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Abstract. Recently, Dual-Polarimetric Synthetic Aperture Radar (SAR) has been shown to be effective for large-scale snow
cover monitoring, but it faces significant challenges when applied to finer resolutions, which are crucial for applications such as
avalanche forecasting. In this study, we propose a novel mathematical model to retrieve snow properties from Sentinel-1 SAR
data, leveraging variations in the Dual-Polarimetric Radar Vegetation Index (DpRV I.). We introduce the Snow Index SAR
(SIsar), which approximates variations in signal depolarization occurring within the snowpack. Our study, conducted in the
Central Italian Alps, reveals a strong correlation between the S1sar index and the snowpack height, enabling accurate snow
depth estimation. We also demonstrate the significant impact of the local incidence angle on signal depolarization during the
accumulation season. Based on this, we derive a mathematical correction for the incidence angle, whose inclusion in the model
reduces snow depth estimation errors by approximately 39 %. The model validation conducted in Tromsg (Norway) and in
Davos (Switzerland) confirms its applicability beyond the calibration area, with a root mean squared error (RMSE) of 30.7 cm
and a mean absolute error (MAE) of 24.3 cm in Tromsg, and a RMSE of 22.4 cm and a MAE of 18.1 cm in Davos. These
findings enhance our understanding of dual-polarimetric Sentinel-1 SAR data sensitivity for high-resolution snow monitoring,

providing valuable insights for avalanche forecasting and hydrological applications.

1 Introduction

Snow, in addition to being a complex meteorological phenomenon, represents one of the main resources of the mountain
environment, and it is well-established that more than one-sixth of the Earth’s population relies on glaciers and seasonal snow
for their water supply (Barnett et al., 2005). Moreover, this water source is released gradually during the spring and summer
season, filling rivers and lakes, allowing the production of hydroelectric power (80 % of Alpine waterways are exploited
by hydroelectric power plants) and, above all, renewing the groundwater reserves essential for drinking water supply and
agriculture (Soncini and Bocchiola, 2011). Furthermore, snow monitoring is critically important for avalanche forecasting,

indeed snow avalanches are among the most significant hazards in mountain regions, causing approximately 100 fatalities in
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Europe alone each winter (EAWS, 2025). While for environmental purposes the study of snow at the large-scale is essential (i.e.,
from a single mountain range to the entire globe), for avalanche forecasting purposes there is more interest in the distribution
and properties of the snowpack at the small-scale (i.e., from an individual slope to a single mountain massif; Mariani et al.
(2023, 2024)).

In recent years, satellite remote sensing has become a fundamental tool for monitoring snow cover properties at the large-
scale, particularly in remote regions lacking monitoring stations (Awasthi and Varade, 2021). One of the most important snow
properties that can be monitored using remote sensing techniques is the snowpack height (H.5). In this study, we propose a new
mathematical model for estimating H S using dual-polarimetric Synthetic Aperture Radar (SAR) data, which corrects biases
inherent in previous methods, thereby improving the retrieval of H.S at the small-scale.

Initially, optical satellite data with medium or high resolution, such as Moderate-Resolution Imaging Spectroradiometer
(MODIS), Advanced Very High-Resolution Radiometer (AVHRR), and Sentinel-2, served as the primary spaceborne data
sources for monitoring snow cover extent and surface properties (Feng et al., 2024). However, optical imaging has significant
limitations: it cannot provide information under cloud cover or during nighttime and is sensitive only to the surface of the
snowpack. To overcome these limitations, the use of SAR data has been widely explored since the first pioneering studies on
microwave interaction with snow reported a certain sensitivity on snow as a volume (Ulaby and Stiles, 1981; Kendra et al.,
1998; Tsai et al., 2019).

The interaction of electromagnetic waves with snow is a result of the geometrical structure of the snowpack and of the
electromagnetic properties of its single components: air, ice, water vapor, and, when the snow is wet, liquid water. The basic
electromagnetic properties are thus the relative dielectric constants of ice and liquid water, and their geometrical distribution
in the snow cover (Tiuri et al., 1984; Mitzler, 1987). The presence of a certain liquid water content in the snow strongly
influences the amount of backscattered signal, making wet snow retrieval one of the primary applications of SAR related to
snow monitoring (Picard et al., 2022). Key contributions in the wet snow retrieval include the works of Nagler and Rott (2000)
and Nagler et al. (2016). Additionally, SAR satellites are increasingly used to detect avalanche deposits, providing crucial data
for avalanche forecasting (Kapper et al., 2023). The sensitiveness of microwave instrument to snow volume variations also
depends on the microwave frequency (Strozzi et al., 1997). At the frequencies commonly used for snow monitoring in SAR
missions, such as X-band and C-band, the radar signal penetrates a dry snowpack (i.e., a snowpack without liquid water),
reaching the underlying soil and leading to surface backscatter, which predominantly contributes to the total received signal
in both co- and cross-polarizations (Wiesmann et al., 2007; Awasthi and Varade, 2021). However, the snow volume tends to
depolarize the signal, leading to a certain backscatter increase, compared to bare soil, in cross-polarization (Kendra et al.,
1998; Chang et al., 2014). The influence of the underlying ground is more limited at high-frequency (i.e., Ku-band; Tsang et
al. (2022)), however, despite this, high-resolution Ku-band satellite products are currently unavailable, and new missions, such
as the European Space Agency (ESA) Cold Regions Hydrology High-Resolution Observatory (CoReH2O; Rott et al. (2012)),
have not been selected for implementation.

In Pettinato et al. (2013), the potential of COSMO-SkyMed X-band SAR for H S retrieval was demonstrated, highlighting

the capability of a radiative transfer model to simulate snowpack backscatter at this frequency. To overcome the difficulties
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in neglecting the underlying soil contribution to the total backscatter at low-frequency SAR platforms, Reppucci et al. (2012)
utilized polarimetric decomposition of full-polarimetric RADARSAT-2 products (C-band) to extract the volumetric backscatter

contribution and retrieve snowpack characteristics.

Unfortunately, X-band, L-band, and quad-polarimetric products are currently confined to commercial plat-
forms. Therefore, several studies have focused on exploring the use of publicly available, dual-polarimetric, C-band Sentinel-1
products through backscatter-based techniques.

