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Abstract. Mycorrhizal fungi enhance plant access to nitrogen (N) in nutrient-poor environments like the Arctic tundra by 

depolymerizing N-rich organic compounds into forms available to plants and microbes. As climate change reshapes plant 15 

communities and mycorrhizal associations, shifting dominance from herbaceous species to shrubs, changes in mycorrhizal 

type and plant species dominance may differentially stimulate N cycling. Both dominant and rare species, along with 

mycorrhizal associations, contribute to ecosystem processes and stability, though the specific roles of these components in N 

cycling and overall ecosystem functioning remain uncertain. We investigated how mycorrhizal associations and plant diversity 

affect gross N mineralization and nitrification rates in an Oroarctic ecosystem. Four years after a plant removal treatment, we 20 

measured these rates using in situ 15N labelling and quantified a selection of nitrification genes. Treatment plots included (1) 

unmanipulated (Control); or the removal of: (2) ectomycorrhizal (EcM) and ericoid mycorrhizal (ErM) plants, letting 

arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) plants dominate (AM/NM); (3) AM and NM plants, letting EcM and 

ErM plants dominate (EcM/ErM); (4) low-abundance species, leaving the most abundant species (Dominant); and (5) high-

abundance species, leaving only the low-abundance species (Rare). Gross N mineralization rates were 73 % and 78 % higher 25 

in EcM/ErM and Dominant, respectively, compared to Control, while AM/NM and Rare showed more moderate increases of 

30 % and 46 %. Gross nitrification was also highest in EcM/ErM, with a 26 % increase over Control. Gene abundances did 

not mirror nitrification patterns. Archaeal ammonia oxidizers (AOA), Nitrospira-type nitrite oxidizers (NIS), and comammox 

clade A (ComaA) were consistently more abundant than bacterial ammonia oxidizers (AOB), Nitrobacter-type nitrite oxidizers 

(NIB), and comammox clade B (ComaB), suggesting a stable site-level nitrifier community. Dominant had the lowest gene 30 

copy numbers overall, except for AOB, which was highest. In addition, AOA gene abundance was significantly lower in 

Dominant compared to Control, with a marginal reduction observed for NIS. Our findings highlight the key role of EcM/ErM 

fungi in accelerating N cycling in Oroarctic soils, challenging traditional assumptions that N transformation rates are slow in 
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EcM/ErM dominated ecosystems. These insights underscore the need to consider mycorrhizal associations and plant 

community composition when predicting tundra ecosystem responses to environmental change. 35 

1 Introduction 

The availability of soil nutrients plays a pivotal role in shaping tundra plant productivity and the composition of plant 

communities (Chapin et al., 1995; Shaver et al., 2001), as well as their responses to climate change (Aerts, 2009; Riley et al., 

2021; Stow et al., 2004; Sturm et al., 2001). As climate change is particularly pronounced in the Arctic, shifts in plant growth 

and community composition are occurring (Bjorkman et al., 2020; Hollister et al., 2015), including increased plant productivity 40 

("arctic greening") and shrub expansion ("shrubification") (Bjorkman et al., 2019; Mekonnen et al., 2021; Myers-Smith et al., 

2011; Sistla et al., 2013; Tape et al., 2006). Changes in plant community composition contribute to shifts in biodiversity above- 

and below-ground (Mod and Luoto, 2016; Parker et al., 2018, 2021), with mycorrhizal fungi mediating these changes by 

influencing soil microbial community composition and activity, impacting soil carbon (C) content, and nutrient cycling 

(Andresen et al., 2022; Bahram et al., 2020; Eagar et al., 2022; Hawkins et al., 2023; Hobbie and Högberg, 2012; Hobbie and 45 

Hobbie, 2006; Netherway et al., 2021; Phillips et al., 2013; Read, 1991; Sun et al., 2023; Tedersoo et al., 2020). Thus, changes 

in plant identity or functional diversity can alter nitrogen (N) availability through indirect effects on N mineralization, 

nitrification, and other N transformations (Isobe et al., 2018; Robertson and Groffman, 2015). These alterations can feed back 

to plant growth and enhance ecosystem C cycling (Hicks et al., 2020a, 2022; Mekonnen et al., 2021; Parker et al., 2021). 

Therefore, understanding the links between plant community composition, soil microorganisms, and N cycling is vital for 50 

predicting climate change impacts on tundra ecosystems, yet these interactions remain poorly understood (Dobbert et al., 

2022). 

 

Ecological communities are typically composed of a few abundant species and many rarer ones (Gaston, 2011; McGill et al., 

2007). Traditionally, research has focused on the role of dominant species in ecosystem functioning, but both dominant and 55 

rare species contribute to ecosystem stability and processes (Avolio et al., 2019; Jain et al., 2014; Lyons et al., 2005; Lyons 

and Schwartz, 2001; Richardson et al., 2012; Säterberg et al., 2019; Smith and Knapp, 2003). According to the mass ratio 

hypothesis (Grime, 1998), ecosystem processes such as primary production, nutrient cycling, and soil microbial composition 

are primarily driven by dominant plant species, whose high biomass and resource use exert a disproportionate influence—

while the contributions of rare species are considered minimal (Grime, 1998; Tedersoo et al., 2020). This disproportionate 60 

influence also extends to N dynamics, where dominant species, through their biomass-scaled traits, can affect soil N availability 

by regulating N mineralization and nitrification (Clemmensen et al., 2021; Kielland, 1995; Liu et al., 2018; Michelsen et al., 

1996; Ramm et al., 2022; Rozmoš et al., 2022; Tunlid et al., 2022). Rare species, in contrast, often exhibit higher functional 

diversity and may fill ecological roles not occupied by dominant species, facilitating niche differentiation and promoting 

ecosystem resilience (Dee et al., 2019; Hooper et al., 2005; Leuzinger and Rewald, 2021; Mouillot et al., 2013; Soliveres et 65 
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al., 2016; Tang et al., 2023). While their overall biomass contribution is lower, their diverse traits and microbial interactions 

could play an important role in nutrient partitioning. Both dominant and rare species can form mycorrhizal associations, but 

differences in mycorrhizal types and plant-microbe interactions may drive variation in N cycling at the community level 

(Knops et al., 2002; Van der Krift and Berendse, 2001; Moreau et al., 2015, 2019). 

 70 

Ectomycorrhizal (EcM) and ericoid mycorrhizal (ErM) fungi tend to dominate Arctic ecosystems (Michelsen et al., 1998; 

Soudzilovskaia et al., 2017; Steidinger et al., 2019), whereas arbuscular mycorrhizal (AM) fungi are considered less common 

due to low cold tolerance (Kilpeläinen et al., 2016; Kytöviita, 2005; Ruotsalainen and Kytöviita, 2004; Wang et al., 2002). 

