

Hidden vortices: Near-equatorial low-oxygen extremes driven by high-baroclinic-mode vortices

Florian Schütte^{1,2}, Johannes Hahn³, Ivy Frenger¹,

Arne Bendinger⁴, Ahmad Fehmi Dilmahamod¹, Marco Schulz¹,

Peter Brandt^{1,2}

¹GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

²Christian-Albrechts-University, Kiel, Germany

³Bundesamt für Seeschifffahrt und Hydrographie, Hamburg, Germany

⁴Laboratoire d'Océanographie Physique et Spatiale, University Brest, CNRS, Ifremer, IRD, IUEM, Brest, France

13

14 Corresponding Author: Florian Schütte (fschuette@geomar.de)

15

16

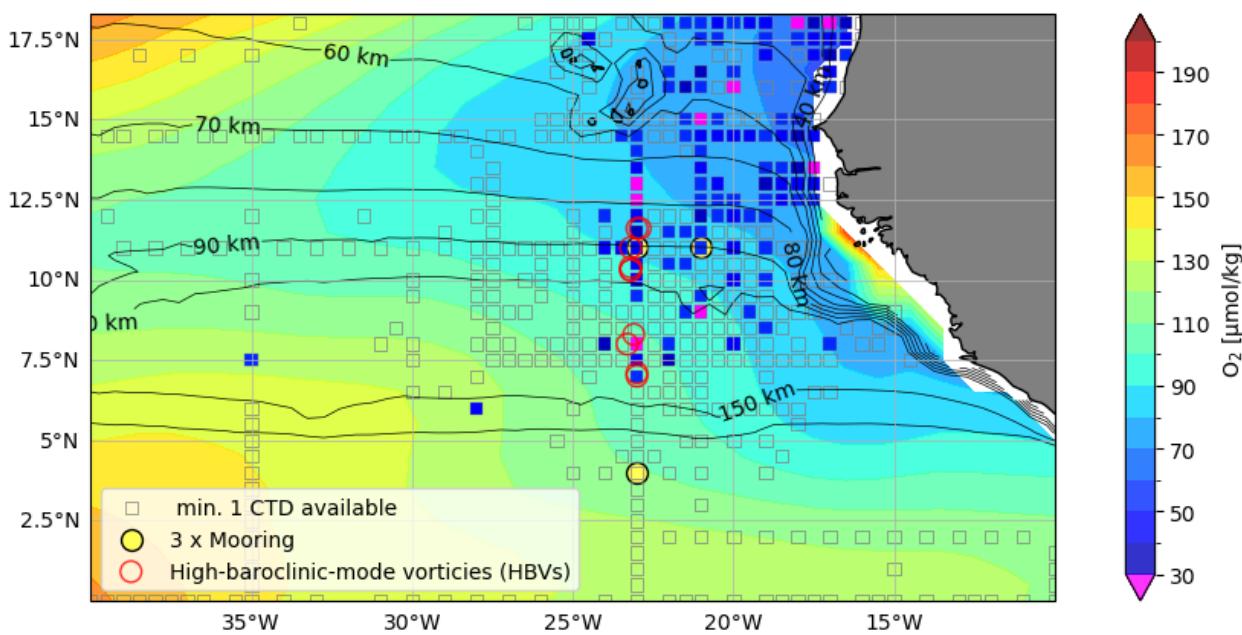
17

18

19 **Keywords:** subsurface low-oxygen/hypoxic patches, high-baroclinic
20 mode vortices, subsurface coherent vortices, submesoscale eddies, low-
21 latitudes / tropical / near-equatorial

22 **Abstract**

23 Long-term time series of dissolved oxygen (DO) measurements from the upper 500 m depth
24 of the eastern tropical North Atlantic (ETNA), collected over a period of up to 15 years at three
25 different mooring sites, reveal recurring extreme low-oxygen events lasting for several weeks.
26 Similarly, observations from 15 individual meridional ship sections between 6°N and 12°N
27 along 23°W show DO concentrations far below 60 $\mu\text{mol kg}^{-1}$ in the upper 200 m - significantly
28 lower than the climatological values at this depth ($>80 \mu\text{mol kg}^{-1}$). Two-third of these low-
29 oxygen events could be related with high-baroclinic-mode vortices (HBVs) with their cores
30 located well below the mixed layer. Despite the energetic equatorial circulation and the
31 expected dominance of wave-like structures in the near-equatorial region, these HBVs persist
32 as relatively long-lived and coherent features. Based on moored and shipboard observations
33 from the ETNA, and supported by an eddy-resolving ocean-biogeochemistry model, we
34 characterize their dynamics and DO distribution. Observed water mass properties and model
35 analyses suggest that most HBVs originate from the eastern boundary and can persist for
36 more than six months. As they propagate westward into regions of higher potential vorticity
37 (PV), anticyclonic HBVs with low-PV cores remain more effectively isolated and have longer
38 lifespans compared to cyclonic HBVs with high-PV core. The vertical structure of the dominant
39 anticyclonic HBVs corresponds to baroclinic modes 4-10, with associated Rossby radii ranging
40 from 34 km to 13 km, respectively. This is consistent with observed eddy sizes and is well
41 below the corresponding 1st baroclinic Rossby radius of deformation ($> 100 \text{ km}$). Since none
42 of the observed HBVs exhibit a surface signature, a substantial portion of the near-equatorial
43 eddy field may remain undetected by satellites, yet still exert significant influence on local
44 ocean ecosystems and biogeochemical cycles.


45 **1. Introduction**

46 Dissolved oxygen (DO) concentration is a key component of marine ecosystems, shaping
47 biodiversity, biogeochemical cycles, and the survival of pelagic species (e.g. Deutsch et al.
48 2020). From long-term moored observations in the open Eastern Tropical North Atlantic
49 (ETNA) near the equator (latitudes $<12^{\circ}\text{N}$), we repeatedly observe short-lived extreme low-
50 oxygen events in the subsurface, well below the mixed layer. This DO variability is likely driven
51 by small-scale vortices, which is unexpected, as theory suggests that wave-like structures
52 should dominate at these latitudes (Eden, 2007). In this study, we combine moored time series,
53 repeated ship transects, and an eddy-resolving biogeochemical model to investigate these
54 small-scale processes below the mixed layer in the tropical Atlantic. This integrated approach
55 allows us to characterize their structure, variability, and strong influence on DO distribution,
56 with potential implications for marine ecosystems and biogeochemical cycles.

57 Extreme events of low DO in isolated cores of large coherent mesoscale eddies have become
58 a well-studied phenomenon of the Atlantic and Pacific eastern boundary upwelling systems
59 (e.g. Stramma et al. (2013); Karstensen et al. (2015); Schütte et al. (2016b); Frenger et al.
60 (2018)). A strong isolation and the longevity of the eddy for at least several months favor a DO
61 depleted eddy core. The DO depleted core results from (i) trapped water, which is transported
62 westward within the eddy core from a region of initially low DO, typically from the eastern
63 boundary (dynamic effect) and (ii) enhanced DO consumption (production effect) due to a
64 biologically high productive regime above the eddy core (McGillicuddy, 2016). The latter is
65 associated with high phytoplankton productivity, which leads to enhanced respiration and
66 reduction of DO beneath the mixed layer directly in the isolated core reaching down to about
67 200 m (Karstensen et al., 2017). Respiration rates in the eddy's interior (at around 80m depth)
68 were found to be substantially increased, with up to 3 to 5 times the values of ambient
69 conditions for the tropical North Atlantic (approximately $0.04\text{--}0.06 \mu\text{mol kg}^{-1} \text{d}^{-1}$), e.g.
70 subsurface intensified anticyclonic eddies (subsurface ACEs): $0.19 \pm 0.08 \mu\text{mol kg}^{-1} \text{d}^{-1}$ and
71 surface intensified cyclonic eddies (CEs): $0.10 \pm 0.12 \mu\text{mol kg}^{-1} \text{d}^{-1}$ (Schütte et al., 2016b). The
72 increased respiration within these isolated mesoscale eddies may result in anoxic conditions
73 ($< 5 \mu\text{mol kg}^{-1}$) in the otherwise hypoxic ($> 60 \mu\text{mol kg}^{-1}$) ETNA. Such eddies can locally
74 modulate biogeochemical processes and influence marine organisms (Fiedler et al., 2016;
75 Hauss et al., 2016; Löscher et al., 2015). Moreover, it is suggested that the increased DO
76 consumption within the isolated mesoscale eddy cores promote the formation and existence
77 of a broad-scale shallow DO minimum zone (sOMZ) at about 80 m (Schütte et al., 2016b), that
78 is most pronounced off the nutrient-rich Mauritanian upwelling system in the ETNA, located
79 between 15° and 23°N (Karstensen et al., 2008; Brandt et al., 2015) (Fig. 1). For such low DO
80 extremes to develop highly isolated eddies must form and propagate over a relatively long

81 period through regions of relatively low dynamical activity, e.g. as stated in the mentioned
82 literature north of 12°N in the eastern Atlantic and Pacific oceans.

83 The occurrence of DO depleted long-lived coherent eddies in near-equatorial waters (< 12°) is
84 not intuitive and contrasts theoretical considerations of equatorial dynamics, which suggest a
85 dominance of anisotropic wave like structures (Eden, 2007). However, several extreme low
86 DO events have been observed in the ETNA at latitudes between 6° and 12°N (Brandt et al.
87 2015), where Christiansen et al. (2018) associated one of these events (at 8°N, 23°W) with a
88 subsurface ACE. These eddies are expected to be less isolated and shorter-lived compared
89 to eddies poleward of these low latitudes. The first baroclinic Rossby radius of deformation
90 ($R_{d,1}$), which is a characteristic threshold size of a dynamical regime to be in a geostrophic
91 balance on meso- and larger scales, strongly increases towards the equator (Chelton et al.,
92 1998). Global eddy studies, mainly based on altimeter sea surface height data, show a strong
93 equatorward decrease of long-lived (> 35 days) eddies (Chaigneau et al., 2009; Chelton et al.,
94 2011). Less isolated eddies more readily entrain DO from surrounding waters, while short-lived
95 eddies do not persist long enough to substantially deplete DO in their cores. Both factors inhibit
96 the development of a low DO extreme within eddy cores. Additionally, the equatorial region -
97 compared to the eastern parts of the oceans north of 12°N - is highly dynamic. It features the
98 energetic equatorial zonal current system with associated instabilities as well as various wave
99 phenomena (e.g. Urbano et al. 2006; Pena-Izquierdo et al., 2015; Calil et al., 2023; Köhn et al.
100 2024). Nevertheless, our observations occasionally reveal DO values significantly below the
101 climatological value (Fig. 1).

102
103 Figure 1: Map of the eastern tropical North Atlantic. Shaded are minimum DO values in the

104 upper 200 m of the climatological DO distribution from the World Ocean Atlas 2023. The small
105 squared boxes indicate regions of 0.5 degree boxes for which at least one CTD station is
106 available. These boxes are colored with their minimum DO concentration in the upper 200m
107 (from multiple CTDs, if available) only if the minimum DO concentration is less than 60 $\mu\text{mol/kg}$.
108 Red circles suggest the occurrence of high-baroclinic mode vortices as analyzed in detail in
109 the manuscript. The yellow points mark the positions of the moorings analyzed in the
110 manuscript. The black contour indicates the first baroclinic Rossby radius of the deformation
111 (in km), calculated from the World Ocean Atlas data, following Chelton et al., (1998).

112

113 While mesoscale eddies of the first baroclinic mode can hardly exist at near-equatorial
114 latitudes, smaller-scale eddies might. In the following, we refer to these smaller eddies, which
115 still exhibit similar dynamics to mesoscale eddies - i.e., they are dominantly in geostrophic
116 balance – as high-baroclinic mode vortices (HBVs). They have radii below the first baroclinic
117 Rossby radius, $R_{d,1}$, and baroclinic modes larger than one (D'Asaro, 1988; McCoy et al., 2020,
118 McWilliams et al 1985, 2016). These HBVs, often referred to in the literature as subsurface or
119 submesoscale coherent vortices, are observed to have isolated cores and can therefore advect
120 tracers (Gula et al., 2019). Due to their small spatial scales and since they often appear at
121 subsurface depth, these eddies are not necessarily detectable from satellite observations
122 (McCoy et al., 2020). HBVs are not typically known to persist for extended durations in near-
123 equatorial waters. However, here we provide evidence that HBVs may serve as a potential
124 mechanism driving the observed low-oxygen extremes at these low latitudes. When linked to
125 biogeochemical anomalies, HBVs may play a role in shaping local biogeochemical conditions
126 and ecosystem variability. However, ocean models are often submesoscale “permitting” only,
127 in the sense that the model has sufficient resolution to begin representing submesoscale
128 processes but does not fully resolve them, particularly with increasing distance from the
129 equator. Understanding the frequency and behavior of HBVs is essential for understanding
130 tracer distributions, developing effective parameterizations and improving model accuracy.

131 In this study, we identify the characteristics, origin and temporal evolution of low-oxygen
132 extremes in the upper 200 m of the tropical Atlantic Ocean and discuss the role of HBVs in
133 driving these DO deficient zones. We use a comprehensive data set of in situ moored and
134 shipboard observations combined with an actively eddying ocean-biogeochemistry model
135 (respective data and methods introduced in *section 2* and *3*) in order to investigate the
136 frequency distribution and magnitude of these events (*section 4.1*). We show that the low-
137 oxygen events are by the majority related to subsurface intensified HBVs (*section 4.2*), both
138 anticyclonic and cyclonic. We derive the demography of these structures from an eddy
139 detection algorithm applied to in-situ observations (*section 4.3*) and a vertical baroclinic mode
140 analysis (*section 4.4*). The core water of the HBVs is analysed in *section 4.5* and the origin
141 and temporal evolution of the HBVs based in model simulations is shown in *section 4.6*. We

142 give a detailed discussion in *section 5* and provide a summary in *section 6*.

143

144 **2. Data**

145 Data from moored, shipboard and satellite observations, climatological data as well as the
146 output of an actively eddying ocean-biogeochemistry model from the tropical North Atlantic
147 were used within this study as described in the following.

148 **2.1. Moored observations**

149 Multi-year moored observations from three different locations 11°N/21°W; 11°N/23°W and
150 4°N/23°W were used in this manuscript (Fig. 1). The mooring at 11°N/21°W was equipped with
151 DO (AADI Aanderaa optodes of model types 3830 and 4330) and CTD (Conductivity,
152 temperature, depth) sensors (Sea-Bird SBE37 microcats) which were attached next to each
153 other on the mooring cable between 2012 to 2018. Eight of these optode/microcat
154 combinations were installed evenly distributed in the depth range between 100 to 800 m,
155 delivering multi-year time series of temperature, salinity and DO with a temporal resolution of
156 up to 5 min. At 800 m depth, an upward looking Acoustic Doppler Current Profiler (ADCP) was
157 installed to record velocity in the depth range between about 60 and 800 m. During the 2nd
158 deployment period (May 2014 to Sep 2015), no velocity observations were available due to a
159 failure of the ADCP. Before and after a deployment period, optodes and microcats were
160 calibrated against CTD-O measurements during CTD casts and onboard lab measurements
161 as described in Hahn et al. (2014) and Hahn et al. (2017). The correction against reference
162 measurements, thereby considering potential sensor drifts (Bittig et al., 2018), allowed best
163 data quality and yielded average root mean square calibration errors of 0.003°C, 0.006 and
164 3 µmol kg⁻¹ for temperature, salinity and DO, respectively. Only quality controlled data that
165 was flagged good was used for further analysis. ADCP measurements were quality controlled
166 against a percent good criterion (20% threshold) and were checked for plausibility and evident
167 outliers due to surface reflection. ADCP bin depths were corrected using a mean sound speed
168 profile following the approach by Shcherbina et al. (2005). This mooring is used to study
169 hydrographic, DO and velocity temporal variability (on daily to intraseasonal time scales)
170 related to low-oxygen extreme events. The other moorings at 11°N/23°W and 4°N/23°W are
171 part of the prediction and research moored array in the tropical Atlantic (PIRATA), which were
172 equipped with DO (AADI Aanderaa optodes of model types 3830 and 4330) sensors at 300 m
173 and 500 m depth from 2009 to 2024. At 11°N/23°W additionally a DO sensor at 80 m depth

174 was installed between 2017 to 2024. The DO sensors deliver hourly data and are calibrated
175 and processed in the same way as described above.

176 **2.2. Shipboard observations**

177 Hydrographic and DO data was obtained from CTD-O casts, that were carried out during a
178 large number of research cruises to the tropical North Atlantic between 2006 and 2022. In the
179 region 6°-12°N and 30°-18°W, 976 profiles were recorded during 24 cruises mainly covering
180 the upper 1300 m of the water column. Two independently working systems of temperature-
181 conductivity-pressure-oxygen sensors were used, that allowed to identify spurious sensor
182 data. Salinity and DO readings were calibrated against values from water samples, that were
183 taken during the majority of CTD-O profiles of each individual cruise and that were measured
184 onboard with salinometry and Winkler titration, respectively. For a single cruise, data accuracy
185 was generally better than 0.002°C, 0.002 and 2 µmol kg for temperature, salinity and DO,
186 respectively.

