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Abstract  

As global climate change and human activities escalate, the frequency and severity of landslide 

hazards have been increasing. Early identification, as an important prerequisite for monitoring, 

evaluation, and prevention, has become increasingly critical. Deep learning, as a powerful tool for data 

interpretation, has demonstrated remarkable potential in advancing landslide identification, 

particularly through the automated analysis of remote sensing, geological, and topographic data. This 

review systematically examines and synthesizes over 400 studies, with a primary focus on literature 

from the last six years (2020-2025), alongside key foundational works. It provides a comprehensive 

overview of recent advancements in the utilization of deep learning for potential landslide 

identification. First, the sources and characteristics of landslide-related data are summarized, including 

satellite observation data, airborne remote sensing data, and ground-based observation data. Next, 

several commonly used deep learning models are classified based on their roles in potential landslide 

identification, such as image analysis and time series analysis. Then, the role of deep learning in 

identifying rainfall-induced landslides, earthquake-induced landslides, human activity-induced 

landslides, and multi-factor-induced landslides is summarized. Although deep learning has achieved 

considerable successes in landslide identification, it still faces several challenges, including data 

imbalance, insufficient generalization capabilities of the models, and the complexity of landslide 

mechanism research. Finally, future research directions in this field are discussed. It is suggested that 

integrating knowledge-driven and data-driven approaches for potential landslide identification will 

further enhance the applicability of deep learning, offering broad prospects for future research and 

practice. 
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1 Introduction 

Landslides are complex geological hazards triggered by both natural processes and human 

activities, involving intricate interactions among geological, hydrological, topographic, and 

meteorological factors (Fidan et al., 2024). Globally, landslides cause significant loss of life and 

property each year, particularly in mountainous areas with intense rainfall, seismic activity, and fragile 

geological conditions (Askarinejad et al., 2018; Ehsan et al., 2025; Marin-Rodriguez et al., 2024). 

According to United Nations Office for Disaster Risk Reduction (2023), more than 1,000 landslide-

related disasters occur annually, resulting in thousands of fatalities and substantial economic damage. 

With the intensification of climate change, extreme weather events are becoming more frequent, 

further increasing global landslide risks (Wang et al., 2023c). 

Faced with these escalating threats, the focus of landslide risk management should shift from 

post-disaster response toward proactive identification and prevention. Potential landslides refer to 

slopes that exhibit early signs of instability and may evolve into landslides under external triggers such 

as rainfall or earthquakes. They represent the precursor stage of landslide development (Lin et al., 2024; 

Yang et al., 2020a). Timely identification and monitoring of such slopes are crucial for disaster 

prevention and risk mitigation (Strzabala et al., 2024). 

However, the inherent uncertainty and dynamic nature of potential landslides make their 

identification challenging.  On the one hand, it is not possible to determine that a landslide will 

definitely occur just because there are signs of deformation on the slope (Peres and Cancelliere, 2014; 

Zhang et al., 2019). Multiple factors need to be comprehensively considered to assess the possibility 

of its instability. On the other hand, the uncertainty of external factors increases the difficulty of 

judgment. Sudden events such as heavy rainfall and earthquakes may instantly change the stress state 

of the slope and trigger signs of deformation (Yang et al., 2024c). Given the dynamic characteristics 

of potentials, it is also essential to conduct long-term monitoring of the landslides with potential 

hazards after identification (Lakhote et al., 2025). 

Conventional approaches to potential landslide identification, including field surveys, geological 

analysis, and interferometric radar techniques, have contributed substantially to hazard assessment but 

remain costly, time-consuming, and limited in spatial coverage (Akosah et al., 2024; Zhao and Lu, 

2018). Machine learning has partially improved efficiency but still depends heavily on manual feature 

engineering, requiring expert knowledge to design relevant predictors (Sheng et al., 2023). These 

limitations restrict the scalability and adaptability of conventional approaches in complex geospatial 

environments. 

In contrast, deep learning provides an effective data-driven alternative for landslide research. As 

a subfield of machine learning, deep learning performs hierarchical feature extraction through multiple 

nonlinear transformations (Janiesch et al., 2021; Nava et al., 2023). By leveraging large-scale, multi-
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source data, deep learning models can automatically extract representative features, capture nonlinear 

dependencies, and conduct pattern recognition in high-dimensional datasets (Aslam et al., 2021; Wang 

et al., 2023a; Zhou et al., 2023). These capabilities make deep learning particularly suitable for 

identifying and characterizing potential landslides across diverse spatial and temporal scales (Nava et 

al., 2021; Yang et al., 2024d). 

Within this research context, potential landslide identification can be broadly categorized into two 

main types. The first focuses on post-event regional assessments, which are conducted after major 

rainfall or earthquakes but prior to large-scale slope failures, using remote sensing data to detect 

deformation, topographic changes, or vegetation anomalies. The second involves retrospective 

analyses of historical landslides to establish relationships between triggering factors and failure 

characteristics, thereby identifying other slopes that exhibit similar instability patterns. Despite their 

differing temporal focuses, both types share common methodological foundations and depend on the 

integration of multi-source environmental data for reliable assessment. 

Building on these foundations, this review aims to provide a comprehensive synthesis of deep 

learning applications in the field of potential landslide identification. Specifically,  

(1) we categorize commonly used heterogeneous data into three major types to support research 

on potential landslide identification. These data sources form the foundation for applying deep learning 

in this field. 

(2) we introduce the roles and mechanisms of widely used deep learning models in potential 

landslide identification, and conduct a comparative analysis of their respective advantages and 

limitations. 

(3) we examine the performance of these models across different application scenarios through 

representative case studies, highlighting their adaptability and effectiveness in potential landslide 

detection. 

(4) we summarize the key challenges currently faced in applying deep learning to potential 

landslide identification and outline emerging opportunities and promising future directions for further 

advancement. 

Through our analysis, we identified several key trends in the application of deep learning to 

potential landslide identification. First, researchers are increasingly adopting multi-source data fusion 

approaches, integrating information from diverse sources to construct a more comprehensive 

representation of the geological environment (Guo et al., 2025; Liu et al., 2020b; Wang et al., 2024d). 

Second, deep learning models have been successfully applied across multiple scales, ranging from 

large-scale landslide susceptibility mapping with Convolutional Neural Networks (CNNs) to real-time 

slope deformation monitoring with Recurrent Neural Networks (RNNs) (Azarafza et al., 2021; Soni et 

al., 2025; Xie et al., 2024; Zhao et al., 2024f). Despite these advances, the field continues to face 
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critical challenges that will shape its future trajectory. Addressing these challenges requires a paradigm 

shift, future research is expected to place greater emphasis on integrating physical knowledge with 

data driven approaches, thereby advancing the field from conventional, reactive post-disaster 

responses toward intelligent, proactive pre-disaster risk management. 

2 Deep Learning for Potential Landslide Identification: Data Source 

Accurate identification of potential landslides is the primary step in effectively preventing and 

mitigating the impacts of landslide hazards. Data sources are the cornerstone of achieving this 

objective. Different types of data provide indispensable information for potential landslide 

identification from various perspectives, and drive ongoing advancements in related research and 

practices. 

In potential landslide identification, the richness and reliability of data sources directly determine 

the accuracy and effectiveness of research. Data sources not only provide fundamental information to 

outline the landslide environments, but also enable dynamic monitoring and precise analysis. This 

section will comprehensively review the critical roles played by three main types of data sources: 

satellite observation data, airborne remote sensing data, and ground-based observation data (see Fig. 

1). 
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Figure 1. Data sources for potential landslide identification. Satellite observations (e.g., Landsat, Sentinel, 

SPOT, and Envisat) provide optical and radar imagery with varying spatial resolutions for detecting and 

mapping landslides. Airborne observations (LiDAR, UAV) deliver high-resolution topographic and 

photographic data, while ground-based observations (TLS, GBSAR, GNSS, rainfall and groundwater sensors) 

offer continuous in-situ monitoring of slope dynamics. 

2.1 Satellite Observation Data 

Since the launch of Landsat-1, the first Earth observation satellite dedicated to surface research 

and monitoring, on July 23, 1972, satellite data have become widely accessible. Their applications 

have long extended beyond single-purpose analysis or results (Wulder et al., 2022). With the 

continuous development of satellite observation, its immense potential for application in landslide 

research has become evident (Liu et al., 2021d). At present, satellite observation data mainly include 

space-borne Synthetic Aperture Radar (SAR) and optical remote sensing data, both of which are widely 

used as inputs for deep learning models in landslide identification. 

2.1.1 Space-borne SAR 

SAR is an active microwave remote sensing system (Franceschetti and Lanari, 2018). It is not 

only capable of acquiring data on demand by actively emitting microwave signals but also facilitates 

partial penetration of vegetation cover through its longer wavelength bands (such as the L-band), 

thereby allowing the retrieval of surface deformation information beneath vegetated areas.  

A critical operational advantage of SAR lies in its capacity to image regardless of illumination 

(day or night) and weather conditions (Koukiou, 2024). The continuous, unimpeded time series data 

this provides is essential for serving as input to deep learning models, allowing these models to be 

trained to identify long-term patterns of terrain change. For this reason, SAR is widely employed for 

the crucial task of continuous monitoring in high-risk environments, where cloud cover and the timing 

of a disaster are unpredictable. 

Notably, the NASA–ISRO SAR Mission (NISAR), jointly developed by the National Aeronautics 

and Space Administration (NASA) and the Indian Space Research Organisation (ISRO), was 

successfully launched in 2025 (Indian Space Research Organisation, 2025; NASA, 2025). The satellite 

carries both L-band and S-band SAR systems, enabling more precise and frequent measurements of 

surface deformation. With a revisit period of approximately 12 days, it delivers globally consistent 

coverage with a balanced spatial and temporal resolution. This capability provides researchers with 

abundant and continuous observations, supporting large-scale, high spatiotemporal resolution 

landslide early detection and dynamic monitoring. 

Interferometric SAR (InSAR) has been developed based on the principle of measuring phase 

differences between two or more SAR images of the same area (Dai et al., 2022; Ma et al., 2023b; 

Zeng et al., 2024). By coherently processing these images, InSAR obtains high-precision surface 
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elevation information and can be further applied to detect ground deformation. 

In contrast, SAR mainly provide backscatter information of ground objects. Although some 

features of ground objects can be identified according to the scattering characteristics, their ability to 

obtain topographic elevation information is relatively weak. InSAR, on the other hand, can directly 

generate topographic elevation data, which is of great significance for analyzing the topography and 

geomorphology in the identification of potential landslides, and determining key elements such as the 

topographic undulation and slope of potential landslide areas. 

When screening for potential landslides over a large area, InSAR has higher efficiency (Dun et 

al., 2021; Tang et al., 2025; Zhang et al., 2021). When monitoring large potential landslide areas such 

as mountainous regions, InSAR can quickly obtain topographic deformation information over a large 

area, promptly detect potential areas with potential landslides, and reduce the workload and blind spots 

of manual inspections. 

Recent studies have integrated InSAR-derived deformation velocity fields with deep learning 

models to automatically detect slow-moving or latent landslides. For example, Liu et al. (2022d) 

employed an InSAR-CNN framework to map active landslides in the Eastern Tibet Plateau area, 

achieving a detection accuracy of over 90%. Similarly, Zhang et al. (2022d) proposed a two-stage 

detection deep learning network (InSAR Net) for detecting anomalous deformation areas in Maoxian 

County, Sichuan Province, with a recognition accuracy of 93.88%. Targeting the complex deformation 

mechanisms of multi-type landslides in Zigui County, Three Gorges Reservoir Area, Hu et al. (2025b) 

used InSAR time-series displacement as the core data, develop a deep learning architecture based on 

the integrated framework of EMD and GRU, break through the limitations of conventional models 

such as single-type, single-target, and low-accuracy, and achieve dual-accurate prediction of 

displacement and failure time for multi-type landslides. 

Differential SAR (D-InSAR) is an advancement of InSAR that eliminates topographic phase 

through differential processing, focusing specifically on deformation information extraction (Shen et 

al., 2022). The emergence of D-InSAR not only enables the transition from mixed deformation-

topography signals to pure deformation signal extraction but also extends its applicability from 

detecting discrete deformation events to identifying slow-moving landslide processes, significantly 

enhancing the reliability of landslide monitoring (Zhong et al., 2024). 

2.1.2 Optical Remote Sensing 

Optical remote sensing refers to the acquisition of surface information through sensors that 

measure reflected solar radiation. Its application in geological hazard investigations dates back to the 

1970s (Fu et al., 2024; Liu and Wu, 2016). 

Optical remote sensing offers high resolution, currently capable of achieving spatial resolutions 

as fine as 0.3 meters or better. For example, Maxar’s WorldView-3 delivers 0.31 m panchromatic 
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imagery (Hu et al., 2016; Longbotham et al., 2014), while India’s Cartosat-3 satellite achieves 

panchromatic imagery with a resolution of up to 0.25 m (Gupta et al., 2024). In potential landslide 

identification, it not only facilitates the retrieval of detailed surface textures and color characteristics 

using rich spectral data but also enables the direct identification of morphological features and object 

contours via visual interpretation of imagery (Cheng and Han, 2016; Li et al., 2022b; Ma and Wang, 

2025). 

Landslide formation typically follows a progressive process from deformation to failure, 

accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized collapses. 

These indicators exhibit distinct spectral signatures in optical imagery compared to their surroundings, 

enabling both manual interpretation and automated detection. In deep learning applications, 

multispectral optical images have been widely used to train CNN-based models for potential landslide 

identification. Lu et al. (2023a) developed a method for achieving accurate landslide mapping using 

medium-resolution remote sensing images and DEM data, which has the potential for deployment in 

large-scale landslide detection. Jiang et al. (2022a) proposed a TL-Mask R-CNN for identifying a small 

number of old landslide samples in the area along the Sichuan-Tibet Transportation Corridor. The 

results show that the pixel accuracy of segmentation for new landslides and old landslides can reach 

87.71% and 75.86% respectively. 

In vegetated mountainous regions, surface vegetation often undergoes detectable changes before 

a landslide event. Optical remote sensing leverages multispectral data, particularly red and near-

infrared bands, to monitor vegetation health and identify potential landslide zones (Coluzzi et al., 2025; 

Fiorucci et al., 2018). Furthermore, the calculation of the Normalized Difference Vegetation Index 

(NDVI) facilitates the evaluation of vegetation health in potential landslide regions, providing critical 

insights into potential landslide precursors (Verrelst et al., 2015). 