These three mycorrhizal types differ in their influence on N mineralization rates and inorganic N availability (Björk et al., 

2007; Phillips et al., 2013; Tedersoo et al., 2020). AM fungi facilitate rapid N turnover by promoting inorganic N uptake 75 

(Govindarajulu et al., 2005; Hodge and Storer, 2015; Savolainen and Kytöviita, 2022), EcM fungi access both organic and 

inorganic N, leading to intermediate N turnover rates  (Hobbie et al., 2009; Kohler et al., 2015; Miyauchi et al., 2020; Orwin 

et al., 2011; Pellitier and Zak, 2018), and ErM fungi specialize in mobilizing N from complex organic compounds, contributing 

to slower N cycling (Bending and Read, 1996; Clemmensen et al., 2021, 2024; Fanin et al., 2022; Tybirk et al., 2000; 

Wurzburger and Hendrick, 2009). In ecosystems dominated by a single mycorrhizal type, nutrient cycling may become 80 

increasingly constrained by that symbiosis, leading to homogenized soil N dynamics. For example, EcM fungi effectively 

access organic-N, stabilizing it in less labile forms and reducing N losses, whereas AM fungi promote greater N mobility, 

potentially increasing N loss (Hobbie and Ouimette, 2009).  In contrast, communities composed of less abundant, locally rare 

species may support different or complementary N cycling functions compared to those dominated by the most abundant 

species, potentially enhancing functional redundancy and buffering against environmental fluctuations — even when species 85 

richness is held constant. To understand these dynamics, it is essential to disentangle the effects of plant dominance, species 

diversity, and mycorrhizal associations on N cycling. 

 

We aimed to determine the relative effects of functional (mycorrhizal) and structural (Rare, Dominant) diversity on soil N 

cycling. To address this, we conducted a plant removal experiment and in-situ 15N labelling to determine gross N mineralization 90 

and nitrification rates, key processes regulating N supply and loss. We also used quantitative PCR (qPCR) to quantify six 

microbial genes related to nitrification, assessing the genetic potential for this process. Our mycorrhizal groupings reflect broad 

nutrient cycling patterns (Averill et al., 2014; Read and Moreno, 2003) and finer-scale dynamics (Giesler et al., 1998; Björk 

et al., 2007). EcM and ErM were grouped based on shared traits such as saprotrophic capacity and organic nutrient acquisition, 

while AM and non-mycorrhizal (NM) associated plants were linked by their association with faster nutrient turnover. These 95 

mycorrhizal types also naturally co-occur in tundra vegetation. To separate the effects of mycorrhizal function from species 

richness, as argued in the mass ratio hypothesis, we also varied species dominance and rarity, enabling us to test how functional 

traits and community structure influence ecosystem processes. We hypothesize that (1) gross N mineralization rates will be 

highest in EcM/ErM-dominated plots, due to their efficiency in accessing organic N sources; (2) gross nitrification rates will 
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be highest in AM/NM-dominated plots, which promote rapid N turnover and stimulate nitrifier activity; (3) higher gross 100 

nitrification rates will correspond with greater genetic potential for ammonia and nitrite oxidation in AM/NM-dominated plots; 

and (4) mycorrhizal type will exert a stronger influence on N processes than plant community structure, given its direct role in 

N acquisition and cycling. 

2 Methods 

2.1 Study site and design 105 

This study was conducted at the Tarfala Research Station in the Tarfala valley of the Kebnekaise Mountains, northern Sweden, 

at elevations ranging from 1098 to 1114 m a.s.l. (Latitudes: 67°54′14.16″N to 67°54′15.16″N, Longitudes: 18°37′23.80″E to 

18°37′29.39″E). The geomorphology of the valley reflects its glacial history, with landforms shaped by retreating ice masses 

and a substrate dominated by rocky debris. The study area is situated near the terminal moraines marking the maximum extent 

of Storglaciären during the Little Ice Age (~1910) (Holmlund, 1987) and is characterized by shallow soils developed on till, 110 

classified as Leptosols and Regosols (Fuchs et al., 2015). Prominent plant species are the graminoids Carex bigelowii, Carex 

nigra, Deschampsia flexuosa, Festuca vivipara, and Juncus trifidus; the deciduous dwarf shrubs Salix polaris and Vaccinium 

uliginosum; the evergreen dwarf shrubs Dryas octopetala and Empetrum nigrum; and the forbs Bistorta vivipara and Silene 

acaulis. The mean annual air temperature from 1995 to 2019 was -2.6 ± 1.8 °C with the coldest month in February (-10.5 ± 

5.5 °C) and the warmest month in July (8.4 ± 3.7 °C) (SMHI 1995-2019; raw data retrieved from www.smhi.se). The summer 115 

mean precipitation is 458 ± 201 mm (Dahlke et al., 2012, Tarfala Research Station 1980-2011; available at 

https://bolin.su.se/data/tarfala/climate.php). 

 

We established a plant removal experiment in 2016 with one unmanipulated control and four treatments designed to manipulate 

plant community structure: 1) Control, where no plant species were removed; 2) AM/NM, where all plants with EcM or ErM 120 

associations were removed, leaving only plants with AM or NM; 3) EcM/ErM, where all plants with AM or NM associations 

were removed, leaving only plants with EcM or ErM associations; 4) Dominant, where rare plant species were removed, 

leaving the eight most dominant species  (9 rare species removed; Table S1, S2); and 5) Rare, where dominant plant species 

were removed, retaining the eight rarest species (7–11 dominant species removed; Table S1, S2). The Dominant and Rare 

species removal treatments were designed to include a relatively even mixture of species representing different mycorrhizal 125 

types (EcM, ErM, AM, and NM). This design allowed us to separate the effects of species richness from those of mycorrhizal 

association. While the exact number of species removed varied slightly between treatments, both included a balanced 

representation of mycorrhizal types. Species removal was performed by clipping vegetation at the soil surface, with treatments 

maintained from 2016 to 2019 by removing regrowth of undesired species each growing season. The treatments were 

distributed across 32 plots arranged into eight blocks, each containing four plots (one for each treatment group, except for Rare 130 

and Dominant, which were represented in four blocks each). There were eight replicates for the AM/NM-dominant, EcM/ErM-

https://bolin.su.se/data/tarfala/climate.php


5 
 

dominant, and control treatments, and four replicates for the Rare and Dominant plant community treatments. Each consisted 

of a smaller survey area (1 m²) to exclude edge effect of the trenching (4 m²) designed to exclude external mycorrhizal 

colonization. Trenches were dug around the 4 m² perimeter and lined with 1 μm mesh to a depth of 0.3 m, allowing water 

movement but preventing root and mycorrhizal penetration.  135 

 

2.2 Plot-level plant diversity 

To determine plot-level plant community structure, we conducted two vegetation surveys (pre-clipping, July 2015 and post-

clipping, July 2019) using point intercept measurements (Molau and Mølgaard, 1996) on the central 1 m2 quadrats for each 

plot. In addition, all species within the 4 m2 plot not registered by point intercept were noted. We estimated the cover and 140 

counts of each species to determine species richness. We also calculated the transient changes in community dynamics initiated 

by altered plant interactions and estimated changes in above-ground biomass (Molau, 2010). 