A significant advancement in understanding the response of the alpine snowpack to the Sentinel-1 signal is presented in
Brangers et al. (2024), where the use of a tower-based radar system demonstrated that the C-band backscatter generated by
the snowpack is not negligible, and can even exceed the backscatter from the underlying ground towards the end of the ac-
cumulation season. In Lievens et al. (2019), the separation of ground and snowpack contributions to the total backscatter
in dual-polarimetric Sentinel-1 products was achieved by computing the ratio between the cross-polarization channel (VH),
which is more sensitive to volumetric backscatter, and the co-polarization channel (VV), which is more sensitive to the sur-
face backscatter produced at the snow-soil interface (formally named depolarization ratio). The resulting index was then used
to map HS at 1 km and 500 m resolution over the European Alps in Lievens et al. (2022). Moreover, Feng et al. (2024)
recently demonstrated that the dual-polarimetric radar vegetation index (DpRV I..) outperforms all other dual-polarimetric in-
dices recoverable from Sentinel-1 in H S retrieval. This index describes an approximation of the degree of depolarization of
the backscattered signal, and theoretically ranges from 0, indicating no depolarization, to 1, representing full depolarization
of the signal (Mandal et al., 2020). The DpRV I, index is a simplified version of the DpRV I index, adapted to be computed
from a Ground Range Detected (GRD) Sentinel-1 product (Feng et al., 2024). Full signal depolarization is theoretically ob-
tained when the intensity of the cross-polarized band equals the intensity of the co-polarized band. Since snowpack volumetric
backscatter causes signal depolarization, the DpRV I, index increases as H .S increases, and its ability in snow depth estimation
is demonstrated for the Scandinavian Alps. Further progress in understanding the backscatter mechanisms of the snowpack in
response to Sentinel-1’s C-band signal, as well as the sensitivity of derived polarimetric indices and interferometric coherence
to seasonal snow accumulation, is presented in Jans et al. (2025). The cited study also analyzes the influence of the incidence
angle between the SAR signal and the normal to the slope surface, known as the local incidence angle (L1 A), on H.S and on
the snow water equivalent (SW E) sensitivity, at a resolution of 1 km, over the Alps.

Despite the significant progress made in leveraging SAR data to monitor snowpack properties at large-scales, limited atten-
tion has been given to smaller-scale investigations. Studies targeting specific mountain ranges, valleys, or avalanche forecasting
zones where a resolution at the scale of the individual slope is required, are still scarce.

The aim of this study is to provide a detailed analysis of the capability of the DpRV I, index to retrieve snow depth and
other snowpack properties at a small spatial scale. To this end, we compute a snow index, here named Snow Index SAR
(SIsar), based on DpRV I, variations, taking as reference its summer average value. We examine the relationship between

the SIsar index and measured or simulated snowpack properties for two proximal locations in the Central Italian Alps.
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The snowpack is a highly dynamic material that undergoes several metamorphic processes throughout the season, altering its
physical and mechanical properties (McClung and Schaerer, 2023). For this reason, we try to identify which snowpack variables
are more correlated to SAR signal depolarization variations, described by the STsar index. Additionally, the complex mountain
topography, combined with the side-looking geometry of SAR, causes significant variation in the L1 A at the small-scale. We
hypothesize that as the LI A increases, the SAR signal penetrates more snow, leading to greater depolarization at the slope-
scale. Therefore, we analyze in detail the influence of the LIA on the SIsar index. Based on this analysis, we propose a
novel mathematical model to estimate H.S, which turns out to be the snowpack variable most strongly correlated to our index,
demonstrating a significant improvement resulting from considering the LI A. The model is validated with in situ observations
collected in an area around Tromsg (Norway), which is significantly different from the calibration area in terms of snow and

weather conditions, and with a photogrammetric snow depth product near Davos (Switzerland).

2 Study areas and data
2.1 Study areas

We considered three study areas: a model calibration area and two model validation areas. The model calibration area is
located around the municipality of Livigno (Sondrio province, Italy), on the border with Switzerland in the central Rhaetian
Alps (46°28' N, 10°8’ E). The elevation ranges from 1800 m a.s.l. on the Livigno valley floor to 4049 m a.s.l. at the summit
of Piz Bernina. The area experiences an Alpine climate, with snow regimes transitioning from continental in the northern part
and maritime in the southern region (McClung and Schaerer, 2023). The Livigno valley floor is predominantly anthropogenic,
with a ski area occupying both sides of the valley up to 2800 m a.s.l.. The higher alpine regions are mainly covered by alpine
meadows and talus, with widespread permafrost present (Dramis and Gugliemin, 2001). In the southwestern part of the area,
numerous alpine glaciers can be found. The intense tourist activity in the area, particularly among winter outdoor enthusiasts,
has led to the development of a local avalanche forecasting system, and several automatic weather stations (AWSs) equipped
with standard gauges are operational (Monti et al., 2014). The first model validation area is located around Tromsg, Norway
(69°38'58"” N, 18°57'25" E). This region is characterized by an Arctic transitional snow climate (Velsand, 2017), and features
relatively smoother topography compared to the Alpine area used for model calibration. The second model validation area is
located near Davos, Switzerland (46°49'20” N, 09°50'02” E) and corresponds to the south-facing slope of Salezerhora peak
(2537 m a.s.l.). This region ranges in altitude from 1660 m a.s.l. to 2500 m a.s.1. and is characterized by alpine meadows, with
a few small forested sections that have been excluded.

To analyze the evolution of the SAR signals over the seasons and their dependency on the snowpack properties, we selected
two sampling areas inside the model calibration area (hereafter referred to as regression sampling areas) around two AWSs:
Gessi (46°31723" N, 10°7'27" E — 2633 m a.s.l.) and Vall (46°28’37"” N, 10°11’28"” E — 2660 m a.s.l.). Both areas were
defined with a 25 m square buffer around the locations of the AWSs, which was adjusted to exclude zones affected by wind
deposition and erosion, while aiming to keep the morphology as homogeneous as possible. Both regression sampling areas have

slopes ranging from 0° to 12°, with the AWSs located on flat terrain, and a predominant northwest slope orientation. The area
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surrounding the Gessi AWS is a typical periglacial environment, characterized by a landscape of scattered stones interspersed
with moss and alpine steppe; the presence of permafrost cannot be excluded. In contrast, the area around the Vall AWS exhibits
a smaller concentration of stones and is dominated by alpine steppe, interspersed with smooth bedrock outcrops. To analyze the
relationship of SAR signal variations with the LI A, we selected two larger areas around the location of the AWSs (hereafter
referred to as L1 A sampling areas) to ensure a heterogeneous LI A distribution (see Fig. 1). For these areas, a 2 km buffer was
applied around the location of the AWSs, with elevation differences limited to 200 m. Zones with anthropogenic features,
such as ski slopes or zones where snow cover is heavily influenced by ski touring and freeride tracks, were excluded based on
experts’ experience. The LI A sampling areas surrounding the two AWSs display comparable yet heterogeneous land-cover
compositions, characterized by alternating zones of alpine steppe, talus deposits, occasional bedrock outcrops, and dispersed
large boulders. It is important to note that the regression sampling areas were included within the LI A sampling areas, but the
former represented only a small fraction of the latter. Therefore, despite the partial overlap, the results obtained from analyzing
the second area were largely independent from those related to the first, as they were mainly driven by new additional data.
To validate the results, we selected a 50 km x 50 km area inside the Norwegian model validation area where in situ mea-
surements were available. Within this area, we applied a 25 m square buffer around each measurement location to sample the
model estimations (hereafter referred to as Norwegian validation sampling areas). Concerning the Swiss validation area, we
considered an area of approximately 2 km? where a photogrammetric snow depth product was available (as will be shown later
in the paper, our analysis predominantly focused on snow depth retrieval). Images of the two validation areas will be presented

in Sect. 4.3 together with the related results.
2.2 SAR data

In the present study, we employed freely available level-1 GRD data products from the Sentinel-1 platform, which provides
data from a dual-polarization C-band Synthetic Aperture Radar (SAR) instrument at 5.405 GHz. The data were acquired in
Interferometric Wide swath mode (IW), with an original resolution of 5 m in range and 20 m in azimuth. Both VV and VH
polarization are available and the platform is right-looking. During the SAR data preprocessing phase, as well as to compute
the local incidence angle for the two AGs, we used the freely-available Copernicus GLO-30 DEM (digital elevation model)
with a 30 m cell resolution (European Union, 2021).