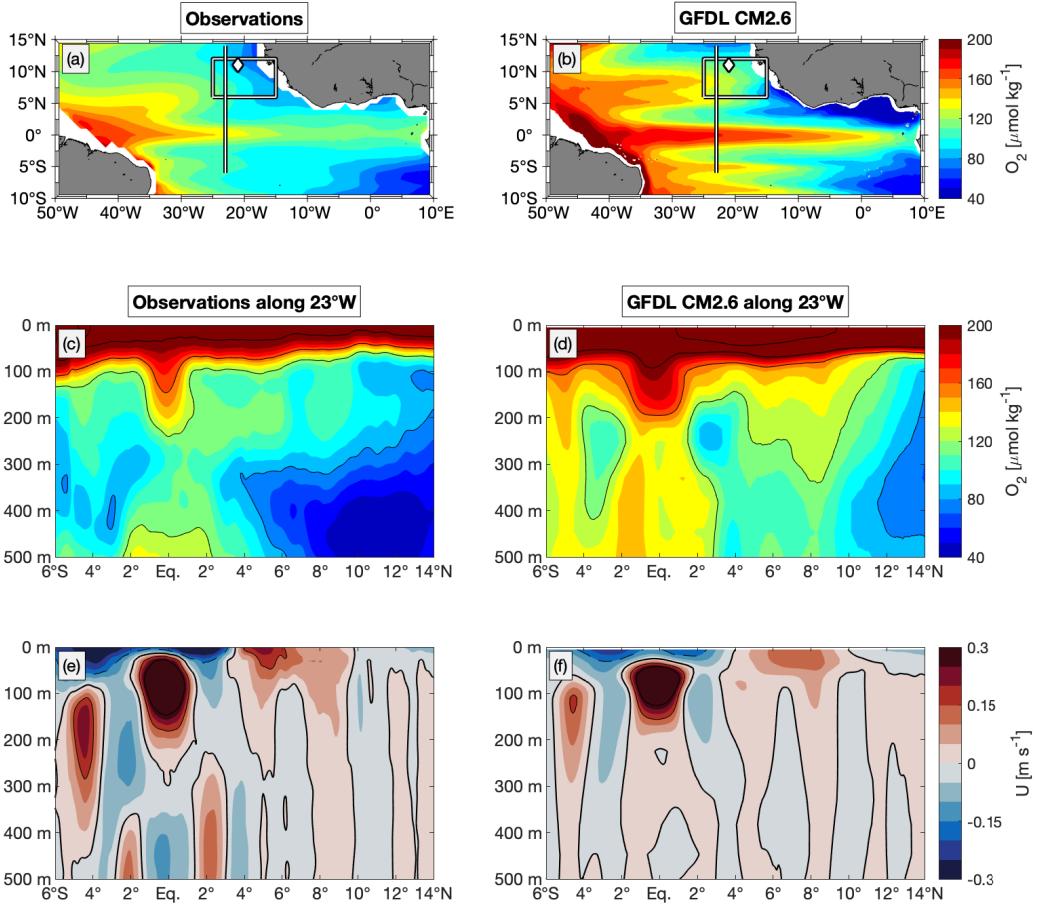
187 The majority of research cruises covered the 23°W meridian in the tropical North Atlantic. They
188 captured several low-oxygen extreme events in the latitude range between 6° and 12°N (Fig.
189 1). We made use of these CTD-O observations that were mostly carried out at a meridional
190 resolution of 0.5°, corresponding to 55 km, in order to investigate the spatial distribution of the
191 low oxygen extremes. Horizontal velocity data were additionally acquired continuously along
192 the cruise track with vessel-mounted Acoustic Doppler Current profilers (vmADCPs). The
193 typical vmADCP operating frequency was 75 kHz, where 1-hour averaged data has an
194 accuracy of better than 2-4 cm s⁻¹ (Fischer et al., 2003). During one cruise, a vmADCP system
195 with 150 kHz operating frequency was used and we expanded this data set with data from a
196 lowered ADCP (IADCP), that was attached to the CTD rosette and measured velocity profiles
197 at CTD-O cast positions. Single velocity profiles from IADCP had an accuracy of better than
198 5 cm s⁻¹ (Visbeck, 2002). The horizontal velocity observations from all 23°W ship sections
199 covered the depth range of the upper 300 m, the depth where the extreme low-oxygen occur
200 and thus coinciding with our target depth range.

201 For each 23°W ship section hydrography, DO and velocity were mapped onto a regular depth-
202 latitude grid (resolution of 10 m and 0.05°) using a Gaussian interpolation scheme with vertical
203 and horizontal influence (cutoff) radii of 10 m (20 m) and 0.05° (0.1°), respectively (for details
204 see Brandt et al. (2010). This is done to plot the average section along 23°W in order to
205 compare it with the model data and assess the model performance.

206 **2.3. Satellite observations**

207 Sea level anomaly (SLA) and surface geostrophic velocity derived from satellite altimetry
208 products were used in this study to identify the surface signatures of eddies. The multimission
209 Data Unification and Altimeter Combination System (DUACS) product in delayed time and

210 daily resolution with all satellite missions available at a given time is used. It has a spatial
211 resolution of 0.25° and is provided by Marine Copernicus (<https://doi.org/10.48670/moi-00148>).
212


213 **2.4. Climatological data**

214 Gridded climatological hydrography and DO from the World Ocean Atlas 2023 (WOA23)
215 (described e.g. in Reagan et al. 2024) was used as a reference data set throughout this study.
216 For more details see section 6 *Data availability*.

217 **2.5. Coupled ocean-biogeochemistry model**

218 We used the output of the GFDL climate model with an eddy-rich ocean, CM2.6 (Delworth et
219 al., 2012; Griffies et al., 2015) to further understand the origin and development of low-oxygen
220 extremes in the tropical ocean. CM2.6 has a nominal ocean resolution of 0.1 degrees and an
221 atmosphere with approximately 50 km resolution. For computational efficiency, marine
222 biogeochemistry is represented by the simple biogeochemical model MiniBLING (Galbraith et
223 al., 2015). MiniBLING was run with the three prognostic tracers dissolved inorganic carbon,
224 phosphate and DO. Organic carbon (biomass) is treated diagnostically and is not advected in
225 the model. Despite its simplicity, MiniBLING has been shown to perform comparably well to
226 more complex marine biogeochemical models in simulating marine biogeochemistry and its
227 sensitivity to climate (Galbraith et al., 2015). Moreover, the small number of tracers was not
228 just a limitation but a key factor that made it possible to run a simulation with a mesoscale-rich
229 ocean.

230 The results we show here stem from a simulation with preindustrial atmospheric carbon dioxide
231 levels that has been run for 200 years, with marine biogeochemistry coupled at year 48. The
232 model has been spun up from rest with initial conditions from WOA09 (Locarnini et al., 2010;
233 Antonov et al., 2010; Garcia et al., 2010a; Garcia et al., 2010b) and Global Ocean Data
234 Analysis Project (GLODAP) (Key et al., 2004). For more details on the model set up and a
235 general evaluation of the model we refer to Griffies et al. (2015) and Dufour et al. (2015). Here,
236 we used model output averaged over five-day intervals for the last 20 years of the simulation.
237 A brief evaluation of the model performance for the northern hemispheric Atlantic DO
238 conditions, the focus of our study, is given in the following.

239

240 Figure 2: Observation-model comparison of the minimum DO between 0 and 200 m of the
 241 time-average distribution from (a) the World Ocean Atlas 2023 and (b) from last 20 years of
 242 GFDL CM2.6 model. Latitude-depth section, 0-500 m along 23°W, of mean DO from (c) repeat
 243 ship sections and (d) last 20 years of GFDL CM2.6 model. (e) and (f) are similar to (c) and (d),
 244 but mean zonal velocity is shown. The box in (a) and (b) illustrates the area of interest in this
 245 study; the line denotes the 23°W section that is shown in subpanels (c) to (f). This section has
 246 been surveyed by 15 individual shipboard observations that are used in this study for the
 247 latitude range 6°N-12°N. Diamond marks the mooring position (11°N/21°W), where data used
 248 in this study were taken.

249 The distribution of the minimum DO between 0 and 200 m taken from the time averaged over
 250 the last 20 years of the GFDL CM2.6 model output (Fig. 2b), shows similar large-scale patterns
 251 as the same corresponding distribution taken from the World Ocean Atlas 2023 climatology
 252 (Fig. 2a): well oxygenated western boundary region, decreasing DO values toward east with
 253 off-equatorial OMZs on both sides of the equator showing minimal values at the eastern
 254 boundary. The simulated distribution has higher DO concentration at the western boundary
 255 and in the interior basin, and partly lower values at the eastern boundary compared to the
 256 climatological distribution from observations, which is particularly the case in the Gulf of Guinea
 257 region. In the interior basin, meridionally alternating bands of oxygen-poor and oxygen-rich
 258 water, that are associated with shallow east- and westward current bands, are pronounced in
 259 GFDL CM2.6, albeit more intensified.

260 In the ETNA, the average DO distribution along 23°W in GFDL CM2.6 (Fig. 2d) shows a
261 notable mismatch with observations (Fig. 2c). While observations from repeat ship sections
262 reveal two distinct OMZ layers - a shallow OMZ above 200 m and a deeper OMZ at 300 - 700
263 m - the model instead simulates only a single OMZ spanning 100 - 600 m. This bias is also
264 present in other coupled ocean circulation biogeochemistry models (e.g. Duteil et al., 2014)
265 and can be attributed, among other factors, to the limited representation of physical transport
266 processes such as submesoscale eddies, which locally enhance oxygen minima. Additionally,
267 simplified or parameterized remineralization and biological processes fail to reproduce rapid
268 upper-ocean oxygen consumption. These discrepancies highlight the importance of direct
269 observational studies, such as ours, which provide detailed insights into the shallow oxygen
270 minimum and its connection to low-oxygen events and high-baroclinic vortices, thereby
271 motivating the focus of this study.

272 Further differences appear south of the equator, where the observed OMZ is absent in the
273 model along 23°W. Instead, GFDL CM2.6 simulates lower DO levels between 2°- 4°N at
274 depths below 150 m compared to observations. The corresponding section of zonal velocity
275 (Fig. 2f) indicates that the model represents upper-ocean currents (above 200 m) well when
276 compared to observations (Fig. 2e). However, below 200 m in the equatorial region (5°S -5°N),
277 zonal currents are considerably weaker and partly misrepresented. North of 5°N, the velocity
278 structure is generally better captured.

279 Despite differences in spatial details and magnitudes the basic features of the DO and velocity
280 distributions are in the upper 200 m of the ETNA, and the GFDL CM2.6 model provides a
281 robust physical and biogeochemical background state to study the role of eddies in driving
282 local DO deficient zones. With a nominal ocean resolution of 0.1°, CM2.6 is mesoscale eddy-
283 resolving and submesoscale-permitting at low latitudes, capturing only the larger
284 submesoscale vortices. The local Rossby radius of deformation (60–150 km; Fig. 1) in the area
285 is resolved, but smaller eddies are near the lower limit of resolvable scales. However, the
286 model has been shown to simulate low-oxygen mesoscale eddies at latitudes poleward of
287 about 12° latitude (Frenger et al., 2018) and provides as a useful framework in this study to
288 complement the observational analysis. Here, we use the last 20 years of this model run to
289 study low-oxygen extreme events in the ETNA equatorward of 12°N.

290 3. Methods

291 Different diagnostics have been applied in this study, that allowed us to associate low-oxygen
292 features with HBVs and to analyze their origin and temporal evolution. The concept of vertical
293 baroclinic modes (*section 3.1*) was used to characterize the vertical structure of HBVs, to

294 identify the dominant vertical modes, and their associated Rossby radius of deformation and
295 propagation speed. In section 3.2, we briefly present the calculation of PV, which is used as a
296 conservative tracer to track and to identify the isolation of different water masses. In section
297 3.3, we describe the different approaches for eddy identification from shipboard observations
298 and in the GFDL CM2.6 model.

299 **3.1. Vertical baroclinic modes and Rossby radius of deformation**

300 A powerful way to describe linear wave dynamics in the ocean is the decomposition into vertical
301 baroclinic modes (Philander, 1978). Each baroclinic mode is associated with a specific gravity
302 wave speed and a corresponding Rossby radius of deformation, which defines its
303 characteristic horizontal length scale.

304 **3.1.1. Baroclinic mode decomposition**

305 The concept of baroclinic modes is based on the linearized hydrostatic equations of motion,
306 which can be separated into a horizontal and a vertical component. Assuming a motionless
307 background state and a flat-bottomed ocean, the vertical structures are given by solving the
308 eigenvalue problems (Gill, 1982):

$$\frac{d^2\Psi_n(z)}{dz^2} + \frac{N^2(z)}{c_n^2} \Psi_n(z) = 0 \quad (1)$$

309 where $\Psi_n(z)$ describes the vertical structures of isopycnal displacement ξ or vertical velocity
310 w and z is the vertical coordinate. $N(z)$ is the vertical profile of the Brunt-Väisälä frequency
311 and c_n the gravity wave speed for mode $n \in \mathbb{N}$. For the eigenvalue problem (1), we use
312 boundary conditions with a free surface and a flat bottom (Gill, 1982), which are given as
313

$$\Psi_n = \frac{c_n^2}{g} \frac{d\Psi_n}{dz}, \text{ at } z = 0 \quad \text{and} \quad \Psi_n = 0, \text{ at } z = -H \quad (2)$$

314 where H is the ocean depth and g the gravitational acceleration. For a continuously stratified
315 ocean, the number of solutions depends on the vertical resolution of the data used. Any
316 perturbances can be described as a superposition of orthogonal vertical baroclinic modes ($n =$
317 1, 2, 3, ...). Amplitudes of vertical structure functions are normalized such that

$$\int_{-H}^0 \Psi_n \Psi_m dz = \delta_{nm} H$$

319 where δ_{nm} is the Kronecker delta and n, m the modes. The gravity wave speed is related to
 320 the Rossby radius of deformation, that can be calculated for the off-equatorial regions
 321 (poleward of 5°S and 5°N) as

322

$$R_{d,n} = \frac{c_n}{|f|} \quad (3)$$

323 (Gill, 1982 or Chelton, 1998), where $R_{d,n}$ is the Rossby radius of deformation for the n -th
 324 vertical baroclinic mode, and f is the Coriolis parameter.

325 **3.1.2. Calculation of vertical baroclinic modes and modal decomposition**

326 The main goal is to decompose any disturbed state into the set of orthogonal baroclinic modes
 327 that solve (1). Each hydrographic profile from an individual CTD-O profile can be considered
 328 as a perturbation from the mean state. The mean state distribution was derived from the 3-D
 329 climatological hydrographic field (cf. Chelton et al. (1998)) that is given by the World Ocean
 330 Atlas (section 2.4). Given the corresponding density profile, we calculated the isopycnal
 331 displacement $\xi(z)$ by

$$\xi(z) = \frac{\rho'(z) \cdot g}{\rho_0 \cdot N^2} \quad (4)$$

332 with $\rho'(z) = \rho(z) - \rho_{ref}(z)$, $\rho_0 = 1025 \text{ kg/m}^3$ a constant reference density and ρ_{ref} being the
 333 undisturbed profile of potential density (here taken as the climatological density profile from
 334 the World Ocean Atlas – see also Vic et al. 2021 for more details on the method used). The
 335 isopycnal displacement of the disturbed state can be described as a superposition of the
 336 orthogonal set of vertical baroclinic modes for displacement, i.e.

$$\xi(z) = \sum_{n=1}^K x_n \Psi_n(z) \quad (5)$$

337 Here, $K \rightarrow \infty$ expresses the exact solution with an infinite number of vertical modes for a
 338 continuously stratified ocean. The expansion coefficients x_n are the modal amplitudes. The
 339 modal amplitudes are obtained by projecting the observed fields onto the structure functions

340 computed from the World Ocean Atlas. The projection is preferred over resolving a least-
 341 square problem, which sometimes leads to unrealistic modal amplitudes into the high modes
 342 (Vic et al. 2023). The modal amplitudes x_n are calculated via a scalar product:

$$343 \quad x_n = \int_{-980}^{-30} \psi_n(z) \cdot \zeta_{CTD}(z) dz \quad (6)$$

344 These amplitudes are then normalized by dividing with $\int_{-980}^{-30} \psi_n(z)^2 dz$. This analysis is
 345 restricted to the depth range from 30 m to 980 m in order to exclude the surface mixed layer
 346 while retaining the majority of available profiles along 23°W. The barotropic mode assumed to
 347 be zero. A vertical resolution of 10 m is used, with both the CTD profiles and World Ocean
 348 Atlas data interpolated accordingly. After computing the contribution of one mode, it is
 349 subtracted from the displacement profile: $\zeta'(z) = \zeta(z) - x_n \Psi_n(z)$ and the procedure is
 350 repeated for the next mode. This recursive removal reduces cross-talk between modes caused
 351 by the limited vertical resolution and incomplete depth coverage. Since the order of mode
 352 extraction may influence the result, the decomposition is repeated $M = 100$ times with random
 353 permutations of modes $n = 1$ to $n = 20$, and the final modal amplitudes are calculated as the
 354 mean over all realizations, with associated standard errors.