 

2.3 Nitrogen dynamics 

Four years after plant removal, gross soil N dynamics were investigated in the field using the virtual soil core 15N tracing 145 

approach (Rütting et al., 2011) and a mirror 15N labelling approach, allowing investigation of N transformations in the intact 

mycorrhizosphere. Within each plot, we set up two groups of four injection locations in opposing corners: one corner for 15N-

labelled ammonium (NH4
+) and the other for 15N-labelled nitrate (NO3

-), to avoid cross-contamination. We conducted the 15N 

labelling by injecting 15(NH4)2SO4 (Cambridge Isotope Laboratories) to quantify gross N mineralization or K15NO3 

(Cambridge Isotope Laboratories) to quantify nitrification, both labels with a 15N fraction of 99 %, to a soil depth of 6 cm, 150 

both treatments also receiving the unlabelled other moiety. There were 11 injection points per location using a template for 

guidance (Rütting et al., 2011), each point receiving 1.14 mL of solution containing 15.0 μg NH4-N mL-1 and 4.5 μg NO3-N 

mL-1, which is equivalent to c.a. 3.8 μg NH4-N g-1 dry soil and 1.2 μg NO3-N g-1 dry soil. These amounts were calculated based 

on soil concentrations measured in tundra soil in the nearby Latnjajaure Field Station (Björk et al., 2007), aiming for a 15N 

enrichment of 10%. For NO3, a larger amount was added, approximately 50% of the native pool, which was required for 15N 155 

analysis. We destructively harvested soil cores at 2, 25, 49, and 97 hours after labelling, using sharpened PVC tubes (3 cm in 

diameter), inserted to a depth of 6 cm within the organic soil layer, at each of the four respective locations. 

 

Soil cores were immediately processed at the Tarfala Research Station to extract inorganic N (i.e., NO3
- and NH4

+) following 

initial sieving (mesh size 2 mm). 10 g of field moist soil were extracted using 20 ml of 1 M KCl and placed on a shaker for 60 160 

min at 250 rpm before filtration with Whatman 1 G/F filter paper (11 µm). The extracts were stored frozen at -20°C until 

further analyses. Concentrations and the 15N fraction of NH4
+ were determined from soil KCl extracts using the micro diffusion 

technique (Biasi et al., 2022; Brooks et al., 1989), followed by 15N analysis on an elemental analyzer (Europa EA-GSL, Sercon 
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Ltd., UK) coupled to an Isotope Ratio Mass Spectrometer (Sercon 20-22, Sercon Ltd., UK). NO3
- concentrations and the 15N 

fraction in all samples were determined from soil KCl extracts using the SPINMAS technique (Stange et al., 2007). The TN, 165 

TC, C:N ratio, and bulk 15N in soil were measured using the EA-IRMS described above. Dried soil was first ground (Retsch 

MM400, frequency 23.0 1/s, for 2 min) and around 15 mg from each sample was placed into a tin capsule. 

 

2.4 Soil characteristics 

At the same time as the 15N labelling experiment, we also collected samples from the top 6 cm of the organic soil layer to 170 

assess abiotic and biotic soil characteristics, matching the depth used for labelling. Four soil samples (10×10×6 cm, 250 cm3 

each) were collected from each plot after the 15N labelling experiment to avoid destructive sampling within the plot during the 

experiment. Stones, plant shoots and roots were removed from the collected samples immediately after sampling at the Tarfala 

Research Station, which were then sieved through a 2 mm mesh. The four sieved soil samples from each plot were combined 

and homogenized. Subsamples were separated from the homogenized soil for various analyses elsewhere, including pH, 175 

gravimetric soil water content (GWC, g/g), soil organic matter (SOM), and DNA extraction for abundance of microbial 

communities. Subsamples for DNA extraction were stored frozen until further analyses. 

 

GWC was measured by oven-drying 10 g of wet soil at 100 °C for 24 hours. SOM content was determined using the loss-on-

ignition method by heating the soil at 550 °C for 6 hours. Soil pH was measured in water (10 g soil, 1:1 deionized water) and 180 

in 1 M KCl (10 g soil, 1:4). Field measurements of soil temperature at a depth of - 5 cm (Tsoil °C) and soil water content at 0 – 

6 cm (volumetric soil moisture content; VWC) were recorded on four days corresponding to the 15N injection time points. 

These measurements were taken at four locations within each plot using a hand-held thermometer and an ML3 ThetaProbe 

(Delta-T Devices, Cambridge, U.K.), respectively. Bulk density was determined using intact soil cores (5 cm length, 7.2 cm 

diameter, 203.6 cm3 volume), collected by block (N = 8), and oven dried at 100 °C for 24 hours.  185 

 

2.5 DNA extraction and qPCR of the ITS region and 16S rRNA and nitrification-associated genes 

The frozen, sieved soil was freeze-dried and then ground for 2 minutes using a ball mill. The DNA was extracted from 0.25 g 

of the milled soil using the NucleoSpin soil kit (Macherey-Nagel, Duren, Germany), with SL2 buffer with enhancer and 

according to the manufacturer’s protocol. DNA was quantified using the Qubit 2.0 fluorometer (Invitrogen, Thermo Scientific). 190 

qPCR was used to determine the size of total bacterial and fungal communities in the soil by quantifying 16S rRNA gene and 

ITS, respectively. Additionally, nitrification-associated functional genes were quantified, including amoA (encoding ammonia 

monooxygenase from archaeal (AOA) and bacterial (AOB) ammonia oxidizers, and clade A (comaA) and clade B (comaB) 

complete ammonia oxidizers in the Nitrospira genus) and nxrB (encoding nitrite oxidoreductase from either Nitrospira-type 

(NIS) or Nitrobacter-type (NIB) nitrite oxidizing bacteria) (Table S3). Quantification was done using the C1000TM Thermal 195 
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Cycler CFX96TM Real-Time System, and CFX ConnectTM Real-Time System (BioRad, CA, USA). All reactions were carried 

out in duplicate with a 15 μL reaction volume containing 0.1 mg/mL BSA, 1x SYBR Green Supermix (BioRad), 0.2-1.0 µM 

of each primer (Table S3), and 6 ng of template DNA. Standard curves were generated for each gene using serial dilutions 

(102-108 copies/μL) of linearized plasmids containing the target genes. The cycling conditions, primer sequences, and 

concentrations for each gene are available in Table S4. The amplifications were validated by melting curve analyses and 200 

agarose gel electrophoresis. Prior to quantification, potential inhibition of PCR reactions was checked by amplifying a known 

amount of the pGEM-T plasmid (Promega, Madison, WI, USA) using plasmid specific M13 primers and addition of soil DNA 

or non-template controls for each sample. No inhibition was detected with the amount of DNA used. Gene copy numbers were 

adjusted for the amount and concentration of extracted DNA and normalized per gram of dry soil. 

