

Review article: Deep Learning for Potential Landslide Identification: Data, Models, Applications, Challenges, and Opportunities

Pan Jiang ¹, Zhengjing Ma ¹, and Gang Mei ¹

¹School of Engineering and Technology, China University of Geosciences (Beijing), 100083, Beijing, China

Correspondence: Gang Mei (gang.mei@cugb.edu.cn)

Abstract

As global climate change and human activities escalate, the frequency and severity of landslide hazards have been increasing. Early identification, as an important prerequisite for monitoring, evaluation, and prevention, has become increasingly critical. Deep learning, as a powerful tool for data interpretation, has demonstrated remarkable potential in advancing landslide identification, particularly through the automated analysis of remote sensing, geological, and topographic data. This review provides an overview of recent advancements in the utilization of deep learning for potential landslide identification. First, the sources and characteristics of landslide-related data are summarized, including satellite observation data, airborne remote sensing data, and ground-based observation data. Next, several commonly used deep learning models are classified based on their roles in potential landslide identification, such as image analysis and time series analysis. Then, the role of deep learning in identifying rainfall-induced landslides, earthquake-induced landslides, human activity-induced landslides, and multi-factor-induced landslides is summarized. Although deep learning has achieved considerable successes in landslide identification, it still faces several challenges, including data imbalance, insufficient generalization capabilities of the models, and the complexity of landslide mechanism research. Finally, future research directions in this field are discussed. It is suggested that integrating knowledge-driven and data-driven approaches for potential landslide identification will further enhance the applicability of deep learning, offering broad prospects for future research and practice.

Deleted: Deep learning, as a powerful tool for data processing and analysis, has shown significant potential in advancing landslide identification, particularly in the automated processing and analysis of remote sensing, geological, and terrain data.

Deleted: landslide

Deleted: image analysis and processing, time series analysis

Deleted:

Formatted: Highlight

Deleted: shown certain

Deleted: such as

Deleted: the future

Deleted: the

Deleted: It is suggested that by combining knowledge-driven and data-driven methods for potential landslide identification, deep learning holds broad prospects for future applications in this field.

1 Introduction

Landslides are complex geological hazards triggered by both natural processes and human activities, involving intricate interactions among geological, hydrological, topographic, and meteorological factors (Fidan et al., 2024). Globally, landslides cause significant loss of life and property each year, particularly in mountainous areas with intense rainfall, seismic activity, and fragile

geological conditions (Askarinejad et al., 2018; Ehsan et al., 2025; Marin-Rodriguez et al., 2024). According to United Nations Office for Disaster Risk Reduction (2023), more than 1,000 landslide-related disasters occur annually, resulting in thousands of fatalities and substantial economic damage. With the intensification of climate change, extreme weather events are becoming more frequent, further increasing global landslide risks (Wang et al., 2023c).

Faced with these escalating threats, the focus of landslide risk management should shift from post-disaster response toward proactive identification and prevention. Potential landslides refer to slopes that exhibit early signs of instability and may evolve into landslides under external triggers such as rainfall or earthquakes. They represent the precursor stage of landslide development (Lin et al., 2024; Yang et al., 2020a). Timely identification and monitoring of such slopes are crucial for disaster prevention and risk mitigation (Strzabal et al., 2024).

However, the inherent uncertainty and dynamic nature of potential landslides make their identification challenging. On the one hand, it is not possible to determine that a landslide will definitely occur just because there are signs of deformation on the slope (Peres and Cancelliere, 2014; Zhang et al., 2019). Multiple factors need to be comprehensively considered to assess the possibility of its instability. On the other hand, the uncertainty of external factors increases the difficulty of judgment. Sudden events such as heavy rainfall and earthquakes may instantly change the stress state of the slope and trigger signs of deformation (Yang et al., 2024c). Given the dynamic characteristics of potentials, it is also essential to conduct long-term monitoring of the landslides with potential hazards after identification (Lakhote et al., 2025).

Conventional approaches to potential landslide identification, including field surveys, geological analysis, and interferometric radar techniques, have contributed substantially to hazard assessment but remain costly, time-consuming, and limited in spatial coverage (Akosah et al., 2024; Zhao and Lu, 2018). Machine learning has partially improved efficiency but still depends heavily on manual feature engineering, requiring expert knowledge to design relevant predictors (Sheng et al., 2023). These limitations restrict the scalability and adaptability of conventional approaches in complex geospatial environments.

In contrast, deep learning provides an effective data-driven alternative for landslide research. As a subfield of machine learning, deep learning performs hierarchical feature extraction through multiple nonlinear transformations (Janiesch et al., 2021; Nava et al., 2023). By leveraging large-scale, multi-source data, deep learning models can automatically extract representative features, capture nonlinear dependencies, and conduct pattern recognition in high-dimensional datasets (Aslam et al., 2021; Wang et al., 2023a; Zhou et al., 2023). These capabilities make deep learning particularly suitable for identifying and characterizing potential landslides across diverse spatial and temporal scales (Nava et al., 2021; Yang et al., 2024d).

Within this research context, potential landslide identification can be broadly categorized into two main types. The first focuses on post-event regional assessments, which are conducted after major rainfall or earthquakes but prior to large-scale slope failures, using remote sensing data to detect deformation, topographic changes, or vegetation anomalies. The second involves retrospective analyses of historical landslides to establish relationships between triggering factors and failure characteristics, thereby identifying other slopes that exhibit similar instability patterns. Despite their

Deleted: Landslides are geological hazards induced by either natural forces or human activities, typically involving the interplay of various factors such as geology, meteorology, hydrology, and topography. Every year, landslides cause significant global losses, particularly in regions with heavy rainfall, frequent earthquakes, and complex geological conditions, representing a major threat to human life, property, and infrastructure.

the United Nations International Strategy for Disaster Reduction (UNISDR), more than 1,000 landslide-related disaster events occur annually, causing thousands of fatalities and substantial economic losses. As global climate change progresses, the frequency of extreme weather events increases, leading to a growing risk of landslides.

Deleted: Potential landslides refer to slopes prone to instability that may fail and trigger disasters within a certain time frame. Potential landslides represent the precursor stage of landslide occurrence (Lin et al., 2024). If potential landslides are not identified and addressed promptly, the slope may eventually become unstable and develop into a landslide due to changes in internal stress conditions and external triggering factors.

Deleted: Due to the relativity and dynamic nature of potential landslides, the identification work becomes extremely complicated.

Deleted: Conventional methods for landslide identification and monitoring, such as field surveys, geological analysis, and radar interferometry, can identify potential landslide areas to a certain extent. However, these methods often have problems such as high costs, significant time consumption, and difficulties in data collection, and their applications are limited in extensive areas. In addition, conventional machine learning requires tedious feature selection and lacks autonomy in feature extraction. As a result, it is difficult for these traditional methods to extract available information ... [1]

Deleted: Over the past few years, deep learning has stood out in the application of landslide hazards (Aslam et al., 2021; Nava et al., 2023; Wang et al., 2023a; Zhou et al., 2023).

Deep learning is a branch of machine learning, consisting of consecutive operations (Janiesch et al., 2021). These operations gradually extract complex features by using the results of previous operations as inputs. Through the training of large-scale and multi-source data, deep learning models are ... [2]

differing temporal focuses, both types share common methodological foundations and depend on the integration of multi-source environmental data for reliable assessment.

Building on these foundations, this review aims to provide a comprehensive synthesis of deep learning applications in the field of potential landslide identification. Specifically,

(1) we categorize commonly used heterogeneous data into three major types to support research on potential landslide identification. These data sources form the foundation for applying deep learning in this field.

(2) we introduce the roles and mechanisms of widely used deep learning models in potential landslide identification, and conduct a comparative analysis of their respective advantages and limitations.

(3) we examine the performance of these models across different application scenarios through representative case studies, highlighting their adaptability and effectiveness in potential landslide detection.

(4) we summarize the key challenges currently faced in applying deep learning to potential landslide identification and outline emerging opportunities and promising future directions for further advancement.

Through our analysis, we identified several key trends in the application of deep learning to potential landslide identification. First, researchers are increasingly adopting multi-source data fusion approaches, integrating information from diverse sources to construct a more comprehensive representation of the geological environment (Guo et al., 2025; Liu et al., 2020b; Wang et al., 2024d). Second, deep learning models have been successfully applied across multiple scales, ranging from large-scale landslide susceptibility mapping with Convolutional Neural Networks (CNNs) to real-time slope deformation monitoring with Recurrent Neural Networks (RNNs) (Azarafza et al., 2021; Soni et al., 2025; Xie et al., 2024; Zhao et al., 2024f). Despite these advances, the field continues to face critical challenges that will shape its future trajectory. Addressing these challenges requires a paradigm shift, future research is expected to place greater emphasis on integrating physical knowledge with data driven approaches, thereby advancing the field from conventional, reactive post-disaster responses toward intelligent, proactive pre-disaster risk management.

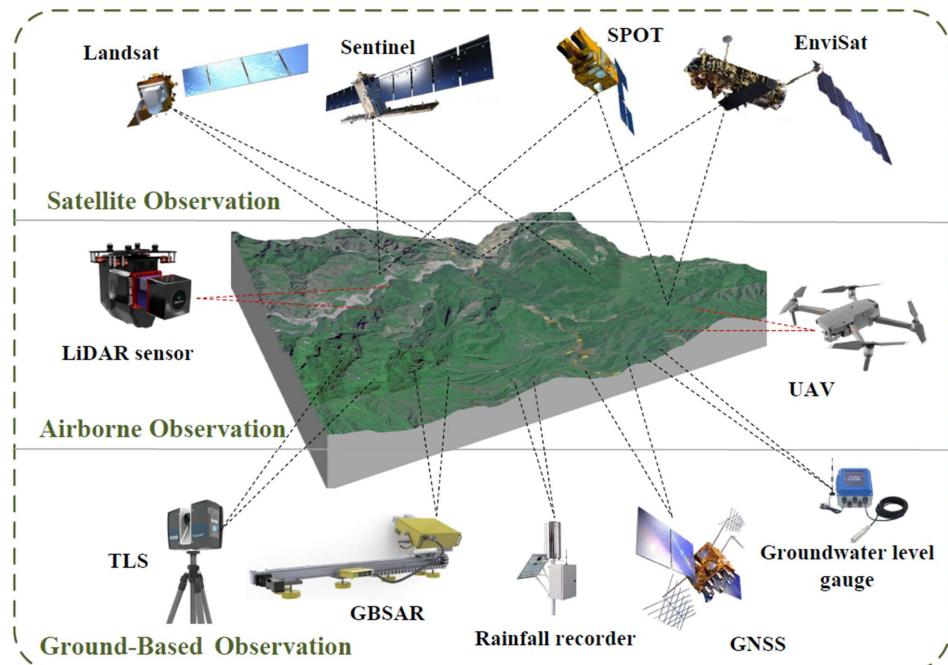
Deleted: In this review, we aim to summarize the applications of deep learning in the field of potential landslide identification, including data, models, applications, challenges, and future directions.

Deleted: We classify commonly used heterogeneous data into three categories for research. These data sources offer comprehensive data support for the application of deep learning in potential landslide identification.

Deleted: We introduce the roles of commonly used deep learning models in potential landslide identification, and compare the advantages and disadvantages among different models.

Deleted: We analyze the performance of deep learning models in different scenarios through case studies, discussing the adaptability of deep learning in potential landslide identification.

Deleted: We summarize the main challenges currently faced by the application of deep learning in potential landslide identification, and highlight new opportunities and promising future directions.


Deleted: The remainder of this paper is organized as follows. Section 2 introduces seven main data sources. Section 3 summarizes five roles of deep learning models in potential landslide identification. Section 4 investigates the application of deep learning models in four typical landslides and provides a comprehensive summary. Section 5 analyzes the current challenges in potential landslide identification. Section 6 discusses future research directions. Section 7 provides the concluding remarks.

2 Deep Learning for Potential Landslide Identification: Data Source

Accurate identification of potential landslides is the primary step in effectively preventing and mitigating the impacts of landslide hazards. Data sources are the cornerstone of achieving this objective. Different types of data provide indispensable information for potential landslide identification from various perspectives, and drive ongoing advancements in related research and practices.

In potential landslide identification, the richness and reliability of data sources directly determine

the accuracy and effectiveness of research. Data sources not only provide fundamental information to outline the landslide environments, but also enable dynamic monitoring and precise analysis. This section will comprehensively review the critical roles played by three main types of data sources: satellite observation data, airborne remote sensing data, and ground-based observation data (see Fig. 1).

Figure 1. Data sources for potential landslide identification. Satellite observations (e.g., Landsat, Sentinel, SPOT, and Envisat) provide optical and radar imagery with varying spatial resolutions for detecting and mapping landslides. Airborne observations (LiDAR, UAV) deliver high-resolution topographic and photographic data, while ground-based observations (TLS, GBSAR, GNSS, rainfall and groundwater sensors) offer continuous in-situ monitoring of slope dynamics.

2.1 Satellite Observation Data

Since the launch of Landsat-1, the first Earth observation satellite dedicated to surface research and monitoring, on July 23, 1972, satellite data have become widely accessible. Their applications have long extended beyond single-purpose analysis or results (Wulder et al., 2022). With the continuous development of satellite observation, its immense potential for application in landslide research has become evident (Liu et al., 2021d). At present, satellite observation data mainly include

Deleted: Since the launch of Landsat-1, the first earth observation satellite for studying and monitoring the Earth's surface on July 23, 1972, satellite data has become widely accessible, extending beyond single-purpose analyses or results (Wulder et al., 2022).

space-borne Synthetic Aperture Radar (SAR) and optical remote sensing data, both of which are widely used as inputs for deep learning models in landslide identification.

2.1.1 Space-borne SAR

SAR is an active microwave remote sensing system (Franceschetti and Lanari, 2018). It is not only capable of acquiring data on demand by actively emitting microwave signals but also facilitates partial penetration of vegetation cover through its longer wavelength bands (such as the L-band), thereby allowing the retrieval of surface deformation information beneath vegetated areas.

A critical operational advantage of SAR lies in its capacity to image regardless of illumination (day or night) and weather conditions (Koukiou, 2024). The continuous, unimpeded time series data this provides is essential for serving as input to deep learning models, allowing these models to be trained to identify long-term patterns of terrain change. For this reason, SAR is widely employed for the crucial task of continuous monitoring in high-risk environments, where cloud cover and the timing of a disaster are unpredictable.

Notably, the NASA-ISRO SAR Mission (NISAR), jointly developed by the National Aeronautics and Space Administration (NASA) and the Indian Space Research Organisation (ISRO), was successfully launched in 2025 (Indian Space Research Organisation, 2025; NASA, 2025). The satellite carries both L-band and S-band SAR systems, enabling more precise and frequent measurements of surface deformation. With a revisit period of approximately 12 days, it delivers globally consistent coverage with a balanced spatial and temporal resolution. This capability provides researchers with abundant and continuous observations, supporting large-scale, high spatiotemporal resolution landslide early detection and dynamic monitoring.

Interferometric SAR (InSAR) has been developed based on the principle of measuring phase differences between two or more SAR images of the same area (Dai et al., 2022; Ma et al., 2023b; Zeng et al., 2024). By coherently processing these images, InSAR obtains high-precision surface elevation information and can be further applied to detect ground deformation.

In contrast, SAR mainly provide backscatter information of ground objects. Although some features of ground objects can be identified according to the scattering characteristics, their ability to obtain topographic elevation information is relatively weak. InSAR, on the other hand, can directly generate topographic elevation data, which is of great significance for analyzing the topography and geomorphology in the identification of potential landslides, and determining key elements such as the topographic undulation and slope of potential landslide areas.

When screening for potential landslides over a large area, InSAR has higher efficiency (Dun et al., 2021; Tang et al., 2025; Zhang et al., 2021). When monitoring large potential landslide areas such as mountainous regions, InSAR can quickly obtain topographic deformation information over a large area, promptly detect potential areas with potential landslides, and reduce the workload and blind spots of manual inspections.

Recent studies have integrated InSAR-derived deformation velocity fields with deep learning models to automatically detect slow-moving or latent landslides. For example, Liu et al. (2022d)

Deleted: Currently, satellite observation data primarily refers to data obtained through space-borne synthetic aperture radar (SAR) and optical remote sensing.

Deleted: The time series data provided by SAR can serve as input for deep learning models, allowing these models to be trained to identify long-term patterns of terrain change. Continuous monitoring of potential landslide areas is crucial, and SAR is widely employed in high-risk environments.

Deleted: Interferometric synthetic aperture radar (InSAR) has been developed based on. It obtains surface elevation information by performing coherent processing on two sets of SAR images observed in the same area (Dai et al., 2022; Ma et al., 2023b; Zeng et al., 2024).

employed an InSAR-CNN framework to map active landslides in the Eastern Tibet Plateau area, achieving a detection accuracy of over 90%. Similarly, Zhang et al. (2022d) proposed a two-stage detection deep learning network (InSARNet) for detecting anomalous deformation areas in Maoxian County, Sichuan Province, with a recognition accuracy of 93.88%. Targeting the complex deformation mechanisms of multi-type landslides in Zigui County, Three Gorges Reservoir Area, Hu et al. (2025b) used InSAR time-series displacement as the core data, develop a deep learning architecture based on the integrated framework of EMD and GRU, break through the limitations of conventional models such as single-type, single-target, and low-accuracy, and achieve dual-accurate prediction of displacement and failure time for multi-type landslides.

Differential SAR (D-InSAR) is an advancement of InSAR that eliminates topographic phase through differential processing, focusing specifically on deformation information extraction (Shen et al., 2022). The emergence of D-InSAR not only enables the transition from mixed deformation-topography signals to pure deformation signal extraction but also extends its applicability from detecting discrete deformation events to identifying slow-moving landslide processes, significantly enhancing the reliability of landslide monitoring (Zhong et al., 2024).

2.1.2 Optical Remote Sensing

Optical remote sensing refers to the acquisition of surface information through sensors that measure reflected solar radiation. Its application in geological hazard investigations dates back to the 1970s (Fu et al., 2024; Liu and Wu, 2016).

Optical remote sensing offers high resolution, currently capable of achieving spatial resolutions as fine as 0.3 meters or better. For example, Maxar's WorldView-3 delivers 0.31 m panchromatic imagery (Hu et al., 2016; Longbotham et al., 2014), while India's Cartosat-3 satellite achieves panchromatic imagery with a resolution of up to 0.25 m (Gupta et al., 2024). In potential landslide identification, it not only facilitates the retrieval of detailed surface textures and color characteristics using rich spectral data but also enables the direct identification of morphological features and object contours via visual interpretation of imagery (Cheng and Han, 2016; Li et al., 2022b; Ma and Wang, 2025).

Landslide formation typically follows a progressive process from deformation to failure, accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized collapses. These indicators exhibit distinct spectral signatures in optical imagery compared to their surroundings, enabling both manual interpretation and automated detection. In deep learning applications, multispectral optical images have been widely used to train CNN-based models for potential landslide identification. Lu et al. (2023a) developed a method for achieving accurate landslide mapping using medium-resolution remote sensing images and DEM data, which has the potential for deployment in large-scale landslide detection. Jiang et al. (2022a) proposed a TL-Mask R-CNN for identifying a small number of old landslide samples in the area along the Sichuan-Tibet Transportation Corridor. The results show that the pixel accuracy of segmentation for new landslides and old landslides can reach

Deleted: At present, InSAR is widely employed to generate ground deformation velocity maps and time-series data, which reveal the dynamic evolution of landslide-prone areas.

Deleted: interferometric synthetic aperture radar

87.71% and 75.86% respectively.

In vegetated mountainous regions, surface vegetation often undergoes detectable changes before a landslide event. Optical remote sensing leverages multispectral data, particularly red and near-infrared bands, to monitor vegetation health and identify potential landslide zones (Coluzzi et al., 2025; Fiorucci et al., 2018). Furthermore, the calculation of the [Normalized Difference Vegetation Index](#) (NDVI) facilitates the evaluation of vegetation health in potential landslide regions, providing critical insights into potential landslide precursors (Verrelst et al., 2015).

However, the broad spectral bands of multispectral sensors limit their ability to detect more subtle, diagnostically specific precursory signals. The advancement beyond broad-band multispectral imaging to hyperspectral imaging has opened new avenues for landslide precursor detection (Kilgore and Restrepo, 2025; Ye et al., 2019). Hyperspectral sensors capture hundreds of contiguous spectral bands, enabling the identification of specific mineralogies (e.g., expansive clays like smectite that influence slope stability) and subtle geochemical alterations on slope surfaces. For instance, the shifting absorption features in the short-wave infrared region can signal changes in soil water content and mineral composition that often precede failure (Thimsen et al., 2017). The integration of these rich spectral datasets with deep learning architectures has significantly advanced automated landslide analysis (Huang et al., 2022c; Shahabi et al., 2021). These models excel at learning complex patterns from high-dimensional spectral-spatial information, enabling highly accurate detection of landslide scars and even precursory features like cracks and seepage zones that are otherwise challenging to identify.

While both space-borne SAR and optical remote sensing are pivotal for large-area landslide screening, they offer complementary capabilities and have distinct limitations. Optical remote sensing provides intuitive visual interpretation of geomorphological features but is rendered useless by cloud cover and darkness. In contrast, space-borne SAR, with its all-weather, day-and-night imaging capability, excels in detecting millimeter-to-centimeter-scale surface deformation through InSAR techniques, which is a direct precursor to landslide failure. However, InSAR performance can be degraded in heavily vegetated areas due to temporal decorrelation and in steep terrain due to geometric distortions (Lin et al., 2022; Yan et al., 2024), areas where optical stereo imaging for DEM generation might be less affected. Therefore, the integration of SAR-derived deformation maps and optical-based geomorphological maps is considered a best practice for regional-scale landslide inventory mapping and preliminary hazard assessment (Xun et al., 2022).

2.2 Airborne Remote Sensing Data

Airborne remote sensing data, typically acquired by manned aircrafts, provide high-resolution imagery of localized areas. Advanced airborne platforms equipped with oblique photogrammetry and, more recently, close-range photogrammetry technologies enable millimeter-level accuracy in 3D photogrammetry, facilitating the observation of subtle surface deformations, rock mass structures, and the construction of highly detailed 3D models of terrain and above-ground infrastructure (Macciotta

Deleted: normalized difference vegetation index

and Hendry, 2021; Xu et al., 2023). Among these technologies, airborne photogrammetry and airborne radar are the most commonly used.

2.2.1 Airborne Light Detection and Ranging (LiDAR)

LiDAR has been used for landslide and other geological hazard investigations in many regions since the late 1990s. As an active remote sensing system, LiDAR can laterally scan a range of 60° and capture 400,000 points per second, enabling largescale 3D scanning of terrain, structures, and vegetation within a short period (Mallet and Bretar, 2009). It offers centimeter-level accuracy in both horizontal and vertical dimensions.

Airborne LiDAR is irreplaceable in capturing 3D details and penetrating vegetation, particularly in densely vegetated areas where conventional aerial photography faces significant limitations. Airborne LiDAR not only acquires high- resolution [Digital Surface Models \(DSMs\)](#) from laser point cloud data but also generates high-accuracy DEMs by removing vegetation contributions (Fang et al., 2022; Jaboyedoff et al., 2012; Yan et al., 2023), thereby revealing concealed hazard features such as mountain fractures, loose deposits, and landslide masses under vegetation cover.

Point cloud data obtained from airborne LiDAR can monitor dynamic changes in mountainous terrain by detecting deformations such as subsidence, displacement, and uplift, while also facilitating the construction of 3D landslide models to simulate sliding directions and impact areas. Through intuitive visualization of slope morphology and structure from multiple perspectives, LiDAR enables researchers to conduct a comprehensive assessment of slope conditions and identify subtle hazard features that may not be easily discernible in 2D imagery.

[These high-precision DEMs and point clouds serve as critical inputs for deep learning models. For instance, Wei et al. \(2023\) proposed the Dynamic Attentive Graph Network \(DAG-Net\) model to construct dynamic edge features for enhancing point cloud representations, achieving the highest mean Intersection over Union \(mIoU\) of 0.743 and an F1-score of 0.786. Based on the advanced PointNet and PointNet++ architectures, Farmakis et al. \(2022\) developed deep neural networks for 3D point cloud learning. The best-performing model achieved accuracies of approximately 89% and 84% during the final and shortest monitoring campaigns, respectively. These examples demonstrate that airborne LiDAR data are not only suitable but have been effectively applied in deep learning-based landslide analysis.](#)

2.2.2 Unmanned Aerial Vehicle (UAV)

UAV aerial photogrammetry provides outstanding maneuverability and high-precision measurements. Traversing over steep slopes and valleys, UAVs are able to monitor areas that are often inaccessible to satellites and manned aerial platforms (Niethammer et al., 2012), thus addressing critical observational limitations.

In large-scale and topographically complex regions, UAVs can perform efficient aerial

Deleted: digital surface models

inspections, overcoming the limitations of ground-based inspections in inaccessible or visually obstructed regions. By rapidly scanning mountain slopes, embankments, and gullies, UAVs provide a comprehensive understanding of the geological conditions and enable timely identification of macro-scale geomorphic anomalies. However, given cost-effectiveness constraints, UAVs are currently more commonly used for periodic and continuous monitoring in localized areas. They are particularly well-suited for rapid and dynamic monitoring of landslides in high-priority zones.

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on UAVs are able to capture the subtle cracks on the surface of the mountain.

These cracks may be early signs of a landslide (Sun et al., 2024a). By conducting a comparative analysis of the images taken at different times, the development and changes of the cracks can be monitored, including the increase in the length, width and depth of the cracks, as well as the changes in the crack orientation. In some mountainous areas or valleys, there may be a large number of loose accumulations. These accumulations may trigger landslides under specific conditions. Aerial photography by UAVs can clearly identify information such as the distribution range, accumulation quantity and accumulation shape of these loose accumulations, and assess their potential threats to the surrounding environment. This capability is leveraged in deep learning applications, where time-series UAV imagery is processed using RNNs or 3D CNNs to monitor the spatiotemporal evolution of these cracks, providing a data-driven approach for early warning (Xu et al., 2025; Sandric et al., 2024).

Airborne platforms bridge the gap between satellite and ground-based observations. LiDAR is unparalleled in generating high-precision DEM, revealing concealed paleo-landslides and subtle topographic features critical for hazard mapping. However, its deployment is costly and logistically complex. UAVs, as a flexible and cost-effective alternative, have democratized high-resolution data acquisition. They can be equipped with various sensors (e.g., optical, multispectral, and even lightweight LiDAR) to conduct rapid response surveys following triggering events such as earthquakes or heavy rainfall (Han et al., 2023). While UAV-derived models have ultra-high resolution, their coverage is limited per sortie compared to airborne campaigns. The choice between them often involves a trade-off between coverage, cost, operational flexibility, and the specific requirement for vegetation penetration.

By equipping UAVs with LiDAR sensors to effectively remove vegetation from the data, this integrated approach combines the strengths of photogrammetry and LiDAR (Mandlburger et al., 2020; Wallace et al., 2012). It allows researchers to reveal landslide boundaries, crack patterns, and other deformation features hidden beneath vegetation cover, enabling rapid deployment and targeted area monitoring while mitigating vegetation-related challenges in landslide assessment.

2.3 Ground-based Observation Data

Satellite observation and airborne remote sensing are mainly employed for identifying potential

Deleted: When equipped with LiDAR sensors, UAVs can effectively remove vegetation from the data. Then, assisting researchers to reveal landslide boundaries, crack patterns, and other deformation features hidden beneath vegetation cover. This integrated approach combines the strengths of photogrammetry and LiDAR, allowing for rapid deployment and targeted area monitoring while mitigating the challenges posed by vegetation cover in landslide detection and assessment.

rainstorms or geological events like earthquakes occur, the stability of the mountain may be affected, making it prone to triggering geological hazards. UAVs even can quickly conduct aerial monitoring of the relevant areas after extreme weather.

landslides based on surface morphology. However, these approaches are often affected by vegetation cover, viewing geometry, and atmospheric noise, which may lead to misclassification or omission (Almalki et al., 2022; Dubovik et al., 2021). Therefore, ground-based observation techniques play a critical complementary role, offering higher temporal resolution, accuracy, and localized verification for potential landslide identification. In recent years, data collected from ground-based monitoring instruments have not only been used for field validation but also increasingly incorporated into deep learning frameworks to improve temporal continuity and physical interpretability in landslide detection and forecasting.

2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR)

GB-SAR is an active ground-based microwave remote sensing system that has been developed over the past decade, effectively integrating the principles of SAR imaging with electromagnetic wave interferometry. By leveraging precise measurements of sensor system parameters, attitude parameters, and geometric relationships between orbits, GB-SAR quantifies spatial positions and subtle changes at specific surface points, allowing for the measurement of surface deformations with millimeter or even sub-millimeter precision.

Compared with spaceborne SAR, GB-SAR can adjust the incidence and azimuth angles of radar waves, thereby avoiding phase decorrelation caused by terrain-induced occlusion in spaceborne observations. Consequently, they are particularly suitable for monitoring steep slopes, canyons, and other areas with limited line-of-sight coverage from satellites (Noferini et al., 2007).

During landslide movement, the ground experiences noticeable subsidence, displacement, or cracking. GB-SAR can be configured for high-resolution, continuous observation to capture instantaneous deformations during the landslide creep phase and generate corresponding displacement maps (Liu et al., 2021a; Xiao et al., 2021). For example, Long et al. (2018) proposed a GBSAR persistent scatterer point selection method based on the mean coherence coefficient, amplitude dispersion index, estimated signal-to-noise ratio, and displacement accuracy index. Han et al. (2022) proposed an LSTM-based approach for processing GB-InSAR time series data. Kacan et al. (2022) employed two deep learning methods to investigate the potential and advantages of processing raw GBSAR data for automatic radar classification.

For small-scale regional monitoring, GB-SAR can establish customized geometric configurations specifically designed for target areas. Utilizing mobile rail systems or multi-antenna setups, GB-SAR reconstructs 3D deformation vector fields of landslide masses (Shi et al., 2025), identifying sliding directions and potential failure surfaces.

2.3.2 Terrestrial Laser Scanning (TLS)

TLS emerged in the mid-1990s. It plays a unique role in local refined monitoring by emitting

Deleted: However, due to the influence of various factors, the identification results may not always be fully accurate, leading to potential misjudgments. Therefore, the potential landslide points identified through remote sensing still necessitate field investigations by researchers for verification, differentiation, confirmation, or exclusion of hazards. In some cases, additional on-site observation and monitoring methods are needed for accurate assessment. Commonly used ground-based monitoring methods include ground-based SAR, 3D laser scanners and various sensor devices deployed or installed on the ground.

Deleted: GB-SAR is an active ground-based microwave remote sensing system that has been developed over the past decade. Compared to spaceborne SAR, GB-SAR allows adjustment of radar wave incidence angles and azimuths, preventing phase decorrelation issues caused by terrain obstructions in satellite SAR, making it particularly suitable for monitoring steep slopes, canyons, and other areas with limited satellite line-of-sight (Noferini et al., 2007). SAR effectively integrates the principles of SAR imaging with electromagnetic wave interferometry. By leveraging precise measurements of sensor system parameters, attitude parameters, and geometric relationships between orbits, GB-SAR quantifies spatial positions and subtle changes at specific surface points, allowing for the measurement of surface deformations with millimeter or even sub-millimeter precision

Deleted: This capability facilitates the distinction between evolutionary stages of landslides and further analysis of the dynamics of landslide activity.

laser pulses and measuring their reflection time (Stumvoll et al., 2021; Teza et al., 2007).

The landslide often manifests as a sharp change in the ground surface. TLS can provide data with sufficient accuracy, assisting researchers in identifying the features of these landslides (Abellán et al., 2009; Teng et al., 2022).

By quickly and massively collecting spatial point position information, TLS can automatically splice and rapidly obtain the appearance of the measured object. It can be used to construct high-precision surface models and appearance models of buildings and structures. The 3D model can display the shape and structure of the mountain and the detailed features of the ground surface from different angles and in all directions (Zhou et al., 2024), enabling geological experts and engineers to have a more intuitive understanding of the overall situation of the landslide area. For example, the cracks in the mountain, the loose accumulations, and the degree of weathering of the rocks can be clearly seen, providing richer information for the identification of potential landslide hazards.

In the context of deep learning, TLS-derived 3D point clouds have become critical inputs for morphological feature extraction and automatic landslide identification. For example, Senogles et al. (2022) integrated TLS point cloud data to assess surface displacements induced by landslide movements. Wang et al. (2025) provided a practical and adaptable solution for landslide monitoring by integrating TLS point clouds with embedded RGB imagery.

These examples confirm that TLS data are not only suitable but already actively used in deep learning-based landslide recognition, providing precise geometric constraints for multi-source fusion frameworks that combine DEM, optical, and In-SAR information.