For the calibration of our model we selected two acquisition geometries (AGs) that entirely cover the calibration area,
taking advantage of the different acquisition times and look directions. The first AG, with relative orbit number 168, was
in the descending direction and was acquired around 5 a.m. UTC. The second orbit, with relative orbit number 15, was in
the ascending direction and acquired around 5 p.m. UTC. The different acquisition times provided valuable information for
monitoring snowpack conditions, which could vary significantly between morning and afternoon at this latitude. In the present
study, we focused on the period from October 2022 to July 2024, covering two full snow seasons. Given the Sentinel-1 revisit
time of 12 days, a total number of 57 descending plus 59 ascending Ground Range Detected (GRD) products were downloaded
in Cloud Optimized Geotiff format (COG) (Copernicus, 2025).
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Figure 1. General overview of the model calibration area together with the locations of the two AWSs and the L1 A sampling areas.

For the validation of the model we downloaded Sentinel-1 GRD products over the Norwegian validation area for the months
of December 2024 and January 2025. The two AGs had relative orbit numbers 131, with descending direction and acquisition
time around 5 a.m. UTC, and 95, with ascending direction and acquisition time around 5 p.m. UTC. Concerning the Swiss

validation area, we downloaded a Sentinel-1 GRD product acquired on 9 January 2022 at 5 p.m. UTC (AG 15).
2.3 Weather and snowpack measurements

Concerning the calibration area, the weather data utilized to run the snowpack evolution model were collected by the two AWSs,
which operated throughout the analysis period. These measurements included air and snow-surface temperature, snowpack
height, relative humidity, atmospheric pressure, wind speed and direction, and incoming shortwave radiation. It should be
noted that these AWSs are routinely employed for snowpack simulations to support avalanche forecasting within the Livigno
municipality (additionally, standard in situ snow stratigraphies are routinely performed in the backcountry areas to calibrate
model parameters and validate simulation outputs; Monti et al. (2016)). During the 2022-2023 winter season, meteorological
conditions were marked by below-average precipitation. The maximum H S recorded at the Vall station was 146 cm on 22 April
2023. Field observations revealed that the combination of low temperatures and reduced snowpack thickness led to significant

constructive metamorphism, resulting in a generally low-density snowpack dominated by depth hoar and faceted grains in the
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deeper layers (McClung and Schaerer, 2023). In contrast, the 2023-2024 winter season experienced frequent Atlantic weather
systems, leading to above-average temperatures and precipitation. The maximum H.S during this period was 322 c¢m, recorded
at the Vall station on 3 April 2024. These conditions produced a dense and warm snowpack overall.

To the Norwegian validation area are associated 27 in situ snow stratigraphies or snow depth manual observations, already
presented by Engeset et al. (2018). These measurements were acquired between the 10 December 2024 and 15 January 2025 in
dry snow conditions. On the other hand, to the Swiss validation area is associated a snow depth raster obtained by differentiating
a summer digital surface model (DSM) realized with a UAV—photogrammetric survey with another DSM carried out on 12
January 2022 in dry snow condition (Biihler et al., 2022). The dataset has an original resolution of 10 cm. These measurements
were made three days after the corresponding SAR acquisitions, but the snowpack did not change significantly during that

period, so the temporal offset is not expected to strongly affect the comparison.

3 Methods
3.1 Snowpack modelling

Snow observations directly measured by the AWSs were integrated with data derived by snowpack simulations. For this pur-
pose, the SNOWPACK software was used (Bartelt and Lehning, 2002), with the operational setting employed for avalanche
forecasting purpose in Livigno. The simulations were performed for a flat terrain (no preferential exposition), where the model
was forced to follow the snowpack height measured by the AWSs, thus also simulating wind-driven snow erosion. The sim-
ulated data had an hourly temporal resolution. For each date and time of the available SAR acquisitions, we extracted the

following snowpack variables (X sv):

snow height directly measured by the AWSs (H.5);

— snow surface temperature directly measured by the AWSs (7ss);

— simulated snow water equivalent (SW E);

— average simulated snow density of the entire snowpack (p;);

— average simulated grain size, referring to the grain diameter, of the entire snowpack (F5);

— average simulated liquid water content of the entire snowpack (LW C') expressed in percent by volume;

height of the new snow of the last 24 hours (H N24).
3.2 SAR data processing

We used the open-source software SNAP for the entire standard preprocessing workflow of the Sentinel-1 GRD products,

as well as for extracting the LI A. Initially, we applied the orbit state vectors provided by the satellite facility and then we
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performed radiometric calibration following the beta-nought (3°) convention. Next, we removed the radiometric variabil-
ity associated with topography using the Radiometric Terrain Correction algorithm proposed by Small (2011), obtaining the
backscatter coefficient gamma-nought (v°). This coefficient was subsequently subjected to geometric terrain correction and
speckle filtering using the Lee filter with a 9 x 9 pixels window size and 2 looks (Yommy et al., 2015). The original resolution
of the GRD products was 10 m.

For each preprocessed scene we computed the simplified DpRV 1. index as proposed by Feng et al. (2024):

(Wn)? + 3y
(Wi +70v)?

DpRV I, = ) ey

where 9y, represents the backscatter coefficient v° in cross-polarization, while v, represents the backscatter coefficient 4 in
co-polarization. Both of them are measured in linear scale. Note that for a fixed value of 7y, the DpRRV [, index decreases as
19y increases because 0. o DpRV I, =1 (W1 = 379v) /(W +9v)? < 0 since in general 49, < 44y (Mandal et al. (2020);
see also Fig. 3). On the other hand, for a fixed value of 1, the DpRV I, index increases as 79y increases. Using data from
the AWSs and Sentinel-2 optical imagery, we selected and averaged snow-free summer images to obtain a summer reference
image (DpRV IZ") for each of the two AGs. We then computed a new (adimensional) snow index, named Snow Index SAR

(SIsar), as follows:
SIsar = DpRVI.(t) — DpRVI", 2)

where ¢ represents the acquisition time over the snow season.

