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Abstract

As global climate change and human activities escalate, the frequency and severity of landslide
hazards have been increasing. Early identification, as an important prerequisite for monitoring,
evaluation, and prevention, has become increasingly critical. Deep learning, as a powerful tool for data
interpretation, has demonstrated remarkable potential in advancing landslide identification,
particularly through the automated analysis of remote sensing, geological, and topographic data. This

review systematically examines and synthesizes over 400 studies, with a primary focus on literature

from the last six years (2020-2025), alongside key foundational works. It provides a comprehensive

overview of recent advancements in the utilization of deep learning for potential landslide

identification, First, the sources and characteristics of landslide-related data are summarized, including

satellite observation data, airborne remote sensing data, and ground-based observation data. Next,
several commonly used deep learning models are classified based on their roles in potential landslide
identification, such as image analysis and time series analysis. Then, the role of deep learning in
identifying rainfall-induced landslides, earthquake-induced landslides, human activity-induced
landslides, and multi-factor-induced landslides is summarized. Although deep learning has achieved
considerable successes in landslide identification, it still faces several challenges, including data
imbalance, insufficient generalization capabilities of the models, and the complexity of landslide
mechanism research. Finally, future research directions in this field are discussed. It is suggested that
integrating knowledge-driven and data-driven approaches for potential landslide identification will
further enhance the applicability of deep learning, offering broad prospects for future research and

practice.
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1 Introduction

Landslides are complex geological hazards triggered by both natural processes and human
activities, involving intricate interactions among geological, hydrological, topographic, and
meteorological factors (Fidan et al., 2024). Globally, landslides cause significant loss of life and
property each year, particularly in mountainous areas with intense rainfall, seismic activity, and fragile
geological conditions (Askarinejad et al., 2018; Ehsan et al., 2025; Marin-Rodriguez et al., 2024).
According to United Nations Office for Disaster Risk Reduction (2023), more than 1,000 landslide-
related disasters occur annually, resulting in thousands of fatalities and substantial economic damage.
With the intensification of climate change, extreme weather events are becoming more frequent,
further increasing global landslide risks (Wang et al., 2023c¢).

Faced with these escalating threats, the focus of landslide risk management should shift from
post-disaster response toward proactive identification and prevention. Potential landslides refer to
slopes that exhibit early signs of instability and may evolve into landslides under external triggers such
as rainfall or earthquakes. They represent the precursor stage of landslide development (Lin et al., 2024;
Yang et al., 2020a). Timely identification and monitoring of such slopes are crucial for disaster
prevention and risk mitigation (Strzabala et al., 2024).

However, the inherent uncertainty and dynamic nature of potential landslides make their
identification challenging. On the one hand, it is not possible to determine that a landslide will
definitely occur just because there are signs of deformation on the slope (Peres and Cancelliere, 2014;
Zhang et al., 2019). Multiple factors need to be comprehensively considered to assess the possibility
of its instability. On the other hand, the uncertainty of external factors increases the difficulty of
judgment. Sudden events such as heavy rainfall and earthquakes may instantly change the stress state
of the slope and trigger signs of deformation (Yang et al., 2024c). Given the dynamic characteristics
of potentials, it is also essential to conduct long-term monitoring of the landslides with potential
hazards after identification (Lakhote et al., 2025).

Conventional approaches to potential landslide identification, including field surveys, geological
analysis, and interferometric radar techniques, have contributed substantially to hazard assessment but
remain costly, time-consuming, and limited in spatial coverage (Akosah et al., 2024; Zhao and Lu,
2018). Machine learning has partially improved efficiency but still depends heavily on manual feature
engineering, requiring expert knowledge to design relevant predictors (Sheng et al., 2023). These
limitations restrict the scalability and adaptability of conventional approaches in complex geospatial
environments.

In contrast, deep learning provides an effective data-driven alternative for landslide research. As
a subfield of machine learning, deep learning performs hierarchical feature extraction through multiple
nonlinear transformations (Janiesch et al., 2021; Nava et al., 2023). By leveraging large-scale, multi-
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source data, deep learning models can automatically extract representative features, capture nonlinear
dependencies, and conduct pattern recognition in high-dimensional datasets (Aslam et al., 2021; Wang
et al., 2023a; Zhou et al., 2023). These capabilities make deep learning particularly suitable for
identifying and characterizing potential landslides across diverse spatial and temporal scales (Nava et
al., 2021; Yang et al., 2024d).

Within this research context, potential landslide identification can be broadly categorized into two
main types. The first focuses on post-event regional assessments, which are conducted after major
rainfall or earthquakes but prior to large-scale slope failures, using remote sensing data to detect
deformation, topographic changes, or vegetation anomalies. The second involves retrospective
analyses of historical landslides to establish relationships between triggering factors and failure
characteristics, thereby identifying other slopes that exhibit similar instability patterns. Despite their
differing temporal focuses, both types share common methodological foundations and depend on the
integration of multi-source environmental data for reliable assessment.

Building on these foundations, this review aims to provide a comprehensive synthesis of deep
learning applications in the field of potential landslide identification. Specifically,

(1) we categorize commonly used heterogeneous data into three major types to support research
on potential landslide identification. These data sources form the foundation for applying deep learning
in this field.

(2) we introduce the roles and mechanisms of widely used deep learning models in potential
landslide identification, and conduct a comparative analysis of their respective advantages and
limitations.

(3) we examine the performance of these models across different application scenarios through
representative case studies, highlighting their adaptability and effectiveness in potential landslide
detection.

(4) we summarize the key challenges currently faced in applying deep learning to potential
landslide identification and outline emerging opportunities and promising future directions for further
advancement.

Through our analysis, we identified several key trends in the application of deep learning to
potential landslide identification. First, researchers are increasingly adopting multi-source data fusion
approaches, integrating information from diverse sources to construct a more comprehensive
representation of the geological environment (Guo et al., 2025; Liu et al., 2020b; Wang et al., 2024d).
Second, deep learning models have been successfully applied across multiple scales, ranging from
large-scale landslide susceptibility mapping with Convolutional Neural Networks (CNNs) to real-time
slope deformation monitoring with Recurrent Neural Networks (RNNs) (Azarafza et al., 2021; Soni et

al., 2025; Xie et al., 2024; Zhao et al., 2024f). Despite these advances, the field continues to face



critical challenges that will shape its future trajectory. Addressing these challenges requires a paradigm
shift, future research is expected to place greater emphasis on integrating physical knowledge with
data driven approaches, thereby advancing the field from conventional, reactive post-disaster

responses toward intelligent, proactive pre-disaster risk management.
2 Deep Learning for Potential Landslide Identification: Data Source

Accurate identification of potential landslides is the primary step in effectively preventing and
mitigating the impacts of landslide hazards. Data sources are the cornerstone of achieving this
objective. Different types of data provide indispensable information for potential landslide
identification from various perspectives, and drive ongoing advancements in related research and
practices.

In potential landslide identification, the richness and reliability of data sources directly determine
the accuracy and effectiveness of research. Data sources not only provide fundamental information to
outline the landslide environments, but also enable dynamic monitoring and precise analysis. This
section will comprehensively review the critical roles played by three main types of data sources:

satellite observation data, airborne remote sensing data, and ground-based observation data (see Fig.
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Figure 1. Data sources for potential landslide identification. Satellite observations (e.g., Landsat, Sentinel,
SPOT, and Envisat) provide optical and radar imagery with varying spatial resolutions for detecting and
mapping landslides. Airborne observations (LiDAR, UAV) deliver high-resolution topographic and
photographic data, while ground-based observations (TLS, GBSAR, GNSS, rainfall and groundwater sensors)

offer continuous in-situ monitoring of slope dynamics.
2.1 Satellite Observation Data

Since the launch of Landsat-1, the first Earth observation satellite dedicated to surface research
and monitoring, on July 23, 1972, satellite data have become widely accessible. Their applications
have long extended beyond single-purpose analysis or results (Wulder et al., 2022). With the
continuous development of satellite observation, its immense potential for application in landslide
research has become evident (Liu et al., 2021d). At present, satellite observation data mainly include
space-borne Synthetic Aperture Radar (SAR) and optical remote sensing data, both of which are widely
used as inputs for deep learning models in landslide identification.

2.1.1 Space-borne SAR

SAR is an active microwave remote sensing system (Franceschetti and Lanari, 2018). It is not
only capable of acquiring data on demand by actively emitting microwave signals but also facilitates
partial penetration of vegetation cover through its longer wavelength bands (such as the L-band),
thereby allowing the retrieval of surface deformation information beneath vegetated areas.

A critical operational advantage of SAR lies in its capacity to image regardless of illumination
(day or night) and weather conditions (Koukiou, 2024). The continuous, unimpeded time series data
this provides is essential for serving as input to deep learning models, allowing these models to be
trained to identify long-term patterns of terrain change. For this reason, SAR is widely employed for
the crucial task of continuous monitoring in high-risk environments, where cloud cover and the timing
of a disaster are unpredictable.

Notably, the NASA-ISRO SAR Mission (NISAR), jointly developed by the National Aeronautics
and Space Administration (NASA) and the Indian Space Research Organisation (ISRO), was
successfully launched in 2025 (Indian Space Research Organisation, 2025; NASA, 2025). The satellite
carries both L-band and S-band SAR systems, enabling more precise and frequent measurements of
surface deformation. With a revisit period of approximately 12 days, it delivers globally consistent
coverage with a balanced spatial and temporal resolution. This capability provides researchers with
abundant and continuous observations, supporting large-scale, high spatiotemporal resolution
landslide early detection and dynamic monitoring.

Interferometric SAR (InSAR) has been developed based on the principle of measuring phase
differences between two or more SAR images of the same area (Dai et al., 2022; Ma et al., 2023b;

Zeng et al., 2024). By coherently processing these images, InNSAR obtains high-precision surface
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elevation information and can be further applied to detect ground deformation.

In contrast, SAR mainly provide backscatter information of ground objects. Although some
features of ground objects can be identified according to the scattering characteristics, their ability to
obtain topographic elevation information is relatively weak. InSAR, on the other hand, can directly
generate topographic elevation data, which is of great significance for analyzing the topography and
geomorphology in the identification of potential landslides, and determining key elements such as the
topographic undulation and slope of potential landslide areas.

When screening for potential landslides over a large area, InNSAR has higher efficiency (Dun et
al., 2021; Tang et al., 2025; Zhang et al., 2021). When monitoring large potential landslide areas such
as mountainous regions, InSAR can quickly obtain topographic deformation information over a large
area, promptly detect potential areas with potential landslides, and reduce the workload and blind spots
of manual inspections.

Recent studies have integrated InSAR-derived deformation velocity fields with deep learning
models to automatically detect slow-moving or latent landslides. For example, Liu et al. (2022d)
employed an InSAR-CNN framework to map active landslides in the Eastern Tibet Plateau area,
achieving a detection accuracy of over 90%. Similarly, Zhang et al. (2022d) proposed a two-stage
detection deep learning network (InSAR Net) for detecting anomalous deformation areas in Maoxian
County, Sichuan Province, with a recognition accuracy of 93.88%. Targeting the complex deformation
mechanisms of multi-type landslides in Zigui County, Three Gorges Reservoir Area, Hu et al. (2025b)
used InSAR time-series displacement as the core data, develop a deep learning architecture based on
the integrated framework of EMD and GRU, break through the limitations of conventional models
such as single-type, single-target, and low-accuracy, and achieve dual-accurate prediction of
displacement and failure time for multi-type landslides.

Differential SAR (D-InSAR) is an advancement of InSAR that eliminates topographic phase
through differential processing, focusing specifically on deformation information extraction (Shen et
al., 2022). The emergence of D-InNSAR not only enables the transition from mixed deformation-
topography signals to pure deformation signal extraction but also extends its applicability from
detecting discrete deformation events to identifying slow-moving landslide processes, significantly
enhancing the reliability of landslide monitoring (Zhong et al., 2024).

2.1.2 Optical Remote Sensing

Optical remote sensing refers to the acquisition of surface information through sensors that
measure reflected solar radiation. Its application in geological hazard investigations dates back to the
1970s (Fu et al., 2024; Liu and Wu, 2016).

Optical remote sensing offers high resolution, currently capable of achieving spatial resolutions

as fine as 0.3 meters or better. For example, Maxar’s WorldView-3 delivers 0.31 m panchromatic
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imagery (Hu et al.,, 2016; Longbotham et al., 2014), while India’s Cartosat-3 satellite achieves
panchromatic imagery with a resolution of up to 0.25 m (Gupta et al., 2024). In potential landslide
identification, it not only facilitates the retrieval of detailed surface textures and color characteristics
using rich spectral data but also enables the direct identification of morphological features and object
contours via visual interpretation of imagery (Cheng and Han, 2016; Li et al., 2022b; Ma and Wang,
2025).

Landslide formation typically follows a progressive process from deformation to failure,
accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized collapses.
These indicators exhibit distinct spectral signatures in optical imagery compared to their surroundings,
enabling both manual interpretation and automated detection. In deep learning applications,
multispectral optical images have been widely used to train CNN-based models for potential landslide
identification. Lu et al. (2023a) developed a method for achieving accurate landslide mapping using
medium-resolution remote sensing images and DEM data, which has the potential for deployment in
large-scale landslide detection. Jiang et al. (2022a) proposed a TL-Mask R-CNN for identifying a small
number of old landslide samples in the area along the Sichuan-Tibet Transportation Corridor. The
results show that the pixel accuracy of segmentation for new landslides and old landslides can reach
87.71% and 75.86% respectively.

In vegetated mountainous regions, surface vegetation often undergoes detectable changes before
a landslide event. Optical remote sensing leverages multispectral data, particularly red and near-
infrared bands, to monitor vegetation health and identify potential landslide zones (Coluzzi et al., 2025;
Fiorucci et al., 2018). Furthermore, the calculation of the Normalized Difference Vegetation Index
(NDVI) facilitates the evaluation of vegetation health in potential landslide regions, providing critical
insights into potential landslide precursors (Verrelst et al., 2015).

However, the broad spectral bands of multispectral sensors limit their ability to detect more subtle,
diagnostically specific precursory signals. The advancement beyond broad-band multispectral imaging
to hyperspectral imaging has opened new avenues for landslide precursor detection (Kilgore and
Restrepo, 2025; Ye et al., 2019). Hyperspectral sensors capture hundreds of contiguous spectral bands,
enabling the identification of specific mineralogies (e.g., expansive clays like smectite that influence
slope stability) and subtle geochemical alterations on slope surfaces. For instance, the shifting
absorption features in the short-wave infrared region can signal changes in soil water content and
mineral composition that often precede failure (Thimsen et al., 2017). The integration of these rich
spectral datasets with deep learning architectures has significantly advanced automated landslide
analysis (Huang et al., 2022c; Shahabi et al., 2021). These models excel at learning complex patterns
from high-dimensional spectral-spatial information, enabling highly accurate detection of landslide

scars and even precursory features like cracks and seepage zones that are otherwise challenging to



identify.

