, from responses to regional perturbations 

such as deep-sea mining, to studies of climate-driven global change in the benthos. 585 

 

Appendix: Differences between BORIS-1 and BORIS-2 

A brief description is given here of the differences between the BORIS-1 and BORIS-2 models. Full details of BORIS-1 can 

be found in Kelly-Gerreyn (2014). 

(1) Range of organism sizes reproduced 590 

BORIS-2 has been designed to reproduce the full range of benthic organism sizes, whereas BORIS-1 focussed on a 

limited range of sizes coincident with the data then available for comparison. BORIS-2 overlaps exactly with the 16 

size classes of BORIS-1. Size class 27 of BORIS-2 matches size class 1 of BORIS-1. BORIS-2 therefore extends for 

26 smaller size classes and 17 larger size classes than BORIS-1, to provide more complete coverage of the range of 

organism sizes.  595 

(2) Choice and representation of physiological/ecological processes 

Broadly, BORIS-1 and BORIS-2 are structurally similar, with dynamics arising from the three processes of growth, 

respiration and mortality - but they differ a little in how they do this. First, in BORIS-1 growth is the net effect of 

ingestion then assimilation. Ingestion was allowed to scale with body size in BORIS-1, but assimilation was just 

assumed to be a fixed fraction of this. The difference between them was treated as waste and returned to R. To simplify 600 

this in BORIS-2, a single net growth rate is used, effectively the combined product of ingestion and assimilation. 

Also, in BORIS-1, growth rate increased linearly with the amount of food available. In practice an organism’s ability 

to ingest and assimilate food cannot increase indefinitely. In BORIS-2 the representation of growth is therefore 

modified such that it saturates at high food abundance. It is also modified to include the effect of other organisms 

competing for the limited food supply (Section 2.2). Second, respiration in BORIS-1 is represented as a fraction of 605 

growth, and this fraction can vary independently with size. A consequence is that BORIS-1 does not specifically 

capture basal metabolism, the ‘tax’ paid by any organism just to keep alive. In BORIS-2 respiration is represented as 

a separate process independent of growth. This better represents basal metabolism. Additionally, an organism will 

need to fuel active metabolism, the energy requirements above basic maintenance required for such things as 

movement. In BORIS-2 it is implicitly assumed that this is included in the net growth rate. In BORIS-1 it was also 610 

necessary to assume a fixed fraction of POC flux that was respired by organisms not captured by the model. By 

expanding the size range to cover all organisms in BORIS-2, this assumption (and parameter) is no longer required. 

Third, a linear mortality parameterisation was used in BORIS-2, in place of the quadratic one used in BORIS-1. This 

choice is influenced by the impact of the mortality term on organism lifetimes. Temperature has been argued to be 
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the first order control on mortality (e.g. McCoy and Gillooly, 2008). There is found to be roughly a factor of two 615 

increase in mortality rate per 10oC increase in environmental temperature. As context, the sites described in Section 

2.5, which span from shelf to deep ocean, only encompass a 14oC range of temperatures, roughly consistent with a 

factor less than 4 range in mortalities. The quadratic parameterisation, however, leads to a dependence of the specific 

rate of mortality on biomass (i.e. with a quadratic mortality term the specific rate is µi.Bi), and hence on food supply 

(the POC flux, F); this is because Bi increases with F (see Section 2.4) and F can vary significantly. Assuming the 620 

ecosystem is in equilibrium, the respiration of organic carbon on the seafloor can be used to estimate F. Using the 

large collection of globally distributed Sediment Community Oxygen Consumption (SCOC) data (Stratmann et al., 

2019), and limiting to sites less than 6000m in depth and accepting only in situ measurements, SCOC ranges from 

0.14-110 mmol O2 m-2 d-1 (2.5% and 97.5% confidence levels). Excluding shelf regions (<200m depth) reduces the 

range to 0.08-12 mmol O2 m-2 d-1, but it still spans several orders of magnitude. (Note that this result is unaffected by 625 

the units as typically a constant factor is used to convert to carbon units.) Large variations in POC flux would induce 

similar variability in the longevity of organisms of the same size between different locations if a quadratic mortality 

parameterisation was used. Therefore, using the linear form of mortality in BORIS-2 avoids a much larger inter-site 

variability in mortality rate than is currently supported by observations. 

(3) Observational constraints 630 

BORIS-1 was compared to size-resolved data from 3 locations: FG, FSC and OM. While they do contrast in depth 

and temperature (Table 2) they do not represent the deep seafloor that covers much of the globe. For BORIS-2, 

additional data from CCZ and PAP are used giving data from two abyssal locations of contrasting food supply. For 

BORIS-1, the assumption of a fraction respired by non-modelled organisms meant that a comparison to observations 

of POC flux would be quite subjective. With this restriction removed in BORIS-2 the modelled POC flux is now 635 

compared to 2 independent estimates of POC flux at 4 sites and 3 estimates at PAP. For BORIS-1 additional 

constraints regarding the exponents for size scaling were imposed (see (4) below), as well as a range of expected 

values for smallest (meiofauna) and largest (macrofauna) organisms. A similar thing to the latter is done for BORIS-

2 but, by necessity, for much smaller (bacteria) and larger (megafauna) organisms because of the expanded size range. 

An additional constraint for BORIS-2 is provided by estimates of TOC in seafloor sediment, which provide a 640 

constraint on R. 

(4) Method of selecting parameter values 

BORIS-2 has one fewer parameter (7) than BORIS-1 (8). This is despite BORIS-2 incorporating two new processes: 

temperature sensitive physiology and interference. Without these additions BORIS-2 would have 5 parameters. 