To analyze the relationship between the SIsar index and each of the X svs, we extracted SIsar—time-series for the two
regression sampling areas and the two satellite orbits. Wet snow presence in each scene was identified using 7" images,
following the algorithm proposed by Nagler et al. (2016), and dates with wet snow conditions were neglected from the study.
The Nagler’s method was performed using reference images from the same acquisition dates as those used for DpRV 5"
computation. The SIsar values in the time series were computed by averaging the values within the 50 m x 50 m regression
sampling areas for the two different AGs (similarly to Pettinato et al. (2013), we noticed that this was the optimal choice to
balance spatial resolution and temporal signal stability). The pixels with negative SIsar values along the snow season were
excluded and we hypothesized that this anomalous effect was related to the LI A. For analyzing the dependence between our
index and the LI A, we grouped and averaged the SIsar values for LI A classes of 5° and 2° within the two LI A sampling
areas (in this case, we considered the values of each 10 m x 10 m pixel separately and no averaging was performed since
each pixel was characterized by a different LI A). This last analysis was conducted under snow-free conditions as well as
on several dates during the snow season. In this case, the pixels with negative SIsar values were not excluded in order to
verify our previous hypothesis. The SIsar values related to each 50 m x 50 m Norwegian validation sampling areas were
again computed by averaging the values of each pixel. The Swiss validation area was treated in a similar manner: we computed
STsar values over the SAR scene at 50 m spatial resolution and applied a 3 x 3 pixel median filter to reduce outliers and
to handle for a few missing values in the photogrammetric raster. Subsequently, the photogrammetric snow depth raster was

resampled to the same resolution using bilinear interpolation. The presence of dry snow was verified with the Nagler’s method
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in all validation areas, moreover for the validation we did not remove the pixels with negative S7sar values (the reason of this

different choice will be clear in Sect. 4.2).
3.3 Mathematical modelling

Based on the theoretical background, the S7Isar index was assumed to be a function of the snowpack properties. Therefore, it

could be expressed as:

SIsar = Slsar(HS,ps,Tss, Es, LWC , HN24...). 3)
Our objective was to identify the most important snowpack variable X sv, to approximate the S7sar index as

SIsar ~ f(Xsv), 4)

where f was a suitable unknown function to be derived. Moreover, we then studied the dependence of the SIsar index on the

LIA in order to refine Eq. (4), namely we would like to write:

SIsarzf(st,LIA), (5)
where, again, f had to be derived. Finally, since the LI A is always known, by inverting Eq. (5) we would be able to compute
an approximation X sv,,q; (mdl stands for modelled) for the variable X sv.

To this end, we initially implemented a random forest algorithm to assess the importance of the snowpack variables in
predicting the values of the S7sar index sampled within the two regression sampling areas. The random forest was performed
using the R programming environment, running the algorithm proposed by Breiman (2001). This approach allows for the
estimation of the importance of independent variables in predicting the dependent variable. Variable importance is assessed
using the permutation method, which involves randomizing the values of each variable one at a time and evaluating the resulting
decrease in model performances. It is worth noticing that the STV E variable was excluded from the random forest model as it is
dependent on other variables, indeed SWE = HS' - (ps/pw ), where p,, denotes the water density. The purpose of this analysis
was purely qualitative, and the results were then validated through a statistical analysis. This latter analysis was conducted
for the individual time series derived from the two regression sampling areas and the two separate AGs, as well as for all the
data treated together. Specifically, Spearman’s correlation coefficient (SCC) and Pearson’s correlation coefficient (PCC) were
calculated, and their significance was verified through the associated p-value obtained from a Z-test and a t-test, respectively.
The SCC was used to assess the presence and the nature (positive or negative) of the correlation between the S1sar index and
the target X sv. The SCC is a non-parametric measure, meaning it does not assume any specific distribution of the data, and it
helps to identify monotonic relationships, whether linear or non-linear. In contrast, the PCC was used to determine whether the
relationship between the S1sar index and the chosen X sv was linear or not. The PCC measures the strength and direction of
a linear relationship between the data, and the assumption that those data are normally distributed must be made to verify the
significance of the test (Hauke and Kossowski, 2011). For the variables that showed a significant linear correlation, we then

fitted a linear regression model.
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At this stage of the analysis, we selected the X sv which showed the best linear correlation with the S7sar index, and for
which we could assume the theoretical property that SIsar ~ 0 corresponds to snow-free conditions. Thus, we expressed the

following relation:
STsar ~ f(Xsv)=a- Xsv, (6)

where a > 0 was derived with the least squares method. Therefore, the initial (linear) model for X sv was given by

Slsar
X SUmdi_tin = Pt )

Concerning the study of the dependence of the

S1sar index on the L1 A, we expressed this relationship as:

SIsar~ f(Xsv,LIA) = g(LIA)- Xsv, (8)
where the function g was derived again with the least squares method and its shape was chosen according to the distribution
of the data derived from the LI A sampling areas. Indeed, when selecting a time and a L] A sampling area, we could assume
(especially at the beginning of the winter season, when wind redistribution and variations in melting or metamorphism are not
very influential) that the snowpack variable X sv remained constant in that zone. On the other hand, the LA took on many
different values. For this reason, the function g could be approximated as g(LIA) ~ SIsar/X sv, which should be independent

on X sv. Therefore, the final model for estimating X sv was:

SIsar

XSUmdai_L1A = J(LTA)’ )

3.4 Model validation strategy

The validation of our model for approximating X sv was divided into four parts. Initially, we compared, in terms of root
mean squared error (RMSE) and mean absolute error (MAE), the approximations for X sv given by Egs. (7) and (9), using as
reference the measurements of the two AWSs (X svy,s,-; msr stands for measured) inside the model calibration area. Secondly,
we performed a mathematical analysis to establish the validity of the LIA dependency through the function g. When we
initially derived the value a we considered values of the SIsar index related to different LI As. For this reason, the weighted
average value g of the function g should be similar to a. Note that we had to consider a weighted average because some
LI As were more recurring than others. Recall that the regression sampling areas and the LI A sampling areas were effectively
independent of each other. Thirdly, using Eq. (9), we computed the values of Xsv,,q; 74 for the Norwegian validation
sampling areas. To demonstrate the model’s applicability in a location significantly different from the one it was calibrated
on, we compared X sv,,q;_r.ra with field measurements conducted in the Norwegian validation sampling areas. Finally, using
again Eq. (9), we computed the values of X sv,,qi 74 for the Swiss validation area. Those values were compared to the

photogrammetric data to validate the model with a large dataset.
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4 Results
4.1 SIsar index and snowpack variables

Due to the limited dataset available, the results of the random forest analysis are exploratory. The importance values of the
variables are uniformly low and, therefore, not reported, as they are likely affected by the small sample size and should not
be overinterpreted. Nevertheless, the random forest model suggests that the variable H N24 is not important for predicting
the S1sar index, while HS emerged as the most important predictor, followed by ps, Es, LW C, and T,,. The results of the
statistical analysis, conducted on the entire dataset (which includes all regression sampling areas and acquisition geometries),
are presented in Table 1. The analysis reveals significant correlations between the SIsar index and several variables, including
HS, SWE, ps, and Ej. Specifically, there is a moderate-to-strong positive relationship with both H.S and SW E, a moderate
positive correlation with p,, and a moderate-to-low negative correlation with E. These findings align with the results from the
random forest model. The PCCs and the related p-value tests indicate that the linear relationships between the S7sar index
and both HS and SW E are strong, while no robust linear relationship is found between the S1sar index and p,. Moreover,
the p-values associated to the linear regression model show that, for both H.S and SW E, the regression slope is significant.
However, only for H S the intercept is not significant. Therefore, only for H.S, we can set the intercept to zero, implying that
snow-free conditions should correspond to a value of SIsar ~ 0 (see Sect. 3.3). This, together with the fact that the best PCC
corresponds to H.S, supports the selection of this variable as the candidate X sv for the model. Therefore, hereafter we set
Xsv= HS. In particular, the quality of the linear regression with intercept set equal to zero is almost the same as the one
obtained for a generic intercept, indeed the R? coefficients are 0.493 and 0.495 respectively. The coefficient a of the linear

relationship between H S and the SIsar index (see Eq. (6)) is approximately 6.00-10~% c¢cm ™!