However, the broad spectral bands of multispectral sensors limit their ability to detect more subtle, 

diagnostically specific precursory signals. The advancement beyond broad-band multispectral imaging 

to hyperspectral imaging has opened new avenues for landslide precursor detection (Kilgore and 

Restrepo, 2025; Ye et al., 2019). Hyperspectral sensors capture hundreds of contiguous spectral bands, 

enabling the identification of specific mineralogies (e.g., expansive clays like smectite that influence 

slope stability) and subtle geochemical alterations on slope surfaces. For instance, the shifting 

absorption features in the short-wave infrared region can signal changes in soil water content and 

mineral composition that often precede failure (Thimsen et al., 2017). The integration of these rich 

spectral datasets with deep learning architectures has significantly advanced automated landslide 

analysis (Huang et al., 2022c; Shahabi et al., 2021). These models excel at learning complex patterns 

from high-dimensional spectral-spatial information, enabling highly accurate detection of landslide 

scars and even precursory features like cracks and seepage zones that are otherwise challenging to 
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identify. 

While both space-borne SAR and optical remote sensing are pivotal for large-area landslide 

screening, they offer complementary capabilities and have distinct limitations. Optical remote sensing 

provides intuitive visual interpretation of geomorphological features but is rendered useless by cloud 

cover and darkness. In contrast, space-borne SAR, with its all-weather, day-and-night imaging 

capability, excels in detecting millimeter-to-centimeter-scale surface deformation through InSAR 

techniques, which is a direct precursor to landslide failure. However, InSAR performance can be 

degraded in heavily vegetated areas due to temporal decorrelation and in steep terrain due to geometric 

distortions (Lin et al., 2022; Yan et al., 2024), areas where optical stereo imaging for DEM generation 

might be less affected. Therefore, the integration of SAR-derived deformation maps and optical-based 

geomorphological maps is considered a best practice for regional-scale landslide inventory mapping 

and preliminary hazard assessment (Xun et al., 2022). 

2.2 Airborne Remote Sensing Data 

Airborne remote sensing data, typically acquired by manned aircrafts, provide high-resolution 

imagery of localized areas. Advanced airborne platforms equipped with oblique photogrammetry and, 

more recently, close-range photogrammetry technologies enable millimeter-level accuracy in 3D 

photogrammetry, facilitating the observation of subtle surface deformations, rock mass structures, and 

the construction of highly detailed 3D models of terrain and above-ground infrastructure (Macciotta 

and Hendry, 2021; Xu et al., 2023). Among these technologies, airborne photogrammetry and airborne 

radar are the most commonly used. 

2.2.1 Airborne Light Detection and Ranging (LiDAR) 

LiDAR has been used for landslide and other geological hazard investigations in many regions 

since the late 1990s. As an active remote sensing system, LiDAR can laterally scan a range of 60◦ and 

capture 400,000 points per second, enabling largescale 3D scanning of terrain, structures, and 

vegetation within a short period (Mallet and Bretar, 2009). It offers centimeter-level accuracy in both 

horizontal and vertical dimensions. 

Airborne LiDAR is irreplaceable in capturing 3D details and penetrating vegetation, particularly 

in densely vegetated areas where conventional aerial photography faces significant limitations. 

Airborne LiDAR not only acquires high- resolution Digital Surface Models (DSMs) from laser point 

cloud data but also generates high-accuracy DEMs by removing vegetation contributions (Fang et al., 

2022; Jaboyedoff et al., 2012; Yan et al., 2023), thereby revealing concealed hazard features such as 

mountain fractures, loose deposits, and landslide masses under vegetation cover. 

Point cloud data obtained from airborne LiDAR can monitor dynamic changes in mountainous 

terrain by detecting deformations such as subsidence, displacement, and uplift, while also facilitating 

the construction of 3D landslide models to simulate sliding directions and impact areas. Through 
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intuitive visualization of slope morphology and structure from multiple perspectives, LiDAR enables 

researchers to conduct a comprehensive assessment of slope conditions and identify subtle hazard 

features that may not be easily discernible in 2D imagery. 

These high-precision DEMs and point clouds serve as critical inputs for deep learning models. 

For instance, Wei et al. (2023) proposed the Dynamic Attentive Graph Network (DAG-Net) model to 

construct dynamic edge features for enhancing point cloud representations, achieving the highest mean 

Intersection over Union (mIoU) of 0.743 and an F1-score of 0.786. Based on the advanced PointNet 

and PointNet++ architectures, Farmakis et al. (2022) developed deep neural networks for 3D point 

cloud learning. The best-performing model achieved accuracies of approximately 89% and 84% during 

the final and shortest monitoring campaigns, respectively. These examples demonstrate that airborne 

LiDAR data are not only suitable but have been effectively applied in deep learning-based landslide 

analysis. 

2.2.2 Unmanned Aerial Vehicle (UAV) 

UAV aerial photogrammetry provides outstanding maneuverability and high-precision 

measurements. Traversing over steep slopes and valleys, UAVs are able to monitor areas that are often 

inaccessible to satellites and manned aerial platforms (Niethammer et al., 2012), thus addressing 

critical observational limitations. 

In large-scale and topographically complex regions, UAVs can perform efficient aerial 

inspections, overcoming the limitations of ground-based inspections in inaccessible or visually 

obstructed regions. By rapidly scanning mountain slopes, embankments, and gullies, UAVs provide a 

comprehensive understanding of the geological conditions and enable timely identification of macro-

scale geomorphic anomalies. However, given cost-effectiveness constraints, UAVs are currently more 

commonly used for periodic and continuous monitoring in localized areas. They are particularly well-

suited for rapid and dynamic monitoring of landslides in high-priority zones. 

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial 

photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on UAVs 

are able to capture the subtle cracks on the surface of the mountain. These cracks may be early signs 

of a landslide (Sun et al., 2024a). By conducting a comparative analysis of the images taken at different 

times, the development and changes of the cracks can be monitored, including the increase in the length, 

width and depth of the cracks, as well as the changes in the crack orientation. 

In some mountainous areas or valleys, there may be a large number of loose accumulations. These 

accumulations may trigger landslides under specific conditions. Aerial photography by UAVs can 

clearly identify information such as the distribution range, accumulation quantity and accumulation 

shape of these loose accumulations, and assess their potential threats to the surrounding environment. 

This capability is leveraged in deep learning applications, where time-series UAV imagery is processed 
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using RNNs or 3D CNNs to monitor the spatiotemporal evolution of these cracks, providing a data-

driven approach for early warning (Xu et al., 2025; Sandric et al., 2024). 

Airborne platforms bridge the gap between satellite and ground-based observations. LiDAR is 

unparalleled in generating high-precision DEM, revealing concealed paleo-landslides and subtle 

topographic features critical for hazard mapping. However, its deployment is costly and logistically 

complex. UAVs, as a flexible and cost-effective alternative, have democratized high-resolution data 

acquisition. They can be equipped with various sensors (e.g., optical, multispectral, and even 

lightweight LiDAR) to conduct rapid response surveys following triggering events such as earthquakes 

or heavy rainfall (Han et al., 2023). While UAV-derived models have ultra-high resolution, their 

coverage is limited per sortie compared to airborne campaigns. The choice between them often 

involves a trade-off between coverage, cost, operational flexibility, and the specific requirement for 

vegetation penetration. 

By equipping UAVs with LiDAR sensors to effectively remove vegetation from the data, this 

integrated approach combines the strengths of photogrammetry and LiDAR (Mandlburger et al., 2020; 

Wallace et al., 2012). It allows researchers to reveal landslide boundaries, crack patterns, and other 

deformation features hidden beneath vegetation cover, enabling rapid deployment and targeted area 

monitoring while mitigating vegetation-related challenges in landslide assessment. 

2.3 Ground-based Observation Data 

Satellite observation and airborne remote sensing are mainly employed for identifying potential 

landslides based on surface morphology. However, these approaches are often affected by vegetation 

cover, viewing geometry, and atmospheric noise, which may lead to misclassification or omission 

(Almalki et al., 2022; Dubovik et al., 2021). Therefore, ground-based observation techniques play a 

critical complementary role, offering higher temporal resolution, accuracy, and localized verification 

for potential landslide identification. In recent years, data collected from ground-based monitoring 

instruments have not only been used for field validation but also increasingly incorporated into deep 

learning frameworks to improve temporal continuity and physical interpretability in landslide detection 

and forecasting. 

2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR) 

GB-SAR is an active ground-based microwave remote sensing system that has been developed 

over the past decade, effectively integrating the principles of SAR imaging with electromagnetic wave 

interferometry. By leveraging precise measurements of sensor system parameters, attitude parameters, 

and geometric relationships between orbits, GB-SAR quantifies spatial positions and subtle changes 

at specific surface points, allowing for the measurement of surface deformations with millimeter or 

even sub-millimeter precision. 

Compared with spaceborne SAR, GB-SAR can adjust the incidence and azimuth angles of radar 



 

11 
 

waves, thereby avoiding phase decorrelation caused by terrain-induced occlusion in spaceborne 

observations. Consequently, they are particularly suitable for monitoring steep slopes, canyons, and 

other areas with limited line-of-sight coverage from satellites (Noferini et al., 2007). 

During landslide movement, the ground experiences noticeable subsidence, displacement, or 

cracking. GB-SAR can be configured for high-resolution, continuous observation to capture 

instantaneous deformations during the landslide creep phase and generate corresponding displacement 

maps (Liu et al., 2021a; Xiao et al., 2021). For example, Long et al. (2018) proposed a GBSAR 

persistent scatterer point selection method based on the mean coherence coefficient, amplitude 

dispersion index, estimated signal-to-noise ratio, and displacement accuracy index. Han et al. (2022) 

proposed an LSTM-based approach for processing GB-InSAR time series data. 

For small-scale regional monitoring, GB-SAR can establish customized geometric configurations 

specifically designed for target areas. Utilizing mobile rail systems or multi-antenna setups, GB-SAR 

reconstructs 3D deformation vector fields of landslide masses (Shi et al., 2025), identifying sliding 

directions and potential failure surfaces. 

2.3.2 Terrestrial Laser Scanning (TLS) 

TLS emerged in the mid-1990s. It plays a unique role in local refined monitoring by emitting 

laser pulses and measuring their reflection time (Stumvoll et al., 2021; Teza et al., 2007). 

The landslide often manifests as a sharp change in the ground surface. TLS can provide data with 

sufficient accuracy, assisting researchers in identifying the features of these landslides (Abellan et al., 

2009; Teng et al., 2022).  

By quickly and massively collecting spatial point position information, TLS can automatically 

splice and rapidly obtain the appearance of the measured object. It can be used to construct high-

precision surface models and appearance models of buildings and structures. The 3D model can display 

the shape and structure of the mountain and the detailed features of the ground surface from different 

angles and in all directions (Zhou et al., 2024), enabling geological experts and engineers to have a 

more intuitive understanding of the overall situation of the landslide area. For example, the cracks in 

the mountain, the loose accumulations, and the degree of weathering of the rocks can be clearly seen, 

providing richer information for the identification of potential landslide hazards. 

In the context of deep learning, TLS-derived 3D point clouds have become critical inputs for 

morphological feature extraction and automatic landslide identification. For example, Senogles et al. 

(2022) integrated TLS point cloud data to assess surface displacements induced by landslide 

movements. Wang et al. (2025) provided a practical and adaptable solution for landslide monitoring 

by integrating TLS point clouds with embedded RGB imagery. 

These examples confirm that TLS data are not only suitable but already actively used in deep 

learning-based landslide recognition, providing precise geometric constraints for multi-source fusion 
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frameworks that combine DEM, optical, and In-SAR information. 

Ground-based techniques provide the highest precision for monitoring a specific slope of interest. 

GB-SAR and TLS are both non-contact remote sensing methods, but they operate on different 

principles. GB-SAR offers continuous, all-weather, mm-level deformation monitoring over a large 

area (several km2) from a single station, making it ideal for early warning. Its drawback is the need for 

a stable, opposing installation point with a clear line-of-sight (Monserrat et al., 2013). TLS, on the 

other hand, provides mm-to-cm-level 3D point clouds of the slope surface, excellent for quantifying 

volume changes and detailed geometric changes. However, it is typically used for periodic surveys 

rather than continuous monitoring and has occlusion shadows (Huang et al., 2019). 

2.3.3 Ground-based Sensor Devices 

Compared to the aforementioned data sources, ground-based sensors offer key advantages, 

including high precision, real-time capabilities, and multi-parameter fusion (Dai et al., 2023). They 

can address the limitations of remote sensing and provide critical ground-based dynamic information 

for potential landslide identification. 

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the 

state of landslide masses. These datasets provide foundational inputs for deep learning models, 

enabling multi-dimensional analysis and interpretation of potential landslide conditions. For example, 

ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like displacement and 

tilt angle at frequencies ranging from minutes to seconds, capturing transient, anomalous signals just 

prior to landslide events, thereby filling the temporal resolution gap in remote sensing (see Fig. 1). 

These data are often used as input sources for RNN models and 300 their variants (Bai et al., 2022; 

Wang et al., 2021a). By integrating time series data with SAR imagery, deep learning models can be 

trained to uncover correlation patterns between surface deformations and subsurface parameters (Jiang 

et al., 2022). Instruments such as piezometers and soil pressure gauges can directly monitor key 

parameters like pore water pressure and soil stress on the sliding surface. By combining the obtained 

subsurface data with geomechanical equations, the position of the sliding surface or geotechnical 

strength parameters can be inferred. 

Therefore, GB-SAR, TLS, and ground-based sensors are not only auxiliary observation 

techniques but are increasingly serving as key data sources for deep learning-driven landslide 

identification. Their integration into CNN, LSTM, and Generative Adversarial Network (GAN) 

frameworks enables high-resolution spatial-temporal modeling of slope behavior, bridging the gap 

between field-scale monitoring and large-scale hazard prediction. 

 

2.4 Summary of Data Source for Potential Landslide Identification 

In summary, no single data source is sufficient for a comprehensive potential landslide 
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identification framework. Regional-scale satellite data, particularly InSAR, is optimal for the early 

detection of pre-landslide deformations over vast areas. Airborne platforms, such as UAVs, then 

provide high-resolution optical and LiDAR data to characterize the precise geometry and activity of 

identified potential landslides. Finally, ground-based and in-situ sensors enable site-specific, real-time 

monitoring of high-risk slopes, validating remote sensing findings and supporting early warning 

systems. The strategic integration of these multiplatform data is crucial for transitioning from regional 

screening to mechanistic understanding and risk mitigation. 

Beyond these general data modalities, recent years have also witnessed the emergence of 

benchmark datasets that serve as standardized testbeds for developing and evaluating deep learning 

methods in landslide identification. Such datasets are essential for ensuring reproducibility, enabling 

fair comparison across models, and accelerating methodological advances. Representative examples 

include the CAS Landslide Dataset, a large-scale, multi-sensor dataset explicitly designed for deep 

learning-based landslide mapping (Xu et al., 2024); the Landslide4Sense (L4S) benchmark, developed 

within an international competition, which provides multisource satellite image patches 

(Ghorbanzadeh et al., 2022b); and the Diverse Mountainous Landslide Dataset (DMLD), which 

emphasizes high-resolution instances from complex mountainous terrains (Chen et al., 2024b). In 

addition, slope-unit-based benchmark datasets have been constructed to support susceptibility 

mapping and regional-scale comparisons (Martinello et al., 2021). 