Ground-based techniques provide the highest precision for monitoring a specific slope of interest. GB-SAR and TLS are both non-contact remote sensing methods, but they operate on different principles. GB-SAR offers continuous, all-weather, mm-level deformation monitoring over a large area (several km²) from a single station, making it ideal for early warning. Its drawback is the need for a stable, opposing installation point with a clear line-of-sight (Monserrat et al., 2013). TLS, on the other hand, provides mm-to-cm-level 3D point clouds of the slope surface, excellent for quantifying volume changes and detailed geometric changes. However, it is typically used for periodic surveys rather than continuous monitoring and has occlusion shadows (Huang et al., 2019).

2.3.3 Ground-based Sensor Devices

Compared to the aforementioned data sources, ground-based sensors offer key advantages, including high precision, realtime capabilities, and multi-parameter fusion (Dai et al., 2023). They can address the limitations of remote sensing and provide critical ground-based dynamic information for potential landslide identification.

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the state of landslide masses. These datasets provide foundational inputs for deep learning models, enabling multi-dimensional analysis and interpretation of potential landslide conditions. For example, ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like displacement and

Deleted: By combining topographic analysis, the location of the landslide surface can be accurately determined. TLS scanner can also help identify the landslide mass, that is, the flow path of the landslide materials. Through analyzing the point cloud data, the movement path of the landslide area, the soil accumulation area, and the accumulation location of the landslide materials can be extracted, providing detailed information for the analysis and assessment of potential landslides.

Deleted: Currently, TLS is commonly used in critical areas requiring localized precision. For historical landslide masses, it captures reactivation indicators such as rear tensile cracks and frontal bulging, with data input into anomaly detection models to identify reactivation signals.

tilt angle at frequencies ranging from minutes to seconds, capturing transient, anomalous signals just prior to landslide events, thereby filling the temporal resolution gap in remote sensing (see Fig. 1).

Deleted: (Jiang et al., 2022)

These data are often used as input sources for RNN models and 300 their variants (Bai et al., 2022; Wang et al., 2021a). By integrating time series data with SAR imagery, deep learning models can be trained to uncover correlation patterns between surface deformations and subsurface parameters (Jiang et al., 2022). Instruments such as piezometers and soil pressure gauges can directly monitor key parameters like pore water pressure and soil stress on the sliding surface. By combining the obtained subsurface data with geomechanical equations, the position of the sliding surface or geotechnical strength parameters can be inferred.

Therefore, GB-SAR, TLS, and ground-based sensors are not only auxiliary observation techniques but are increasingly serving as key data sources for deep learning-driven landslide identification. Their integration into CNN, LSTM, and Generative Adversarial Network (GAN) frameworks enables high-resolution spatial-temporal modeling of slope behavior, bridging the gap between field-scale monitoring and large-scale hazard prediction.

2.4 Summary of Data Source for Potential Landslide Identification

In summary, no single data source is sufficient for a comprehensive potential landslide identification framework. Regional-scale satellite data, particularly InSAR, is optimal for the early detection of pre-landslide deformations over vast areas. Airborne platforms, such as UAVs, then provide high-resolution optical and LiDAR data to characterize the precise geometry and activity of identified potential landslides. Finally, ground-based and in-situ sensors enable site-specific, real-time monitoring of high-risk slopes, validating remote sensing findings and supporting early warning systems. The strategic integration of these multiplatform data is crucial for transitioning from regional screening to mechanistic understanding and risk mitigation.

Beyond these general data modalities, recent years have also witnessed the emergence of benchmark datasets that serve as standardized testbeds for developing and evaluating deep learning methods in landslide identification. Such datasets are essential for ensuring reproducibility, enabling fair comparison across models, and accelerating methodological advances. Representative examples include the CAS Landslide Dataset, a large-scale, multi-sensor dataset explicitly designed for deep learning-based landslide mapping (Xu et al., 2024); the Landslide4Sense (L4S) benchmark, developed within an international competition, which provides multisource satellite image patches (Ghorbanzadeh et al., 2022b); and the Diverse Mountainous Landslide Dataset (DMLD), which emphasizes high-resolution instances from complex mountainous terrains (Chen et al., 2024b). In addition, slope-unit-based benchmark datasets have been constructed to support susceptibility mapping and regional-scale comparisons (Martinello et al., 2021).

These datasets serve as valuable resources for pixel-level segmentation and slope-unit-based

Deleted: Formatted: Line spacing: Multiple 1.25 1i

susceptibility modeling. However, in practice, the compilation of landslide inventories faces considerable challenges, making it difficult to obtain comprehensive and accurate records (Kong et al., 2025; Lee et al., 2018). Consequently, data scarcity remains a common issue in landslide hazard identification, particularly in remote regions or areas with limited accessibility. Therefore, it is necessary to further expand their geographical coverage and establish standardized evaluation protocols.

← Formatted: Indent: First line: 0 ch

3 Deep Learning for Potential Landslide Identification: Models

The effectiveness of deep learning in potential landslide identification largely depends on selecting an appropriate model architecture suited to the data type and specific task. While all deep learning models excel at automated feature extraction, their internal architectures predispose them to excel in different aspects of the overall workflow. Therefore, this section does not merely list models, but organizes them based on their primary function in the potential landslide identification pipeline. We analyze several commonly used deep learning models by categorizing them into five functional roles: image analysis and processing, time series analysis, data generation, anomaly detection, and data fusion.

3.1 Models for Image Analysis and Processing in Potential Landslide Identification

Image data plays a critical role in potential landslide identification, especially through remote sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain data, encompassing complex geographical features, vegetation coverage, and ground fissures, which often serve as potential precursors to landslide occurrences. The adoption of deep learning has facilitated a shift from conventional manual visual interpretation to automated high-precision segmentation.

As illustrated in Fig. 2, a CNN is mainly composed of convolutional, pooling, and fully connected layers, each responsible for distinct operations on the input data (Kattenborn et al., 2021; LeCun et al., 1998; Liu et al., 2022b).

Convolutional layers, the core of CNNs, use kernels of various sizes to extract multi-scale features from geospatial imagery, which is crucial for landslide identification Hussain et al. (2019); Shi et al. (2020); Yao et al. (2021). Small kernels are effective in detecting fine-grained precursors such as ground fissures and localized soil texture changes. For instance, Hamaguchi et al. (2018) proposed a Local Feature Extraction (LFE) module to enhance the capability of CNNs in identifying small object instances in remote sensing imagery. Wang et al. (2024a) demonstrated the exceptional capability of convolutional layers in extracting extremely small and subtle features by identifying cracks as narrow as 0.05 m width using a U-Net-based model. In contrast, larger kernels help in recognizing the overall morphology and boundaries of landslide bodies. From the perspective of general visual tasks, Ding et al. (2022) demonstrated that larger convolution kernels substantially improve the shape bias of CNNs.

Deleted: Potential landslide identification relies heavily on extensive data analysis, and the key is how to efficiently and accurately extract features that are helpful for identifying landslide occurrences. Conventional landslide identification methods often rely on human expertise or rules, often necessitating expert knowledge for identifying relevant features. With continuous exploration, deep learning, through its powerful feature learning capabilities, enables the automatic extraction of meaningful features from raw data, significantly reducing manual intervention. Especially when dealing with high-dimensional and complex landslide data, deep learning models can extract deep features related to landslides from raw data in a data-driven manner, without the need for manual feature design.

models typically depends on the type of data and the task requirements. Although each model typically has multiple effects, its internal architecture results in different focal points when it comes to automated feature extraction. This section analyzes several commonly used deep learning models from five perspectives: image analysis and processing, time series analysis, data generation, data cleaning, and data fusion.

Deleted: Convolutional neural networks (CNNs) represent the fundamental architecture in image processing. A CNN primarily comprises convolutional layers, pooling layers, and fully connected layers, each performing predefined functions on its input data (Kattenborn et al., 2021; Liu et al., 2022a).

facilitating the recognition of large-scale structures and overall morphological patterns compared with using small kernels alone. Li et al. (2025) employed multiple large convolution kernels (kernel sizes = 5, 7, and 9) within the deep learning-based feature fusion with scale-adaptive kernel attention module to fuse multi-scale features, thereby enhancing the global perception of landslide boundaries and morphology as well as the capture of contextual background information.

Pooling layers downsample feature maps, improving computational efficiency and model robustness. In landslide mapping, this translation invariance is particularly beneficial, as it allows the model to consistently identify landslide features regardless of their slight positional variations across different image patches (Mao et al., 2024).

The final fully connected layer flattens the pooled feature maps and performs classification, outputting results that distinguish potential landslide areas from non-landslide areas or enable further analysis of landslide types (Wu et al., 2024b).

The layers of a CNN can be combined in various ways, forming distinct CNN architectures. These architectures are primarily determined by task requirements, which may include image classification, multi-class segmentation, or object localization within a scene.

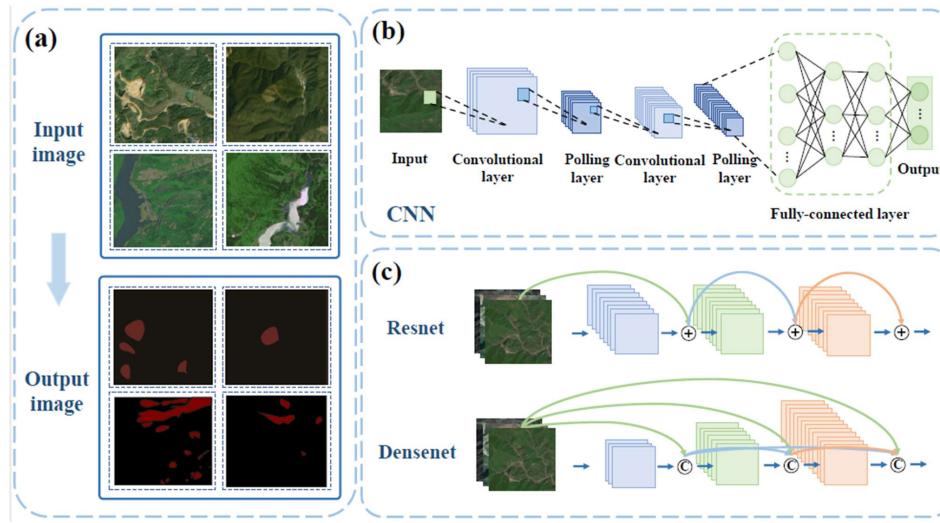
Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers, and fully connected layers. However, increasing network depth introduces challenges such as vanishing gradients and degradation arise, resulting in model performance deterioration.

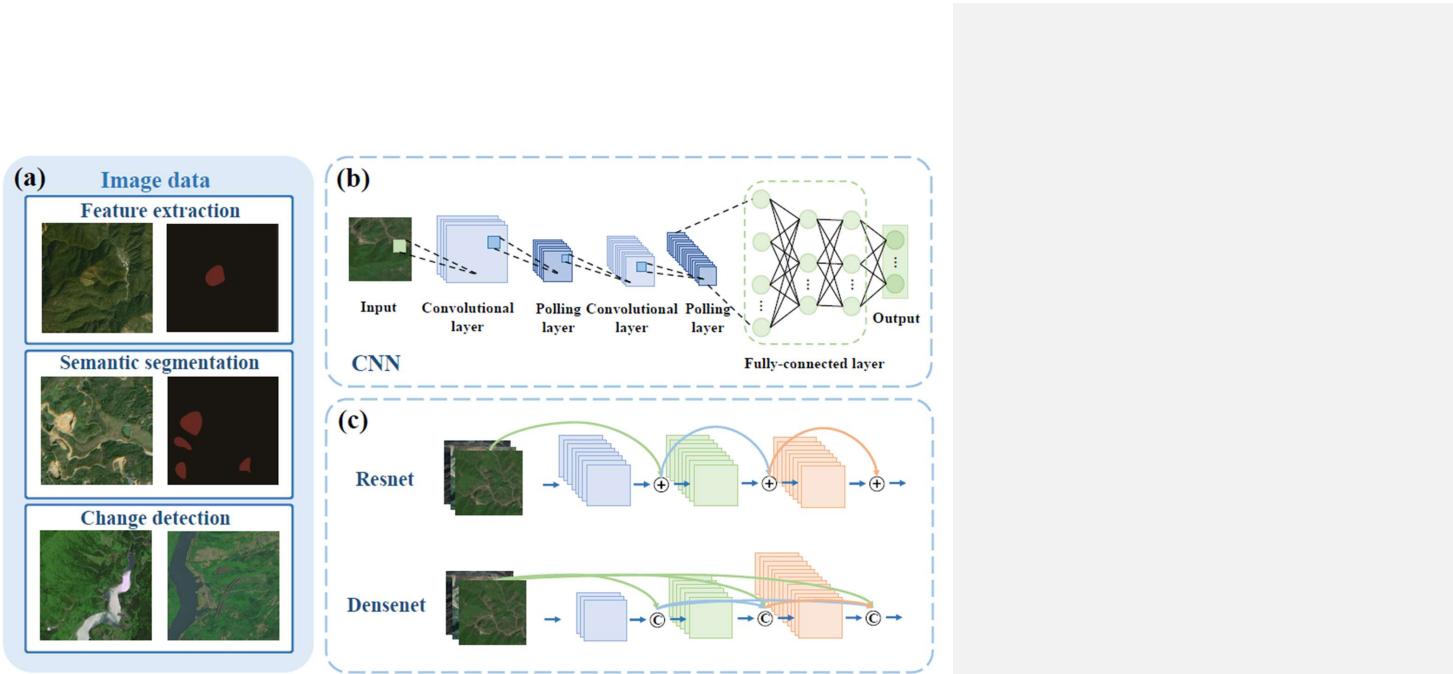
ResNet mitigates the vanishing gradient problem in very deep networks through residual connections (Qi et al., 2020; Yang et al., 2022). This architectural advancement has been successfully applied to landslide detection in complex terrains, such as the work by Ullo et al. (2021), who demonstrated that a ResNet-based classifier could achieve high accuracy in distinguishing landslide scars from surrounding vegetation and bare soil in satellite imagery by effectively learning hierarchical features.

Models with higher parameter counts generally exhibit greater representational capacity but are prone to overfitting, while demanding higher computational resources and temporal costs for both training and inference (Ebrahimi and Abadi, 2021). For instance, (He et al., 2016) introduced ResNet-152 and other deep residual network architectures, demonstrating that deeper structure achieve superior performance compared with shallower counterparts. Hasanah et al. (2023) explicitly highlighted the differences in layer depth and parameter count among various ResNet versions (ResNet-50, 101, and 152), noting that the increased number of parameters in deeper networks inevitably leads to longer training times.

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks are based on a similar idea, which is to establish a "shortcut" between different layers. However, the structure of DenseNet is simpler and more effective, with fewer parameters. The structural differences

Deleted: The convolutional layer, as the core component of CNNs, contains multiple kernels that progressively extract more detailed feature representations (Hussain et al., 2019; Shi et al., 2020; Yao et al., 2021). Meanwhile, the shared-weight strategy inherent in convolutional layers allows for network training with fewer parameters than fully connected architectures. Convolutional kernels of different sizes facilitate multi-scale feature extraction. Small kernels focus on fine details, such as small cracks and the texture of localized soil loosening, while large kernels emphasize capturing overall shapes, such as the general outline of landslides and the macroscopic morphology of mountain bodies. Pooling layers, typically positioned after convolutional layers, serve to reduce the size of feature representations and enhancing the model's resistance to overfitting when handling diverse data. Common pooling methods include max pooling and average pooling, which enhance robustness to minor transformations such as translation and rotation, ensuring a degree of invariance in the features extracted by CNNs. Pooling operations downsample the convolved feature maps, reducing computational complexity while reinforcing feature robustness. Through the hierarchical stacking of multiple convolutional and pooling layers, CNNs incrementally extract more abstract and semantically rich features (Mao et al., 2024). The final fully connected layer flattens the pooled feature maps and performs classification, outputting results that distinguish potential landslide areas from non-landslide areas or enable further analysis of landslide types (Wu et al., 2024).


Deleted: ResNet addresses these limitations by integrating residual blocks into the foundational CNN framework (Qi et al., 2020; Yang et al., 2022). These residual blocks utilize shortcut connections that preserve original feature information. This framework facilitates the construction of ultra-deep networks capable of extracting high-level semantic features for landslide detection, thereby enhancing adaptability to complex terrain classification tasks (Ullo et al., 2021).


Deleted: ResNet-152 contains orders of magnitude more parameters than ResNet-50, yet the latter is often preferable in computationally constrained environments due to its balanced efficiency and performance.

Formatted: Highlight

between ResNet and DenseNet are illustrated in Fig. 2. In ResNet, each layer is only connected to the previous layer, while in DenseNet, each layer is directly connected to all previous layers, and each layer can obtain gradients from the loss function. This can optimize the information flow and gradients of the entire network, making it easier to train and performing better on small datasets. The structure of DenseNet enables more effective reuse of features, meaning that each layer can directly access and build upon the feature maps generated by all preceding layers instead of re-learning similar representations. This dense connectivity not only strengthens information and gradient flow across the network but also reduces redundancy and the total number of parameters. Moreover, the layers of DenseNet are narrower than those of other deep learning networks (Liu et al., 2021c), making it reduce redundancy by learning with fewer feature maps. This architecture is suitable for the extraction of multi-scale landslide features under complex terrains, even with limited landslide training samples (Cai et al., 2021; Li et al., 2021; Ullo et al., 2021).

Deleted: The structure of DenseNet can achieve better feature reuse and reduce the number of parameters.

Figure 2. The role of deep learning models in image analysis and processing. (a) Comparison of landslide images before and after identification. (b) Schematic of a basic CNN architecture. A conventional CNN typically comprises stacked convolutional layers, pooling layers, and fully connected layers. (c) Comparative schematic of ResNet and DenseNet architectures. In contrast to ResNet, which combines features through summation before passing them to subsequent layers, DenseNet integrates features via channelwise concatenation.

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation models have increasingly become the standard in landslide detection (Lu et al., 2023b; Zhou et al., 2024b). As a fundamental task in computer vision, semantic segmentation assigns a specific class label (e.g., "landslide" or "non-landslide") to each pixel in an image, thereby enabling dense pixel-level classification (Guo et al., 2018).

Numerous advanced semantic segmentation networks have been proposed and validated for automatic landslide detection, significantly enhancing the efficiency and accuracy of large-scale detection.

U-Net is a typical example (Ronneberger et al., 2015), which features a U-shaped architecture. U-Net's encoder-decoder structure with skip connections has become a benchmark for landslide segmentation (Chandra et al., 2023; Chen et al., 2022b; Meena et al., 2022). For example, Nava et al. (2022) applied the attention U-Net to Sentinel-1 SAR data for rapid mapping of earthquake-induced landslides, demonstrating the effectiveness of U-Net variants in pixel-level segmentation of landslide bodies under cloud-covered or topographically complex conditions.

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable choice

Deleted: Three commonly used applications of CNNs in image processing for potential landslide identification.

Deleted: U-Net employs an encoder-decoder structure, where the encoder is similar to conventional CNNs, progressively reducing image resolution and extracting features through convolution and pooling operations; the decoder then restores the image resolution through transposed convolution or upsampling operations (Dong et al., 2022; Nava et al., 2022). Skip connections bridge low-level detail features with deep semantic features, thereby refining segmentation precision.

(Sandric et al., 2024). While U-Net excels at preserving fine-grained spatial details through its skip-connections, its ability to capture longrange contextual information is limited by its relatively small receptive field. DeepLab, built upon deep CNNs, addresses this critical limitation by employing dilated convolutions to exponentially expand the receptive field without sacrificing resolution or increasing parameters substantially.

More importantly, DeepLab integrates an Atrous Spatial Pyramid Pooling (ASPP) module, which is key to its superior performance on multi-scale objects like landslides (Chen et al., 2017; Huang et al., 2024a). The ASPP module operates in parallel on the same feature map using multiple convolutional branches with different dilation rates (e.g., rates = 6, 12, 18). Each branch effectively captures contextual information at a different scale, from fine details to broad, image-level contexts (Niu et al., 2018). All these multi-scale features are then concatenated and fused. This allows the network to simultaneously leverage both local textual cues and global contextual cues, thereby significantly improving recognition accuracy and reducing false positives in geologically complex environments.

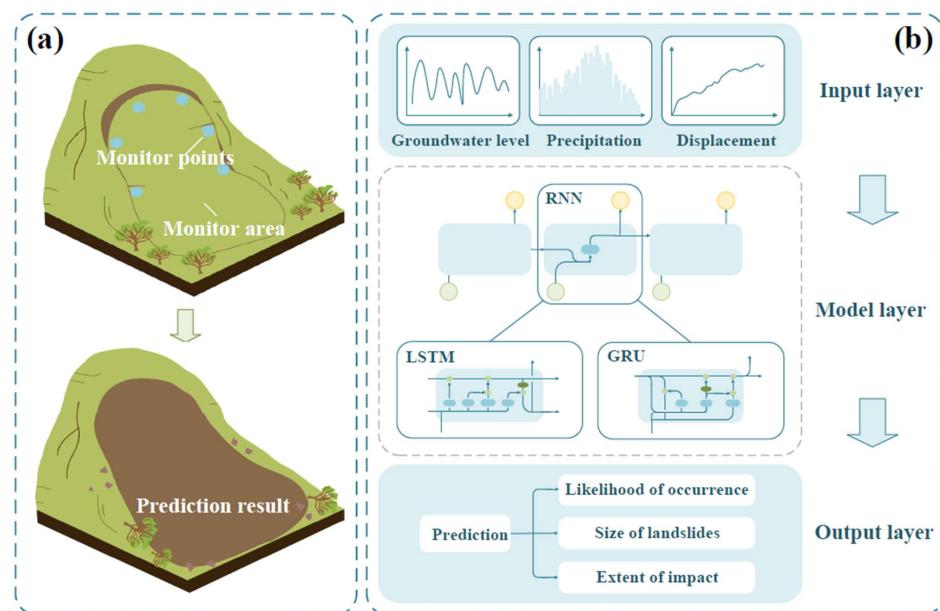
After achieving semantic segmentation to obtain the accurate extent of a landslide and the classification of ground objects, change detection is employed to monitor the changes in the landslide area over time. By comparing the segmentation results of multiple temporal phases or directly analyzing the feature differences, the dynamic evolution of potential hazards can be quantified (Amankwah et al., 2022).

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models capture both spatial and temporal dependencies through 3D convolutional kernels, enabling the direct processing of multi-temporal image sequences. The outputs typically take two complementary forms: (1) change hotspot maps, which highlight regions of significant spatial change across time, and (2) temporal variation curves, which illustrate the evolution of pixel- or region-based feature values throughout the temporal sequence. Together, these representations provide intuitive and complementary tools for characterizing dynamic processes in landslide-prone areas, such as the initiation, progression, and spatial distribution of slope failures.

Some studies even have integrated attention mechanisms into conventional CNN architectures to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the identification of landslide hazard evolution over time. For example, Meng et al. (2024) proposed a framework based on CNN and optimized Bidirectional Gated Recurrent Unit (BiGRU) with an attention mechanism, designed to forecast landslide displacement with a step-like curve. Dong et al. (2022) proposed L-Unet which combines multi-scale feature fusion with attention modules to improve landslide segmentation performance, particularly at boundaries.

Deleted: Built upon deep convolutional neural networks, DeepLab employs dilated convolutions to expand the receptive field and integrates an atrous spatial pyramid pooling (ASPP) module to capture multi-scale contextual information.

Deleted: In contrast, the U-Net architecture is relatively simpler and better suited for small targets and high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution UAV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection and multispectral remote sensing image classification (see Fig. 2).


Deleted: These models capture spatial and temporal features using convolutional kernels while transforming multi-temporal image sequences into change hotspot maps or temporal variation curves as output.

3.2 Models for Time Series Analysis in Potential Landslide Identification

The occurrence of a landslide is a gradual accumulation process, usually influenced by a variety of factors. We refer to data that reflect the changing states of a landslide body over time as time series data. Time series data analysis aims to excavate the information hidden in the time series data to help identify potential landslides.

Different from conventional statistical or physical models, deep learning models can automatically reveal dynamic change trends and periodic patterns in the data, providing more accurate information for landslide prediction and early warning. Recently, deep learning-based temporal models have become key tools for extracting nonlinear dependencies and temporal evolution patterns in landslide-related time series. The structural characteristics and differences among these models are illustrated in Fig. 3. RNNs are a class of deep learning models specialized in processing sequential data, capable of capturing temporal dependencies within input sequences (Elman, 1990). Unlike conventional feedforward neural networks, in an RNN, each neuron not only receives the current input but also the output of the previous time step as additional input. This structure endows the RNN with a memory mechanism (Ngo et al., 2021; Zaremba et al., 2014).

In landslide prediction, RNNs have been employed to model displacement time series under rainfall or groundwater fluctuations, revealing short-term deformation patterns preceding slope failure (Chen et al., 2015; Zhang et al., 2022c).

Figure 3. The role of deep learning models in time series analysis. (a) In potential landslide

Deleted: Different from conventional time series data analysis methods, using deep learning models can automatically reveal the dynamic change trends and periodic patterns in the data, providing more accurate information for landslide prediction.

Deleted: Recurrent neural networks (RNNs) are a class of deep learning models specialized in processing sequential data, capable of capturing temporal dependencies within input sequences (Ngo et al., 2021; Zaremba et al., 2014). Unlike conventional feedforward neural networks, in an RNN, each neuron not only receives the current input but also the output of the previous time step as additional input. This structure endows the RNN with a memory mechanism. The architecture contains three primary components working in coordination: (1) The input layer means that one data point is input at each time step. (2) The hidden layer contains recurrent connections, which enable the information from the previous time step to be passed to the current time step, and the output serves as the input for the next time step simultaneously. (3) The output layer generates the output under the control of the state of the hidden layer (Cho et al., 2014; Zhao et al., 2021b).

RNN will process the data at each time step in sequence, continuously updating the hidden state. By combining the input of the current time step with the hidden state of the previous moment for calculation to gain an understanding of the data at the current moment, this structure enables the RNN to capture the temporal evolution patterns of landslide-related factors.

model long-term dependencies and limit their applicability to short-term temporal sequences, long short-term memory networks (LSTM) were developed (Wang et al., 2023b).

identification, time series data can be obtained through monitoring. (b) RNNs, LSTMs, and GRUs provide more accurate information for landslide prediction by processing time series data.

To overcome the vanishing gradient problem inherent in RNNs, LSTM introduces memory cells and gating mechanisms that selectively retain relevant temporal information (Graves, 2012; Landi et al., 2021; Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al., 2019). As shown in Fig. 3, LSTM networks extend the basic RNN structure by incorporating gating units that control information flow, enabling them to better capture cumulative and delayed slope responses to environmental triggers. This capability allows them to model the cumulative and delayed responses of slopes to prolonged rainfall or reservoir water level fluctuations.

LSTM models have been widely applied in landslide displacement prediction and early warning. Yang et al. (2019) analyzed the relationships among landslide deformation, rainfall, and reservoir water levels, and found that compared with static models, the LSTM approach more accurately captured the dynamic characteristics of landslides and effectively leveraged historical information. Xu and Niu (2018) used a LSTM model to predict the displacement evolution of the Baijiabao landslide using rainfall and hydrological level data, achieving a higher correlation compared with traditional regression models. In another study focused on shallow landslides, Xiao et al. (2022) used a week-ahead LSTM model, which exhibited stable performance and improved prediction accuracy in short-term prediction scenarios. Additionally, Gidon et al. (2023) constructed a Bi-LSTM model and achieved a detection accuracy of 93% in the Mawiongrim area. This effectively addresses the limitations of traditional methods and can provide a reliable technical solution for disaster early warning in this area as well as other similar landslide-prone areas.

The GRU is a simplified variant of the LSTM that achieves similar accuracy with fewer parameters and reduced computational costs (Cho et al., 2014), making it well-suited for real-time landslide monitoring systems (Chung et al., 2014; Rawat and Barthwal, 2024; Zhang et al., 2022e).

Furthermore, GRU models effectively identify precursory displacement acceleration, allowing early detection of slope instability triggered by rainfall or seismic shaking (Chang et al., 2025; Yang et al., 2025).

Transformer, first introduced by Vaswani et al. (2017), was originally designed for natural language processing but has since become a cornerstone architecture in modern machine learning, achieving state-of-the-art performance across diverse domains such as computer vision and multimodal learning.

Unlike conventional recurrent or convolutional models, the Transformer is built upon stacked encoder-decoder layers and relies on a key innovation: the self-attention mechanism (see Fig. 5). This mechanism enables the model to automatically compute a weight vector (i.e., an attention distribution) for each element in the sequence based on its relevance to all other elements. By evaluating all

Deleted: LSTM is an enhancement of RNNs, primarily processing long sequence data. Compared to standard RNNs, the hidden layer architecture of LSTM is much more complex. By incorporating memory cells and gating mechanisms, LSTM selectively propagates critical information across multiple time steps, thereby effectively capturing long-range temporal dependencies (Landi et al., 2021; Yu et al., 2019).

The basic unit of an LSTM consists of three primary gates: (1) the input gate, which determines what new information should be added to the cell state; (2) the forget gate, which decides what old information should be discarded; and (3) the output gate, which selects the information to be output from the cell state as the hidden state at the current time step (Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019). The output hidden state, after a nonlinear transformation, can be used for prediction or as the input for the next time step (Yang et al., 2019).

This structure allows the LSTM to retain key information over long sequences while selectively forgetting irrelevant information according to the requirements. Through learning from historical data, the LSTM can predict the likelihood of

Deleted: Gated recurrent unit (GRU) is a simplified version of LSTM (Chung et al., 2014; Zhang et al., 2022b), which has fewer parameters. Due to their higher computational efficiency, GRU has potential advantages in real-time data processing scenarios in landslide monitoring.

GRU mainly consists of the update gate and reset gate. The update gate is used to control how much of the previous information should be preserved at the current time step, while the reset gate is used to determine whether to ignore the hidden state of the previous time step, enabling the model to adaptively learn information across different temporal scales. This dual-gate mechanism enables adaptive learning of multi-scale temporal patterns.

Compared with the LSTM, the GRU has fewer parameters and higher computational efficiency, giving it an advantage in some landslide monitoring scenarios where real-time performance is critical.

GRU is capable of effectively handling time series data with long-term dependencies, making it suitable for long-term prediction of landslide hazards. Moreover, by learning temporal patterns in historical data, GRU can identify critical conditions for landslide occurrence in advance. GRU

positions simultaneously (Esser et al., 2021; Huang and Chen, 2023), the Transformer efficiently captures global dependencies across long sequences in parallel, making it more effective than RNNs or CNNs at modeling long-range relationships.

When applied to landslide-related time series data, the Transformer can adaptively learn latent temporal features and patterns, automatically adjusting parameters to accommodate diverse landslide scenarios (Wang et al., 2024b; Zerveas et al., 2021).

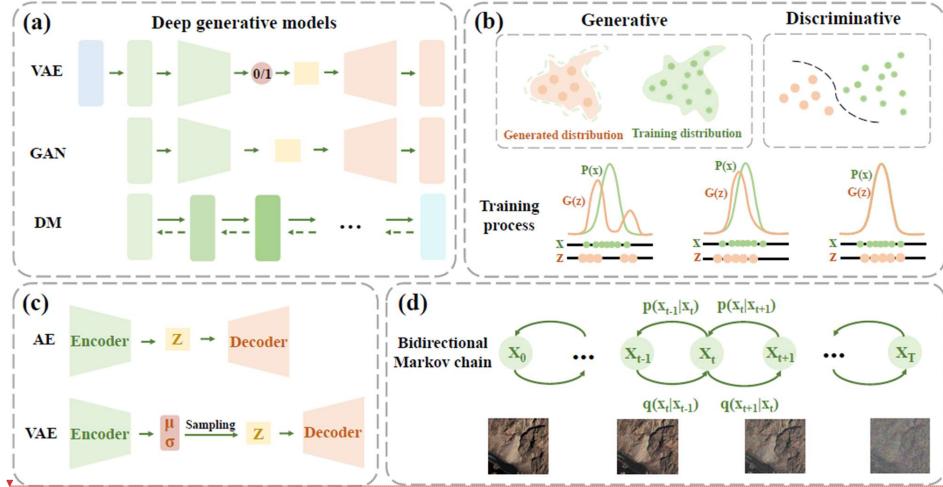
However, a key drawback of the standard Transformer is its quadratic computational complexity with respect to sequence length, which becomes prohibitive for very long sequences (Zhuang et al., 2023). This also complicates the interpretation of how the model extracts features and makes decisions from large amounts of landslide data, posing challenges for practical deployment. It is worth noting that mitigating this quadratic complexity is an active research area, with many efficient Transformer variants being developed. For example, Zhao et al. (2024f) combined the strengths of CNN and Transformer architectures, selecting and analyzing nine landslide-conditioning factors to successfully achieve accurate landslide localization and detailed feature capture. Ge et al. (2024) proposed the LiteTransNet model based on the Transformer framework, effectively capturing and interpreting the varying importance of historical information during the prediction process. Therefore, while powerful, the vanilla Transformer may not be the optimal choice for all practitioners, and its computational demands should be carefully considered.