While both space-borne SAR and optical remote sensing are pivotal for large-area landslide
screening, they offer complementary capabilities and have distinct limitations. Optical remote sensing
provides intuitive visual interpretation of geomorphological features but is rendered useless by cloud
cover and darkness. In contrast, space-borne SAR, with its all-weather, day-and-night imaging
capability, excels in detecting millimeter-to-centimeter-scale surface deformation through InSAR
techniques, which is a direct precursor to landslide failure. However, InSAR performance can be
degraded in heavily vegetated areas due to temporal decorrelation and in steep terrain due to geometric
distortions (Lin et al., 2022; Yan et al., 2024), areas where optical stereo imaging for DEM generation
might be less affected. Therefore, the integration of SAR-derived deformation maps and optical-based
geomorphological maps is considered a best practice for regional-scale landslide inventory mapping

and preliminary hazard assessment (Xun et al., 2022).
2.2 Airborne Remote Sensing Data

Airborne remote sensing data, typically acquired by manned aircrafts, provide high-resolution
imagery of localized areas. Advanced airborne platforms equipped with oblique photogrammetry and,
more recently, close-range photogrammetry technologies enable millimeter-level accuracy in 3D
photogrammetry, facilitating the observation of subtle surface deformations, rock mass structures, and
the construction of highly detailed 3D models of terrain and above-ground infrastructure (Macciotta
and Hendry, 2021; Xu et al., 2023). Among these technologies, airborne photogrammetry and airborne
radar are the most commonly used.

2.2.1 Airborne Light Detection and Ranging (LiDAR)

LiDAR has been used for landslide and other geological hazard investigations in many regions
since the late 1990s. As an active remote sensing system, LiDAR can laterally scan a range of 60 and
capture 400,000 points per second, enabling largescale 3D scanning of terrain, structures, and
vegetation within a short period (Mallet and Bretar, 2009). It offers centimeter-level accuracy in both
horizontal and vertical dimensions.

Airborne LiDAR is irreplaceable in capturing 3D details and penetrating vegetation, particularly
in densely vegetated areas where conventional aerial photography faces significant limitations.
Airborne LiDAR not only acquires high- resolution Digital Surface Models (DSMs) from laser point
cloud data but also generates high-accuracy DEMs by removing vegetation contributions (Fang et al.,
2022; Jaboyedoff et al., 2012; Yan et al., 2023), thereby revealing concealed hazard features such as
mountain fractures, loose deposits, and landslide masses under vegetation cover.

Point cloud data obtained from airborne LIDAR can monitor dynamic changes in mountainous
terrain by detecting deformations such as subsidence, displacement, and uplift, while also facilitating

the construction of 3D landslide models to simulate sliding directions and impact areas. Through
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intuitive visualization of slope morphology and structure from multiple perspectives, LIDAR enables
researchers to conduct a comprehensive assessment of slope conditions and identify subtle hazard
features that may not be easily discernible in 2D imagery.

These high-precision DEMs and point clouds serve as critical inputs for deep learning models.
For instance, Wei et al. (2023) proposed the Dynamic Attentive Graph Network (DAG-Net) model to
construct dynamic edge features for enhancing point cloud representations, achieving the highest mean
Intersection over Union (mloU) of 0.743 and an F1-score of 0.786. Based on the advanced PointNet
and PointNet++ architectures, Farmakis et al. (2022) developed deep neural networks for 3D point
cloud learning. The best-performing model achieved accuracies of approximately 89% and 84% during
the final and shortest monitoring campaigns, respectively. These examples demonstrate that airborne
LiDAR data are not only suitable but have been effectively applied in deep learning-based landslide
analysis.

2.2.2 Unmanned Aerial Vehicle (UAV)

UAV aerial photogrammetry provides outstanding maneuverability and high-precision
measurements. Traversing over steep slopes and valleys, UAVs are able to monitor areas that are often
inaccessible to satellites and manned aerial platforms (Niethammer et al., 2012), thus addressing
critical observational limitations.

In large-scale and topographically complex regions, UAVs can perform efficient aerial
inspections, overcoming the limitations of ground-based inspections in inaccessible or visually
obstructed regions. By rapidly scanning mountain slopes, embankments, and gullies, UAVs provide a
comprehensive understanding of the geological conditions and enable timely identification of macro-
scale geomorphic anomalies. However, given cost-effectiveness constraints, UAVs are currently more
commonly used for periodic and continuous monitoring in localized areas. They are particularly well-
suited for rapid and dynamic monitoring of landslides in high-priority zones.

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial
photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on UAV's
are able to capture the subtle cracks on the surface of the mountain. These cracks may be early signs
of'alandslide (Sun et al., 2024a). By conducting a comparative analysis of the images taken at different
times, the development and changes of the cracks can be monitored, including the increase in the length,
width and depth of the cracks, as well as the changes in the crack orientation.

In some mountainous areas or valleys, there may be a large number of loose accumulations. These
accumulations may trigger landslides under specific conditions. Aerial photography by UAVs can
clearly identify information such as the distribution range, accumulation quantity and accumulation
shape of these loose accumulations, and assess their potential threats to the surrounding environment.

This capability is leveraged in deep learning applications, where time-series UAV imagery is processed
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using RNNs or 3D CNNs to monitor the spatiotemporal evolution of these cracks, providing a data-
driven approach for early warning (Xu et al., 2025; Sandric et al., 2024).

Airborne platforms bridge the gap between satellite and ground-based observations. LiDAR is
unparalleled in generating high-precision DEM, revealing concealed paleo-landslides and subtle
topographic features critical for hazard mapping. However, its deployment is costly and logistically
complex. UAVs, as a flexible and cost-effective alternative, have democratized high-resolution data
acquisition. They can be equipped with various sensors (e.g., optical, multispectral, and even
lightweight LIDAR) to conduct rapid response surveys following triggering events such as earthquakes
or heavy rainfall (Han et al., 2023). While UAV-derived models have ultra-high resolution, their
coverage is limited per sortie compared to airborne campaigns. The choice between them often
involves a trade-off between coverage, cost, operational flexibility, and the specific requirement for
vegetation penetration.

By equipping UAVs with LiDAR sensors to effectively remove vegetation from the data, this
integrated approach combines the strengths of photogrammetry and LiDAR (Mandlburger et al., 2020;
Wallace et al., 2012). It allows researchers to reveal landslide boundaries, crack patterns, and other
deformation features hidden beneath vegetation cover, enabling rapid deployment and targeted area

monitoring while mitigating vegetation-related challenges in landslide assessment.
2.3 Ground-based Observation Data

Satellite observation and airborne remote sensing are mainly employed for identifying potential
landslides based on surface morphology. However, these approaches are often affected by vegetation
cover, viewing geometry, and atmospheric noise, which may lead to misclassification or omission
(Almalki et al., 2022; Dubovik et al., 2021). Therefore, ground-based observation techniques play a
critical complementary role, offering higher temporal resolution, accuracy, and localized verification
for potential landslide identification. In recent years, data collected from ground-based monitoring
instruments have not only been used for field validation but also increasingly incorporated into deep
learning frameworks to improve temporal continuity and physical interpretability in landslide detection
and forecasting.

2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR)

GB-SAR is an active ground-based microwave remote sensing system that has been developed
over the past decade, effectively integrating the principles of SAR imaging with electromagnetic wave
interferometry. By leveraging precise measurements of sensor system parameters, attitude parameters,
and geometric relationships between orbits, GB-SAR quantifies spatial positions and subtle changes
at specific surface points, allowing for the measurement of surface deformations with millimeter or
even sub-millimeter precision.

Compared with spaceborne SAR, GB-SAR can adjust the incidence and azimuth angles of radar
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waves, thereby avoiding phase decorrelation caused by terrain-induced occlusion in spaceborne
observations. Consequently, they are particularly suitable for monitoring steep slopes, canyons, and
other areas with limited line-of-sight coverage from satellites (Noferini et al., 2007).

During landslide movement, the ground experiences noticeable subsidence, displacement, or
cracking. GB-SAR can be configured for high-resolution, continuous observation to capture
instantaneous deformations during the landslide creep phase and generate corresponding displacement
maps (Liu et al., 2021a; Xiao et al., 2021). For example, Long et al. (2018) proposed a GBSAR
persistent scatterer point selection method based on the mean coherence coefficient, amplitude
dispersion index, estimated signal-to-noise ratio, and displacement accuracy index. Han et al. (2022)
proposed an LSTM-based approach for processing GB-InSAR time series data.

For small-scale regional monitoring, GB-SAR can establish customized geometric configurations
specifically designed for target areas. Utilizing mobile rail systems or multi-antenna setups, GB-SAR
reconstructs 3D deformation vector fields of landslide masses (Shi et al., 2025), identifying sliding
directions and potential failure surfaces.

2.3.2 Terrestrial Laser Scanning (TLS)

TLS emerged in the mid-1990s. It plays a unique role in local refined monitoring by emitting
laser pulses and measuring their reflection time (Stumvoll et al., 2021; Teza et al., 2007).

The landslide often manifests as a sharp change in the ground surface. TLS can provide data with
sufficient accuracy, assisting researchers in identifying the features of these landslides (Abellan et al.,
2009; Teng et al., 2022).

By quickly and massively collecting spatial point position information, TLS can automatically
splice and rapidly obtain the appearance of the measured object. It can be used to construct high-
precision surface models and appearance models of buildings and structures. The 3D model can display
the shape and structure of the mountain and the detailed features of the ground surface from different
angles and in all directions (Zhou et al., 2024), enabling geological experts and engineers to have a
more intuitive understanding of the overall situation of the landslide area. For example, the cracks in
the mountain, the loose accumulations, and the degree of weathering of the rocks can be clearly seen,
providing richer information for the identification of potential landslide hazards.

In the context of deep learning, TLS-derived 3D point clouds have become critical inputs for
morphological feature extraction and automatic landslide identification. For example, Senogles et al.
(2022) integrated TLS point cloud data to assess surface displacements induced by landslide
movements. Wang et al. (2025) provided a practical and adaptable solution for landslide monitoring
by integrating TLS point clouds with embedded RGB imagery.

These examples confirm that TLS data are not only suitable but already actively used in deep

learning-based landslide recognition, providing precise geometric constraints for multi-source fusion
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frameworks that combine DEM, optical, and In-SAR information.

Ground-based techniques provide the highest precision for monitoring a specific slope of interest.
GB-SAR and TLS are both non-contact remote sensing methods, but they operate on different
principles. GB-SAR offers continuous, all-weather, mm-level deformation monitoring over a large
area (several km?) from a single station, making it ideal for early warning. Its drawback is the need for
a stable, opposing installation point with a clear line-of-sight (Monserrat et al., 2013). TLS, on the
other hand, provides mm-to-cm-level 3D point clouds of the slope surface, excellent for quantifying
volume changes and detailed geometric changes. However, it is typically used for periodic surveys
rather than continuous monitoring and has occlusion shadows (Huang et al., 2019).

2.3.3 Ground-based Sensor Devices

Compared to the aforementioned data sources, ground-based sensors offer key advantages,
including high precision, real-time capabilities, and multi-parameter fusion (Dai et al., 2023). They
can address the limitations of remote sensing and provide critical ground-based dynamic information
for potential landslide identification.

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the
state of landslide masses. These datasets provide foundational inputs for deep learning models,
enabling multi-dimensional analysis and interpretation of potential landslide conditions. For example,
ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like displacement and
tilt angle at frequencies ranging from minutes to seconds, capturing transient, anomalous signals just
prior to landslide events, thereby filling the temporal resolution gap in remote sensing (see Fig. 1).
These data are often used as input sources for RNN models and 300 their variants (Bai et al., 2022;
Wang et al., 2021a). By integrating time series data with SAR imagery, deep learning models can be
trained to uncover correlation patterns between surface deformations and subsurface parameters (Jiang
et al., 2022). Instruments such as piezometers and soil pressure gauges can directly monitor key
parameters like pore water pressure and soil stress on the sliding surface. By combining the obtained
subsurface data with geomechanical equations, the position of the sliding surface or geotechnical
strength parameters can be inferred.

Therefore, GB-SAR, TLS, and ground-based sensors are not only auxiliary observation
techniques but are increasingly serving as key data sources for deep learning-driven landslide
identification. Their integration into CNN, LSTM, and Generative Adversarial Network (GAN)
frameworks enables high-resolution spatial-temporal modeling of slope behavior, bridging the gap

between field-scale monitoring and large-scale hazard prediction.

2.4 Summary of Data Source for Potential Landslide Identification

In summary, no single data source is sufficient for a comprehensive potential landslide
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identification framework. Regional-scale satellite data, particularly InSAR, is optimal for the early
detection of pre-landslide deformations over vast areas. Airborne platforms, such as UAVs, then
provide high-resolution optical and LiDAR data to characterize the precise geometry and activity of
identified potential landslides. Finally, ground-based and in-situ sensors enable site-specific, real-time
monitoring of high-risk slopes, validating remote sensing findings and supporting early warning
systems. The strategic integration of these multiplatform data is crucial for transitioning from regional
screening to mechanistic understanding and risk mitigation.

Beyond these general data modalities, recent years have also witnessed the emergence of
benchmark datasets that serve as standardized testbeds for developing and evaluating deep learning
methods in landslide identification. Such datasets are essential for ensuring reproducibility, enabling
fair comparison across models, and accelerating methodological advances. Representative examples
include the CAS Landslide Dataset, a large-scale, multi-sensor dataset explicitly designed for deep
learning-based landslide mapping (Xu et al., 2024); the Landslide4Sense (L4S) benchmark, developed
within an international competition, which provides multisource satellite image patches
(Ghorbanzadeh et al., 2022b); and the Diverse Mountainous Landslide Dataset (DMLD), which
emphasizes high-resolution instances from complex mountainous terrains (Chen et al., 2024b). In
addition, slope-unit-based benchmark datasets have been constructed to support susceptibility
mapping and regional-scale comparisons (Martinello et al., 2021).

These datasets serve as valuable resources for pixel-level segmentation and slope-unit-based
susceptibility modeling. However, in practice, the compilation of landslide inventories faces
considerable challenges, making it difficult to obtain comprehensive and accurate records (Kong et al.,
2025; Lee et al., 2018). Consequently, data scarcity remains a common issue in landslide hazard
identification, particularly in remote regions or areas with limited accessibility. Therefore, it is
necessary to further expand their geographical coverage and establish standardized evaluation

protocols.

3 Deep Learning for Potential Landslide Identification: Models

The effectiveness of deep learning in potential landslide identification largely depends on
selecting an appropriate model architecture suited to the data type and specific task. While all deep
learning models excel at automated feature extraction, their internal architectures predispose them to
excel in different aspects of the overall workflow. Therefore, this section does not merely list models,
but organizes them based on their primary function in the potential landslide identification pipeline.
We analyze several commonly used deep learning models by categorizing them into five functional
roles: image analysis and processing, time series analysis, data generation, anomaly detection, and data

fusion.



3.1 Models for Image Analysis and Processing in Potential Landslide Identification

Image data plays a critical role in potential landslide identification, especially through remote
sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain data,
encompassing complex geographical features, vegetation coverage, and ground fissures, which often
serve as potential precursors to landslide occurrences. The adoption of deep learning has facilitated a
shift from conventional manual visual interpretation to automated high-precision segmentation.