These datasets serve as valuable resources for pixel-level segmentation and slope-unit-based 

susceptibility modeling. However, in practice, the compilation of landslide inventories faces 

considerable challenges, making it difficult to obtain comprehensive and accurate records (Kong et al., 

2025; Lee et al., 2018). Consequently, data scarcity remains a common issue in landslide hazard 

identification, particularly in remote regions or areas with limited accessibility. Therefore, it is 

necessary to further expand their geographical coverage and establish standardized evaluation 

protocols. 

3 Deep Learning for Potential Landslide Identification: Models 

The effectiveness of deep learning in potential landslide identification largely depends on 

selecting an appropriate model architecture suited to the data type and specific task. While all deep 

learning models excel at automated feature extraction, their internal architectures predispose them to 

excel in different aspects of the overall workflow. Therefore, this section does not merely list models, 

but organizes them based on their primary function in the potential landslide identification pipeline. 

We analyze several commonly used deep learning models by categorizing them into five functional 

roles: image analysis and processing, time series analysis, data generation, anomaly detection, and data 

fusion. 
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3.1 Models for Image Analysis and Processing in Potential Landslide Identification 

Image data plays a critical role in potential landslide identification, especially through remote 

sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain data, 

encompassing complex geographical features, vegetation coverage, and ground fissures, which often 

serve as potential precursors to landslide occurrences. The adoption of deep learning has facilitated a 

shift from conventional manual visual interpretation to automated high-precision segmentation. 

CNNs, owing to their inherent capability to learn hierarchical and multi-scale spatial features 

(Kattenborn et al., 2021; LeCun et al., 1998; Liu et al., 2022b), have become the core methodological 

framework for most image-based deep learning applications in landslide research (see Fig. 2). This 

capability directly addresses a long-standing limitation of conventional classifiers, which struggle to 

simultaneously capture fine-scale precursors (e.g., narrow ground fissures) and large-scale landslide 

morphology within a unified framework. Multi-scale convolutional feature extraction has been shown 

to significantly enhance the sensitivity of landslide detection across a wide range of spatial extents 

(Hussain et al., 2019; Shi et al. 2020; Yao et al. 2021). For example, small convolutional kernels are 

particularly effective in identifying subtle surface disturbances, such as localized soil texture variations 

and ground cracks, which often precede slope failure. Hamaguchi et al. (2018) and Wang et al. (2024a) 

demonstrated that CNN-based models can detect extremely small and subtle features, including cracks 

as narrow as 0.05 m, a level of detail that is difficult to achieve using conventional texture-based 

methods. 

Conversely, larger convolutional kernels and multi-scale fusion strategies enhance the 

identification of overall landslide morphology and scar boundaries, which are critical for accurate 

inventory mapping. Ding et al. (2022) showed that larger kernels improve the shape bias of CNNs, 

facilitating the recognition of large-scale structural patterns, while Li et al. (2025) demonstrated that 

scale-adaptive kernel fusion improves global perception of landslide extents and contextual 

background information. By integrating multi-scale feature extraction within a single model, CNN-

based approaches outperform conventional machine-learning classifiers that depend on fixed-scale 

descriptors and often exhibit reduced generalization in heterogeneous terrain. 

Beyond feature extraction, architectural innovations such as residual and dense connections have 

substantially improved the trainability and data efficiency of deep networks in landslide applications 

(He et al., 2016). Deep networks with increased depth generally exhibit stronger representational 

capacity but are prone to optimization difficulties and overfitting, particularly under limited training 

samples (Ebrahimi and Abadi, 2021). 

Residual Networks (ResNet) address these challenges through shortcut connections (Qi et al., 

2020; Yang et al., 2022), enabling stable training of very deep models and improved discrimination 

between landslide scars and surrounding vegetation or bare soil in complex terrains (see Fig. 2c). 
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However, deeper architectures also incur higher computational costs, which may constrain their 

practical deployment in large-scale or near-real-time mapping scenarios (Hasanah et al., 2023). 

Dense Convolutional Networks (DenseNet) further enhance feature reuse and gradient flow 

through dense connectivity, reducing parameter redundancy and improving performance under limited 

training data conditions (Huang et al., 2017; Liu et al., 2021c). This property is particularly relevant 

for landslide studies, where high-quality labeled samples are often scarce and spatially clustered. 

Empirical studies indicate that DenseNet-based models can effectively extract multi-scale landslide 

features in complex terrain while maintaining computational efficiency (Cai et al., 2021; Li et al., 2021; 

Ullo et al., 2021). 

 

Figure 2. Functional pipeline of CNN-based models for image analysis and processing. (a) Semantic mapping 

process: demonstrating the transition from optical input to binary classification for target identification. (b) 

Segmentation performance: visualizing the model’s capability to delineate precise landslide boundaries (binary 

masks) from optical imagery. (c) Optimization strategies: comparing skip-connections and dense connectivity 

for enhancing gradient flow and feature reuse. 

With the maturation of CNN backbones, semantic segmentation has emerged as the dominant 

paradigm for landslide detection, as it enables dense, pixel-level delineation of landslide extents that 

is essential for inventory construction and hazard assessment (Guo et al., 2018; Lu et al., 2023b; Zhou 

et al., 2024b). Among these models, U-Net and its variants have become benchmarks due to their 

encoder–decoder structure and skip connections, which preserve spatial detail and improve boundary 

delineation (Chandra et al., 2023; Chen et al., 2022b; Meena et al., 2022; Ronneberger et al., 2015). 

U-Net-based models have demonstrated strong performance in challenging conditions, such as cloud-

Deleted: ResNet mitigates the vanishing gradient problem in 

very deep networks through residual connections (Qi et al., 

2020; Yang et al., 2022). This architectural advancement has 

been successfully applied to landslide detection in complex 

terrains, such as the work by Ullo et al. (2021), who 

demonstrated that a ResNet-based classifier could achieve 

high accuracy in distinguishing landslide scars from 

surrounding vegetation and bare soil in satellite imagery by 
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higher parameter counts generally exhibit greater 

representational capacity but are prone to overfitting, while 

demanding higher computational resources and temporal 

costs for both training and inference (Ebrahimi and Abadi, 

2021). For instance, (He et al., 2016) introduced ResNet-152 

and other deep residual network architectures, demonstrating 

that deeper structure achieve superior performance compared 

with shallower counterparts. Hasanah et al. (2023) explicitly 

highlighted the differences in layer depth and parameter count 

among various ResNet versions (ResNet-50, 101, and 152), 

noting that the increased number of parameters in deeper 

networks inevitably leads to longer training times.

DenseNet is a further innovation of ResNet (Huang et al., 

2017). Both of these neural networks are based on a similar 

idea, which is to establish a "shortcut" between different 

layers. However, the structure of DenseNet is simpler and 

more effective, with fewer parameters. The structural 

differences between ResNet and DenseNet are illustrated in 

Fig. 2.  In ResNet, each layer is only connected to the 

previous layer, while in DenseNet, each layer is directly 

connected to all previous layers, and each layer can obtain 

gradients from the loss function. This can optimize the 

information flow and gradients of the entire network, making 
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structure of DenseNet enables more effective reuse of 
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covered or topographically complex regions using SAR imagery (Nava et al. 2022). 

However, U-Net’s relatively limited receptive field can restrict its ability to capture long-range 

contextual information in heterogeneous geological settings. DeepLab addresses this limitation by 

incorporating dilated convolutions and Atrous Spatial Pyramid Pooling (ASPP), enabling effective 

fusion of local texture and global contextual cues without sacrificing spatial resolution (Chen et al., 

2017; Huang et al., 2024a). This multi-scale contextual modeling has been shown to reduce false 

positives and improve detection consistency in geologically complex environments, highlighting a key 

advantage of advanced deep segmentation models over simpler pixel-based or object-based approaches 

(Niu et al., 2018; Sandric et al., 2024). 

Beyond static mapping, deep learning also facilitates multi-temporal change detection and 

dynamic hazard monitoring. By comparing segmentation outputs across time or directly processing 

multi-temporal image stacks, CNN-based models can characterize the spatial evolution of landslides 

and identify active deformation zones (Amankwah et al., 2022). Wang (2023) demonstrates that 3D 

CNNs enable joint modeling of spatial and temporal dependencies, producing both change hotspot 

maps and temporal evolution curves that capture landslide initiation and progression.Some studies 

even have integrated attention mechanisms into conventional CNN architectures to enhance the 

analysis of multi-temporal remote sensing imagery, thereby enabling the identification of landslide 

hazard evolution over time. For example, Meng et al. (2024) proposed a framework based on CNN 

and optimized Bidirectional Gated Recurrent Unit (BiGRU) with an attention mechanism, designed to 

forecast landslide displacement with a step-like curve. Dong et al. (2022) proposed L-Unet which 

combines multi-scale feature fusion with attention modules to improve landslide segmentation 

performance, particularly at boundaries. 

Overall, image-based deep learning models represent a substantial methodological advance over 

traditional machine-learning classifiers in terms of multi-scale feature representation, mapping 

completeness, and robustness to complex backgrounds. Nevertheless, their performance remains 

contingent on data quality, sample representativeness, and computational resources, and they generally 

lack the explicit physical interpretability of process-based models. These limitations motivate 

increasing interest in hybrid framework. 

3.2 Models for Time Series Analysis in Potential Landslide Identification 

Landslide occurrence is inherently a time-dependent process, driven by the cumulative and often 

delayed effects of environmental forcing such as rainfall, groundwater fluctuation, reservoir operation, 

and seismic disturbance. Time series data describing slope displacement, pore-water pressure, rainfall 

intensity, or surface deformation provide critical information for identifying potential instability and 

forecasting landslide evolution. Unlike static susceptibility mapping, time series analysis directly 

targets the dynamic behavior of slopes and therefore plays a central role in early warning and short-
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al., 2023b; Zhou et al., 2024b). As a fundamental task in 

computer vision, semantic segmentation assigns a specific 

class label (e.g., "landslide" or "non-landslide") to each pixel 

in an image, thereby enabling dense pixel-level classification 

(Guo et al., 2018).

segmentation networks have been proposed and validated for 

automatic landslide detection, significantly enhancing the 

efficiency and accuracy of large-scale detection. 

U-Net is a typical example (Ronneberger et al., 2015), which 

features a U-shaped architecture. U-Net’s encoder-decoder 
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landslide segmentation (Chandra et al., 2023; Chen et al., 

2022b; Meena et al., 2022). For example, Nava et al. (2022) 

applied the attention U-Net to Sentinel-1 SAR data for rapid 

mapping of earthquake-induced landslides, demonstrating the 

effectiveness of U-Net variants in pixel-level segmentation of 

landslide bodies under cloud-covered or topographically 

complex conditions.

landslide-prone areas, DeepLab is a more suitable choice 

(Sandric et al., 2024). While U-Net excels at preserving fine-

grained spatial details through its skip-connections, its ability 
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processes in landslide-prone areas, such as the initiation, 

progression, and spatial distribution of slope failures.
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term prediction (see Fig. 3). 

Conventional statistical and physically based approaches have been widely used to analyze 

landslide-related time series. Statistical models typically assume linear or weakly nonlinear 

relationships and often require strong prior assumptions, while physically based models rely on 

simplified representations of hydromechanical processes and detailed parameterization that is difficult 

to obtain at scale. Deep learning–based temporal models offer a complementary data-driven alternative 

by automatically learning nonlinear dependencies, cumulative effects, and delayed responses directly 

from observations, without requiring explicit process equations. 

 RNNs represent the earliest class of deep learning models designed for sequential data, enabling 

the modeling of short-term temporal dependencies through recursive information flow (Elman, 1990; 

Ngo et al., 2021; Zaremba et al., 2014). In landslide studies, RNNs have been applied to displacement 

time series influenced by rainfall and groundwater variation, demonstrating their ability to capture 

short-term deformation trends prior to failure (Chen et al., 2015; Zhang et al., 2022c). However, 

standard RNNs often struggle with long-term dependencies and cumulative effects, which are common 

in landslide processes driven by prolonged or intermittent forcing (see Fig. 3b). 

 

Figure 3. Analytical framework of RNN-based models for time series analysis. (a) From field monitoring to 

predictive insight: outlining the transformation of multi-source field monitoring data into predictive landslide 

intelligence. (b) Processing temporal dependencies: illustrating the recursive logic of RNN, LSTM, and GRU 

in processing sequential variables. 
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series data to help identify potential landslides. 
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Deleted: The structural characteristics and differences among 

these models are illustrated in Fig. 3. RNN is a class of deep 

learning models specialized in processing sequential data, 

capable of capturing temporal dependencies within input 

sequences (Elman, 1990). Unlike conventional feedforward 

neural networks, in an RNN, each neuron not only receives 

the current input but also the output of the previous time step 

as additional input. This structure endows the RNN with a 

memory mechanism (Ngo et al., 2021; Zaremba et al., 2014).

In landslide prediction, RNNs have been employed to model 

displacement time series under rainfall or groundwater 

fluctuations, revealing short-term deformation patterns 

preceding slope failure (Chen et al., 2015; Zhang et al., 

2022c).
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and GRUs provide more accurate information for landslide 

prediction by processing time series data.



 

18 
 

To overcome the vanishing gradient problem inherent in RNNs, LSTM introduces memory cells 

and gating mechanisms that selectively retain relevant temporal information (Graves, 2012; Landi et 

al., 2021; Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al., 

2019). This capability is particularly well aligned with landslide dynamics, where delayed and 

cumulative responses to rainfall or reservoir level fluctuations are critical precursors of instability. 

Empirical studies consistently demonstrate that LSTM-based models outperform conventional 

regression and shallow machine-learning approaches in displacement prediction and early warning 

tasks. For example, Yang et al. (2019) analyzed the relationships among landslide deformation, rainfall, 

and reservoir water levels, and found that compared with static models, the LSTM approach more 

accurately captured the dynamic characteristics of landslides and effectively leveraged historical 

information. Xu and Niu (2018) used a LSTM model to predict the displacement evolution of the 

Baijiabao landslide using rainfall and hydrological level data, achieving a higher correlation compared 

with traditional regression models. In another study focused on shallow landslides, Xiao et al. (2022) 

used a week-ahead LSTM model, which exhibited stable performance and improved prediction 

accuracy in short-term prediction scenarios. Additionally, Gidon et al. (2023) constructed a Bi-LSTM 

model and achieved a detection accuracy of 93% in the Mawiongrim area.  