355 **3.2. Potential vorticity and Rossby number**

356 Subsurface eddies exhibit signatures of high or low potential vorticity (PV), depending on their
 357 stratification anomaly and rotation direction (D'Asaro, 1988; McWilliams, 1985; Molemaker et
 358 al., 2015). In the absence of mixing, PV is a conserved quantity and serves as an effective
 359 tracer to differentiate water masses and track eddy pathways.

360 We refer to Ertels PV (Gill, 1982), being one of the most complete formulations for PV
 361 conservation, and take its vertical approximation (see e.g. Thomsen et al. (2016)), which is
 362 given by

$$363 \quad Q = (\zeta_z + f) \cdot N^2 \quad (7)$$

363 where $\zeta_z = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$ is the vertical component of the relative vorticity and f is the Coriolis
 364 parameter. The term $\zeta_z + f$ represents the absolute vorticity. The approximation given by (7)
 365 is valid in case of nearly horizontally orientated isopycnal surfaces (Thomsen et al. 2016).
 366 Counter-clockwise and clockwise rotating eddies correspond to positive and negative relative
 367 vorticity, respectively. In the northern hemisphere, anticyclonic eddies rotate clockwise and

368 have negative relative vorticity (vice versa for the southern hemisphere, which is not further
369 considered throughout this study).

370 In the case of geostrophic balance, the Rossby number

$$Ro = \frac{U}{Lf} = \left| \frac{\zeta_z}{f} \right| \quad (8)$$

371 where U is characteristic velocity and L is characteristic length scale, is smaller than one and
372 PV is always positive. PV can be reduced by either a reduction of N^2 (weakened stratification)
373 or by a gain of anticyclonic relative vorticity (D'Asaro, 1988). The explanation also applies vice
374 versa, i.e. PV can be increased by a strengthening in stratification or a gain of cyclonic relative
375 vorticity. The Rossby number becomes larger than one for submesoscale dynamics in the
376 ageostrophic range.

377 For the propagation speeds we followed an approach by Nof (1981) and Rubino et al. (2009),
378 who formulated the westward translation of isolated high baroclinic eddies on a plane, which
379 is given as a function of the n -th baroclinic Rossby radius of deformation and the Rossby
380 number:

$$C_n = -\frac{1}{3} \beta R_{d,n}^2 (1 - Ro)^{-1} \quad (9)$$

381 with β being the meridional derivative of the Coriolis parameter.

382 **3.3. Eddy identification algorithms**

383 **3.3.1. Eddy identification from shipboard observations**

384 Horizontal velocity data from the vmADCP system (see *section 2.1*) is used to detect eddies
385 along the 23°W meridian between 6°N and 12°N. This methodology is based on an idealized
386 eddy solution, known as Rankine vortex characterized by solid-body rotation in its inner core,
387 i.e., a linear increase of velocity with increasing distance from the eddy center. We do so
388 through the conversion from Cartesian into cylindrical coordinates in areas that are suspected
389 to cross eddies. Every point in the horizontal plane is defined by the radial distance, r , to the
390 origin (eddy center) and the azimuthal angle, θ , i.e.:

391 $v_r = u \cos \theta + v \sin \theta \quad (10)$

392 $v_\theta = -u \sin \theta + v \cos \theta$ (11)

393 where v_r and v_θ are the radial and azimuthal velocities, respectively. Following Castelao and
 394 Johns (2011) and Castelao et al. (2013) the optimal eddy center is found by minimizing v_r
 395 (maximizing v_θ) via a non-linear least-squares Gauss-Newton algorithm.

396 $|v| = \sqrt{u^2 + v^2} = \sqrt{-u \sin \theta + v \cos \theta} + \epsilon$ (12)

397 $\theta = \arctan(y_r / x_r)$ (13)

398 $y_r = y - y_c$ (14)

399 $x_r = x - x_c$, (15)

400 where (x, y) are the position vectors of the velocity samples, and (x_c, y_c) the eddy center
 401 location. The residual ϵ represents the radial velocity to be minimized. This methodology
 402 assumes a radially axisymmetric and non-translating vortex. Identifying the optimal eddy
 403 center allows us to analyze the circular (azimuthal) velocity around it. From this, we determine
 404 the eddy radius as the distance from the center where this velocity reaches its maximum -
 405 effectively separating the inner core of the eddy from its outer ring.

406 **3.3.2. Eddy identification in GFDL CM2.6 model**

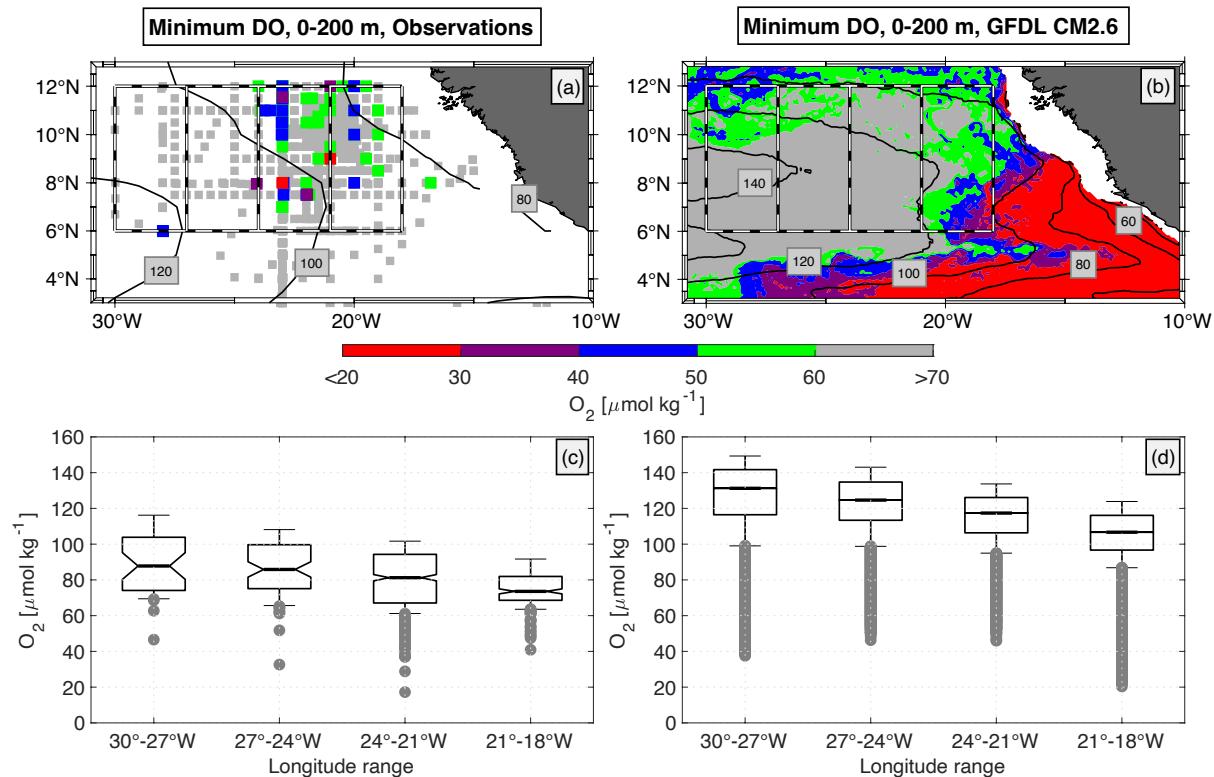
407 From the GFDL CM2.6 model, we analyzed the position and trajectory of an individual
 408 simulated eddy that was representative in terms of its westward propagation in low latitude
 409 waters and its associated DO minimum. The horizontal eddy center was determined for each
 410 5-day model output and identified by locating the maximum of the streamfunction within a
 411 predefined $3^\circ \times 3^\circ$ longitude-latitude box centered on the eddy on a defined isopycnal surface.
 412 Once the position was found, we searched for the DO minimum around the eddy center within
 413 a $0.8^\circ \times 0.8^\circ$ horizontal box. On average, the deviation between the two positions was about
 414 20 km. Additionally, for each time step, we extracted the following variables: DO and salinity
 415 on isopycnal surface 26.5 kg m^{-3} , PV on the isopycnal surface 26.6 kg m^{-3} (corresponding to
 416 the isopycnal layer of minimum PV, see Fig. 4m), phosphate, and biomass integrated over the
 417 top 100 m, and particulate organic phosphorus at 100 m (to identify the downward flux of
 418 organic matter to the eddy core). To assess eddy anomalies, we compared these variables to
 419 their corresponding values outside the eddy (average over the area 1° to 3° longitude/latitude
 420 away from the eddy core), and also calculated the 20-year model mean at the eddy core
 421 position.


422 Around the eddy position, we identified the streamline with the strongest swirl velocity and
423 calculated the eddy radius $R = \frac{A}{2\pi i}$, assuming an isotropic circular eddy, where A is the
424 circumferences (length of contour). The swirl velocity U was calculated as the average of the
425 absolute value of the horizontal velocity along this contour. To estimate the propagation speed
426 (c), we tracked the eddy core positions at each time step, defined by the streamfunction
427 minimum. The speed was calculated as the horizontal distance between two successive eddy
428 centers divided by the time interval between them. To assess the isolative character of the
429 eddy, we calculated the isolation parameter U/c , where values greater than 1 indicate isolation
430 of the eddy core water from surrounding water masses.

431 **4. Results**

432 **4.1. Near-equatorial low-oxygen events: Frequency, magnitude and duration**

433 In all depth of the long-term DO time series from moored observations at 4°N and 11°N (both
434 at 23°W), recurring dips in DO levels are observed that fall significantly below the climatological
435 mean (Fig. 3 a, b or Fig. 1sup). A low-DO extreme event is defined based on the interquartile
436 range (IQR) of the respective time series, with events identified as values below the lower
437 quartile minus $1.5 \times \text{IQR}$. These events typically last from several days to a few weeks and
438 stand out clearly in the time series. They are often accompanied by a temperature increase
439 (Fig. 3c, d). On average, around two such events per year are observed at 4°N at both 300 m
440 and 500 m depth. At 11°N, about one event per year occurs at these depths, and at 80 m only
441 one strong event was detected within seven years. A similar pattern is found in the moored
442 time series from 11°N/21°W, where ten low-oxygen events ($40\text{--}60 \mu\text{mol kg}^{-1}$) were recorded
443 between 2012 and 2018 in the upper 200 m. Each event lasted about 3 - 4 weeks.


444 As expected, both the DO variability and amplitude of DO anomalies are generally greater at
445 shallower depths (e.g., 80 m), due to more intense near-surface dynamics and elevated
446 background DO concentrations. Therefore the largest DO drops were typically observed at 80
447 - 100 m. In terms of spatial variability, we see that the DO variability within the core of the deep
448 oxygen minimum zone (OMZ) at 11°N is generally lower than at 4°N.

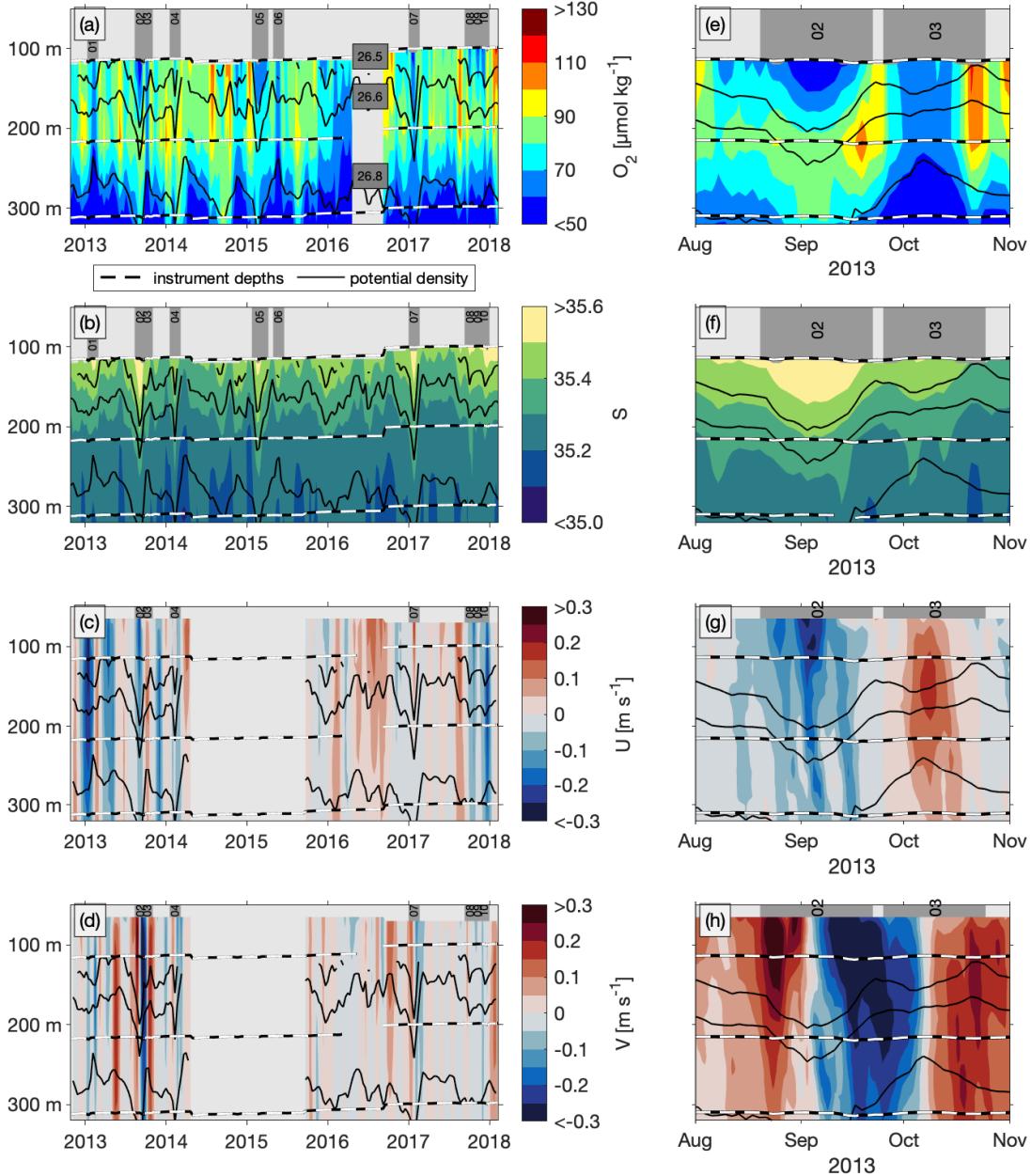
449
450 Figure 3: Time series of observed DO at (a) 80m depth at 23°W, 11°N and 500 m depth at
451 23°W, 4°N shown in black. The blue color represent the lowest 10th percentile of the time
452 series data. The grey boxes mark the timespan (date on the x-axis) which is shown in (c) and
453 (d), where the temperature is overlaid in red.

454 In addition to the moored DO observations, there are multiple years of shipboard
455 measurements in the region. From all these shipboard observations, low-DO extremes are
456 identified by searching for the minimum DO concentration in the upper 200 m of every single
457 CTD-O profile. A low-DO extreme event was defined when DO was below a threshold of
458 60 $\mu\text{mol kg}^{-1}$, which represents the 10-percentile of all DO observations (74 of 976) in the area
459 6°-12°N, 30°-18°W (Fig. 4a and 4c). This threshold is more than 20 $\mu\text{mol kg}^{-1}$ below the
460 climatological DO concentration in the ETNA (Fig. 2a and 2b). Considering the absolute DO
461 concentration allowed us to derive a distribution of low-oxygen extremes, which is not masked
462 by the mean distribution. Lowest DO concentrations below 40 $\mu\text{mol kg}^{-1}$ (7 of 976 CTD-O
463 profiles) in the near equatorial region (south of 12°N) remarkably occurred not east of 21°W,
464 where profiles are located within a distance of 8° to the African coast, but in the “open-ocean”
465 region west of it (24°-21°W) (Fig. 4a). Further to the west (>24°W), lowest DO concentrations
466 were found again just above 40 $\mu\text{mol kg}^{-1}$. This is in contrast to the more coastal upwelling
467 region north of 12°N, where very low-DO extremes can also be observed near the coast (see
468 Fig. 1 or Schütte et al. 2016b). In order to scale for the different number of CTD-O profiles in
469 the four regions shown in Fig. 4a (5%, 9%, 61% and 25% of the profiles for the boxes 30°-
470 27°W, 27°-24°W, 24°-21°W, 21°-18°W), we estimated the relative distribution and calculated
471 the 10-percentile threshold in every box (Fig. 4c). This threshold is lowest in the open ocean
472 (24°-21°W), whereas the mean DO distribution is increasing from the eastern boundary
473 towards west. This counterintuitive distribution of low-oxygen extremes, which is against the

474 mean DO gradient, suggests that DO depleted water generally cannot be purely advected from
 475 a remote region at the eastern boundary, that is poor in DO. Locally enhanced biological
 476 activity associated with enhanced DO consumption must play a role as well.