In contrast, RNN-based models exhibit a relatively simple architecture and are conceptually intuitive (Li et al., 2021; Wang et al., 2020b), making them more interpretable. Transformers, however, are structurally more complex with numerous parameters, requiring substantial computational resources during training and being susceptible to overfitting on small datasets.

3.3 Models for Data Generation in Potential Landslide Identification

Data generation refers to modeling the underlying data distribution of data to generate entirely new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020; Shorten and Khoshgoftaar, 2019), thereby enriching the dataset. In potential landslide identification, data generation mitigates challenges of data scarcity and imbalanced class distributions, thereby enhancing the generalization capability of predictive models.

Deep generative models are the leading deep learning approach for synthetic data generation (Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They utilize deep neural networks to learn latent representations of data and optimize the learning process through specific objective functions. A key characteristic of deep generative models lies in their probabilistic nature. They not only classify or reconstruct data but also capture the underlying distribution of geospatial features, thereby enabling the generation of new landslide samples that are statistically consistent with observed


Deleted: Transformer was originally designed to handle sequential data in natural language processing, which was first introduced by Vaswani in 2017 (Vaswani et al., 2017). Unlike conventional recurrent and convolutional structures, the Transformer employs a self-attention mechanism to directly model the entire sequence.

Since the Transformer has the ability to adaptively learn latent features and patterns within the data, when it comes to processing landslide time series data, it can automatically tweak the model parameters to accommodate diverse landslide scenarios and temporal data variability (Wang et al., 2024a; Zerveas et al., 2021).

Transformer also can analyze positional relationships across the entire sequence, better capturing complex dependencies in long sequences, making it especially suitable for handling large-scale, long-term sequential datasets.

Deleted: In contrast, RNN-based models exhibit a relatively simple architecture (Li et al., 2021a; Wang et al., 2020b). Their mechanisms are conceptually intuitive, making them more interpretable (see Fig. 3). On the other hand, Transformers are more complex in structure with numerous parameters, necessitating substantial computational resources during early training to process large-scale data, while being susceptible to overfitting on small datasets. Understanding how the model extracts features and makes decisions is not straightforward from large amounts of landslide data, posing challenges for its interpretability and practical deployment.

patterns. Commonly used deep generative models include GANs, Variational Autoencoders (VAEs), and diffusion models (see Fig. 4).

Figure 4. The role of deep learning models in data generation. (a) Comparative schematic of three commonly used deep generative model architectures. GAN: adversarial training. VAE: maximize variational lower bound. Diffusion models: gradually add Gaussian noise and then reverse. (b) Schematic of the adversarial training workflow for GAN-based data generation. (c) Comparative architecture of AE and its variational counterpart, VAE. (d) Schematic of a diffusion model applied to denoise potential landslide data.

GANs consist of a generator and a discriminator that compete in an adversarial process (Goodfellow et al., 2014). The generator synthesizes data resembling real samples, while the discriminator attempts to distinguish between generated and real data. The workflow of adversarial training for GAN-based data generation is schematically depicted in Fig. 4. Through iterative adversarial training, the generator learns to produce high-quality synthetic data that closely matches the distribution of real data (Gui et al., 2021; Saxena and Cao, 2021).

In the context of landslide studies, GANs have demonstrated strong capabilities in data augmentation and remote sensing image enhancement. For example, Feng et al. (2024) achieved the first implementation of using a GAN to generate synthetic high-quality landslide images, aiming to address the data scarcity issue that undermines the performance of landslide segmentation models. Al-Najjar and Pradhan (2021b) proposed a novel approach that employs a GAN to generate synthetic inventory data. The results indicate that additional samples produced by the proposed GAN model can enhance the predictive performance of Decision Trees (DT), Random Forest (RF), Artificial Neural Network (ANN), and Bagging ensemble models.

Deleted: They operate on principles similar to those of deep learning, utilizing deep neural networks to learn data representations and optimizing the learning process through objective functions. A fundamental characteristic of deep generative models lies in their probabilistic nature. These models learn an approximate probability distribution from observed samples and subsequently generate novel samples that maintain statistical consistency with the original dataset. Unlike conventional discriminative models, generative models not only classify data but also learn the underlying distribution and generate new data points. Commonly used deep generative models include generative adversarial networks (GANs), variational autoencoders (VAEs, a variant of autoencoders), and diffusion models.

Deleted: GAN is a suitable choice to generate highly realistic and diverse new images (Goodfellow et al., 2014; Tran et al., 2021). Instead of explicitly modeling data distributions, GANs implicitly learn distributions through adversarial training between generator and discriminator networks. During data generation, the generator network in a GAN synthesizes images or data resembling real samples by processing input noise vectors (Gui et al., 2021; Saxena and Cao, 2021). The discriminator, on the other hand, is used to distinguish between the generated data and the real data. These two components are continuously optimized through adversarial training. Eventually, the generator is able to produce high-quality synthetic data, which is highly similar to the real data in terms of features.

With this adversarial structure (Al-Najjar et al., 2021), GANs can generate high-quality data that closely matches the distribution of real data in an unsupervised learning context, making them well-suited for high-resolution image synthesis.

Despite their advantages, GANs may suffer from mode collapse, leading to limited diversity in the generated data, especially when certain landslide types are underrepresented (Fang et al., 2020a). Moreover, their unstable training process requires careful hyperparameter tuning and substantial computational resources, which may constrain their application in real-time hazard scenarios. Nevertheless, with improved architectures such as Conditional GAN (CGAN) (Kim and Lee, 2020; Loey et al., 2020; Mirza and Osindero, 2014), image-to-image translation with GAN (Pix2Pix) (Isola et al., 2017; Qu et al., 2019), and Wasserstein GAN (WGAN) (Arjovsky et al., 2017; Wang et al., 2019), GANs are becoming increasingly viable tools for high-resolution landslide mapping and synthetic data generation in remote sensing-based susceptibility analysis.

As a probabilistic variant of AEs, VAEs introduce latent-space regularization through variational inference (Hinton and Salakhutdinov, 2006; Kingma and Welling, 2013). The encoder compresses input data into a latent representation characterized by a mean and a standard deviation, while the decoder reconstructs the data by sampling from this distribution. This enables the model to generate new data with inherent randomness and diversity (Islam et al., 2021; Oliveira et al., 2022).

In landslide research, VAEs have been successfully applied to learn and reconstruct geomorphological patterns of slope instability. For instance, Cai et al. (2024) proposed and demonstrated the superior capability of the VAE-GRU model in generating narrow predictive intervals while maintaining high coverage probabilities, representing a substantial improvement over the state-of-the-art methods for probabilistic landslide prediction.

Compared with GANs, VAEs produce more diverse but slightly less detailed samples, due to their structured latent space constraints. This characteristic is particularly beneficial for exploring a wide range of potential landslide morphologies and for augmenting training datasets used in susceptibility prediction. However, VAEs may still struggle with highly imbalanced datasets, as their probabilistic reconstruction tends to favor majority classes. Integrating VAEs with stratified sampling or cost-sensitive learning could help overcome this limitation and further enhance landslide prediction performance.

When computational resources and training time permit, diffusion models provide a powerful alternative for generating high-quality, diverse, and stable data (Croitoru et al., 2023; Ho et al., 2020; Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually adding noise to real samples (forward diffusion) and then reconstructing clean data through a reverse denoising process (see Fig. 4). The resulting models can sample new, realistic data points that reflect complex terrain and geophysical variability. For example, Lo and Peters (2024) proposed a Terrain-Feature-Guided Diffusion Model (TFDM) to fill gaps in DEM data. Similarly, Zhao et al. (2024b) employed a Denoising Diffusion Probabilistic Model (DDPM) conditioned on incomplete DEMs, which serves as a transitional kernel during diffusion reversal to progressively reconstruct sharp and

Deleted: With the proposal and development of GANs, researchers have introduced various enhanced structures that are more effectively applied to potential landslide identification. For example, the conditional GAN (CGAN) (Kim and Lee, 2020; Loey et al., 2020), Pix2Pix (Qu et al., 2019), and Wasserstein GAN (WGAN) (Wang et al., 2019). In the case of GANs, although the generated high-quality images may visually resemble real potential landslide regions, mode collapse can lead to a lack of diversity in the generated data, failing to cover all possible types of hazards (Fang et al., 2020). If certain types of potential landslides are underrepresented in the training dataset, GANs may struggle to generate those types effectively, thereby limiting the effectiveness of data augmentation. Given that the inherently unstable training process of the GANs may require more hyperparameter tuning and computational resources, this model will pose additional challenges in scenarios with limited data availability (Al-Najjar and Pradhan, 2021; Feng et al., 2024).

Deleted: As a variant of the autoencoders (AEs), the variational autoencoder (VAE) introduces the idea of probabilistic generation (Kingma et al., 2013). VAE constrains the latent space through variational inference, thus enabling the generation, reconstruction, and transformation of sample data.

the VAE may have better diversity (Cai et al., 2024; Islam et al., 2021; Oliveira et al., 2022), because the structured constraints of its latent space are helpful for generating samples with continuous changes. This is beneficial for simulating potential landslides under different geological conditions.

low-dimensional latent space, where each vector represents the underlying features of the input. The decoder then reconstructs the original data based on the vectors in the latent space. Different from conventional AEs, the output of the VAE encoder includes two parameters: the mean value and the standard deviation. These two parameters define the probability distribution in the latent space, which is usually assumed to be a Gaussian distribution. The decoder samples a latent variable from this probability distribution and reconstructs it into output data, thus generating data with inherent randomness and diversity. Therefore, the VAE can extract latent features from landslide data and generate new landslide data based on these features.

accurate DEMs.

Despite their successful applications in image synthesis, denoising, and remote-sensing image enhancement (Leher et al., 2025; Sui et al., 2024; Xiao et al., 2023; Zou et al., 2024), diffusion models have not yet been widely applied directly to the identification of potential landslides and remain in the exploratory stage. Nonetheless, our optimism for their application is grounded in their potential to address key challenges such as limited labeled data through generative augmentation and, more importantly, to provide uncertainty quantification in predictions, which is vital for risk assessment.

In conclusion, deep generative models provide a transformative solution for overcoming the challenges of limited and imbalanced landslide datasets. By synthesizing realistic, diverse, and statistically consistent samples, these models can improve the robustness and generalization of landslide prediction frameworks. Among them, GANs are effective for generating visually realistic imagery and data augmentation; VAEs capture probabilistic geomorphic transitions; and diffusion models ensure stability and fidelity in high-resolution terrain synthesis.

3.4 Models for **Anomaly detection** in Potential Landslide Identification

Anomaly detection plays a critical role in potential landslide identification, as it enables the distinction between normal environmental variations and genuine precursors of slope instability (Deijns et al., 2020; Jiang et al., 2020). In landslide monitoring, the goal of anomaly detection is to identify subtle yet significant deviations. Examples include abnormal surface displacements, changes in surface coherence, or irregularities in sensor signals. Such deviations may occur prior to landslide events. With the advancement of deep learning, data filtering has evolved from rule-based threshold detection to automated feature learning, allowing models to capture complex spatiotemporal dependencies and identify anomalies within high-dimensional, multi-source datasets.

AEs are widely used for unsupervised anomaly detection due to their ability to reconstruct input data and highlight deviations from learned normal patterns (Sakurada and Yairi, 2014; Zhou and Paffenroth, 2017). An AE consists of an encoder that compresses data into a low-dimensional latent representation and a decoder that reconstructs it.

During training, the AE learns the intrinsic features of normal landslide data, such as sensor-based displacement time series or radar backscatter from stable slopes. When abnormal data are input, such as sudden displacement spikes or incoherent radar signals, the reconstruction error increases significantly, serving as an indicator of potential instability. For instance, Shakeel et al. (2022) developed an InSAR deformation anomaly detector based on an AE-LSTM architecture. Experimental analyses using synthetic deformation test scenarios achieved an overall performance accuracy of 91.25%.

Deleted: When computational resources and time are sufficient, and high-quality data generation with exceptional diversity is prioritized, diffusion models are the recommended choice (Croitoru et al., 2023; Yang et al., 2023a; Zhu et al., 2023a).

learn the distribution of data. During training, the model applies a forward diffusion process that gradually adds noise to the original data until it approximates a Gaussian distribution. Then, in the reverse diffusion process, the model learns to iteratively refine its reconstruction of the original data distribution from the noisy data. After being fully trained, the model is able to capture the latent distribution patterns of the data, and thus can sample based on the learned distribution to generate new data (Ho et al., 2022). That is to say, by grasping the inherent laws and features of the data, the model has the ability to generate data that conforms to the distribution of the data.

model (DDPM) is a classic implementation of the diffusion models, which lays the probabilistic framework for the diffusion models (Choi et al., 2021; Ho et al., 2020; Jing et al., 2023; Perera et al., 2023). The generation quality is ... [6]

Deleted: Although diffusion models demonstrate strong capabilities in generating high-quality images and handling noise, they generate superior-quality data and ensure greater training stability compared to GANs and VAEs. However, diffusion models have not yet been widely applied directly to the identification of potential landslides and remain in the exploratory stage (see Fig. 4). We believe that as generative models advance in the field of geospatial remote sensing, they hold vast potential for application and could play a pivotal role in future landslide risk analysis and monitoring systems.

Deleted: Data Cleaning

Deleted: In potential landslide identification, data cleaning, particularly anomaly detection, is a critical issue (Deijns et al., 2020; Jiang et al., 2020). It can distinguish between normal fluctuations and true anomalies, identifying early signs such as subtle changes in the mountain's state or abnormal trends in surface displacement, thus enabling more accurate landslide hazard assessment. With the rapid development of deep learning, the applications in data cleaning have become increasingly widespread, enabling models to automatically learn latent data patterns and identify potential anomalies.

By defining a reconstruction error threshold, anomalies can be quantitatively detected. When the reconstruction error of new sensor data exceeds this threshold, it may signal slope movement acceleration or surface disturbance associated with potential landslides. Thus, AEs provide a data-driven method to detect early-warning signs without requiring manually labeled failure data.

As previously introduced, VAE is an extension of AE (Nawaz et al., 2024). VAEs introduce stochastic latent variables characterized by mean and variance, allowing them to model data uncertainty (see Fig. 4). During training, VAEs learn the latent distribution of normal samples and reconstruct inputs accordingly. When new observation data deviate significantly from the learned distribution, the reconstruction error increases accordingly, and this phenomenon can be used as an indicator of potential anomalies (Kingma and Welling, 2013; Li et al., 2020; Park et al., 2018). In landslide applications, VAEs have been shown to outperform conventional AEs in handling complex, multivariate datasets that integrate topographic, meteorological, and geotechnical factors. For example, Han et al. (2025) proposed an unsupervised failure mode recognition algorithm based on a deep convolutional autoencoder, which integrates surface displacement, vertical displacement, and rainfall monitoring data from slopes to accurately identify the developmental stages of slope failure, achieving a recognition accuracy of 99.30%.

Compared to AEs, VAEs are particularly advantageous for capturing uncertainty and latent correlations between environmental variables, making them ideal for anomaly detection in integrated landslide early-warning systems (Kumar et al., 2024; Pol et al., 2019). However, they require larger datasets for stable training, and their probabilistic outputs may demand postprocessing for operational thresholding.

GANs can also be adapted for anomaly detection by exploiting their discriminator network's ability to distinguish between real and generated data (Kang et al., 2024; Xia et al., 2022). In landslide monitoring, GAN-based anomaly detection models learn the distribution of stable slope features, and deviations from this distribution can indicate abnormal conditions (Radoi, 2022).

AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder during training, which maps input data to the latent space. The difference between this latent vector and the latent vector of normal samples generated by the generator serves as the basis for anomaly detection.

RNNs and their variants are particularly effective for time series-based anomaly detection, learning temporal dependencies and predicting future trends (Zamanzadeh Darban et al., 2024; Zhang et al., 2022a). In landslide monitoring, these models can process continuous displacement or rainfall time series to identify deviations from expected temporal behavior. These temporal models complement image-based approaches by providing continuous surveillance and early detection capabilities (Wu et al., 2024a).

Deleted: AEs and their variational counterparts are highly effective in unsupervised data cleaning. These models autonomously learn normal geomechanical patterns from data and flag deviations, achieving effective hazard identification even when labeled anomaly samples are scarce.

The AE is a typical unsupervised learning model consisting of an encoder and a decoder. The encoder compresses the input data into low-dimensional features, and then the decoder reconstructs the input. During the training process, the autoencoder learns the intrinsic features and patterns of normal landslide data, so that for normal data, the reconstruction error is small. When abnormal landslide data is input, due to the difference between its features and the distribution of normal data, the reconstruction error will be large.

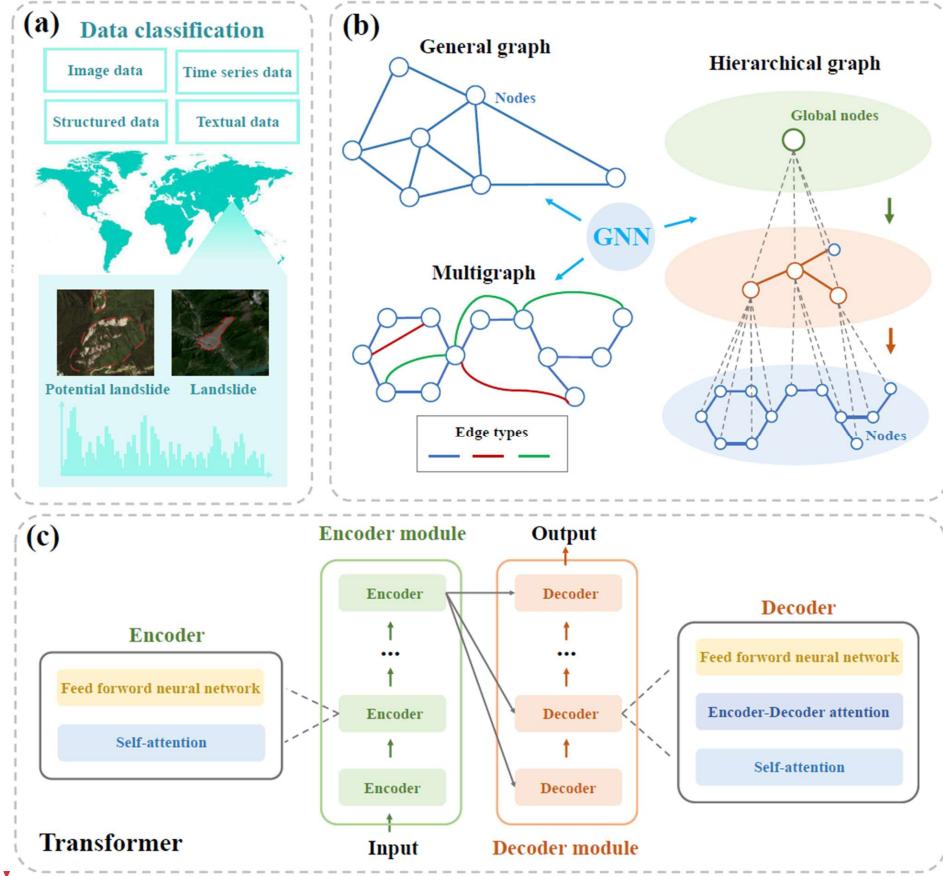
reconstruction error threshold is set. When the reconstruction error of the test data exceeds this threshold, it can be determined as abnormal data. In the anomaly detection of landslide displacement data monitored by sensors, if the error of the displacement data after being reconstructed by AEs during a certain period is significantly higher than the normal level, it may indicate that there is an abnormal situation of ... [7]

Deleted: Compared to conventional autoencoders, VAE introduces randomness into the latent space, making it more effective in handling data uncertainty (Li et al., 2020; Park et al., 2018).

Deleted: During training, VAEs learn the latent distribution of the data and can generate new samples resembling the training set. When input samples deviate significantly from this learned distribution, the VAE fails to reconstruct them accurately, thereby flagging anomalies through elevated reconstruction errors. For landslide monitoring, if a VAE is trained on imagery of stable slopes, it internalizes stable terrain features. When an image significantly differs from the ... [8]

Deleted: GANs can also be utilized in anomaly detection (Kang et al., 2024; Xia et al., 2022). In data cleaning, the discriminator is trained to distinguish between generated data and real data. When new test data is input, if the discriminator struggles to determine whether it is real or generated data, the test data may significantly deviate from the distribution of normal data, indicating a potential anomaly. In landslide monitoring, data may be influenced by various factors ... [9]

Deleted: data cleaning


When combined with AEs or GANs, RNN-type architectures can form hybrid frameworks capable of both spatial and temporal anomaly detection, enabling multi-source consistency checking in landslide early-warning systems. Geiger et al. (2020) demonstrated a growing trend of utilizing LSTM networks as both the generator and discriminator within GAN frameworks for time-series anomaly detection. Similarly, Whitaker (2023) illustrated the application of LSTM–GAN architectures in identifying temporal anomalies.

3.5 Models for Data Fusion in Potential Landslide Identification

In practical applications, the identification of potential landslide hazards is a complex task that influences by multiple factors (Zhang et al., 2018). These factors are often reflected through different data sources. We can roughly divide heterogeneous data into four categories: image data, time series data, structured data, and textual data. Given this heterogeneity, data fusion is essential for the accurate identification of potential landslides. Since heterogeneous data differ in feature scale, spatial resolution, and data modality, deep learning models are increasingly utilized to automatically extract nonlinear and high-order feature interactions across data sources, offering significant advantages over conventional statistical fusion techniques. In landslide applications, deep learning-based data fusion can integrate multi-modal inputs such as Sentinel-1 InSAR deformation, rainfall time series, and terrain derivatives for regional-scale susceptibility mapping or real-time early warning.

Deleted: RNNs, LSTMs, and GRUs are also effective for identifying anomalous patterns in sequential data (Zhang et al., 2022a). In potential landslide identification, these models process time series inputs to learn normal temporal dynamics and trends. When new data deviates significantly from the normal patterns learned by the model, such deviations can be flagged as anomalies. However, these models are primarily used for time series data, performing data cleaning by predicting future values of the sequence. For instance, if displacement measurements exhibit abrupt deviations while rainfall remains within historical norms, the model detects such discrepancies by comparing observed values with predictions based on learned temporal dependencies.

Deleted: Data fusion is essential for the accurate identification of potential landslides. In order to better identify potential landslides, data fusion is essential.

Figure 5. The role of deep learning models in data fusion. (a) Classification of heterogeneous data for potential landslide identification. (b) Schematic of general graph and more complex graphs. (c) Schematic of the fundamental Transformer architecture.

Due to the non-Euclidean and topologically complex nature of landslide-related terrain, conventional CNN-based models are limited in representing irregular spatial dependencies. Graph Neural Networks (GNNs) have emerged as powerful architectures to model such relationships by representing spatial entities (e.g., slope units, grid cells, or sensor nodes) as graph nodes and their geospatial or topological interactions as edges (Scarselli et al., 2008; Ying et al., 2018; Zeng et al., 2022).

In landslide identification, GNNs enable explicit modeling of spatial connectivity and geological adjacency, allowing the propagation of geomorphic and hydrological information across neighboring

Deleted: Since the features, scales, and resolutions of heterogeneous data are all different, currently, the powerful feature learning ability of deep learning models is often utilized to automatically capture the nonlinear relationships and high-order interaction information among these heterogeneous data.

Deleted: Due to the complex non-Euclidean structural characteristics of the geological environment, topographic data and their spatial relationships related to landslide hazards, conventional methods such as CNNs have difficulty in handling these relationships. As a neural network architecture for processing graph-structured data, graph neural networks (GNNs) can effectively model such spatial relationships (Ying et al., 2018; Zeng et al., 2022). They can treat the nodes in the geographical space (such as different geographical location points) and their connection relationships (such as the distance between adjacent nodes, terrain undulations, etc.) as the structure of a graph for processing.

support feature interaction between different types of nodes through the message passing mechanism, thereby eliminating redundancy and mutual exclusivity among data sources and enabling dynamic fusion of multi-modal features (Zhang et al., 2024d; Zhao et al., 2024b). By passing and aggregating information across nodes, GNNs can also conduct a detailed analysis of various heterogeneous data in local areas. This capability allows GNNs to capture subtle geological structural changes and detect localized anomalies in monitoring data, providing advantages for analyzing local features and early signs of potential landslide movements.

units. For example, Kuang et al. (2022) proposed an innovative landslide forecasting model based on GNNs, in which graph convolutions are employed to aggregate spatial correlations among different monitoring sites. Ren et al. (2025) introduced a novel GNN framework with conformal prediction (GNN-CF) for landslide deformation interval forecasting, addressing the limitations of conventional models in handling predictive uncertainty.

According to the differences in message passing and aggregation methods, GNNs have derived various variants. For example, [Graph Convolutional Network](#) (GCN) is generated by generalizing the convolutional operation to graph-structured data (Kipf and Welling, 2016; Sharma et al., 2022; Wang et al., 2020a), and [Graph Attention Network](#) (GAT) dynamically weights the importance of neighboring nodes by introducing the attention mechanism (Veličković et al., 2017; Yuan et al., 2022; Zhou and Li, 2021). The emergence of these new architectures makes GNN variants more targeted than conventional GNNs and suitable for modeling heterogeneous relationships. Currently, they are often used for weighted analysis of the impacts of different geographical factors on landslides (Kuang et al., 2022; Li et al., 2025; Zhang et al., 2024e).

As highlighted in Section 3.2, the Transformer's self-attention mechanism and modular architecture make it a universal framework for processing sequential data and enabling multimodal fusion (see Fig. 5).

In this context, the core advantage of the Transformer lies in its ability to integrate diverse input data (e.g., satellite imagery, GPS time series, and geological maps). It achieves this by employing independent embedding layers to convert each modality into a unified vector representation, which is then fused through the self-attention mechanism. This mechanism computes the interactions and correlations among all elements across different modalities, thereby enabling the model to capture cross-modal dependencies and extract joint feature representations within a unified framework. This capability makes the Transformer particularly suitable for landslide studies (Li et al., 2025). For example, Piran et al. (2024) enhanced short-term precipitation forecasting by applying transfer learning with a pre-trained Transformer model. Zhang et al. (2024e) incorporated Transformer modules to build a graph-Transformer model that integrates global contextual information for the generation and analysis of Landslide Susceptibility Maps (LSMs).

4 Deep Learning for Potential Landslide Identification: Applications

The preceding sections have laid the groundwork by discussing the data prerequisites and model architectures fundamental to deep learning in potential landslide research. Building upon that foundation, this section turns to the practical applications of deep learning for identifying potential landslides across diverse real-world scenarios.

Given that landslides are triggered by different dominant factors, the mechanisms, data characteristics, and monitoring strategies vary substantially among different types. To provide a systematic and targeted analysis, this section organizes the applications according to four major

Deleted: By learning a large amount of landslide potential cases, GNNs can discover the general patterns and rules of landslides, thus having good generalization ability. When facing new and unseen regions or data, GNNs can predict and assess the potential landslides in those regions based on the knowledge they have already learned.

Deleted: graph convolutional network

Deleted: graph attention network

Deleted: Transformer is also composed of stacked encoders and decoders (see Fig. 5). However, unlike other architectures, the Transformer architecture introduces the self-attention mechanism (Zhao et al., 2021a), which is a crucial innovation. This enables the Transformer to automatically calculate a weight vector for each position in the input sequence based on the relationship between this position and other positions, so as to represent the importance of this position in the entire sequence. Such a weight vector can be regarded as the "attention distribution" of each position in the input sequence, that is, the model determines which positions in the sequence to focus on. By considering all positions in the input sequence simultaneously, Transformer is able to calculate the correlations between each position and other positions in the sequence in parallel (Esser et al., 2021; Huang and Chen, 2023; Zerveas et al., 2021), rather than processing them step by step like CNNs or RNNs. Transformer can also convert multimodal data for different types of data, it transforms them into vector representations via different embedding layers. At a into a unified vector representation through different embedding layers. Subsequently, through the use of the self-attention mechanism and multilayer neural networks, these vectors are fused and feature representations are extracted, enabling the model to process and integrate data from various modalities within the same model framework (Lv et al., 2023; Tang et al., 2022).

triggering categories: rainfall-induced landslides, earthquake-induced landslides, human activity-induced landslides, and multi-factor-induced landslides (see Fig. 6). For each category, we briefly outline its geological characteristics, summarize representative deep learning applications, and discuss model adaptability and monitoring considerations. This structure allows for a comprehensive understanding of how deep learning frameworks can be tailored to the unique challenges posed by different landslide-inducing mechanisms.

4.1 Application of Deep Learning in the Identification of Rainfall-induced Landslides

Rainfall stands as the predominant global trigger for landslides. Intense and short-duration rainfall events (lasting from a few hours to several days) often induce shallow landslides (Ma and Wang, 2024), whereas prolonged rainfall (lasting from several weeks to months) can lead to deeper and larger landslides, with depths ranging from 5 to 20 meters (Casagli et al., 2023). Consequently, rainfall intensity, cumulative precipitation, and rainfall duration constitute critical triggering parameters for rainfall-induced landslides (Mondini et al., 2023).

Sustained or intense rainfall elevates slope unit weight and moisture content, alters pore water pressure regimes, and reduces shear strength via the principle of effective stress, thereby initiating surface instability. This hydro-mechanical coupling establishes a pronounced positive correlation between rainfall patterns and slope deformation (Li et al., 2022a).

Temporally, landslides exhibit both abrupt failure and delayed responses to rainfall. Pre-existing fractures act as preferential pathways for rainwater infiltration, yet the time required for percolation to reach slip zones introduces a hysteresis effect in slope deformation relative to precipitation events (Jiang et al., 2023; Liu et al., 2022b). During wet seasons, intense rainfall elevates groundwater tables, inducing fully saturated conditions in slope materials. This saturation amplifies shear strain rates, triggering rapid acceleration of landslide movement. Post-rainfall, groundwater levels remain elevated for extended periods (weeks to months), resulting in sustained but decelerated sliding velocities rather than complete stabilization. Consequently, despite concentrated rainfall during wet seasons, numerous landslides occur in subsequent dry periods (Ren et al., 2023), highlighting the delayed destabilization governed by lingering pore pressure dynamics. The hysteresis phase reflects progressive energy accumulation toward critical thresholds, while abrupt failure signifies rapid energy release during instability. This transition is typically characterized by a near-instantaneous shift from stable to unstable states when pore water pressures or soil moisture content exceed critical thresholds, with minimal intermediate deformation phases.

The spatial clustering of rainfall-induced landslides fundamentally arises from the coupling of moisture transport efficiency and geotechnical strength degradation within specific geomorphic units (Wicki et al., 2020; Yu et al., 2021). Spatially, such landslides are concentrated in high-rainfall zones and permeable lithologies, where hydro-mechanical feedback dominates slope destabilization. High-rainfall zones, characterized by frequent and intense precipitation, impose dual hydrological stresses on slopes: surface runoff erodes toe regions, while infiltration elevates pore pressures, collectively

Deleted: Potential landslide identification can be broadly categorized into two types. The first involves conducting a thorough investigation and assessment of the region following a significant rainfall or earthquake event, prior to the occurrence of a landslide. Remote sensing imagery is typically employed to observe and analyze various factors, including changes in topography, the expansion of surface cracks, and abnormal vegetation patterns, in order to identify potential landslides. This allows for the implementation of appropriate preventive and mitigation measures to avoid larger-scale landslides in the future.

involves analyzing previously occurred landslides to establish the relationship between triggering factors and landslide events, as well as to summarize the characteristics and patterns of landslides. Subsequently, retrospective analysis is performed to determine whether other potential landslides exist in the region. Meanwhile, continuous monitoring and evaluation of these potential landslide areas are conducted to prevent secondary landslides, while also providing valuable experience and a scientific basis for future landslide prediction.

investigate the various patterns underlying landslides triggered by different causes. Given that different types of landslides exhibit varying triggering mechanisms and conditions, the focus of identification should vary accordingly, prioritizing cost minimization while ensuring the accuracy of landslide identification.

focus on the analysis of the second type of potential landslides. Based on triggering factors, landslides can be classified into four categories: rainfall-induced landslides, earthquake-induced landslides, human activity-induced landslides, and multi factor-induced landslides. For each category of landslide, we provide a brief outline of its characteristics, discuss the applications of deep learning to different types of landslides, and examine the selection of monitoring methods for each category.

acting as external drivers of failure. Highly permeable strata, characterized by high porosity or interconnected fractures, accelerate water migration.

Combined with high permeability, these properties regulate water retention time within the slope and control the efficiency of pressure transmission, forming an internal transport network that facilitates landslide progression. The superposition of these mechanisms drives slope stability beyond critical thresholds over short timescales, culminating in abrupt failure.