Despite their strong performance, LSTM models are computationally demanding and may be 

prone to overfitting when training data are limited. GRUs provide a streamlined alternative by 

simplifying the gating structure while maintaining comparable predictive accuracy (Cho et al., 2014). 

This balance between model complexity and performance makes GRU-based models particularly 

attractive for real-time landslide monitoring and operational early warning systems, where 

computational efficiency and rapid updating are critical (Chung et al., 2014; Rawat and Barthwal, 2024; 

Zhang et al., 2022e). Recent studies indicate that GRUs can effectively identify acceleration phases in 

displacement time series, enabling earlier detection of rainfall- or earthquake-induced slope instability 

(Chang et al., 2025; Yang et al., 2025). 

More recently, Transformer-based architectures have emerged as powerful alternatives for time 

series modeling by leveraging self-attention mechanisms to capture long-range temporal dependencies 

in parallel (Vaswani et al. 2017). Compared with recurrent models, Transformers are particularly 

effective at modeling long-term and non-local temporal relationships, which are often present in 

landslide processes influenced by multi-seasonal rainfall or complex hydrological regimes. In 

landslide-related applications, Transformers can adaptively learn latent temporal features across 

diverse scenarios and outperform conventional RNN-based models in capturing complex temporal 

patterns (Esser et al., 2021; Huang and Chen, 2023; Wang et al., 2024b; Zerveas et al., 2021). 

However, a key drawback of the standard Transformer is its quadratic computational complexity 

with respect to sequence length, which becomes prohibitive for very long sequences (Zhuang et al., 
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convolutional models, the Transformer is built upon stacked 

encoder–decoder layers and relies on a key innovation: the 

self-attention mechanism (see Fig. 5). This mechanism 

enables the model to automatically compute a weight vector 

(i.e., an attention distribution) for each element in the 

sequence based on its relevance to all other elements. By 

evaluating all positions simultaneously (Esser et al., 2021; 

Huang and Chen, 2023), the Transformer efficiently captures 

global dependencies across long sequences in parallel, 

making it more effective than RNNs or CNNs at modeling 

long-range relationships.

time series data, the Transformer can adaptively learn latent 

temporal features and patterns, automatically adjusting 

parameters to accommodate diverse landslide scenarios 

(Wang et al., 2024b; Zerveas et al., 2021).
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2023). This also complicates the interpretation of how the model extracts features and makes decisions 

from large amounts of landslide data, posing challenges for practical deployment. It is worth noting 

that mitigating this quadratic complexity is an active research area, with many efficient Transformer 

variants being developed. For example, Zhao et al. (2024f) combined the strengths of CNN and 

Transformer architectures, selecting and analyzing nine landslide-conditioning factors to successfully 

achieve accurate landslide localization and detailed feature capture. Ge et al. (2024) proposed the 

LiteTransNet model based on the Transformer framework, effectively capturing and interpreting the 

varying importance of historical information during the prediction process. Therefore, while powerful, 

the vanilla Transformer may not be the optimal choice for all practitioners, and its computational 

demands should be carefully considered. 

In summary, deep learning–based time series models represent a significant advancement over 

conventional statistical approaches by enabling data-driven learning of nonlinear, delayed, and 

cumulative deformation patterns that are difficult to encode explicitly in physical models. RNNs and 

LSTMs remain effective and interpretable for short- to medium-term prediction tasks, while GRUs 

offer computationally efficient solutions for operational systems (Li et al., 2021; Wang et al., 2020b). 

Transformer-based models provide superior capacity for long-term dependency modeling but require 

careful consideration of data availability, computational resources, and interpretability. These trade-

offs highlight the importance of selecting temporal architectures based on specific monitoring 

objectives, data characteristics, and operational constraints. 

3.3 Models for Data Generation in Potential Landslide Identification 

A fundamental challenge in potential landslide identification lies in the scarcity, imbalance, and 

spatial clustering of labeled landslide samples. Landslide inventories are often incomplete, biased 

toward large or easily detectable events, and unevenly distributed in space and time. These limitations 

significantly constrain the performance and generalization ability of both traditional machine-learning 

classifiers and deep learning–based models, particularly in data-hungry settings. Data generation aims 

to alleviate these issues by learning the underlying data distribution and synthesizing new samples that 

are statistically consistent with observed landslide patterns (Kingma et al., 2014; Moreno-Barea et al., 

2020; Shorten and Khoshgoftaar, 2019). 

Conventional data augmentation techniques (e.g., rotation, flipping, noise injection) provide 

limited diversity and do not fundamentally address class imbalance or morphological variability in 

landslide datasets. Deep generative models represent a major methodological advance by explicitly 

modeling the latent distribution of geospatial features, thereby enabling the creation of realistic and 

diverse synthetic landslide samples (Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 

2015). Unlike discriminative models, generative models capture probabilistic representations of 

terrain, deformation, or image features, making them particularly suitable for addressing uncertainty, 
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rarity, and heterogeneity in landslide data. Commonly used deep generative models include GANs, 

Variational Autoencoders (VAEs), and diffusion models (see Fig. 4).

 

Figure 4. Comparative mechanisms of deep generative models for data generation. (a) Contrasting fundamental 

training objectives: VAE (maximizing variational lower bounds), GAN (adversarial gaming), and Diffusion 

models (iterative noise reversal). (b) Adversarial learning: function of the generator-discriminator competition 

in improving sample fidelity. (c) Latent space modeling: highlighting the probabilistic sampling layer in VAEs 

that enables diverse sample generation compared to standard AEs. (d) Iterative denoising: the mechanism of 

reconstructing high-resolution imagery through reverse diffusion. 

GANs are among the most widely adopted generative models for landslide-related data 

augmentation, particularly in remote sensing imagery. Through adversarial training between a 

generator and a discriminator, GANs can produce visually realistic synthetic samples that closely 

resemble real landslide images (Goodfellow et al., 2014; Gui et al., 2021; Saxena and Cao, 2021). In 

potential landslide identification, this capability can address the shortage of labeled image samples that 

limits the performance of segmentation and classification models. For example, Feng et al. (2024) 

achieved the first implementation of using a GAN to generate synthetic high-quality landslide images, 

aiming to address the data scarcity issue that undermines the performance of landslide segmentation 

models. Al-Najjar and Pradhan (2021b) proposed a novel approach that employs a GAN to generate 

synthetic inventory data. The results indicate that additional samples produced by the proposed GAN 

model can enhance the predictive performance of Decision Trees (DT), Random Forest (RF), Artificial 

Neural Network (ANN), and Bagging ensemble models. 

Despite their effectiveness, GAN-based approaches exhibit notable limitations. Mode collapse 

may reduce sample diversity, particularly for rare landslide types or extreme morphologies, and 
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Deep generative models are the leading deep learning 

approach for synthetic data generation (Alam et al., 2018; 

Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They 

utilize deep neural networks to learn latent representations of 
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(a) Comparative schematic of three commonly used deep 

generative model architectures. GAN: adversarial training. 

VAE: maximize variational lower bound. Diffusion models: 

gradually add Gaussian noise and then reverse. (b) Schematic 

of the adversarial training workflow for GAN-based data 

generation. (c) Comparative architecture of AE and its 

variational counterpart, VAE. (d) Schematic of a diffusion 

model applied to denoise potential landslide data.
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In the context of landslide studies, GANs have demonstrated 

strong capabilities in data augmentation and remote sensing 

image enhancement.
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training instability often necessitates careful hyperparameter tuning and substantial computational 

resources (Fang et al., 2020a). Such constraints can limit their applicability in operational or real-time 

hazard assessment. Recent architectural refinements, including Conditional GAN (CGAN) (Kim and 

Lee, 2020; Loey et al., 2020; Mirza and Osindero, 2014), image-to-image translation with GAN 

(Pix2Pix) (Isola et al., 2017; Qu et al., 2019), and Wasserstein GAN (WGAN) (Arjovsky et al., 2017; 

Wang et al., 2019), partially mitigate these issues by improving training stability and enabling 

conditional or controlled sample generation. As a result, GANs are increasingly viable for high-

resolution landslide image synthesis and remote sensing–based susceptibility analysis, particularly 

when visual realism is a primary requirement. 

As a probabilistic variant of AEs, VAEs introduce latent-space regularization through variational 

inference (see Fig. 4c). Compared with GANs, VAEs prioritize distributional coverage and uncertainty 

representation over visual sharpness (Hinton and Salakhutdinov, 2006; Kingma andWelling, 2013), 

making them well suited for probabilistic modeling of landslide processes. For instance, Cai et al. 

(2024) demonstrated that a VAE–GRU framework can generate narrow predictive intervals while 

maintaining high coverage probabilities, representing a substantial improvement over the state-of-the-

art methods. Such probabilistic outputs are particularly valuable for risk-informed decision-making 

and early warning applications (Islam et al., 2021; Oliveira et al., 2022). 

Compared with GANs, VAEs produce more diverse but slightly less detailed samples, due to their 

structured latent space constraints. This characteristic is particularly beneficial for exploring a wide 

range of potential landslide morphologies and for augmenting training datasets used in susceptibility 

prediction. However, VAEs may still struggle with highly imbalanced datasets, as their probabilistic 

reconstruction tends to favor majority classes. Integrating VAEs with stratified sampling or cost-

sensitive learning could help overcome this limitation and further enhance landslide prediction 

performance. 

When computational resources and training time permit, diffusion models provide a powerful 

alternative for generating high-quality, diverse, and stable data (Croitoru et al., 2023; Ho et al., 2020; 

Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually adding 

noise to real samples (forward diffusion) and then reconstructing clean data through a reverse 

denoising process (see Fig. 4). The resulting models can sample new, realistic data points that reflect 

complex terrain and geophysical variability. For example, Lo and Peters (2024) proposed a Terrain-

Feature-Guided Diffusion Model (TFDM) to fill gaps in DEM data. Similarly, Zhao et al. (2024b) 

employed a Denoising Diffusion Probabilistic Model (DDPM) conditioned on incomplete DEMs, 

which serves as a transitional kernel during diffusion reversal to progressively reconstruct sharp and 

accurate DEM. 

Despite their successful applications in image synthesis, denoising, and remote-sensing image 
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research, VAEs have been successfully applied to learn and 

reconstruct geomorphological patterns of slope instability. 
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enhancement (Leher et al., 2025; Sui et al., 2024; Xiao et al., 2023; Zou et al., 2024), diffusion models 

have not yet been widely applied directly to the identification of potential landslides and remain in the 

exploratory stage. Nonetheless, our optimism for their application is grounded in their potential to 

address key challenges such as limited labeled data through generative augmentation and, more 

importantly, to provide uncertainty quantification in predictions, which is vital for risk assessment. 

In summary, deep generative models provide an essential complement to discriminative deep 

learning and conventional machine-learning approaches in potential landslide identification. Among 

them, GANs are effective for generating visually realistic imagery and data augmentation; VAEs 

capture probabilistic geomorphic transitions; and diffusion models ensure stability and fidelity in high-

resolution terrain synthesis. Rather than replacing predictive models, generative approaches primarily 

enhance data quality, diversity, and uncertainty representation, thereby strengthening the robustness 

and generalization of landslide identification and forecasting frameworks. 

3.4 Models for Anomaly detection in Potential Landslide Identification 

Anomaly detection provides a complementary perspective to supervised landslide classification 

by focusing not on what constitutes a landslide, but on when and where a slope begins to deviate from 

its normal state. In potential landslide identification, this paradigm is particularly valuable because 

catastrophic failures are often preceded by subtle, progressive, and spatially heterogeneous signals. 

Typical anomalies include unexpected acceleration in surface displacement, coherence loss in InSAR 

observations, or irregular fluctuations in multi-sensor monitoring data, which may emerge well before 

visible slope failure (Deijns et al., 2020; Jiang et al., 2020). 

Compared with conventional anomaly detection approaches based on empirical thresholds or 

predefined statistical rules, deep learning-based methods offer a critical advantage: they can learn 

complex, nonlinear “normality patterns” directly from data, without requiring explicit assumptions 

about failure modes. This shift is especially important in landslide-prone environments, where 

background variability driven by rainfall, vegetation dynamics, and sensor noise often masks early 

instability signals. By modeling high-dimensional spatiotemporal dependencies, deep learning enables 

a more adaptive and context-aware identification of abnormal slope behavior. 

AEs are widely used for unsupervised anomaly detection due to their ability to reconstruct input 

data and highlight deviations from learned normal patterns (Sakurada and Yairi, 2014; Zhou and 

Paffenroth, 2017). An AE consists of an encoder that compresses data into a low-dimensional latent 

representation and a decoder that reconstructs it. 

AEs constitute the most widely adopted framework for unsupervised anomaly detection in 

landslide monitoring. Rather than explicitly detecting failures, AEs are trained to reconstruct normal 

system states, such as stable slope displacement time series or radar backscatter signatures (Sakurada 

and Yairi, 2014; Zhou and Paffenroth, 2017). When exposed to abnormal inputs (such as sudden 
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deformation acceleration or coherence degradation) the reconstruction error increases, providing an 

implicit indicator of potential instability. This reconstruction-based logic is particularly attractive in 

landslide applications, where labeled failure data are scarce or incomplete. For instance, Shakeel et al. 

(2022) developed an InSAR deformation anomaly detector based on an AE–LSTM architecture. 

Experimental analyses using synthetic deformation test scenarios achieved an overall performance 

accuracy of 91.25%. 

However, deterministic AEs implicitly assume that “normal” behavior can be represented by a 

single compact manifold, which may be insufficient for landslide systems characterized by multiple 

deformation regimes. VAEs address this limitation by explicitly modeling uncertainty in the latent 

space through probabilistic inference (Kumar et al., 2024; Pol et al., 2019). By learning a distribution 

rather than a single representation of normal slope behavior, VAEs are better suited to capture the 

intrinsic variability of environmental and geotechnical conditions (Kingma and Welling, 2013; Li et 

al., 2020; Park et al., 2018). Recent studies indicate that VAEs outperform conventional AEs when 

anomaly detection involves multivariate inputs combining displacement, rainfall, and hydrological 

factors, enabling a more robust identification of transitional instability stages (Nawaz et al., 2024; Han 

et al., 2025). Nevertheless, the probabilistic nature of VAEs also introduces practical challenges, 

including higher data requirements and the need for operationally meaningful thresholding strategies. 

GANs can also be adapted for anomaly detection by exploiting their discriminator network’s 

ability to distinguish between real and generated data (Kang et al., 2024; Xia et al., 2022). In landslide 

monitoring, GAN-based anomaly detection models learn the distribution of stable slope features, and 

deviations from this distribution can indicate abnormal conditions (Radoi, 2022).Extensions such as 

AnoGAN further adapt this adversarial framework by explicitly embedding anomaly scoring 

mechanisms into the latent space (Lin et al., 2023; Thomine et al., 2023). While GAN-based methods 

have shown promise in detecting subtle deviations in complex data distributions, their training 

instability and sensitivity to hyperparameters remain practical limitations, particularly for operational 

early-warning systems. 