 205 

2.6 Data analysis 

All statistical analyses were conducted in R (R Core Team, 2024) with RStudio interface (Posit team, 2024), except for the 

Isotope tracing model described below. R packages used included tidyverse (v2.0.0, Wickham et al., 2019), rstatix (v0.7.2, 

Kassambara, 2023b), knitr (v1.45, (Xie, 2023), kableExtra (v1.4.0, (Zhu, 2024), ggpubr (v0.6.0, Kassambara, 2023a), sjPlot 

(v2.8.15, Lüdecke, 2023). Additional R packages are described within the methods below. 210 

 

2.6.1 Vegetation diversity 

Vegetation data from both surveys were analyzed using Correspondence Analysis (CA) to explore the relationships between 

time and treatment. One EcM/ErM plot was removed from the analysis because it had a vascular plant species richness of zero 

based on the point-framing survey in 2019. This plot had 88 % bryophyte cover, and although Salix herbacea, S. polaris, and 215 

Empetrum nigrum were still present there were no direct hits from the point-framing survey, indicating a presence of less than 

1 % coverage. 

 

2.6.2 Isotope (15N) tracing model 

Process-specific gross N transformation rates were quantified using the 15N tracing model Ntrace (Müller et al., 2007; Rütting 220 

and Müller, 2007). We used a model setup, including three N pools (organic N, NH4
+ and NO3

-) and four N transformation 

processes: mineralization of organic N (MNorg), immobilization of NH4
+ and NO3

- (INH4 and INO3) and NH4
+ oxidation (ONH4, 

i.e. nitrification), which was sufficient to represent the observed N and 15N dynamics. As we did not observe any 15N enrichment 

of NH4
+ following the addition of 15N labelled NO3

-, DNRA was not considered in Ntrace. The N transformations were 

described by first-order kinetics, except for MNorg, which followed zero-order kinetics. The kinetic parameters of the N 225 

transformations were approximated numerically for each treatment separately with Monte Carlo sampling through a random 
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walk aiming to minimize a misfit function (quadratic weighted error) between the modelled and observed values. Model fit to 

observed NH4
+, NO3

-, and their respective 15N enrichments was visually assessed (Fig. S1-S5). Model inputs were mean values 

and standard deviations of NH4
+ and NO3

- content and their respective 15N abundances. The initial 15N content of the organic 

N pool was not measured at the plots and was instead assumed to be at natural abundance (0.366 %). Iterative approximation 230 

of the N cycle rates creates normally distributed probability density functions, for which the mean values and standard 

deviations were calculated (Müller et al., 2007). For pathways described by first-order kinetics, gross N rates were calculated 

as the product of the kinetic factor and substrate content. Ntrace and the optimization algorithm were set up in Matlab version 

R2023b and Simulink version 23.2 (The MathWorks Inc.). Rates are reported per gram of C to account for differences in 

organic matter content across soils and to facilitate better comparison. 235 

The Ntrace provides robust estimates of gross N transformation rates but was here applied to treatment averages, hence did not 

allow investigation of potential block effects. To do so, we additionally quantified gross N mineralization and nitrification for 

each plot based on the isotope pool dilution (IPD) principle and the analytical tracing model by (Kirkham and Bartholomew, 

1954) using the first two timesteps of the 15N tracing experiment. All gross N transformation rates are normalized for the soil 

C content. To assess potential block effects on gross N mineralization and nitrification rates, we fitted generalized linear models 240 

(GLMs) with Block as a fixed effect using the glmmTMB package (v1.1.8, Brooks et al., 2017). Given the right-skewed 

distribution of the data, a zero-inflated Gamma distribution with a log link function was used for mineralization rates, while a 

standard Gamma distribution was applied for nitrification rates. Model significance was assessed using Type II Wald chi-

square tests. 

 245 

2.6.3 Soil characteristics and microbial genes 

To analyse the impacts of mycorrhizal status and vegetation composition on soil characteristics and microbial genes, we fitted 

Generalized Linear Mixed Models (GLMMs) with glmmTMB (v1.1.8, Brooks et al., 2017). Each model included Treatment 

as a fixed effect and Block as a random effect. Given that Block showed significant effects for several response variables, 

additional GLMs were fitted with Block as a fixed effect to explore its specific influence. These results are presented in the 250 

supplementary material for completeness, though Block was not originally intended as a primary focus of the experimental 

design. We validated model assumptions using the DHARMa package (v0.4.6, Hartig, 2022), which simulates scaled quantile 

residuals. Model fit was assessed through residual vs. fitted plots, QQ plots, and DHARMa’s tests for uniformity and outliers 

to detect deviations from normality and heteroscedasticity. Pairwise comparisons between treatments were conducted with 

emmeans (v1.10.0, Lenth, 2024). 255 

 

We conducted paired samples Wilcoxon signed-rank tests with the wilcox.test function within the stats package (R Core Team, 

2024) to assess differences in log-transformed gene abundances between the sample groups ITS and 16S rRNA, AOA and 

AOB, ComaA and ComaB, as well as NIB and NIS. 
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 260 

We utilized the corr.test function within the psych package (v2.4.1, Revelle, 2024) to conduct correlation analyses to explore 

the relationships between gene abundances and environmental variables. We calculated Spearman rank-order correlation 

coefficients to quantify the strength and direction of these relationships. To address the issue of multiple testing and control 

the family-wise error rate, we applied a Holm correction. We categorized correlation coefficients based on their strength: weak 

(0 < |r| < 0.4), moderate (0.4 < |r| < 0.7), and strong (|r| > 0.7). 265 

 

Principal Component Analysis (PCA) was employed for dimensionality reduction. The first three Principal Components (PCs) 

were retained, and ANOVAs were performed on them, incorporating Treatment and Block as fixed effects. The ANOVA 

outputs provided adjusted p-values, which were further examined using Tukey tests to identify significant differences between 

treatment groups and blocks. 270 

 

3 Results 

3.1 Vegetation diversity treatment effect 

 

The treatments clearly shifted the plant community in three directions within the ordination space from its original structure 275 

in 2015 (Fig. 1). The AM/NM community and the Dominant community clustered together, whereas the EcM/ErM community 

and the Rare community formed their own distinct clusters after clipping treatment. The control plots in 2019 remained similar 

to the plant communities recorded in 2015 before the experiment was established. 
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 280 
Figure 1: Changes in plant communities over the course of the experiment. Mean values (± 85 % confidence interval 
corresponding to an α= 0.05 test; see (Payton et al., 2000, 2003) of sample scores from the correspondence analysis (CA), 
comparing the abundances of plant species before treatment in 2015 and four years after treatment in 2019. The 
eigenvalues are 0.499 for Axis 1 and 0.469 for Axis 2. Axis 1 explains 10.68 % of the total variance, and Axis 2 explains 
10.04 %, together accounting for 20.72 % of the total variance. Treatments: Ctrl = control; AM/NM = plants with 285 
arbuscular mycorrhizal association or no mycorrhizal association; EcM/ErM = plants with ectomycorrhizal and ericoid 
mycorrhizal associations; Dominant = rare plant species removed, allowing the eight most dominant plant species to grow 
in the plots; and Rare = dominant species removed, keeping the eight rarest plant species. 