What determines the critical threshold for rainfall-induced landslides? First, it is essential to define the critical threshold as the minimum amount of rainfall required to trigger a landslide under specific geological and topographic conditions (Naidu et al., 2018; Segoni et al., 2018b). This threshold is typically classified into two types: empirical thresholds, which are derived from statistical relationships between historical landslide events and rainfall data, and physically based thresholds, which incorporate hydromechanical models. Both approaches assume rainfall as the primary destabilizing driver. [To operationalize these thresholds for landslide prediction, monitoring systems integrate rain gauge and remote sensing to assess proximity to critical saturation levels \(Li et al., 2023; Piciullo et al., 2018\)](#). Moreover, the relationship between rainfall and landslides is often nonlinear and influenced by multiple factors. Deep learning models enable data-driven determination of context-specific critical rainfall values across diverse geological and topographical settings (Sala et al., 2021; Segoni et al., 2018a). For example, Badakhshan et al. (2025) incorporated the role of soil strength. Soares et al. (2022) utilized the U-Net model, reveals that the inclusion of a normalized vegetation index layer enhances model balance and significantly improves segmentation accuracy.

Following the development of rainfall threshold models, real-time monitoring of historically rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic recalibration of threshold parameters. This data assimilation enhances model adaptability to evolving hydrogeological conditions, ensuring operational relevance across heterogeneous terrains.

[While the physical mechanisms governing rainfall-induced slope failures have been well studied \(Arnone et al., 2011; Xiong et al., 2024\), recent advances in deep learning have significantly improved our ability to automatically identify and predict such events using heterogeneous data.](#)

[In the context of rainfall-induced landslides, spatiotemporal data \(e.g., rainfall intensity, cumulative precipitation, soil moisture, and slope displacement time series\) are the primary inputs. Deep learning models are selected according to data characteristics and task objectives. For instance, CNNs are commonly used to extract spatial rainfall-topography features and delineate susceptible zones from remote sensing images \(Peng and Wu, 2024; Xu et al., 2022a; Zhang et al., 2022b\). The](#)

Deleted: Monitoring systems thus integrate rain gauge and remote sensing to assess proximity to critical saturation thresholds (Li et al., 2023a; Piciullo et al., 2018).

encoder-decoder architecture, such as U-Net, enables pixel-level segmentation of rainfall-triggered landslides (Bhatta et al., 2025), with the inclusion of vegetation or soil moisture layers improving feature discrimination.

When temporal evolution is essential, RNNs and LSTMs effectively model sequential dependencies between rainfall and slope deformation (Biniyaz et al., 2022; Liu et al., 2025). These models are capable of learning hysteretic responses and time lags between precipitation events and ground displacement, enabling early warning through time-series forecasting.

Deep learning also facilitates data-driven rainfall threshold estimation. Instead of relying solely on empirical or physically based thresholds, models such as Fully Connected Neural Networks (FNNs) and attention-based transformers can derive adaptive rainfall thresholds from multi-year rainfall-landslide records, capturing regional nonlinearities (Wu et al., 2023).

4.2 Application of Deep Learning in the Identification of Earthquake-induced Landslides

Earthquakes not only trigger landslides during the seismic phase but also increase the susceptibility of post-earthquake landslides by weakening slope materials or forming co-seismic landslide deposits (Zhang et al., 2024a; Zhao et al., 2024a). On the one hand, the seismic vibrations can loosen the structure of the rock and soil mass on the slope, reducing the cementation between particles. The originally intact rock mass may develop cracks, and the density of the soil decreases, thus reducing the overall stability of the slope and making it more prone to landslides after the earthquake. On the other hand, the landslides that have occurred during the earthquake process will generate a large amount of deposits. These co-seismic landslide deposits are usually accumulated at positions such as the lower part of the slope or in valleys. They are in a relatively unstable state themselves, providing a material basis for subsequent re-sliding (Fan et al., 2019; Yao et al., 2024).

So, what is the temporal relationship between earthquake-induced landslides and seismic events? When an earthquake occurs, landslides may be triggered instantaneously by seismic ground motion, typically within seconds to minutes after the earthquake. Such landslides are mainly triggered by the peak ground acceleration (PGA) or peak ground velocity (PGV) of the seismic ground motion (Kargel et al., 2016; Zhao et al., 2023). When these values reach a certain level, they are sufficient to enable the rock and soil masses on the slope to overcome the frictional force and shear strength, thus leading to the occurrence of landslides.

Earthquake-induced landslides are typically concentrated in areas of high seismic intensity, particularly on steep slopes or within loose accumulations (Li et al., 2024). A fault is a place where the rocks in the earth's crust break and undergo relative displacement. Its existence destroys the continuity and integrity of the rock mass, making it more prone to deformation and damage under the action of

seismic forces. On the hanging wall of a reverse fault, the compressive force usually causes the rock blocks to break, and mountain landslides are likely to occur during seismic events. In contrast, on the footwall of a normal fault, the tensile force may cause the rock blocks to fracture and loosen, thus increasing the risk of mountain landslides.

The Newmark model is a commonly used basic model in the research of earthquake-induced landslides (Jibson, 2007; Newmark, 1965). Based on a simplified assumption, it regards the rock and soil masses on the slope as rigid blocks. When these rigid blocks are affected by seismic vibrations, they slide on the slope surface. By calculating the cumulative downhill displacement of the rigid blocks caused by the continuous increase of seismic vibrations, the stability of the slope under the action of an earthquake is measured. In other words, the greater the cumulative downslope displacement, the more unstable the slope is during the earthquake, and the higher the likelihood of a landslide occurring. However, Newmark's model exhibits critical limitations: (1) ~~dependence on oversimplified soil or rock strength assumptions and (2) inadequate integration of high-resolution seismic motion data.~~ Deep learning models address these gaps by processing massive real-time datasets, filtering noise from obscured remote sensing imagery (Wang et al., 2024b), and fusing seismic parameters with multispectral satellite data through cross-modal architectures (Dahal et al., 2024).

Within hours to days post-main shock, aftershocks can further destabilize already loosened slope structures, triggering secondary landslides clustered near co-seismic failure zones or aftershock epicenters (Sun et al., 2024b; Zhang et al., 2024c). These landslides are often concentrated around the mainshock-induced landslide bodies or the epicentral region of aftershocks, potentially forming disaster chains (e.g., landslides blocking rivers, leading to the formation and subsequent failure of landslide dams, which may trigger flooding). Even years post-earthquake, relic landslide deposits may reactivate through gradual creep or extreme climatic forcing, necessitating long-term spatiotemporal monitoring and dynamic risk reassessment (Jones et al., 2021; Li et al., 2021b). Moreover, earthquake-induced landslides are often associated with complex 3D topographic changes, which are difficult to capture using conventional 2D analyses. Deep learning frameworks enable precise reconstruction of landslide geometries by processing LiDAR-derived or UAV-derived 3D point clouds, capturing volumetric deformation patterns critical for mechanistic modeling.

Current applications of deep learning in earthquake-induced landslides primarily focus on semantic segmentation and change detection (Chowdhuri et al., 2022; Huang et al., 2023b; Liu et al., 2020a; Yang et al., 2024b). Liu et al. (2021b) employed graph isomorphism networks (GIN) to model long-range dependencies among high-level features extracted by ResNet-50. Zi et al. (2021) utilized a hybrid architecture combining graph attention networks (GATs) and channel self-attention mechanisms enhances the modeling of feature interdependencies from ResNet-50. Yang et al. (2023b) incorporated a spatial attention module to capture contextual dependencies and extract rich non-local

Deleted: D

Deleted: I


spatial features, proposing a novel semantic segmentation network, EGCN, to enhance landslide recognition accuracy.

Both physics-based and data-driven model calibration rely on earthquake-induced landslides inventories (Bhuyan et al., 2023; Tanyas, et al., 2017). Despite increased inventory availability, persistent issues of representativeness and completeness limit model generalizability and mechanistic fidelity.

4.3 Application of Deep Learning in the Identification of Human Activity-induced Landslides

Human activity-induced landslides typically arise unintentionally during construction activities, where initial slope equilibrium is disrupted by slope toe excavation or water infiltration into exposed fractures (Zhao et al., 2022). Compared to natural landslides, human activity-induced failures are often more controllable, underscoring the critical importance of pre-disaster identification for risk mitigation. These landslides are characterized by localized micro-deformation and subsurface disturbances, necessitating integrated monitoring systems that combine high-resolution remote sensing data with ground-based sensors for early anomaly detection.

Current predominant anthropogenic triggers include mining and loading (Ma et al., 2023a; Xu et al., 2022). These activities induce severe surficial damage, with stratigraphic movement and surface deformation leading to the formation of ground fissures. Such fissures compromise surface ecosystems and vegetation, while also penetrating subsurface mining cavities, posing grave risks to operational safety. Consequently, deep learning models are essential for automated ground fracture extraction to enable real-time hazard mapping and preventive interventions (Huangfu et al., 2024).

Figure 6. Selection of monitoring data for different types of landslides (a) Rain-induced landslides. (b) Earthquake-induced landslides. (c) Human activity-induced landslides. (d) Multi factor-induced landslides.

Moreover, the triggers of human activity-induced landslides are not only related to natural conditions but also closely associated with dynamic human activities. Consequently, their analysis necessitates the integration of multimodal and cross-scale data to capture coupled environmental and behavioral drivers (see Fig. 6). In engineering operations such as mining or road construction, factors including proximity to potential landslide zones, excavation depth, and slope angles must be rigorously evaluated through geohazard risk assessments. During excavation phases, geotechnical investigations are imperative to identify weak lithological strata or fracture-dense zones predisposed to instability. Continuous slope stability monitoring requires deploying IoT-enabled sensors to track temporal variations in surface fissure dimensions and subsurface displacement vectors. Monitoring data from these sensors can be integrated into deep learning models for multimodal analytics, enabling dynamic risk prediction and adaptive mitigation planning.

For spatial mapping and fissure extraction, CNNs and U-Net-based segmentation models have

demonstrated strong capability in identifying artificial slope features from optical or SAR imagery. CNN-based models can capture high-level semantic information on excavation scars, road cuts, and spoil heaps that indicate anthropogenic disturbance. Tao et al. (2024) employed the DRS-UNet model to investigate the use of deep learning for UAV-based crack identification, the developmental patterns of fissures, and the feedback interactions between underground mining progress and corresponding surface conditions. Wu et al. (2021) proposed the PUNet model for detecting and mapping localized rapid subsidence induced by mining activities. Meng et al. (2025) introduced the GF-Former model to achieve precise segmentation of ground fissures in remote sensing imagery.

When surface deformation time series or micro-displacement data from GB-InSAR, InSAR, or IoT sensors are available, RNN-based models are applied to model the temporal evolution of slope deformation (Han et al., 2022; Li et al., 2025). These models are particularly effective in detecting precursory motion trends caused by progressive excavation or loading activities.

To mitigate misclassification between anthropogenic signatures and natural terrain, integrating multispectral data with topographic elevation data enhances discriminative capacity (Meng et al., 2021; Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing artificially excavated steep slopes combined with fractured geological strata from structural maps provide preliminary evidence of human influence on landslide susceptibility (Lian et al., 2024).

In fact, landslides triggered solely by human activities are relatively rare. Single human activities are typically insufficient to independently trigger landslides, with natural factors often acting in conjunction with human activities. Furthermore, the prohibitive cost of acquiring subsurface disturbance data results in sparse historical landslide samples for specific engineering scenarios, limiting data-driven model training.

4.4 Application of Deep Learning in the Identification of Multi-factor-induced Landslides

Multi-factor-induced landslides result from the synergistic interaction of multiple natural and anthropogenic factors (Hao et al., 2023). Their triggering mechanisms involve the dynamic spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials through cumulative strength degradation. The formation of such landslides may involve various types of movements, including collapse, creep, and flow phenomena. They often exhibit characteristics such as complexity, nonlinearity, and suddenness. Therefore, their identification is markedly more complex compared to landslides triggered by singular factors.

Unlike simpler landslide types, identifying composite landslides necessitates multimodal data fusion to holistically assess predisposing conditions (Li, 2025; Yin et al., 2023). It further requires disentangling the nonlinear superposition effects of multiple factors and quantifying their relative contributions to failure initiation.

In multi-factor-induced landslides, earthquakes and rainfall often interact with other factors (Dou

Deleted:

Formatted: Highlight

Deleted:

Formatted: Highlight

Deleted: For instance, Dou et al. (2019) analyzed how earthquake intensity and rainfall metrics jointly modulate landslide susceptibility, deriving failure probabilities under varying parameter combinations.

Deleted:

Formatted: Highlight

et al., 2019). During heavy rainfall, the rate of landslide formation after an earthquake may be higher, possibly driven by the removal of excessively steep slopes, changes in vegetation and groundwater, and alterations in the mechanical properties of the bedrock and weathered layers in the earthquake-induced landslides canopy. This necessitates systematic investigation of multi-hazard coupling effects to quantify emergent risks.

In addition to constructing physics-based models that account for multiple factors and quantify their interactions through the solution of governing equations, GNNs can also be employed (Lei et al., 2025). These models are capable of capturing the spatiotemporal dependencies and nonlinear couplings among various triggering factors. For example, Ren et al. (2025) employed a GNN to capture and model the complex spatiotemporal dependencies among multiple monitoring locations during landslide deformation. Zeng et al. (2022) used the graphical representation capability of the GNN model to analyze environmental relationships within a study region, where nodes were defined as geographic units delineated by terrain surface approximations, and edges captured the interactions between node pairs. Zhang et al. (2024d) constructed a geographically constrained relational graph based on node features representing environmental similarity and employed a cosine similarity approach to associate landslides with their surrounding geographic environments.

Cross-attention mechanisms can also be integrated into the model to capture spatiotemporal dependencies among contributing factors. For instance, Hu et al. (2025a) integrated global landslide feature vectors with local feature maps through a cross-attention mechanism to enhance the discriminative capability between landslides and background geomorphology. Another noteworthy fusion strategy is the gated fusion unit. Inspired by the gating structures in recurrent neural networks (Arevalo et al., 2017; Kumar and Vepa, 2020; Tsai et al., 2019), this mechanism learns dynamic weights (typically implemented through gating functions such as Sigmoid) to adaptively regulate the information flow of features from different modalities, thereby emphasizing salient features and suppressing noise. Compared with cross-attention, the gated fusion mechanism is generally more lightweight and provides an alternative approach for multimodal feature fusion (Yang et al., 2024a). For instance, Liu et al. (2022a) proposed a gated fusion unit module for multimodal remote sensing image semantic classification, enabling early fusion of heterogeneous modality features.

With the accumulation of new data and the dynamic variations in multi factor-induced landslides, regular model updates are critical to ensuring identification accuracy and adaptability. Existing studies predominantly apply deep learning methods based on comprehensive historical landslide datasets. However, when new data becomes available, a naive approach is to retrain the model from scratch, which is computationally inefficient and fails to capture the connections between new observations and historical knowledge. A common strategy from the machine learning literature to address this is fine-tuning, where a model pre-trained on a historical dataset is further trained on new data (Sualp and

Deleted: For instance,

Deleted: d

Deleted: In addition to the approach of constructing physics-based models that account for multiple factors, GNNs can be employed. These models represent landslide-prone areas as graph nodes, dynamically updating node states through spatiotemporal edges (Lei et al., 2025). Furthermore, cross-attention mechanisms can be integrated into the model to capture spatiotemporal dependencies among contributing factors. Alternatively, gated fusion units may be incorporated to dynamically adjust the weights of multi-modal features (Yang et al., 2024a).

Rezai, 2025). While this avoids full retraining, standard fine-tuning can still lead to catastrophic forgetting of previously learned patterns.

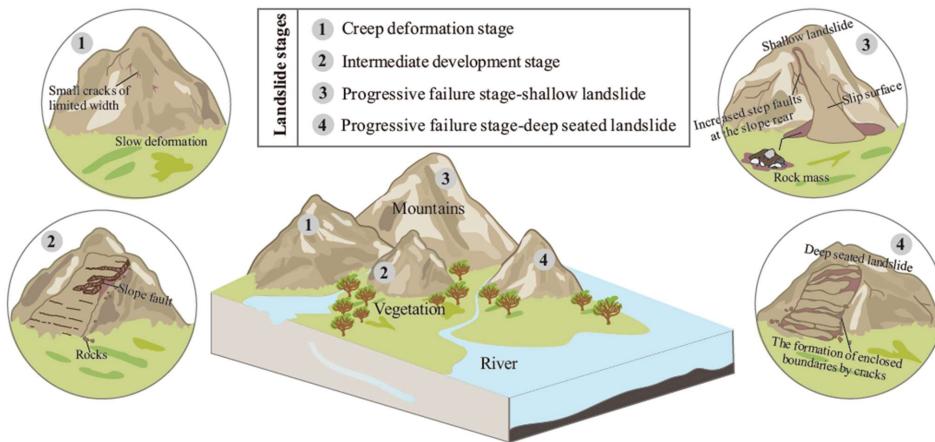
Formatted: Not Highlight

To better accommodate the dynamic nature of landslides, incremental learning methods offer a more advanced and promising solution (Huang et al., 2022a; Wang et al., 2024c). These methods enable the model to continuously learn from new data streams, gradually optimizing parameters while striving to preserve knowledge from previous tasks. Compared to models that require retraining or basic fine-tuning (Zhao et al., 2024c), models integrated with incremental learning can more effectively leverage historical data and adaptively incorporate new information, thereby enhancing long-term adaptability (Zhen et al., 2025).

4.5 Summary on the Applications of Deep Learning for Potential Landslide Identification

In general, the process of the applications of deep learning for potential landslide identification involves data collection, preprocessing, model construction, training, and validation, followed by deploying the trained model to identify potential landslides. Variations arise in data sources, trigger mechanisms, and model handling approaches specific to each landslide type. For rainfall-induced landslides, the model prioritizes rainfall-related data, with particular emphasis on simulating rainfall infiltration effects. Earthquake-induced landslides require prioritization of seismic data, including earthquake magnitude and post-seismic geological alterations. Human activity-induced landslides demand focused analysis of the relationship between engineering activities and geological changes. In contrast, multi factor-induced landslides necessitate models that integrate multiple triggering mechanisms and perform a comprehensive assessment of the cumulative effects of diverse contributing factors.

Whether landslides are triggered by rainfall or earthquakes, gravity remains the dominant driving force (She et al., 2024). The primary role of triggering factors lies in reducing slope stability or amplifying gravitational effects. Before and during landslide occurrence, deformation of slope geomaterials constitutes the most observable phenomenon (Zhou et al., 2025). This deformation often manifests as the formation and expansion of cracks.


Since landslide deformation is a dynamic process, ranging from initial minor changes to eventual large-scale sliding, each stage exhibits distinct characteristics. Therefore, landslides can be classified into distinct stages based on their deformation characteristics, enabling more accurate identification of impending disaster warning signals (Zhang et al., 2024b). Here, we categorize landslide evolution into three phases: (1) ~~creep~~ deformation stage, (2) ~~intermediate~~ development stage, and (3) ~~progressive~~ failure stage (see Fig. 7).

Deleted: Existing studies predominantly apply these methods based on comprehensive historical landslide datasets and employ batch learning theory for identification. However, when new data becomes available, the model must be retrained from scratch. This approach is not only highly inefficient but also fails to account for the connections between newly observed and historical landslides. To address this limitation, incremental learning methods offer a promising solution. These methods enable gradual parameter optimization through new data without retraining the existing model (Huang et al., 2022). Compared to conventional deep learning models, those integrated with incremental learning can more effectively leverage historical landslide data and adaptively learn from newly incorporated data, thereby better accommodating the dynamic nature of landslides.

Deleted: C

Deleted: I

Deleted: P

Figure 7. The development of landslides is divided into three stages with distinctive identification markers.

In the creep deformation stage, the slope gradually deforms under the influence of various factors, though surface manifestations may not be readily observable. Small, discontinuous cracks with limited width may emerge on the slope surface or crest. High-precision measuring instruments can detect localized minor displacements or deformations (Zhan et al., 2024). Vegetation on the slope may exhibit tilting or leaning patterns, with tree orientations potentially aligning in consistent directions. In the intermediate development stage, slope deformation progresses at a relatively stable rate. Initially observed surface cracks gradually widen and elongate, eventually interconnecting to form larger fracture networks. Crack widths may expand from a few centimeters to tens of centimeters or more, accompanied by displacement between soil or rock blocks. Monitoring systems can record slope displacements at a relatively constant rate. Slope deformation disrupts pre-existing groundwater flow paths, resulting in alterations to groundwater levels, volume, or quality within the landslide mass and surrounding areas. The progressive collapse stage predominantly reflects pre-sliding slope deformation characteristics and is critical for identifying imminent landslides (Cascini et al., 2022; Chen et al., 2024a). In progressive landslides, the potential sliding surface gradually evolves into a continuous failure plane. In sudden landslides, due to their abrupt evolutionary process, no distinct sliding surface is evident, making it necessary to rely on other indicators for identification. Physical phenomena such as crack widening and deepening, formation of enclosed boundaries by cracks and drainage holes, increased displacement at the rear edge of the slope, bulging at the slope's toe, increased seepage at the slope foot, an increase in slope angle, and reverse tilting of the slope collectively aid in identifying potential landslides.

Theoretically, the unique identification markers of each stage can serve as input features for deep

learning models, enabling direct classification of landslides into distinct stages. This facilitates the implementation of more targeted mitigation measures for each stage. Since slope changes ultimately result from displacement variations, we propose that a landslide identification method based on deformation characteristics as indicative factors holds great potential.

After classifying landslide stages based on deformation characteristics, different mitigation strategies should be applied to each phase. In the creep deformation stage, the focus should be placed on landslide triggering factors, with risk reduction measures such as drainage systems and slope cutting. In the intermediate development stage, monitoring should be intensified alongside temporary reinforcement measures. In the progressive collapse stage, emergency evacuation and stabilization of the potential landslide mass must be prioritized.

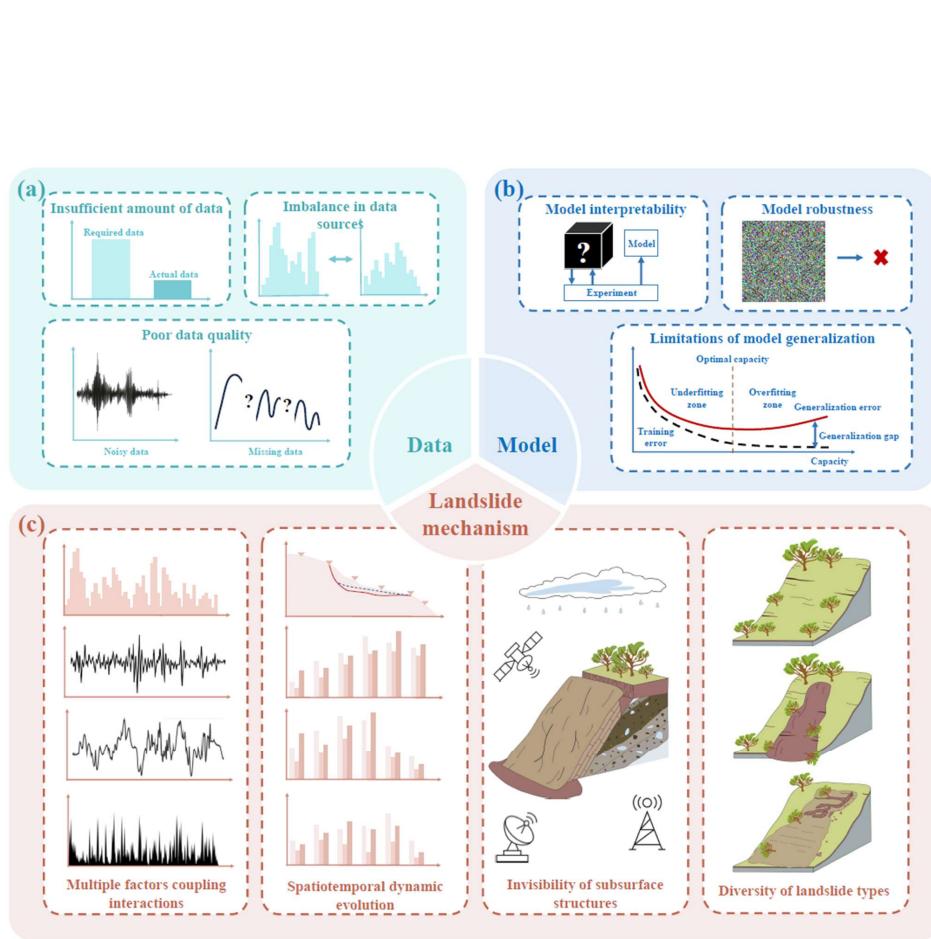
5 Deep Learning for Potential Landslide Identification: Challenges

5.1 Data Quality and Availability

In potential landslide identification, the performance of deep learning models is critically dependent on both data quality and availability (Alzubaidi et al., 2023; Gaidzik and Ramirez-Herrera, 2021; Whang et al., 2023). Low-quality or unreliable data directly impair the models' feature extraction capabilities, while insufficient data availability constrains their generalization capacity and real-time monitoring efficacy (Azarafza et al., 2021; Xiao and Zhang, 2023).

In the natural environment, non-landslide states are the norm, while the landslide state is relatively rare (see Fig. 8). This leads to the data collected mainly consisting of normal geological conditions, with much less data representing potential landslides. Such a severe skewness in the class distribution results in a serious imbalance in the data, that is, there is a huge difference in quantity between the minority class (landslide samples) and the majority class (non-landslide samples) (Jiang et al., 2024). Gupta and Shukla (2023) demonstrated that this data imbalance can cause learning algorithms to be biased towards the majority class, perform poorly on the minority class. This bias impedes the predictive ability of the learning algorithms, and ultimately lead to the final model's poor performance in identifying and predicting the minority class of landslide samples.

Even if some landslide inventory data have been collected, it is often difficult for these data to represent the real landslide situations within the study area. There may be issues such as omissions and biases, which greatly reduce the credibility of the results derived from these data (Woodard and Mirus, 2025; Zezere et al., 2017).


The presence of irrelevant input dimensions within the data necessitates larger training datasets for deep learning models to achieve satisfactory generalization performance. This can be attributed to the models' tendency to overfit to noise or spurious patterns within extraneous features, thereby failing to capture task-relevant characteristics. Such overfitting diminishes adaptability to unseen data, reduces prediction accuracy, and ultimately degrades data efficiency (D'Amario et al., 2022). As a

Deleted: In reality, the collection of landslide inventories faces many difficulties and it is hard to obtain them comprehensively and accurately. Thus, data scarcity is a common problem in the identification of potential landslide, especially in remote areas or regions with limited data accessibility. In such cases, deep learning models may suffer from overfitting or insufficient generalization ability due to a lack of samples (Kong et al., 2025; Lee et al., 2018). Although there are large-scale datasets such as the CAS landslide dataset, they are still insufficient compared with the data requirements of deep learning models (Xu et al., 2024).

result, deep learning models may exhibit inaccurate recognition or even failure when confronted with novel, complex scenarios outside the training distribution.

Different types of features vary in terms of data format, dimensions, and semantics, posing a key challenge in achieving high-level feature fusion for complementary and synergistic information integration (Liu et al., 2023b). For example, different sensor data exhibit significant differences in physical meaning and data structure (Ghorbanzadeh et al., 2022). Optical imagery (RGB matrices) reflects surface coverage but is susceptible to cloud interference. SAR data (complex phase) can capture deformation information but contains speckle noise. LiDAR point clouds (3D coordinates) provide high-precision terrain data but have limited coverage. Ground sensors (temporal scalars) enable real-time monitoring of subsurface parameters but are spatially sparse. Direct fusion of such multi-modal data induces feature space incompatibility, hindering cross-modal correlation extraction (Cai et al., 2021; Jin et al., 2022). Zhang et al. (2023) highlights that even remote sensing data exhibits high heterogeneity in imaging mechanisms, illumination conditions, and spectral characteristics.

Furthermore, multiple types of heterogeneous data will increase model complexity, potentially leading to prolonged training times, excessive computational demands, and overfitting risks. Simple combination of low-level detail features with high level semantic features may introduce contextual noise, compromising feature robustness and semantic coherence (Ji et al., 2020). When designing densely connected convolutional networks, a balance must be struck between model complexity and generalization capacity to mitigate overfitting on training data and ensure robust performance on unseen scenarios (see Fig. 8).

Figure 8. Challenges of deep learning in potential landslide identification. (a) Data quality and availability. (b) Limitations of deep learning models. (c) Complexity of landslide mechanisms.

5.2 Limitations of Deep Learning Models

Although deep learning models have achieved success in landslide identification (Meena et al., 2022; Su et al., 2021; Yi and Zhang, 2020), they are plagued by several inherent limitations. Among these, the most critical challenge is their lack of interpretability (Li et al., 2025), which refers to the difficulty in explaining the internal decision-making processes behind their predictions.

Deep learning models typically contain a large number of parameters and layers, making it challenging to intuitively interpret their internal weights and feature representations. It is often unclear whether the model's predictions are based on key geological features (e.g., slope gradient, lithological structure, fracture distribution) or influenced by irrelevant factors such as vegetation color or image noise. In potential landslide identification, a common issue is that models may mistakenly classify shadows or cloud cover as potential landslides, yet the underlying causes of such misclassifications remain opaque. When multimodal data are integrated for landslide detection, it is also challenging to

Deleted: they also have certain problems of their own

Deleted: The most critical challenge is interpretability (Li et al., 2025). This means that it is difficult to explain how these models achieve these results.

Deleted: which makes it difficult to intuitively interpret their internal weights and feature expressions

Deleted: It is unclear whether the model makes judgments based on key geological features (e.g., slope gradient, lithological structure, fracture distribution), or relies on irrelevant factors (e.g., vegetation color or image noise).

Deleted: In the identification of potential landslides, the most common situation is that the model may misjudge the shadow or cloud cover in a certain area as potential landslides, but it is impossible to trace the specific reasons.

clarify how the model weights different data sources.

The abstract features extracted by these models also lack a clear correspondence to interpretable geological indicators (see Fig. 8). Even when the model successfully identifies potential landslides based on texture patterns in remote sensing imagery, it remains unclear whether these patterns correspond to actual geomechanical parameters or physical processes.

Moreover, the probability values output by the models often lack physical meaning and therefore cannot effectively represent geological uncertainty. In practice, high-risk areas predicted by the model may conflate "uncertainty caused by data absence" with "risk of the geological conditions themselves" (Achu et al., 2023; Feng et al., 2022). Even experienced geologists may struggle to validate the geological plausibility of such features, thereby constraining the adoption of deep learning results in practical engineering applications.

Compounding these issues, there also exists an inherent inconsistency between data-driven feature learning and the complexity of real-world geological processes. Deep learning models tend to capture superficial statistical patterns rather than the governing physical mechanisms that are generalizable across different regions and environmental conditions. Consequently, in potential landslide identification, substantial manual annotation efforts are often required when transferring models across regions or sensors.

Despite the availability of diverse datasets, the lack of standardized, high-quality annotated benchmarks has severely hindered the development and fair comparison of deep learning models (Fang et al., 2024). Current models are often trained and validated on independent, task-specific datasets, thereby preventing an objective assessment of state-of-the-art performance and limiting our ability to evaluate their true generalization capacity across varying geological settings and triggering factors.

5.3.1 Multiple Factors Coupling Interactions

The formation of landslides involves the dynamic coupling of multiple factors such as geological structures, geotechnical mechanics, hydrological conditions, topography, meteorological factors, vegetation coverage, and human activities (Scheingross et al., 2020; Yi et al., 2022). Therefore, the triggering mechanisms are inherently multiscale, ranging from microscopic interparticle friction to macroscopic slope instability, and encompassing both transient dynamic responses and long-term temporal evolution (see Fig. 8).

For example, geotechnical materials and structural features of the geological setting influence soil stability, while hydrological factors such as rainfall infiltration and groundwater fluctuations alter soil mass properties, critically weakening shear strength due to pore pressure variations. Extreme meteorological events can alter slope stress regimes, while topographic parameters define geomorphic susceptibility thresholds. Human activities further influence slope stability. The interactions of these factors are highly nonlinear and temporally variable, making them difficult to characterize through

Deleted: When combining multimodal data for landslide identification, it is also challenging to explain how the model weights different data sources.

Deleted: the

Deleted: Even if the model can identify potential landslides through the texture patterns of remote sensing images, it cannot explain whether these patterns correspond to the actual geomechanical parameters.

Deleted: Since the probability values output by the model lack physical significance, they cannot reflect geological uncertainties.

Deleted: In practical applications, it often happens that the model's prediction of high-risk areas may not distinguish between the "uncertainty caused by data absence" and the "risk of the geological conditions themselves".

Deleted: Even geological experts struggle to verify the rationality of these features, thereby hindering the adoption of model results in practical engineering applications.

Deleted: In addition, there is also a certain contradiction between the data-driven feature learning exhibited by deep learning models and the complexity of the real world. This is because the models tend to capture the statistical patterns on the surface of the data rather than the physical mechanisms that are universal across different fields. However, the natural environment is characterized by infinite diversity, dynamism, and uncertainty. In the identification of potential landslides, this may lead to the need for repeatedly investing a large amount of annotation costs when deploying across regions and different sensors.

Deleted: Therefore, the triggering mechanisms encompass multiscale processes spanning microscopic interparticle friction to macroscopic slope instability, and transient dynamic responses to long-term temporal evolution (Yi et al., 2022).

Deleted: the type of geotechnical material and structural surfaces in geological conditions affect soil stability

Deleted: Human activities can also impact the stability of the slope.