Temporal models, including RNNs, LSTMs, and GRUs, play a distinct yet complementary role 

in anomaly detection by emphasizing when abnormal behavior emerges. These models learn expected 

temporal evolution patterns in displacement or rainfall time series and flag deviations from predicted 

trajectories (Zamanzadeh Darban et al., 2024; Zhang et al., 2022a). In landslide early-warning 

scenarios, this temporal sensitivity is crucial for identifying acceleration phases rather than static 

anomalies. Hybrid architectures that integrate temporal models with AEs or GANs further enhance 

anomaly detection by jointly capturing spatial reconstruction errors and temporal inconsistencies, 

enabling multi-source consistency checks across monitoring networks. For instance, Geiger et al. 

(2020) demonstrated a growing trend of utilizing LSTM networks as both the generator and 
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discriminator within GAN frameworks for time-series anomaly detection. Similarly, Whitaker (2023) 

illustrated the application of LSTM–GAN architectures in identifying temporal anomalies. 

Deep learning-based anomaly detection shifts landslide identification from static classification 

toward dynamic state monitoring, making it particularly suitable for early recognition of slope 

instability under evolving environmental conditions. Although these methods do not directly predict 

landslide occurrence, they provide an essential early-warning layer by highlighting abnormal system 

behavior that warrants further physical interpretation or intervention. 

3.5 Models for Data Fusion in Potential Landslide Identification 

In practical applications, the identification of potential landslide hazards is a complex task that 

influences by multiple factors (Zhang et al., 2018). These factors are often reflected through different 

data sources. We can roughly divide heterogeneous data into four categories: image data, time series 

data, structured data, and textual data. Given this heterogeneity, data fusion is essential for the accurate 

identification of potential landslides (see Fig. 5). Deleted:  Since heterogeneous data differ in feature scale, 

spatial resolution, and data modality, deep learning models 

are increasingly utilized to automatically extract nonlinear 
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fusion techniques. In landslide applications, deep learning-

based data fusion can integrate multi-modal inputs such as 

Sentinel-1 InSAR deformation, rainfall time series, and 
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or real-time early warning.
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Figure 5. Integrated framework of GNNs and Transformers for data fusion. (a) Multi-source integration: the 

architectural flow for synthesizing heterogeneous datasets (spatial images, time-series, and structured data) to 

support robust decision-making. (b) Topology modeling: GNN mechanisms designed to aggregate spatial 

dependencies across general, multi-graph, and hierarchical slope networks. (c) Global contextual attention: the 

Transformer architecture utilizing self-attention mechanisms to capture long-range dependencies in sequence-

based or flattened spatial features. 

Conventional data fusion approaches in landslide studies (such as feature concatenation, weighted 

linear combination, or statistical multivariate analysis) generally rely on predefined assumptions 

regarding variable independence or linear interactions. While these methods are computationally 

efficient, they struggle to capture the nonlinear, scale-dependent, and cross-modal relationships that 

characterize real-world landslide processes. In contrast, deep learning–based data fusion models 

Deleted: The role of deep learning models in data fusion. (a) 
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provide a data-driven means to automatically learn high-order feature interactions across 

heterogeneous inputs, thereby offering a more flexible and expressive framework for potential 

landslide identification. 

Among existing architectures, Graph Neural Networks (GNNs) have attracted increasing 

attention due to their ability to explicitly represent non-Euclidean spatial relationships. Landslide-

related terrain units (e.g. slope units, grid cells, or monitoring stations) are inherently interconnected 

through topography, hydrological pathways, and geological continuity (see Fig. 5b). Conventional 

CNN-based fusion models, which operate on regular grids, are limited in capturing such irregular 

spatial dependencies. By contrast, GNNs represent spatial entities as nodes and their geospatial, 

hydrological, or geological relationships as edges, enabling the propagation of information across 

topologically connected units (Scarselli et al., 2008; Ying et al., 2018; Zeng et al., 2022). 

In landslide identification and forecasting, this graph-based representation allows geomorphic 

and hydrological signals to be explicitly transmitted between adjacent or functionally connected units, 

thereby better reflecting slope interaction mechanisms. For example, Kuang et al. (2022) proposed an 

innovative landslide forecasting model based on GNNs, in which graph convolutions are employed to 

aggregate spatial correlations among different monitoring sites. Ren et al. (2025) introduced a novel 

GNN framework with conformal prediction (GNN-CF) for landslide deformation interval forecasting, 

addressing the limitations of conventional models in handling predictive uncertainty. 

According to the differences in message passing and aggregation methods, GNNs have derived 

various variants. For example, Graph Convolutional Network (GCN) is generated by generalizing the 

convolutional operation to graph-structured data (Kipf and Welling, 2016; Sharma et al., 2022; Wang 

et al., 2020a), and Graph Attention Network (GAT) dynamically weights the importance of 

neighboring nodes by introducing the attention mechanism (Veliˇckovi´c et al., 2017; Yuan et al., 2022; 

Zhou and Li, 2021). The emergence of these new architectures makes GNN variants more targeted 

than conventional GNNs and suitable for modeling heterogeneous relationships. Currently, they are 

often used for weighted analysis of the impacts of different geographical factors on landslides (Kuang 

et al., 2022; Li et al., 2025; Zhang et al., 2024e). 

Beyond graph-based models, Transformer architectures have emerged as a unifying framework 

for multimodal data fusion in landslide studies. As highlighted in Section 3.2, the Transformer’s self-

attention mechanism and modular architecture make it a universal framework for processing sequential 

data and enabling multimodal fusion (see Fig. 5). 

In this context, the core advantage of the Transformer lies in its ability to integrate diverse input 

data (e.g., satellite imagery, GPS time series, and geological maps). It achieves this by employing 

independent embedding layers to convert each modality into a unified vector representation, which is 

then fused through the self-attention mechanism. This mechanism computes the interactions and 
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correlations among all elements across different modalities, thereby enabling the model to capture 

cross-modal dependencies and extract joint feature representations within a unified framework. This 

capability makes the Transformer particularly suitable for landslide studies (Li et al., 2025). For 

example, Piran et al. (2024) enhanced short-term precipitation forecasting by applying transfer 

learning with a pre-trained Transformer model. Zhang et al. (2024e) incorporated Transformer modules 

to build a graph-Transformer model that integrates global contextual information for the generation 

and analysis of Landslide Susceptibility Maps (LSMs). 

In conclusion, deep learning–based data fusion provides a flexible and unified framework for 

integrating heterogeneous landslide-related data, including spatial, temporal, and topological 

information. By enabling joint representation learning across multiple data modalities, fusion-oriented 

architectures such as GNNs and Transformers have substantially enhanced the capability of potential 

landslide identification to capture complex environmental interactions that cannot be adequately 

represented by single-source or loosely coupled models. As a result, data fusion has become a critical 

methodological component in contemporary deep learning–based landslide hazard studies. 

4 Deep Learning for Potential Landslide Identification: Applications 

The preceding sections have laid the groundwork by discussing the data prerequisites and model 

architectures fundamental to deep learning in potential landslide research. Building upon that 

foundation, this section turns to the practical applications of deep learning for identifying potential 

landslides across diverse real-world scenarios. 

Given that landslides are triggered by different dominant factors, the mechanisms, data 

characteristics, and monitoring strategies vary substantially among different types. To provide a 

systematic and targeted analysis, this section organizes the applications according to four major 

triggering categories: rainfall-induced landslides, earthquake-induced landslides, human activity-

induced landslides, and multi-factor-induced landslides (see Fig. 6). For each category, we briefly 

outline its geological characteristics, summarize representative deep learning applications, and discuss 

model adaptability and monitoring considerations. This structure allows for a comprehensive 

understanding of how deep learning frameworks can be tailored to the unique challenges posed by 

different landslide-inducing mechanisms. 

4.1 Application of Deep Learning in the Identification of Rainfall-induced 

Landslides 

Rainfall stands as the predominant global trigger for landslides. Intense and short-duration rainfall 

events (lasting from a few hours to several days) often induce shallow landslides (Ma and Wang, 2024), 

whereas prolonged rainfall (lasting from several weeks to months) can lead to deeper and larger 

landslides, with depths ranging from 5 to 20 meters (Casagli et al., 2023). Consequently, rainfall 
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intensity, cumulative precipitation, and rainfall duration constitute critical triggering parameters for 

rainfall-induced landslides (Mondini et al., 2023). 

Sustained or intense rainfall elevates slope unit weight and moisture content, alters pore water 

pressure regimes, and reduces shear strength via the principle of effective stress, thereby initiating 

surface instability. This hydro-mechanical coupling establishes a pronounced positive correlation 

between rainfall patterns and slope deformation (Li et al., 2022a). 

Temporally, landslides exhibit both abrupt failure and delayed responses to rainfall. Pre-existing 

fractures act as preferential pathways for rainwater infiltration, yet the time required for percolation to 

reach slip zones introduces a hysteresis effect in slope deformation relative to precipitation events 

(Jiang et al., 2023; Liu et al., 2022b). During wet seasons, intense rainfall elevates groundwater tables, 

inducing fully saturated conditions in slope materials. This saturation amplifies shear strain rates, 

triggering rapid acceleration of landslide movement. Post-rainfall, groundwater levels remain elevated 

for extended periods (weeks to months), resulting in sustained but decelerated sliding velocities rather 

than complete stabilization. Consequently, despite concentrated rainfall during wet seasons, numerous 

landslides occur in subsequent dry periods (Ren et al., 2023), highlighting the delayed destabilization 

governed by lingering pore pressure dynamics. The hysteresis phase reflects progressive energy 

accumulation toward critical thresholds, while abrupt failure signifies rapid energy release during 

instability. This transition is typically characterized by a near-instantaneous shift from stable to 

unstable states when pore water pressures or soil moisture content exceed critical thresholds, with 

minimal intermediate deformation phases. 

The spatial clustering of rainfall-induced landslides fundamentally arises from the coupling of 

moisture transport efficiency and geotechnical strength degradation within specific geomorphic units 

(Wicki et al., 2020; Yu et al., 2021). Spatially, such landslides are concentrated in high-rainfall zones 

and permeable lithologies, where hydro-mechanical feedback dominates slope destabilization. High-

rainfall zones, characterized by frequent and intense precipitation, impose dual hydrological stresses 

on slopes: surface runoff erodes toe regions, while infiltration elevates pore pressures, collectively 

acting as external drivers of failure. Highly permeable strata, characterized by high porosity or 

interconnected fractures, accelerate water migration. 

Combined with high permeability, these properties regulate water retention time within the slope 

and control the efficiency of pressure transmission, forming an internal transport network that 

facilitates landslide progression. The superposition of these mechanisms drives slope stability beyond 

critical thresholds over short timescales, culminating in abrupt failure. 

What determines the critical threshold for rainfall-induced landslides? First, it is essential to 

define the critical threshold as the minimum amount of rainfall required to trigger a landslide under 

specific geological and topographic conditions (Naidu et al., 2018; Segoni et al., 2018b). This threshold 
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is typically classified into two types: empirical thresholds, which are derived from statistical 

relationships between historical landslide events and rainfall data, and physically based thresholds, 

which incorporate hydromechanical models. Both approaches assume rainfall as the primary 

destabilizing driver. To operationalize these thresholds for landslide prediction, monitoring systems 

integrate rain gauge and remote sensing to assess proximity to critical saturation levels (Li et al., 2023; 

Piciullo et al., 2018). Moreover, the relationship between rainfall and landslides is often nonlinear and 

influenced by multiple factors. Deep learning models enable data-driven determination of context-

specific critical rainfall values across diverse geological and topographical settings (Sala et al., 2021; 

Segoni et al., 2018a). For example, Badakhshan et al. (2025) incorporated the role of soil strength. 

Soares et al. (2022) utilized the U-Net model, reveals that the inclusion of a normalized vegetation 

index layer enhances model balance and significantly improves segmentation accuracy. 

Following the development of rainfall threshold models, real-time monitoring of historically 

rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of 

subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating 

timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by 

continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic 

recalibration of threshold parameters. This data assimilation enhances model adaptability to evolving 

hydrogeological conditions, ensuring operational relevance across heterogeneous terrains. 

While the physical mechanisms governing rainfall-induced slope failures have been well studied 

(Arnone et al., 2011; Xiong et al., 2024), recent advances in deep learning have significantly improved 

our ability to automatically identify and predict such events using heterogeneous data. 

In the context of rainfall-induced landslides, spatiotemporal data (e.g., rainfall intensity, 

cumulative precipitation, soil moisture, and slope displacement time series) are the primary inputs. 

Deep learning models are selected according to data characteristics and task objectives. For instance, 

CNNs are commonly used to extract spatial rainfall-topography features and delineate susceptible 

zones from remote sensing images (Peng and Wu, 2024; Xu et al., 2022a; Zhang et al., 2022b). The 

encoder-decoder architecture, such as U-Net, enables pixel-level segmentation of rainfall-induced 

landslides (Bhatta et al., 2025), with the inclusion of vegetation or soil moisture layers improving 

feature discrimination. 

When temporal evolution is essential, RNNs and LSTMs effectively model sequential 

dependencies between rainfall and slope deformation (Biniyaz et al., 2022; Liu et al., 2025). These 

models are capable of learning hysteretic responses and time lags between precipitation events and 

ground displacement, enabling early warning through time-series forecasting. 

Deep learning also facilitates data-driven rainfall threshold estimation. Instead of relying solely 

on empirical or physically based thresholds, models such as Fully Connected Neural Networks (FNNs) 
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and attention-based transformers can derive adaptive rainfall thresholds from multi-year rainfall–

landslide records, capturing regional nonlinearities (Wu et al., 2023). 

4.2 Application of Deep Learning in the Identification of Earthquake-induced 

Landslides 

Earthquakes not only trigger landslides during the seismic phase but also increase the 

susceptibility of post-earthquake landslides by weakening slope materials or forming co-seismic 

landslide deposits (Zhang et al., 2024a; Zhao et al., 2024a). On the one hand, the seismic vibrations 

can loosen the structure of the rock and soil mass on the slope, reducing the cementation between 

particles. The originally intact rock mass may develop cracks, and the density of the soil decreases, 

thus reducing the overall stability of the slope and making it more prone to landslides after the 

earthquake. On the other hand, the landslides that have occurred during the earthquake process will 

generate a large volume of deposits. These co-seismic landslide deposits are usually accumulated at 

positions such as the lower part of the slope or in valleys. They are in a relatively unstable state 

themselves, providing a material basis for subsequent re-sliding (Fan et al., 2019; Yao et al., 2024). 

So, what is the temporal relationship between earthquake-induced landslides and seismic events? 