CNNs, owing to their inherent capability to learn hierarchical and multi-scale spatial features
(Kattenborn et al., 2021; LeCun et al., 1998; Liu et al., 2022b). have become the core methodological
framework for most image-based deep learning applications in landslide research (see Fig. 2). This

capability directly addresses a long-standing limitation of conventional classifiers, which struggle to

simultaneously capture fine-scale precursors (e.g., narrow ground fissures) and large-scale landslide

morphology within a unified framework. Multi-scale convolutional feature extraction has been shown

to significantly enhance the sensitivity of landslide detection across a wide range of spatial extents
(Hussain et al., 2019; Shi et al. 2020; Yao et al. 2021). For example, small convolutional kernels are

particularly effective in identifying subtle surface disturbances, such as localized soil texture variations

and ground cracks, which often precede slope failure. Hamaguchi et al. (2018) and Wang et al. (2024a)

demonstrated that CNN-based models can detect extremely small and subtle features, including cracks ![

as narrow as 0.05 m, a level of detail that is difficult to achieve using conventional texture-based !!
|

y
|

—_—
—_—

methods,,

Conversely, larger convolutional kernels and multi-scale fusion strategies enhance the
identification of overall landslide morphology and scar boundaries, which are critical for accurate

inventory mapping. Ding et al. (2022) showed that larger kernels improve the shape bias of CNNs

facilitating the recognition of large-scale structural patterns, while Li et al. (2025) demonstrated that

scale-adaptive kernel fusion improves global perception of landslide extents and contextual

background information. By integrating multi-scale feature extraction within a single model, CNN-

based approaches outperform conventional machine-learning classifiers that depend on fixed-scale
descriptors and often exhibit reduced generalization in heterogeneous terrain,, /

Beyond feature extraction, architectural innovations such as residual and dense connections have
substantially improved the trainability and data efficiency of deep networks in landslide applications
(He et al., 2016). Deep networks with increased depth generally exhibit stronger representational
capacity but are prone to optimization difficulties and overfitting, particularly under limited training
samples (Ebrahimi and Abadi, 2021).

Residual Networks (ResNet) address these challenges through shortcut connections (Qi et al.

2020; Yang et al., 2022), enabling stable training of very deep models and improved discrimination

between landslide scars and surrounding vegetation or bare soil in complex terrains (see Fig. 2¢).
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Deleted: As illustrated in Fig. 2, a CNN is mainly composed
of convolutional, pooling, and fully connected layers, each
responsible for distinct operations on the input data
(Kattenborn et al., 2021; LeCun et al., 1998; Liu et al.,
2022b).

Deleted: Convolutional layers, the core of CNNs, use kernels
of various sizes to extract multi-scale features from geospatial
imagery, which is crucial for landslide identification (Hussain
et al., 2019; Shi et al. 2020; Yao et al. 2021). Small kernels
are effective in detecting fine-grained precursors such as
ground fissures and localized soil texture changes. For
instance, Hamaguchi et al. (2018) proposed a Local Feature
Extraction (LFE) module to enhance the capability of CNNs
in identifying small object instances in remote sensing
imagery. Wang et al. (2024a) demonstrated the exceptional
capability of convolutional layers in extracting extremely
small and subtle features by identifying cracks as narrow as
0.05 m width using a U-Net-based model. In contrast, larger
kernels help in recognizing the overall morphology W

Deleted: Ding et al. (2022) demonstrated that larger
convolution kernels substantially improve the shape bias of
CNNes, facilitating the recognition of large-scale structures
and overall morphological patterns compared with using
small kernels alone. Li et al. (2025) employed multiple large
convolution kernels (kernel sizes = 5, 7, and 9) within the
deep learning-based feature fusion with scale-adaptive kernel

attention module to fuse multi-scale features, therebw

Deleted: Pooling layers down-sample feature maps,
computational efficiency and model robustness. In landslide
mapping, this translation invariance is particularly beneficial,
as it allows the model to consistently identify landslide
features regardless of their slight positional variations across
different image patches (Mao et al., 2024).

The final fully connected layer flattens the pooled feature

maps and performs classification, outputting results(‘ﬂn‘T

Deleted: The layers of a CNN can be combined in various
ways, forming distinct CNN architectures. These
architectures are primarily determined by task requirements,
which may include image classification, multi-class
segmentation, or object localization within a scene.
Conventional CNNs typically consist of multiple stacked
convolutional layers, pooling layers, and fully connected

layers. However, increasing network depth introdch




However, deeper architectures also incur higher computational costs, which may constrain their

Deleted: ResNet mitigates the vanishing gradient problem in

practical deployment in large-scale or near-real-time mapping scenarios (Hasanah et al., 2023).

Dense Convolutional Networks (DenseNet) further enhance feature reuse and gradient flow

through dense connectivity, reducing parameter redundancy and improving performance under limited
is particularly relevant

training data conditions (Huang et al., 2017; Liu et al., 2021¢). This propert;

labeled samples are often scarce and spatially clustered.

for landslide studies, where high-qualit
Empirical studies indicate that DenseNet-based models can effectively extract multi-scale landslide
Caietal.,2021;Lietal.,2021;

features in complex terrain while maintaining computational efficienc

Ullo et al., 2021).
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Figure 2. Functional pipeline of CNN-based models for image analysis and processing. (a) Semantic mapping

process: demonstrating the transition from optical input to binary classification for target identification. (b)

Segmentation performance: visualizing the model’s capability to delineate precise landslide boundaries (binar:

masks) from optical imagery. (¢) Optimization strategies: comparing skip-connections and dense connectivity
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—| Deleted: The role of deep learning models in image analysis

for enhancing gradient flow and feature reuse,

With the maturation of CNN backbones, semantic se
paradigm for landslide detection, as it enables dense, pixel-level delineation of landslide extents that

entation has emerged as the dominant

is essential for inventory construction and hazard assessment (Guo et al., 2018; Lu et al., 2023b; Zhou

et al., 2024b). Among these models, U-Net and its variants have become benchmarks due to their

encoder—decoder structure and skip connections, which preserve spatial detail and improve boundary

delineation (Chandra et al., 2023; Chen et al., 2022b; Meena et al., 2022; Ronneberger et al., 2015).

U-Net-based models have demonstrated strong performance in challenging conditions, such as cloud-
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very deep networks through residual connections (Qi et al.,
2020; Yang et al., 2022). This architectural advancement has
been successfully applied to landslide detection in complex
terrains, such as the work by Ullo et al. (2021), who
demonstrated that a ResNet-based classifier could achieve
high accuracy in distinguishing landslide scars from
surrounding vegetation and bare soil in satellite imagery by
effectively learning hierarchical features.

higher parameter counts generally exhibit greater
representational capacity but are prone to overfitting, while
demanding higher computational resources and temporal
costs for both training and inference (Ebrahimi and Abadi,
2021). For instance, (He et al., 2016) introduced ResNet-152
and other deep residual network architectures, demonstrating
that deeper structure achieve superior performance compared
with shallower counterparts. Hasanah et al. (2023) explicitly
highlighted the differences in layer depth and parameter count
among various ResNet versions (ResNet-50, 101, and 152),
noting that the increased number of parameters in deeper
networks inevitably leads to longer training times.
DenseNet is a further innovation of ResNet (Huang et al.,
2017). Both of these neural networks are based on a similar
idea, which is to establish a "shortcut" between different
layers. However, the structure of DenseNet is simpler and
more effective, with fewer parameters. The structural
differences between ResNet and DenseNet are illustrated in
Fig. 2. In ResNet, each layer is only connected to the
previous layer, while in DenseNet, each layer is directly
connected to all previous layers, and each layer can obtain
gradients from the loss function. This can optimize the
information flow and gradients of the entire network, making

it easier to train and performing better on small datasets. The

structure of DenseNet enables more effective reuse W

and processing. (a) Comparison of landslide images before
and after identification. (b) Schematic of a basic CNN
architecture. A conventional CNN typically comprises
stacked convolutional layers, pooling layers, and fully
connected layers. (c) Comparative schematic of ResNet and
DenseNet architectures. In contrast to ResNet, which
combines features through summation before passing them to

subsequent layers, DenseNet integrates features via

channelwise concatenation.




covered or topographically complex regions using SAR imagery (Nava et al. 2022).

However, U-Net’s relatively limited receptive field can restrict its ability to capture long-range

contextual information in heterogencous geological settings. DeepLab addresses this limitation by

incorporating dilated convolutions and Atrous Spatial Pyramid Pooling (ASPP), enabling effective

fusion of local texture and global contextual cues without sacrificing spatial resolution (Chen et al.

2017; Huang et al., 2024a). This multi-scale contextual modeling has been shown to reduce false

positives and improve detection consistency in geologically complex environments, highlighting a key

advantage of advanced deep segmentation models over simpler pixel-based or object-based approaches
(Niu et al., 2018; Sandric et al., 2024).

Beyond static mapping, deep learning also facilitates multi-temporal change detection and

—
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/
/

/
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dynamic hazard monitoring. By comparing segmentation outputs across time or directly processing

multi-temporal image stacks, CNN-based models can characterize the spatial evolution of landslides

and identify active deformation zones (Amankwah et al., 2022). Wang (2023) demonstrates that 3D

CNNs enable joint modeling of spatial and temporal dependencies, producing both change hotspot

maps and temporal evolution curves that capture landslide initiation and progression.Some studies

even have integrated attention mechanisms into conventional CNN architectures to enhance the
analysis of multi-temporal remote sensing imagery, thereby enabling the identification of landslide
hazard evolution over time. For example, Meng et al. (2024) proposed a framework based on CNN
and optimized Bidirectional Gated Recurrent Unit (BiGRU) with an attention mechanism, designed to
forecast landslide displacement with a step-like curve. Dong et al. (2022) proposed L-Unet which
combines multi-scale feature fusion with attention modules to improve landslide segmentation
performance, particularly at boundaries.

Overall, image-based deep learning models represent a substantial methodological advance over
traditional machine-learning_classifiers in terms of multi-scale feature representation, mapping

completeness, and robustness to complex backgrounds. Nevertheless, their performance remains

contingent on data quality, sample representativeness, and computational resources, and they generally

lack the explicit physical interpretability of process-based models. These limitations motivate

increasing interest in hybrid framework.

3.2 Models for Time Series Analysis in Potential Landslide Identification

Landslide occurrence is inherently a time-dependent process, driven by the cumulative and often

delayed effects of environmental forcing such as rainfall, groundwater fluctuation, reservoir operation,
and seismic disturbance. Time series data describing slope displacement, pore-water pressure, rainfall

intensity, or surface deformation provide critical information for identifying potential instability and

forecasting landslide evolution. Unlike static susceptibility mapping, time series analysis directly

targets the dynamic behavior of slopes and therefore plays a central role in early warning and short-
16

Deleted: With the rapid expansion of deep learning methods
based on CNNs, semantic segmentation models have
increasingly become the standard in landslide detection (Lu et
al., 2023b; Zhou et al., 2024b). As a fundamental task in
computer vision, semantic segmentation assigns a specific
class label (e.g., "landslide" or "non-landslide") to each pixel
in an image, thereby enabling dense pixel-level classification
(Guo et al., 2018).

segmentation networks have been proposed and validated for
automatic landslide detection, significantly enhancing the
efficiency and accuracy of large-scale detection.

U-Net is a typical example (Ronneberger et al., 2015), which
features a U-shaped architecture. U-Net’s encoder-decoder
structure with skip connections has become a benchmark for
landslide segmentation (Chandra et al., 2023; Chen et al.,
2022b; Meena et al., 2022). For example, Nava et al. (2022)
applied the attention U-Net to Sentinel-1 SAR data for rapid
mapping of earthquake-induced landslides, demonstrating the
effectiveness of U-Net variants in pixel-level segmentation of
landslide bodies under cloud-covered or topographically
complex conditions.

landslide-prone areas, DeepLab is a more suitable choice
(Sandric et al., 2024). While U-Net excels at preserving fine-
grained spatial details through its skip-connections, t‘uh‘ltﬁéT

Deleted: After achieving semantic segmentation to obtain the
accurate extent of a landslide and the classification of ground
objects, change detection is employed to monitor the changes
in the landslide area over time. By comparing the
segmentation results of multiple temporal phases or directly
analyzing the feature differences, the dynamic evolution of
potential hazards can be quantified (Amankwah et al., 2022).
Wang (2023) demonstrates that 3D CNNs can directly
process these 3D tensors. These models capture both spatial
and temporal dependencies through 3D convolutional kernels,
enabling the direct processing of multi-temporal image
sequences. The outputs typically take two complementary
forms: (1) change hotspot maps, which highlight regions of
significant spatial change across time, and (2) temporal
variation curves, which illustrate the evolution of pixel- or
region-based feature values throughout the temporal
sequence. Together, these representations provide intuitive
and complementary tools for characterizing dynamic
processes in landslide-prone areas, such as the initiation,

progression, and spatial distribution of slope failures.




term prediction (see Fig. 3).

Conventional statistical and physically based approaches have been widely used to analyze

landslide-related time series. Statistical models typically assume linear or weakly nonlinear

relationships and often require strong prior assumptions, while physically based models rely on

simplified representations of hydromechanical processes and detailed parameterization that is difficult

to obtain at scale. Deep learning—based temporal models offer a complementary data-driven alternative

by automatically learning nonlinear dependencies, cumulative effects, and delayed responses directly
from observations, without requiring explicit process equations,

RNNS represent the earliest class of deep learning models designed for sequential data, enablin,

the modeling of short-term temporal dependencies through recursive information flow (Elman, 1990:;

Ngo et al., 2021; Zaremba et al., 2014). In landslide studies, RNNs have been applied to displacement

time series influenced by rainfall and groundwater variation, demonstrating their ability to capture

short-term deformation trends prior to failure (Chen et al., 2015; Zhang et al., 2022¢). However.
standard RNNSs often stru

le with long-term dependencies and cumulative effects, which are common

in landslide processes driven by prolonged or intermittent forcing (see Fig. 3b).
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Figure 3. Analytical framework of RNN-based models for time series analysis. (a) From field monitoring to

predictive insight: outlining the transformation of multi-source field monitoring data into predictive landslide
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Deleted: The occurrence of a landslide is a gradual
accumulation process, usually influenced by a variety of
factors. We refer to data that reflect the changing states of a
landslide body over time as time series data. Time series data
analysis aims to excavate the information hidden in the time

series data to help identify potential landslides.

Deleted: Different from conventional statistical or physical
models, deep learning models can automatically reveal
dynamic change trends and periodic patterns in the data,
providing more accurate information for landslide prediction
and early warning. Recently, deep learning—based temporal
models have become key tools for extracting nonlinear
dependencies and temporal evolution patterns in landslide-

related time series.

Deleted: The structural characteristics and differences among
these models are illustrated in Fig. 3. RNN is a class of deep
learning models specialized in processing sequential data,
capable of capturing temporal dependencies within input
sequences (Elman, 1990). Unlike conventional feedforward
neural networks, in an RNN, each neuron not only receives
the current input but also the output of the previous time step
as additional input. This structure endows the RNN with a
memory mechanism (Ngo et al., 2021; Zaremba et al., 2014).
In landslide prediction, RNNs have been employed to model
displacement time series under rainfall or groundwater
fluctuations, revealing short-term deformation patterns
preceding slope failure (Chen et al., 2015; Zhang et al.,
2022c).