Deleted: describe with

simple mathematical relationships.

This implies that changes in individual factors may induce cascading effects rather than linear responses. For example, rainfall-triggered **landslides** exhibit threshold-dependent behavior governed by coupled hydro-mechanical processes. When rainfall intensity or duration surpasses critical thresholds, **the** rapid rise in the groundwater table increases pore water pressure, thereby reducing effective stress and weakening shear strength according to the principle of effective stress. **Such** hydro-mechanical feedback often culminates in abrupt slope failure.

5.3.2 Spatiotemporal Dynamic Evolution

The inducing factors of landslides are not only extremely complex in spatial distribution but also highly dynamic in terms of time (Gao et al., 2023). This variability makes the research process of the landslide mechanism more difficult.

From the perspective of temporal dynamics, landslide formation is not instantaneous but evolves through prolonged stages, **each governed by distinct mechanisms (see Fig. 7). This dynamic progression across different timescales creates a fundamental modeling challenge: since the numerical simulation of long-term creep requires a long time step, while the dynamic process of short-term abrupt changes requires a time resolution in the microsecond level, it is difficult to establish a unified model for these two situations. This will further intensify the conflict of time scales.** In terms of spatial heterogeneity, the influence scope of landslides usually involves geological structures ranging from the microscopic structure of geotechnical particles to the regional scale. Moreover, there are differences in the stratum structure, slope morphology, vegetation coverage, water content, which makes the effects of the same inducing factor vary in different regions. For example, in loose soil layers, heavy rainfall may lead to shallow landslides, while on rocky slopes with well developed joints, earthquakes or water level fluctuations may trigger deep-seated landslides.

Through the interaction of factors at different temporal and spatial scales, positive or negative feedback affects the evolutionary trend of landslides, making the triggering, evolution and reactivation of landslides more complex and increasing the uncertainty of prediction (Haifeng et al., 2022; Li et al., 2023b).

5.3.3 Invisibility of Subsurface Structures

Landslide occurrence is intrinsically linked to subsurface structures. However, due to their invisibility, obtaining comprehensive geological information directly is challenging, adding significant complexity to the study of landslide mechanisms (Li et al., 2021c; Yan et al., 2020).

The occurrence of landslides is not merely linked to surficial phenomena but more critically governed by subsurface geological structures and hydrogeological characteristics. Subterranean features such as faults and folds directly influence the mechanical properties and stability of rock and soil masses. However, the inherent opacity of subsurface systems limits the accuracy of delineating

Deleted: failures

Deleted: a

Deleted: This

Deleted: . From initial deformation to eventual collapse, dynamic changes persist throughout the process, with distinct mechanisms governing each phase.

The early stage of a landslide is typically characterized by minor surface deformations or cracks, many of which remain imperceptible. The absence of conspicuous surface indicators results in the frequent omission of initial deformations, thereby heightening instability risks in later phases.

During the intermediate stage, accelerated deformation and pronounced surface fracturing emerge. At this stage, landslide dynamics grow increasingly complex, influenced by competing mechanical mechanisms. The evolving stress and strain fields complicate precise quantification of failure magnitude and velocity.

The terminal stage involves abrupt destabilization and catastrophic collapse, resulting in extensive surface disruption and mass displacement. Nonlinear dynamics dominate this phase, where rapid progression severely limits the feasibility of timely mitigation efforts.

Since the numerical simulation of long-term creep requires a long time step, while the dynamic process of short-term abrupt changes requires a time resolution in the microsecond level, it is difficult to establish a unified model for these two situations. This will further intensify the conflict of time scales.

these structures' spatial distribution, scale, and orientation through surface surveys or sparse borehole sampling, often yielding fragmented insights. Groundwater dynamics play a critical role in modulating slope stability. Fluctuations in the water table alter pore water pressure and effective stress within geomaterials, leading to a reduction in shear strength according to the principle of effective stress. Yet, direct monitoring of hydraulic head variations is inherently challenging, particularly in heterogeneous subsurface environments where localized aquifers exhibit divergent responses to hydrological forcing. Despite advancements in geophysical imaging and hydrological monitoring, the structural anisotropy and permeability heterogeneity of subsurface formations perpetuate ambiguities in mechanistic interpretations, risking oversights in landslide hazard assessments.

The invisibility of subsurface structures makes it difficult to monitor the specific processes and critical points of these dynamic changes in real time. Consequently, researchers can only infer these processes based on surface manifestations or limited monitoring data. This results in ambiguity and uncertainty in the analysis and interpretation of acquired indirect data. Even when model outputs exhibit qualitative agreement with field observations, the validity of underlying assumptions and parameterizations cannot be definitively verified.

5.3.4 Diversity of Landslide Types

Landslides exhibit considerable typological variation, with distinct instability mechanisms and evolutionary pathways governed by geological settings, triggering factors, and kinematic behaviors. Based on material composition, landslides can be classified into rock landslides, soil landslides, debris flow landslides, and composite landslides, each exhibiting distinct variations in physical properties as well as failure modes (McColl and Cook, 2024; Yu et al., 2024). For instance, rock landslides dominated by brittle fracture differ fundamentally from soil landslides governed by plastic shear. Kinematic categorization further distinguishes translational sliding, toppling, creep, and flow-like movements, each involving divergent mechanical processes and triggering thresholds (Shu et al., 2021).

Due to the diversity of landslide types, with each type having different characteristics and influencing factors, it is very difficult to establish a universal research model for the mechanism of landslides. For different types of landslides, corresponding models need to be established according to their specific characteristics and main influencing factors (Milledge et al., 2022). This not only requires a large amount of on-site observation data and experimental research to determine the model parameters, but also requires consideration of the applicability and limitations of the models.

Furthermore, cross-typological interactions among landslides amplify predictive challenges. For example, collapsed debris may transition into debris flows, a process that is governed by hydromechanical coupling and granular-fluid dynamics. Such multi-typological and multi-process couplings resist comprehensive characterization via single-theory frameworks. Instead, they necessitate multi-scale numerical simulations to accurately reproduce the entire process. Consequently,

the diversity of landslide phenomena requires interdisciplinary integration across solid mechanics, fluid dynamics, and multi-physics couplings. This task substantially increases the dimensionality and complexity of mechanistic studies, demanding hybrid modeling frameworks and cross-domain validation protocols.

6 Deep Learning for Potential Landslide Identification: Opportunities

6.1 Multi-source Data Fusion

Different methods specialize in identifying specific types of landslides, and no single method ~~can address~~ addressing all potential landslide types. Therefore, research on potential landslide identification should gradually shift from using single source data toward multi-temporal, multi-source integrated analysis (Chen et al., 2023b; Ge et al., 2022; Xu et al., 2021).

~~Multi-source data can comprehensively represent complex influencing factors by integrating various datasets, thereby enhancing information completeness. For instance, topographic and geological data reveal slope stability, remote sensing captures surface deformations, meteorological and hydrological data describe triggering conditions, and ground monitoring provides high-precision dynamic information. Integrating these data enables the construction of a complete feature system covering landslide-causing factors, prone environments, and inducing conditions, while avoiding the one-sidedness inherent to single source observations.~~

In the identification of potential landslides, multi-source data fusion specifically refers to the integration of raw data from different sources before feature extraction. ~~Each data source has unique strengths in resolution, coverage, and observation scale, and their fusion achieves complementarity and cross-verification (Liu et al., 2020b; Wang et al., 2021a). For example, combining satellite and UAV data allows both large-scale screening and detailed crack detection (Xia et al., 2021), while merging geological surveys with InSAR time-series deformation distinguishes stable slopes from creeping zones. This cross validation effectively reduces noise and misjudgment caused by data uncertainty.~~

~~Integrating multi-source data fusion with deep learning enables the coupling of data and model advantages (Chen et al., 2023; Zheng et al., 2021). The fusion reduces uncertainty through comprehensive data representation, while deep learning extracts nonlinear features and captures hidden correlations. Together, they improve the accuracy of potential landslide identification and promote a shift from experience-driven to intelligence-driven hazard monitoring. In the future, the development of cross modal pre-trained models and edge intelligence will further enhance real-time early warning and hazard simulation, forming the backbone of an integrated "aerial-space-ground-subsurface" monitoring framework.~~

~~To advance this paradigm, we advocate for a community-driven benchmark that embodies the multi-modal philosophy. Such a benchmark should include co-registered data from optical, SAR,~~

Deleted: is capable of

Deleted: By seamlessly integrating various methods, it is possible to maximize the identification of potential landslide and effectively address the challenges of identification.

Deleted: A single data source can hardly cover all the key elements. In contrast, multi-source data can comprehensively cover complex influencing factors by integrating various data sources, thus enhancing the integrity of information. For example, topographic and geological data can be used to reveal the stability of the slope structure, remote sensing data can capture surface deformations and vegetation anomalies, meteorological and hydrological data can identify the external dynamic conditions that trigger landslides, and ground monitoring data can provide high-precision real-time dynamic information. By integrating these data, a complete feature system including landslides causing factors, landslide-prone environment, and inducing factors can be constructed, avoiding the one-sidedness of information caused by a single data source.

Deleted: Since different data sources have their own advantages in terms of resolution, coverage, and observation scale, the fused data can complement and verify each other (Liu et al., 2020b; Wang et al., 2021).

Deleted: For example, by integrating satellites and UAVs (Xia et al., 2021), the combination of high and low resolution data can be achieved. This enables the macroscopic screening of potential hazard areas and the microscopic identification of subtle surface cracks. By fusing the static stratum data from geological surveys with the time-series data of surface deformation monitored by InSAR, the combination of static and dynamic data is realized, which can distinguish between stable slopes and areas with potential creeping deformation. By combining surface cracks with abnormal vegetation indices, the combination of direct and indirect indicators is achieved, allowing for a more accurate positioning of potential slip surfaces. This complementarity reduces the uncertainty of the results.

Deleted: The combination of multi-source data fusion and deep learning is essentially a deep coupling of data advantages and model advantages (Chen et al., 2023a; Zheng et al., 2021). The former fills information gaps and reduces uncertainties by integrating diverse heterogeneous data, while the latter unleashes the potential of data through automated feature engineering and nonlinear modeling. This integration improves the overall performance of the monitoring system.

LiDAR, DEM, and ground-based sensors, reflecting the integrated monitoring reality. Establishing this benchmark is a crucial step toward translating data fusion capabilities into reliable and reproducible AI solutions for global landslide risk reduction.

6.2 Model Ensemble

Model performance depends significantly on the nature of tasks, data characteristics, and specific requirements. Despite its ability to capture specific feature dimensions, a single deep learning model is susceptible to limited generalization, model bias, and overfitting when confronted with data noise and scene heterogeneity (Kavzoglu et al., 2021; Lv et al., 2022). Given these differences, model ensemble provides an effective approach to optimization and generalization.

In the identification of potential landslides, model ensemble essentially achieves a synergistic effect through the aggregation of diversity. While avoiding the limitations and vulnerabilities of individual models, it also unleashes the complementary potential of multiple models through designed mechanisms (Zhou et al., 2022).

This approach can be implemented through several pathways. Feature-level integration involves processing different data features with specialized models and fusing the results. A more common tactic is heterogeneous model combination, which refers to combining various types of models to improve the accuracy of potential landslide identification. Each model can exert its advantages in different feature spaces (Fang et al., 2021), thus forming a powerful predictive combination. A prominent example is the CNN-LSTM hybrid, which capitalizes on CNNs' spatial feature extraction and LSTMs' temporal dependency modeling, making it particularly suited for rainfall-terrain coupled landslide prediction (Gao et al., 2024). Furthermore, advanced architectures like stacking enable deeper model coupling. For instance, Guo et al. (2024) employed a stacked framework integrating 1D-CNN, RNN, and LSTM to form a CRNN-LSTM ensemble, achieving significant performance gains.

Therefore, model ensemble is not a mere technical aggregation but a systematic solution to core challenges like poor generalization, feature bias, and learning from small samples. It transforms the local advantages of multiple models into a global optimum at the system level, achieving comprehensive breakthroughs in identification accuracy and engineering applicability. It is important to note, however, that these performance gains come with increased computational cost and complexity, a necessary trade-off in practice.

6.3 Knowledge-data Dually Driven Paradigm for Potential Landslide Identification

Conventional knowledge-driven methods, grounded in physical mechanics, rely on precise prior knowledge of geological structures and hydrological conditions. However, landslides are influenced by complex, coupled multi-factor interactions, characterized by high parameter uncertainty, making it challenging to comprehensively address such scenarios (Roy and Saha, 2019). Purely data-driven approaches, though capable of extracting patterns from massive datasets, lack physical interpretability,

Deleted: Each deep learning model excels in specific tasks or data types but may underperforming in others.

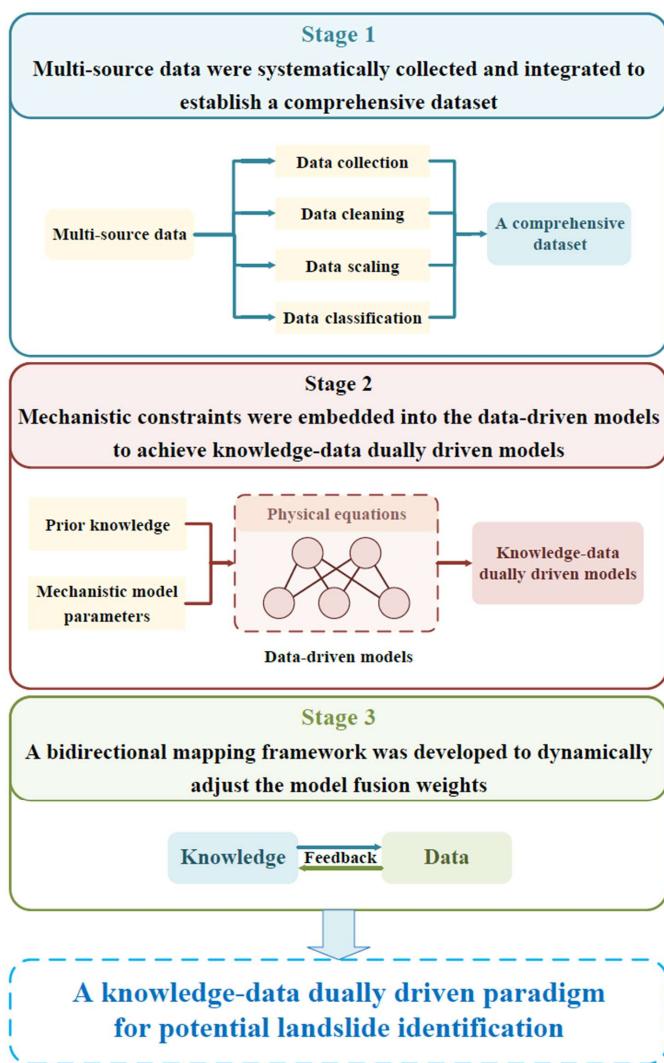
Deleted: Model ensemble offers an effective approach to model optimization.

Deleted: Although a single deep learning model can capture features in specific dimensions, it is often limited by data noise, model bias, or scene heterogeneity, and frequently faces problems such as insufficient generalization ability, overfitting, or one sided decision-making (Kavzoglu et al., 2021; Lv et al., 2022). In the identification of potential landslides, model ensemble essentially achieves a synergistic effect through the aggregation of diversity. While avoiding the limitations and vulnerabilities of individual models, it also unleashes the complementary potential of multiple models through designed mechanisms (Zhou et al., 2022).

Deleted: Various feature integrations can be carried out during the identification process. This method processes different data features through different models and integrates them at the final stage to obtain more comprehensive identification results. The combination of heterogeneous models is a more commonly used approach, which refers to combining various types of models to improve the accuracy of potential landslide identification. Each model can exert its advantages in different feature spaces (Fang et al., 2021), thus forming a powerful predictive combination. For example, when landslide identification requires the joint analysis of spatial and temporal features, the CNN-LSTM hybrid model is a widely adopted solution (Gao et al., 2024). This integration leverages the spatial perception capability of CNNs and the temporal dependency modeling of LSTMs, making it particularly suitable for rainfall-terrain coupled landslide prediction. Hybrid architectures can further integrate multiple models. For example, Guo et al. (2024) utilized a stacked approach integrating a 1D-CNN, RNN, and LSTM network can form a CRNN-LSTM ensemble model.

Deleted: In the identification of landslides, model ensemble is not simply a technical superposition, but a systematic solution to problems. By addressing core issues such as the insufficient generalization ability of a single model, one-sided features, and the deficiencies in small sample scenarios, this approach transforms the local advantages of multiple models into a system-level global optimum. Ultimately, it achieves comprehensive breakthroughs in identification accuracy and...

are susceptible to noise interference, and struggle to establish causal relationships in prediction outcomes (Qi et al., 2024). **A critical challenge and opportunity, therefore, lies in bridging the gap between data-driven predictive capabilities and a physically interpretable understanding of landslide processes.**


To bridge this critical gap, a fundamental shift towards a knowledge-data dually driven paradigm is imperative. This paradigm moves beyond simple combination to a deep integration, where physical principles actively constrain and inform the deep learning architecture. Future research should focus on developing novel frameworks capable of explicitly incorporating landslide typologies and physical laws. For instance, Physics-Informed Neural Networks (PINNs) can embed governing equations directly into the model's loss function, while knowledge graphs can structurally represent the complex relationships between predisposing factors and failure mechanisms.

This synergy, aligned with future concepts like "digital twin" and "smart Earth," establishes a closed-loop "theory-practice" verification mechanism (Chen et al., 2024c; Das et al., 2024; Huang et al., 2023a; Riahi et al., 2022; Sukor et al., 2019; Zhao et al., 2024e). The ultimate goal is to advance landslide identification from mere pattern recognition towards physically interpretable, causally-aware forecasting, thereby transforming geological hazard mitigation from passive response to proactive prevention.

The overall workflow of this knowledge-data dually driven paradigm for potential landslide identification is conceptually summarized in Fig. 9.

In the first stage, multi-source data are systematically collected, organized, and integrated into a comprehensive dataset through feature extraction and spatiotemporal alignment (see Fig. 9).

Deleted: Building upon future disaster prevention concepts, such as "digital twin" and "smart Earth", we propose a knowledge-data dually driven paradigm for potential landslide identification (Chen et al., 2024b; Das et al., 2024; Huang et al., 2023a; Riahi et al., 2022; Sukor et al., 2019; Zhao et al., 2024e). The core concept involves leverage knowledge analysis to gain a deeper understanding of landslide triggering mechanisms and mechanical behaviors, while combine data-driven methods to extract potential landslide features and patterns from monitoring data and historical records. This synergy establishes a closed-loop "theory-practice" verification mechanism, thereby advancing the transformation of geological hazard mitigation from passive response to proactive prevention.

Figure 9. Flowchart of knowledge-data dually driven paradigm for potential landslide identification.

In potential landslide identification, data sources are highly diverse. Thus, the initial step involves systematically collecting heterogeneous data and centralizing their management. This approach mitigates the limitations of single-source data, facilitating a more comprehensive and robust characterization of potential landslides. These data include high-dimensional feature information essential for data-driven models, as well as key parameters necessary for knowledge-based analytical frameworks.

Furthermore, since multi-source data may differ in acquisition time and spatial coverage, spatiotemporal alignment is required to ensure interoperability and facilitate synergistic analysis. The collected data should be preprocessed, including cleaning (removal of errors and outliers), standardization (unit homogenization), and classification (based on data type or region). These steps ensure that the data retain inherent physical significance and maintain consistent scales before being input into models, thereby establishing a reliable foundation for subsequent knowledge-data integration.

If the objective extends beyond identifying landslide locations to distinguishing their types and scales, the dataset must encompass information that captures these characteristics. During dataset construction, feature extraction and annotation methods should be chosen to emphasize these distinctions. For instance, combining texture analysis of remote sensing imagery with slope and aspect analysis of terrain data enables the extraction of features correlated with landslide types and magnitudes. Explicit annotations indicating each sample's landslide type and scale are incorporated during labeling.

In the second stage, mechanistic constraints are integrated into the data-driven model to achieve knowledge-data dually driven fusion.

Prior knowledge can be derived from external sources, including domain expertise, historical records, and physical principles, or mechanistic models can be employed to preprocess raw monitoring data. These outputs serve as a foundation for initializing parameters in data-driven models, which is crucial because the choice of initial values substantially affects both training efficiency and final performance (Cui et al., 2024; Liu et al., 2023a; Ma and Mei, 2025).

Beyond initialization, knowledge embedding involves translating landslide physics into model constraints to guide learning and optimization (Dahal and Lombardo, 2025; Liu et al., 2024). At the architectural level, physical equations can be structurally encoded as differentiable network layers, enabling gradient-based optimization. At the loss function level, physical constraints can be directly incorporated into the training objective, ensuring that predictions remain consistent with established principles.

A representative example of this paradigm is the PINN framework (Raissi et al., 2019). PINNs embed governing equations (such as partial differential equations describing slope hydrology or stress-strain processes) into the neural network training objective, thereby constraining the learning process with domain knowledge. This approach not only reduces dependence on large annotated datasets but also enhances interpretability and cross-regional transferability (Karniadakis et al., 2021). Although applications of PINNs in landslide research remain limited (Moeinuddin et al., 2023), they provide a promising avenue for bridging purely data-driven approaches with physically grounded mechanisms (Wu et al., 2022).

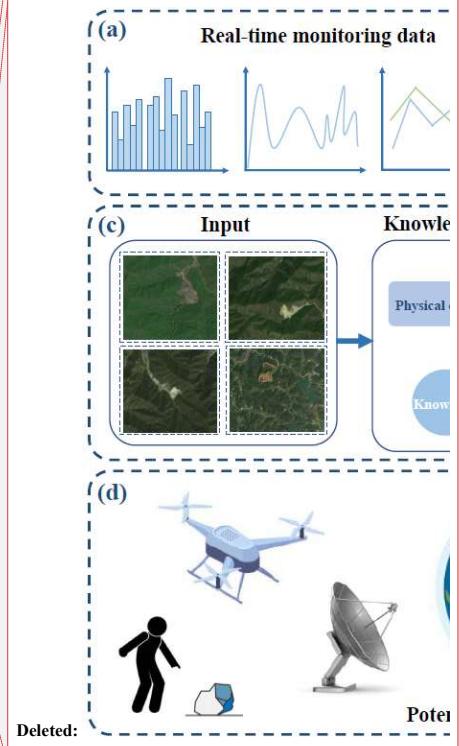
In the third phase, a bidirectional mapping framework for knowledge-data dually driven is established to facilitate dynamic collaborative optimization.

The model's performance is periodically evaluated using real-time monitoring data, enabling the reverse calibration of knowledge analysis parameters to achieve bidirectional feedback. Through this feedback mechanism, knowledge-data dually driven models undergo mutual verification and iterative refinement.

In practical applications, model validation can be performed using historical or field monitoring data to evaluate predictive accuracy. While optimizing model parameters for region-specific geological conditions, fusion weights are dynamically adjusted based on different stages of landslide evolution. During the initial phase of a landslide, knowledge analysis is more effective in identifying underlying factors and developmental trends, justifying a higher fusion weight for knowledge components. Conversely, during the acceleration or sliding phases, real-time monitoring data becomes crucial, and data-driven models excel at capturing dynamic changes, requiring a higher weight for data-driven components. This dynamic weight adjustment knowledge maximizes the integration of mechanistic and data-driven approaches, enhancing the model's ability to identify landslide risks across different evolutionary stages.

The knowledge-data dually driven paradigm, operating through an iterative "theory-guided data assimilation and data informed theoretical refinement" mechanism, has advanced potential landslide identification from empirical reliance to scientifically quantifiable methodologies.

Furthermore, the spatial analysis capabilities of **Geographic Information System (GIS)** were integrated into the practical identification workflow, enabling the study area to be partitioned into distinct landslide risk categories. This risk stratification considers the combined influence of region-specific factors, ensuring scientifically robust and practically viable classifications.


In high-risk areas, detailed investigations can be carried out using spatial remote sensing technologies, including high resolution optical satellite image change detection and InSAR deformation analysis. Multi-temporal high-resolution optical satellite imagery is analyzed using image change detection algorithms to identify anomalous surface alterations. SAR enables precise measurement of millimeter-scale surface displacements, facilitating early detection of slope deformation precursors. Then, UAVs and airborne LiDAR can then be employed for further identification of high-risk areas. High-resolution imagery can be acquired through UAV-mounted sensors. Image interpretation and analysis facilitate the identification of potential landslide indicators, including irregular slope geometries, soil loosening patterns, and anomalous vegetation growth. LiDAR enables the rapid acquisition of high-precision 3D point cloud data, which accurately captures topographic changes and penetrates vegetation canopies to reveal concealed ground surfaces, aiding

Deleted: Before model construction, prior knowledge can be derived from external sources, including domain expertise, historical data, and physical principles. Alternatively, mechanistic models may be employed to preprocess raw monitoring data. The outputs of mechanistic models or prior knowledge serve as a foundation for initializing parameters in data-driven models (Cui et al., 2024; Liu et al., 2023a; Ma and Mei, 2025). This is because, in data-driven models, the ... [13]

Deleted: g

Deleted: i

Deleted: s

Deleted: Figure 10. The process of potential landslide identification using a knowledge-data dually driven paradigm (a) Collection, organization, and analysis of real-time monitoring data. (b) Identification signals for different stages of landslides. (c) Construction and application of knowledge-data dually driven models. (d) Identification of potential landslides.

in the detection of vegetation-obscured landslide precursors. Ground-based observations are subsequently integrated to validate findings and acquire real-time dynamic information of landslide bodies. A comprehensive assessment, combining expert knowledge with field-derived practical experience, is conducted to finalize the screening and confirmation of potential landslides. Critical parameters including location, scale, hazard level, and potential sliding direction are determined, providing an empirical foundation for subsequent landslide mitigation strategies.

Deleted: (see Fig. 10)

7 Conclusions

In this review, we summarized the latest advancements in the applications of deep learning models for potential landslide identification, as well as the challenges and opportunities for the future. First, we examined seven major heterogeneous data sources available for potential landslide identification. Next, we introduced the five common roles of deep learning models in potential landslide identification. Then, we reviewed the applications of deep learning in the analysis of four typical landslides and discussed the common-used monitoring methods. Finally, we analyzed the current challenges and future research directions.

Several key conclusions are drawn. (1) Single data source often fail to ensure the accuracy of identification, whereas multisource data fusion can address this issue to some extent. (2) Deep learning models have been widely applied in potential landslide identification, but they still face challenges in terms of interpretability and complexity. Future research should focus on further enhancing the structure and algorithms of deep learning models. (3) Knowledge-data dually driven paradigm for potential landslide identification can improve its accuracy on both theoretical and practical levels.

Author contributions. **P.J.** and **G.M.** conceived the review topic and designed the systematic literature framework, defining key research domains for potential landslide identification. **P.J.** conducted the comprehensive literature search and categorized them into thematic sections. **Z.M.** provided senior supervision, refining the logical structure. **G.M.** conducted the final review and editing, enhancing clarity and coherence. All authors approved the submitted version and agree to be accountable for all aspects of the work.

Deleted: Pan Jiang

Deleted: Gang Mei

Deleted: Pan Jiang

Deleted: Zhenjing Ma

Deleted: Gang Mei

Competing interests. All authors declare they have no financial interests, and the authors have no relevant financial or non-financial interests to disclose.

Acknowledgements. This project was funded by the China Postdoctoral Science Foundation (Grant No. 2024T170859) and the Postdoctoral Fellowship Program of CPSF (Grant No. GZB20230685), and the

National Natural Science Foundation of China (Grant No. 42277161).

References

Abellan, A., Jaboyedoff, M., Oppikofer, 1185 T., and Vilaplana, J. M.: Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event, *Nat. Hazards Earth Syst. Sci.*, 9, 365–372, <https://doi.org/10.5194/nhess-9-365-2009>, 2009.

Achu, A. L., Aju, C. D., Di Napoli, M., Prakash, P., Gopinath, G., Shaji, E., and Chandra, V.: Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis, *Geosci. Front.*, 14(6), 101657, <https://doi.org/10.1016/j.gsf.2023.101657>, 2023.

Akosah, S., Gratchev, I., Kim, D. H., and Ohn, S. Y.: Application of artificial intelligence and remote sensing for landslide detection and prediction: Systematic review, *Remote Sens.*, 16(16), 2947, <https://doi.org/10.3390/rs16162947>, 2024.

Al-Najjar, H.A., Pradhan, B., 2021. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks. *Geoscience Frontiers* 12, 625–637.

Al-Najjar, H.A., Pradhan, B., Sarkar, R., Beydoun, G., Alamri, A., 2021. A new integrated approach for landslide data balancing and spatial prediction based on generative adversarial networks (gan). *Remote Sensing* 13, 4011.

Alam, M., Vidyaratne, L., Iftekharuddin, K.M., 2018. Novel deep generative simultaneous recurrent model for efficient representation learning. *Neural Networks* 107, 12–22.

Almalki, R., Khaki, M., Saco, P. M., and Rodriguez, J. F.: Monitoring and mapping vegetation cover changes in arid and semi-arid areas using remote sensing technology: a review, *Remote Sens.*, 14, 5143, <https://doi.org/10.3390/rs14205143>, 2022.

Alzubaidi, L., Bai, J., Al-Sabaawi, A., Santamaría, J., Albahri, A.S., Al-Dabbagh, B.S.N., Fadhel, M.A., Manoufali, M., Zhang, J., Al-Timemy, A.H., et al., 2023. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. *Journal of Big Data* 10, 46.

Amankwah, S.O.Y., Wang, G., Gnyawali, K., Hagan, D.F.T., Sarfo, I., Zhen, D., Nooni, I.K., Ullah, W., Duan, Z., 2022. Landslide detection from bitemporal satellite imagery using attention-based deep neural networks. *Landslides* 19, 2459–2471.

Arevalo, J., Solorio, T., Montes-y-Gomez, M., and Gonzalez, F. A.: Gated multimodal units for information fusion, *arXiv Prepr. arXiv:1702.01992*, <https://doi.org/10.48550/arXiv.1702.01992>, 2017.

Arjovsky, M., Chintala, S., and Bottou, L.: Wasserstein GAN, *arXiv preprint arXiv:1701.07875*, <https://doi.org/10.48550/arXiv.1701.07875>, 2017.

Commented [pj1]: To clearly indicate newly added references, only these have been marked in this file. Please note that in the revised manuscript, the entire reference list has been fully revised and uniformly formatted.

Arnone, E., Noto, L. V., Lepore, C., and Bras, R. L.: Physically-based and distributed approach to analyze rainfall-triggered landslides at watershed scale, *Geomorphology*, 133(3–4), 121–131, <https://doi.org/10.1016/j.geomorph.2011.03.019>, 2011.

Askarinejad, A., Akca, D., and Springman, S. M.: Precursors of instability in a natural slope due to rainfall: A full-scale experiment, *Landslides*, 15(9), 1745–1759, <https://doi.org/10.1007/s10346-018-0994-0>, 2018.

Aslam, B., Zafar, A., Khalil, U., 2021. Development of integrated deep learning and machine learning algorithm for the assessment of landslide hazard potential. *Soft Computing* 25, 13493–13512.

Azrafza, M., Azrafza, M., Akgun, H., Atkinson, P.M., Derakhshani, R., 2021. Deep learning-based landslide susceptibility mapping. *Scientific reports* 11, 24112.

Badakhshan, E., Vaunat, J., Scarfone, R., 2025. A hysteretic water retention model incorporating the soil deformability and its application to rainfall-induced landslides. *Computers and Geotechnics* 178, 106912.

Bai, D., Lu, G., Zhu, Z., Tang, 1220 J., Fang, J., and Wen, A.: Using time series analysis and dual-stage attention-based recurrent neural network to predict landslide displacement, *Environ. Earth Sci.*, 81, 509, <https://doi.org/10.1007/s12665-022-10637-w>, 2022.

Bhatt, N., Bhatt, N., Prajapati, P., Sorathiya, V., Alshathri, S., and El-Shafai, W.: A data-centric approach to improve performance of deep learning models, *Sci. Rep.*, 14(1), 22329, <https://doi.org/10.1038/s41598-024-73643-x>, 2024.

Bhatta, S., Roy, A., and Shahandashti, M.: Land cover classification using U-Net for calibration of rainfall-induced slope susceptibility maps, in: *International Conference on Transportation and Development 2025*, 439–448, <https://doi.org/10.1061/9780784486191.039>, 2025.

Bhuyan, K., Tanya, s, H., Nava, L., Puliero, S., Meena, S.R., Floris, M., VanWesten, C., Catani, F., 2023. Generating multi-temporal landslide inventories through a general deep transfer learning strategy using hr eo data. *Scientific reports* 13, 162.

Biniyaz, A., Azmoon, B., Sun, Y., and Liu, Z.: Long short-term memory based subsurface drainage control for rainfall-induced landslide prevention, *Geosci.*, 12(2), p.64, <https://doi.org/10.3390/geosciences12020064>, 2022.

Cai, H., Chen, T., Niu, R., Plaza, A., 2021. Landslide detection using densely connected convolutional networks and environmental conditions. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 14, 5235–5247.