, as reported in Fig. 5(a).

The results of the statistical analysis conducted for each individual regression sampling area are not presented in tabular
form for brevity. However, the findings are consistent with those reported for the analysis conducted on the entire dataset.
Focusing only on the most influential variables, a strong positive PCC with the S7sar index is observed for HS and SWE
across all areas and AGs. In particular, the highest PCC values for HS and SW E are at Vall for AG 15, with PCC equal to
0.802 and 0.800, respectively. Additionally, the correlation intensity order among the variables is in line with the results from
the analysis of the entire dataset, except for the Gessi area in AG 168, where SW E shows a slightly better linear correlation
with the S7Tsar index than HS (PCC equal to 0.761 against 0.756). Finally, the best correlations are in general related to the

AG 15 (afternoon).
4.2 STsar index and local incidence angle

Figure 2 shows examples of the behavior of the SIsar index for 5° LI A classes across the different LI A sampling areas,
at different times during the snow season, and under snow-free conditions. In both areas, for all acquisitions with snow-free
conditions, the S1sar index on average remains approximately constant as the L A increases, with values close to zero. When
analyzing the relationship in both LI A sampling areas for all dates with snow cover, we first observe that the SIsar index

shows negative values for angles approximately smaller than 30°, even if H.S is not zero. For all these acquisitions, for angles
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Table 1. Summary of the results of the statistical analysis for each snowpack variable X sv. The linear regression is performed only for those

variables showing a significant and large PCC.

Snowpack variable sce SCC PCC PCC Linear regression  Linear regression
(X sv) p—value p—value intercept p—value slope p—value
HS 0.552 2.60-107° 0.704 3.23-107'¢ 0.485 3.23-1071'¢
SWE 0.553  2.43.107° 0.700 5.11-107'¢ 0.00761 5.11-1071'¢
Ps 0.438 6.43-107° 0.492  2.07-1077 - -
E, —0.295  0.00302  —0.275  0.00566 - -
Tss 0.0367 0.717 0.0682 0.500 - -
HN24 0.199 0.0471 0.155 0.124 - -
LwcC 0.349  3.72-107*  0.139 0.168 - -

greater than approximately 30°, the relationship between the S7sar index and the LIA follows a parabolic shape, which
suggests a relationship between them in the presence of snow.

As one can notice from Fig. 3, the point where the curves showing the relation between the LI A and the S1sar index
intersect the x-axis is consistently around 25° — 30°, and again we see that the relationship between the S7sar index and the
LI A follows a parabolic shape for larger angles. In particular, as H.S increases the parabolic shape expands vertically upwards.
This suggests that the STsar index can be expressed as Eq. (8). Figure 3 also reports the behaviors of the DpRV I, index and
of the single backscatter components 79y and 74, as the L1 A varies. Under snow conditions, the DpRV I, index attains values
smaller than under snow-free conditions only for LI As smaller than 25° — 30°, in line with the SIsar index behavior. Unlike
the latter, its values related to the summer acquisition depend on the LI A. Note that 7y, increases with H.S for LI As below
approximately 20°, in line with the findings of Jans et al. (2025), while it appears to be independent on H .S for larger L1 As.
However, it decreases as the LI A varies between 20° and 80°. On the other hand, ﬂ/{),H shows a more complex behavior as
the L1 A varies. Interestingly, for LI A values below 30°, it reaches smaller values under snow-covered conditions than under
snow-free conditions. However, we observe the opposite trend for larger L1 As and a positive correlation with H S in line with
the results of Brangers et al. (2024).

From the least squares method, we obtain the following equation for g(LI A) describing a parabola, as represented in Fig.

4.
g(LIA)=ag+ay - LIA+ay- LIA? (10)
where the LI A is expressed in degrees, ag = 4.41- 1073 ecm™1, a; =2.04-1074 o”! .cm~ ', and ay = —1.80-1076 °~% . em1,

The resulting R? coefficient is equal to 0.695. The zeros of g(LIA) are approximately 29.1° and 84.4°. Since we observe that
for LI A values below approximately 30° the SIsar index is always negative, even when H .S is nonzero, we exclude all areas

with L1 A < 30° in the implementation of the final model (this confirms our initial hypothesis that those negative S7sar values

12



(a) (b) .
. - i .
04 04 N
. | I
. . H
4
0.2 0.2 ..
. . .
~ b4 ~ 1]
G A R B T H
) %#%#%% %%% "I 1T N
. 1]
] U .
H ¢ s
. I )
-0.2 -0.2 , LI °
<, :
S & D P O P & & D T TS S\ S NS N S\ S O TP
& oY ,f,’} ,b,b'? &5? 6;»,‘? &@ ,\oﬁ %n,":’ ¢ ,L{J/ (bq/?’ b@? éf? 70 ,\r{} Q;;?
N N N < pS < < A\ N N A S A\
LIA class [°] LIA class [°]
(c) (d) SR
. L]
0.4 T » 0.4 : H H :
" g :
L] .
. o
.ot . :
0.2 o 0.2 ..
. . .
N o . .
[ 4 ©
5 2
o.o——H -F+4-]-F -TH 0.01|- =19-|- -|-F -
-0.2 . -0.2 . .
H
S > D S D P D & D > & D H D P & & D
T ,f,’l' (g;? &5?‘ 6;;? @,5‘? ,\nﬁ Q;;@ oo q:;/ ,b@'b Q‘? é,_,@ 6& ,\%’.\ Q;;P
SO AR A I RN ¥ ¢ ¥ O ¢ QTR
LIA class [°] LIA class [°]

Figure 2. Box plots of 5° LI A classes vs. S1sar index values over the course of the snow accumulation season (i.e., for increasing values
of HS measured by the AWSs within the LI A sampling areas). (a) Gessi AG 15, 8 August 2023, snow-free conditions. (b) Gessi AG
168, 23 November 2023, H S, s = 60 cm. (¢) Gessi AG 15, 24 November 2023, H.S,,s = 60 cm. (d) Vall AG 168, 29 December 2023,
HSpsr =100 cm.

are related to the LI A; see Sect. 3.2). Areas with LI A > 80° are also removed because they are in shadow. Note that, due to
these choices, Eq. (9) is well-defined since g(LIA) # 0 for all LI As of interest.
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Figure 4. Mean SIsar values normalized by HS measured by the AWSs grouped into LIA classes of 2° width. Data derive from the
beginning of the season, when we could assume that H.S was representative of the entire LI A sampling areas. Values for LI A < 30° and
LIA > 80° are reported in yellow, while values between 30° and 80° in red. In black we report the function g(LIA), inferred on the red

data.
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square method are also represented.