 

3.2 Soil characteristics 290 

During the labelling period, VWC was significantly higher in EcM/ErM-dominated plots compared to the control (z = 2.19, p 

= 0.029). Tsoil was significantly lower in Dominant plots relative to the control (z = -2.44, p = 0.015) and marginally lower in 

EcM/ErM plots relative to the control (z = -1.88, p = 0.06). Pairwise comparisons showed that Tsoil in AM/NM was significantly 

higher than EcM/ErM (estimate = 0.02, SE = 0.006, p = 0.007) and Dominant (estimate = 0.03, SE = 0.008, p = 0.003). SOM 

was significantly lower in AM/NM-dominated plots compared to control (z = -2.35, p = 0.019). No other significant differences 295 

were found for the remaining soil characteristics (Table 1, Table S5). The natural abundance δ15N of SOM was measured by 

block and ranged from –0.08 to 2.62 (Table 1). 
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Table 1: Soil properties at the Tarfala study site (Sweden). Variables: soil moisture (VWC), soil temperature (Tsoil), 
laboratory gravimetric soil water content (GWC), soil organic matter (SOM), pH, C:N ratio, TN.  Values represent mean 300 
± standard error (N = 32). VWC and Tsoil are averaged values taken over four days of measurements, while all other 
properties are based on one measurement per soil sample collected from each plot. Treatments: only ecto- and ericoid 
mycorrhiza plant associations present (EcM/ErM), only arbuscular and non-mycorrhiza associations present (AM/NM); 
removal of dominant plant species (Rare); removal of rare plant species (Dominant). Significant differences from control 
are bolded (* = p<0.05, # = p < 0.1) based on general linear mixed-effects models (GLMMs) (Table S5). 305 

Treatment 
 

n 
VWC  
(%) Tsoil (oC) 

GWC 
(g/g) 

SOM  
(%) pH C/N 

TN  
(%) 

Control 8 26.0±1.6  10.7±0.1  55.7±1.9  37.2±2.5  4.9±0.1  15.3±0.5 1.1±0.2  

AM/NM 8 26.6±1.1  10.9±0.1 52.0±2.3 29.9±2.7* 4.9±0.1 15.6±0.6 0.9±0.1 

EcM/ErM 8 29.8±1.9* 10.4±0.2# 54.9±1.4 33.7±1.6 5.0±0.1 14.2±0.6 1.4±0.4 

Dominant 4 27.4±2.8 10.4±0.2* 57.6±4.4 38.1±5.9 5.0±0.0 16.7±0.7 0.9±0.1 

Rare 4 31.4±2.8 10.5±0.3 53.8±1.8 31.4±3.6 5.0±0.1 14.9±0.7 1.0±0.2 

Bulk density (g cm-3) was measured by block, not by treatment: A) 0.18, B) 0.22, C) 0.21, D) 0.22, E) 1.01, F) 0.37, G) 0.41, H) 0.36. 
Natural abundance δ15N was measured by block, not by treatment: A) 0.95, B) 1.76, C) -0.08, D) 0.92, E) 2.62, F) 2.16 
 

3.3 Gross nitrogen dynamics 

Compared to the control, all treatments showed significantly higher gross N mineralization rates (Fig. 2a). EcM/ErM and 310 

Dominant showed the largest increases, at 73 % and 78 % above the Control, respectively, while AM/NM and Rare had more 

moderate increases of 30 % and 46 %. Gross nitrification rates were 1-2 orders of magnitude lower than gross N mineralization 

rates (Fig. 2b). Significant differences in gross nitrification rates were also observed, with EcM/ErM showing a 26 % increase, 

while Rare, AM/NM, and Dominant exhibited reductions of 32 %, 46 %, and 49 %, respectively, compared to the Control (Fig. 

2b). 315 

Average gross N mineralization and nitrification rates, calculated using the IPD approach, showed a similar pattern to those 

obtained through Ntrace (Table S6). However, the IPD based rates had much higher variability. In some instances, we even 

observed implausible negative rates. Block effects on gross N transformation rates were not statistically significant for 

mineralization (X2 (7) = 9.19, p = 0.24), but marginally significant for nitrification (X2 (7) = 13.08, p = 0.07). 

 320 



12 
 

 
Figure 2: Gross N mineralization and nitrification rates (mean and 85 % confidence interval).  Rates were quantified by 
the Ntrace model with different manipulated vegetation (Control = no manipulation; AM/NM = plants with arbuscular 
mycorrhizal association or no mycorrhizal association; EcM/ErM = plants with ectomycorrhizal and ericoid mycorrhizal 
associations; Dominant = rare plant species removed allowing the eight most dominant plant species to grow in the plots; 325 
and Rare = dominant species removed keeping the eight rarest plant species). Different lowercase letters above the bars 
indicate significant differences based on whether the 85 % confidence intervals overlap.  

 

3.4 Abundance of bacteria and fungi 

The bacterial 16S rRNA gene copy numbers were consistently higher than fungal ITS rRNA gene copy numbers across all 330 

treatments (EcM/ErM, AM/NM, Rare, Dominant), ranging from 2.07 x 109 to 2.75 x 109 and 1.05 x 108 to 1.68 x 108 copies 

g-1 dry soil respectively (V = 528, p < 0.001, n = 32). In the AM/NM, fungal abundances were marginally lower (z = -1.67, p 

= 0.094) and the ITS:16S rRNA gene copy ratio were lower (z = -2.13, p = 0.033) compared to the Control (Fig. 3a). No other 

treatments significantly affected the bacterial or fungal abundance (Table S7, S8) or the ITS:16S ratio (Fig. 3a, Table S9, S10). 

 335 
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Figure 3: Soil gene abundance ratios in response to plant removal treatment. Gene abundance ratios for A) fungi (ITS) vs 
bacteria (16S rRNA gene); B) Archaeal ammonia oxidizer (AOA) vs bacterial ammonia oxidizer (AOB); C) comammox 
bacteria, clade ComaA vs comammox clade ComaB; and D) nitrite-oxidizing Nitropira (NIS) vs Nitrospira (NIB). 340 
Treatments: no manipulation = Control; removal of plants with ecto and ericoid mycorrhiza associations = AM/NM; 
removal of plants with arbuscular mycorrhiza & no mycorrhiza associations = EcM/ErM; removal of rare plant species = 
Dominant; removal of dominant plant species = Rare. Symbols above the boxplots denote significant differences for each 
group relative to a control group as determined through Generalized Linear Mixed Models (GLMMs) (* < 0.05) (Table 
S10). 345 

 

3.5 Nitrifier gene abundance 

We observed the most notable variations in nitrification gene copy numbers between functional groups capable of the same 

transformation step in nitrification. Gene abundances exhibited distinct differences between functional group pairs: AOA > 

AOB (V = 527, p < 0.001, n = 32); NIS > NIB (V = 0, p < 0.001, n = 32); and ComaA > ComaB (V = 528, p < 0.001, n = 32). 350 

Of the six genes, amoA in ComaA and nxrB NIS, both representing the bacterial genus Nitrospira, were consistently the most 

abundant genes (Table S11). 