Deleted: The role of deep learning models in time series
analysis. (a) In potential landslide identification, time series
data can be obtained through monitoring. (b) RNNs, LSTMs,
and GRUs provide more accurate information for landslide

prediction by processing time series data.




To overcome the vanishing gradient problem inherent in RNNs, LSTM introduces memory cells
and gating mechanisms that selectively retain relevant temporal information (Graves, 2012; Landi et

al., 2021; Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al.,

2019). This capability is particularly well aligned with landslide dynamics, where delayed and
cumulative responses to rainfall or reservoir level fluctuations are critical precursors of instability.

Empirical studies consistently demonstrate that LSTM-based models outperform conventional

regression and shallow machine-learning approaches in displacement prediction and early warning
/

tasks. For example, Yang et al. (2019) analyzed the relationships among landslide deformation, rainfall, ,/

Deleted: As shown in Fig. 3, LSTM networks extend the
basic RNN structure by incorporating gating units that control
information flow, enabling them to better capture cumulative
and delayed slope responses to environmental triggers. This
capability allows them to model the cumulative and delayed
responses of slopes to prolonged rainfall or reservoir water
level fluctuations.

in landslide displacement prediction and early warning.

and reservoir water levels, and found that compared with static models, the LSTM approach more
accurately captured the dynamic characteristics of landslides and effectively leveraged historical
information. Xu and Niu (2018) used a LSTM model to predict the displacement evolution of the
Baijiabao landslide using rainfall and hydrological level data, achieving a higher correlation compared
with traditional regression models. In another study focused on shallow landslides, Xiao et al. (2022)
used a week-ahead LSTM model, which exhibited stable performance and improved prediction
accuracy in short-term prediction scenarios. Additionally, Gidon et al. (2023) constructed a Bi-LSTM

model and achieved a detection accuracy of 93% in the Mawiongrim area.

Despite their strong performance, LSTM models are computationally demanding and may be
prone to overfitting when training data are limited. GRUs provide a streamlined alternative by

simplifying the gating structure while maintaining comparable predictive accuracy (Cho et al., 2014).

This balance between model complexity and performance makes GRU-based models particularly

attractive for real-time landslide monitoring and operational early warning systems, where

computational efficiency and rapid updating are critical (Chung et al., 2014; Rawat and Barthwal, 2024

Zhang et al., 2022¢). Recent studies indicate that GRUs can effectively identify acceleration phases in

displacement time series, enabling earlier detection of rainfall- or earthquake-induced slope instability

(Chang et al., 2025; Yang et al., 2025).

More recently, Transformer-based architectures have emerged as powerful alternatives for time
series modeling by leveraging self-attention mechanisms to capture long-range temporal dependencies

in parallel (Vaswani et al. 2017). Compared with recurrent models, Transformers are particularly

effective at modeling long-term and non-local temporal relationships, which are often present in

landslide processes influenced by multi-seasonal rainfall or complex hydrological regimes. In

landslide-related applications, Transformers can adaptively learn latent temporal features across

diverse scenarios and outperform conventional RNN-based models in capturing complex temporal
patterns (Esser et al., 2021; Huang and Chen, 2023; Wang et al., 2024b; Zerveas et al., 2021).

However, a key drawback of the standard Transformer is its quadratic computational complexity

with respect to sequence length, which becomes prohibitive for very long sequences (Zhuang et al.,
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Deleted: This effectively addresses the limitations of
traditional methods and can provide a reliable technical
solution for disaster early warning in this area as well as other

similar landslide-prone areas.
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Deleted: The GRU is a simplified variant of the LSTM that
achieves similar accuracy with fewer parameters and reduced
computational costs (Cho et al., 2014), making it well-suited
for real-time landslide monitoring systems (Chung et al.,
2014; Rawat and Barthwal, 2024; Zhang et al., 2022¢).
Furthermore, GRU models effectively identify precursory
displacement acceleration, allowing early detection of slope
instability triggered by rainfall or seismic shaking (Chang et
al., 2025; Yang et al., 2025).

Deleted: Transformer, first introduced by Vaswani et al.
(2017), was originally designed for natural language
processing but has since become a cornerstone architecture in
modern machine learning, achieving state-of-the-art
performance across diverse domains such as computer vision
and multimodal learning.

convolutional models, the Transformer is built upon stacked
encoder—decoder layers and relies on a key innovation: the
self-attention mechanism (see Fig. 5). This mechanism
enables the model to automatically compute a weight vector
(i.e., an attention distribution) for each element in the
sequence based on its relevance to all other elements. By
evaluating all positions simultaneously (Esser et al., 2021;
Huang and Chen, 2023), the Transformer efficiently captures
global dependencies across long sequences in parallel,
making it more effective than RNNs or CNNs at modeling
long-range relationships.

time series data, the Transformer can adaptively learn latent
temporal features and patterns, automatically adjusting
parameters to accommodate diverse landslide scenarios

(Wang et al., 2024b; Zerveas et al., 2021).




2023). This also complicates the interpretation of how the model extracts features and makes decisions
from large amounts of landslide data, posing challenges for practical deployment. It is worth noting
that mitigating this quadratic complexity is an active research area, with many efficient Transformer
variants being developed. For example, Zhao et al. (2024f) combined the strengths of CNN and
Transformer architectures, selecting and analyzing nine landslide-conditioning factors to successfully
achieve accurate landslide localization and detailed feature capture. Ge et al. (2024) proposed the
LiteTransNet model based on the Transformer framework, effectively capturing and interpreting the
varying importance of historical information during the prediction process. Therefore, while powerful,
the vanilla Transformer may not be the optimal choice for all practitioners, and its computational
demands should be carefully considered.

In summary, deep learning—based time series models represent a significant advancement over

conventional statistical approaches by enabling data-driven learning of nonlinear, delayed, and
cumulative deformation patterns that are difficult to encode explicitly in physical models. RNNs and

LSTMs remain effective and interpretable for short- to medium-term prediction tasks, while GRUs

offer computationally efficient solutions for operational systems (Li et al., 2021; Wang et al., 2020b).

Transformer-based models provide superior capacity for long-term dependency modeling but require

careful consideration of data availability, computational resources, and interpretability. These trade-

offs highlight the importance of selecting temporal architectures based on specific monitoring
objectives, data characteristics, and operational constraints,

3.3 Models for Data Generation in Potential Landslide Identification

A fundamental challenge in potential landslide identification lies in the scarcity, imbalance, and

spatial clustering of labeled landslide samples. Landslide inventories are often incomplete, biased
toward large or easily detectable events, and unevenly distributed in space and time. These limitations

significantly constrain the performance and generalization ability of both traditional machine-learning
classifiers and deep learning—based models, particularly in data-hungry settings. Data generation aims
to alleviate these issues by learning the underlying data distribution and synthesizing new samples that

are statistically consistent with observed landslide patterns (Kingma et al., 2014; Moreno-Barea et al.,
2020:; Shorten and Khoshgoftaar, 2019).

Conventional data augmentation techniques (e.g., rotation, flipping, noise injection) provide

limited diversity and do not fundamentally address class imbalance or morphological variability in

landslide datasets. Deep generative models represent a major methodological advance by explicitly

modeling the latent distribution of geospatial features, thereby enabling the creation of realistic and

diverse synthetic landslide samples (Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al.,

2015). Unlike discriminative models, generative models capture probabilistic representations of

terrain, deformation, or image features, making them particularly suitable for addressing uncertainty,
19

Deleted: In contrast, RNN-based models exhibit a relatively
simple architecture and are conceptually intuitive (Li et al.,
2021; Wang et al., 2020b), making them more interpretable.
Transformers, however, are structurally more complex with
numerous parameters, requiring substantial computational
resources during training and being susceptible to overfitting

on small datasets.




rarity, and heterogeneity in landslide data, Commonly used deep generative models include GANs,

Variational Autoencoders (VAEs), and diffusion models (see Fig. 4).
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Figure 4. Comparative mechanisms of deep generative models for data generation. (a) Contrasting fundamental

training objectives: VAE (maximizing variational lower bounds), GAN (adversarial gaming), and Diffusion

models (iterative noise reversal). (b) Adversarial learning: function of the generator-discriminator competition

Deleted: Data generation refers to modeling the underlying
data distribution of data to generate entirely new samples
independent of the original dataset (Kingma et al., 2014;
Moreno-Barea et al., 2020; Shorten and Khoshgoftaar, 2019),
thereby enriching the dataset. In potential landslide
identification, data generation mitigates challenges of data
scarcity and imbalanced class distributions, thereby
enhancing the generalization capability of predictive models.
Deep generative models are the leading deep learning
approach for synthetic data generation (Alam et al., 2018;
Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They
utilize deep neural networks to learn latent representations of
data and optimize the learning process through specific
objective functions. A key characteristic of deep generative
models lies in their probabilistic nature. They not only
classify or reconstruct data but also capture the underlying
distribution of geospatial features, thereby enabling the
generation of new landslide samples that are statistically

consistent with observed patterns.

in improving sample fidelity. (¢) Latent space modeling: highlighting the probabilistic sampling layer in VAEs

that enables diverse sample generation compared to standard AEs. (d) Iterative denoising: the mechanism of

reconstructing high-resolution imagery through reverse diffusion,

GANs are among the most widely adopted generative models for landslide-related data

augmentation, particularly in remote sensing imagery. Through adversarial training between a

generator and a discriminator, GANs can produce visually realistic synthetic samples that closely
resemble real landslide images (Goodfellow et al., 2014; Gui et al., 2021; Saxena and Cao, 2021). In

potential landslide identification, this capability can address the shortage of labeled image samples that

limits the performance of segmentation and classification models, For example, Feng et al. (2024)

Deleted: The role of deep learning models in data generation.
(a) Comparative schematic of three commonly used deep
generative model architectures. GAN: adversarial training.
VAE: maximize variational lower bound. Diffusion models:
gradually add Gaussian noise and then reverse. (b) Schematic
of the adversarial training workflow for GAN-based data
generation. (c) Comparative architecture of AE and its
variational counterpart, VAE. (d) Schematic of a diffusion

model applied to denoise potential landslide data.

achieved the first implementation of using a GAN to generate synthetic high-quality landslide images,
aiming to address the data scarcity issue that undermines the performance of landslide segmentation
models. Al-Najjar and Pradhan (2021b) proposed a novel approach that employs a GAN to generate
synthetic inventory data. The results indicate that additional samples produced by the proposed GAN
model can enhance the predictive performance of Decision Trees (DT), Random Forest (RF), Artificial
Neural Network (ANN), and Bagging ensemble models.

Despite their effectiveness, GAN-based approaches exhibit notable limitations. Mode collapse

may reduce sample diversity, particularly for rare landslide types or extreme morphologies, and

20

Deleted: GANSs consist of a generator and a discriminator
that compete in an adversarial process (Goodfellow et al.,
2014). The generator synthesizes data resembling real
samples, while the discriminator attempts to distinguish
between generated and real data. The workflow of adversarial
training for GAN-based data generation is schematically
depicted in Fig. 4. Through iterative adversarial training, the
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In the context of landslide studies, GANs have demonstrated
strong capabilities in data augmentation and remote sensing

image enhancement.




training instability often necessitates careful hyperparameter tuning and substantial computational

resources (Fang et al., 2020a). Such constraints can limit their applicability in operational or real-time

hazard assessment. Recent architectural refinements, including Conditional GAN (CGAN) (Kim and
Lee, 2020; Loey et al., 2020; Mirza and Osindero, 2014), image-to-image translation with GAN
(Pix2Pix) (Isola et al., 2017; Qu et al., 2019), and Wasserstein GAN (WGAN) (Arjovsky et al., 2017;
Wang et al., 2019), partially mitigate these issues by improving training stability and enabling

conditional or controlled sample generation. As a result, GANs are increasingly viable for high-

resolution landslide image synthesis and remote sensing—based susceptibility analysis, particularly

when visual realism is a primary requirement.

As a probabilistic variant of AEs, VAEs introduce latent-space regularization through variational

inference (see Fig. 4¢). Compared with GANs, VAEs prioritize distributional coverage and uncertainty

representation over visual sharpness (Hinton and Salakhutdinov, 2006; Kingma andWelling, 2013)

making them well suited for probabilistic modeling of landslide processes. For instance, Cai et al.
(2024) demonstrated that a VAE-GRU framework can generate narrow predictive intervals while

maintaining high coverage probabilities, representing a substantial improvement over the state-of-the-

art methods. Such probabilistic outputs are particularly valuable for risk-informed decision-making

and early warning applications (Islam et al., 2021; Oliveira et al., 2022).

Compared with GANs, VAEs produce more diverse but slightly less detailed samples, due to their

structured latent space constraints. This characteristic is particularly beneficial for exploring a wide
range of potential landslide morphologies and for augmenting training datasets used in susceptibility
prediction. However, VAEs may still struggle with highly imbalanced datasets, as their probabilistic
reconstruction tends to favor majority classes. Integrating VAEs with stratified sampling or cost-
sensitive learning could help overcome this limitation and further enhance landslide prediction
performance.

When computational resources and training time permit, diffusion models provide a powerful
alternative for generating high-quality, diverse, and stable data (Croitoru et al., 2023; Ho et al., 2020;
Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually adding
noise to real samples (forward diffusion) and then reconstructing clean data through a reverse
denoising process (see Fig. 4). The resulting models can sample new, realistic data points that reflect
complex terrain and geophysical variability. For example, Lo and Peters (2024) proposed a Terrain-
Feature-Guided Diffusion Model (TFDM) to fill gaps in DEM data. Similarly, Zhao et al. (2024b)
employed a Denoising Diffusion Probabilistic Model (DDPM) conditioned on incomplete DEMs,
which serves as a transitional kernel during diffusion reversal to progressively reconstruct sharp and
accurate DEM.

Despite their successful applications in image synthesis, denoising, and remote-sensing image
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generation in remote sensing-based susceptibility analysis.
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research, VAEs have been successfully applied to learn and
reconstruct geomorphological patterns of slope instability.
For instance, Cai et al. (2024) proposed and demonstrated the
superior capability of the VAE-GRU model in generating
narrow predictive intervals while maintaining high coverage
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state-of-the-art methods for probabilistic landslide prediction.




enhancement (Leher et al., 2025; Sui et al., 2024; Xiao et al., 2023; Zou et al., 2024), diffusion models
have not yet been widely applied directly to the identification of potential landslides and remain in the
exploratory stage. Nonetheless, our optimism for their application is grounded in their potential to
address key challenges such as limited labeled data through generative augmentation and, more
importantly, to provide uncertainty quantification in predictions, which is vital for risk assessment.

In summary, deep generative models provide an essential complement to discriminative dee

learning and conventional machine-learning approaches in potential landslide identification, Amon

them, GANs are effective for generating visually realistic imagery and data augmentation; VAEs
capture probabilistic geomorphic transitions; and diffusion models ensure stability and fidelity in high-

resolution terrain synthesis. Rather than replacing predictive models, generative approaches primarily

enhance data quality, diversity, and uncertainty representation, thereby strengthening the robustness

and generalization of landslide identification and forecasting frameworks.

3.4 Models for Anomaly detection in Potential Landslide Identification

Anomaly detection provides a complementary perspective to supervised landslide classification

by focusing not on what constitutes a landslide, but on when and where a slope begins to deviate from

its normal state. In potential landslide identification, this paradigm is particularly valuable because

catastrophic failures are often preceded by subtle, progressive, and spatially heterogeneous signals.