Cai, W., Lan, F., Huang, X., Hao, J., Xia, W., Tang, R., Feng, P., Li, H., 2024. Generative probabilistic prediction of precipitation induced landslide deformation with variational autoencoder and gated recurrent unit. *Frontiers in Earth Science* 12, 1394129.

Casagli, N., Intrieri, E., Tofani, V., Gigli, G., Raspini, F., 2023. Landslide detection, monitoring and

prediction with remote-sensing techniques. *Nature Reviews Earth & Environment* 4, 51–64.

Cascini, L., Scoppettuolo, M.R., Babilio, E., 2022. Forecasting the landslide evolution: from theory to practice. *Landslides* 19, 2839–2851.

Chandra, N., Sawant, S., and Vaidya, H.: An efficient U-Net model for improved landslide detection from satellite images, *PFG J. Photogramm. Remote Sens. Geoinf. Sci.*, 91, 1, 13–28, <https://doi.org/10.1007/s41064-023-00232-4>, 2023.

Chang, F., Dong, S., Yin, H., Ye, X., Wu, Z., Zhang, W., and Zhu, H.: 3D displacement time series prediction of a north-facing reservoir landslide powered by InSAR and machine learning, *J. Rock Mech. Geotech. Eng.*, <https://doi.org/10.1016/j.jrmge.2024.10.033>, 2025.

Chen, C. and Fan, L.: CNN-LSTM-attention deep learning model for mapping landslide susceptibility in Kerala, India, *ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.*, 10, 25–30, <https://doi.org/10.5194/isprs-annals-X-3-W1-2022-25-2022>, 2022.

Chen, H., He, Y., Zhang, L., Yang, W., Liu, Y., Gao, B., Zhang, Q., Lu, J., 2023a. A multi-input channel u-net landslide detection method fusing sar multisource remote sensing data. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 17, 1080 1215–1232.

Chen, H., Zeng, Z., and Tang, H.: Landslide deformation prediction based on recurrent neural network, *Neural Process. Lett.*, 41, 2, 169–178, <https://doi.org/10.1007/s11063-013-9318-5>, 2015.

Chen, J.X., Liu, H.D., Guo, Z.F., Liu, J.J., Feng, L.Y., Liu, S., 2024a. Research on failure mechanism of landslide with retaining-wall-like locked segment and instability prediction by inverse velocity method. *Scientific Reports* 14, 21359.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, *IEEE Trans. Pattern Anal. Mach. Intell.*, 40, 4, 834–848, <https://doi.org/10.1109/TPAMI.2017.2699184>, 2017.

Chen, L., Ge, X., Yang, L., Li, W., Peng, L., 2023b. An improved multi-source data-driven landslide prediction method based on spatiotemporal knowledge graph. *Remote Sensing* 15, 2126.

Chen, M., Qian, Z., Boers, N., Creutzig, F., Camps-Valls, G., Hubacek, K., Claramunt, C., Wilson, J.P., Nativi, S., Jakeman, A.J., et al., 2024b. Collaboration between artificial intelligence and earth science communities for mutual benefit. *nature geoscience* 17, 949–952.

Chen, X., Yao, X., Zhou, Z., Liu, Y., Yao, C., and Ren, K.: DRs-UNet: a deep semantic segmentation network for the recognition of active landslides from InSAR imagery in the three rivers region of the Qinghai–Tibet Plateau, *Remote Sens.*, 14, 8, 1848, <https://doi.org/10.3390/rs14081848>, 2022.

Cheng, G., Han, J., 2016. A survey on object detection in optical remote sensing images. *ISPRS journal of photogrammetry and remote sensing* 117, 11–28.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.,

2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

Choi, J., Kim, S., Jeong, Y., Gwon, Y., Yoon, S., 2021. Ilvr: Conditioning method for denoising diffusion probabilistic models. arXiv preprint arXiv:2108.02938.

Chowdhuri, I., Pal, S.C., Saha, A., Chakrabortty, R., Roy, P., 2022. Mapping of earthquake hotspot and coldspot zones for identifying potential landslide hotspot areas in the himalayan region. *Bulletin of Engineering Geology and the Environment* 81, 257.

Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Coluzzi, R., Perrone, A., Samela, C., Imbrenda, V., Manfreda, S., Pace, L., and Lanfredi, M.; [Rapid landslide detection from free optical satellite imagery using a robust change detection technique, Sci. Rep., 15, 1, 4697, https://doi.org/10.1038/s41598-025-89542-8, 2025.](#)

Croitoru, F.A., Hondu, V., Ionescu, R.T., Shah, M., 2023. Diffusion models in vision: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 45, 10850–10869.

Cui, H., Tong, B., Wang, T., Dou, J., Ji, J., 2024. A hybrid data-driven approach for rainfall-induced landslide susceptibility mapping: Physically-based probabilistic model with convolutional neural network. *Journal of Rock Mechanics and Geotechnical Engineering*.

Dahal, A., Lombardo, L., 2025. Towards physics-informed neural networks for landslide prediction. *Engineering Geology* 344, 107852.

Dahal, A., Tanya, s, H., Lombardo, L., 2024. Full seismic waveform analysis combined with transformer neural networks improves coseismic landslide prediction. *Communications Earth & Environment* 5, 75.

Dai, K., Feng, Y., Zhuo, G., Tie, Y., Deng, J., Balz, T., Li, Z., 2022. Applicability analysis of potential landslide identification by insar in alpine-canyon terrain—case study on yalong river. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 15, 2110–2118.

Dai, K., Li, Z., Xu, Q., Tomas, R., Li, T., Jiang, L., Zhang, J., Yin, T., Wang, H., 2023. Identification and evaluation of the high mountain upper slope potential landslide based on multi-source remote sensing: the aniangzhai landslide case study. *Landslides* 20, 1405–1417.

D'Amario, V., Srivastava, S., Sasaki, T., Boix, X., 2022. The data efficiency of deep learning is degraded by unnecessary input dimensions. *Frontiers in Computational Neuroscience* 16, 760085.

Das, P., Posch, A., Barber, N., Hicks, M., Duffy, K., Vandal, T., Singh, D., Werkhoven, K.v., Ganguly, A.R., 2024. Hybrid physics-ai outperforms numerical weather prediction for extreme precipitation nowcasting. *npj Climate and Atmospheric Science* 7, 282.

Deijns, A.A., Bevington, A.R., van Zadelhoff, F., de Jong, S.M., Geertsema, M., McDougall, S., 2020. Semi-automated detection of landslide timing using harmonic modelling of satellite imagery,

bucknghorse river, canada. International Journal of Applied Earth Observation and Geoinformation 84, 101943.

Ding, X., Zhang, X., Han, J., and Ding, G.: Scaling up your kernels to 31x31: Revisiting large kernel design in CNNs, in: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 11963–11975, 2022, <https://doi.org/10.48550/arXiv.2203.06717>.

Dong, Z., An, S., Zhang, J., Yu, J., Li, J., Xu, D., 2022. L-unet: A landslide extraction model using multi-scale feature fusion and attention mechanism. Remote Sensing 14, 2552.

Dou, J., Yunus, A.P., Tien Bui, D., Sahana, M., Chen, C.W., Zhu, Z., Wang, W., Pham, B.T., 2019. Evaluating gis-based multiple statistical models and data mining for earthquake and rainfall-induced landslide susceptibility using the lidar dem. Remote Sensing 11, 638.

Dubovik, O., Schuster, G. L., Xu, F., Hu, Y., Bosch, H., Landgraf, J., and Li, Z.: Grand challenges in satellite remote sensing, Front. Remote Sens., 2, 619818, 2021, <https://doi.org/10.3389/frsen.2021.619818>.

Dun, J., Feng, W., Yi, X., Zhang, G., Wu, M., 2021. Detection and mapping of active landslides before impoundment in the baihetan reservoir area (china) based on the time-series insar method. Remote Sensing 13, 3213.

Ebrahimi, M. S. and Abadi, H. K.: Study of residual networks for image recognition, in: Intell. Comput., Proc. 2021 Comput. Conf., Vol. 2, pp. 754–763, Springer Int. Publ., 2021, https://doi.org/10.1007/978-3-030-80126-7_53.

Ehsan, M., Anees, M. T., Bakar, A. F. B. A., and Ahmed, A.: A review of geological and triggering factors influencing landslide susceptibility: Artificial intelligence-based trends in mapping and prediction, Int. J. Environ. Sci. Technol., 1–36, 2025, <https://doi.org/10.1007/s13762-025-06741-6>.

Elman, J. L.: Finding Structure in Time, Cogn. Sci., 14(2), 179–211, 1990, https://doi.org/10.1207/s15516709cog1402_1.

Esser, P., Rombach, R., Ommer, B., 2021. Taming transformers for high-resolution image synthesis, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12873–12883.

Fahlstrom, P. G., Gleason, T. J., and Sadraey, M. H.: Introduction to UAV Systems, John Wiley & Sons, 2022.

Fang, B., Chen, G., Pan, L., Kou, R., and Wang, L.: GAN-based Siamese framework for landslide inventory mapping using bi-temporal optical remote sensing images, IEEE Geosci. Remote Sens. Lett., 18(3), 391–395, <https://doi.org/10.1109/LGRS.2020.2979693>, 2020.

Fan, B., Li, Y., Zhang, R., Fu, Q., 2020. Review on the technological development and application of uav systems. Chinese Journal of Electronics 29, 199–207.

Fan, X., Searingi, G., Korup, O., West, A.J., van Westen, C.J., Tanyas, H., Hovius, N., Hales, T.C.,

Formatted: Strikethrough

Jibson, R. W., Allstadt, K. E., et al., 2019. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. *Reviews of Geophysics* 57, 421–503.

Fang, B., Chen, G., Pan, L., Kou, R., Wang, L., 2020. Gan based siamese framework for landslide inventory mapping using bi-temporal optical remote sensing images. *IEEE Geoscience and Remote Sensing Letters* 18, 391–395.

Fang, C., Fan, X., Wang, X., Nava, L., Zhong, H., Dong, X., Qi, J., and Catani, F.: A globally distributed dataset of coseismic landslide mapping via multi-source high-resolution remote sensing images, *Earth Syst. Sci. Data*, 16(10), 4817–4842, <https://doi.org/10.5194/essd-16-4817-2024>, 2024.

Fang, C., Fan, X., Zhong, H., Lombardo, L., Tanyas, H., Wang, X., 2022. A novel historical landslide detection approach based on lidar and lightweight attention u-net. *Remote Sensing* 14, 4357.

Fang, Z., Wang, Y., Peng, L., Hong, H., 2021. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. *International Journal of Geographical Information Science* 35, 321–347.

Fan, X., Scaringi, G., Korup, O., West, A. J., van Westen, C. J., Tanyas, H., Hovius, N., Hales, T. C., Jibson, R. W., Allstadt, K. E., et al.: Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts, *Rev. Geophys.*, 57(2), 421–503, <https://doi.org/10.1029/2018RG000626>, 2019.

Farmakis, I., DiFrancesco, P. M., Hutchinson, D. J., and Vlachopoulos, N.: Rockfall detection using LiDAR and deep learning, *Eng. Geol.*, 309, 106836, <https://doi.org/10.1016/j.enggeo.2022.106836>, 2022.

Feng, H., Miao, Z., and Hu, Q.: Study on the uncertainty of machine learning model for earthquake-induced landslide susceptibility assessment, *Remote Sens.*, 14(13), 2968, <https://doi.org/10.3390/rs14132968>, 2022.

Feng, X., Du, J., Wu, M., Chai, B., Miao, F., Wang, Y., 2024. Potential of synthetic images in landslide segmentation in data-poor scenario: a framework combining gan and transformer models. *Landslides* 21, 2211–2226.

Fidan, S., Tanyas, H., Akbas, A., Lombardo, L., Petley, D. N., and Gorum, T.: Understanding fatal landslides at global scales: A summary of topographic, climatic, and anthropogenic perspectives, *Nat. Hazards*, 120(7), 6437–6455, <https://doi.org/10.1007/s11069-024-06487-3>, 1345 2024.

Fiorucci, F., Giordan, D., Santangelo, M., Dutto, F., Rossi, M., and Guzzetti, F.: Criteria for the optimal selection of remote sensing optical images to map event landslides, *Nat. Hazards Earth Syst. Sci.*, 18, 405–417, <https://doi.org/10.17605/OSF.IO/GD2U9>, 2018.

Franceschetti, G., Lanari, R., 2018. Synthetic aperture radar processing. CRC press.

Fu, S., de Jong, S. M., Hou, X., de Vries, J., Deijns, A., and de Haas, T.: A landslide dating framework

using a combination of Sentinel-1 SAR and-2 optical imagery. *Eng. Geol.*, 329, 107388, <https://doi.org/10.1016/j.enggeo.2023.107388>, 2024.

Gaidzik, K., Ramirez-Herrera, M.T., 2021. The importance of input data on landslide susceptibility mapping. *Scientific reports* 11, 19334.

Gao, B., He, Y., Chen, X., Chen, H., Yang, W., Zhang, L., 2024. A deep neural network framework for landslide susceptibility mapping by considering time-series rainfall. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*.

Gao, H., Gao, Y., Li, B., Yin, Y., Yang, C., Wan, J., Zhang, T., 2023. The dynamic simulation and potential hazards analysis of the yigong landslide in tibet, china. *Remote Sensing* 15, 1322.

Ge, Q., Li, J., Wang, X., Deng, Y., Zhang, K., and Sun, H.: LiteTransNet: An interpretable approach for landslide displacement prediction using transformer model with attention mechanism, *Eng. Geol.*, 331, 107446, <https://doi.org/10.1016/j.enggeo.2024.107446>, 2024.

Ge, X., Yang, Y., Chen, J., Li, W., Huang, Z., Zhang, W., Peng, L., 2022. Disaster prediction knowledge graph based on multi-source spatio-temporal information. *Remote Sensing* 14, 1214.

Geiger, A., Liu, D., Alnegheimish, S., Cuesta-Infante, A., and Veeramachaneni, K.: TadGAN: Time series anomaly detection using generative adversarial networks, in: *2020 IEEE Int. Conf. Big Data (Big Data)*, 33–43, IEEE, <https://doi.org/10.1109/BigData50022.2020.9378139>, 2020.

Ghorbanzadeh, O., Shahabi, H., Crivellari, A., Homayouni, S., Blaschke, T., Ghamisi, P., 2022. Landslide detection using deep learning and object-based image analysis. *Landslides* 19, 929–939.

Ghorbanzadeh, O., Xu, Y., Zhao, H., Wang, J., Zhong, Y., Zhao, D., Zang, Q., Wang, S., Zhang, F., Shi, Y., and Zhu, X. X.: The outcome of the 2022 landslide4sense competition: advanced landslide detection from multisource satellite imagery. *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, 15, 9927–9942, <https://doi.org/10.1109/JSTARS.2022.3220845>, 2022.

Gidon, J.S., Borah, J., Sahoo, S., Majumdar, S., Fujita, M., 2023. Bidirectional lstm model for accurate and real-time landslide detection: A case study in mawiongrim, meghalaya, india. *IEEE Internet of Things Journal* 11, 3792–3800.

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversarial nets. *Advances in neural information processing systems* 27.

Graves, A.: Long short-term memory. in: *Supervised Sequence Labelling with Recurrent Neural Networks*, 37–45, https://doi.org/10.1007/978-3-642-24797-2_4, 2012.

Gui, J., Sun, Z., Wen, Y., Tao, D., Ye, J., 2021. A review on generative adversarial networks: Algorithms, theory, and applications. *IEEE transactions on knowledge and data engineering* 35, 3313–3332.

Guo, D., Yang, X., Peng, P., Zhu, L., and He, H.: The intelligent fault identification method based on multi-source information fusion and deep learning. *Sci. Rep.*, 15(1), 6643.

[https://doi.org/10.1038/s41598-025-90823-5, 2025.](https://doi.org/10.1038/s41598-025-90823-5)

Guo, W., Ye, J., Liu, C., Lv, Y., Zeng, Q., Huang, X., 2024. An approach for predicting landslide susceptibility and evaluating predisposing factors. International Journal of Applied Earth Observation and Geoinformation 135, 104217.

Guo, Y., Liu, Y., Georgiou, T., and Lew, M. S.: A review of semantic segmentation using deep neural networks, *Int. J. Multimed. Inf. Retr.*, 7(2), 87–93, <https://doi.org/10.1007/s13735-017-0141-z>, 2018.

Gupta, A., Paul, S., Bhattacharya, A., and Jain, P.: A framework for realistic paired dataset generation for deep learning-based restoration of satellite images, in: *Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS)*, 6997–7002, <https://doi.org/10.1109/IGARSS53475.2024.10640440>, 2024.

Gupta, S.K., Shukla, D.P., 2023. Handling data imbalance in machine learning based landslide susceptibility mapping: a case study of mandakini river basin, north-western himalayas. *Landslides* 20, 933–949.

Guzzetti, F., Gariano, S.L., Peruccacci, S., Brunetti, M.T., Marchesini, I., Rossi, M., Melillo, M., 2020. Geographical landslide early warning systems. *Earth-Science Reviews* 200, 102973.

Haifeng, H., Ronghua, X., Beibei, Z., Wu, Y., Yonghuang, D., Zhihong, D., Qing, L., Qinglin, Y., Guodong, Z., 2022. The bedding rock landslide identification in the head area of the three gorges reservoir combined with disaster pregnant mechanism and comprehensive remote sensing method. *Acta Geodaetica et Cartographica Sinica* 51, 2056.

Hamaguchi, R., Fujita, A., Nemoto, K., Imaizumi, T., and Hikosaka, S.: Effective use of dilated convolutions for segmenting small object instances in remote sensing imagery, in: *2018 IEEE Winter Conf. Appl. Comput. Vis. (WACV)*, pp. 1442–1450, <https://doi.org/10.1109/WACV.2018.00162>, 2018.

Han, J., Yang, H., Liu, Y., Lu, Z., Zeng, K., and Jiao, R.: A deep learning application for deformation prediction from ground-based InSAR, *Remote Sens.*, 14(20), p.5067, <https://doi.org/10.3390/rs14205067>, 2022.

Han, L., Duan, P., Liu, J., and Li, J.: Research on landslide trace recognition by fusing UAV-based lidar dem multi-feature information. *Remote Sens.*, 15, 4755, <https://doi.org/10.3390/rs15194755>, 2023.

Han, N., Miao, W., Li, M., Mohamad Ismail, M. A., Hu, Q., Duan, L., and Tang, J.: Integrating multi-source monitoring data and deep convolutional autoencoder technology for slope failure pattern recognition. *Front. Earth Sci.*, 13, 1531857, <https://doi.org/10.3389/feart.2025.1531857>, 2025.

Hao, Y., Liu, C., Zhang, W., Liu, X., Liu, G., 2023. Landslide risk evaluation: rainfall and blast-induced potential soil landslides in an expressway area underneath a railway tunnel, guangzhou, china. *Bulletin of Engineering Geology and the Environment* 82, 420.

Hasanah, S. A., Pravitasari, A. A., Abdullah, A. S., Yulita, I. N., and Asnawi, M. H.: A deep learning review of ResNet architecture for lung disease identification in CXR image, *Appl. Sci.*, 13(24),

13111, <https://doi.org/10.3390/app132413111>, 2023.

He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 770–778, <https://doi.org/10.1109/CVPR.2016.90>, 2016.

Hinton, G. E., and Salakhutdinov, R. R.: Reducing the dimensionality of data with neural networks, *Science*, 313(5786), 504–507, <https://doi.org/10.1126/science.1127647>, 2006.

Ho, J., Jain, A., Abbeel, P., 2020. Denoising diffusion probabilistic models. *Advances in neural information processing systems* 33, 6840–6851.

Ho, J., Saharia, C., 1165 Chan, W., Fleet, D.J., Norouzi, M., Salimans, T., 2022. Cascaded diffusion models for high fidelity image generation. *Journal of Machine Learning Research* 23, 1–33.

Hochreiter, S., and Schmidhuber, J.: Long Short-Term Memory, *Neural Comput.*, 9(8), 1735–1780, <https://doi.org/10.1162/neco.1997.9.8.1735>, 1997.

Hu, F., Gao, X. M., Li, G. Y., and Li, M.: DEM extraction from worldview-3 stereo-images and accuracy evaluation, *Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.*, 41, 327–332, <https://doi.org/10.5194/isprs-archives-XLI-B1-327-2016>, 2016.

Hu, W., Sun, G., Zeng, X., Tong, B., Wang, Z., Wu, X., and Song, P.: Hierarchical cross attention achieves pixel precise landslide segmentation in submeter optical imagery, *Sci. Rep.*, 15(1), p. 21933, <https://doi.org/10.1038/s41598-025-08695-8>, 2025.

Hu, X., Sun, Z., Wang, Z., Huang, X., Zhou, M., He, S., and Xu, W.: InSAR-based deep learning prediction model for multi-type landslides displacement and failure time in Zigui, Three Gorges Area, China, *Landslides*, 1–15, <https://doi.org/10.1007/s10346-025-02613-9>, 2025.

Huang, F., Ye, Z., Zhou, X., Huang, J., Zhou, C., 2022. Landslide susceptibility prediction using an incremental learning bayesian network model considering the continuously updated landslide inventories. *Bulletin of Engineering Geology and the Environment* 81, 250.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected convolutional networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708.

Huang, H., Lim, T.C., Wu, J., Ding, W., Pang, J., 2023a. Multitarget prediction and optimization of pure electric vehicle tire/road airborne noise sound quality based on a knowledge-and data-driven method. *Mechanical Systems and Signal Processing* 197, 110361.

Huang, H., Xue, R., Zhao, B., Yi, W., Deng, Y., Dong, Z., Liu, Q., Yi, Q., and Zhang, G.: The bedding rock landslide identification in the head area of the Three Gorges Reservoir combined with disaster pregnant mechanism and comprehensive remote sensing method, *Acta Geod. Cartogr. Sin.*, 51(10), 2056, 2022.

Huang, J., Song, W., Liu, T., Cui, X., Yan, J., and Wang, X.: Submarine landslide identification based on improved DeepLabv3 with spatial and channel attention, *Remote Sens.*, 16(22), 4205,

Formatted: Indent: Left: 0 cm, First line: 0.83 ch

[https://doi.org/10.3390/rs16224205, 2024.](https://doi.org/10.3390/rs16224205)

Huang, L., Luo, R., Liu, X., and Hao, X.: Spectral imaging with deep learning, *Light Sci. Appl.*, 11, 61, [https://doi.org/10.1038/s41377-022-1435 00743-6, 2022.](https://doi.org/10.1038/s41377-022-1435-00743-6)

Huang, R., Chen, T., 2023. Landslide recognition from multi-feature remote sensing data based on improved transformers. *Remote Sensing* 15, 3340.

Huang, R., Jiang, L., Shen, X., Dong, Z., Zhou, Q., Yang, B., and Wang, H.: An efficient method of monitoring slow-moving landslides with long-range terrestrial laser scanning: a case study of the Dashu landslide in the Three Gorges Reservoir Region, China, *Landslides*, 16, 839–855, [https://doi.org/10.1007/s10346-018-1118-6, 2019.](https://doi.org/10.1007/s10346-018-1118-6)

Huangfu, W., Qiu, H., Cui, P., Yang, D., Liu, Y., Ullah, M., and Kamp, U.: Automated extraction of mining-induced ground fissures using deep learning and object-based image classification, *Earth Surf. Process. Landforms*, 49(7), 2189–2204, [https://doi.org/10.1002/esp.5824, 2024.](https://doi.org/10.1002/esp.5824)

Huang, Y., Zhang, J., He, H., Jia, Y., Chen, R., Ge, Y., Ming, Z., Zhang, L., Li, H., 2023b. Mast: An earthquake-triggered landslides extraction method combining morphological analysis edge recognition with swin-transformer deep learning model. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 17, 2586–2595.

Huangfu, W., Qiu, H., Cui, P., Yang, D., Liu, Y., Ullah, M., Kamp, U., 2024. Automated extraction of mining-induced ground fissures using deep learning and object-based image classification. *Earth Surface Processes and Landforms* 49, 2189–2204.

Hussain, M., Bird, J.J., Faria, D.R., 2019. A study on cnn transfer learning for image classification, in: *Advances in Computational Intelligence Systems: Contributions Presented at the 18th UK Workshop on Computational Intelligence, September 5-7, 2018, Nottingham, UK, Springer*. pp. 191–202.

Islam, Z., Abdel-Aty, M., Cai, Q., Yuan, J., 2021. Crash data augmentation using variational autoencoder. *Accident Analysis & Prevention* 151, 105950.

Isola, P., Zhu, J. Y., Zhou, T., and Efros, A. A.: Image-to-Image Translation with Conditional Adversarial Networks, in: *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, pp. 1125–1134, [https://doi.org/10.1109/CVPR.2017.632, 2017.](https://doi.org/10.1109/CVPR.2017.632)

Indian Space Research Organisation: NISAR – NASA-ISRO Synthetic Aperture Radar Mission. Available at: [https://www.isro.gov.in/Mission_GSLVF16_NISAR_Home.html, Accessed October 26, 2025, 2025.](https://www.isro.gov.in/Mission_GSLVF16_NISAR_Home.html)

Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.H., Loyer, A., Metzger, R., Pedrazzini, A., 2012. Use of lidar in landslide investigations: a review. *Natural hazards* 61, 5–28.

Janiesch, C., Zschech, P., Heinrich, K., 2021. Machine learning and deep learning. *Electronic markets* 31, 685–695.

Ji, S., Yu, D., Shen, C., Li, W., Xu, Q., 2020. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. *Landslides* 17, 1337–1352.

Jiang, T., Li, Y., Xie, W., Du, Q., 2020. Discriminative reconstruction constrained generative adversarial network for hyperspectral anomaly detection. *IEEE Transactions on Geoscience and Remote Sensing* 58, 4666–4679.

[Jiang, W., Xi, J., Li, Z., Zang, M., Chen, B., Zhang, C., and Zhu, W.: Deep learning for landslide detection and segmentation in highresolution optical images along the Sichuan-Tibet transportation corridor, *Remote Sens.*, 14, 5490, <https://doi.org/10.3390/rs14215490>, 2022.](https://doi.org/10.3390/rs14215490)

Jiang, X.d., Hou, T.s., Guo, S.l., Chen, Y., 2023. Influence of cracks on loess collapse under heavy rainfall. *Catena* 223, 106959.

Jiang, Y., Luo, H., Xu, Q., Lu, Z., Liao, L., Li, H., Hao, L., 2022. A graph convolutional incorporating gru network for landslide displacement forecasting based on spatiotemporal analysis of gnss observations. *Remote Sensing* 14, 1016.

Jiang, Y., Wang, W., Zou, L., Cao, Y., Xie, W.C., 2024. Investigating landslide data balancing for susceptibility mapping using generative and machine learning models. *Landslides*, 1–16.

[Jibson, R. W.: Regression models for estimating coseismic landslide displacement, *Eng. Geol.*, 91\(2–4\), 209–218, <https://doi.org/10.1016/j.enggeo.2007.01.013>, 2007.](https://doi.org/10.1016/j.enggeo.2007.01.013)

Jin, Y., Li, X., Zhu, S., Tong, B., Chen, F., Cui, R., Huang, J., 2022. Accurate landslide identification by multisource data fusion analysis with improved feature extraction backbone network. *Geomatics, Natural Hazards and Risk* 13, 2313–2332.

Jing, R., Duan, F., Lu, F., Zhang, M., Zhao, W., 2023. Denoising diffusion probabilistic feature-based network for cloud removal in sentinel-2 imagery. *Remote Sensing* 15, 2217.

Jones, N., Manconi, A., Strom, A., 2021. Active landslides in the rogun catchment, tajikistan, and their river damming hazard potential. *Landslides* 18, 3599–3613.

[Kačan, M., Turčinović, F., Bojanjac, D., and Bosiljevac, M.: Deep learning approach for object classification on raw and reconstructed GBSAR data, *Remote Sens.*, 14, 5673, <https://doi.org/10.3390/rs14225673>, 2022.](https://doi.org/10.3390/rs14225673)

Kang, X., Li, Y., Zhang, Y., Ma, N., Wen, L., 2024. Anomaly detection in concrete dam using memory-augmented autoencoder and generative adversarial network (memae-gan). *Automation in Construction* 168, 105794.

Kargel, J.S., Leonard, G.J., Shugar, D.H., Haritashya, U.K., Bevington, A., Fielding, E.J., Fujita, K., Geertsema, M., Miles, E., Steiner, J., et al., 2016. Geomorphic and geologic controls of geohazards induced by nepal's 2015 gorkha earthquake. *Science* 351, aac8353.

[Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., and Yang, L.: Physics-informed](https://doi.org/10.1016/j.jconrel.2023.105794)

machine learning, *Nat. Rev. Phys.*, 3(6), 422–440, <https://doi.org/10.1038/s42254-021-00314-5>, 2021.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T., 2020. Training generative adversarial networks with limited data. *Advances in neural information processing systems* 33, 12104–12114.

Kattenborn, T., Leitloff, J., Schiefer, F., Hinz, S., 2021. Review on convolutional neural networks (cnn) in vegetation remote sensing. *ISPRS journal of photogrammetry and remote sensing* 173, 24–49.

Kavzoglu, T., Teke, A., Yilmaz, E.O., 2021. Shared blocks-based ensemble deep learning for shallow landslide susceptibility mapping. *Remote Sensing* 13, 4776.

Kilgore, A., and Restrepo, C.: Integrating hyperspectral imaging, plant functional diversity, and soil-lithology to uncover mountainscape disturbance dynamics induced by landsliding, *Remote Sens.*, 17, 1806, <https://doi.org/10.3390/rs17111806>, 2025.

Kim, H.J., Lee, D., 2020. Image denoising with conditional generative adversarial networks (cgan) in low dose chest images. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 954, 161914.

Kingma, D.P., Mohamed, S., Jimenez Rezende, D., Welling, M., 2014. Semi-supervised learning with deep generative models. *Advances in neural information processing systems* 27.

Kingma, D.P., Welling, M., et al., 2013. Auto-encoding variational bayes.

Kipf, T. N., and Welling, M.: Semi-Supervised Classification with Graph Convolutional Networks, *arXiv preprint arXiv:1609.02907*, <https://doi.org/10.48550/arXiv.1609.02907>, 2016.

Kong, L., Feng, W., Yi, X., Xue, Z., Bai, L., 2025. Enhanced landslide susceptibility mapping in data-scarce regions via unsupervised few-shot learning. *Gondwana Research* 138, 31–46.

Koukiou, G.: SAR Features and Techniques for Urban Planning—A Review, *Remote Sens.*, 16(11), 1923, <https://doi.org/10.3390/rs16111923>, 2024.

Kuang, P., Li, R., Huang, Y., Wu, J., Luo, X., and Zhou, F.: Landslide displacement prediction via attentive graph neural network, *Remote Sens.*, 14(8), 1919, <https://doi.org/10.3390/rs14081919>, 2022.

Kumar, A., and Vepa, J.: Gated mechanism for attention based multi modal sentiment analysis, in: *Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP)*, pp. 4477–4481, <https://doi.org/10.1109/ICASSP40776.2020.9053012>, 2020.

Kumar, P., Priyanka, P., Uday, K. V., and Dutt, V.: Predictive modelling of Himalayan soil movement: addressing imbalance with synthetic variational autoencoder data in Kamand Valley, in: *International Congress on Information and Communication Technology*, pp. 137–147, Springer Nature Singapore, https://doi.org/10.1007/978-981-97-3299-9_11, 2024.

Lakhote, A., Chan, Y. C., Lu, C. Y., Kumar, G., and Sun, C. W.: Monitoring slow-moving deep-seated

landslide using PSI technique: A case study of a potential sliding slope from southern Taiwan, *Landslides*, 22(5), 1677–1692, <https://doi.org/10.1007/s10346-024-02453-z>, 1520 2025.

Landi, F., Baraldi, L., Cornia, M., Cucchiara, R., 2021. Working memory connections for lstm. *Neural Networks* 144, 334–341.

[LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient-Based Learning Applied to Document Recognition, Proc. IEEE, 86\(11\), 2278–2324, https://doi.org/10.1109/5.726791, 1998.](#)

Lee, J.H., Sameen, M.I., Pradhan, B., Park, H.J., 2018. Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods. *Geomorphology* 303, 284–298.

[Leher, O. O., Bezerra, E. S., Paixao, T., Palomino-Quispe, F., and Alvarez, A. B.: Denoising Diffusion Probabilistic Models for Cloud Removal and Land Surface Temperature Retrieval From a Single Sample, IEEE Access, https://doi.org/10.1109/ACCESS.2025.3542014, 2025.](#)

Lei, X., Liu, H., Chen, Z., Li, S., Chen, H., Zeng, S., Wang, X., Bai, W., Li, W., Picco, L., 2025. Investigating the landslide susceptibility assessment methods for multi-scale slope units based on sdgsat-1 and graph neural networks. *International Journal of Digital Earth* 18, 1225 2468913.