477
 478 Figure 4: (a) Spatial distribution of DO profiles acquired from shipboard CTD-O observations
 479 in the tropical North Atlantic. Colored / gray dots denote DO profiles with a minimum DO
 480 concentration of lower / higher than 60 $\mu\text{mol kg}^{-1}$ in the depth range 0-200 m (red: < 30
 481 $\mu\text{mol kg}^{-1}$, violet: 30-40 $\mu\text{mol kg}^{-1}$, blue: < 40-50 $\mu\text{mol kg}^{-1}$, green: < 50-60 $\mu\text{mol kg}^{-1}$). (b)
 482 Horizontal distribution of DO minimum obtained in the depth range 0-200 m and from the last
 483 20 years of GFDL CM2.6 model run. Black contour lines in (a) and (b) show 0-200 m minimum
 484 of mean DO distribution (similar to filled contours in Fig. 2a and 2b). Dashed boxes denote
 485 different regions of interest for boxplots shown in (c) and (d). (c) Boxplots for 0-200 m minimum
 486 of DO profiles, that are shown for four different regions by the dashed boxes in (a). Thick line
 487 in each boxplot denotes median and notches show 95% confidence interval. Upper and lower
 488 whiskers denote 10% and 90% quantiles. Grey dots below the lower whiskers show 10%
 489 lowest DO events. (d) Similar to (c), but boxplots shown for 0-200 m minimum of DO profiles
 490 that were taken from the last 20 years of GFDL CM2.6 model run

491 The two events with the lowest dissolved oxygen (DO) concentrations were measured as 17
 492 $\mu\text{mol kg}^{-1}$ by a CTD at 60 m depth at 8°N/23°W, while concentrations even below 5 $\mu\text{mol kg}^{-1}$
 493 were recorded by a mooring at 80 m depth at 11°N/23°W. These two low-oxygen extremes
 494 were well below the climatological average minimum DO concentration for the whole ETNA
 495 (40 $\mu\text{mol kg}^{-1}$ in the deep OMZ, Brandt et al. (2015)). We shall note, that no CTD-O profiles


496 were available in this data set for the eastern boundary region within about 2° longitude off the
497 African coast.

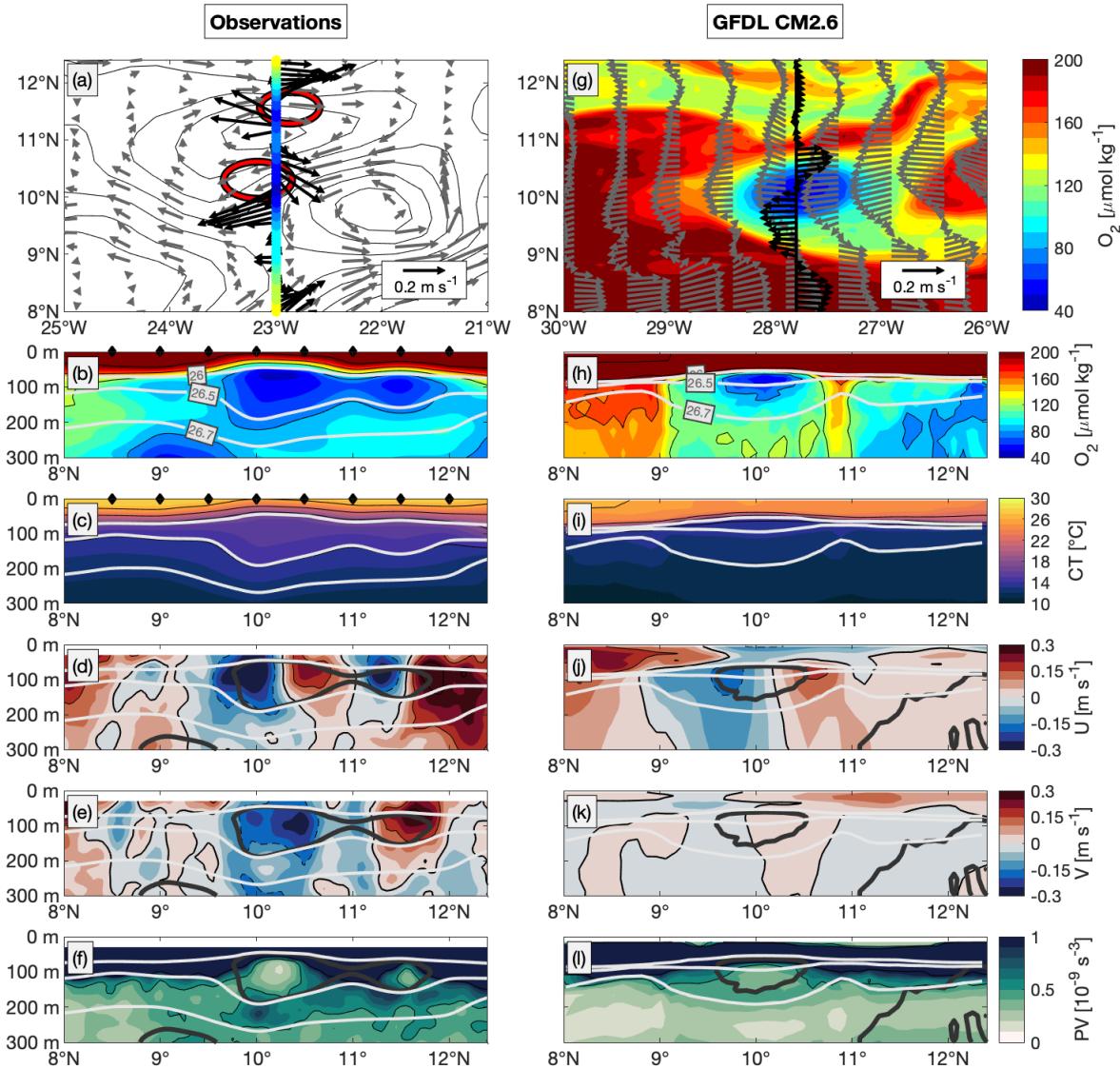
498 **4.2 Association of low-oxygen events with subsurface high-baroclinic mode**
499 **vortices**

500 For the majority of the ship based data and for the mooring at 11°N/21°W additional
501 observations of hydrography, zonal and meridional velocity are available indicating the
502 passage of anticyclonically and cyclonically rotating vortices associated to the low-oxygen
503 events. At the mooring position the low-oxygen events #01, #02, #03, #04 and #07 were most
504 likely related to the passage of subsurface intensified vortices, whereof events #02, #04 and
505 #07 were associated with anticyclonic vortices and events #01 and #03 with cyclonic vortices
506 (Fig. 5). Note, that we explicitly refer here to the notation *vortex*, since we could not derive the
507 vortices' radii in order to differentiate between mesoscale and submesoscale. For the
508 anticyclonic vortices, meridional velocity was observed with maximum northward and
509 southward flow taking place at the beginning and the end of each low-DO period. Zero crossing
510 was observed in between at around the time, when DO was at its minimum (Fig. 5e to 5h).
511 Corresponding time series of potential density derived from hydrographic observations,
512 conducted next to the DO sensors, indicated a depression of isopycnal surfaces in the depth
513 range below 100 m. Time series of velocity and potential density agree well with the dynamical
514 understanding and passage of westward propagating eddies (van Leeuwen, 2007) through the
515 mooring site. Zonal velocity was either small or showed maximum flow during time periods of
516 minimum DO, depending whether the eddy has crossed the mooring site either with its core or
517 with one of its meridional flanks. Zonal velocity vanished at the beginning and the end of each
518 of the three events.

519 During events #01 and #03, that are associated with the passage of subsurface intensified
520 cyclonic vortices, we found a depression of isopycnal surfaces above 150 m and a heave of
521 isopycnal surfaces below ((cf. McGillicuddy (2015), denoted as eddies of type Thinny). This is
522 associated with a maximum in stratification at about 150 m depth. The time series of zonal and
523 meridional velocity, respectively, showed maximum values at a similar depth with a transition
524 from westward to eastward (event #01) and southward to northward (event #03) velocities
525 during the time of maximum stratification. In contrast to the anticyclonic vortex events (#02,
526 #04 and #07), the DO minima during the passage of the two cyclonic vortex events (#01 and
527 #03) were of similar intensity at 100 and 200 m depth, with no separation from the deep OMZ
528 at 300 m by an intermediate DO maximum. Though, during both events the minimum DO at
529 100 m was well below the average DO concentration that was observed for time periods

530 without any vortex event. We shall explicitly note, that the characteristics for zonal and
 531 meridional velocity during event #01 were swapped compared to the other eddy events (#02,
 532 #03, #04 and #07). We can only speculate whether this cyclonic vortex has crossed the
 533 mooring site in a more meridionally directed pathway.

534
 535 Figure 5: Time series of observed (a) DO, (b) salinity, (c) eastward and (d) northward velocity
 536 from moored observations at 11°N/21°W in the upper 300 m as a 10-day average (color
 537 shading). Black lines denote depth of potential density surfaces 26.5, 26.6 and 26.8 kg m⁻³.
 538 Black-white dashed lines denote depths of DO sensors (in (a), (c) and (d)) and salinity sensors
 539 (in (b)). Gray bars with numbers 01-10 in the top of these panels denote time periods of low-
 540 DO events (#01 to #10). Note, that no velocity observations are available for low-DO events
 541 #05 and #06. Panels (e)-(h) show corresponding 2-day averaged time series for the 90-day
 542 time period around low-DO events #02 and #03.


543 The vertical structure of these vortices could not be identified for the near surface layer and
544 the deep ocean, since moored hydrographic and velocity observations were only available
545 between 100 m (60 m for velocity) and 800 m depth. This made it challenging to distinguish
546 among surface intensified and subsurface intensified (but at shallow depth) vortices. The most
547 likely subsurface intensified vortex was associated with event #02, showing extreme velocity
548 (both zonal and meridional) slightly below the shallowest depth of available observation
549 accompanied by an oxygen minimum of $39 \mu\text{mol kg}^{-1}$. Notably, none of these vortices exhibited
550 a clear surface signature in satellite data that could be unambiguously associated with the
551 subsurface features

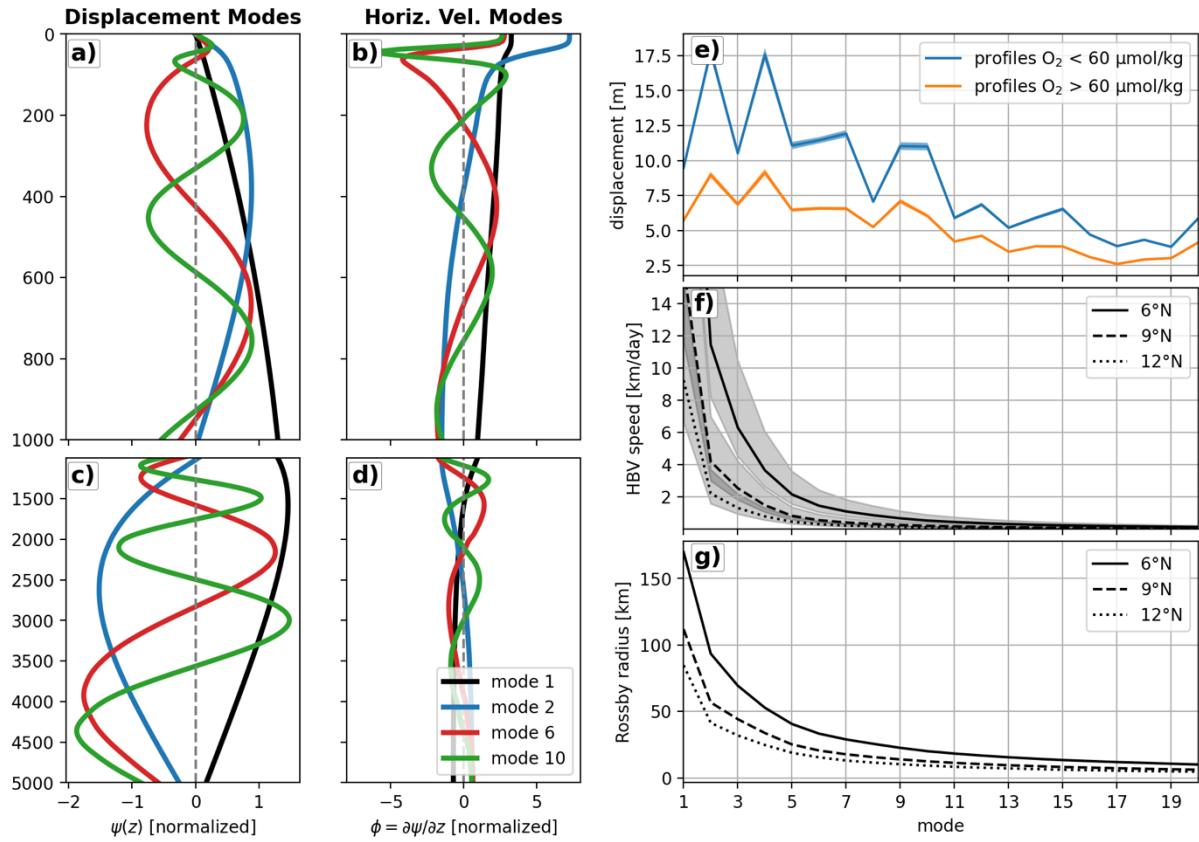
552 **4.3 Horizontal extent of the low-oxygen high-baroclinic mode vortices**

553 The ship-based data, which cover the region spatially, are significantly better suited than the
554 stationary moored data for assessing the spatial extent of the HBVs. Repeated meridional ship
555 sections between $6\text{--}12^\circ\text{N}$ along 23°W , available over a distance of at least 300 km, captured
556 15 events with DO concentrations well below $60 \mu\text{mol kg}^{-1}$ in the upper 200 m (Table 1, Fig.
557 6,). All DO minima were found directly below the shallow oxycline at depths between 45 and
558 90 m (corresponding to surfaces of potential density between $\sigma_\theta = 26.2$ and 26.4 kg m^{-3}). The
559 meridional resolution of CTD-O measurements did not allow for a proper identification of the
560 meridional core position of the low-DO extremes, but their extent was found with roughly 1° in
561 latitude in maximum. The low-DO cores vertically extended to the isopycnal $\sigma_\theta = 26.5 \text{ kg m}^{-3}$
562 (150 m depth) and were separated from the deep OMZ by an intermediate DO maximum
563 located at about $\sigma_\theta = 26.7 \text{ kg m}^{-3}$ (between 200 and 300 m), which rules out a simple vertical
564 displacement of the vertical gradient.

565 We analyzed the distribution of zonal and meridional velocity at the depth of the DO minimum
566 using an eddy identification algorithm as described in *section 3.3.1*. Strikingly, 66% (10 of 15)
567 of the low-DO events could be related to HBVs, where radii were identified between 20 and 45
568 km (average 34 km) (Table 1 Fig. 6b and 6d). The radii are substantially smaller than the typical
569 mesoscale (first baroclinic Rossby radius of deformation) at these latitudes being at the order
570 of 100 km or more. Instead, these eddies have a confined baroclinic structure, which is
571 associated to higher baroclinic modes and corresponding smaller Rossby radii of deformation
572 as is shown in detail in *section 4.4*. The HBVs' horizontal core positions are estimated from the
573 current velocities and closely match the meridional position of the low-oxygen extremes (cf. 3rd
574 and 6th column for bold marked events in Table 1; Fig. 6a and 6b). Note, that the derived HBVs'
575 zonal core position range between 23.3°W and 22.9°W , whereas for the low-oxygen extremes,
576 only the meridional position along the 23°W section can be identified. Notable is the

577 simultaneous occurrence of two HBVs observed during one cruise in 2009 at positions
 578 10.3°N/23.2°W and 11.6°N/22.9°W (Fig. 6a to 6f). These two HBVs were meridionally cut
 579 through their eastern and western flank, respectively, and were both observed with DO
 580 concentrations well below 50 $\mu\text{mol kg}^{-1}$ (Fig. 6a and 6b).