Table 2. Errors and number of data points related to the different models and datasets.

H S estimation RMSE MAE number of data points
H Smai_1in (Livigno, Italy) 57.2cm  46.0 cm 100
HSmai_r1a (Livigno, Italy) 34.6cm 28.3cm 100
HSmai 114 (Tromsg, Norway) 30.7cm  24.3cm 27
HSai 14 (Davos, Switzerland) 22.4cm  18.1 cm 589

350 4.3 Models comparison and validation

When applied to the calibration area, the model for H.S given by Eq. (7) leads to a RMSE equal to 57.2 cm and a MAE equal
to 46.0 cm. With the LI A correction, the errors drop significantly, indeed using Eq. (9) the RMSE becomes 34.6 cm while
MAE 28.3 cm. These values represent a 39.5 % decrease in RMSE and a 38.5 % decrease in MAE. Plotting HS,,q1 .14
against H .S, (Fig. 5(b)), we observe that H.S,,q; 174 =~ ¢1 - HSmsr, wWith ¢; = 0.841. It is important to note that a perfect
355 model would lead to a value of ¢; equal to 1. To mathematically verify the validity of g(LIA) we compute its weighted
average g as explained in Sect. 3.4, obtaining § = 9.70-10~* cm ™!, which is of the same order of magnitude as the coefficient
a=6.00-10"* cm~! of Eq. (7). Moreover, using Eq. (9) to estimate H S in the validation area around Tromsg (the Norwegian
validation dataset; see Fig. 6(b)) we obtain an RMSE of 30.7 cm and a MAE of 24.3 cm. Finally, using Eq. (9) to estimate /.S
in the validation area around Davos (the Swiss validation dataset; see Fig. 7) we obtain an RMSE of 22.4 cm and a MAE of
360 18.1cm.
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Figure 6. Snow depth estimation for the Norwegian validation area. (a) Overview of H Siq4;_r.r4 between 31 December 2024 and 1 January
2025. (b) HSpsr vs. HSmai_r14 related to the 27 in situ snowpack observations. (¢) Particular of (a) showing in situ observations carried

out between 30 December 2024 and 2 January 2025 (no significant variation of H.S occurred in this time window).

5 Discussion
5.1 Correlations of the SIsar index with snowpack variables

The statistical analysis indicates that the STsar index is a complex function of several snowpack parameters. Nevertheless,
since SAR measurements are of great interest, especially in poorly monitored areas where no additional observations are
generally available, we aimed to limit the dependency to just one of the most significantly linearly correlated variables. These
are HS and SW E, in accordance with several other studies (Snehmani et al., 2015; Lievens et al., 2019; Patil et al., 2020).
The selection of H.S as candidate X sv is supported by the fact that it is the only snowpack variable for which the intercept
value is not statistically significant, thereby fulfilling the theoretical condition that SIsar ~ 0 corresponds (on average) to a
snow-free state.

The Spearman’s correlation coefficient suggests that the STsar index increases also with ps;. One possible explanation
for this increase is that thicker and denser snowpacks contain larger snow mass and more grains per unit volume of snow,
consequently, there will be more opportunities for signal depolarization, as reported in Lievens et al. (2019). In addition, Tiuri
et al. (1984) demonstrated that both the real and imaginary parts of the dry-snow dielectric constant increase with snow density.

As this happens, the surface backscatter enhances, while the influence of the underlying soil may be slightly reduced due to
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the stronger absorption. However, the Pearson’s correlation coefficient suggests that the relation between the S1sar index and
ps 18 not linear. This is in line with the linear relationship resulted between the SIsar index and the SW E: if both p, and
H S would be linearly correlated with the index, then the S E would be quadratically correlated with it (this directly follows
from the definition of SW E; see Sect. 3.3). Concerning the fact that the intercept can be set equal to zero for H.S but not for
the SW E, this is probably a consequence of the fact that the SW E is not well-defined in absence of snow: as snow fades
away, both its mass and volume tend to zero, implying that p, cannot be defined in absence of snow. A backscatter increase
with p; is also observed in Besic et al. (2012), who however demonstrate how the p, influence on SAR-based SW E retrieval
is negligible.

Paloscia et al. (2017) observed that the co-polarized band of Cosmo-SkyMed o increases with larger E. Assuming that
79y behaves similarly to oy, this could explain the slight decrease in the SIsar index that we observe for increasing E.
Nevertheless, further analysis are required to understand the influence of this parameter. Interestingly, the results do not show a
significant correlation between the STsar index and T, even if Baumgartner et al. (1999) demonstrated that SAR backscatter
is sensitive to variations in near-surface snow temperature.

Finally, it should be emphasized that the LW C exhibits one of the weakest correlations with the SIsar index, despite its
primary role in the snow backscattering mechanism (Tiuri et al., 1984; Nagler and Rott, 2000; Besic et al., 2012). However, this
is not surprising since we excluded all acquisitions containing wet snow according to the Nagler’s method, which obviously

significantly reduced the variability of the LW C.
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The statistical analysis conducted for individual regression sampling areas and individual acquisition geometry confirm the
one conducted on the entire dataset. The evidence that the Pearson’s correlation coefficients for individual stations and acquisi-
tion geometry slightly differ from the one obtained when considering all data together suggests that variations in morphology,
land cover, and local climatic conditions lead to slight differences in the relationship between the SIsar index and any X sv.
Consequently, a local fitting approach should perform slightly better than a global one. These results are consistent with the
findings of Jans et al. (2025).

5.2 Influence of the local incidence angle on the SIsar index

The analysis of the relationship between the DpRV I, index and the SIsar index with the LI A under snow-free and snow-
covered conditions reported in Fig. 3 is revealing. In particular, the findings regarding the two single backscatter components
Y9y and 19y are in line with the results presented by Brangers et al. (2024) and Jans et al. (2025), respectively. The increase
of 79y as H.S increases can be explained by the larger volume of snow traversed by the SAR signal, which leads to more
opportunities for signal depolarization and by the different interactions with layered structures. The fact that 79y, shows no
dependence on H S indicates that it is primarily influenced by soil properties, further confirming the effectiveness of using
depolarization ratios to isolates the snow backscatter contributions. Note, however, that the variations of 1, with H S is very
small, attaining values very close to those observed under snow-free conditions. This may explain why Strozzi et al. (1997)
concluded that /.S could not be monitored with C-band SAR due to the low sensitivity of the backscatter components to snow
accumulation.

Interestingly, we observe that in presence of snow the DpRV I, index attains values significantly larger than those under
snow-free conditions for LI As above 40°, and its variations with H S is substantial. This confirms that the use of polarization
ratios or similar indices significantly increases the sensitivity of SAR to H S variations, enabling its monitoring (Lievens et al.,
2019; Feng et al., 2024; Jans et al., 2025).