Li, B., Liu, K., Wang, M., He, Q., Jiang, Z., Zhu, W., Qiao, N., 2022a. Global dynamic rainfall-induced landslide susceptibility mapping using machine learning. *Remote Sensing* 14, 5795.

[Li, C., Yi, B., Gao, P., Li, H., Sun, J., Chen, X., Zhong, C.: Valuable clues for DCNN-based landslide detection from a comparative assessment in the Wenchuan earthquake area, Sensors, 21\(15\), 5191, https://doi.org/10.3390/s21155191, 2021.](#)

Li, H., He, Y., Xu, Q., Deng, J., Li, W., Wei, Y., 2022b. Detection and segmentation of loess landslides via satellite images: A two-phase framework. *Landslides* 19, 673–686.

Li, H., Xu, Q., He, Y., Fan, X., Yang, H., Li, S., 2021a. Temporal detection of sharp landslide deformation with ensemble-based lstm-rnns and hurst exponent. *Geomatics, Natural Hazards and Risk* 12, 3089–3113.

[Li, J., Fan, C., Zhao, K., Zhang, Z., Duan, P.: Landslide displacement prediction using time series InSAR with combined LSTM and TCN: Application to the Xiao Andong landslide, Yunnan Province, China, Nat. Hazards, 121\(4\), 3857–3884, https://doi.org/10.1007/s11069-024-06937-y, 2025.](#)

[Li, J., Li, Q., Lu, J., Zheng, K., Wei, L., Xiang, Q.: A transfer learning remote sensing landslide image segmentation method based on nonlinear modeling and large kernel attention, Appl. Sci., 15\(7\), 3855, https://doi.org/10.3390/app15073855, 2025.](#)

Li, J., Xing, X., Ou, J., 2023a. Locating and characterizing potential rainfall-induced landslides on a regional scale based on sbas-insar technique. *Bulletin of Engineering Geology and the Environment* 82, 329.

Li, L., Yan, J., Wang, H., Jin, Y., 2020. Anomaly detection of time series with smoothness-inducing sequential variational auto-encoder. *IEEE transactions on neural networks and learning systems* 32,

1177–1191.

Li, Q., Yao, C., Yao, X., Zhou, Z., Ren, K.: Time series prediction of reservoir bank slope deformation based on informer and InSAR: a case study of Dawanzi landslide in the Baihetan Reservoir area, China, *Remote Sens.*, 16(15), 2688, <https://doi.org/10.3390/rs16152688>, 2024.

Li, W., Hsu, C.Y., Wang, S., Gu, Z., Yang, Y., Rogers, B.M., Liljedahl, A.: A multi-scale vision transformer-based multimodal GeoAI model for mapping Arctic permafrost thaw, *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, <https://doi.org/10.1109/JSTARS.2025.3564310>, 2025.

Li, W., Wu, Y., Gao, X., Wang, W., Yang, Z., Liu, H., 2024. The distribution pattern of ground movement and co-seismic landslides: A case study of the 5 september 2022 luding earthquake, china. *Journal of Geophysical Research: Earth Surface* 129, e2023JF007534.

Li, Y., 2025. The research on landslide detection in remote sensing images based on improved deeplabv3+ method. *Scientific Reports* 15, 7957.

Li, Y., Cui, P., Ye, C., 1240 Junior, J.M., Zhang, Z., Guo, J., Li, J., 2021b. Accurate prediction of earthquake-induced landslides based on deep learning considering landslide source area. *Remote Sensing* 13, 3436.

Li, Y., Chen, T., Lv, L., Niu, R., Plaza, A.: IED-GCN: An Internal and External Decoupled Graph Convolutional Network for Landslide Susceptibility Assessment, *IEEE Trans. Geosci. Remote Sens.*, <https://doi.org/10.1109/TGRS.2025.3595205>, 2025.

Li, Y., Utili, S., Milledge, D., Chen, L., Yin, K., 2021c. Chasing a complete understanding of the failure mechanisms and potential hazards of the slow-moving liangshuijing landslide. *Engineering Geology* 281, 105977.

Li, Z., Chen, J., Cao, C., Zhang, W., Zhu, K., Bai, J., Wu, C., 2025. Enhancing long-term prediction of non-homogeneous landslides incorporating spatiotemporal graph convolutional networks and insar. *Engineering Geology*, 107917.

Li, Z., Dai, K., Deng, J., Liu, C., Shi, X., Tang, G., Yin, T., 2023b. Identifying potential landslides in steep mountainous areas based on improved seasonal interferometry stacking-insar. *Remote Sensing* 15, 3278.

Lian, X., Li, Y., Wang, X., Shi, L., Xue, C., 2024. Research on identification and location of mining landslide in mining area based on improved yolo algorithm. *Drones* 8, 150.

Lin, K., Jiapaer, G., Yu, T., Zhang, L., Liang, H., Chen, B., Ju, T., 2024. Identification of potential landslides in the gaizi valley section of the karakorum highway coupled with ts-insar and landslide susceptibility analysis. *Remote Sensing* 16, 3653.

Lin, T., Wang, R., Shi, Y., Jiang, Z., Yi, S., Wu, Y., 2023. Research on small sample defect detection method based on anogan and u-net, in: 2023 8th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), IEEE. pp. 23–25.

[Lin, Y.N., Chen, Y.C., Kuo, Y.T., Chao, W.A.: Performance study of landslide detection using multi-temporal SAR images, *Remote Sens.*, **14**, 2444, <https://doi.org/10.3390/rs14102444>, 2022.](https://doi.org/10.3390/rs14102444)

Liu, B., He, K., Han, M., Hu, X., Ma, G., Wu, M., 2021a. Application of uav and gb-sar in mechanism research and monitoring of zhong haicun landslide in southwest china. *Remote Sensing* **13**, 1653.

Liu, P., Wei, Y., Wang, Q., Chen, Y., Xie, J., 2020a. Research on post-earthquake landslide extraction algorithm based on improved u-net model. *Remote Sensing* **12**, 894.

Liu, Q., Kampffmeyer, M., Jenssen, R., Salberg, A.B., 2021b. Self-constructing graph neural networks to model long-range pixel dependencies for semantic segmentation of remote sensing images. *International Journal of Remote Sensing* **42**, 6184–6208.

[Liu, Q., Kampffmeyer, M., Jenssen, R., and Salberg, A.B.: Multi-modal land cover mapping of remote sensing images using pyramid attention and gated fusion networks, *Int. J. Remote Sens.*, **43**\(9\), 3509–3535, <https://doi.org/10.1080/01431161.2022.2098078>, 2022.](https://doi.org/10.1080/01431161.2022.2098078)

Liu, R., Yang, X., Xu, C., Wei, L., Zeng, X., 2022a. Comparative study of convolutional neural network and conventional machine learning methods for landslide susceptibility mapping. *Remote Sensing* **14**, 321.

Liu, S., Wang, L., Zhang, W., Sun, W., Fu, J., Xiao, T., Dai, Z., 2023a. A physics-informed data-driven model for landslide susceptibility assessment in the three gorges reservoir area. *Geoscience Frontiers* **14**, 101621.

Liu, S., Wang, L., Zhang, W., Sun, W., Wang, Y., Liu, J., 2024. Physics-informed optimization for a data-driven approach in landslide susceptibility evaluation. *Journal of Rock Mechanics and Geotechnical Engineering* **16**, 3192–3205.

Liu, T., Chen, T., Niu, R., Plaza, A., 2021c. Landslide detection mapping employing cnn, resnet, and densenet in the three gorges reservoir, china. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* **14**, 11417–11428.

Liu, X., Peng, Y., Lu, Z., Li, W., Yu, J., Ge, D., Xiang, W., 2023b. Feature-fusion segmentation network for landslide detection using high-resolution remote sensing images and digital elevation model data. *IEEE Transactions on Geoscience and Remote Sensing* **61**, 1–14.

Liu, X., Zhao, C., Zhang, Q., Lu, Z., Li, Z., Yang, C., Zhu, W., Liu-Zeng, J., Chen, L., Liu, C., 2021d. Integration of sentinel-1 and alos/palsar-2 sar datasets for mapping active landslides along the jinsha river corridor, china. *Engineering Geology* **284**, 106033.

[Liu, Y., Brezzi, L., Liang, Z., Gabrieli, F., Zhou, Z., and Cola, S.: Image analysis and LSTM methods for forecasting surficial displacements of a landslide triggered by snowfall and rainfall, *Landslides*, **22**\(3\), 619–635, <https://doi.org/10.1007/s10346-024-02328-3>, 2025.](https://doi.org/10.1007/s10346-024-02328-3)

Liu, Y., Qiu, H., Yang, D., Liu, Z., Ma, S., Pei, Y., Zhang, J., Tang, B., 2022b. Deformation responses of landslides to seasonal rainfall based on insar and wavelet analysis. *Landslides*, 1–12.

Liu, Y., and Wu, L.: Geological disaster recognition on optical remote sensing images using deep learning, *Procedia Comput. Sci.*, 91, 566–575, <https://doi.org/10.1016/j.procs.2016.07.144>, 2016.

Liu, Y., Xu, C., Huang, B., Ren, X., Liu, C., Hu, B., Chen, Z., 2020b. Landslide displacement prediction based on multi-source data fusion and sensitivity states. *Engineering Geology* 271, 105608.

Liu, Y., Yao, X., Gu, Z., Zhou, Z., Liu, X., Chen, X., and Wei, S.: Study of the automatic recognition of landslides by using InSAR images and the improved Mask R-CNN model in the Eastern Tibet Plateau, *Remote Sens.*, 14, 3362, <https://doi.org/10.3390/rs14143362>, 2022.

Lo, K.S.H., and Peters, J.: Diff-DEM: A diffusion probabilistic approach to digital elevation model void filling, *IEEE Geosci. Remote Sens. Lett.*, 21, 1–5, <https://doi.org/10.1109/LGRS.2024.3403835>, 2024.

Loey, M., Manogaran, G., Khalifa, N.E.M., 2020. A deep transfer learning model with classical data augmentation and cgan to detect covid-19 from chest ct radiography digital images. *Neural Computing and Applications*, 1–13.

Long, S., Tong, A., Yuan, Y., Li, Z., Wu, W., and Zhu, C.: New approaches to processing ground-based SAR (GBSAR) data for deformation monitoring, *Remote Sens.*, 10, 1936, <https://doi.org/10.3390/rs10121936>, 2018.

Longbotham, N., Pacifici, F., Baugh, B., and Camps-Valls, G.: Prelaunch assessment of worldview-3 information content, in: Proc. 6th Workshop Hyperspectral Image Signal Process. Evol. Remote Sens. (WHISPERS), 1–4, <https://doi.org/10.1109/WHISPERS.2014.8077566>, 2014.

Lu, W., Hu, Y., Zhang, Z., and Cao, W.: A dual-encoder U-Net for landslide detection using Sentinel-2 and DEM data, *Landslides*, 20, 1975–1987, <https://doi.org/10.1007/s10346-023-02089-5>, 2023.

Lu, Z., Peng, Y., Li, W., Yu, J., Ge, D., Han, L., and Xiang, W.: An iterative classification and semantic segmentation network for old landslide detection using high-resolution remote sensing images, *IEEE Trans. Geosci. Remote Sens.*, 61, 1–13, <https://doi.org/10.1109/TGRS.2023.3313586>, 2023.

Lv, L., Chen, T., Dou, J., Plaza, A., 2022. A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping. *International Journal of Applied Earth Observation and Geoinformation* 108, 102713.

Lv, P., Ma, L., Li, Q., Du, F., 2023. Shapeformer: a shape-enhanced vision transformer model for optical remote sensing image landslide detection. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 16, 2681–2689.

Ma, H., Wang, F., 2024. Inventory of shallow landslides triggered by extreme precipitation in july 2023 in beijing, china. *Scientific Data* 11, 1083.

Ma, H., and Wang, F.: Factors controlling the formation and movement of clustered shallow landslides triggered by the extreme rainstorm in July 2023 in Beijing, China, *Geomorphology*, 478, 109728,

[https://doi.org/10.1016/j.geomorph.2025.109728, 2025.](https://doi.org/10.1016/j.geomorph.2025.109728)

Ma, S., Qiu, H., Yang, D., Wang, J., Zhu, Y., Tang, B., Sun, K., Cao, M., 2023a. Surface multi-hazard effect of underground coal mining. *Landslides* 20, 39–52.

Ma, S., Qiu, H., Zhu, Y., Yang, D., Tang, B., Wang, D., Wang, L., Cao, M., 2023b. Topographic changes, surface deformation and movement process before, during and after a rotational landslide. *Remote Sensing* 15, 662.

Ma, Z., and Mei, G.: Deep learning for geological hazards analysis: Data, models, applications, and opportunities, *Earth Sci. Rev.*, 223, 103858, [https://doi.org/10.1016/j.earscirev.2021.103858, 2021.](https://doi.org/10.1016/j.earscirev.2021.103858)

Ma, Z., Mei, G., 2025. Forecasting landslide deformation by integrating domain knowledge into interpretable deep learning considering spatiotemporal correlations. *Journal of Rock Mechanics and Geotechnical Engineering* 17, 960–982.

Ma, Z., Mei, G., Xu, N., 2024. Generative deep learning for data generation in natural hazard analysis: motivations, advances, challenges, and opportunities. *Artificial Intelligence Review* 57, 160.

Macciotta, R., Hendry, M.T., 2021. Remote sensing applications for landslide monitoring and investigation in western canada. *Remote Sensing* 13, 366.

Mallet, C., Bretar, F., 2009. Full-waveform topographic lidar: State-of-the-art. *ISPRS Journal of photogrammetry and remote sensing* 64, 1–16.

Mandlburger, G., Pfennigbauer, M., Schwarz, R., Flory, S., and Nussbaumer, L.: Concept and performance evaluation of a novel UAV-borne topo-bathymetric LiDAR sensor, *Remote Sens.*, 12(6), 986, [https://doi.org/10.3390/rs12060986, 2020.](https://doi.org/10.3390/rs12060986)

Mao, Y., Niu, R., Li, B., Li, J., 2024. Potential landslides identification based on improved yolov8 and insar phase-gradient stacking. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*.

Marin-Rodriguez, N. J., Vega, J., Zanabria, O. B., Gonzalez-Ruiz, J. D., and Botero, S.: Towards an understanding of landslide risk assessment and its economic losses: A scientometric analysis, *Landslides*, 21(8), 1865–1881, [https://doi.org/10.1007/s10346-024-02272-2, 2024.](https://doi.org/10.1007/s10346-024-02272-2)

Martinello, C., Cappadonia, C., Conoscenti, C., Agnesi, V., and Rotigliano, E.: Optimal slope units partitioning in landslide susceptibility mapping, *J. Maps*, 17, 152–162, [https://doi.org/10.1080/17445647.2020.1805807, 2021.](https://doi.org/10.1080/17445647.2020.1805807)

McColl, S., Cook, S., 2024. A universal size classification system for landslides. *Landslides* 21, 111–120.

Meena, S. R., Soares, L. P., Grohmann, C. H., VanWesten, C., Bhuyan, K., Singh, R. P., Floris, M., and Catani, F.: Landslide detection in the Himalayas using machine learning algorithms and U-Net, *Landslides*, 19(5), 1209–1229, [https://doi.org/10.1007/s10346-022-01861-3, 2022.](https://doi.org/10.1007/s10346-022-01861-3)

Meng, S., Shi, Z., Peng, M., Li, G., Zheng, H., Liu, L., and Zhang, L.: Landslide displacement

prediction with step-like curve based on convolutional neural network coupled with bi-directional gated recurrent unit optimized by attention mechanism. *Eng. Appl. Artif. Intell.*, 133, 108078, <https://doi.org/10.1016/j.engappai.2024.108078>, 2024.

Meng, J., Xu, X., Li, P., Zhang, Z., Zhao, W., 1665 Ren, J., and Li, Y.: Gf-former: An accurate UAV-based remote sensing image network for highprecision automatic segmentation of ground fissures in mining regions, *Int. J. Mach. Learn. Cybern.*, 1–22, <https://doi.org/10.1007/s13042-025-02555-7>, 2025.

Meng, Z.j., Ma, P.h., Peng, J.b., 2021. Characteristics of loess landslides triggered by different factors in the chinese loess plateau. *Journal of mountain science* 18, 3218–3229.

Milledge, D.G., Bellugi, D.G., Watt, J., Densmore, A.L., 2022. Automated determination of landslide locations after large trigger events: advantages and disadvantages compared to manual mapping. *Natural Hazards and Earth System Sciences* 22, 481–508.

Mirza, M., and Osindero, S.: Conditional Generative Adversarial Nets, *arXiv preprint arXiv:1411.1784*, <https://doi.org/10.48550/arXiv.1411.1784>, 2014.

Moeinuddin, A., Segui, C., Dueber, S., and Fuentes, R.: Physics-informed neural networks applied to catastrophic creeping landslides, *Landslides*, 20(9), 1853–1863, <https://doi.org/10.1007/s10346-023-02072-0>, 2023.

Mondini, A.C., Guzzetti, F., Melillo, M., 2023. Deep learning forecast of rainfall-induced shallow landslides. *Nature communications* 14, 2466.

Monserrat, O., Moya, J., Luzi, G., Crosetto, M., Gili, J. A., and Corominas, J.: Non-interferometric GB-SAR measurement: application to the Vallcebre landslide (eastern Pyrenees, Spain), *Nat. Hazards Earth Syst. Sci.*, 13, 1873–1887, <https://doi.org/10.5194/nhess-13-1873-2013>, 2013.

Moreno-Barea, F.J., Jerez, J.M., Franco, L., 2020. Improving classification accuracy using data augmentation on small data sets. *Expert Systems with Applications* 161, 113696.

Naidu, S., Sajinkumar, K., Oommen, T., Anuja, V., Samuel, R.A., Muraleedharan, C., 2018. Early warning system for shallow landslides using rainfall threshold and slope stability analysis. *Geoscience Frontiers* 9, 1871–1882.

[NASA Science: Mission overview – NASA–ISRO Synthetic Aperture Radar \(NISAR\)](https://science.nasa.gov/mission/nisar/mission-overview/), Available at: <https://science.nasa.gov/mission/nisar/mission-overview/>, Accessed October 26, 2025, 2025.

Nava, L., Bhuyan, K., Meena, S.R., Monserrat, O., Catani, F., 2022. Rapid mapping of landslides on sar data by attention u-net. *Remote Sensing* 14, 1449.

Nava, L., Carraro, E., Reyes-Carmona, C., Puliero, S., Bhuyan, K., Rosi, A., Monserrat, O., Floris, M., Meena, S.R., Galve, J.P., et al., 2023. Landslide displacement forecasting using deep learning and monitoring data across selected sites. *Landslides* 20, 2111–2129.

Nava, L., Monserrat, O., Catani, F., 2021. Improving landslide detection on sar data through deep

learning. *IEEE Geoscience and Remote Sensing Letters* 19, 1–5.

Nawaz, A., Khan, S. S., and Ahmad, A.: Ensemble of autoencoders for anomaly detection in biomedical data: a narrative review, *IEEE Access*, 12, 17273–17289, <https://doi.org/10.1109/ACCESS.2024.3360691>, 2024.

Newmark, N. M.: Effects of earthquakes on dams and embankments, *Geotechnique*, 15(2), 139–160, <https://doi.org/10.1680/geot.1965.15.2.139>, 1965.

Ngo, P.T.T., Panahi, 1315 M., Khosravi, K., Ghorbanzadeh, O., Kariminejad, N., Cerda, A., Lee, S., 2021. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of iran. *Geoscience Frontiers* 12, 505–519.

Niethammer, U., James, M., Rothmund, S., Travelletti, J., Joswig, M., 2012. Uav-based remote sensing of the super-sauze landslide: Evaluation and results. *Engineering Geology* 128, 2–11.

Niu, Z., Liu, W., Zhao, J., and Jiang, G.: DeepLab-based spatial feature extraction for hyperspectral image classification, *IEEE Geosci. Remote Sens. Lett.*, 16(2), 251–255, <https://doi.org/10.1109/LGRS.2018.2871507>, 2018.

Noferini, L., Pieraccini, M., Mecatti, D., Macaluso, G., Atzeni, C., Mantovani, M., Marcato, G., Pasuto, A., Silvano, S., Tagliavini, F., 2007. Using gb-sar technique to monitor slow moving landslide. *Engineering Geology* 95, 88–98.

Oliveira, D.A., Diaz, J.G., Zadrozny, B., Watson, C.D., Zhu, X.X., 2022. Controlling weather field synthesis using variational autoencoders, in: IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 5027–5030.

Park, D., Hoshi, Y., Kemp, C.C., 2018. A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. *IEEE Robotics and Automation Letters* 3, 1544–1551.

Peng, B., and Wu, X.: Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area, *Nat. Hazards Earth Syst. Sci.*, 24(11), 3991–4013, <https://doi.org/10.5194/nhess-24-3991-2024>, 2024.

Perera, M.V., Nair, N.G., Bandara, W.G.C., Patel, V.M., 2023. Sar despeckling using a denoising diffusion probabilistic model. *IEEE Geoscience and Remote Sensing Letters* 20, 1–5.

Peres, D. J., and Cancelliere, A.: Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach, *Hydrol. Earth Syst. Sci.*, 18(12), 4913–4931, <https://doi.org/10.5194/hess-18-4913-2014>, 2014.

Piciullo, L., Calvello, M., Cepeda, J.M., 2018. Territorial early warning systems for rainfall-induced landslides. *Earth-Science Reviews* 179, 228–247.

Piran, M. J., Wang, X., Kim, H. J., and Kwon, H. H.: Precipitation nowcasting using transformer-based generative models and transfer learning for improved disaster preparedness, *Int. J. Appl. Earth Obs. Geoinf.*, 132, 103962, <https://doi.org/10.1016/j.jag.2024.103962>, 2024.

Pol, A. A., Berger, V., Germain, C., Cerminara, G., and Pierini, M.: Anomaly detection with conditional variational autoencoders, in: Proc. 18th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), 1651–1657, <https://doi.org/10.1109/ICMLA.2019.00270>, 2019.

Qi, W., Wei, M., Yang, W., Xu, C., Ma, C., 2020. Automatic mapping of landslides by the resu-net. *Remote Sensing* 12, 2487.

Qi, X., Meng, H., Xu, N., Mei, G., Peng, J., 2024. A knowledge-data dually driven paradigm for accurate identification of key blocks in complex rock slopes. *Journal of Rock Mechanics and Geotechnical Engineering*.

Qu, Y., Chen, Y., Huang, J., Xie, Y., 2019. Enhanced pix2pix dehazing network, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8160–8168.

Radoi, A., 2022. Multimodal satellite image time series analysis using gan-based domain translation and matrix profile. *Remote Sensing* 14, 1335 3734.

Raiissi, M., Perdikaris, P., and Karniadakis, G. E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, *J. Comput. Phys.*, 378, 686–707, <https://doi.org/10.1016/j.jcp.2018.10.045>, 2019.

Rawat, P. S., and Barthwal, A.: LANDSLIDE MONITOR: A real-time landslide monitoring system, *Environ. Earth Sci.*, 83(8), 226, <https://doi.org/10.1007/s12665-024-11526-0>, 2024.

Ren, S., Zhang, Y., Li, J., Zhou, Z., Liu, X., Tao, C., 2023. Deformation behavior and reactivation mechanism of the dandu ancient landslide triggered by seasonal rainfall: A case study from the east tibetan plateau, china. *Remote Sensing* 15, 5538.

Ren, X., Liu, W., Yang, W., Mao, L., and Li, H.: Landslide deformation uncertainty quantification using conformalized graph neural networks: A case study in Sichuan Province, China, *IEEE Access*, <https://doi.org/10.1109/ACCESS.2025.3568273>, 2025.

Riahi, S., Bahroudi, A., Abedi, M., Aslani, S., Lentz, D.R., 2022. Evidential data integration to produce porphyry cu prospectivity map, using a combination of knowledge and data-driven methods. *Geophysical Prospecting* 70, 421–437.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation, in: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III 18, Springer. pp. 234–241.

Roy, J., Saha, S., 2019. Landslide susceptibility mapping using knowledge driven statistical models in darjeeling district, west bengal, india. *Geoenvironmental Disasters* 6, 1–18.

Sakurada, M., and Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction, in: Proc. MLSDA 2014 2nd Workshop Mach. Learn. Sens. Data Anal., 4–11, <https://doi.org/10.1145/2689746.2689747>, 2014.

Sala, G., Lanfranconi, C., Frattini, P., Rusconi, G., Crosta, G.B., 2021. Cost-sensitive rainfall thresholds for shallow landslides. *Landslides* 18, 2979–2992.

Sandric, I., Chitu, Z., Ilinca, V., Irimia, R., 2024. Using high-resolution uav imagery and artificial intelligence to detect and map landslide cracks automatically. *Landslides* 21, 2535–2543.

Saxena, D., Cao, J., 2021. Generative adversarial networks (gans) challenges, solutions, and future directions. *ACM Computing Surveys (CSUR)* 54, 1–42.

[Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G.: The Graph Neural Network Model, IEEE Trans. Neural Netw., 20\(1\), 61–80, https://doi.org/10.1109/TNN.2008.2005605, 2008.](#)

Scheingross, J.S., Limaye, A.B., McCoy, S.W., Whittaker, A.C., 2020. The shaping of erosional landscapes by internal dynamics. *Nature Reviews Earth & Environment* 1, 661–676.

Segoni, S., Piciullo, L., Gariano, S.L., 2018a. A review of the recent literature on rainfall thresholds for landslide occurrence. *Landslides* 15, 1483–1501.

Segoni, S., Tofani, V., Rosi, A., Catani, F., Casagli, N., 2018b. Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale. *Frontiers in Earth Science* 6, 85.

Selamat, S.N., Abd Majid, N., Taib, A.M., Taha, M.R., Osman, A., 2023. The spatial relationship between landslide and land use activities in langat river basin: A case study. *Physics and Chemistry of the Earth, Parts A/B/C* 129, 103289.

[Senogles, A., Olsen, M. J., and Leshchinsky, B.: SlideSim: 3D landslide displacement monitoring through a physics-based simulation approach to self-supervised learning, Remote Sens., 14\(11\), 2644, https://doi.org/10.3390/rs14112644, 2022.](#)

[Shahabi, H., Rahimzad, M., Tavakkoli Piralilou, S., Ghorbanzadeh, O., Homayouni, S., Blaschke, T., Lim, S., and Ghamisi, P.: Unsupervised deep learning for landslide detection from multispectral sentinel-2 imagery, Remote Sens., 13, 4698, https://doi.org/10.3390/rs13224698, 2021.](#)

[Shakeel, A., Walters, R. J., Ebmeier, S. K., and Al Moubayed, N.: ALADDIn: Autoencoder-LSTM-based anomaly detector of deformation in InSAR, IEEE Trans. Geosci. Remote Sens., 60, 1–12, https://doi.org/10.1109/TGRS.2022.3169455, 2022.](#)

Sharma, R., Almaši, M., Nehra, S.P., Rao, V.S., Panchal, P., Paul, D.R., Jain, I.P., Sharma, A., 2022. Photocatalytic hydrogen production using graphitic carbon nitride (gcn): A precise review. *Renewable and Sustainable Energy Reviews* 168, 112776.

She, X., Li, D., Yang, S., Xie, X., Sun, Y., Zhao, W., 2024. Landslide hazard assessment for wanzhou considering the correlation of rainfall and surface deformation. *Remote Sensing* 16, 1587.

Shen, Y., Dai, K., Wu, M., Zhuo, G., Wang, M., Wang, T., Xu, Q., 2022. Rapid and automatic detection of new potential landslide based on phase-gradient dinsar. *IEEE Geoscience and Remote Sensing Letters* 19, 1–5.

Sheng, Y., Xu, G., Jin, B., Zhou, C., Li, Y., Chen, W., 2023. Data-driven landslide spatial prediction and deformation monitoring: a case study of shiyan city, china. *Remote Sensing* 15, 5256.

Sherstinsky, A., 2020. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. *Physica D: Nonlinear Phenomena* 404, 132306.

Shi, W., Zhang, M., Ke, H., Fang, X., Zhan, Z., Chen, S., 2020. Landslide recognition by deep convolutional neural network and change detection. *IEEE Transactions on Geoscience and Remote Sensing* 59, 4654–4672.

[Shi, X., Zhao, Z., Dai, Y., Dai, K., and Ju, A.: Post-Disaster High-Frequency Ground-Based InSAR Monitoring and 3D Deformation Reconstruction of Large Landslides Using MIMO Radar, *Remote Sens.*, 17\(18\), 3183, <https://doi.org/10.3390/rs17183183>, 2025.](https://doi.org/10.3390/rs17183183)

Shorten, C., Khoshgoftaar, T.M., 2019. A survey on image data augmentation for deep learning. *Journal of big data* 6, 1–48.

Shu, H., Guo, Z., Qi, S., Song, D., Pourghasemi, H.R., Ma, J., 2021. Integrating landslide typology with weighted frequency ratio model for landslide susceptibility mapping: A case study from lanzhou city of northwestern china. *Remote Sensing* 13, 3623.

Smagulova, K., James, A.P., 2019. A survey on lstm memristive neural network architectures and applications. *The European Physical Journal Special Topics* 228, 2313–2324.

Soares, L.P., Dias, H.C., Garcia, G.P.B., Grohmann, C.H., 2022. Landslide segmentation with deep learning: Evaluating model generalization in rainfall-induced landslides in brazil. *Remote Sensing* 14, 2237.

Song, J., Meng, C., Ermon, S., 2020. Denoising diffusion implicit models. *arXiv preprint arXiv:2010.02502*.

[Soni, R., Alam, M. S., and Vishwakarma, G. K.: Prediction of InSAR deformation time-series using improved LSTM deep learning model, *Sci. Rep.*, 15\(1\), 5333, <https://doi.org/10.1038/s41598-024-83084-1>, 2025.](https://doi.org/10.1038/s41598-024-83084-1)

Staudemeyer, R.C., Morris, E.R., 2019. Understanding lstm—a tutorial into long short-term memory recurrent neural networks. *arXiv preprint arXiv:1909.09586*.

[Strzabala, K., Cwiakala, P., and Puniach, E.: Identification of landslide precursors for early warning of hazards with remote sensing, *Remote Sens.*, 16\(15\), 2781, <https://doi.org/10.3390/rs16152781>, 2024.](https://doi.org/10.3390/rs16152781)

Stumvoll, M.J., Schmaltz, E., Glade, T., 2021. Dynamic characterization of a slow-moving landslide system—assessing the challenges of small process scales utilizing multi-temporal tls data. *Geomorphology* 389, 107803.

[Su, Z., Chow, J. K., Tan, P. S., Wu, J., Ho, Y. K., and Wang, Y. H.: Deep convolutional neural network-based pixel-wise landslide inventory mapping, *Landslides*, 18\(4\), 1421–1443, <https://doi.org/10.1007/s10806-020-01443-7>.](https://doi.org/10.1007/s10806-020-01443-7)

[https://doi.org/10.1007/s10346-020-01557-6, 2021.](https://doi.org/10.1007/s10346-020-01557-6)

Sualp, E., and Rezaei, M.: Mitigating catastrophic forgetting in continual learning through model growth, arXiv Prepr., arXiv:2509.01213, <https://doi.org/10.48550/arXiv.2509.01213>, 2025.

Sui, J., Ma, X., 1815 Zhang, X., Pun, M. O., and Wu, H.: Adaptive Semantic-Enhanced Denoising Diffusion Probabilistic Model for Remote Sensing Image Super-Resolution, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., <https://doi.org/10.1109/JSTARS.2024.3504569>, 2024.

Sukor, A.S.A., Zakaria, A., Rahim, N.A., Kamarudin, L.M., Setchi, R., Nishizaki, H., 2019. A hybrid approach of knowledge-driven and data-driven reasoning for activity recognition in smart homes. Journal of Intelligent & Fuzzy Systems 36, 4177–4188.

Sun, J., Yuan, G., Song, L., Zhang, H., 2024a. Unmanned aerial vehicles (uavs) in landslide investigation and monitoring: A review. Drones 8, 30.

Sun, X., Chen, G., Yang, X., Xu, Z., Yang, J., Lin, Z., Liu, Y., 2024b. A process-oriented approach for identifying potential landslides considering time-dependent behaviors beyond geomorphological features. Journal of Rock Mechanics and Geotechnical Engineering 16, 961–978.

Tang, G., Dai, K., Deng, J., Liu, X., Liu, C., Liu, T., Guo, C., Fan, X., 2025. An enhanced neighborhood differential method for potential landslide identification from stacking-insar results. Measurement 242, 115921.

Tang, X., Tu, Z., Wang, Y., Liu, M., Li, D., Fan, X., 2022. Automatic detection of coseismic landslides using a new transformer method. Remote Sensing 14, 2884.

Tanya, s. H., vanWesten, C.J., Allstadt, K.E., Anna Nowicki Jessee, M., Gorum, T., Jibson, R.W., Godt, J.W., Sato, H.P., Schmitt, R.G., Marc, O., et al., 2017. Presentation and analysis of a worldwide database of earthquake-induced landslide inventories. Journal of Geophysical Research: Earth Surface 122, 1991–2015.