581
 582 Figure 6: (a) Current velocity (black arrows) and DO (colored dots) at 80 m depth along 23°W
 583 and between 8° and 12°N obtained from along-track shipboard ADCP observations and
 584 CTD-O observations between 23-Jul-2009 and 25-Jul-2009 (cruise Ron Brown 2009, see
 585 Table 1). Grey arrows show geostrophic velocities and black contours show sea level
 586 anomalies from satellite altimetry data on 24-Jul-2009. Red circles denote positions and extent
 587 of the two eddies, identified and reconstructed from shipboard ADCP observations at 80 m.
 588 Latitude-depth sections of (b) DO, (c) conservative temperature, (d) zonal velocity, (e)
 589 meridional velocity and (f) PV between 8° and 12°N obtained from CTD-O observations along
 590 23°W (same period to (a)). Black diamonds at the top of panels (b) and (c) denote actual
 591 latitudes of CTD-O profiles. Thin gray lines in panels (b) to (f) denote surfaces of potential
 592 density. In panels (d)-(e), solid black and dashed black lines denote 0.15 m s⁻¹ velocity
 593 intervals. Thick dark gray lines in panels (d)-(f) denote DO contours of 70 $\mu\text{mol kg}^{-1}$. (g)-(l) are
 594 analog to (a)-(f), but taken from GFDL CM2.6 model simulation for model date 23-Mar-0197.
 595 Gray arrows in (g) denote surface velocity. Black arrows denote current velocity and colored


596 contours show DO distribution both at 77 m depth along $\sim 28^\circ\text{W}$. (h) to (l) show respective
597 latitude-depth sections along $\sim 28^\circ\text{W}$ for the same model date. Thick dark gray lines in panels
598 (j)-(l) denote DO contours of $90 \mu\text{mol kg}^{-1}$.

599 Both HBVs were identified to be anticyclonic and subsurface intensified, as shown by the
600 anomalously weak stratification along 23°W at subsurface depth, which is indicated by the
601 thickening of isothermal and isopycnal layers at the depth range of the DO minimum core (Fig.
602 6c). The vertical extent of the HBVs (characterized by displaced isopycnal surfaces or zonal
603 velocity) reached at least down to about 250 m and covered the vertical extent of the low-DO
604 cores. The estimated radii are 36 and 31 km and thus considerably smaller than the first
605 baroclinic Rossby radius of around 90 km at these latitudes. For none of the 10 anticyclonic
606 HBVs, we could identify any anticyclonic signature from satellite altimetry observations (Fig.
607 6a). One reason might be that the resolution of gridded SLA from conventional altimetry
608 (in time and space) is not sufficient to resolve such small-scale features. Another reason could
609 be the fact that the eddies are strongly confined to the thermocline (below 30 – 50 m) and often
610 do not have a surface signature.

611 **4.4 Vertical structure of low-oxygen high-baroclinic mode vortices**

612 The decomposition of a disturbed density profile into vertical baroclinic modes gives evidence
613 about both the theoretical radius (Rossby radius) and propagation speed for this disturbed
614 state (see *section 3.1*). Here, we did a vertical baroclinic mode analysis for the meridional
615 section along 23°W between 6 and 12°N , which allowed us a direct comparison against the
616 spatially resolved low-DO HBVs observed during the respective ship sections. The vertical
617 structure of the first 20 baroclinic modes was obtained from the climatological hydrographic
618 distribution (Fig. 7a to 7d). For all individual CTD-O profiles, we derived displacement profiles,
619 ξ , and calculated vertical mode amplitudes x_n via modal decomposition (as described in
620 *section 3.1*). We then clustered all x_n (i) related to a low-DO event (Table 1) and (ii) not related
621 to a low-DO event (i.e. all other profiles along 23°W between 6 and 12°N), and calculated an
622 average amplitude distribution (Figure 7e). For low-DO events, we found substantially
623 enhanced amplitudes at all modes, but particularly at mode 2, 4, 7, 9 and 10 compared to the
624 average amplitude distribution that is related to no low-DO events (Fig. 7e). These higher
625 baroclinic modes $n > 4$ (exemplarily shown for mode 6 and 10 for $9^\circ\text{N}/23^\circ\text{W}$ in Fig. 7a and 7c
626 for vertical displacement and pressure/horizontal velocity, respectively) have zero crossings in
627 the upper few hundred meters, that are of similar vertical length scale compared to the vertical
628 extent of low-DO HBVs (near-surface to 250 m, see *section 4.2.1*). The lower baroclinic modes
629 (e.g. mode 2) have a much larger vertical length scale and are not capable of describing the
630 vertical structure that is related to low-DO HBVs. The corresponding Rossby radius of

631 deformation for vertical baroclinic modes 4 to 10 was found from $R_{d,4} = 47$ km to $R_{d,10} = 18$ km
 632 at $6^\circ\text{N}/23^\circ\text{W}$ and from $R_{d,4} = 24$ km to $R_{d,10} = 9$ km at $12^\circ\text{N}/23^\circ\text{W}$ (Fig. 7g). These radii are well
 633 below the first baroclinic Rossby radius of deformation ($R_{d,1} = 152$ km at $6^\circ\text{N}/23^\circ\text{W}$ and $R_{d,1} =$
 634 80 km at $12^\circ\text{N}/23^\circ\text{W}$) and are close to the average radius of 34 km that was identified for the
 635 observed low-DO eddies (cf. Table 1 and section 4.3).

636

637 Figure 7: Dimensionless vertical structure functions of baroclinic modes 1, 2, 6 and 10 for (a,
 638 b) isopycnal displacement, Ψ_n , and (c, d) horizontal velocity, ϕ_n , obtained from the
 639 hydrographic profile of the World Ocean Atlas at $9^\circ\text{N}/23^\circ\text{W}$. (a) and (c) ((b) and (d)) show depth
 640 range 0 to 1000 m (1000 m to bottom). (e) Mean amplitudes of first 20 vertical displacement
 641 modes calculated through modal projection of hydrographic profiles from 23°W ship sections.
 642 Blue solid line denotes mean amplitude distribution, that is related to all hydrographic profiles
 643 with a minimum DO smaller than $60 \mu\text{mol kg}^{-1}$ in the upper 200 m (i.e. low-DO events that are
 644 summarized in Table 1). Orange solid line denotes mean amplitude distribution for all other
 645 hydrographic profiles along 23°W . Respective shadings denote standard error of the mean
 646 amplitude over all 1000 realizations. (f) Theoretical translation speed of high-baroclinic Rossby
 647 waves (HBVs) for the first 20 vertical modes between 6°N and 12°N along 23°W (see equation
 648 9). The solid, dashed and dotted black lines represent $\text{Ro} = 0.5$, while the shaded area
 649 indicates the range $0.3 < \text{Ro} < 0.7$.
 650 (g) Rossby radii of deformation for the first 20 vertical modes. In both (f) and (g), solid, dashed,
 651 and dotted lines correspond to values at 6°N , 9°N , and 12°N along 23°W , respectively.

4.5 Source waters of high-baroclinic mode vortices

The determination of the physical origin of subsurface HBVs, that are associated with the observed low-DO events, is not straight forward. A backtracking algorithm based on satellite altimetry observations as used in other studies for more poleward eddies (Chelton et al., 2011; Schütte et al., 2016a) is not applicable here, since these near-equatorial HBVs are hardly captured in the respective SLA products (Fig. 6). Instead, we derived water mass characteristics from all CTD-O profiles (Fig. 4a) located in the two boxes [24°-21°W, 6°-12°N] and [21°-18°W, 6°-12°N] for a conservative temperature range that corresponded to the depth range of the shallow DO minimum. A mean profile of absolute salinity was calculated for the two boxes and was used as a reference in order to calculate anomalies of absolute salinity as a function of potential density for every single CTD-O profile (Fig. 8). For both boxes, we clustered the salinity anomaly profiles into two classes, that were defined by the minimum DO concentration in the upper 200 m to be either below or above the threshold of 60 $\mu\text{mol kg}^{-1}$.

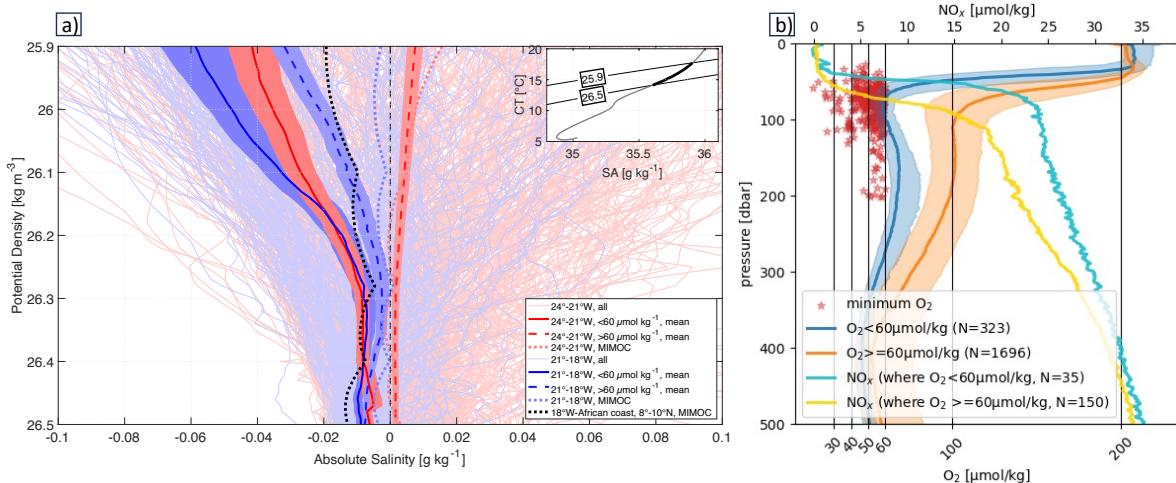


Figure 8: a) (Large panel) Anomalies of absolute salinity as a function of potential density in the eastern tropical North Atlantic for two different box regimes (Red: 24°-21°W, 6°-12°N / Blue: 21°-18°W, 6°-12°N). The boxes are highlighted in Fig. 4. The anomalies are referenced to the mean profile of absolute salinity that was calculated from all hydrographic profiles found in both boxes. Thin solid lines denote all individual profiles and thick solid (dashed) lines show the average of the profiles, that are related to minimum DO concentrations below (above) 60 $\mu\text{mol kg}^{-1}$ in the upper 200m. Shadings to the average profiles illustrate the respective standard errors (see text for details). Blue and red dotted lines denote climatological profiles for the two boxes. Black dotted line shows the climatological profile for a third box (18°W-African coast, 8°-10°N), which defines the near-coastal regime off West-Africa. (Inset panel) Mean characteristics of absolute salinity versus conservative temperature for the box 24°-18°W, 6°-12°N, taken from all CTD-O observations in this regime. Thick black line denotes the characteristics in the potential density range 25.9 to 26.5 kg m^{-3} and is the reference profile for the anomalies shown in the large panel. b) The blue curve shows the median of all oxygen CTD profiles with a minimum below 60 $\mu\text{mol/kg}$ in the upper 200 m. The red stars indicate the depths and dissolved oxygen concentration of these minima. Orange curves represent profiles with a minimum above 60 $\mu\text{mol/kg}$. Shaded areas indicate the standard deviation. The

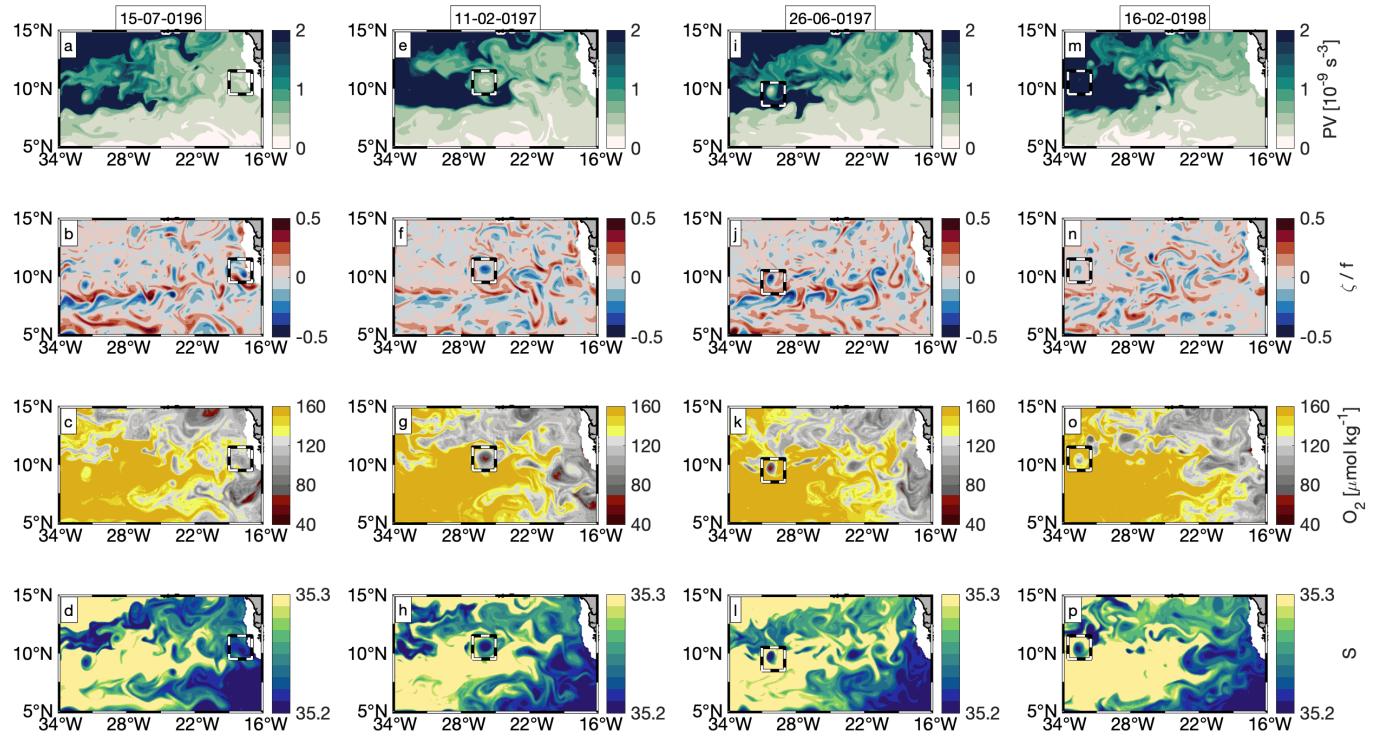
683 turquoise line depicts the mean nitrate profile for the profiles with oxygen minima below 60
684 $\mu\text{mol/kg}$, and the yellow line shows the mean nitrate profile for the profiles with minima above
685 $60 \mu\text{mol/kg}$.

686 Along-isopycnal gradients of mean salinity are weak (i.e. small spiciness) in the considered
687 region [24°W-African coast, 6°-12°N], as shown by the water mass characteristics obtained
688 from the climatological distribution (World Ocean Atlas 2023) for the two boxes as well as for
689 the near-coastal area east of them. The westward salinity increase along isopycnal surfaces
690 is roughly 0.01 to 0.02 g kg^{-1} per 5° (from the African coast at 17°W to about 22°W) in the
691 potential density range between 26.1 and 26.4 kg m^{-3} . This weak isopycnal gradient does not
692 allow for a differentiation of water mass characteristics from individual CTD-O profiles.

693 However, water mass characteristics for low-DO and high-DO profiles were found to be
694 significantly different from each other, when isopycnally averaging over all respective profiles.
695 For the western box [24°-21°W, 6°-12°N], low-DO profiles were on average lower in salinity
696 (compared to high-DO profiles) and they were found to be close to the average salinity anomaly
697 profile from the eastern box [21°-18°W, 6°-12°N], suggesting that water masses related to low-
698 DO profiles have their origin closer to the eastern boundary. However, the tropical low-DO
699 extremes appear in the open ocean far away from the eastern boundary. The westward
700 intensification of these events (*section 4.1*, Fig. 4), that are often related to HBVs (*section 4.2*),
701 suggests an unexpected long isolation of the DO depleted water masses in the otherwise
702 oxygen rich open ocean.

703 To further support the persistence and longevity of HBVs, we analyzed CTD observations of
704 oxygen and nitrate inside and outside of low-oxygen events. Fig. 8b shows the median oxygen
705 profiles for CTD casts with a minimum in the upper 200 m of the water column below 60
706 $\mu\text{mol/kg}$ (blue curve) and those above 60 $\mu\text{mol/kg}$ (orange curves). Mixed layer oxygen
707 concentrations for both cases indicate increased near-surface biological productivity of HBVs
708 compared to outside of HBVs. The red stars indicate the depths and dissolved oxygen
709 concentrations of the observed oxygen minima, clustering between 80 to 120m depth.
710 Corresponding nitrate profiles are shown in turquoise ($<60 \mu\text{mol/kg}$ oxygen) and yellow (>60
711 $\mu\text{mol/kg}$ oxygen). The results reveal substantially lower oxygen concentrations between 80 -
712 250 m inside HBVs, accompanied by elevated nitrate levels, consistent with enhanced
713 accumulated ongoing biologically remineralization due to enhanced productivity and/or “older”
714 water. This observational evidence indicates that HBVs consist of persistent, isolated water
715 masses rather than short-lived anomalies.