When an earthquake occurs, landslides may be triggered instantaneously by seismic ground motion, 

typically within seconds to minutes after the earthquake. Such landslides are mainly triggered by the 

peak ground acceleration (PGA) or peak ground velocity (PGV) of the seismic ground motion (Kargel 

et al., 2016; Zhao et al., 2023). When these values reach a certain level, they are sufficient to enable 

the rock and soil masses on the slope to overcome the frictional force and shear strength, thus leading 

to the occurrence of landslides. 

Earthquake-induced landslides are typically concentrated in areas of high seismic intensity, 

particularly on steep slopes or within loose accumulations (Li et al., 2024). A fault is a place where the 

rocks in the earth’s crust break and undergo relative displacement. Its existence destroys the continuity 

and integrity of the rock mass, making it more prone to deformation and damage under the action of 

seismic forces. On the hanging wall of a reverse fault, the compressive force usually causes the rock 

blocks to break, and mountain landslides are likely to occur during seismic events. In contrast, on the 

footwall of a normal fault, the tensile force may cause the rock blocks to fracture and loosen, thus 

increasing the risk of mountain landslides. 

The Newmark model is a commonly used basic model in the research of earthquake-induced 

landslides (Jibson, 2007; Newmark, 1965). Based on a simplified assumption, it regards the rock and 

soil masses on the slope as rigid blocks. When these rigid blocks are affected by seismic vibrations, 

they slide on the slope surface. By calculating the cumulative downhill displacement of the rigid blocks 

caused by the continuous increase of seismic vibrations, the stability of the slope under the action of 
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an earthquake is measured. In other words, the greater the cumulative downslope displacement, the 

more unstable the slope is during the earthquake, and the higher the likelihood of a landslide occurring. 

However, Newmark’s model exhibits critical limitations: (1) dependence on oversimplified soil or rock 

strength assumptions and (2) inadequate integration of high-resolution seismic motion data. Deep 

learning models address these gaps by processing massive real-time datasets, filtering noise from 

obscured remote sensing imagery (Wang et al., 2024b), and fusing seismic parameters with 

multispectral satellite data through cross-modal architectures (Dahal et al., 2024). 

Within hours to days post-main shock, aftershocks can further destabilize already loosened slope 

structures, triggering secondary landslides clustered near co-seismic failure zones or aftershock 

epicenters (Sun et al., 2024b; Zhang et al., 2024c). These landslides are often concentrated around the 

mainshock-induced landslide bodies or the epicentral region of aftershocks, potentially forming 

disaster chains (e.g., landslides blocking rivers, leading to the formation and subsequent failure of 

landslide dams, which may trigger flooding). Even years post-earthquake, relic landslide deposits may 

reactivate through gradual creep or extreme climatic forcing, necessitating long-term spatiotemporal 

monitoring and dynamic risk reassessment (Jones et al., 2021; Li et al., 2021b). Moreover, earthquake-

induced landslides are often associated with complex 3D topographic changes, which are difficult to 

capture using conventional 2D analyses. Deep learning frameworks enable precise reconstruction of 

landslide geometries by processing LiDAR-derived or UAV-derived 3D point clouds, capturing 

volumetric deformation patterns critical for mechanistic modeling. 

Current applications of deep learning in earthquake-induced landslides primarily focus on 

semantic segmentation and change detection (Chowdhuri et al., 2022; Huang et al., 2023b; Liu et al., 

2020a; Yang et al., 2024b). Liu et al. (2021b) employed graph isomorphism networks (GIN) to model 

long-range dependencies among high-level features extracted by ResNet-50. Zi et al. (2021) utilized a 

hybrid architecture combining graph attention networks (GATs) and channel self-attention 

mechanisms enhances the modeling of feature interdependencies from ResNet-50. Yang et al. (2023b) 

incorporated a spatial attention module to capture contextual dependencies and extract rich non-local 

spatial features, proposing a novel semantic segmentation network, EGCN, to enhance landslide 

recognition accuracy. 

Both physics-based and data-driven model calibration rely on earthquake-induced landslides 

inventories (Bhuyan et al., 2023; Tanyas, et al., 2017). Despite increased inventory availability, 

persistent issues of representativeness and completeness limit model generalizability and mechanistic 

fidelity. 

4.3 Application of Deep Learning in the Identification of Human Activity-induced 

Landslides 
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Human activity-induced landslides typically arise unintentionally during construction activities, 

where initial slope equilibrium is disrupted by slope toe excavation or water infiltration into exposed 

fractures (Zhao et al., 2022). Compared to natural landslides, human activity-induced failures are often 

more controllable, underscoring the critical importance of pre-disaster identification for risk mitigation. 

These landslides are characterized by localized micro-deformation and subsurface disturbances, 

necessitating integrated monitoring systems that combine high-resolution remote sensing data with 

ground-based sensors for early anomaly detection. 

Current predominant anthropogenic triggers include mining and loading (Ma et al., 2023a; Xu et 

al., 2022). These activities induce severe surficial damage, with stratigraphic movement and surface 

deformation leading to the formation of ground fissures. Such fissures compromise surface ecosystems 

and vegetation, while also penetrating subsurface mining cavities, posing grave risks to operational 

safety. Consequently, deep learning models are essential for automated ground fracture extraction to 

enable real-time hazard mapping and preventive interventions (Huangfu et al., 2024). 

 

Figure 6. Selection of monitoring data for different types of landslides (a) Rain-induced landslides. (b) 

Earthquake-induced landslides. (c) Human activity-induced landslides. (d) Multi factor-induced landslides. 
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Moreover, the triggers of human activity-induced landslides are not only related to natural 

conditions but also closely associated with dynamic human activities. Consequently, their analysis 

necessitates the integration of multimodal and cross-scale data to capture coupled environmental and 

behavioral drivers (see Fig. 6). In engineering operations such as mining or road construction, factors 

including proximity to potential landslide zones, excavation depth, and slope angles must be rigorously 

evaluated through geohazard risk assessments. During excavation phases, geotechnical investigations 

are imperative to identify weak lithological strata or fracture-dense zones predisposed to instability. 

Continuous slope stability monitoring requires deploying IoT-enabled sensors to track temporal 

variations in surface fissure dimensions and subsurface displacement vectors. Monitoring data from 

these sensors can be integrated into deep learning models for multimodal analytics, enabling dynamic 

risk prediction and adaptive mitigation planning. 

For spatial mapping and fissure extraction, CNNs and U-Net-based segmentation models have 

demonstrated strong capability in identifying artificial slope features from optical or SAR imagery. 

CNN-based models can capture high-level semantic information on excavation scars, road cuts, and 

spoil heaps that indicate anthropogenic disturbance. Tao et al. (2024) employed the DRs-U-Net model 

to investigate the use of deep learning for UAV-based crack identification, the developmental patterns 

of fissures, and the feedback interactions between underground mining progress and corresponding 

surface conditions. Wu et al. (2021) proposed the PU-Net model for detecting and mapping localized 

rapid subsidence induced by mining activities. Meng et al. (2025) introduced the GF-Former model to 

achieve precise segmentation of ground fissures in remote sensing imagery. 

When surface deformation time series or micro-displacement data from GB-InSAR, InSAR, or 

IoT sensors are available, RNN-based models are applied to model the temporal evolution of slope 

deformation (Han et al., 2022; Li et al., 2025). These models are particularly effective in detecting 

precursory motion trends caused by progressive excavation or loading activities. 

To mitigate misclassification between anthropogenic signatures and natural terrain, integrating 

multispectral data with topographic elevation data enhances discriminative capacity (Meng et al., 2021; 

Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing artificially excavated 

steep slopes combined with fractured geological strata from structural maps provide preliminary 

evidence of human influence on landslide susceptibility (Lian et al., 2024). 

In fact, landslides induced solely by human activities are relatively rare. Single human activities 

are typically insufficient to independently trigger landslides, with natural factors often acting in 

conjunction with human activities. Furthermore, the prohibitive cost of acquiring subsurface 

disturbance data results in sparse historical landslide samples for specific engineering scenarios, 

limiting data-driven model training. 

4.4 Application of Deep Learning in the Identification of Multi-factor-induced 
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Landslides 

Multi-factor-induced landslides result from the synergistic interaction of multiple natural and 

anthropogenic factors (Hao et al., 2023). Their triggering mechanisms involve the dynamic 

spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials through 

cumulative strength degradation. The formation of such landslides may involve various types of 

movements, including collapse, creep, and flow phenomena. They often exhibit characteristics such as 

complexity, nonlinearity, and suddenness. Therefore, their identification is markedly more complex 

compared to landslides induced by singular factors. 

Unlike simpler landslide types, identifying composite landslides necessitates multimodal data 

fusion to holistically assess predisposing conditions (Li, 2025; Yin et al., 2023). It further requires 

disentangling the nonlinear superposition effects of multiple factors and quantifying their relative 

contributions to failure initiation.  

In multi-factor-induced landslides, earthquakes and rainfall often interact with other factors (Dou 

et al., 2019). During heavy rainfall, the rate of landslide formation after an earthquake may be higher, 

possibly driven by the removal of excessively steep slopes, changes in vegetation and groundwater, 

and alterations in the mechanical properties of the bedrock and weathered layers in the earthquake-

induced landslides canopy. This necessitates systematic investigation of multi-hazard coupling effects 

to quantify emergent risks. 

In addition to constructing physics-based models that account for multiple factors and quantify 

their interactions through the solution of governing equations, GNNs can also be employed (Lei et al., 

2025). These models are capable of capturing the spatiotemporal dependencies and nonlinear 

couplings among various triggering factors. For example, Ren et al. (2025) employed a GNN to capture 

and model the complex spatiotemporal dependencies among multiple monitoring locations during 

landslide deformation. Zeng et al. (2022) used the graphical representation capability of the GNN 

model to analyze environmental relationships within a study region, where nodes were defined as 

geographic units delineated by terrain surface approximations, and edges captured the interactions 

between node pairs. Zhang et al. (2024d) constructed a geographically constrained relational graph 

based on node features representing environmental similarity and employed a cosine similarity 

approach to associate landslides with their surrounding geographic environments. 

Cross-attention mechanisms can also be integrated into the model to capture spatiotemporal 

dependencies among contributing factors. For instance, Hu et al. (2025a) integrated global landslide 

feature vectors with local feature maps through a cross-attention mechanism to enhance the 

discriminative capability between landslides and background geomorphology. Another noteworthy 

fusion strategy is the gated fusion unit. Inspired by the gating structures in recurrent neural networks 

(Arevalo et al., 2017; Kumar and Vepa, 2020; Tsai et al., 2019), this mechanism learns dynamic 
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weights (typically implemented through gating functions such as Sigmoid) to adaptively regulate the 

information flow of features from different modalities, thereby emphasizing salient features and 

suppressing noise. Compared with cross-attention, the gated fusion mechanism is generally more 

lightweight and provides an alternative approach for multimodal feature fusion (Yang et al., 2024a). 

For instance, Liu et al. (2022a) proposed a gated fusion unit module for multimodal remote sensing 

image semantic classification, enabling early fusion of heterogeneous modality features. 

With the accumulation of new data and the dynamic variations in multi factor-induced landslides, 

regular model updates are critical to ensuring identification accuracy and adaptability. Existing studies 

predominantly apply deep learning methods based on comprehensive historical landslide datasets. 

However, when new data becomes available, a naive approach is to retrain the model from scratch, 

which is computationally inefficient and fails to capture the connections between new observations 

and historical knowledge. A common strategy from the machine learning literature to address this is 

fine-tuning, where a model pre-trained on a historical dataset is further trained on new data (Sualp and 

Rezaei, 2025). While this avoids full retraining, standard fine-tuning can still lead to catastrophic 

forgetting of previously learned patterns. 

To better accommodate the dynamic nature of landslides, incremental learning methods offer a 

more advanced and promising solution (Huang et al., 2022a; Wang et al., 2024c). These methods 

enable the model to continuously learn from new data streams, gradually optimizing parameters while 

striving to preserve knowledge from previous tasks. Compared to models that require retraining or 

basic fine-tuning (Zhao et al., 2024c), models integrated with incremental learning can more 

effectively leverage historical data and adaptively incorporate new information, thereby enhancing 

long-term adaptability (Zhen et al., 2025). 

The diverse applications discussed in this section demonstrate that the selection and effectiveness 
of a deep learning model are fundamentally governed by the interplay between available data types, 
inherent model capabilities, and specific task objectives. To synthesize these critical relationships and 
provide a clear reference framework, Table 1 maps the typical correspondences between predominant 
deep learning architectures, their compatible data source, suited landslide phenomena, and 
representative application tasks. This synthesis underscores that there is no universally optimal model; 
rather, a strategic alignment across the data-model-application pipeline is key to successful 
implementation. 

Deep Learning 

Models 

Typical Input Data Target Landslide 

Types 

Representative Research 

Tasks 

CNNs Optical remote sensing 

imagery, UAV imagery, 

LiDAR-derived DEMs, 

and InSAR-derived 

deformation maps 

Shallow landslides, 

rockfalls, and debris 

flows (with emphasis 

on morphological 

identification) 

Landslide boundary 

delineation, susceptibility 

mapping, landslide inventory 

compilation, and pixel-level 

semantic segmentation 
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RNNs InSAR time-series data 

and ground-based 

monitoring data (e.g., 

rainfall sequences, 

groundwater levels) 

Creeping landslides 

and slow-moving 

landslides (focusing 

on time-series 

analysis) 

Displacement prediction, 

temporal deformation 

analysis, and early warning 

systems 

Transformers Multi-temporal optical 

imagery, multi-

sequence InSAR data, 

and multi-source 

environmental factors 

Complex and multi-

type landslides 

(particularly suitable 

for multi-source data 

fusion) 

Multimodal landslide 

detection, change detection, 

and cross-domain prediction 

GANs Optical and UAV 

imagery, LiDAR-

derived DEMs, and 

synthetic or augmented 

remote sensing data 

Applicable across 

different landslide 

types (primarily used 

for data generation) 

Data augmentation, sample 

generation, image 

reconstruction, and resolution 

enhancement 

AEs InSAR-derived surface 

deformation time series 

and high-dimensional 

multi-source landslide-

related variables 

Applicable across 

different landslide 

types (primarily used 

for feature learning 

and dimensionality 

reduction) 

Feature extraction, anomaly 

detection, noise suppression, 

and dimensionality reduction 

GNNs Graph-structured spatial 

data derived from 

terrain units, sensor 

networks, or landslide 

inventories 

Regional landslide 

systems, clustered 

landslides, and 

interacting slope units 

Spatial interaction modeling, 

landslide clustering analysis, 

and network-based 

susceptibility analysis 

Diffusion 

Models 

Multi-source remote 

sensing data and 

synthetic datasets 

Currently dominated 

by exploratory and 

methodological 

studies 

Data denoising, generative 

modeling, uncertainty 

representation, and 

reconstruction 

Table 1. Typical correspondences among data source, deep learning models, and applications in 

potential landslide identification. 
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4.5 Summary on the Applications of Deep Learning for Potential Landslide 

Identification 

In general, the process of the applications of deep learning for potential landslide identification 

involves data collection, preprocessing, model construction, training, and validation, followed by 

deploying the trained model to identify potential landslides. Variations arise in data sources, trigger 

mechanisms, and model handling approaches specific to each landslide type. For rainfall-induced 

landslides, the model prioritizes rainfall-related data, with particular emphasis on simulating rainfall 

infiltration effects. Earthquake-induced landslides require prioritization of seismic data, including 

earthquake magnitude and post-seismic geological alterations. Human activity-induced landslides 

demand focused analysis of the relationship between engineering activities and geological changes. In 

contrast, multi factor-induced landslides necessitate models that integrate multiple triggering 

mechanisms and perform a comprehensive assessment of the cumulative effects of diverse contributing 

factors. 