 

Overall, gene abundances were minimally affected by treatment, except for Dominant treatment having lower AOA abundance 

(z = -2.66, p = 0.008; Fig. 4a), and marginally lower NIS abundance (z = -1.89, p = 0.058; Fig. 4f) compared to the control 355 

(Table S12). Gene copy abundance ratios were unaffected by treatment (Fig 3b-d, Table S10). 
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Figure 4: Gene abundances representing six functional groups involved in nitrification in response to plant removal treatment. A) 
Ammonia-oxidizing archaea (AOA), B) ammonia-oxidizing bacteria (AOB), C) complete ammonia oxidizers (comammox) clade A 360 
(comaA), D) complete ammonia oxidizers (comammox) clade B (comaB), E) nitrite-oxidizing Nitrobacter (NIB), and F) nitrite-
oxidizing Nitrospira (NIS). Treatments: no manipulation (Control); removal of plants with ecto and ericoid mycorrhiza associations 
= AM/NM; removal of plants with arbuscular mycorrhiza & no mycorrhiza associations = EcM/ErM; removal of rare plant species 
= Dominant; removal of dominant plant species = Rare. Symbols above the boxplots denote significant differences for each group 
relative to a control group as determined through Generalized Linear Mixed Models (GLMMs) (** < 0.01, # < 0.1) (Table S12).  365 
 

3.6 Relationships between gene abundances, vegetation, and edaphic factors 

We found no significant correlations between gene abundances and Simpson’s diversity index of plants, VWC, GWC, Tsoil, 

SOM, pH, TN, C/N, and BD after adjusting for multiple testing (Table S13). However, we observed a strong positive 

correlations between abundance of 16S rRNA genes and ITS (r = 0.73, p < 0.01), AOB (r = 0.73, p < 0.01), ComaA (r = 0.77, 370 

p < 0.01), NIB (r = 0.75, p < 0.01),  AOA and NIS (r = 0.81, adj.p < 0.01), ComaA and ComaB (r = 0.72, p < 0.01), and 

moderate positive correlations between 16S rRNA genes and ComaB (r = 0.67, adj.p < 0.01), ITS and AOB (r = 0.69, p < 

0.01), AOB and ComaA (r = 0.63, p = 0.02), ComaA and NIB (r = 0.63, adj.p = 0.02), and ComaB and NIB (r = 0.60, p = 

0.04) gene abundances. We also observed moderate positive correlations between Simpson’s diversity index of plants and 

VWC (r = 0.63, adj.p = 0.02), VWC and BD (r = 0.60, adj.p = 0.04), and BD and elevation (r = 0.60, adj.p = 0.04). There was 375 

a marginally moderate negative correlation between Tsoil and BD (r = -0.58, adj.p = 0.08). 
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When considering the combined effects of vegetation diversity, soil characteristics, and the abundance of bacterial, fungal, and 

nitrifier genes, the first three principal components accounted for 58.2 % of the total variance, with PC1, PC2, and PC3 

explaining 25.9 %, 18.5 %, and 13.7 %, respectively (Fig. S6, S7, S8). The loadings for each component indicate that no single 380 

variable drives the variance (Table S14). The strongest negative loadings on PC1 were for the abundance of ITS copies,16S 

rDNA genes, and the groups ComaA, NiB, and ComaB. There were no strong positive loadings on PC1 (all were ≤ 0.18). On 

PC2, the strongest positive loadings were vegetation diversity, VWC, and the abundance of AOA and NIS, while C/N ratio 

had the strongest negative loading. For PC3, Tsoil was the strongest negative loading, and elevation, VWC, GWC, and BD were 

the strongest positive loadings. For PC1, neither Treatment (F(4,20) = 0.81, p = 0.53) nor Block (F(7,20) = 1.28, p = 0.31) had a 385 

significant effect on the PC1 scores. For PC2, Treatment showed a significant effect on PC2 scores (F(4,20) = 3.40, p = 0.028), 

while Block was not significant (F(7,20) = 1.52, p = 0.22). Tukey’s test indicated a significant difference between the EcM/ErM 

and Dominant (adj.p = 0.015), and a notable difference between Rare and Dominant (adj.p = 0.079) treatment groups. For 

PC3, Treatment (F(4,20) = 3.71, p = 0.02) and Block (F(7,20) = 12.01, p = 0.00) showed a significant effect on PC3 scores. Tukey’s 

test indicated a significant difference between the EcM/ErM and AM/NM (p = 0.039), and between Rare and AM/NM 390 

treatment groups (p = 0.038). Tukey’s test also showed significant differences between Blocks with Blocks A-D showing 

negative PC scores and Blocks E-H showing positive scores (Fig. S7). Elevation, which increased from Block A to H (Table 

S15, Fig. S9a), influenced multiple properties despite the subtle 15-meter gradient. The proportional cover of EcM/ErM plots 

decreased from Block A-G but deviated in Block H, where the cover resembled that of Blocks B-D. Additionally, Blocks A-

D were drier than Blocks E-F, and soil temperature decreased with elevation. 395 

 

4 Discussion 

4.1 EcM/ErM communities enhance both gross mineralization and nitrification in a conservative tundra N cycle 

As hypothesized, we found the highest gross N mineralization rates in the EcM/ErM treatment, but unexpectedly, the treatment 

with only dominant species in the plant communities also exhibited high rates. Notably, all treatments showed elevated 400 

mineralization compared to the unmanipulated control. By contrast, our hypothesis was not supported for gross nitrification. 

The EcM/ErM treatment was the only one showing higher nitrification rates compared to control, while all other treatments 

exhibited decreased rates. A previous study in a hemiboreal forest found that the presence of EcM increased gross N 

mineralization threefold, while gross nitrification remained largely unaffected (Holz et al., 2016). EcM-dominated ecosystems 

are commonly assumed to cycle N more slowly because EcM fungi promote organic N retention and decomposition of more 405 

recalcitrant substrates, whereas AM-dominated ecosystems exhibit faster N cycling due to greater reliance on inorganic N 

uptake and relatively fast N mineralization rates (Averill et al., 2019). However, our small-scale experimental study does not 

support this hypothesis, as we found significantly higher gross N cycling in the presence of EcM/ErM compared to the plots 

with AM/NM. This is consistent with a recent meta-analysis on rhizosphere effects on gross N mineralization (Gan et al., 
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2022), demonstrating that EcM-associated plant species enhanced gross N mineralization more than AM-associated species. 410 

EcM/ErM mycorrhizal treatments circulated N faster than the other treatments, also indicated by the lower gross 

mineralization-to-nitrification ratio in the EcM/ErM mycorrhizal treatments (53 for EcM/ErM mycorrhizal treatments vs. 92, 

81, and 134 for AM/NM and the diversity treatments). According to the mass ratio hypothesis, the plant functional traits and 

relative abundances of dominant species within a community are highly influential for ecosystem processes (Grime, 1998). 