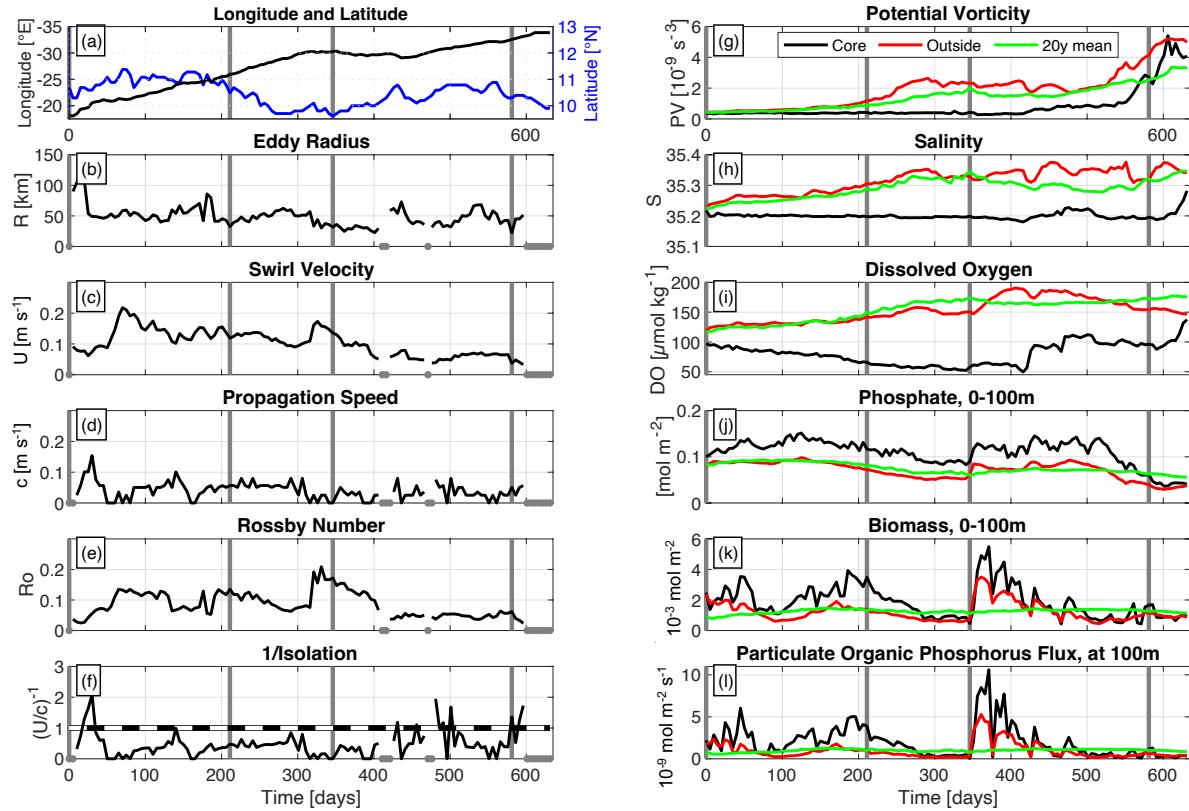
716 **4.6 Origin & temporal evolution of high-baroclinic mode vortices based on model**
717 **simulations**


718 Outputs from the GFDL CM2.6 ocean model is used to investigate the origin and temporal
719 evolution of these unusual vortices. We used the last 20 years of simulations for a regime
720 similar to that considered in the shipboard observations. From Fig. 2, we already know that the
721 model captures the main features of the mean state of the oxygen distribution. To assess
722 whether low-oxygen events occur with similar frequency in the model and whether they are
723 likewise associated with HBVs, we conducted analyses analogous to those performed on the
724 observations (*Section 4.1*, Fig. 4; and *Section 4.3*, Fig. 6) using the model data.

725 First the horizontal DO distribution was calculated by taking the temporal and vertical (0-200 m)
726 minimum of the simulated DO similar to the observations (Fig. 4b). In the latitude range 6°-
727 12°N, lowest DO below 30 $\mu\text{mol kg}^{-1}$ is found close to the African coast (east of 18°W). In
728 general, the basin wide gradient of minimum DO is positive towards west, being in agreement
729 with the zonal gradient of the mean simulated DO distribution (Fig. 2b). Strikingly, minimum
730 DO is lower in the region 30°-24°W, 8°-12°N than in the region east of it (24°-21°W). The
731 threshold for the DO 10-percentile (100 $\mu\text{mol kg}^{-1}$) does not change over this longitude range,
732 whereas the mean DO distribution is increasing towards west (lower whiskers versus box
733 centers in Fig. 4d). The open ocean minimum of the DO distribution that is found in the region
734 30°-24°W, 8°-12°N is in good qualitative agreement (though located further west) with the
735 observed DO distribution (Fig. 4b versus Fig. 4a). In the longitude range 24°-21°W, low-oxygen
736 events are less likely. It should be noted that Fig. 4a and 4b compare individual shipboard
737 observations with the 20-year model climatology. Observations represent snapshots of specific
738 events, whereas the model averages over a longer temporal period. Consequently, apparent
739 differences in the zonal distribution of low-DO extremes are expected and do not necessarily
740 indicate a systematic model bias.

741 From the GFDL CM2.6 model, we identified a HBV with a low-DO core in the near-equatorial
742 open ocean as exemplarily shown at the position 10°N/28°W (Fig. 6g to 6l). The spatial extent
743 is comparable to our observational results (Fig. 6a to 6f). A meridional cross section through
744 the simulated HBV reveals the low-DO core at 80 m depth (isopycnal surface 26.5 kg m^{-3}) with
745 a lateral extent of about 1° in latitude and a vertical extent between about 50 and 150 m (Fig.
746 6h). The minimum DO is lower than 60 $\mu\text{mol kg}^{-1}$, whereas DO outside the HBV is at values
747 above 150 $\mu\text{mol kg}^{-1}$. Distributions of conservative temperature and potential density show
748 shallowing and deepening isopycnal surfaces above and below the DO minimum, respectively,
749 indicating a weakened stratification and consequently low PV at the low-DO core (Fig. 6i). The
750 HBV's velocity signature is strongly confined to subsurface depths and vanishes above 50 m

751 (Fig. 6j,6k). In particular, surface velocity does not show any coherence with the subsurface
752 velocity field at depth of the HBV (Fig. 6g). This substantiates our observational results that
753 these HBVs can hardly be identified from the surface geostrophic velocity field obtained from
754 satellite observations. The HBV core exhibits low PV water, where minimum PV is found
755 slightly deeper than the DO minimum (Fig. 6l). This low PV water core is laterally isolated from
756 the surrounding high PV water, but also separated from the deeper low PV water through an
757 intermediate PV maximum along the isopycnal surface 26.7 kg m^{-3} . This isolation is the
758 prerequisite for a persistent eddy with a long-life time. The model tends to slightly
759 underestimate PV and associated O_2 anomalies, indicating somewhat weaker eddy coherence
760 compared to observations. At the same time, due to reduced dissipation in the circulation
761 model, we expect lifespans of the eddies to be slightly prolonged. Additionally, the MiniBLING
762 model does not fully account for remineralization processes in the mesopelagic zone, which
763 likely leads to an underestimation of oxygen consumption. Taken together, this implies that
764 HBVs in the model appear with weaker anomalies but with an artificially prolonged lifespan.


765 In the following, we present the temporal evolution of the HBV from the time of formation to the
766 decay. Fig. 9 shows model snapshots with horizontal maps of PV, relative vorticity normalized
767 by f (so that its magnitude is equal to Rossby number), DO and salinity for four different time
768 points throughout the HBV's lifetime. Fig. 10 shows time series of different physical and
769 biogeochemical variables for the HBV core position.

770
 771 Figure 9: Model snapshots of PV on isopycnal surface 26.6 kg m^{-3} (top row)
 772 relative vorticity over f , DO and salinity on isopycnal surface 26.5 kg m^{-3} (second, third and fourth row)
 773 for different phases (different columns) of an anticyclonic HBV (respective time indicated above
 774 each column with $T = 0 / 211 / 346 / 580$ days: formation / strongest peculiarity / weakening /
 775 decay. Black-white dashed box in each sub panel denotes HBV position.

776 The HBV has its origin at the eastern boundary at $10^\circ\text{N}/18^\circ\text{W}$, where low PV water (Fig. 9a)
 777 with anticyclonic vorticity (Fig. 9b) is deflected offshore and provides the precondition for the
 778 eddy formation. The offshore deflected water carries typical water mass characteristics from
 779 the eastern boundary: low DO and low salinity (Fig. 9c and 9d). During westward propagation
 780 into the open ocean, the HBV enters high PV waters. 211 days after formation, it reaches
 781 $10.5^\circ\text{N}/26^\circ\text{W}$ with low PV (Fig. 9e) and high negative relative vorticity (Fig. 9f) in its core. The
 782 coherent eddy is strongly isolated from surrounding high PV water as shown by the intensified
 783 DO minimum (Fig. 9g) and low salinity (Fig. 9h) in its core. In the following 5 months the HBV
 784 propagates further westward, but is disturbed by high PV water, that is advected from the
 785 western tropical Atlantic. This leads to a weakening of the HBV with a smaller low PV core
 786 (Fig. 9i), but still carrying pronounced negative relative vorticity (Fig. 9j), low DO (Fig. 9k) and
 787 low salinity (Fig. 9l) compared to surrounding water. The HBV eventually loses its energy and
 788 decays about 580 days after formation at $10^\circ\text{N}/33^\circ\text{W}$ (Fig. 9m and 9n), where the core water
 789 still appears with anomalous low DO and salinity (Fig. 9o and 9p).

790 The quick offshore deflection of coastal water, that is associated with the HBV's formation, is
 791 illustrated by the strong change in longitude (Fig. 10a) and by the high propagation speed (Fig.
 792 10d) during the first 50 days. This deflection is more like a pulse rather than an offshore
 793 transport of enclosed water ($(U/c)^{-1} > 1$, Fig. 10f), where the HBV stabilizes after that time at
 794 a radius of 50 km (Fig. 10b).

795

796 Figure 10: Time series of different variables related to the core of the modelled subsurface
 797 intensified eddy shown in Figs. 4h-4n and Fig. 8. Time is given as elapsed days since eddy
 798 detachment from the African coast. Vertical gray lines in each panel denote time points for
 799 horizontal maps shown in Fig. 9 (0, 211, 346 and 581 days). (a) longitude (black line) and
 800 latitude (blue line), (b) Eddy radius, (c) Eddy swirl velocity, (d) Eddy propagation speed, (e)
 801 Rossby number, (f) Inverse of isolation parameter (black line). Black-white dashed line denotes
 802 threshold, below which the water is trapped in the eddy core (swirl velocity > propagation
 803 speed). (g) Potential vorticity, (h) salinity, (i) DO, (j) phosphate, (k) biomass, (l) flux of
 804 particulate organic phosphorus. Variables are given for the following layers. In panels (a)-(f)
 805 and (h)-(i): isopycnal surface 26.5 kg m^{-3} . In panel (g): isopycnal surface 26.6 kg m^{-3} . In panels
 806 (j)-(k): integral over 0-100 m. (l) at 100 m. For the right column (panels (g)-(l)), black lines show
 807 value in eddy core, red lines show mean values outside the eddy (average between 1° and 3°
 808 of longitude/latitude around the eddy core position) and green lines show 20-year model mean
 809 that is given at the respective position of the eddy core. In panels (b)-(f), gray dots at zero line
 810 denote time points, where no estimate was possible.

811 From day 80 to day 300, the HBV continuously propagates westward until 30°W with only slight
 812 changes in latitude ($10^\circ\text{-}11^\circ\text{N}$), at a propagation speed of 0.7 m s^{-1} , a swirl velocity between
 813 0.1 and 0.2 m s^{-1} and a radius of 50 km (Rossby number between 0.1 and 0.2) (Fig. 10a-10f).
 814 The strong isolation ($(U/c)^{-1} < 1$) over that time keeps the core water constantly low in PV

815 and salinity, while surrounding waters increase in PV and salinity during eddy westward
816 propagation (Fig. 10g-10h). DO continuously decreases from roughly $95 \mu\text{mol kg}^{-1}$ to
817 $50 \mu\text{mol kg}^{-1}$ over several months, corresponding to an average DO consumption rate of about
818 $0.16 \mu\text{mol kg}^{-1} \text{d}^{-1}$ (Fig. 10i). This apparent decline should be regarded as a lower limit, as
819 ventilation and mixing processes would partly offset oxygen loss. In the upper part of the eddy,
820 enhanced nutrient concentration is associated with increased biomass production, which leads
821 to enhanced export of organic matter between days 100 and 300 (Fig. 10j-10l). The associated
822 increased respiration and the strong isolation both lead to the development of this substantial
823 DO deficient zone. Note, that the magnitude and timescale of this decrease are broadly
824 consistent with observed low-oxygen events in the region, though specific rates from the model
825 should be interpreted cautiously.

826 The high PV water, that is advected from the west, acts as a barrier for the HBV and westward
827 propagation stops after day 300 (Fig. 10a and 10d). The HBV is deformed by the high PV
828 water, which likely leads to enhanced isopycnal and diapycnal mixing at the eddy periphery.
829 In fact, the HBV shrinks between days 300 and 400 as illustrated by the continuously
830 decreasing radius from 50 km to 30 km (Fig. 10b). Though, the core still shows source water
831 characteristics with unaltered low PV and low salinity, and still holds the DO deficient zone.
832 After day 400, the HBV starts to interact with surrounding water - partly being low in PV as well
833 - which weakens the isolation of the HBV core ($(U/c)^{-1} \approx 1$, Fig. 10f) and leads to continuous
834 increase of PV and DO. PV strongly increases after day 550 and reaches the PV threshold of
835 surrounding water at about day 600, where the core starts to dissolve as illustrated by the
836 strong increase of salinity and DO after day 600.

837 5 Discussion

838 Moored time series of dissolved oxygen (DO) in the near-equatorial Atlantic (4°N up to 12°N)
839 occasionally show pronounced dips in oxygen concentrations falling significantly beneath the
840 climatological mean, well below the mixed layer and lasting for several weeks. In addition, we
841 found that about 8% of all observed CTD-O profiles in the near-equatorial ETNA (25° - 15°W ,
842 6° - 12°N) appear with anomalous low-DO ($< 60 \mu\text{mol kg}^{-1}$) in the upper 200 m, which is as well
843 below the climatological DO concentration. Until now, the causes of these extreme low-DO
844 events have remained unclear. Mesoscale eddies with low oxygen cores - known to occur
845 farther north around 20°N - are not expected to drive such extensive oxygen-deficient zones
846 in the near-equatorial region, as they are not believed to persist here as coherent vortices with
847 lifespans of several months or longer (Chaigneau et al., 2009; Keppler et al., 2018). However,
848 the majority of these low-DO events (60%) are clearly associated with high-baroclinic
849 subsurface-intensified eddies (Table 1, Fig. 4, Fig. 5). For the remaining 40%, the velocity and

850 density distributions did not reveal clear eddy signatures, nor did satellite data - consistent with
851 all identified vortices, which generally lack a distinct surface signature. However, a connection
852 to subsurface-intensified eddies cannot be ruled out a priori for these cases.

853 This underlines that in understanding the Earth system, a better understanding of small-scale
854 ocean dynamics (smaller than the first baroclinic Rossby radius of deformation) is essential,
855 as they play a crucial role in the distribution of energy and tracers as well as the regulation of
856 biogeochemical processes. In particular, below the surface layer - where satellite observations
857 are ineffective - our understanding of the frequency, magnitude, and impact of these small-
858 scale ocean dynamics remains limited.

859 In the vicinity of the equator (< 5°N/S), mesoscale dynamics dominantly appear as horizontally
860 anisotropic waves (e.g. tropical instability waves) rather than closed circular structures. These
861 wave-like structures, however, are not isolated enough to effectively transport or develop low-
862 oxygen environments. The eddies with DO anomalies that we observed are relatively small
863 and long-lived high-baroclinic vortices (HBVs). Ship sections along 23°W exclusively revealed
864 anticyclonic HBVs, whereas both anticyclonic and cyclonic HBVs were found from moored
865 observations at 11°N/21°W and in the model.