Whether landslides are triggered by rainfall or earthquakes, gravity remains the dominant driving 

force (She et al., 2024). The primary role of triggering factors lies in reducing slope stability or 

amplifying gravitational effects. Before and during landslide occurrence, deformation of slope 

geomaterials constitutes the most observable phenomenon (Zhou et al., 2025). This deformation often 

manifests as the formation and expansion of cracks. 

Since landslide deformation is a dynamic process, ranging from initial minor changes to eventual 

large-scale sliding, each stage exhibits distinct characteristics. Therefore, landslides can be classified 

into distinct stages based on their deformation characteristics, enabling more accurate identification of 

impending disaster warning signals (Zhang et al., 2024b). Here, we categorize landslide evolution into 

three phases: (1) creep deformation stage, (2) intermediate development stage, and (3) progressive 

failure stage (see Fig. 7). 



 

38 
 

 

Figure 7. The development of landslides is divided into three stages with distinctive identification markers. 

In the creep deformation stage, the slope gradually deforms under the influence of various factors, 

though surface manifestations may not be readily observable. Small, discontinuous cracks with limited 

width may emerge on the slope surface or crest. High-precision measuring instruments can detect 

localized minor displacements or deformations (Zhan et al., 2024). Vegetation on the slope may exhibit 

tilting or leaning patterns, with tree orientations potentially aligning in consistent directions. In the 

intermediate development stage, slope deformation progresses at a relatively stable rate. Initially 

observed surface cracks gradually widen and elongate, eventually interconnecting to form larger 

fracture networks. Crack widths may expand from a few centimeters to tens of centimeters or more, 

accompanied by displacement between soil or rock blocks. Monitoring systems can record slope 

displacements at a relatively constant rate. Slope deformation disrupts pre-existing groundwater flow 

paths, resulting in alterations to groundwater levels, volume, or quality within the landslide mass and 

surrounding areas. The progressive collapse stage predominantly reflects pre-sliding slope deformation 

characteristics and is critical for identifying imminent landslides (Cascini et al., 2022; Chen et al., 

2024a). In progressive landslides, the potential sliding surface gradually evolves into a continuous 

failure plane. In sudden landslides, due to their abrupt evolutionary process, no distinct sliding surface 

is evident, making it necessary to rely on other indicators for identification. Physical phenomena such 

as crack widening and deepening, formation of enclosed boundaries by cracks and drainage holes, 

increased displacement at the rear edge of the slope, bulging at the slope’s toe, increased seepage at 

the slope foot, an increase in slope angle, and reverse tilting of the slope collectively aid in identifying 

potential landslides. 

Theoretically, the unique identification markers of each stage can serve as input features for deep 

learning models, enabling direct classification of landslides into distinct stages. This facilitates the 



 

39 
 

implementation of more targeted mitigation measures for each stage. Since slope changes ultimately 

result from displacement variations, we propose that a landslide identification method based on 

deformation characteristics as indicative factors holds great potential. 

After classifying landslide stages based on deformation characteristics, different mitigation 

strategies should be applied to each phase. In the creep deformation stage, the focus should be placed 

on landslide triggering factors, with risk reduction measures such as drainage systems and slope cutting. 

In the intermediate development stage, monitoring should be intensified alongside temporary 

reinforcement measures. In the progressive collapse stage, emergency evacuation and stabilization of 

the potential landslide mass must be prioritized. 

5 Deep Learning for Potential Landslide Identification: Challenges 

5.1 Data Quality and Availability 

In potential landslide identification, the performance of deep learning models is critically 

dependent on both data quality and availability (Alzubaidi et al., 2023; Gaidzik and Ramirez-Herrera, 

2021; Whang et al., 2023). Low-quality or unreliable data directly impair the models’ feature extraction 

capabilities, while insufficient data availability constrains their generalization capacity and real-time 

monitoring efficacy (Azarafza et al., 2021; Xiao and Zhang, 2023). 

In the natural environment, non-landslide states are the norm, while the landslide state is relatively 

rare (see Fig. 8). This leads to the data collected mainly consisting of normal geological conditions, 

with much less data representing potential landslides. Such a severe skewness in the class distribution 

results in a serious imbalance in the data, that is, there is a huge difference in quantity between the 

minority class (landslide samples) and the majority class (non-landslide samples) (Jiang et al., 2024). 

Gupta and Shukla (2023) demonstrated that this data imbalance can cause learning algorithms to be 

biased towards the majority class, perform poorly on the minority class. This bias impedes the 

predictive ability of the learning algorithms, and ultimately lead to the final model’s poor performance 

in identifying and predicting the minority class of landslide samples. 

Even if some landslide inventory data have been collected, it is often difficult for these data to 

represent the real landslide situations within the study area. There may be issues such as omissions and 

biases, which greatly reduce the credibility of the results derived from these data (Woodard and Mirus, 

2025; Zezere et al., 2017). 

The presence of irrelevant input dimensions within the data necessitates larger training datasets 

for deep learning models to achieve satisfactory generalization performance. This can be attributed to 

the models’ tendency to overfit to noise or spurious patterns within extraneous features, thereby failing 

to capture task-relevant characteristics. Such overfitting diminishes adaptability to unseen data, 

reduces prediction accuracy, and ultimately degrades data efficiency (D’Amario et al., 2022). As a 
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result, deep learning models may exhibit inaccurate recognition or even failure when confronted with 

novel, complex scenarios outside the training distribution. 

Different types of features vary in terms of data format, dimensions, and semantics, posing a key 

challenge in achieving high-level feature fusion for complementary and synergistic information 

integration (Liu et al., 2023b). For example, different sensor data exhibit significant differences in 

physical meaning and data structure (Ghorbanzadeh et al., 2022). Optical imagery (RGB matrices) 

reflects surface coverage but is susceptible to cloud interference. SAR data (complex phase) can 

capture deformation information but contains speckle noise. LiDAR point clouds (3D coordinates) 

provide high-precision terrain data but have limited coverage. Ground sensors (temporal scalars) 

enable real-time monitoring of subsurface parameters but are spatially sparse. Direct fusion of such 

multi-modal data induces feature space incompatibility, hindering cross-modal correlation extraction 

(Cai et al., 2021; Jin et al., 2022). Zhang et al. (2023) highlights that even remote sensing data exhibits 

high heterogeneity in imaging mechanisms, illumination conditions, and spectral characteristics. 

Furthermore, multiple types of heterogeneous data will increase model complexity, potentially 

leading to prolonged training times, excessive computational demands, and overfitting risks. Simple 

combination of low-level detail features with high level semantic features may introduce contextual 

noise, compromising feature robustness and semantic coherence (Ji et al., 2020). When designing 

densely connected convolutional networks, a balance must be struck between model complexity and 

generalization capacity to mitigate overfitting on training data and ensure robust performance on 

unseen scenarios (see Fig. 8). 
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Figure 8. Challenges of deep learning in potential landslide identification. (a) Data quality and availability. (b) 

Limitations of deep learning models. (c) Complexity of landslide mechanisms. 

5.2 Limitations of Deep Learning Models 

Although deep learning models have achieved success in landslide identification (Meena et al., 

2022; Su et al., 2021; Yi and Zhang, 2020), they are plagued by several inherent limitations. Among 

these, the most critical challenge is their lack of interpretability (Li et al., 2025), which refers to the 

difficulty in explaining the internal decision-making processes behind their predictions. 

Deep learning models typically contain a large number of parameters and layers, making it 

challenging to intuitively interpret their internal weights and feature representations. It is often unclear 

whether the model’s predictions are based on key geological features (e.g., slope gradient, lithological 

structure, fracture distribution) or influenced by irrelevant factors such as vegetation color or image 

noise. In potential landslide identification, a common issue is that models may mistakenly classify 

shadows or cloud cover as potential landslides, yet the underlying causes of such misclassifications 
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remain opaque. When multimodal data are integrated for landslide detection, it is also challenging to 

clarify how the model weights different data sources. 

The abstract features extracted by these models also lack a clear correspondence to interpretable 

geological indicators (see Fig. 8). Even when the model successfully identifies potential landslides 

based on texture patterns in remote sensing imagery, it remains unclear whether these patterns 

correspond to actual geomechanical parameters or physical processes. 

Moreover, the probability values output by the models often lack physical meaning and therefore 

cannot effectively represent geological uncertainty. In practice, high-risk areas predicted by the model 

may conflate "uncertainty caused by data absence" with "risk of the geological conditions themselves" 

(Achu et al., 2023; Feng et al., 2022). Even experienced geologists may struggle to validate the 

geological plausibility of such features, thereby constraining the adoption of deep learning results in 

practical engineering applications. 

Compounding these issues, there also exists an inherent inconsistency between data-driven 

feature learning and the complexity of real-world geological processes. Deep learning models tend to 

capture superficial statistical patterns rather than the governing physical mechanisms that are 

generalizable across different regions and environmental conditions. Consequently, in potential 

landslide identification, substantial manual annotation efforts are often required when transferring 

models across regions or sensors. 

Despite the availability of diverse datasets, the lack of standardized, high-quality annotated 

benchmarks has severely hindered the development and fair comparison of deep learning models (Fang 

et al., 2024). Current models are often trained and validated on independent, task-specific datasets, 

thereby preventing an objective assessment of state-of-the-art performance and limiting our ability to 

evaluate their true generalization capacity across varying geological settings and triggering factors. 

5.3.1 Multiple Factors Coupling Interactions 

The formation of landslides involves the dynamic coupling of multiple factors such as geological 

structures, geotechnical mechanics, hydrological conditions, topography, meteorological factors, 

vegetation coverage, and human activities (Scheingross et al., 2020; Yi et al., 2022). Therefore, the 

triggering mechanisms are inherently multiscale, ranging from microscopic interparticle friction to 

macroscopic slope instability, and encompassing both transient dynamic responses and long-term 

temporal evolution (see Fig. 8). 

For example, geotechnical materials and structural features of the geological setting influence soil 

stability, while hydrological factors such as rainfall infiltration and groundwater fluctuations alter soil 

mass properties, critically weakening shear strength due to pore pressure variations. Extreme 

meteorological events can alter slope stress regimes, while topographic parameters define geomorphic 

susceptibility thresholds. Human activities further influence slope stability. The interactions of these 
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factors are highly nonlinear and temporally variable, making them difficult to characterize through 

simple mathematical relationships. 

This implies that changes in individual factors may induce cascading effects rather than linear 

responses. For example, rainfall-triggered landslides exhibit threshold-dependent behavior governed 

by coupled hydro-mechanical processes. When rainfall intensity or duration exceeds critical thresholds, 

the rapid rise in the groundwater table increases pore water pressure, thereby reducing effective stress 

and weakening shear strength according to the principle of effective stress. Such hydro-mechanical 

feedback often culminates in abrupt slope failure. 

5.3.2 Spatiotemporal Dynamic Evolution 

The inducing factors of landslides are not only extremely complex in spatial distribution but also 

highly dynamic in terms of time (Gao et al., 2023). This variability makes the research process of the 

landslide mechanism more difficult. 

From the perspective of temporal dynamics, landslide formation is not instantaneous but evolves 

through prolonged stages, each governed by distinct mechanisms (see Fig. 7). This dynamic 

progression across different timescales creates a fundamental modeling challenge: since the numerical 

simulation of long-term creep requires a long-time step, while the dynamic process of short-term 

abrupt changes requires a time resolution in the microsecond level, it is difficult to establish a unified 

model for these two situations. This will further intensify the conflict of time scales. 

In terms of spatial heterogeneity, the influence scope of landslides usually involves geological 

structures ranging from the microscopic structure of geotechnical particles to the regional scale. 

Moreover, there are differences in the stratum structure, slope morphology, vegetation coverage, water 

content, which makes the effects of the same inducing factor vary in different regions. For example, 

in loose soil layers, heavy rainfall may lead to shallow landslides, while on rocky slopes with well-

developed joints, earthquakes or water level fluctuations may trigger deep-seated landslides. 

Through the interaction of factors at different temporal and spatial scales, positive or negative 

feedback affects the evolutionary trend of landslides, making the triggering, evolution and reactivation 

of landslides more complex and increasing the uncertainty of prediction (Haifeng et al., 2022; Li et al., 

2023b). 

5.3.3 Invisibility of Subsurface Structures 

Landslide occurrence is intrinsically linked to subsurface structures. However, due to their 

invisibility, obtaining comprehensive geological information directly is challenging, adding significant 

complexity to the study of landslide mechanisms (Li et al., 2021c). 

The occurrence of landslides is not merely linked to surficial phenomena but more critically 

governed by subsurface geological structures and hydrogeological characteristics. Subterranean 

features such as faults and folds directly influence the mechanical properties and stability of rock and 
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soil masses. However, the inherent opacity of subsurface systems limits the accuracy of delineating 

these structures’ spatial distribution, scale, and orientation through surface surveys or sparse borehole 

sampling, often yielding fragmented insights. Groundwater dynamics play a critical role in modulating 

slope stability. Fluctuations in the water table alter pore water pressure and effective stress within 

geomaterials, leading to a reduction in shear strength according to the principle of effective stress. Yet, 

direct monitoring of hydraulic head variations is inherently challenging, particularly in heterogeneous 

subsurface environments where localized aquifers exhibit divergent responses to hydrological forcing. 

Despite advancements in geophysical imaging and hydrological monitoring, the structural anisotropy 

and permeability heterogeneity of subsurface formations perpetuate ambiguities in mechanistic 

interpretations, risking oversights in landslide hazard assessments. 

The invisibility of subsurface structures makes it difficult to monitor the specific processes and 

critical points of these dynamic changes in real time. Consequently, researchers can only infer these 

processes based on surface manifestations or limited monitoring data. This results in ambiguity and 

uncertainty in the analysis and interpretation of acquired indirect data. Even when model outputs 

exhibit qualitative agreement with field observations, the validity of underlying assumptions and 

parameterizations cannot be definitively verified. 