Because of the more limited data available to constrain BORIS-1 and the greater number of parameters, it was more 645 

difficult to find suitable parameter values. To assist in this an optimisation algorithm was therefore used. With fewer 

parameters and a greater set of constraints this was not necessary for BORIS-2. While it might be possible to construct 

a similar optimisation routine for BORIS-2, it currently does not warrant the effort. The user can easily explore 

parameter space and make a decision on the most suitable parameter values simply using Figure 2 and 3.  

 650 

Code and data availability 

All code and data for generating the figures in this paper and for using BORIS either at steady state or dynamically are 

available on Zenodo at https://doi.org/10.5281/zenodo.15280650 (Martin et al., 2025). A user manual can be found in the 

Supplement to this manuscript. 
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Figure 1: Schematic of BORIS-2. Within each size class (Mi) the total biomass (Bi) is controlled by growth, using organic 

material, on the seafloor and losses to respiration and mortality. Organic material (R) accumulates on the seafloor from the 890 

deposition of sinking particulate organic carbon (F) and mortality of benthic organisms. Growth, respiration and mortality 

are all assumed to scale as a power law with Mi and as an exponential function of ambient temperature (see Section 2). 

Numbers denote median mass (units: g wet weight) for each size class and example organisms of smallest and largest size 

classes are given in blue. 
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Figure 2 Locations (top) and observations of biomass as a function of body size for the 5 sites listed in Table 2. For each of the 5 sites 

the dots show observations, circles indicate means within size classes and the black line is the fit of B=j.M− to the observations for 

the j’th site where B is biomass and M is size. The fitted values for  together with 95% confidence intervals are also shown. The 900 
bottom right panel shows the fit to all sites simultaneously, assuming a common  (fitted value shown with 95% CI) but allowing j 

to vary across sites. The dots show data from the 5 sites with colours matching those used in the panels for individual sites. Note that 

in the bottom right panel the data from each site has been normalised by dividing by the fitted j to allow the visual comparison. 

The red line in all panels is the simultaneous fit to all sites.  
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Figure 3: Model diagnostics and observational constraints: (a) biomass (gwwt/m2) size distributions for the 5 sites; (b) POC flux 

estimates from using the Lutz et al. (2007) algorithm (Lutz), from SCOC data (SCOC), from sediment trap observations (SedTr) 

and from the model constrained by biomass data from each site (model). Note that sediment trap data are only available for PAP; 

(c) model specific rates for maximum growth (green), respiration (red) and mortality (black) for each of the 5 sites. Note that they 910 
differ between sites because of the temperature effect. The two dotted black lines correspond to the constraints of a maximum growth 

rate of 0.1 d-1 for the smallest organisms and a lifetime of 50 yr for the largest organisms.; (d) turnover time (R/POC flux) for each 

of the 5 sites, estimated using model estimates of R and all observation and model estimates for the POC flux from (b); (e) a summary 

table of diagnostic parameters including total biomass (model), R (model),  TOC (model and observations) and biggest organisms 

lifetime (model) 915 

https://doi.org/10.5194/egusphere-2025-2180
Preprint. Discussion started: 5 August 2025
c© Author(s) 2025. CC BY 4.0 License.



26 

 

 

 

 

Figure 4 Example of using the steady state solution (Equations 10 and 11) to explore spatial variability in total benthic biomass: 

seafloor depth (a) and temperature (b) from the World Ocean Atlas, particulate organic carbon (POC) flux (estimated using Lutz 920 
et al., 2007) (c), and total biomass (d). 
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Figure 5: Modelled response to a perturbation in which the ecosystem is initially in steady state and then a doubling of the POC flux 

takes place. (a) shows the POC flux, with doubling occurring after 1 year. (b) shows the response of organisms and detritus. For 925 
clarity only 3 size classes are shown, the smallest, middle and largest (i=1, 30 and 59).  For the same reason, the biomasses and 

detritus are normalised by dividing by their final value. A log time scale is also used to highlight the different response timescales. 
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Parameter Description Value Units  

 

g0 Max. gross growth rate at 20oC for organism of size 1 gwwt 0.017 d-1 

r0 Respiration rate at 20oC for organism of size 1 gwwt 0.015 d-1 

m0 Mortality rate at 20oC for organism of size 1 gwwt 0.0003 d-1 

a0 Interference pre-factor 500 - 

 Scaling exponent for growth, respiration and mortality -0.1 - 

α Scaling exponent for interference -0.26 - 

E Activation energy 0.35 eV  

 

 930 

Table 1: parameter set for BORIS-2 
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Site Lat Lon Depth Temp POC flux    TOC  R 

 oN oE m oC g C m-2 y-1    g C m-2  g C m-2 

     Lutz SCOC Trap Model Obs Model Model 

CCZ 17.2 -122.6 4150 1.5 0.25 2.9  - 0.1 400 18 0. 91 

FG 58.3 0.9 153 8 43 32 - 54 800 9400 2.6 

FSC 61.9 -2.8 1623 -1 15 5.7 - 13 550 550 0.52 

OM 23.4 59 507 13 8.8 13 - 22 2000 2000 1.2 

PAP 48.8 -16.5 4850 2.6 2.5 2.6 1.3 0.99 320 320 0.04 

 935 

Table 2: Information on sites from which data were used to constrain parameter values for the general purpose 

parameter set given in Table 1, together with model diagnostics. POC flux is at the seafloor, estimated using the 

algorithm in Lutz et al. (2007), SCOC or sediment trap. TOC estimates come from Parameswaran (2024). The “Model” 

columns indicate model diagnostic values. Model TOC is calculated by assuming that R is 5% of TOC. Sources for data 

are given in Section 2.5  940 
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