866 **5.1 Vertical and horizontal structure of the low-oxygen events and the associated 867 high-baroclinic mode vortices**

868 The observed anticyclonic HBVs had a pronounced low-DO core that vertically extended from
869 the base of the mixed layer down to several hundred meter depth (with minimum DO at depths
870 between 45 and 90 m). The anomalous horizontal velocity of the observed anticyclonic HBVs
871 was at maximum (maximum EKE) at the depth of the DO minimum and extended from 50 to
872 roughly 250 m. Stratification in the observed anticyclonic HBVs' core was weak over this depth
873 range with upward and downward displaced isopycnals above and below the depth of EKE
874 maximum, respectively. We found an average radius of about 34 km (between 20 and 45 km)
875 for the observed HBVs. A decomposition into vertical baroclinic modes showed, that modes 4
876 to 10 fit best to low-DO events that are related to these HBVs. The associated 4th to 10th
877 baroclinic Rossby radii of deformation are between 34 and 13 km (at 9°N) and in good
878 agreement with the observed eddy radii. The observed radii appear well below the first
879 baroclinic Rossby radius of deformation (more than 100 km in the region) and corresponding
880 eddies can be considered as higher baroclinic mode vortices. Rossby numbers were below 1,
881 with values of approximately 0.3 - 0.7 estimated from shipboard observations (one eddy
882 crossing is shown in figure 6; others not shown) and around 0.1 - 0.4 in the GFDL CM2.6 model
883 simulation (exemplarily shown in Fig. 6 or Fig 10e).

884 The observed cyclonic HBVs appeared with a stratification maximum at about 150 m and a
885 cyclonic velocity structure with maximum EKE at a similar depth. Shallow DO minima were
886 found at 100 and 200 m throughout the transition, but without any clear separation from the
887 deep OMZ at 300 m. This less intensified DO minimum at 100 m and the missing intermediate
888 DO maximum at 200 m is a substantial difference to the DO distribution observed within
889 anticyclonic HBVs. However, enhanced DO consumption has been shown to be a reasonable
890 driver for DO depletion in a cyclonic HBV, that was observed in the western subtropical North
891 Atlantic (Li et al., 2008). Pure upwelling or upward mixing of low-DO water from the deep OMZ
892 cannot explain such vertically homogeneous distribution of low-DO between 100 and 300 m in
893 cyclonic HBVs. These processes would imply either a shallowing of isopycnal surfaces or a
894 weakened stratification within this depth range, which is contradictory to the observed
895 deepening of isopycnals above 150 m, shallowing of isopycnals below 150 m and
896 consequently the intensified stratification at 150 m (Fig. 5, Event #03). Due to the increased
897 stratification, the thickness of the intermediate DO maximum layer (that is associated with
898 isopycnal 26.6 kg m^{-3}) is reduced and very likely not resolved by the sparsely distributed
899 number of DO sensors.

900 We could not collocate any clear signals in SLA or SST from satellite observations with the in
901 situ observed HBVs. Shipboard observations showed a strongly weakening velocity signature
902 toward the surface. Also the simulated HBVs from GFDL CM2.6 model showed similar
903 characteristics as the observed vortices and no signature could be found from the surface
904 velocity. Moreover, the resolution and interpolation scheme for the gridded SLA data likely do
905 not allow to properly capture geostrophic structures at scales of smaller than about 40 km.
906 These are likely reasons, why near-equatorial subsurface eddies are hardly identified from
907 satellite products. If higher resolution satellite products from SWOT will allow to detect the
908 HBVs remains to be seen, though what we see from the in-situ observed structure and the
909 model results we conjecture that the high baroclinic mode HBVs tend to “hide” below the
910 surface/mixed layer base.

911 **5.2 Origin, lifetime & evolution of the oxygen content of high-baroclinic mode
912 vortices**

913 Water mass characteristics derived from shipboard observations showed that open ocean
914 water masses with DO below $60 \mu\text{mol kg}^{-1}$ in the upper 200 m (often associated with HBVs)
915 likely originate from the eastern boundary, where South Atlantic Central Water contributions
916 exceed those of North Atlantic Central Water. Model results are in agreement as they show
917 the formation of a low-DO HBVs with low PV in its core off the African coast at about
918 $10^\circ\text{N}/18^\circ\text{W}$. Hence, it is expected that the generation mechanism is consistent with previous

919 studies on HBV formation, in which the interaction between the mean flow and sharp
920 topographic curvature leads to the formation low-PV waters within the bottom boundary layer,
921 and the shedding of HBVs (D'Asaro, 1988; Molemaker et al., 2015; Thomsen et al., 2016;
922 Srinivasen et al., 2017; Dilmahamod et al., 2022).

923 The simulated HBV analyzed here propagated westward far into the open ocean over a
924 distance of 1,600 km (10°N/33°W) and lasted for 600 days (average propagation speed of
925 2.6 km day⁻¹). For the observed HBVs, we could not derive propagation speeds in a similar
926 way. Instead, we followed an approach by Nof (1981) and Rubino et al. (2009), who formulated
927 the westward translation of isolated high baroclinic eddies on a plane, which is given as a
928 function of the n -th baroclinic Rossby radius of deformation and the Rossby number:

$$C_n = -\frac{1}{3} \beta R_{d,n}^2 (1 - Ro)^{-1} \quad (2)$$

929 with β being the meridional derivative of the Coriolis parameter. Considering a Rossby radius
930 between 35 and 50 km and a Rossby number between 0.3 and 0.7 (taken as characteristic
931 scales from the observed HBVs corresponding to the vertical baroclinic mode 4) yields a
932 propagation speed between 1.1 and 5.4 km day⁻¹. This is in good agreement with the
933 propagation speed obtained from the simulated HBV. Considering the origin of the observed
934 low-DO HBVs at the eastern boundary (cf. section 4.4), a propagation speed at 1.1-5.4
935 km day⁻¹ yields a propagation time of 100 to 500 days to propagate a distance toward 23°W
936 (around 550 km). The fact, that these high baroclinic low-DO HBVs are not captured by satellite
937 products, prevents both backtracking to their origin and estimating their lifetime directly.
938 However, assuming that the HBVs origin close to the African coast and propagate westward
939 at 1.8 to 4.9 km day⁻¹, they would require approximately 110 to 300 days to travel the 550 km
940 distance to 23°W.

941 In contrast to anticyclonic HBVs, cyclonic HBVs were only detected twice in the mooring time
942 series and were not found in any of the numerous ship sections along 23°W. We may only
943 speculate, that cyclonic HBVs do not frequently propagate across 23°W due to a much more
944 reduced eddy life time. They transport anomalously high PV water in their core compared to
945 surrounding water masses. During westward propagation, the isolation of the core is expected
946 to be reduced due to the westward increasing PV background gradient in the tropical Atlantic.
947 As anticyclonic HBVs propagate westward, their low-PV cores are reinforced and remain
948 isolated from surrounding waters, promoting their longevity. However, encounters with high-
949 PV water from the western basin may destabilize them, while interactions with other low-PV
950 anticyclones can enhance their stability. During the lifetime of the simulated anticyclonic HBVs,
951 enhanced respiration within the eddy core contributes to a noticeable decrease in DO over

952 several months. While this trend is qualitatively consistent with observations of low-oxygen
953 events, the model-derived values should be considered indicative rather than quantitatively
954 precise. However, this fits to our observational results, where lowest absolute DO
955 concentrations occurred in the open ocean (24°-21°W) rather than in the region that is located
956 closer to the eastern boundary (21°-18°W). The here found DO consumption rates are also in
957 good agreement with consumption rates estimated from observed subsurface intensified
958 anticyclonic eddies ($0.19 \pm 0.08 \mu\text{mol kg}^{-1} \text{ d}^{-1}$) that originate from the Mauritanian upwelling
959 system and propagate westward at about 18°N (Schütte et al., 2016). We shall note, that DO
960 was observed close to anoxic conditions on the shelf of Senegal at about 14°N at depths of
961 about 20 m (Machu, 2019). However, these water masses are at much shallower depth and
962 lighter densities and are very likely not the source region for the low-DO core of the here
963 described offshore HBVs. However, the here described low-DO eddies, characterized with low
964 PV waters in their cores, likely have their origin at the eastern boundary with the bottom
965 boundary layer identified as the source of this low PV waters.

966 6 Summary and conclusion

967 We shall summarize the following take home messages to the reader:

968 (i) Distribution and occurrence of low-DO events:

969 In the near-equatorial North Atlantic (25°-15°W, 6°-12°N), about 8% of all CTD-O
970 profiles occur with a DO concentration of less than $60 \mu\text{mol kg}^{-1}$ in the upper 200 m,
971 which is well below the climatological DO concentration. These extreme low-DO
972 events are more frequent and more intensified in the open ocean (30°-21°W)
973 compared to the region east of it (21°- coast of West Africa). Unprecedented low-
974 DO concentrations were found with $1 \mu\text{mol kg}^{-1}$ at 80 m depth at the mooring
975 located at 11°N/23°W as well as $17 \mu\text{mol kg}^{-1}$ (8°N/23°W) and $29 \mu\text{mol kg}^{-1}$
976 (9°N/21°W) observed with ship based measurements.

977 (ii) Low-DO events are related to subsurface intensified submesoscale coherent vortices:

978 We found 66% of open ocean low-DO events to be related to subsurface intensified
979 submesoscale coherent vortices, where anticyclonic rotation appeared as the
980 dominant eddy type. These vortices have a high baroclinic vertical structure,
981 associated to vertical baroclinic modes 4 to 10, and are confined to the upper
982 250 m. In situ velocity observations revealed an average radius of 34 km, which is
983 well below the first baroclinic Rossby radius of deformation ($O(100 \text{ km})$), but agrees
984 well with Rossby radii of the higher baroclinic modes 4 to 10 (34 to 13 km at 9°N).
985 Despite the small length scales, the Rossby number of the vortices is below 1,
986 assigning them to the dynamical range of mesoscale variability.

987 (iii) Origin and life time:

988 The vortices most likely originate from the eastern boundary. They can propagate
989 far into the open ocean with a propagation speed of 1.8 - 4.9 km day⁻¹, reaching a
990 life time of more than half a year (it took around 100 to 500 days to propagate the
991 550km distance towards 23°W). This is much longer than currently suggested
992 considering the highly dynamical area and the proximity to the equator. Model
993 simulations even show a life time of up to 1.5 years. Cyclonic eddies with low-
994 oxygen cores were less frequent than anticyclonic eddies. Cyclonic eddies were
995 not found in ship sections along 23°W, but in the minority of all low-DO extreme
996 events from moored observations at 11°N/21°W.

997 (iv) Impact of the vortices on DO and biogeochemistry:

998 Near-equatorial vortices have unexpectedly long lifetimes and strongly isolate their
999 low-PV cores from surrounding water. This can create a DO deficient zone, due to
1000 enhanced primary production on top and remineralization (DO decrease of
1001 0.16 µmol kg⁻¹ day⁻¹ for the simulated anticyclonic vortices), accompanied by
1002 elevated nitrate levels in the eddy core.

1003 (v) Detection of near-equatorial vortices with remote sensing satellites:

1004 Near-equatorial vortices are hardly detectable by conventional satellite altimetry
1005 observations, which precludes a backtracking of these eddies. New observations
1006 are desirable to verify whether the new SWOT mission can capture such HBV,
1007 although a strong surface signal is not expected due to the mainly subsurface
1008 structure (also supported by the model).

1009 Subsurface coherent vortices in the near-equatorial ocean have been so far overlooked in
1010 driving DO deficient zones. The long-lived vortices appear unexpectedly quite regularly given
1011 theoretical considerations and are able to generate hypoxic regimes in the open ocean, which
1012 may have localized effects habitats, biodiversity and biogeochemical cycling. They are typically
1013 not tracable in satellite products, which makes a collocation of satellite data with in-situ
1014 observations (CTD-O, Argo profiles, moored observations) hardly possible. The comparatively
1015 coarse resolution of satellite observations might instead lead to a wrong collocation of the
1016 subsurface low-DO events with larger surface intensified mesoscale structures nearby. The
1017 mechanisms for the generation of these near-equatorial low-DO eddies remain an open
1018 question. So far, we here identified a potential source region and provided a first insight about
1019 the dynamics (life time, baroclinicity, isolation) of these eddies. A more comprehensive
1020 investigation from high resolution ocean circulation models - coupled to biogeochemistry -
1021 would shed light onto the generation. Further, the study of the temporal evolution of dominant
1022 vertical baroclinic modes throughout the eddies' life cycle would contribute to a better

1023 understanding of the eddy dynamics and stability. Moreover, the interdisciplinary view on
1024 changes in biogeochemical processes would increase the understanding about the impact on
1025 biogeochemistry. The in-situ tracking and observation of these eddies over their life cycle is
1026 challenging, but would provide key information to validate the simulation of these eddies.

1027

1028 **7 Data availability**

1029 The assembled shipboard measurements (27 research cruises) and moored data used in this
1030 paper are available and collected at <https://doi.pangaea.de/XXXX>. The used satellite altimetry
1031 data is provided by Marine Copernicus (<https://marine.copernicus.eu>) can be downloaded at
1032 <https://doi.org/10.48670/moi-00148>. The used gridded climatological hydrography and oxygen
1033 from the World Ocean Atlas 2023 (WOA23), is available at NOAA under:
1034 <https://doi.org/10.25921/va26-hv25>. The Model data will be made openly accessible via the
1035 GEOMAR website <https://data.geomar.de> where data is uniquely identifiable via handle
1036 assignment (PID) and will be accessible per download.

1037 **Author contributions**

1038 Conceptualization: FS, JH, PB, Data curation: JH, IF, FS, Formal analysis and methodology:
1039 JH, IF, MS, FS, AB, FD, Funding acquisition: PB, Writing – original draft: JH, FS, IF, Writing
1040 – review and editing: FS, JH, IF, AB, FD, MS, PB

1041

1042 **Competing interests**

1043 The contact author has declared that none of the authors has any competing interests.

1044

1045 **Acknowledgements**

1046 We thank the crew and the “Leitstelle Deutsche Forschungsschiffe” for supporting the numerous
1047 expeditions in the eastern tropical North Atlantic that have made this work possible. Research cruises
1048 with RV Meteor, RV Maria S. Merian were funded by the Deutsche Forschungsgemeinschaft as part of
1049 Sonderforschungsbereich 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean” and
1050 through other projects such as the EU H2020 TRIATLAS project (grant agreement 817578) funded by
1051 the German Federal Ministry of Education and Research (BMBF). Moored velocity and oxygen
1052 observations were partly acquired in cooperation with the PIRATA project, and we would like to thank
1053 B. Bourlès, R. Lumpkin, C. Schmid, and G. Foltz for their help with mooring work and data sharing. We
1054 thank the captains and crew of the RV *Maria S. Merian*, RV *Meteor*, RV *Poseidon*, and RV *L’Atalante* as
1055 well as our technical group for their help with the fieldwork.

References

Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: *World Ocean Atlas 2009, Volume 2: Salinity*. S. Levitus, Ed. NOAA Atlas NESDIS 69, U.S. Government Printing Office, Washington, D.C., 184 pp, 2010.

Bittig, H. C., Körtzinger, A., Neill, C., van Ooijen, E., Plant, J. N., Hahn, J., Johnson, K. S., Yang, B., and Emerson, S. R.: Oxygen Optode Sensors: Principle, Characterization, Calibration, and Application in the Ocean, *Frontiers in Marine Science*, 4, 10.3389/fmars.2017.00429, 2018.

Brandt, P., Hormann, V., Körtzinger, A., Visbeck, M., Krahmann, G., Stramma, L., Lumpkin, R., and Schmid, C.: Changes in the Ventilation of the Oxygen Minimum Zone of the Tropical North Atlantic, *J. Phys. Oceanogr.*, 40, 1784-1801, 10.1175/2010jpo4301.1, 2010.

Brandt, P., Bange, H. W., Banyte, D., Dengler, M., Didwischus, S. H., Fischer, T., Greatbatch, R. J., Hahn, J., Kanzow, T., Karstensen, J., Körtzinger, A., Krahmann, G., Schmidtko, S., Stramma, L., Tanhua, T., and Visbeck, M.: On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic, *Biogeosciences*, 12, 489-512, 10.5194/bg-12-489-2015, 2015.

Calil, P. H. R.: High-Resolution, Basin-Scale Simulations Reveal the Impact of Intermediate Zonal Jets on the Atlantic Oxygen Minimum Zones. *Journal of Advances in Modeling Earth Systems*, 15(2), e2022MS003158.
<https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003158>, 2023

Castelão, G. P., and W. E. Johns (2011), Sea surface structure of North Brazil Current rings derived from shipboard and moored acoustic Doppler current profiler observations, *J. Geophys. Res.*, 116, C01010, doi:10.1029/2010JC006575.

Castelão, G. P., Irber, L. C., & Villas Boas, A. B. M. (2013). An objective reference system for studying rings in the ocean. *Computers & geosciences*, 61, 43-49.
<https://www.sciencedirect.com/science/article/pii/S0098300413001933>

Chaigneau, A., Eldin, G., and Dewitte, B.: Eddy activity in the four major upwelling systems from satellite altimetry (1992-2007), *Prog. Oceanogr.*, 83, 117-123, 10.1016/j.pocean.2009.07.012, 2009.