5.3.4 Diversity of Landslide Types 

Landslides exhibit considerable typological variation, with distinct instability mechanisms and 

evolutionary pathways governed by geological settings, triggering factors, and kinematic behaviors. 

Based on material composition, landslides can be classified into rock landslides, soil landslides, debris 

flow landslides, and composite landslides, each exhibiting distinct variations in physical properties as 

well as failure modes (McColl and Cook, 2024; Yu et al., 2024). For instance, rock landslides 

dominated by brittle fracture differ fundamentally from soil landslides governed by plastic shear. 

Kinematic categorization further distinguishes translational sliding, toppling, creep, and flow-like 

movements, each involving divergent mechanical processes and triggering thresholds (Shu et al., 2021). 

Due to the diversity of landslide types, with each type having different characteristics and 

influencing factors, it is very difficult to establish a universal research model for the mechanism of 

landslides. For different types of landslides, corresponding models need to be established according to 

their specific characteristics and main influencing factors (Milledge et al., 2022). This not only requires 

a large amount of on-site observation data and experimental research to determine the model 

parameters, but also requires consideration of the applicability and limitations of the models. 

Furthermore, cross-typological interactions among landslides amplify predictive challenges. For 

example, collapsed debris may transition into debris flows, a process that is governed by 

hydromechanical coupling and granular-fluid dynamics. Such multi-typological and multi-process 

couplings resist comprehensive characterization via single-theory frameworks. Instead, they 
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necessitate multi-scale numerical simulations to accurately reproduce the entire process. Consequently, 

the diversity of landslide phenomena requires interdisciplinary integration across solid mechanics, 

fluid dynamics, and multi-physics couplings. This task substantially increases the dimensionality and 

complexity of mechanistic studies, demanding hybrid modeling frameworks and cross-domain 

validation protocols. 

6 Deep Learning for Potential Landslide Identification: Opportunities 

6.1 Multi-source Data Fusion 

Different methods specialize in identifying specific types of landslides, and no single method can 

address addressing all potential landslide types. Therefore, research on potential landslide 

identification should gradually shift from using single source data toward multi-temporal, multi-source 

integrated analysis (Chen et al., 2023b; Ge et al., 2022; Xu et al., 2021).  

Multi-source data can comprehensively represent complex influencing factors by integrating 

various datasets, thereby enhancing information completeness. For instance, topographic and 

geological data reveal slope stability, remote sensing captures surface deformations, meteorological 

and hydrological data describe triggering conditions, and ground monitoring provides high-precision 

dynamic information. Integrating these data enables the construction of a complete feature system 

covering landslide-causing factors, prone environments, and inducing conditions, while avoiding the 

one-sidedness inherent to single source observations. 

In the identification of potential landslides, multi-source data fusion specifically refers to the 

integration of raw data from different sources before feature extraction. Each data source has unique 

strengths in resolution, coverage, and observation scale, and their fusion achieves complementarity 

and cross-verification (Liu et al., 2020b; Wang et al., 2021a). For example, combining satellite and 

UAV data allows both large-scale screening and detailed crack detection (Xia et al., 2021), while 

merging geological surveys with InSAR time-series deformation distinguishes stable slopes from 

creeping zones. This cross validation effectively reduces noise and misjudgment caused by data 

uncertainty. 

Integrating multi-source data fusion with deep learning enables the coupling of data and model 

advantages (Chen et al., 2023; Zheng et al., 2021). The fusion reduces uncertainty through 

comprehensive data representation, while deep learning extracts nonlinear features and captures 

hidden correlations. Together, they improve the accuracy of potential landslide identification and 

promote a shift from experience-driven to intelligence-driven hazard monitoring. In the future, the 

development of cross modal pre-trained models and edge intelligence will further enhance real-time 

early warning and hazard simulation, forming the backbone of an integrated "aerial-space-ground-

subsurface" monitoring framework. 
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To advance this paradigm, we advocate for a community-driven benchmark that embodies the 

multi-modal philosophy. Such a benchmark should include co-registered data from optical, SAR, 

LiDAR, DEM, and ground-based sensors, reflecting the integrated monitoring reality. Establishing this 

benchmark is a crucial step toward translating data fusion capabilities into reliable and reproducible 

AI solutions for global landslide risk reduction. 

6.2 Model Ensemble 

Model performance depends significantly on the nature of tasks, data characteristics, and specific 

requirements. Despite its ability to capture specific feature dimensions, a single deep learning model 

is susceptible to limited generalization, model bias, and overfitting when confronted with data noise 

and scene heterogeneity (Kavzoglu et al., 2021; Lv et al., 2022). Given these differences, model 

ensemble provides an effective approach to optimization and generalization. 

In the identification of potential landslides, model ensemble essentially achieves a synergistic 

effect through the aggregation of diversity. While avoiding the limitations and vulnerabilities of 

individual models, it also unleashes the complementary potential of multiple models through designed 

mechanisms (Zhou et al., 2022). 

This approach can be implemented through several pathways. Feature-level integration involves 

processing different data features with specialized models and fusing the results. A more common 

tactic is heterogeneous model combination, which refers to combining various types of models to 

improve the accuracy of potential landslide identification. Each model can exert its advantages in 

different feature spaces (Fang et al., 2021), thus forming a powerful predictive combination. A 

prominent example is the CNN-LSTM hybrid, which capitalizes on CNNs’ spatial feature extraction 

and LSTMs’ temporal dependency modeling, making it particularly suited for rainfall-terrain coupled 

landslide prediction (Gao et al., 2024). Furthermore, advanced architectures like stacking enable 

deeper model coupling. For instance, Guo et al. (2024) employed a stacked framework integrating 1D-

CNN, RNN, and LSTM to form a CRNN-LSTM ensemble, achieving significant performance gains. 

Therefore, model ensemble is not a mere technical aggregation but a systematic solution to core 

challenges like poor generalization, feature bias, and learning from small samples. It transforms the 

local advantages of multiple models into a global optimum at the system level, achieving 

comprehensive breakthroughs in identification accuracy and engineering applicability. It is important 

to note, however, that these performance gains come with increased computational cost and complexity, 

a necessary trade-off in practice. 

6.3 Knowledge-data Dually Driven Paradigm for Potential Landslide 

Identification 

Conventional knowledge-driven methods, grounded in physical mechanics, rely on precise prior 
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knowledge of geological structures and hydrological conditions. However, landslides are influenced 

by complex, coupled multi-factor interactions, characterized by high parameter uncertainty, making it 

challenging to comprehensively address such scenarios (Roy and Saha, 2019). Purely data-driven 

approaches, though capable of extracting patterns from massive datasets, lack physical interpretability, 

are susceptible to noise interference, and struggle to establish causal relationships in prediction 

outcomes (Qi et al., 2024). A critical challenge and opportunity, therefore, lies in bridging the gap 

between data-driven predictive capabilities and a physically interpretable understanding of landslide 

processes. 

To bridge this critical gap, a fundamental shift towards a knowledge-data dually driven paradigm 

is imperative. This paradigm moves beyond simple combination to a deep integration, where physical 

principles actively constrain and inform the deep learning architecture. Future research should focus 

on developing novel frameworks capable of explicitly incorporating landslide typologies and physical 

laws. For instance, Physics-Informed Neural Networks (PINNs) can embed governing equations 

directly into the model’s loss function, while knowledge graphs can structurally represent the complex 

relationships between predisposing factors and failure mechanisms. 

This synergy, aligned with future concepts like "digital twin" and "smart Earth," establishes a 

closed-loop "theory-practice" verification mechanism (Chen et al., 2024c; Das et al., 2024; Huang et 

al., 2023a; Riahi et al., 2022; Sukor et al., 2019; Zhao et al., 2024e). The ultimate goal is to advance 

landslide identification from mere pattern recognition towards physically interpretable, causally-aware 

forecasting, thereby transforming geological hazard mitigation from passive response to proactive 

prevention. 

The overall workflow of this knowledge-data dually driven paradigm for potential landslide 

identification is conceptually summarized in Fig. 9. 

In the first stage, multi-source data are systematically collected, organized, and integrated into a 

comprehensive dataset through feature extraction and spatiotemporal alignment. 
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Figure 9. Flowchart of knowledge-data dually driven paradigm for potential landslide identification. 

In potential landslide identification, data sources are highly diverse. Thus, the initial step involves 

systematically collecting heterogeneous data and centralizing their management. This approach 

mitigates the limitations of single-source data, facilitating a more comprehensive and robust 

characterization of potential landslides. These data include high-dimensional feature information 

essential for data-driven models, as well as key parameters necessary for knowledge-based analytical 

frameworks. 
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Furthermore, since multi-source data may differ in acquisition time and spatial coverage, 

spatiotemporal alignment is required to ensure interoperability and facilitate synergistic analysis. The 

collected data should be preprocessed, including cleaning (removal of errors and outliers), 

standardization (unit homogenization), and classification (based on data type or region). These steps 

ensure that the data retain inherent physical significance and maintain consistent scales before being 

input into models, thereby establishing a reliable foundation for subsequent knowledge-data 

integration. 

If the objective extends beyond identifying landslide locations to distinguishing their types and 

scales, the dataset must encompass information that captures these characteristics. During dataset 

construction, feature extraction and annotation methods should be chosen to emphasize these 

distinctions. For instance, combining texture analysis of remote sensing imagery with slope and aspect 

analysis of terrain data enables the extraction of features correlated with landslide types and 

magnitudes. Explicit annotations indicating each sample’s landslide type and scale are incorporated 

during labeling. 

In the second stage, mechanistic constraints are integrated into the data-driven model to achieve 

knowledge-data dually driven fusion. 

Prior knowledge can be derived from external sources, including domain expertise, historical 

records, and physical principles, or mechanistic models can be employed to preprocess raw monitoring 

data. These outputs serve as a foundation for initializing parameters in data-driven models, which is 

crucial because the choice of initial values substantially affects both training efficiency and final 

performance (Cui et al., 2024; Liu et al., 2023a; Ma and Mei, 2025). 

Beyond initialization, knowledge embedding involves translating landslide physics into model 

constraints to guide learning and optimization (Dahal and Lombardo, 2025; Liu et al., 2024). At the 

architectural level, physical equations can be structurally encoded as differentiable network layers, 

enabling gradient-based optimization. At the loss function level, physical constraints can be directly 

incorporated into the training objective, ensuring that predictions remain consistent with established 

principles. 

A representative example of this paradigm is the PINN framework (Raissi et al., 2019). PINNs 

embed governing equations (such as partial differential equations describing slope hydrology or stress-

strain processes) into the neural network training objective, thereby constraining the learning process 

with domain knowledge. This approach not only reduces dependence on large annotated datasets but 

also enhances interpretability and cross-regional transferability (Karniadakis et al., 2021). Although 

applications of PINNs in landslide research remain limited (Moeineddin et al., 2023), they provide a 

promising avenue for bridging purely data-driven approaches with physically grounded mechanisms 

(Wu et al., 2022). 
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In the third phase, a bidirectional mapping framework for knowledge-data dually driven is 

established to facilitate dynamic collaborative optimization. 

The model’s performance is periodically evaluated using real-time monitoring data, enabling the 

reverse calibration of knowledge analysis parameters to achieve bidirectional feedback. Through this 

feedback mechanism, knowledge-data dually driven models undergo mutual verification and iterative 

refinement. 

In practical applications, model validation can be performed using historical or field monitoring 

data to evaluate predictive accuracy. While optimizing model parameters for region-specific geological 

conditions, fusion weights are dynamically adjusted based on different stages of landslide evolution. 

During the initial phase of a landslide, knowledge analysis is more effective in identifying underlying 

factors and developmental trends, justifying a higher fusion weight for knowledge components. 

Conversely, during the acceleration or sliding phases, real-time monitoring data becomes crucial, and 

data-driven models excel at capturing dynamic changes, requiring a higher weight for data-driven 

components. This dynamic weight adjustment knowledge maximizes the integration of mechanistic 

and data-driven approaches, enhancing the model’s ability to identify landslide risks across different 

evolutionary stages. 

The knowledge-data dually driven paradigm, operating through an iterative "theory-guided data 

assimilation and data informed theoretical refinement" mechanism, has advanced potential landslide 

identification from empirical reliance to scientifically quantifiable methodologies. 

Furthermore, the spatial analysis capabilities of Geographic Information System (GIS) were 

integrated into the practical identification workflow, enabling the study area to be partitioned into 

distinct landslide risk categories. This risk stratification considers the combined influence of region-

specific factors, ensuring scientifically robust and practically viable classifications. 

In high-risk areas, detailed investigations can be carried out using spatial remote sensing 

technologies, including high resolution optical satellite image change detection and InSAR 

deformation analysis. Multi-temporal high-resolution optical satellite imagery is analyzed using image 

change detection algorithms to identify anomalous surface alterations. SAR enables precise 

measurement of millimeter-scale surface displacements, facilitating early detection of slope 

deformation precursors. Then, UAVs and airborne LiDAR can then be employed for further 

identification of high-risk areas. High-resolution imagery can be acquired through UAV-mounted 

sensors. Image interpretation and analysis facilitate the identification of potential landslide indicators, 

including irregular slope geometries, soil loosening patterns, and anomalous vegetation growth. 

LiDAR enables the rapid acquisition of high-precision 3D point cloud data, which accurately captures 

topographic changes and penetrates vegetation canopies to reveal concealed ground surfaces, aiding 

in the detection of vegetation-obscured landslide precursors. Ground-based observations are 
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subsequently integrated to validate findings and acquire real-time dynamic information of landslide 

bodies. A comprehensive assessment, combining expert knowledge with field-derived practical 

experience, is conducted to finalize the screening and confirmation of potential landslides. Critical 

parameters including location, scale, hazard level, and potential sliding direction are determined, 

providing an empirical foundation for subsequent landslide mitigation strategies. 

7 Conclusions 

In this review, we summarized the latest advancements in the applications of deep learning models 

for potential landslide identification, as well as the challenges and opportunities for the future. First, 

we examined seven major heterogeneous data sources available for potential landslide identification. 

Next, we introduced the five common roles of deep learning models in potential landslide identification. 

Then, we reviewed the applications of deep learning in the analysis of four typical landslides and 

discussed the common-used monitoring methods. Finally, we analyzed the current challenges and 

future research directions. 

Several key conclusions are drawn. (1) Single data source often fail to ensure the accuracy of 

identification, whereas multisource data fusion can address this issue to some extent. (2) Deep learning 

models have been widely applied in potential landslide identification, but they still face challenges in 

terms of interpretability and complexity. Future research should focus on further enhancing the 

structure and algorithms of deep learning models. (3) Knowledge-data dually driven paradigm for 

potential landslide identification can improve its accuracy on both theoretical and practical levels. 
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