Typical anomalies include unexpected acceleration in surface displacement, coherence loss in InSAR

observations, or irregular fluctuations in multi-sensor monitoring data, which may emerge well before
visible slope failure (Deijns et al., 2020; Jiang et al., 2020).

Compared with conventional anomaly detection approaches based on empirical thresholds or

predefined statistical rules, deep learning-based methods offer a critical advantage: they can learn

complex, nonlinear “normality patterns” directly from data, without requiring explicit assumptions
about failure modes. This shift is especially important in landslide-prone environments, where

background variability driven by rainfall, vegetation dynamics, and sensor noise often masks early

instability signals. By modeling high-dimensional spatiotemporal dependencies, deep learning enables
a more adaptive and context-aware identification of abnormal slope behavior.

AEs are widely used for unsupervised anomaly detection due to their ability to reconstruct input

Deleted: In conclusion, deep generative models provide a
transformative solution for overcoming the challenges of
limited and imbalanced landslide datasets. By synthesizing
realistic, diverse, and statistically consistent samples, these
models can improve the robustness and generalization of

landslide prediction frameworks.

data and highlight deviations from learned normal patterns (Sakurada and Yairi, 2014; Zhou and
Paffenroth, 2017). An AE consists of an encoder that compresses data into a low-dimensional latent
representation and a decoder that reconstructs it.

AEs constitute the most widely adopted framework for unsupervised anomaly detection in

landslide monitoring. Rather than explicitly detecting failures, AEs are trained to reconstruct normal

system states, such as stable slope displacement time series or radar backscatter signatures (Sakurada

and Yairi, 2014; Zhou and Paffenroth, 2017). When exposed to abnormal inputs (such as sudden
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deformation acceleration or coherence degradation) the reconstruction error increases, providing an

implicit indicator of potential instability. This reconstruction-based logic is particularly attractive in

landslide applications, where labeled failure data are scarce or incomplete, For instance, Shakeel et al.

(2022) developed an InSAR deformation anomaly detector based on an AE-LSTM architecture.
Experimental analyses using synthetic deformation test scenarios achieved an overall performance
accuracy of 91.25%.

However, deterministic AEs implicitly assume that “normal” behavior can be represented by a
single compact manifold, which may be insufficient for landslide systems characterized by multiple

deformation regimes. VAEs address this limitation by explicitly modeling uncertainty in the latent

space through probabilistic inference (Kumar et al., 2024; Pol et al., 2019). By learning a distribution

rather than a single representation of normal slope behavior, VAEs are better suited to capture the

intrinsic variability of environmental and geotechnical conditions (Kingma and Welling, 2013; Li et

al., 2020; Park et al., 2018). Recent studies indicate that VAEs outperform conventional AEs when

anomaly detection involves multivariate inputs combining displacement, rainfall, and hydrological
factors, enabling a more robust identification of transitional instability stages (Nawaz et al., 2024; Han

et al., 2025). Nevertheless, the probabilistic nature of VAEs also introduces practical challenges,

including higher data requirements and the need for operationally meaningful thresholding strategies. |
GANSs can also be adapted for anomaly detection by exploiting their discriminator network’s /

Deleted: During training, the AE learns the intrinsic features
of normal landslide data, such as sensor-based displacement
time series or radar backscatter from stable slopes. When
abnormal data are input, such as sudden displacement spikes
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significantly, serving as an indicator of potential instability.

ability to distinguish between real and generated data (Kang et al., 2024; Xia et al., 2022). In landslide
monitoring, GAN-based anomaly detection models learn the distribution of stable slope features, and
deviations from this distribution can indicate abnormal conditions (Radoi, 2022) Extensions such as
AnoGAN further adapt this adversarial framework by explicitly embedding anomaly scoring
mechanisms into the latent space (Lin et al., 2023; Thomine et al., 2023). While GAN-based methods
have shown promise in detecting subtle deviations in complex data distributions. their training

instability and sensitivity to hyperparameters remain practical limitations, particularly for operational
early-warning systems,,
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As previously introduced, VAE is an extension of AE (Nawaz
et al., 2024). VAE:s introduce stochastic latent variables
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Temporal models, including RNNs, LSTMs, and GRUs, play a distinct yet complementary role

in anomaly detection by emphasizing when abnormal behavior emerges. These models learn expected

temporal evolution patterns in displacement or rainfall time series and flag deviations from predicted
trajectories (Zamanzadeh Darban et al., 2024; Zhang et al., 2022a). In landslide early-warnin

scenarios, this temporal sensitivity is crucial for identifying acceleration phases rather than static

anomalies. Hybrid architectures that integrate temporal models with AEs or GANs further enhance

anomaly detection by jointly capturing spatial reconstruction errors and temporal inconsistencies

enabling multi-source consistency checks across monitoring networks. For instance, Geiger et al.

Deleted: AnoGAN extends conventional GANs by directly
incorporating data cleaning as one of its primary objectives
(Lin et al., 2023; Thomine et al., 2023). It introduces an
additional encoder during training, which maps input data to
the latent space. The difference between this latent vector and
the latent vector of normal samples generated by the

generator serves as the basis for anomaly detection.

(2020) demonstrated a growing trend of utilizing LSTM networks as both the generator and
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discriminator within GAN frameworks for time-series anomaly detection. Similarly, Whitaker (2023)
illustrated the application of LSTM—GAN architectures in identifying temporal anomalies.

Deep learning-based anomaly detection shifts landslide identification from static classification

toward dynamic state monitoring, making it particularly suitable for early recognition of slope

instability under evolving environmental conditions. Although these methods do not directly predict

landslide occurrence, they provide an essential early-warning layer by highlighting abnormal system

behavior that warrants further physical interpretation or intervention.

3.5 Models for Data Fusion in Potential Landslide Identification

In practical applications, the identification of potential landslide hazards is a complex task that
influences by multiple factors (Zhang et al., 2018). These factors are often reflected through different
data sources. We can roughly divide heterogeneous data into four categories: image data, time series
data, structured data, and textual data. Given this heterogeneity, data fusion is essential for the accurate

identification of potential landslides (see Fig. 5),
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Figure 5. Integrated framework of GNNs and Transformers for data fusion. (a) Multi-source integration: the

architectural flow for synthesizing heterogeneous datasets (spatial images, time-series, and structured data) to

support robust decision-making. (b) Topology modeling: GNN mechanisms designed to aggregate spatial

dependencies across general, multi-graph, and hierarchical slope networks. (¢) Global contextual attention: the

Transformer architecture utilizing self-attention mechanisms to capture long-range dependencies in sequence-

based or flattened spatial features,

Deleted: The role of deep learning models in data fusion. (a)

Conventional data fusion approaches in landslide studies (such as feature concatenation, weighted

linear combination, or statistical multivariate analysis) generally rely on predefined assumptions

regarding variable independence or linear interactions. While these methods are computationally

efficient, they struggle to capture the nonlinear, scale-dependent, and cross-modal relationships that

characterize real-world landslide processes. In contrast, deep learning—based data fusion models
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provide a data-driven means to automatically learn high-order feature interactions across

heterogeneous inputs, thereby offering a more flexible and expressive framework for potential

landslide identification.

Among existing architectures, Graph Neural Networks (GNNs) have attracted increasing

attention due to their ability to explicitly represent non-Euclidean spatial relationships. Landslide-

related terrain units (e.g. slope units, grid cells, or monitoring stations) are inherently interconnected

through topography, hydrological pathways, and geological continuity (see Fig. 5b). Conventional

CNN-based fusion models, which operate on regular grids, are limited in capturing such irregular

spatial dependencies. By contrast, GNNs represent spatial entities as nodes and their geospatial

hydrological, or geological relationships as edges, enabling the propagation of information across

topologically connected units (Scarselli et al., 2008; Ying et al., 2018: Zeng et al., 2022).,

In landslide identification and forecasting, this graph-based representation allows geomorphic

and hydrological signals to be explicitly transmitted between adjacent or functionally connected units,

thereby better reflecting slope interaction mechanisms, For example, Kuang et al. (2022) proposed an

innovative landslide forecasting model based on GNNs, in which graph convolutions are employed to
aggregate spatial correlations among different monitoring sites. Ren et al. (2025) introduced a novel
GNN framework with conformal prediction (GNN-CF) for landslide deformation interval forecasting,
addressing the limitations of conventional models in handling predictive uncertainty.

According to the differences in message passing and aggregation methods, GNNs have derived
various variants. For example, Graph Convolutional Network (GCN) is generated by generalizing the
convolutional operation to graph-structured data (Kipf and Welling, 2016; Sharma et al., 2022; Wang
et al., 2020a), and Graph Attention Network (GAT) dynamically weights the importance of
neighboring nodes by introducing the attention mechanism (Veli*ckovi’ c etal., 2017; Yuan et al., 2022;
Zhou and Li, 2021). The emergence of these new architectures makes GNN variants more targeted
than conventional GNNs and suitable for modeling heterogeneous relationships. Currently, they are
often used for weighted analysis of the impacts of different geographical factors on landslides (Kuang
etal., 2022; Li et al., 2025; Zhang et al., 2024¢).

Beyond graph-based models, Transformer architectures have emerged as a unifying framework

for multimodal data fusion in landslide studies. As highlighted in Section 3.2, the Transformer’s self-

attention mechanism and modular architecture make it a universal framework for processing sequential
data and enabling multimodal fusion (see Fig. 5).

In this context, the core advantage of the Transformer lies in its ability to integrate diverse input
data (e.g., satellite imagery, GPS time series, and geological maps). It achieves this by employing
independent embedding layers to convert each modality into a unified vector representation, which is

then fused through the self-attention mechanism. This mechanism computes the interactions and
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correlations among all elements across different modalities, thereby enabling the model to capture
cross-modal dependencies and extract joint feature representations within a unified framework. This
capability makes the Transformer particularly suitable for landslide studies (Li et al., 2025). For
example, Piran et al. (2024) enhanced short-term precipitation forecasting by applying transfer
learning with a pre-trained Transformer model. Zhang et al. (2024¢) incorporated Transformer modules
to build a graph-Transformer model that integrates global contextual information for the generation
and analysis of Landslide Susceptibility Maps (LSMs).

In conclusion, deep learning—based data fusion provides a flexible and unified framework for

integrating heterogeneous landslide-related data, including spatial, temporal, and topological

information. By enabling joint representation learning across multiple data modalities, fusion-oriented

architectures such as GNNs and Transformers have substantially enhanced the capability of potential

landslide identification to capture complex environmental interactions that cannot be adequately

represented by single-source or loosely coupled models. As a result, data fusion has become a critical

methodological component in contemporary deep learning—based landslide hazard studies.

4 Deep Learning for Potential Landslide Identification: Applications

The preceding sections have laid the groundwork by discussing the data prerequisites and model
architectures fundamental to deep learning in potential landslide research. Building upon that
foundation, this section turns to the practical applications of deep learning for identifying potential
landslides across diverse real-world scenarios.

Given that landslides are triggered by different dominant factors, the mechanisms, data
characteristics, and monitoring strategies vary substantially among different types. To provide a
systematic and targeted analysis, this section organizes the applications according to four major
triggering categories: rainfall-induced landslides, earthquake-induced landslides, human activity-
induced landslides, and multi-factor-induced landslides (see Fig. 6). For each category, we briefly
outline its geological characteristics, summarize representative deep learning applications, and discuss
model adaptability and monitoring considerations. This structure allows for a comprehensive
understanding of how deep learning frameworks can be tailored to the unique challenges posed by

different landslide-inducing mechanisms.

4.1 Application of Deep Learning in the Identification of Rainfall-induced

Landslides

Rainfall stands as the predominant global trigger for landslides. Intense and short-duration rainfall
events (lasting from a few hours to several days) often induce shallow landslides (Ma and Wang, 2024),
whereas prolonged rainfall (lasting from several weeks to months) can lead to deeper and larger

landslides, with depths ranging from 5 to 20 meters (Casagli et al., 2023). Consequently, rainfall
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intensity, cumulative precipitation, and rainfall duration constitute critical triggering parameters for
rainfall-induced landslides (Mondini et al., 2023).

Sustained or intense rainfall elevates slope unit weight and moisture content, alters pore water
pressure regimes, and reduces shear strength via the principle of effective stress, thereby initiating
surface instability. This hydro-mechanical coupling establishes a pronounced positive correlation
between rainfall patterns and slope deformation (Li et al., 2022a).

Temporally, landslides exhibit both abrupt failure and delayed responses to rainfall. Pre-existing
fractures act as preferential pathways for rainwater infiltration, yet the time required for percolation to
reach slip zones introduces a hysteresis effect in slope deformation relative to precipitation events
(Jiang et al., 2023; Liu et al., 2022b). During wet seasons, intense rainfall elevates groundwater tables,
inducing fully saturated conditions in slope materials. This saturation amplifies shear strain rates,
triggering rapid acceleration of landslide movement. Post-rainfall, groundwater levels remain elevated
for extended periods (weeks to months), resulting in sustained but decelerated sliding velocities rather
than complete stabilization. Consequently, despite concentrated rainfall during wet seasons, numerous
landslides occur in subsequent dry periods (Ren et al., 2023), highlighting the delayed destabilization
governed by lingering pore pressure dynamics. The hysteresis phase reflects progressive energy
accumulation toward critical thresholds, while abrupt failure signifies rapid energy release during
instability. This transition is typically characterized by a near-instantaneous shift from stable to
unstable states when pore water pressures or soil moisture content exceed critical thresholds, with
minimal intermediate deformation phases.

The spatial clustering of rainfall-induced landslides fundamentally arises from the coupling of
moisture transport efficiency and geotechnical strength degradation within specific geomorphic units
(Wicki et al., 2020; Yu et al., 2021). Spatially, such landslides are concentrated in high-rainfall zones
and permeable lithologies, where hydro-mechanical feedback dominates slope destabilization. High-
rainfall zones, characterized by frequent and intense precipitation, impose dual hydrological stresses
on slopes: surface runoff erodes toe regions, while infiltration elevates pore pressures, collectively
acting as external drivers of failure. Highly permeable strata, characterized by high porosity or
interconnected fractures, accelerate water migration.

Combined with high permeability, these properties regulate water retention time within the slope
and control the efficiency of pressure transmission, forming an internal transport network that
facilitates landslide progression. The superposition of these mechanisms drives slope stability beyond
critical thresholds over short timescales, culminating in abrupt failure.

What determines the critical threshold for rainfall-induced landslides? First, it is essential to
define the critical threshold as the minimum amount of rainfall required to trigger a landslide under

specific geological and topographic conditions (Naidu et al., 2018; Segoni et al., 2018b). This threshold
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is typically classified into two types: empirical thresholds, which are derived from statistical
relationships between historical landslide events and rainfall data, and physically based thresholds,
which incorporate hydromechanical models. Both approaches assume rainfall as the primary
destabilizing driver. To operationalize these thresholds for landslide prediction, monitoring systems
integrate rain gauge and remote sensing to assess proximity to critical saturation levels (Li et al., 2023;
Piciullo et al., 2018). Moreover, the relationship between rainfall and landslides is often nonlinear and
influenced by multiple factors. Deep learning models enable data-driven determination of context-
specific critical rainfall values across diverse geological and topographical settings (Sala et al., 2021;
Segoni et al., 2018a). For example, Badakhshan et al. (2025) incorporated the role of soil strength.
Soares et al. (2022) utilized the U-Net model, reveals that the inclusion of a normalized vegetation
index layer enhances model balance and significantly improves segmentation accuracy.