Chelton, D. B., deSzoeke, R. A., Schlax, M. G., Naggar, K. E., and Siwertz, N.: Geographical Variability of the First Baroclinic Rossby Radius of Deformation, *J. Phys. Oceanogr.*, 28, 433-460, 10.1175/1520-0485(1998)028<0433:Gvotfb>2.0.Co;2, 1998.

Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, *Prog. Oceanogr.*, 91, 167-216, 10.1016/j.pocean.2011.01.002, 2011.

Christiansen, S., Hoving, H. J., Schutte, F., Hauss, H., Karstensen, J., Kortzinger, A., Schroder, S. M., Stemmann, L., Christiansen, B., Picheral, M., Brandt, P., Robison, B., Koch, R., and Kiko, R.: Particulate matter flux interception in oceanic mesoscale eddies by the polychaete *Poeobius* sp, *Limnol. Oceanogr.*, 63, 2093-2109, 10.1002/lno.10926, 2018.

D'Asaro, E. A.: Generation of submesoscale vortices: A new mechanism, *Journal of Geophysical Research: Oceans*, 93, 6685-6693, 10.1029/JC093iC06p06685, 1988.

Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V., Benson, R., Dixon, K., Griffies, S. M., Lee, H.-C., Pacanowski, R. C., Vecchi, G. A., Wittenberg, A. T., Zeng, F., and

Zhang, R.: Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model, *J. Clim.*, 25, 2755-2781, 10.1175/jcli-d-11-00316.1, 2012.

Dilmahamod, A. F., J. Karstensen, H. Dietze, U. Löptien, and K. Fennel, 2022: Generation Mechanisms of Mesoscale Eddies in the Mauritanian Upwelling Region. *J. Phys. Oceanogr.*, 52, 161–182, <https://doi.org/10.1175/JPO-D-21-0092.1>.

Deutsch, C., Penn, J.L. & Seibel, B. Metabolic trait diversity shapes marine biogeography. *Nature* 585, 557–562 (2020). <https://doi.org/10.1038/s41586-020-2721-y>

Dufour, C. O., Griffies, S. M., de Souza, G. F., Frenger, I., Morrison, A. K., Palter, J. B., Sarmiento, J. L., Galbraith, E. D., Dunne, J. P., Anderson, W. G., and Slater, R. D.: Role of Mesoscale Eddies in Cross-Frontal Transport of Heat and Biogeochemical Tracers in the Southern Ocean, *J. Phys. Oceanogr.*, 45, 3057-3081, 10.1175/jpo-d-14-0240.1, 2015.

Duteil, O., Schwarzkopf, F. U., Böning, C. W., and Oschlies, A.: Major role of the equatorial current system in setting oxygen levels in the eastern tropical Atlantic Ocean: A high-resolution model study, *Geophys. Res. Lett.*, 41, 2033-2040, 10.1002/2013gl058888, 2014.

Eden, C.: Eddy length scales in the North Atlantic Ocean, *J. Geophys. Res.-Oceans*, 112, 10.1029/2006jc003901, 2007.

Fiedler, B., Grundle, D. S., Schütte, F., Karstensen, J., Löscher, C. R., Hauss, H., Wagner, H., Loginova, A., Kiko, R., Silva, P., Tanhua, T., and Körtzinger, A.: Oxygen utilization and downward carbon flux in an oxygen-depleted eddy in the eastern tropical North Atlantic, *Biogeosciences*, 13, 5633-5647, 10.5194/bg-13-5633-2016, 2016.

Fischer, J., Brandt, P., Dengler, M., Müller, M., and Symonds, D.: Surveying the Upper Ocean with the Ocean Surveyor: A New Phased Array Doppler Current Profiler, *J. Atmos. Ocean. Technol.*, 20, 742-751, 10.1175/1520-0426(2003)20<742:Stuowt>2.0.Co;2, 2003.

Frenger, I., Bianchi, D., Stührenberg, C., Oschlies, A., Dunne, J., Deutsch, C., Galbraith, E., and Schütte, F.: Biogeochemical Role of Subsurface Coherent Eddies in the Ocean: Tracer Cannonballs, Hypoxic Storms, and Microbial Stewpots?, *Glob. Biogeochem. Cycle*, 32, 226-249, doi:10.1002/2017GB005743, 2018.

Galbraith, E. D., Dunne, J. P., Gnanadesikan, A., Slater, R. D., Sarmiento, J. L., Dufour, C. O., de Souza, G. F., Bianchi, D., Claret, M., Rodgers, K. B., and Marvasti, S. S.: Complex functionality with minimal computation: Promise and pitfalls of reduced-tracer ocean biogeochemistry models, *Journal of Advances in Modeling Earth Systems*, 7, 2012-2028, 10.1002/2015ms000463, 2015.

Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: *World Ocean Atlas 2009, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation*. S. Levitus, Ed. NOAA Atlas NESDIS 70, U.S. Government Printing Office, Washington, D.C., 344 pp, 2010a.

Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Zweng, M. M., Baranova, O. K., and Johnson, D. R.: *World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate)*. S. Levitus, Ed. NOAA Atlas NESDIS 71, U.S. Government Printing Office, Washington, D.C., 398 pp., 2010b.

Gill, A. E.: *Atmosphere-Ocean Dynamics*, International Geophysics Series Volume 30, Academic Press, New York, 1982.

Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour, C. O., Dunne, J. P., Goddard, P., Morrison, A. K., Rosati, A., Wittenberg, A. T., Yin, J., and Zhang, R.: Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models, *J. Clim.*, 28, 952-977, 10.1175/jcli-d-14-00353.1, 2015.

Gula, J., Blacic, T. M., and Todd, R. E.: Submesoscale Coherent Vortices in the Gulf Stream, *Geophys. Res. Lett.*, 46, 2704-2714, 10.1029/2019gl081919, 2019.

Hahn, J., Brandt, P., Greatbatch, R. J., Krahmann, G., and Kortzinger, A.: Oxygen variance and meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone, *Clim. Dyn.*, 43, 2999-3024, 10.1007/s00382-014-2065-0, 2014.

Hahn, J., Brandt, P., Schmidtko, S., and Krahmann, G.: Decadal oxygen change in the eastern tropical North Atlantic, *Ocean Science*, 13, 551-576, 10.5194/os-13-551-2017, 2017.

Hauss, H., Christiansen, S., Schutte, F., Kiko, R., Lima, M. E., Rodrigues, E., Karstensen, J., Loscher, C. R., Kortzinger, A., and Fiedler, B.: Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater eddies, *Biogeosciences*, 13, 1977-1989, 10.5194/bg-13-1977-2016, 2016.

Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans, *Prog. Oceanogr.*, 77, 331-350, 10.1016/j.pocean.2007.05.009, 2008.

Karstensen, J., Fiedler, B., Schütte, F., Brandt, P., Kötzinger, A., Fischer, G., Zantopp, R., Hahn, J., Visbeck, M., and Wallace, D.: Open ocean dead zones in the tropical North Atlantic Ocean, *Biogeosciences*, 12, 2597-2605, 10.5194/bg-12-2597-2015, 2015.

Karstensen, J., Schütte, F., Pietri, A., Krahmann, G., Fiedler, B., Grundle, D., Hauss, H., Kötzinger, A., Löscher, C. R., Testor, P., Vieira, N., and Visbeck, M.: Upwelling and isolation in oxygen-depleted anticyclonic modewater eddies and implications for nitrate cycling, *Biogeosciences*, 14, 2167-2181, 10.5194/bg-14-2167-2017, 2017.

Keppler, L., Cravatte, S., Chaigneau, A., Pegliasco, C., Gourdeau, L., and Singh, A.: Observed Characteristics and Vertical Structure of Mesoscale Eddies in the Southwest Tropical Pacific, *Journal of Geophysical Research: Oceans*, 123, 2731-2756, 10.1002/2017jc013712, 2018.

Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H.: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), *Glob. Biogeochem. Cycle*, 18, 10.1029/2004gb002247, 2004.

Köhn, E. E., Greatbatch, R. J., Brandt, P., and Claus, M.: The formation and ventilation of an oxygen minimum zone in a simple model for latitudinally alternating zonal jets, *Ocean Sci.*, 20, 1281-1290, <https://doi.org/10.5194/os-20-1281-2024>, 2024.

Li, Q. P., Hansell, D. A., McGillicuddy Jr., D. J., Bates, N. R., and Johnson, R. J.: Tracer-based assessment of the origin and biogeochemical transformation of a cyclonic eddy in the Sargasso Sea, *Journal of Geophysical Research: Oceans*, 113, 10.1029/2008jc004840, 2008.

Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: *World Ocean Atlas 2009, Volume 1: Temperature*. S. Levitus, Ed. NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, D.C., 184 pp, 2010.

Löscher, C. R., Fischer, M. A., Neulinger, S. C., Fiedler, B., Philipp, M., Schütte, F., Singh, A., Hauss, H., Karstensen, J., Körtzinger, A., Künzel, S., and Schmitz, R. A.: Hidden biosphere in an oxygen-deficient Atlantic open-ocean eddy: future implications of ocean deoxygenation on primary production in the eastern tropical North Atlantic, *Biogeosciences*, 12, 7467-7482, 10.5194/bg-12-7467-2015, 2015.

Machu, E., Capet, X., Estrade, P. A., Ndoye, S., Brajard, J., Baurand, F., Auger, P.-A., Lazar, A., and Brehmer, P.: First Evidence of Anoxia and Nitrogen Loss in the Southern Canary Upwelling System, *Geophys. Res. Lett.*, 46, 2619-2627, 10.1029/2018gl079622, 2019.

McCoy, D., Bianchi, D., and Stewart, A. L.: Global observations of submesoscale coherent vortices in the ocean, *Prog. Oceanogr.*, 189, 102452, <https://doi.org/10.1016/j.pocean.2020.102452>, 2020.

McGillicuddy, D. J.: Formation of Intrathermocline Lenses by Eddy-Wind Interaction, *J. Phys. Oceanogr.*, 45, 606-612, 10.1175/jpo-d-14-0221.1, 2015.

McGillicuddy, D. J.: Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale, in: Annual Review of Marine Science, Vol 8, edited by: Carlson, C. A., and Giovannoni, S. J., Annual Review of Marine Science, Annual Reviews, Palo Alto, 125-+, 2016.

McWilliams, J. C.: Submesoscale, coherent vortices in the ocean, *Reviews of Geophysics*, 23, 165-182, 10.1029/RG023i002p00165, 1985.

Molemaker, M. J., McWilliams, J. C., and Dewar, W. K.: Submesoscale Instability and Generation of Mesoscale Anticyclones near a Separation of the California Undercurrent, *J. Phys. Oceanogr.*, 45, 613-629, 10.1175/jpo-d-13-0225.1, 2015.

Nof, D.: On the β -Induced Movement of Isolated Baroclinic Eddies, *J. Phys. Oceanogr.*, 11, 1662-1672, 10.1175/1520-0485(1981)011<1662:Otimo>2.0.Co;2, 1981.

Peña-Izquierdo, J., van Sebille, E., Pelegrí, J. L., Sprintall, J., Mason, E., Llanillo, P. J., & Machín, F. (2015). Water mass pathways to the North Atlantic oxygen minimum zone. *Journal of Geophysical Research: Oceans*.

Philander, S. G. H.: Forced oceanic waves, *Reviews of Geophysics*, 16, 15-46, 10.1029/RG016i001p00015, 1978.

Reagan, James R.; Boyer, Tim P.; García, Hernán E.; Locarnini, Ricardo A.; Baranova, Olga K.; Bouchard, Courtney; Cross, Scott L.; Mishonov, Alexey V.; Paver, Christopher R.; Seidov, Dan; Wang, Zhankun; Dukhovskoy, Dmitry: World Ocean Atlas 2023. NOAA National Centers for Environmental Information, 2024

Rubino, A., Dotsenko, S., and Brandt, P.: Nonstationary Westward Translation of Nonlinear Frontal Warm-Core Eddies, *J. Phys. Oceanogr.*, 39, 1486-1494, 10.1175/2008jpo4089.1, 2009.

Schütte, F., Brandt, P., & Karstensen, J. (2016a). Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean. *Ocean Sci.*, 12(3), 663-685. <https://www.ocean-sci.net/12/663/2016/>, 2016

Schütte, F., Karstensen, J., Krahmann, G., Hauss, H., Fiedler, B., Brandt, P., Visbeck, M., and Körtzinger, A.: Characterization of "dead-zone" eddies in the eastern tropical North Atlantic, *Biogeosciences*, 13, 5865-5881, 10.5194/bg-13-5865-2016, 2016b.

Shcherbina, A. Y., Rudnick, D. L., and Talley, L. D.: Ice-draft profiling from bottom-mounted ADCP data, *J. Atmos. Ocean. Technol.*, 22, 1249-1266, 10.1175/jtech1776.1, 2005.

Stramma, L., Bange, H. W., Czeschel, R., Lorenzo, A., and Frank, M.: On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru, *Biogeosciences*, 10, 7293-7306, 10.5194/bg-10-7293-2013, 2013.

R. Srinivasan, V. Rajendran, Shijo Zacharia, Tata Sudhakar, M.A. Atmanand: Indigenized Indian Drifting Buoys with INSAT Communication for Ocean Observations, *Ocean Engineering*, Volume 145, 2017, <https://doi.org/10.1016/j.oceaneng.2017.08.054>.

Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, R. J., Dengler, M., and Lavik, G.: The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions, *Journal of Geophysical Research: Oceans*, 121, 476-501, doi:10.1002/2015JC010878, 2016.

van Leeuwen, P. J.: The Propagation Mechanism of a Vortex on the β Plane, *J. Phys. Oceanogr.*, 37, 2316-2330, 10.1175/jpo3107.1, 2007.

Vic, C., B. Ferron, V. Thierry, H. Mercier, and P. Lherminier, 2021: Tidal and Near-Inertial Internal Waves over the Reykjanes Ridge. *J. Phys. Oceanogr.*, 51, 419–437, <https://doi.org/10.1175/JPO-D-20-0097.1>.

Vic, C., & Ferron, B. (2023). Observed structure of an internal tide beam over the Mid-Atlantic Ridge. *Journal of Geophysical Research: Oceans*, 128, e2022JC019509. <https://doi.org/10.1029/2022JC019509>

Visbeck, M.: Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions, *J. Atmos. Ocean. Technol.*, 19, 794-807, 10.1175/1520-0426(2002)019<0794:dvpula>2.0.co;2, 2002.

Table 1. Low-DO events (below 60 $\mu\text{mol kg}^{-1}$) found in the upper 200 m during meridional CTD-O ship sections along 23°W between 7° and 12°N. Only those low-DO events are listed, where meridional sections of DO, hydrography and velocity were available (spanning a latitude range of minimum 3°). Columns from left to right denote DO minimum between 0 and 200 m, corresponding depth, latitude and research cruise with date of the CTD-O profile. The last three columns denote type, core position and radius of related eddy, that was analyzed with the eddy identification method. ACE events are marked in bold (the abbreviation ACME stands for anticyclonic mode water eddy). As an example, the event in the third row (Meteor 119/1, 17-Sep-2015) is presented in Fig. 4.

DO minimum [$\mu\text{mol kg}^{-1}$]	Depth [m]	Latitude [°N]	Cruise ID (Date)	Eddy type	Eddy core position	Radius [km]
17	59	8,0	Meteor 116/1 (22-May-2015)	ACME	8.3 °N 23.1 °W	33
37	63	11,5	Meteor 116/1 (21-May-2015)	-	-	-
42	71	8,0	Meteor 119/1 (17-Sep-2015)	ACME	8.0 °N 23.3 °W	38
44	45	10,0	Ronald H. Brown PNE09 (24-Jul-2009)	ACME	10.3 °N 23.2 °W	36
47	69	10,5	Polarstern PS88.2 (08-Nov-2014)	ACE	10.3 °N 23.2 °W	37
48	77	11,5	Ronald H. Brown PNE09 (24-Jul-2009)	ACME	11.6 °N 22.9 °W	31
52	75	11,5	L'Atalante IFM-GEOMAR 4 (11-Mar-2008)	-	-	-
53	67	11,0	Meteor 097/1 (30-May-2013)	-	-	-
54	93	7,0	Meteor 068/2 (04-Jul-2006)	ACME	7.1 °N 23.0 °W	20
55	65	10,5	Merian 018/3 (25-Jun-2011)	-	-	-
56	74	7,0	Ronald H. Brown PNE06 (30-Jun-2006)	ACME	7.0 °N 23.0 °W	45
57	71	11,5	Meteor 130/1 (03-Sep-2016)	-	-	-
58	82	11,0	Meteor 105/1 (10-Apr-2014)	ACME	11.0 °N 23.2 °W	60
58	73	11,5	Merian 022/1 (15-Nov-2012)	ACME	11.6 °N 23.0 °W	37
58	79	10,5	Meteor 106/1 (24-Apr-2014)	ACME	10.4 °N 23.2 °W	33