Our study partly supports the mass ratio hypothesis by demonstrating that mycorrhizal type, particularly EcM/ErM, can be 415 

regarded as a key functional plant trait influencing N cycling. However, we found that dominant species were not necessarily 

associated with faster or more open N cycling overall, despite high mineralization rates. The high gross mineralization-to-

nitrification ratio (134) in the Dominant treatment suggests a more conservative, ammonium-driven N cycle. This may reflect 

competitive dynamics, where dominant species more effectively acquire NH4
+, thereby reducing substrate availability for 

nitrifiers. In this way, dominant species could exert a strong influence on the N cycle by both enhancing mineralization and 420 

constraining nitrification, resulting in a faster but tighter cycle that favours internal N recycling. By contrast, rare species 

communities exhibited lower mineralization but relatively higher nitrification (gross mineralization-to-nitrification ratio of 

81), potentially indicating a more open N cycle and increased risk of N losses via leaching or gaseous pathways. These 

differences may arise from functional similarity and resource monopolization in dominant communities (Eisenhauer et al., 

2023), versus greater functional complementarity and microbial interactions in rare communities (Niklaus et al., 2006). Thus, 425 

our findings suggest that mycorrhizal status, particularly EcM/ErM associations, plays a more significant role in shaping gross 

N cycling dynamics than species dominance alone. 

 

The observed increase in gross N mineralization across all manipulation treatments compared to control may be partly 

attributed to increased carbon input from decaying roots of plants removed by clipping. Although treatments began four years 430 

prior to our study, clipping continued during the growing season preceding it, during which a minor fraction of the removed 

plant species still exhibited limited regrowth. Following clipping, roots remain in the soil and decompose, potentially triggering 

a priming effect on the microbial community, which increases N mineralization and rhizodeposition (Bengtson et al., 2012; 

Dijkstra et al., 2013). Early-stage decomposition is typically rapid due to the loss of soluble carbon (Aber et al., 1990), but 

root decay rates decline significantly after the first year (McLaren et al., 2017). The extent of plant biomass reduction—and 435 

consequently root biomass—likely varied between treatments, with larger reductions in Rare, where all dominant plants were 

clipped, and smaller in Dominant. This variation may have affected labile carbon input and plant N uptake. However, the 

significantly higher gross N mineralization rates in the Dominant treatment, despite its similar community composition to the 

AM/NM, suggest that most root decaying had already subsided and had only minor effects, whereas species identity and 

associated functional traits drive the pattern we observe and play a more decisive role in shaping N cycling dynamics. 440 

 

Moreover, we found that gross N mineralization rates were 1-2 orders of magnitude faster than the gross nitrification rate, and 

the ratio of gross nitrification to NH4
+ immobilization was low. This is a strong indicator of a conservative N cycle with 
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minimal N losses to the environment, which is typical in N-limited ecosystems (Schimel and Bennett, 2004; Tietema and 

Wessel, 1992).  N limitation is further supported by our δ15N data for SOM. The δ15N values of SOM depend mainly on 445 

external N sources and ecosystem N losses. In N-rich ecosystems with high denitrification, N with low δ15N is lost, resulting 

in higher soil δ15N values (Bai and Houlton, 2009). Conversely, in N-limited ecosystems, the primary input is via biological 

N fixation, which has minimal fractionation, resulting in soil δ15N values close to 0 (Amundson et al., 2003), as we observe. 

Few studies have investigated gross N cycling rates in situ in tundra ecosystems (Ramm et al., 2022), but our gross N 

mineralization rates in the control plots (5.0 ± 0.3 µmol g-1 C d-1) is similar to in situ rates obtained in other low Arctic and 450 

oroarctic ecosystems (Buckeridge et al., 2010; Gil et al., 2022; Paré and Bedard-Haughn, 2012). Rates on in situ gross 

nitrification is even more scarce for tundra ecosystems. The global average gross nitrification rate in mineral soils has been 

estimated to 0.56 µmol g-1 C d-1 (Elrys et al., 2021), whereas in permafrost mineral soils it is about half this rate, 0.27 µmol g-

1 C d-1 (Ramm et al., 2022). Our control plot nitrification rates are lower (0.13 ± 0.01 µmol g-1 C d-1), and also in the lower end 

of what been observed in alpine grasslands, 0.16 and 0.27 µmol g-1 C d-1  (Jin et al., 2023; Shaw and Harte, 2001).  High soil 455 

C content (> 5 %) can decouple N mineralization and nitrification (Gill et al., 2023) by increasing heterotrophic N demand 

and intensifying competition for ammonium between heterotrophs and autotrophs (Booth et al., 2005; Keiser et al., 2016; Silva 

et al., 2005). Hence, our gross rates suggest that N availability in the Fennoscandian oroarctic tundra is low and low enough 

for the ecosystem to operate with a conservative N cycle. This leads to reduced N losses and further reinforces that N is a 

limiting factor controlling ecosystem productivity. 460 

 

4.2 Distinct soil nitrifier community within an otherwise stable microbial community 

Despite the distinct roles of mycorrhizal fungi in N cycling (Castaño et al., 2023; Hobbie and Högberg, 2012; Tedersoo et al., 

2020), the AM/NM and EcM/ErM plots did not differ in N-cycling gene abundances. However, altering plant composition 

revealed functional differences. Notably, our Dominant community plots—although having a similar plant composition to the 465 

AM/NM plots—showed lower abundances of AOA and NIS functional groups and reduced gross nitrification rates. This may 

reflect stronger plant competition for NH₄⁺ (Hayashi et al., 2016) or reduced microbial reliance on NH₄⁺ (Hobbie and Hobbie, 

2006; Schimel and Chapin, 1996). In contrast, nitrification gene abundances in Rare community plots were comparable to 

Control plots, despite lower gross nitrification rates. Since plant species richness was similar across Dominant and Rare 

treatments, our results suggest that dominant species traits—rather than richness—may drive ecosystem function, echoing 470 

findings in the ecological literature (Grime, 1998; MacGillivray et al., 1995). These traits appear to differ or be suppressed in 

the AM/NM community, suggesting that even a minor presence of EcM/ErM plants in an AM/NM-dominated community can 

shift how plant traits influence N dynamics in Arctic soils. 