Following the development of rainfall threshold models, real-time monitoring of historically
rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of
subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating
timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by
continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic
recalibration of threshold parameters. This data assimilation enhances model adaptability to evolving
hydrogeological conditions, ensuring operational relevance across heterogeneous terrains.

While the physical mechanisms governing rainfall-induced slope failures have been well studied
(Arnone et al., 2011; Xiong et al., 2024), recent advances in deep learning have significantly improved
our ability to automatically identify and predict such events using heterogeneous data.

In the context of rainfall-induced landslides, spatiotemporal data (e.g., rainfall intensity,
cumulative precipitation, soil moisture, and slope displacement time series) are the primary inputs.
Deep learning models are selected according to data characteristics and task objectives. For instance,
CNNs are commonly used to extract spatial rainfall-topography features and delineate susceptible
zones from remote sensing images (Peng and Wu, 2024; Xu et al., 2022a; Zhang et al., 2022b). The
encoder-decoder architecture, such as U-Net, enables pixel-level segmentation of rainfall-induced
landslides (Bhatta et al., 2025), with the inclusion of vegetation or soil moisture layers improving
feature discrimination.

When temporal evolution is essential, RNNs and LSTMs effectively model sequential
dependencies between rainfall and slope deformation (Biniyaz et al., 2022; Liu et al., 2025). These
models are capable of learning hysteretic responses and time lags between precipitation events and
ground displacement, enabling early warning through time-series forecasting.

Deep learning also facilitates data-driven rainfall threshold estimation. Instead of relying solely

on empirical or physically based thresholds, models such as Fully Connected Neural Networks (FNNs)
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and attention-based transformers can derive adaptive rainfall thresholds from multi-year rainfall-

landslide records, capturing regional nonlinearities (Wu et al., 2023).

4.2 Application of Deep Learning in the Identification of Earthquake-induced

Landslides

Earthquakes not only trigger landslides during the seismic phase but also increase the
susceptibility of post-earthquake landslides by weakening slope materials or forming co-seismic
landslide deposits (Zhang et al., 2024a; Zhao et al., 2024a). On the one hand, the seismic vibrations
can loosen the structure of the rock and soil mass on the slope, reducing the cementation between
particles. The originally intact rock mass may develop cracks, and the density of the soil decreases,
thus reducing the overall stability of the slope and making it more prone to landslides after the
earthquake. On the other hand, the landslides that have occurred during the earthquake process will
generate a large volume of deposits. These co-seismic landslide deposits are usually accumulated at
positions such as the lower part of the slope or in valleys. They are in a relatively unstable state
themselves, providing a material basis for subsequent re-sliding (Fan et al., 2019; Yao et al., 2024).

So, what is the temporal relationship between earthquake-induced landslides and seismic events?
When an earthquake occurs, landslides may be triggered instantaneously by seismic ground motion,
typically within seconds to minutes after the earthquake. Such landslides are mainly triggered by the
peak ground acceleration (PGA) or peak ground velocity (PGV) of the seismic ground motion (Kargel
et al., 2016; Zhao et al., 2023). When these values reach a certain level, they are sufficient to enable
the rock and soil masses on the slope to overcome the frictional force and shear strength, thus leading
to the occurrence of landslides.

Earthquake-induced landslides are typically concentrated in areas of high seismic intensity,
particularly on steep slopes or within loose accumulations (Li et al., 2024). A fault is a place where the
rocks in the earth’s crust break and undergo relative displacement. Its existence destroys the continuity
and integrity of the rock mass, making it more prone to deformation and damage under the action of
seismic forces. On the hanging wall of a reverse fault, the compressive force usually causes the rock
blocks to break, and mountain landslides are likely to occur during seismic events. In contrast, on the
footwall of a normal fault, the tensile force may cause the rock blocks to fracture and loosen, thus
increasing the risk of mountain landslides.

The Newmark model is a commonly used basic model in the research of earthquake-induced
landslides (Jibson, 2007; Newmark, 1965). Based on a simplified assumption, it regards the rock and
soil masses on the slope as rigid blocks. When these rigid blocks are affected by seismic vibrations,
they slide on the slope surface. By calculating the cumulative downhill displacement of the rigid blocks

caused by the continuous increase of seismic vibrations, the stability of the slope under the action of
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an earthquake is measured. In other words, the greater the cumulative downslope displacement, the
more unstable the slope is during the earthquake, and the higher the likelihood of a landslide occurring.
However, Newmark’s model exhibits critical limitations: (1) dependence on oversimplified soil or rock
strength assumptions and (2) inadequate integration of high-resolution seismic motion data. Deep
learning models address these gaps by processing massive real-time datasets, filtering noise from
obscured remote sensing imagery (Wang et al., 2024b), and fusing seismic parameters with
multispectral satellite data through cross-modal architectures (Dahal et al., 2024).

Within hours to days post-main shock, aftershocks can further destabilize already loosened slope
structures, triggering secondary landslides clustered near co-seismic failure zones or aftershock
epicenters (Sun et al., 2024b; Zhang et al., 2024c¢). These landslides are often concentrated around the
mainshock-induced landslide bodies or the epicentral region of aftershocks, potentially forming
disaster chains (e.g., landslides blocking rivers, leading to the formation and subsequent failure of
landslide dams, which may trigger flooding). Even years post-earthquake, relic landslide deposits may
reactivate through gradual creep or extreme climatic forcing, necessitating long-term spatiotemporal
monitoring and dynamic risk reassessment (Jones et al., 2021; Li et al., 2021b). Moreover, earthquake-
induced landslides are often associated with complex 3D topographic changes, which are difficult to
capture using conventional 2D analyses. Deep learning frameworks enable precise reconstruction of
landslide geometries by processing LiDAR-derived or UAV-derived 3D point clouds, capturing
volumetric deformation patterns critical for mechanistic modeling.

Current applications of deep learning in earthquake-induced landslides primarily focus on
semantic segmentation and change detection (Chowdhuri et al., 2022; Huang et al., 2023b; Liu et al.,
2020a; Yang et al., 2024b). Liu et al. (2021b) employed graph isomorphism networks (GIN) to model
long-range dependencies among high-level features extracted by ResNet-50. Zi et al. (2021) utilized a
hybrid architecture combining graph attention networks (GATs) and channel self-attention
mechanisms enhances the modeling of feature interdependencies from ResNet-50. Yang et al. (2023b)
incorporated a spatial attention module to capture contextual dependencies and extract rich non-local
spatial features, proposing a novel semantic segmentation network, EGCN, to enhance landslide
recognition accuracy.

Both physics-based and data-driven model calibration rely on earthquake-induced landslides
inventories (Bhuyan et al., 2023; Tanyas, et al., 2017). Despite increased inventory availability,
persistent issues of representativeness and completeness limit model generalizability and mechanistic
fidelity.

4.3 Application of Deep Learning in the Identification of Human Activity-induced
Landslides
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Human activity-induced landslides typically arise unintentionally during construction activities,
where initial slope equilibrium is disrupted by slope toe excavation or water infiltration into exposed
fractures (Zhao et al., 2022). Compared to natural landslides, human activity-induced failures are often
more controllable, underscoring the critical importance of pre-disaster identification for risk mitigation.
These landslides are characterized by localized micro-deformation and subsurface disturbances,
necessitating integrated monitoring systems that combine high-resolution remote sensing data with
ground-based sensors for early anomaly detection.

Current predominant anthropogenic triggers include mining and loading (Ma et al., 2023a; Xu et
al., 2022). These activities induce severe surficial damage, with stratigraphic movement and surface
deformation leading to the formation of ground fissures. Such fissures compromise surface ecosystems
and vegetation, while also penetrating subsurface mining cavities, posing grave risks to operational
safety. Consequently, deep learning models are essential for automated ground fracture extraction to

enable real-time hazard mapping and preventive interventions (Huangfu et al., 2024).
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Figure 6. Selection of monitoring data for different types of landslides (a) Rain-induced landslides. (b)

Earthquake-induced landslides. (c) Human activity-induced landslides. (d) Multi factor-induced landslides.
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Moreover, the triggers of human activity-induced landslides are not only related to natural
conditions but also closely associated with dynamic human activities. Consequently, their analysis
necessitates the integration of multimodal and cross-scale data to capture coupled environmental and
behavioral drivers (see Fig. 6). In engineering operations such as mining or road construction, factors
including proximity to potential landslide zones, excavation depth, and slope angles must be rigorously
evaluated through geohazard risk assessments. During excavation phases, geotechnical investigations
are imperative to identify weak lithological strata or fracture-dense zones predisposed to instability.
Continuous slope stability monitoring requires deploying IoT-enabled sensors to track temporal
variations in surface fissure dimensions and subsurface displacement vectors. Monitoring data from
these sensors can be integrated into deep learning models for multimodal analytics, enabling dynamic
risk prediction and adaptive mitigation planning.

For spatial mapping and fissure extraction, CNNs and U-Net-based segmentation models have
demonstrated strong capability in identifying artificial slope features from optical or SAR imagery.
CNN-based models can capture high-level semantic information on excavation scars, road cuts, and
spoil heaps that indicate anthropogenic disturbance. Tao et al. (2024) employed the DRs-U-Net model
to investigate the use of deep learning for UAV-based crack identification, the developmental patterns
of fissures, and the feedback interactions between underground mining progress and corresponding
surface conditions. Wu et al. (2021) proposed the PU-Net model for detecting and mapping localized
rapid subsidence induced by mining activities. Meng et al. (2025) introduced the GF-Former model to
achieve precise segmentation of ground fissures in remote sensing imagery.

When surface deformation time series or micro-displacement data from GB-InSAR, InSAR, or
IoT sensors are available, RNN-based models are applied to model the temporal evolution of slope
deformation (Han et al., 2022; Li et al., 2025). These models are particularly effective in detecting
precursory motion trends caused by progressive excavation or loading activities.

To mitigate misclassification between anthropogenic signatures and natural terrain, integrating
multispectral data with topographic elevation data enhances discriminative capacity (Meng et al., 2021;
Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing artificially excavated
steep slopes combined with fractured geological strata from structural maps provide preliminary
evidence of human influence on landslide susceptibility (Lian et al., 2024).

In fact, landslides induced solely by human activities are relatively rare. Single human activities
are typically insufficient to independently trigger landslides, with natural factors often acting in
conjunction with human activities. Furthermore, the prohibitive cost of acquiring subsurface
disturbance data results in sparse historical landslide samples for specific engineering scenarios,

limiting data-driven model training.

4.4 Application of Deep Learning in the Identification of Multi-factor-induced
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Landslides

Multi-factor-induced landslides result from the synergistic interaction of multiple natural and
anthropogenic factors (Hao et al., 2023). Their triggering mechanisms involve the dynamic
spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials through
cumulative strength degradation. The formation of such landslides may involve various types of
movements, including collapse, creep, and flow phenomena. They often exhibit characteristics such as
complexity, nonlinearity, and suddenness. Therefore, their identification is markedly more complex
compared to landslides induced by singular factors.

Unlike simpler landslide types, identifying composite landslides necessitates multimodal data
fusion to holistically assess predisposing conditions (Li, 2025; Yin et al., 2023). It further requires
disentangling the nonlinear superposition effects of multiple factors and quantifying their relative
contributions to failure initiation.

In multi-factor-induced landslides, earthquakes and rainfall often interact with other factors (Dou
et al., 2019). During heavy rainfall, the rate of landslide formation after an earthquake may be higher,
possibly driven by the removal of excessively steep slopes, changes in vegetation and groundwater,
and alterations in the mechanical properties of the bedrock and weathered layers in the earthquake-
induced landslides canopy. This necessitates systematic investigation of multi-hazard coupling effects
to quantify emergent risks.

In addition to constructing physics-based models that account for multiple factors and quantify
their interactions through the solution of governing equations, GNNs can also be employed (Lei et al.,
2025). These models are capable of capturing the spatiotemporal dependencies and nonlinear
couplings among various triggering factors. For example, Ren et al. (2025) employed a GNN to capture
and model the complex spatiotemporal dependencies among multiple monitoring locations during
landslide deformation. Zeng et al. (2022) used the graphical representation capability of the GNN
model to analyze environmental relationships within a study region, where nodes were defined as
geographic units delineated by terrain surface approximations, and edges captured the interactions
between node pairs. Zhang et al. (2024d) constructed a geographically constrained relational graph
based on node features representing environmental similarity and employed a cosine similarity
approach to associate landslides with their surrounding geographic environments.

Cross-attention mechanisms can also be integrated into the model to capture spatiotemporal
dependencies among contributing factors. For instance, Hu et al. (2025a) integrated global landslide
feature vectors with local feature maps through a cross-attention mechanism to enhance the
discriminative capability between landslides and background geomorphology. Another noteworthy
fusion strategy is the gated fusion unit. Inspired by the gating structures in recurrent neural networks
(Arevalo et al., 2017; Kumar and Vepa, 2020; Tsai et al., 2019), this mechanism learns dynamic
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weights (typically implemented through gating functions such as Sigmoid) to adaptively regulate the
information flow of features from different modalities, thereby emphasizing salient features and
suppressing noise. Compared with cross-attention, the gated fusion mechanism is generally more
lightweight and provides an alternative approach for multimodal feature fusion (Yang et al., 2024a).
For instance, Liu et al. (2022a) proposed a gated fusion unit module for multimodal remote sensing
image semantic classification, enabling early fusion of heterogeneous modality features.

With the accumulation of new data and the dynamic variations in multi factor-induced landslides,
regular model updates are critical to ensuring identification accuracy and adaptability. Existing studies
predominantly apply deep learning methods based on comprehensive historical landslide datasets.
However, when new data becomes available, a naive approach is to retrain the model from scratch,
which is computationally inefficient and fails to capture the connections between new observations
and historical knowledge. A common strategy from the machine learning literature to address this is
fine-tuning, where a model pre-trained on a historical dataset is further trained on new data (Sualp and
Rezaei, 2025). While this avoids full retraining, standard fine-tuning can still lead to catastrophic
forgetting of previously learned patterns.

To better accommodate the dynamic nature of landslides, incremental learning methods offer a
more advanced and promising solution (Huang et al., 2022a; Wang et al., 2024c). These methods
enable the model to continuously learn from new data streams, gradually optimizing parameters while
striving to preserve knowledge from previous tasks. Compared to models that require retraining or
basic fine-tuning (Zhao et al., 2024c), models integrated with incremental learning can more
effectively leverage historical data and adaptively incorporate new information, thereby enhancing
long-term adaptability (Zhen et al., 2025).

The diverse applications discussed in this section demonstrate that the selection and effectiveness

of a deep learning model are fundamentally governed by the interplay between available data types
inherent model capabilities, and specific task objectives. To synthesize these critical relationships and
provide a clear reference framework, Table 1 maps the typical correspondences between predominant
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deep learning architectures, their compatible data source, suited landslide phenomena, and
representative application tasks. This synthesis underscores that there is no universally optimal model;
data-model-aj

rather, a strategic alignment across the lication pipeline is key to successful

implementation.