Focusing on the S7sar index, no significant dependence on the LI A is observed for any of the snow-free acquisitions in
either analysis area, with values on average around zero. On the other hand, in all acquisitions under snow-cover conditions,
we first observe that SIsar values are negative for low incidence angles, specifically for LI A values below approximately
25° — 30°. For incidence angles greater than 30°, the relationship between our index and the LI A takes on a parabolic shape,
increasing up to around 55° before decreasing again. This suggest that DpRV I, index variations in presence of snow above
the ground are significantly influenced by the LI A, and that the latter must be taken into account for dual-polarimetric SAR
retrieval of H.S (despite the SAR products were radiometrically terrain corrected for the LI A within the preprocessing phase).
A complex relationship between SAR derived vegetation indexes and LI A has been already demonstrated in the presence of
vegetation cover above the ground by Kaplan et al. (2021). Since the influence of a vegetation volume on the DpRV I. can
be linked to the one snow over bare soil (Feng et al., 2024), we believe our observations are valid. As shown in Fig. 2, the
presence of outliers in the S7sar index values across the LI A classes is notable. However, such variability is common in this
type of experiment and can be attributed to various sources of error, including wind redistribution effects, speckle noise, and

spatial variability in snowpack or ground properties.
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Since the SIsar index is consistently negative during the accumulation season for L1 A values smaller than 30°, snow cover
monitoring is not possible in this situation. The negative values of the S7sar index at low LI As can be primarily attributed
to the increase of ﬂ,f{}v with HS (recall Fig. 3(d)), consistent with previous observations (Jans et al., 2025), which results in
snow-covered DpRV I, index values lower than those under snow-free conditions. The decrease of the STsar index values for
large LIAs is more difficult to interpret. Some possible explanations include a combination of factors such as the dominant
specular scattering mechanism, many pixels being in shadows, different interactions with soil and snowpack structures, and
travel path of the signal trough the snow being so long that its energy absorption is no longer negligible, even at C-band (Rott
et al., 2021). However, further specific studies are needed to confirm or refute these hypotheses.

All these considerations, together with the fact that the parabolic curve describing the dependence of the S1sar index on the
LI A extends upwards as the accumulation season progresses (i.e., as H.S increases), support the choice of Eq. (8), and hence
also the estimation for H.S given by Eq. (9). Note that analogous relationships between the DpRV I.. index and H S cannot be
established, due to the index’s sensitivity to the LI A under snow-free conditions (see Fig. 3(b)). Finally, the similar behaviors
of the STsar index normalized by the measured H.S of both LI A sampling areas at different times of the snow season (see
Fig. 4) suggest that g(LI A) is not significantly dependent on local or temporal conditions. Notice that acquisitions refer to two

very different seasons in terms of structure and physical properties of the snowpack.
5.3 Effectiveness of considering the local incidence angle within the model

When we approximate H.S trough Eq. (9) (i.e., HS;,q4_r14) We obtain a significant improvement with respect to the usage
of Eq. (7) (i.e., HSmai_1in), both in terms of root mean square error and mean absolute error. Furthermore, the values of the
weighted average g of the function g(LIA) is of the same order of magnitude of the slope coefficient a of the linear regression.
Differences between the values of g and «a are attributed to the several sources of errors: we consider only the most influential
snowpack variable, variations in soil properties that we do not consider could affect the values of the STsar index, and the
datasets used to derived a and g(LI A) are different and effectively independent of each other (in particular, the former is much
smaller than the latter, which naturally results in a smaller variation of LI As). This also explains why H.Sy,q1 114 ~ ¢1-H Smsr
with c¢; not exactly equal to 1: the slope ¢; incorporates the errors deriving from the factors just described. However, the results
obtained not only confirm the significance of the relationship between the SIsar index and the LI A, but also indicate that
correcting the index with a function accounting for its dependence on the LI A leads to a substantial improvement. Therefore,
the LI A has a non-negligible influence on SAR signal depolarization when snow is present above the ground.

The results of the validation performed with the in situ measurements carried out in Tromsg, Norway, and Davos, Switzer-
land, further support the correctness of the modelling. The relation H.S,,q; 14 =~ H Sy, s is successfully verified, and both
the RMSE and the MAE are slightly smaller than the corresponding values obtained for Livigno, Italy. This suggests a global
applicability of the model, even if a local calibration with in situ observations is recommended, as already discussed in Sect.
5.1. As shown in Fig. 6, mapping H S,,,q;_ 114 for the Norwegian validation area reveals a high degree of heterogeneity in snow
cover distribution. At a large-scale, we observe that zones with greater snow accumulation are generally found at higher eleva-

tions (see Fig. 6(a)). Conversely, at a small-scale, we observe that the snow distribution appears highly irregular, with eroded
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peaks and ridges, while significant deposits are found in bowls and gullies (see Fig. 6(c)). This latter observation aligns with
both field measurements available for the period under analysis and the regional climate, which is characterized by frequent
wind transport events. It is important to note that, within the same acquisition, we used field observations that were proximal
to one another (minimum spacing of approximately 100 m) but, being the slopes naturally non-homogeneous, they correspond
to different LI As. This implies that, although the obtained MAE was slightly larger than the one obtained in the work of
Lievens et al. (2022), where H.S was mapped for a 500 m resolution, or in the one of Feng et al. (2024), the proposed model
demonstrates a good ability in describing snow depth variations at the small-scale (i.e., within the same slope). This is par-
ticularly relevant for avalanche forecasting purposes, since avalanche forecasters are interested in detecting the complex snow
cover heterogeneity of the alpine environment, which is influenced by wind transport, avalanches, and the various metamorphic
processes occurring at different aspects (Plattner et al., 2004).

The quality of snow depth retrieval at the slope scale is confirmed by the validation in Switzerland, where the H.S mapped
with our model was compared with measurements derived from a photogrammetric survey. Indeed, the RMSE and the MAE
were even smaller than the ones related to the Norwegian validation area. From Fig. 7(a), it is evident that the largest over-
estimations are concentrated in the upper part of the mountain slope, where the steepest gradients occur and the snowpack
may have experienced variations (e.g., snow creep) during the three days between the Sentinel-1 GRD acquisitions and the
UAV-photogrammetric survey. On the other hand, the largest underestimations are found in the lower part of the slope, where

the snowpack is very thin.
5.4 Model limitations and future work

A key limitation of our model is that the STsar index depends not only on the snow height H.S but also on other snowpack
properties, such as the average snow density p, and average grain size E. In mountain regions, these properties can vary
considerably since they are strongly influenced by both elevation and aspect. This variability may result in areas where the
model performs slightly better and others where its performance is somewhat reduced.