Tao, T., Han, K., Yao, X., Chen, X., Wu, Z., Yao, C., Tian, X., Zhou, Z., and Ren, K.: Identification of ground fissure development in a semi-desert aeolian sand area induced from coal mining: Utilizing UAV images and deep learning techniques, Remote Sens., 16(6), 1046, <https://doi.org/10.3390/rs16061046>, 2024.

Teng, J., Shi, Y., Wang, H., and Wu, J.: Review on the research and applications of TLS in ground surface and constructions deformation monitoring, Sensors, 22, 9179, <https://doi.org/10.3390/s22239179>, 2022.

Teza, G., Galgaro, A., Zaltron, N., Genevois, R., 2007. Terrestrial laser scanner to detect landslide displacement fields: a new approach. International Journal of Remote Sensing 28, 3425–3446.

Thimsen, E., Sadtler, B., and Berezin, M. Y.: Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities, Nanophotonics, 6, 1043–1054, <https://doi.org/10.1515/nanoph-2017-0039>, 2017.

Thomine, S., Snoussi, H., Soua, M., 2023. Fable: Fabric anomaly detection automation process, in: 2023 International Conference on Control, Automation and Diagnosis (ICCAD), IEEE. pp. 1–6.

Tian, N., Lan, H., Li, L., Peng, J., Fu, B., and Clague, J. J.: Human activities are intensifying the spatial variation of landslides in the Yellow River Basin, *Sci. Bull.*, 70(2), 263–272, <https://doi.org/10.1016/j.scib.2024.07.007>, 2025.

Tran, N.T., Tran, V.H., Nguyen, N.B., Nguyen, T.K., Cheung, N.M., 2021. On data augmentation for gan training. *IEEE Transactions on Image Processing* 30, 1882–1897.

Tsai, Y. H. H., Bai, S., Liang, P. P., Kolter, J. Z., Morency, L. P., and Salakhutdinov, R.: Multimodal transformer for unaligned multimodal language sequences, in: Proc. Conf. Assoc. Comput. Linguist. (ACL), 2019, 6558, <https://doi.org/10.18653/v1/p19-1656>, 2019.

Ullo, S.L., Mohan, A., Sebastianelli, A., Ahamed, S.E., Kumar, B., Dwivedi, R., Sinha, G.R., 2021. A new mask r-cnn-based method for improved landslide detection. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 14, 3799–3810.

United Nations Office for Disaster Risk Reduction: Global Assessment Report on Disaster Risk Reduction 2023: Mapping Resilience for the Sustainable Development Goals, Stylus Publ., <https://doi.org/10.18356/9789210028301>, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is all you need. *Advances in neural information processing systems* 30.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.: Graph Attention Networks, *arXiv preprint arXiv:1710.10903*, <https://doi.org/10.48550/arXiv.1710.10903>, 2017.

Verrelst, J., Camps-Valls, G., Munoz-Mari, J., Rivera, J.P., Veroustraete, F., Clevers, J.G., Moreno, J., 2015. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—a review. *ISPRS Journal of Photogrammetry and Remote Sensing* 108, 273–290.

Wallace, L., Lucieer, A., Watson, C., and Turner, D.: Development of a UAV-LiDAR system with application to forest inventory, *Remote Sens.*, 4(6), 1519–1543, <https://doi.org/10.3390/rs4061519>, 2012.

Wang, C., 2023. A review on 3d convolutional neural network, in: 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA), IEEE. pp. 1204–1208.

Wang, H., Zhang, L., Yin, K., Luo, H., Li, J., 2021. Landslide identification using machine learning. *Geoscience Frontiers* 12, 351–364.

Wang, J., Nie, G., Gao, S., Wu, S., Li, H., and Ren, X.: Landslide deformation prediction based on a GNSS time series analysis and recurrent neural network model, *Remote Sens.*, 13(6), 1055, <https://doi.org/10.3390/rs13061055>, 2021.

Wang, K., Wei, B., Zhao, T., Wu, G., Zhang, J., Zhu, L., and Wang, L.: An automated approach for mapping mining-induced fissures using CNNs and UAS photogrammetry, *Remote Sens.*, 16(12),

2090, <https://doi.org/10.3390/rs16122090>, 2024.

Wang, L., Wu, C., Yang, Z., Wang, L., 2023a. Deep learning methods for time-dependent reliability analysis of reservoir slopes in spatially variable soils. *Computers and Geotechnics* 159, 105413.

Wang, L., Xiao, T., Liu, S., Zhang, W., Yang, B., Chen, L., 2023b. Quantification of model uncertainty and variability for landslide displacement prediction based on monte carlo simulation. *Gondwana Research* 123, 27–40.

Wang, Q., Zhou, X., Wang, C., Liu, Z., Huang, J., Zhou, Y., Li, C., Zhuang, H., Cheng, J.Z., 2019. Wgan-based synthetic minority oversampling technique: Improving semantic fine-grained classification for lung nodules in ct images. *IEEE Access* 7, 18450–18463.

Wang, W., Motagh, M., Xia, Z., Plank, S., Li, Z., Orynbaikyzy, A., Zhou, C., Roessner, S., 2024a. A framework for automated landslide dating utilizing sar-derived parameters time-series, an enhanced transformer model, and dynamic thresholding. *International Journal of Applied Earth Observation and Geoinformation* 129, 103795.

Wang, X., Nie, W., Xie, W., and Zhang, Y.: Incremental learning–random forest model-based landslide susceptibility analysis: A case of Ganzhou City, China, *Earth Sci. Inf.*, 17(2), 1645–1661, <https://doi.org/10.1007/s12145-024-01229-2>, 2024.

Wang, X., Wang, D., Liu, C., Zhang, M., Xu, L., Sun, T., Li, W., Cheng, S., and Dong, J.: Refined intelligent landslide identification based on multi-source information fusion, *Remote Sens.*, 16(17), <https://doi.org/10.3390/rs16173119>, 2024.

Wang, X., Wang, X., Zheng, Y., Liu, Z., Xia, W., Guo, H., Li, D., 2024b. Gdsnet: A gated dual-stream convolutional neural network for automatic recognition of coseismic landslides. *International Journal of Applied Earth Observation and Geoinformation* 127, 103677.

Wang, X., Wang, Y., Lin, Q., and Yang, X.: Assessing global landslide casualty risk under moderate climate change based on multiple GCM projections, *Int. J. Disaster Risk Sci.*, 14(5), 751–767, <https://doi.org/10.1007/s13753-023-00514-w>, 2023.

Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., Pei, J., 2020a. Am-gen: Adaptive multi-channel graph convolutional networks, in: Proceedings of the 26th ACM SIGKDD International conference on knowledge discovery & data mining, pp. 1243–1253.

Wang, Y., Fang, Z., Wang, M., Peng, L., Hong, H., 2020b. Comparative study of landslide susceptibility mapping with different recurrent neural networks. *Computers & Geosciences* 138, 104445.

Wang, Z., Butt, J. A., Huang, S., Medic, T., and Wieser, A.: Dense 3D Displacement Estimation for Landslide Monitoring via Fusion of TLS Point Clouds and Embedded RGB Images, *arXiv Prepr. arXiv:2506.16265*, <https://doi.org/10.48550/arXiv.2506.16265>, 2025.

Wei, R., Ye, C., Ge, Y., Li, Y., and Li, J.: Dynamic graph attention networks for point cloud landslide

segmentation, Int. J. Appl. Earth Obs. Geoinf., 124, 103542, <https://doi.org/10.1016/j.jag.2023.103542>, 2023.

Whang, S.E., Roh, Y., Song, H., Lee, J.G., 2023. Data collection and quality challenges in deep learning: A data-centric ai perspective. The VLDB Journal 32, 791–813.

Whang, S., Roh, Y., Song, H., and Lee, J.: Data collection and quality challenges in deep learning: A data-centric AI perspective, VLDB J., 32(4), 791–813, <https://doi.org/10.1007/s00778-022-00775-9>, 2023.

Wang, Z., Li, D., Wu, Y., He, T., Bian, J., and Jiang, R.: Diffusion Models in 3D Vision: A Survey, arXiv preprint arXiv:2410.04738, <https://doi.org/10.48550/arXiv.2410.04738>, 2024.

Whitaker, T.: LSTM-GAN for enhanced anomaly detection in time series data, J. Comput. Technol. Softw., 2(2), 2023.

Wicki, A., Lehmann, P., Hauck, C., Seneviratne, S.I., Waldner, P., Stahli, M., 2020. Assessing the potential of soil moisture measurements for regional landslide early warning. Landslides 17, 1881–1896.

Woodard, J.B., Mirus, B.B., 2025. Overcoming the data limitations in landslide susceptibility modeling. Science Advances 11, ead1541.

Wu, H., Niu, J., Li, Y., Wang, Y., and Qiu, D.: Landslide susceptibility prediction based on a CNN-LSTM-SAM-attention hybrid model, Appl. Sci., 15(13), 7245, <https://doi.org/10.3390/app15137245>, 2025.

Wu, L., Zhou, J. T., Zhang, H., Wang, S. R., Ma, T., Yan, H., and Li, S. H.: Time series analysis and gated recurrent neural network model for predicting landslide displacements, GeoRisk, 18(1), 172–185, <https://doi.org/10.1080/17499518.2022.2138918>, 2024.

Wu, Q., Ge, D., Yu, J., Zhang, L., Ma, Y., Chen, Y., Wan, X., Wang, Y., Zhang, L., 2024. Active deformation areas of potential landslide mapping with a generalized convolutional neural network. Remote Sensing 16, 1090.

Wu, S., Li, X., and Chen, D.: A method of rainfall-runoff prediction based on Transformer, in: Proc. 15th Int. Conf. Digit. Image Process., 1–6, <https://doi.org/10.1145/3604078.3604095>, 2023.

Wu, Y., Shao, K., Piccialli, F., and Mei, G.: Numerical modeling of the propagation process of landslide surge using physics-informed deep learning, Adv. Model. Simul. Eng. Sci., 9(1), 14, <https://doi.org/10.1186/s40323-022-00228-6>, 2022.

Wu, Z., Wang, T., Wang, Y., Wang, R., and Ge, D.: Deep learning for the detection and phase unwrapping of mining-induced deformation in large-scale interferograms, IEEE Trans. Geosci. Remote Sens., 60, 1–18, <https://doi.org/10.1109/TGRS.2021.3121907>, 2021.

Wulder, M.A., Roy, D.P., Radeloff, V.C., Loveland, T.R., Anderson, M.C., Johnson, D.M., Healey, S., Zhu, Z., Scambos, T.A., Pahlevan, N., et al., 2022. Fifty years of landsat science and impacts.

Remote Sensing of Environment 280, 113195.

Xia, W., Chen, J., Liu, J., Ma, C., Liu, W., 2021. Landslide extraction from high-resolution remote sensing imagery using fully convolutional spectral-topographic fusion network. Remote Sensing 13, 5116.

Xia, X., Pan, X., Li, N., He, X., Ma, L., Zhang, X., Ding, N., 2022. Gan-based anomaly detection: A review. Neurocomputing 493, 497–535.

Xiao, T., Huang, W., Deng, Y., Tian, W., Sha, Y., 2021. Long-term and emergency monitoring of zhongbao landslide using space-borne and ground-based insar. Remote Sensing 13, 1578.

Xiao, T., Zhang, L.M., 2023. Data-driven landslide forecasting: Methods, data completeness, and real-time warning. Engineering Geology 317, 107068.

Xiao, Y., Ju, N., He, C., Xiao, Z., and Ma, Z.: Week-ahead shallow landslide displacement prediction using chaotic models and robust LSTM, *Front. Earth Sci.*, 10, 965071, <https://doi.org/10.3389/feart.2022.965071>, 2022.

Xiao, Y., Yuan, Q., Jiang, K., He, J., Jin, X., and Zhang, L.: EDiffSR: An Efficient Diffusion Probabilistic Model for Remote Sensing Image Super-Resolution, *IEEE Trans. Geosci. Remote Sens.*, 62, 1–14, <https://doi.org/10.1109/TGRS.2023.3341437>, 2023.

Xie, Y., Meng, X., Wang, J., Li, H., Lu, X., Ding, J., Jia, Y., and Yang, Y.: Enhancing GNSS deformation monitoring forecasting with a combined VMD-CNN-LSTM deep learning model, *Remote Sens.*, 16(10), 1767, <https://doi.org/10.3390/rs16101767>, 2024.

Xiong, J., Pei, T., and Qiu, T.: A novel framework for spatiotemporal susceptibility prediction of rainfall-induced landslides: A case study in Western Pennsylvania, *Remote Sens.*, 16(18), 3526, <https://doi.org/10.3390/rs16183526>, 2024.

Xu, G., Wang, Y., Wang, L., Soares, L. P., and Grohmann, C. H.: Feature-based constraint deep CNN method for mapping rainfall-induced landslides in remote regions with mountainous terrain: An application to Brazil, *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, 15, 2644–2659, <https://doi.org/10.1109/JSTARS.2022.3161383>, 2022.

Xu, H., Shang, Y., Wang, D., Liu, Z., Sun, H., 2022. Mechanism analysis of a landslide triggered by filling a gully. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 175, 472–482.

Xu, H., Wang, L., Shu, B., Zhang, Q., and Li, X.: Automatic Detection of Landslide Surface Cracks from UAV Images Using Improved U-Network, *Remote Sens.*, 17(13), 2150, <https://doi.org/10.3390/rs17132150>, 2025.

Xu, J., Li, H., Zhou, S., 2015. An overview of deep generative models. *IETE Technical Review* 32, 131–139.

Xu, Q., Guo, C., Dong, X., Li, W., Lu, H., Fu, H., Liu, X., 2021. Mapping and characterizing

displacements of landslides with insar and airborne lidar technologies: A case study of danba county, southwest china. *Remote Sensing* 13, 4234.

Xu, Q., Zhao, B., Dai, K., Dong, X., Li, W., Zhu, X., Yang, Y., Xiao, X., Wang, X., Huang, J., et al., 2023. Remote sensing for landslide investigations: A progress report from china. *Engineering Geology* 321, 107156.

Xu, S., Niu, R., 2018. Displacement prediction of baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in three gorges area, china. *Computers & Geosciences* 111, 87–96.

Xu, Y., Ouyang, C., Xu, Q., Wang, D., Zhao, B., Luo, Y., 2024. Cas landslide dataset: a large-scale and multisensor dataset for deep learning-based landslide detection. *Scientific Data* 11, 12.

Xun, Z., Zhao, C., Kang, Y., Liu, X., Liu, Y., and Du, C.: Automatic extraction of potential landslides by integrating an optical remote sensing image with an InSAR-derived deformation map, *Remote Sens.*, 14, 2669, <https://doi.org/10.3390/rs14112669>, 2022.

Yan, L., Gong, Q., Wang, F., Chen, L., Li, D., Yin, K., 2023. Integrated methodology for potential landslide identification in highly vegetationcovered areas. *Remote Sensing* 15, 1518.

Yan, L., Xiong, Q., Li, D., Cheon, E., She, X., and Yang, S.: InSAR-driven dynamic landslide hazard mapping in highly vegetated area, *Remote Sens.*, 16, 3229, <https://doi.org/10.3390/rs16173229>, 2024.

Yan, Y., Cui, Y., Guo, J., Hu, S., Wang, Z., Yin, S., 2020. Landslide reconstruction using seismic signal characteristics and numerical simulations: Case study of the 2017 “6.24” xinmo landslide. *Engineering Geology* 270, 105582.

Yang, B., Yin, K., Lacasse, S., Liu, Z., 2019. Time series analysis and long short-term memory neural network to predict landslide displacement. *Landslides* 16, 677–694.

Yang, C., Yin, Y., Zhang, J., Ding, P., Liu, J., 2024a. A graph deep learning method for landslide displacement prediction based on global navigation satellite system positioning. *Geoscience Frontiers* 15, 101690.

Yang, H., Liu, Y., Han, Q., Xu, L., Zhang, T., Wang, Z., Yan, A., Zhao, S., Han, J., and Wang, Y.: Improved landslide deformation prediction using convolutional neural network–gated recurrent unit and spatial–temporal data, *Remote Sens.*, 17(4), 727, <https://doi.org/10.3390/rs17040727>, 2025.

Yang, H., Qu, L., Chen, L., Song, K., Yang, Y., Liang, Z., 2024b. Potential sliding zone recognition method for the slow-moving landslide based on the hurst exponent. *Journal of Rock Mechanics and Geotechnical Engineering* 16, 4105–4124.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, 1465 R., Zhao, Y., Zhang, W., Cui, B., Yang, M.H., 2023a. Diffusion models: A comprehensive survey of methods and applications. *ACM Computing Surveys* 56, 1–39.

Yang, Q., Wang, X., Zhang, X., Zheng, J., Ke, Y., Wang, L., Guo, H., 2023b. A novel deep learning method for automatic recognition of coseismic landslides. *Remote Sensing* 15, 977.

Yang, W., Liu, L., and Shi, P.: Detecting precursors of an imminent landslide along the Jinsha River. *Nat. Hazards Earth Syst. Sci.*, 20(11), 3215–3224, <https://doi.org/10.5194/nhess-20-3215-2020>, 2020.

Yang, W., Zhang, Y., Zhang, L., Bai, G., Wan, B., and An, N.: Comprehensive study on the stability and failure mechanism of landslides under rainfall and earthquake in northwest mountainous areas. *Front. Earth Sci.*, 12, 1470083, <https://doi.org/10.3389/feart.2024.1470083>, 2024.

Yang, X., Chen, D., Dong, Y., Xue, Y., Qin, K., 2024c. Identification of potential landslide in jianzha county based on insar and deep learning. *Scientific Reports* 14, 21346.

Yang, Z., Xu, C., Li, L., 2022. Landslide detection based on resu-net with transformer and cbam embedded: Two examples with geologically different environments. *Remote Sensing* 14, 2885.

Yao, G., Zhou, W., Liu, M., Xu, Q., Wang, H., Li, J., Ju, Y., 2021. An empirical study of the convolution neural networks-based detection on object with ambiguous boundary in remote sensing imagery—a case of potential loess landslide. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 15, 323–338.

Yao, S., Lei, Y., Liu, D., Cheng, D., 2024. Assessment risk of evolution process of disaster chain induced by potential landslide in woda. *Natural Hazards* 120, 677–700.

Ye, C., Li, Y., Cui, P., Liang, L., Pirasteh, S., Marcato, J., Goncalves, W. N., and Li, J.: Landslide detection of hyperspectral remote sensing data based on deep learning with constrains. *IEEE J. Sel. Top. Appl. Earth Obs.* 12, 5047–5060, <https://doi.org/10.1109/JSTARS.2019.2951725>, 2019.

Yi, X., Feng, W., Wu, M., Ye, Z., Fang, Y., Wang, P., Li, R., Dun, J., 2022. The initial impoundment of the baihetan reservoir region (china) exacerbated the deformation of the wangjiashan landslide: characteristics and mechanism. *Landslides* 19, 1897–1912.

Yi, Y., and Zhang, W.: A new deep-learning-based approach for earthquake-triggered landslide detection from single-temporal RapidEye satellite imagery. *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, 13, 6166–6176, <https://doi.org/10.1109/JSTARS.2020.3028855>, 2020.

Yin, A., Zheng, F., Tan, J., and Wang, Y.: An improved variational auto-encoder with reverse supervision for the obstacles recognition of UGVs. *IEEE Sens. J.*, 21(10), 11791–11798, <https://doi.org/10.1109/JSEN.2020.3013668>, 2020.

Yin, W., Niu, C., Bai, Y., Zhang, L., Ma, D., Zhang, S., Zhou, X., Xue, Y., 2023. An adaptive identification method for potential landslide hazards based on multisource data. *Remote Sensing* 15, 1865.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J., 2018. Hierarchical graph

representation learning with differentiable pooling. *Advances in neural information processing systems* 31.

Yu, L., Wang, Y., Pradhan, B., 2024. Enhancing landslide susceptibility mapping incorporating landslide typology via stacking ensemble machine learning in three gorges reservoir, china. *Geoscience Frontiers* 15, 101802.

Yu, X., Zhang, K., Song, Y., Jiang, W., Zhou, J., 2021. Study on landslide susceptibility mapping based on rock–soil characteristic factors. *Scientific reports* 11, 15476.

Yu, Y., Si, X., Hu, C., Zhang, J., 2019. A review of recurrent neural networks: Lstm cells and network architectures. *Neural computation* 31, 1235–1270.

Yuan, J., Cao, M., Cheng, H., Yu, H., Xie, J., Wang, C., 2022. A unified structure learning framework for graph attention networks. *Neurocomputing* 495, 194–204.

Zamanzadeh Darban, Z., Webb, G.I., Pan, S., Aggarwal, C., and Salehi, M.: Deep learning for time series anomaly detection: A survey, *ACM Comput. Surv.*, 57(1), 1–42, <https://doi.org/10.1145/3691338>, 2024.

Zaremba, W., Sutskever, I., Vinyals, O., 2014. Recurrent neural network regularization. *arXiv preprint arXiv:1409.2329*.

Zeng, H., Zhu, Q., Ding, Y., Hu, H., Chen, L., Xie, X., Chen, M., Yao, Y., 2022. Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation. *International journal of geographical information science* 36, 2270–2295.

Zeng, P., Feng, B., Dai, K., Li, T., Fan, X., Sun, X., 2024. Can satellite insar innovate the way of large landslide early warning? *Engineering Geology* 342, 107771.

Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., Eickhoff, C., 2021. A transformer-based framework for multivariate time series representation learning, in: *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining*, pp. 2114–2124.

Zezeré, J.L., Pereira, S., Melo, R., Oliveira, S., Garcia, R.A., 2017. Mapping landslide susceptibility using data-driven methods. *Science of the total environment* 589, 250–267.

Zhan, J., Sun, Y., Yu, Z., Meng, H., Zhu, W., Peng, J., 2024. Characterization of pre-and post-failure deformation and evolution of the shanyang landslide using multi-temporal remote sensing data. *Landslides* 21, 1659–1672.

Zhang, A., Wang, X., Pedrycz, W., Yang, Q., Wang, X., Guo, H., 2024a. Near real-time spatial prediction of earthquake-triggered landslides based on global inventories from 2008 to 2022. *Soil Dynamics and Earthquake Engineering* 185, 108890.

Zhang, C., Hu, D., Yang, T., 2022a. Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and xgboost. *Reliability Engineering & System Safety* 222, 108445.

Zhang, D., Wei, K., Yao, Y., Yang, J., Zheng, G., and Li, Q.: Capture and prediction of rainfall-induced landslide warning signals using an attention-based temporal convolutional neural network and entropy weight methods, *Sensors*, 22(16), 6240, <https://doi.org/10.3390/s22166240>, 2022.

Zhang, D., Yang, J., Li, F., Han, S., Qin, L., and Li, Q.: Landslide risk prediction model using an attention-based temporal convolutional network connected to a recurrent neural network, *IEEE Access*, 10, 37635–37645, <https://doi.org/10.1109/ACCESS.2022.3165051>, 2022.

Zhang, J., Tang, H., Li, C., Gong, W., Zhou, B., Zhang, Y., 2024b. Deformation stage division and early warning of landslides based on the statistical characteristics of landslide kinematic features. *Landslides* 21, 717–735.

Zhang, J., van Westen, C. J., Tanyas, H., Mavrouli, O., Ge, Y., Bajracharya, S., Gurung, D. R., Dhital, M. R., and Khanal, N. R.: How size and trigger matter: Analyzing rainfall- and earthquake-triggered landslide inventories and their causal relation in the Koshi River Basin, central Himalaya, *Nat. Hazards Earth Syst. Sci.*, 19(8), 1789–1805, <https://doi.org/10.5194/nhess-19-1789-2019>, 2019.

Zhang, L., Dai, K., Deng, J., Ge, D., Liang, R., Li, W., Xu, Q., 2021. Identifying potential landslides by stacking-insar in southwestern china and its performance comparison with sbas-insar. *Remote Sensing* 13, 3662.

Zhang, L., Xie, Y., Xidao, L., Zhang, X., 2018. Multi-source heterogeneous data fusion, in: 2018 International conference on artificial intelligence and big data (ICAIBD), IEEE. pp. 47–51.

Zhang, P., Xu, C., Chen, X., Zhou, Q., Xiao, H., Li, Z., 2024c. Study of earthquake landslide hazard by defining potential landslide thickness using excess topography: A case study of the 2014 ludian earthquake area, china. *Remote Sensing* 16, 2951.

Zhang, Q., He, Y., Zhang, L., Lu, J., Gao, B., Yang, W., Chen, H., Zhang, Y., 2024d. A landslide susceptibility assessment method considering the similarity of geographic environments based on graph neural network. *Gondwana Research* 132, 323–342.

Zhang, Q., He, Y., Zhang, Y., Lu, J., Zhang, L., Huo, T., Tang, J., Fang, Y., and Zhang, Y.: A graph-transformer method for landslide susceptibility mapping, *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, <https://doi.org/10.1109/JSTARS.2024.3437751>, 2024.

Zhang, T., Zhang, W., Cao, D., Yi, Y., and Wu, X.: A new deep learning neural network model for the identification of InSAR anomalous deformation areas, *Remote Sens.*, 14(11), 2690, <https://doi.org/10.3390/rs14112690>, 2022.

Zhang, W., Li, H., Tang, L., Gu, X., Wang, L., Wang, L., 2022b. Displacement prediction of jiuxianping landslide using gated recurrent unit (gru) networks. *Acta Geotechnica* 17, 1367–1382.

Zhang, X., Yu, W., Pun, M.O., Shi, W., 2023. Cross-domain landslide mapping from large-scale remote sensing images using prototype guided domain-aware progressive representation learning. *ISPRS Journal of Photogrammetry and Remote Sensing* 197, 1–17.

Zhao, B., Su, L., Qiu, C., Lu, H., Zhang, B., Zhang, J., Geng, X., Chen, H., Wang, Y., 2024a. Understanding of landslides induced by 2022 luding earthquake, china. *Journal of Rock Mechanics and Geotechnical Engineering*.

Zhao, B., Su, L., Xu, Q., Li, W., Xu, C., Wang, Y., 2023. A review of recent earthquake-induced landslides on the tibetan plateau. *Earth-Science Reviews* 244, 104534.

Zhao, B., Yuan, L., Geng, X., Su, L., Qian, J., Wu, H., Liu, M., Li, J., 2022. Deformation characteristics of a large landslide reactivated by human activity in wanyuan city, sichuan province, china. *Landslides* 19, 1131–1141.

Zhao, C., and Lu, Z.: *Remote sensing of landslides: A review*, *Remote Sens.*, 10(2), 279, <https://doi.org/10.3390/rs10020279>, 2018.

Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V., 2021a. Point transformer, in: *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 16259–16268.

Zhao, J., Yuan, Y., Dong, Y., Li, Y., Shao, C., and Yang, H.: *Void filling of digital elevation models based on terrain feature-guided diffusion model*, *Remote Sens. Environ.*, 315, 114432, <https://doi.org/10.1016/j.rse.2024.114432>, 2024.

Zhao, L., Zhang, X., Yan, K., Ding, S., and Huang, W.: *SAFE: Slow and fast parameter-efficient tuning for continual learning with pre-trained models*, *Adv. Neural Inf. Process. Syst.*, 37, 113772–113796, 2024.

Zhao, S., Chen, Z., Xiong, Z., Shi, Y., Saha, S., Zhu, X.X., 2024b. Beyond grid data: Exploring graph neural networks for earth observation. *IEEE Geoscience and Remote Sensing Magazine*.

Zhao, T., Wang, S., Ouyang, C., Chen, M., Liu, C., Zhang, J., Yu, L., Wang, F., Xie, Y., Li, J., et al., 2024c. Artificial intelligence for geoscience: Progress, challenges and perspectives. *The Innovation*.

Zhao, Z., Chen, T., Dou, J., Liu, G., and Plaza, A.: *Landslide susceptibility mapping considering landslide local-global features based on CNN and transformer*, *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, 17, 7475–7489, <https://doi.org/10.1109/JSTARS.2024.3379350>, 2024.

Zhao, Z., Wu, Z., Zheng, Y., Ma, P., 2021b. Recurrent neural networks for atmospheric noise removal from insar time series with missing values. *ISPRS Journal of Photogrammetry and Remote Sensing* 180, 227–237.

Zhen, J., Lai, F., Shiau, J. S., Huang, M., Lu, Y., and Lin, J.: *An unsupervised incremental learning model to predict geological conditions for earth pressure balance shield tunneling*, *J. Rock Mech. Geotech. Eng.*, <https://doi.org/10.1016/j.jrmge.2024.12.018>, 2025.

Zheng, X., He, G., Wang, S., Wang, Y., Wang, G., Yang, Z., Yu, J., Wang, N., 2021. Comparison of machine learning methods for potential active landslide hazards identification with multi-source data. *ISPRS International Journal of Geo-Information* 10, 253.

Zhong, J., Li, Q., Zhang, J., Luo, P., and Zhu, W.: *Risk assessment of geological landslide hazards*

using D-InSAR and remote sensing, *Remote Sens.*, 16(2), 345, <https://doi.org/10.3390/rs16020345>, 2024.

Zhou, A., Li, Y., 2021. Structural attention network for graph. *Applied Intelligence* 51, 6255–6264.

Zhou, C., and Paffenroth, R. C.: Anomaly detection with robust deep autoencoders, in: Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 665–674, <https://doi.org/10.1145/3097983.3098052>, 2017.

Zhou, C., Ye, M., Xia, Z., Wang, W., Luo, C., Muller, J.P., 2025. An interpretable attention-based deep learning method for landslide prediction based on multi-temporal insar time series: A case study of xinpu landslide in the tgra. *Remote Sensing of Environment* 318, 1540 114580.

Zhou, H., Dai, K., Tang, X., Xiang, J., Li, R., Wu, M., Peng, Y., Li, Z., 2023. Time-series insar with deep-learning-based topography dependent atmospheric delay correction for potential landslide detection. *Remote Sensing* 15, 5287.

Zhou, J.w., Jiang, N., Li, H.b., 2024. Automatic discontinuity identification and quantitative monitoring of unstable blocks using terrestrial laser scanning in large landslide during emergency disposal. *Landslides* 21, 607–620.

Zhou, N., Hong, J., Cui, W., Wu, S., and Zhang, Z.: A multiscale attention segment network-based semantic segmentation model for landslide remote sensing images, *Remote Sens.*, 16(10), 1712, <https://doi.org/10.3390/rs16101712>, 2024.

Zhou, S., Ouyang, C., Huang, Y., 2022. An insar and depth-integrated coupled model for potential landslide hazard assessment. *Acta Geotechnica* 17, 3613–3632.

Zhu, Y., Li, Z., Wang, T., He, M., Yao, C., 2023a. Conditional text image generation with diffusion models, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14235–14245.

Zhu, Y., Qiu, H., Cui, P., Liu, Z., Ye, B., Yang, D., Kamp, U., 2023b. Early detection of potential landslides along high-speed railway lines: A pressing issue. *Earth Surface Processes and Landforms* 48, 3302–3314.

Zhuang, B., Liu, J., Pan, Z., He, H., Weng, Y., and Shen, C.: A survey on efficient training of transformers, *arXiv preprint arXiv:2302.01107*, <https://doi.org/10.48550/arXiv.2302.01107>, 2023.

Zi, W., Xiong, W., Chen, H., Li, J., Jing, N., 2021. Sga-net: Self-constructing graph attention neural network for semantic segmentation of remote sensing images. *Remote Sensing* 13, 4201.

Zou, X., Li, K., Xing, J., Zhang, Y., Wang, S., Jin, L., and Tao, P.: DiffCR: A fast conditional diffusion framework for cloud removal from optical satellite images, *IEEE Trans. Geosci. Remote Sens.*, 62, 1–14, <https://doi.org/10.1109/TGRS.2024.3365806>, 2024.

Page 2: [1] Deleted	pan jiang	2025/11/6 16:03:00
▼		
Page 2: [2] Deleted	pan jiang	2025/11/6 16:03:00
▼		
Page 19: [3] Deleted	pan jiang	2025/11/6 23:30:00
▼		
Page 19: [4] Deleted	pan jiang	2025/11/6 23:30:00
▼		
Page 22: [5] Deleted	pan jiang	2025/11/6 23:43:00
▼		
Page 23: [6] Deleted	pan jiang	2025/11/6 23:43:00
▼		
Page 24: [7] Deleted	pan jiang	2025/11/6 23:53:00
▼		
Page 24: [8] Deleted	pan jiang	2025/11/6 23:53:00
▼		
Page 24: [9] Deleted	pan jiang	2025/11/6 23:53:00
▼		
Page 44: [10] Deleted	pan jiang	2025/11/7 13:03:00
▼		
Page 44: [11] Deleted	pan jiang	2025/11/7 13:03:00
▼		
Page 45: [12] Deleted	pan jiang	2025/11/7 13:07:00
▼		
Page 49: [13] Deleted	pan jiang	2025/11/7 13:18:00
▼		