 

Although treatment effects were limited, we observed distinct communities for ammonia oxidation and nitrite oxidation. AOA 475 

was more abundant than AOB, consistent with other Arctic soils (Alves et al., 2013; Banerjee et al., 2011; Lamb et al., 2011). 
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Their metabolic flexibility (Alves et al., 2019), cold-tolerance (Pessi et al., 2022), and adaptation to low-N (Di et al., 2010; 

Erguder et al., 2009) and acidic soils (Gubry-Rangin et al., 2010; Prosser and Nicol, 2012) highlights their important role in 

Arctic N cycling. Among comammox clade A (ComaA) was more abundant than clade B, consistent with clade A’s known 

adaptation to fluctuating oxygen conditions (Han et al., 2024; Palomo et al., 2018). Although comammox is underexplored in 480 

Arctic soils (Guo et al., 2024), clade B dominates nitrification in coastal Antarctica (Han et al., 2024). For nitrite oxidation, 

NIS was more abundant than NIB, reflecting NIS's advantage under low-nitrite conditions, where its periplasmic localization 

provides a competitive advantage (Nowka et al., 2015) but greater sensitivity to environmental fluctuations (Wilks and 

Slonczewski, 2007). Our results show a distinct nitrifier community and suggest that Arctic soils favour a more resource-

efficient, yet environmentally responsive, ammonia and nitrite oxidation strategy, supporting our findings of a conservative N 485 

cycle. Moreover, we observed correlations between nitrification genes (Table S12), including a strong positive correlation 

between AOA and NIS, suggesting potential synergistic interactions (Jones and Hallin, 2019; Ke et al., 2013; Stempfhuber et 

al., 2016) within the microbial community. This reinforces the idea that N cycling in these soils is structured by microbial 

traits and environmental pressures rather than competitive interaction with plants and mycorrhizal fungi. 

 490 

4.3 Mismatch between gene abundances and in-situ activity 

We found a mismatch between genetic potential for nitrification and in situ activity (gross nitrification rates) in the mycorrhizal 

manipulated plots. Although higher gene abundances sometimes can correlate with nitrification potential and rates (Ke et al., 

2013; Laffite et al., 2020; Ribbons et al., 2016; Rocca et al., 2015), similar inconsistencies as in our study have been observed 

in high-Arctic soils, where the abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) do 495 

not always correlate with ammonia oxidation potential (Hayashi et al., 2016). Thus, gene abundance alone does not necessarily 

predict nitrification rates, as environmental factors (Avrahami and Conrad, 2003; Hicks et al., 2020b; Hu et al., 2014; Li et al., 

2020a; Oshiki et al., 2016; Rousk et al., 2010; Stempfhuber et al., 2016; Taylor and Mellbye, 2022; Wright and Lehtovirta-

Morley, 2023), and competition  (Huang et al., 2024; Jung et al., 2022; Yang et al., 2022) likely play an interacting role. 

Additionally, our gene targets did not encompass alternative N sources, for example N fixation (Castaño et al., 2023) or the 500 

full nitrification potential of the soil. For example, Nitrotoga, a cold-adapted genus of nitrite-oxidizing bacteria (NOB) (Alawi 

et al., 2007), competes with our targeted groups of NOB (NIB and NIS) (Alawi et al., 2009; Karkman et al., 2011; Nowka et 

al., 2015), but was not included in our study. Methodological choices may also explain such mismatches. DNA-based 

approaches reveal functional potential but cannot distinguish between living, dead, or metabolically active organisms (Burkert 

et al., 2019; Hansen et al., 2007; Yang et al., 2022). In contrast, RNA-based techniques provide a closer proxy for microbial 505 

activity and show stronger correlations with measured rates of key metabolic processes, including nitrification under isotope-

labelled conditions (Orellana et al., 2019). Therefore, RNA-based approaches may better link functional potential with 

microbial process rates. 
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4.4 Limited impact of environmental factors 510 

Overall, neither mycorrhizal type nor plant species richness treatments had a strong influence on soil properties, nor did soil 

properties affect nitrification gene abundances. This result was unexpected, as above- and below-ground processes are often 

considered interconnected (Wardle et al., 2004).  Changes in mycorrhizal type and vegetation typically influence soil properties 

(Netherway et al., 2021; Welker et al., 2024; Wurzburger and Brookshire, 2017), and shifts in soil conditions, management 

practices, or environmental conditions can affect N dynamics (Björk et al., 2007; Li et al., 2020b) and nitrification gene 515 

abundances (Zhan et al., 2023). However, vegetation is not always the primary driver of N dynamics; other environmental 

factors, like soil moisture, can play a more important role (Fisk et al., 1998). Recent studies suggest that below-ground 

communities and functions can resist changes in vegetation cover and diversity (Fanin et al., 2019; Kirchhoff et al., 2024). 

Consistent with this, we found no clear environmental drivers of gene abundance (Table S13). However, we observed 

relationships among environmental factors: vegetation diversity was positively correlated with VWC measured during the 520 

week of the labelling, while soil bulk density was positively related to elevation and VWC but negatively related to soil 

temperature. These relationships may be temporally dynamic, as soil moisture can strongly influence N transformation rates 

earlier in the growing season, with its effect diminishing later in the season (Steltzer and Bowman, 1998). Notably, our soil 

samples were collected during the late growing season. When analyzing vegetation diversity, soil characteristics, and gene 

abundances together, clear treatment differences emerged. Differences were observed between EcM/ErM and Dominant, and 525 

to a lesser extent between Dominant and Rare, driven by vegetation diversity, VWC, AOA and NIS abundances, and C:N 

ratio. Differences between AM/NM and EcM/ErM, and AM/NM and Rare were driven by soil temperature, elevation, VWC, 

GWC, and soil bulk density. Furthermore, the minimal treatment effects on water-related variables suggest that evaporation 

and evapotranspiration had limited influence on our results. Block effects also emerged as a key factor. There were distinct 

and subtle environmental gradients represented in elevation change (over a short 15-meter gradient), vegetation cover, and soil 530 

characteristics (Table S15, Fig. S9a,b). We accounted for this by including Block as a random effect, but uneven replication 

limited our ability to incorporate additional spatial covariates. Thus, while our design minimized disturbance, it constrained 

our capacity to fully separate spatial from treatment effects. Similar block effects were observed in another plant removal study 

involving plant-mycorrhizal associations (Kirchhoff et al., 2024), even after two years of treatment. Notably, our study spanned 

four years, further highlighting the persistence of these spatial influences, even within our small study area. 535 

 

5 Conclusions 

Our study reveals that EcM/ErM mycorrhizal associations significantly enhance N cycling in Oroarctic tundra, challenging 

the conventional view that EcM-dominated ecosystems cycle N more slowly. Elevated gross N mineralization rates in 

EcM/ErM plots suggest that these fungi are more efficient at accessing and mobilizing N from organic matter. Despite stable 540 

microbial communities, the AM/NM plots showed reduced fungal abundance, reflecting the dominance of EcM/ErM fungi in 
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Arctic soils. Distinct communities for ammonia and nitrite oxidation emerged, with AOA being more abundant than AOB and 

NIS more abundant than NIB. This supports a resource-efficient, yet environmentally responsive, N cycling strategy in these 

soils. However, a mismatch between gene abundances and nitrification rates suggests that environmental factors and biological 

competition play significant roles. Altering plant diversity revealed differences in nitrification gene abundances, with dominant 545 

plots showing lower AOA and NIS gene abundances, indicating that dominant plant species may suppress or outcompete 

nitrifiers. Our findings emphasize the importance of EcM/ErM in N cycling and provide a deeper understanding of ecosystem 

processes in tundra environments. Future research should focus on long-term experiments and monitoring to better understand 

how changing plant diversity and mycorrhizal associations under varying climatic conditions affect ecosystem functioning. 

 550 
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