Deep Learning Typical Input Data Target Landslide Representative Research
Models Types Tasks
CNNs Optical remote sensing Shallow landslides, Landslide boundary

imagery, UAV imagery, | rockfalls, and debris delineation, susceptibility

LiDAR-derived DEMs, | flows (with emphasis | mapping, landslide inventory

and InSAR-derived on morphological compilation, and pixel-level

deformation maps identification) semantic segmentation
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RNNs InSAR time-series data | Creeping landslides Displacement prediction
and ground-based and slow-moving temporal deformation
monitoring data (e.g. landslides (focusing analysis, and early warning
rainfall sequences, on time-series systems
groundwater levels) analysis)
Transformers | Multi-temporal optical Complex and multi- Multimodal landslide
imagery, multi- type landslides detection, change detection
sequence InSAR data. (particularly suitable | and cross-domain prediction
and multi-source for multi-source data
environmental factors fusion)
GANs Optical and UAV Applicable across Data augmentation, sample
imagery, LIDAR- different landslide generation, image
derived DEMs, and types (primarily used | reconstruction, and resolution
synthetic or augmented for data generation) enhancement
remote sensing data
AEs InSAR-derived surface Applicable across Feature extraction, anomaly
deformation time series different landslide detection, noise suppression,
and high-dimensional types (primarily used | and dimensionality reduction
multi-source landslide- for feature learning
related variables and dimensionality
reduction)
GNNs Graph-structured spatial Regional landslide Spatial interaction modeling,
data derived from systems, clustered landslide clustering analysis,
terrain units, sensor landslides, and and network-based
networks, or landslide | interacting slope units susceptibility analysis
inventories
Diffusion Multi-source remote Currently dominated Data denoising, generative
Models sensing data and by exploratory and modeling, uncertainty
synthetic datasets methodological representation, and
studies reconstruction
Table 1. Typical correspondences among data source, deep learning models, and applications in

potential landslide identification,
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4.5 Summary on the Applications of Deep Learning for Potential Landslide

Identification

In general, the process of the applications of deep learning for potential landslide identification
involves data collection, preprocessing, model construction, training, and validation, followed by
deploying the trained model to identify potential landslides. Variations arise in data sources, trigger
mechanisms, and model handling approaches specific to each landslide type. For rainfall-induced
landslides, the model prioritizes rainfall-related data, with particular emphasis on simulating rainfall
infiltration effects. Earthquake-induced landslides require prioritization of seismic data, including
earthquake magnitude and post-seismic geological alterations. Human activity-induced landslides
demand focused analysis of the relationship between engineering activities and geological changes. In
contrast, multi factor-induced landslides necessitate models that integrate multiple triggering
mechanisms and perform a comprehensive assessment of the cumulative effects of diverse contributing
factors.

Whether landslides are triggered by rainfall or earthquakes, gravity remains the dominant driving
force (She et al., 2024). The primary role of triggering factors lies in reducing slope stability or
amplifying gravitational effects. Before and during landslide occurrence, deformation of slope
geomaterials constitutes the most observable phenomenon (Zhou et al., 2025). This deformation often
manifests as the formation and expansion of cracks.

Since landslide deformation is a dynamic process, ranging from initial minor changes to eventual
large-scale sliding, each stage exhibits distinct characteristics. Therefore, landslides can be classified
into distinct stages based on their deformation characteristics, enabling more accurate identification of
impending disaster warning signals (Zhang et al., 2024b). Here, we categorize landslide evolution into
three phases: (1) creep deformation stage, (2) intermediate development stage, and (3) progressive

failure stage (see Fig. 7).
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Figure 7. The development of landslides is divided into three stages with distinctive identification markers.

In the creep deformation stage, the slope gradually deforms under the influence of various factors,
though surface manifestations may not be readily observable. Small, discontinuous cracks with limited
width may emerge on the slope surface or crest. High-precision measuring instruments can detect
localized minor displacements or deformations (Zhan et al., 2024). Vegetation on the slope may exhibit
tilting or leaning patterns, with tree orientations potentially aligning in consistent directions. In the
intermediate development stage, slope deformation progresses at a relatively stable rate. Initially
observed surface cracks gradually widen and elongate, eventually interconnecting to form larger
fracture networks. Crack widths may expand from a few centimeters to tens of centimeters or more,
accompanied by displacement between soil or rock blocks. Monitoring systems can record slope
displacements at a relatively constant rate. Slope deformation disrupts pre-existing groundwater flow
paths, resulting in alterations to groundwater levels, volume, or quality within the landslide mass and
surrounding areas. The progressive collapse stage predominantly reflects pre-sliding slope deformation
characteristics and is critical for identifying imminent landslides (Cascini et al., 2022; Chen et al.,
2024a). In progressive landslides, the potential sliding surface gradually evolves into a continuous
failure plane. In sudden landslides, due to their abrupt evolutionary process, no distinct sliding surface
is evident, making it necessary to rely on other indicators for identification. Physical phenomena such
as crack widening and deepening, formation of enclosed boundaries by cracks and drainage holes,
increased displacement at the rear edge of the slope, bulging at the slope’s toe, increased seepage at
the slope foot, an increase in slope angle, and reverse tilting of the slope collectively aid in identifying
potential landslides.

Theoretically, the unique identification markers of each stage can serve as input features for deep

learning models, enabling direct classification of landslides into distinct stages. This facilitates the
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implementation of more targeted mitigation measures for each stage. Since slope changes ultimately
result from displacement variations, we propose that a landslide identification method based on
deformation characteristics as indicative factors holds great potential.

After classifying landslide stages based on deformation characteristics, different mitigation
strategies should be applied to each phase. In the creep deformation stage, the focus should be placed
on landslide triggering factors, with risk reduction measures such as drainage systems and slope cutting.
In the intermediate development stage, monitoring should be intensified alongside temporary
reinforcement measures. In the progressive collapse stage, emergency evacuation and stabilization of

the potential landslide mass must be prioritized.

5 Deep Learning for Potential Landslide Identification: Challenges

5.1 Data Quality and Availability

In potential landslide identification, the performance of deep learning models is critically
dependent on both data quality and availability (Alzubaidi et al., 2023; Gaidzik and Ramirez-Herrera,
2021; Whang et al., 2023). Low-quality or unreliable data directly impair the models’ feature extraction
capabilities, while insufficient data availability constrains their generalization capacity and real-time
monitoring efficacy (Azarafza et al., 2021; Xiao and Zhang, 2023).

In the natural environment, non-landslide states are the norm, while the landslide state is relatively
rare (see Fig. 8). This leads to the data collected mainly consisting of normal geological conditions,
with much less data representing potential landslides. Such a severe skewness in the class distribution
results in a serious imbalance in the data, that is, there is a huge difference in quantity between the
minority class (landslide samples) and the majority class (non-landslide samples) (Jiang et al., 2024).
Gupta and Shukla (2023) demonstrated that this data imbalance can cause learning algorithms to be
biased towards the majority class, perform poorly on the minority class. This bias impedes the
predictive ability of the learning algorithms, and ultimately lead to the final model’s poor performance
in identifying and predicting the minority class of landslide samples.

Even if some landslide inventory data have been collected, it is often difficult for these data to
represent the real landslide situations within the study area. There may be issues such as omissions and
biases, which greatly reduce the credibility of the results derived from these data (Woodard and Mirus,
2025; Zezere et al., 2017).

The presence of irrelevant input dimensions within the data necessitates larger training datasets
for deep learning models to achieve satisfactory generalization performance. This can be attributed to
the models’ tendency to overfit to noise or spurious patterns within extraneous features, thereby failing
to capture task-relevant characteristics. Such overfitting diminishes adaptability to unseen data,

reduces prediction accuracy, and ultimately degrades data efficiency (D’Amario et al., 2022). As a
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result, deep learning models may exhibit inaccurate recognition or even failure when confronted with
novel, complex scenarios outside the training distribution.

Different types of features vary in terms of data format, dimensions, and semantics, posing a key
challenge in achieving high-level feature fusion for complementary and synergistic information
integration (Liu et al., 2023b). For example, different sensor data exhibit significant differences in
physical meaning and data structure (Ghorbanzadeh et al., 2022). Optical imagery (RGB matrices)
reflects surface coverage but is susceptible to cloud interference. SAR data (complex phase) can
capture deformation information but contains speckle noise. LIDAR point clouds (3D coordinates)
provide high-precision terrain data but have limited coverage. Ground sensors (temporal scalars)
enable real-time monitoring of subsurface parameters but are spatially sparse. Direct fusion of such
multi-modal data induces feature space incompatibility, hindering cross-modal correlation extraction
(Cai et al., 2021; Jin et al., 2022). Zhang et al. (2023) highlights that even remote sensing data exhibits
high heterogeneity in imaging mechanisms, illumination conditions, and spectral characteristics.

Furthermore, multiple types of heterogeneous data will increase model complexity, potentially
leading to prolonged training times, excessive computational demands, and overfitting risks. Simple
combination of low-level detail features with high level semantic features may introduce contextual
noise, compromising feature robustness and semantic coherence (Ji et al., 2020). When designing
densely connected convolutional networks, a balance must be struck between model complexity and
generalization capacity to mitigate overfitting on training data and ensure robust performance on

unseen scenarios (see Fig. 8).
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Figure 8. Challenges of deep learning in potential landslide identification. (a) Data quality and availability. (b)

Limitations of deep learning models. (c) Complexity of landslide mechanisms.

5.2 Limitations of Deep Learning Models

Although deep learning models have achieved success in landslide identification (Meena et al.,
2022; Su et al., 2021; Yi and Zhang, 2020), they are plagued by several inherent limitations. Among
these, the most critical challenge is their lack of interpretability (Li et al., 2025), which refers to the
difficulty in explaining the internal decision-making processes behind their predictions.

Deep learning models typically contain a large number of parameters and layers, making it
challenging to intuitively interpret their internal weights and feature representations. It is often unclear
whether the model’s predictions are based on key geological features (e.g., slope gradient, lithological
structure, fracture distribution) or influenced by irrelevant factors such as vegetation color or image
noise. In potential landslide identification, a common issue is that models may mistakenly classify

shadows or cloud cover as potential landslides, yet the underlying causes of such misclassifications
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remain opaque. When multimodal data are integrated for landslide detection, it is also challenging to
clarify how the model weights different data sources.

The abstract features extracted by these models also lack a clear correspondence to interpretable
geological indicators (see Fig. 8). Even when the model successfully identifies potential landslides
based on texture patterns in remote sensing imagery, it remains unclear whether these patterns
correspond to actual geomechanical parameters or physical processes.

Moreover, the probability values output by the models often lack physical meaning and therefore
cannot effectively represent geological uncertainty. In practice, high-risk areas predicted by the model
may conflate "uncertainty caused by data absence" with "risk of the geological conditions themselves"
(Achu et al., 2023; Feng et al., 2022). Even experienced geologists may struggle to validate the
geological plausibility of such features, thereby constraining the adoption of deep learning results in
practical engineering applications.

Compounding these issues, there also exists an inherent inconsistency between data-driven
feature learning and the complexity of real-world geological processes. Deep learning models tend to
capture superficial statistical patterns rather than the governing physical mechanisms that are
generalizable across different regions and environmental conditions. Consequently, in potential
landslide identification, substantial manual annotation efforts are often required when transferring
models across regions or sensors.

Despite the availability of diverse datasets, the lack of standardized, high-quality annotated
benchmarks has severely hindered the development and fair comparison of deep learning models (Fang
et al., 2024). Current models are often trained and validated on independent, task-specific datasets,
thereby preventing an objective assessment of state-of-the-art performance and limiting our ability to
evaluate their true generalization capacity across varying geological settings and triggering factors.
5.3.1 Multiple Factors Coupling Interactions

The formation of landslides involves the dynamic coupling of multiple factors such as geological
structures, geotechnical mechanics, hydrological conditions, topography, meteorological factors,
vegetation coverage, and human activities (Scheingross et al., 2020; Yi et al., 2022). Therefore, the
triggering mechanisms are inherently multiscale, ranging from microscopic interparticle friction to
macroscopic slope instability, and encompassing both transient dynamic responses and long-term
temporal evolution (see Fig. 8).

For example, geotechnical materials and structural features of the geological setting influence soil
stability, while hydrological factors such as rainfall infiltration and groundwater fluctuations alter soil
mass properties, critically weakening shear strength due to pore pressure variations. Extreme
meteorological events can alter slope stress regimes, while topographic parameters define geomorphic

susceptibility thresholds. Human activities further influence slope stability. The interactions of these

42



factors are highly nonlinear and temporally variable, making them difficult to characterize through
simple mathematical relationships.

This implies that changes in individual factors may induce cascading effects rather than linear
responses. For example, rainfall-triggered landslides exhibit threshold-dependent behavior governed
by coupled hydro-mechanical processes. When rainfall intensity or duration exceeds critical thresholds,
the rapid rise in the groundwater table increases pore water pressure, thereby reducing effective stress
and weakening shear strength according to the principle of effective stress. Such hydro-mechanical
feedback often culminates in abrupt slope failure.

5.3.2 Spatiotemporal Dynamic Evolution

The inducing factors of landslides are not only extremely complex in spatial distribution but also
highly dynamic in terms of time (Gao et al., 2023). This variability makes the research process of the
landslide mechanism more difficult.

From the perspective of temporal dynamics, landslide formation is not instantaneous but evolves
through prolonged stages, each governed by distinct mechanisms (see Fig. 7). This dynamic
progression across different timescales creates a fundamental modeling challenge: since the numerical
simulation of long-term creep requires a long-time step, while the dynamic process of short-term
abrupt changes requires a time resolution in the microsecond level, it is difficult to establish a unified
model for these two situations. This will further intensify the conflict of time scales.

In terms of spatial heterogeneity, the influence scope of landslides usually involves geological
structures ranging from the microscopic structure of geotechnical particles to the regional scale.
Moreover, there are differences in the stratum structure, slope morphology, vegetation coverage, water
content, which makes the effects of the same inducing factor vary in different regions. For example,
in loose soil layers, heavy rainfall may lead to shallow landslides, while on rocky slopes with well-
developed joints, earthquakes or water level fluctuations may trigger deep-seated landslides.

Through the interaction of factors at different temporal and spatial scales, positive or negative
feedback affects the evolutionary trend of landslides, making the triggering, evolution and reactivation
of landslides more complex and increasing the uncertainty of prediction (Haifeng et al., 2022; Liet al.,
2023b).

5.3.3 Invisibility of Subsurface Structures

Landslide occurrence is intrinsically linked to subsurface structures. However, due to their
invisibility, obtaining comprehensive geological information directly is challenging, adding significant
complexity to the study of landslide mechanisms (Li et al., 2021c).