As reported in Appendix A, we observe that a significant overestimation of H.S when wet snow layers are embedded within
dry snow layers. This configuration is typical during the early or late stages of the snow season, particularly when dry snowfall
accumulates over an existing wet snow surface due to a decrease in frost level during a precipitation event (Colbeck, 1982).
This overestimation can be theoretically interpreted as follows: both 74, and 79y should drop in presence of wet snow since the
signal is absorbed and hence unable to penetrate further in depth. However, as observed from analyzing the data, the presence
of dry snow on the surface results in a 7J;; increase, which is more sensitive to volumetric backscatter than 49y,. This implies
a significant increase of the DpRV I index since it increases as the difference between co- and cross- polarization backscatter
decreases. Under these conditions, the method of Nagler et al. (2016) used for SAR-based wet snow retrieval may fail since it
relies on both VV and VH bands. Notably, in these conditions, the average liquid water content (LW C') of the snowpack is not
particularly large, considering that an LW C threshold of 1 % is commonly used to distinguish dry from wet snow (Mitterer et
al., 2013).
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The variations of HS,,4_ .14 in bare-soil conditions reflect the dependence of DpRV I, by external factors, such as soil
moisture, ground surface temperature, and variations in low-lying vegetation (Das and Pandey, 2024). This confirms that the
method is inherently unable to clearly discriminate between the presence and absence of snow, as noted in Jans et al. (2025).
Indeed, SIsar ~0 in snow-free conditions (see Sect. 3.3) is verified only on average, not for the single acquisition (see
Appendix A). Moreover, even if further studies are needed to confirm this behavior, the large number of pixels with negative
S1sar values at the beginning of the snow season confirms what reported in Lemos and Riiheléd (2024), who demonstrates the
difficulties of Sentinel-1 based H S retrieval in very thin snowpacks.

Since the model was calibrated with snowpacks not deeper than 300 cm, its validity for thicker snow accumulations re-
mains untested. Future studies will address these gaps, particularly focusing on DpRV I, variations in snow-free conditions
and explore potential model adjustments for deeper snowpacks, also considering that, theoretically, the signal absorption by
Sentinel-1 may become non-negligible for very thick snow layers. Moreover, our study focused on alpine terrain, suggesting
that the quality of snowpack height estimations under different terrains and soil covers should be assessed.

When mapping H.S over the validation area near Davos (Switzerland), we observed the presence of few patchy outliers.
These anomalous pixels likely resulted from the sensitivity of the S7sar index to local variations in snow cover conditions
or changes in soil properties between the snow-covered and summer reference acquisitions. However, these outliers could be
effectively reduced by applying a median filter over a small pixel window (see Sect. 3.2). We therefore recommend using this
filter as a post-processing step.

Finally, it is known that the presence of melt-freeze crusts within the snowpack can strongly affect both co- and cross-

polarized backscatter coefficients (Brangers et al., 2024), and thus also the performance of our model.

6 Conclusions

In this study, we presented a novel mathematical model that enhances small-scale snow depth monitoring leveraging dual-
polarimetric Sentinel-1 SAR data. Specifically, we introduced a new index, named Snow Index SAR (S7sar), which is defined
as the difference between the Dual Polarimetric Radar Vegetation Index (DpRV I.) computed under snow-covered conditions
and average snow-free conditions. The model was calibrated using two independent datasets from the Livigno area (Italy,
Central Italian Alps), which include data collected from two proximal automatic weather stations and simulated with the
SNOWPACK snow cover model. These datasets span two winter seasons and cover two different acquisition geometries.

A statistical analysis revealed that the STsar index is influenced by several snowpack variables. In particular, it shows
a linear correlation with the snowpack height and the snow water equivalent, while statistically significant relationships were
also found with the average snowpack density and grain size. The SIsar index generally increases with these quantities, except
for the average grain size, where a low negative correlation was observed. The strongest linear correlation is with the snowpack
height, so we initially applied a linear regression model to estimate snow depth from SIsar values. Notably, the model aligns

well with theoretical expectations, confirming that S7sar ~ 0 corresponds (on average) to snow-free conditions.
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525 A key result of this study is the demonstration of the strong influence of the local incidence angle (LI A) on the SIsar
index in presence of snow, despite the SAR products are radiometrically terrain corrected for the LI A within the preprocessing
phase. For angles below 30°, the STsar index is almost always negative, a behavior we explained theoretically. Between 30°
and 80°, its relationship with the LI A follows a parabolic curve. The derivation of this curve allowed us to correct for the
angular dependence of signal depolarization for increasing snowpack height. This correction significantly improved snowpack

530 height estimations compared to the initial linear model, reducing the mean absolute error (MAE) by 38.5 % and the root mean
square error (RMSE) by 39.5 %.

The final model was verified and validated using two independent dataset from field observations acquired in Tromsg (Norway)
and a photogrammetric snow depth products realized near Davos (Switzerland). The validation results showed a RMSE of
30.7 cm and a MAE of 24.3 cm in Tromsg, and a RMSE of 22.4 cm and a MAE of 18.1 cm in Davos, providing preliminary

535 evidence of the model’s potential for global applicability. In addition to the dependence of our index on several snowpack

properties, an additional analysis identified the summer DpRV I, index variations and the presence of wet snow layers inside

the snowpack as significant sources of error.

Appendix A: Wet snow and summer SIsar index-variations

To further investigate the results, we compared the modelled snowpack height (i.e., HS,,q; r.14) with the SNOWPACK sim-
540 ulated stratigraphies on the two regression sampling areas and across two seasons (2022/23 and 2023/24). We observed that
the average liquid water content (LW C) was nonzero, albeit very low, on certain days when Nagler’s method did not indicate
the presence of wet snow. Looking at the stratigraphies, we noticed that in these dates there were wet snow layers embedded
within dry snow layers. As illustrated in Fig. Al for Gessi with AG 15, overall, the H.S,,4; .74 exhibits larger fluctuations
compared to H S, .. Moreover, our model seems to significantly overestimate the snowpack height in the situation mentioned

545 above.
Furthermore, we assessed the model’s capability to distinguish between snow-free and snow-covered conditions. In Fig.
A1 are shown the values of HS,,4; 174 during the summer 2023 computed for the Gessi regression sampling area. During
the observed summer period, the RMSE was 30.5 cm and the MAE 25.6 cm, consistent with snow-covered seasons. Negative
S1sar values were common and expected, as even small model errors can yield negative estimates when snow depth is zero;
550 this behavior is not related to the L1 A (see Sects. 3.2 and 4.2). Due to the modelled H .S fluctuations, it is not possible to detect
snow-free conditions with our model. Anyway, on average H S,,,q1 1,74 =~ 0, which is in line with the results presented in Sect.
4.2. Similarly, we noticed the presence of pixels characterized by negative S1sar values under snow-covered conditions when

the snowpack is very thin.

Data availability. The data measured by the Vall AWS are available at https://www.arpalombardia.it/temi-ambientali/meteo- e-clima/form-richiesta-dati/

555 (ARPA Lombardia, 2025). The data measured by the Gessi AWS and the snow stratigraphies of the Italian model calibration area are available
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Figure A1. Comparison between H S .14 (solid red line) and H Sy, s (solid black line; Gessi AWS) during the two full seasons 2022/23
and 2023/24. The dotted black lines are obtained by shifting the solid one upward and downward by 31.0 cm, which is the RMSE obtained
by estimating H S considering only the Gessi data. The bar chart represents the liquid water content (LW C').

from the corresponding author. The in situ snow stratigraphies of the Norwegian model validation area are freely available at https://regobs.no/
?SelectedNumberOfDays=3&&NWLat=72.47527631092942&NWLon=-21.621093750000004&SELat=55.178867663282006&SELon=89.
384765625 (Varsom Regobs, 2018). The photogrammetric data related to the Swiss validation area are available at https://www.doi.org/10.
16904/envidat.376 (Biihler et al., 2022). The SAR data have been downloaded from Copernicus (2025).
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