The occurrence of landslides is not merely linked to surficial phenomena but more critically
governed by subsurface geological structures and hydrogeological characteristics. Subterranean

features such as faults and folds directly influence the mechanical properties and stability of rock and
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soil masses. However, the inherent opacity of subsurface systems limits the accuracy of delineating
these structures’ spatial distribution, scale, and orientation through surface surveys or sparse borehole
sampling, often yielding fragmented insights. Groundwater dynamics play a critical role in modulating
slope stability. Fluctuations in the water table alter pore water pressure and effective stress within
geomaterials, leading to a reduction in shear strength according to the principle of effective stress. Yet,
direct monitoring of hydraulic head variations is inherently challenging, particularly in heterogeneous
subsurface environments where localized aquifers exhibit divergent responses to hydrological forcing.
Despite advancements in geophysical imaging and hydrological monitoring, the structural anisotropy
and permeability heterogeneity of subsurface formations perpetuate ambiguities in mechanistic
interpretations, risking oversights in landslide hazard assessments.

The invisibility of subsurface structures makes it difficult to monitor the specific processes and
critical points of these dynamic changes in real time. Consequently, researchers can only infer these
processes based on surface manifestations or limited monitoring data. This results in ambiguity and
uncertainty in the analysis and interpretation of acquired indirect data. Even when model outputs
exhibit qualitative agreement with field observations, the validity of underlying assumptions and
parameterizations cannot be definitively verified.

5.3.4 Diversity of Landslide Types

Landslides exhibit considerable typological variation, with distinct instability mechanisms and
evolutionary pathways governed by geological settings, triggering factors, and kinematic behaviors.
Based on material composition, landslides can be classified into rock landslides, soil landslides, debris
flow landslides, and composite landslides, each exhibiting distinct variations in physical properties as
well as failure modes (McColl and Cook, 2024; Yu et al., 2024). For instance, rock landslides
dominated by brittle fracture differ fundamentally from soil landslides governed by plastic shear.
Kinematic categorization further distinguishes translational sliding, toppling, creep, and flow-like
movements, each involving divergent mechanical processes and triggering thresholds (Shu et al., 2021).

Due to the diversity of landslide types, with each type having different characteristics and
influencing factors, it is very difficult to establish a universal research model for the mechanism of
landslides. For different types of landslides, corresponding models need to be established according to
their specific characteristics and main influencing factors (Milledge et al., 2022). This not only requires
a large amount of on-site observation data and experimental research to determine the model
parameters, but also requires consideration of the applicability and limitations of the models.

Furthermore, cross-typological interactions among landslides amplify predictive challenges. For
example, collapsed debris may transition into debris flows, a process that is governed by
hydromechanical coupling and granular-fluid dynamics. Such multi-typological and multi-process

couplings resist comprehensive characterization via single-theory frameworks. Instead, they
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necessitate multi-scale numerical simulations to accurately reproduce the entire process. Consequently,
the diversity of landslide phenomena requires interdisciplinary integration across solid mechanics,
fluid dynamics, and multi-physics couplings. This task substantially increases the dimensionality and
complexity of mechanistic studies, demanding hybrid modeling frameworks and cross-domain

validation protocols.

6 Deep Learning for Potential Landslide Identification: Opportunities

6.1 Multi-source Data Fusion

Different methods specialize in identifying specific types of landslides, and no single method can
address addressing all potential landslide types. Therefore, research on potential landslide
identification should gradually shift from using single source data toward multi-temporal, multi-source
integrated analysis (Chen et al., 2023b; Ge et al., 2022; Xu et al., 2021).

Multi-source data can comprehensively represent complex influencing factors by integrating
various datasets, thereby enhancing information completeness. For instance, topographic and
geological data reveal slope stability, remote sensing captures surface deformations, meteorological
and hydrological data describe triggering conditions, and ground monitoring provides high-precision
dynamic information. Integrating these data enables the construction of a complete feature system
covering landslide-causing factors, prone environments, and inducing conditions, while avoiding the
one-sidedness inherent to single source observations.

In the identification of potential landslides, multi-source data fusion specifically refers to the
integration of raw data from different sources before feature extraction. Each data source has unique
strengths in resolution, coverage, and observation scale, and their fusion achieves complementarity
and cross-verification (Liu et al., 2020b; Wang et al., 2021a). For example, combining satellite and
UAV data allows both large-scale screening and detailed crack detection (Xia et al., 2021), while
merging geological surveys with InSAR time-series deformation distinguishes stable slopes from
creeping zones. This cross validation effectively reduces noise and misjudgment caused by data
uncertainty.

Integrating multi-source data fusion with deep learning enables the coupling of data and model
advantages (Chen et al., 2023; Zheng et al., 2021). The fusion reduces uncertainty through
comprehensive data representation, while deep learning extracts nonlinear features and captures
hidden correlations. Together, they improve the accuracy of potential landslide identification and
promote a shift from experience-driven to intelligence-driven hazard monitoring. In the future, the
development of cross modal pre-trained models and edge intelligence will further enhance real-time
early warning and hazard simulation, forming the backbone of an integrated "aerial-space-ground-

subsurface" monitoring framework.
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To advance this paradigm, we advocate for a community-driven benchmark that embodies the
multi-modal philosophy. Such a benchmark should include co-registered data from optical, SAR,
LiDAR, DEM, and ground-based sensors, reflecting the integrated monitoring reality. Establishing this
benchmark is a crucial step toward translating data fusion capabilities into reliable and reproducible

Al solutions for global landslide risk reduction.
6.2 Model Ensemble

Model performance depends significantly on the nature of tasks, data characteristics, and specific
requirements. Despite its ability to capture specific feature dimensions, a single deep learning model
is susceptible to limited generalization, model bias, and overfitting when confronted with data noise
and scene heterogeneity (Kavzoglu et al., 2021; Lv et al., 2022). Given these differences, model
ensemble provides an effective approach to optimization and generalization.

In the identification of potential landslides, model ensemble essentially achieves a synergistic
effect through the aggregation of diversity. While avoiding the limitations and vulnerabilities of
individual models, it also unleashes the complementary potential of multiple models through designed
mechanisms (Zhou et al., 2022).

This approach can be implemented through several pathways. Feature-level integration involves
processing different data features with specialized models and fusing the results. A more common
tactic is heterogeneous model combination, which refers to combining various types of models to
improve the accuracy of potential landslide identification. Each model can exert its advantages in
different feature spaces (Fang et al., 2021), thus forming a powerful predictive combination. A
prominent example is the CNN-LSTM hybrid, which capitalizes on CNNs’ spatial feature extraction
and LSTMs’ temporal dependency modeling, making it particularly suited for rainfall-terrain coupled
landslide prediction (Gao et al., 2024). Furthermore, advanced architectures like stacking enable
deeper model coupling. For instance, Guo et al. (2024) employed a stacked framework integrating 1D-
CNN, RNN, and LSTM to form a CRNN-LSTM ensemble, achieving significant performance gains.

Therefore, model ensemble is not a mere technical aggregation but a systematic solution to core
challenges like poor generalization, feature bias, and learning from small samples. It transforms the
local advantages of multiple models into a global optimum at the system level, achieving
comprehensive breakthroughs in identification accuracy and engineering applicability. It is important
to note, however, that these performance gains come with increased computational cost and complexity,

a necessary trade-off in practice.

6.3 Knowledge-data Dually Driven Paradigm for Potential Landslide

Identification

Conventional knowledge-driven methods, grounded in physical mechanics, rely on precise prior
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knowledge of geological structures and hydrological conditions. However, landslides are influenced
by complex, coupled multi-factor interactions, characterized by high parameter uncertainty, making it
challenging to comprehensively address such scenarios (Roy and Saha, 2019). Purely data-driven
approaches, though capable of extracting patterns from massive datasets, lack physical interpretability,
are susceptible to noise interference, and struggle to establish causal relationships in prediction
outcomes (Qi et al., 2024). A critical challenge and opportunity, therefore, lies in bridging the gap
between data-driven predictive capabilities and a physically interpretable understanding of landslide
processes.

To bridge this critical gap, a fundamental shift towards a knowledge-data dually driven paradigm
is imperative. This paradigm moves beyond simple combination to a deep integration, where physical
principles actively constrain and inform the deep learning architecture. Future research should focus
on developing novel frameworks capable of explicitly incorporating landslide typologies and physical
laws. For instance, Physics-Informed Neural Networks (PINNs) can embed governing equations
directly into the model’s loss function, while knowledge graphs can structurally represent the complex
relationships between predisposing factors and failure mechanisms.

This synergy, aligned with future concepts like "digital twin" and "smart Earth," establishes a
closed-loop "theory-practice" verification mechanism (Chen et al., 2024c¢; Das et al., 2024; Huang et
al., 2023a; Riahi et al., 2022; Sukor et al., 2019; Zhao et al., 2024¢). The ultimate goal is to advance
landslide identification from mere pattern recognition towards physically interpretable, causally-aware
forecasting, thereby transforming geological hazard mitigation from passive response to proactive
prevention.

The overall workflow of this knowledge-data dually driven paradigm for potential landslide
identification is conceptually summarized in Fig. 9.

In the first stage, multi-source data are systematically collected, organized, and integrated into a

comprehensive dataset through feature extraction and spatiotemporal alignment.
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Figure 9. Flowchart of knowledge-data dually driven paradigm for potential landslide identification.

In potential landslide identification, data sources are highly diverse. Thus, the initial step involves
systematically collecting heterogeneous data and centralizing their management. This approach
mitigates the limitations of single-source data, facilitating a more comprehensive and robust
characterization of potential landslides. These data include high-dimensional feature information
essential for data-driven models, as well as key parameters necessary for knowledge-based analytical

frameworks.



Furthermore, since multi-source data may differ in acquisition time and spatial coverage,
spatiotemporal alignment is required to ensure interoperability and facilitate synergistic analysis. The
collected data should be preprocessed, including cleaning (removal of errors and outliers),
standardization (unit homogenization), and classification (based on data type or region). These steps
ensure that the data retain inherent physical significance and maintain consistent scales before being
input into models, thereby establishing a reliable foundation for subsequent knowledge-data
integration.

If the objective extends beyond identifying landslide locations to distinguishing their types and
scales, the dataset must encompass information that captures these characteristics. During dataset
construction, feature extraction and annotation methods should be chosen to emphasize these
distinctions. For instance, combining texture analysis of remote sensing imagery with slope and aspect
analysis of terrain data enables the extraction of features correlated with landslide types and
magnitudes. Explicit annotations indicating each sample’s landslide type and scale are incorporated
during labeling.

In the second stage, mechanistic constraints are integrated into the data-driven model to achieve
knowledge-data dually driven fusion.

Prior knowledge can be derived from external sources, including domain expertise, historical
records, and physical principles, or mechanistic models can be employed to preprocess raw monitoring
data. These outputs serve as a foundation for initializing parameters in data-driven models, which is
crucial because the choice of initial values substantially affects both training efficiency and final
performance (Cui et al., 2024; Liu et al., 2023a; Ma and Mei, 2025).

Beyond initialization, knowledge embedding involves translating landslide physics into model
constraints to guide learning and optimization (Dahal and Lombardo, 2025; Liu et al., 2024). At the
architectural level, physical equations can be structurally encoded as differentiable network layers,
enabling gradient-based optimization. At the loss function level, physical constraints can be directly
incorporated into the training objective, ensuring that predictions remain consistent with established
principles.

A representative example of this paradigm is the PINN framework (Raissi et al., 2019). PINNs
embed governing equations (such as partial differential equations describing slope hydrology or stress-
strain processes) into the neural network training objective, thereby constraining the learning process
with domain knowledge. This approach not only reduces dependence on large annotated datasets but
also enhances interpretability and cross-regional transferability (Karniadakis et al., 2021). Although
applications of PINNs in landslide research remain limited (Moeineddin et al., 2023), they provide a
promising avenue for bridging purely data-driven approaches with physically grounded mechanisms
(Wu et al., 2022).
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In the third phase, a bidirectional mapping framework for knowledge-data dually driven is
established to facilitate dynamic collaborative optimization.

The model’s performance is periodically evaluated using real-time monitoring data, enabling the
reverse calibration of knowledge analysis parameters to achieve bidirectional feedback. Through this
feedback mechanism, knowledge-data dually driven models undergo mutual verification and iterative
refinement.

In practical applications, model validation can be performed using historical or field monitoring
data to evaluate predictive accuracy. While optimizing model parameters for region-specific geological
conditions, fusion weights are dynamically adjusted based on different stages of landslide evolution.
During the initial phase of a landslide, knowledge analysis is more effective in identifying underlying
factors and developmental trends, justifying a higher fusion weight for knowledge components.
Conversely, during the acceleration or sliding phases, real-time monitoring data becomes crucial, and
data-driven models excel at capturing dynamic changes, requiring a higher weight for data-driven
components. This dynamic weight adjustment knowledge maximizes the integration of mechanistic
and data-driven approaches, enhancing the model’s ability to identify landslide risks across different
evolutionary stages.

The knowledge-data dually driven paradigm, operating through an iterative "theory-guided data
assimilation and data informed theoretical refinement" mechanism, has advanced potential landslide
identification from empirical reliance to scientifically quantifiable methodologies.

Furthermore, the spatial analysis capabilities of Geographic Information System (GIS) were
integrated into the practical identification workflow, enabling the study area to be partitioned into
distinct landslide risk categories. This risk stratification considers the combined influence of region-
specific factors, ensuring scientifically robust and practically viable classifications.

In high-risk areas, detailed investigations can be carried out using spatial remote sensing
technologies, including high resolution optical satellite image change detection and InSAR
deformation analysis. Multi-temporal high-resolution optical satellite imagery is analyzed using image
change detection algorithms to identify anomalous surface alterations. SAR enables precise
measurement of millimeter-scale surface displacements, facilitating early detection of slope
deformation precursors. Then, UAVs and airborne LiDAR can then be employed for further
identification of high-risk areas. High-resolution imagery can be acquired through UAV-mounted
sensors. Image interpretation and analysis facilitate the identification of potential landslide indicators,
including irregular slope geometries, soil loosening patterns, and anomalous vegetation growth.
LiDAR enables the rapid acquisition of high-precision 3D point cloud data, which accurately captures
topographic changes and penetrates vegetation canopies to reveal concealed ground surfaces, aiding

in the detection of vegetation-obscured landslide precursors. Ground-based observations are
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subsequently integrated to validate findings and acquire real-time dynamic information of landslide
bodies. A comprehensive assessment, combining expert knowledge with field-derived practical
experience, is conducted to finalize the screening and confirmation of potential landslides. Critical
parameters including location, scale, hazard level, and potential sliding direction are determined,

providing an empirical foundation for subsequent landslide mitigation strategies.

7 Conclusions

In this review, we summarized the latest advancements in the applications of deep learning models
for potential landslide identification, as well as the challenges and opportunities for the future. First,
we examined seven major heterogeneous data sources available for potential landslide identification.
Next, we introduced the five common roles of deep learning models in potential landslide identification.
Then, we reviewed the applications of deep learning in the analysis of four typical landslides and
discussed the common-used monitoring methods. Finally, we analyzed the current challenges and
future research directions.

Several key conclusions are drawn. (1) Single data source often fail to ensure the accuracy of
identification, whereas multisource data fusion can address this issue to some extent. (2) Deep learning
models have been widely applied in potential landslide identification, but they still face challenges in
terms of interpretability and complexity. Future research should focus on further enhancing the
structure and algorithms of deep learning models. (3) Knowledge-data dually driven paradigm for

potential landslide identification can improve its accuracy on both theoretical and practical levels.
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