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Abstract  

As global climate change and human activities escalate, the frequency and severity of landslide 

hazards have been increasing. Early identification, as an important prerequisite for monitoring, 

evaluation, and prevention, has become increasingly critical. Deep learning, as a powerful tool for data 

interpretation, has demonstrated remarkable potential in advancing landslide identification, 

particularly through the automated analysis of remote sensing, geological, and topographic data. This 

review provides an overview of recent advancements in the utilization of deep learning for potential 

landslide identification. First, the sources and characteristics of landslide-related data are summarized, 

including satellite observation data, airborne remote sensing data, and ground-based observation data. 

Next, several commonly used deep learning models are classified based on their roles in potential 

landslide identification, such as image analysis and time series analysis. Then, the role of deep learning 

in identifying rainfall-induced landslides, earthquake-induced landslides, human activity-induced 

landslides, and multi-factor-induced landslides is summarized. Although deep learning has achieved 

considerable successes in landslide identification, it still faces several challenges, including data 

imbalance, insufficient generalization capabilities of the models, and the complexity of landslide 

mechanism research. Finally, future research directions in this field are discussed. It is suggested that 

integrating knowledge-driven and data-driven approaches for potential landslide identification will 

further enhance the applicability of deep learning, offering broad prospects for future research and 

practice. 

 

1 Introduction 
Landslides are complex geological hazards triggered by both natural processes and human 

activities, involving intricate interactions among geological, hydrological, topographic, and 
meteorological factors (Fidan et al., 2024). Globally, landslides cause significant loss of life and 
property each year, particularly in mountainous areas with intense rainfall, seismic activity, and fragile 
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geological conditions (Askarinejad et al., 2018; Ehsan et al., 2025; Marin-Rodriguez et al., 2024). 
According to United Nations Office for Disaster Risk Reduction (2023), more than 1,000 landslide-
related disasters occur annually, resulting in thousands of fatalities and substantial economic damage. 
With the intensification of climate change, extreme weather events are becoming more frequent, 
further increasing global landslide risks (Wang et al., 2023c). 

Faced with these escalating threats, the focus of landslide risk management should shift from 
post-disaster response toward proactive identification and prevention. Potential landslides refer to 
slopes that exhibit early signs of instability and may evolve into landslides under external triggers such 
as rainfall or earthquakes. They represent the precursor stage of landslide development (Lin et al., 2024; 
Yang et al., 2020a). Timely identification and monitoring of such slopes are crucial for disaster 
prevention and risk mitigation (Strzabala et al., 2024). 

However, the inherent uncertainty and dynamic nature of potential landslides make their 

identification challenging.  On the one hand, it is not possible to determine that a landslide will 

definitely occur just because there are signs of deformation on the slope (Peres and Cancelliere, 2014; 

Zhang et al., 2019). Multiple factors need to be comprehensively considered to assess the possibility 

of its instability. On the other hand, the uncertainty of external factors increases the difficulty of 

judgment. Sudden events such as heavy rainfall and earthquakes may instantly change the stress state 

of the slope and trigger signs of deformation (Yang et al., 2024c). Given the dynamic characteristics 

of potentials, it is also essential to conduct long-term monitoring of the landslides with potential 

hazards after identification (Lakhote et al., 2025). 

Conventional approaches to potential landslide identification, including field surveys, geological 
analysis, and interferometric radar techniques, have contributed substantially to hazard assessment but 
remain costly, time-consuming, and limited in spatial coverage (Akosah et al., 2024; Zhao and Lu, 
2018). Machine learning has partially improved efficiency but still depends heavily on manual feature 
engineering, requiring expert knowledge to design relevant predictors (Sheng et al., 2023). These 
limitations restrict the scalability and adaptability of conventional approaches in complex geospatial 
environments. 

In contrast, deep learning provides an effective data-driven alternative for landslide research. As 
a subfield of machine learning, deep learning performs hierarchical feature extraction through multiple 
nonlinear transformations (Janiesch et al., 2021; Nava et al., 2023). By leveraging large-scale, multi-
source data, deep learning models can automatically extract representative features, capture nonlinear 
dependencies, and conduct pattern recognition in high-dimensional datasets (Aslam et al., 2021; Wang 
et al., 2023a; Zhou et al., 2023). These capabilities make deep learning particularly suitable for 
identifying and characterizing potential landslides across diverse spatial and temporal scales (Nava et 
al., 2021; Yang et al., 2024d). 

Within this research context, potential landslide identification can be broadly categorized into two 

main types. The first focuses on post-event regional assessments, which are conducted after major 

rainfall or earthquakes but prior to large-scale slope failures, using remote sensing data to detect 

deformation, topographic changes, or vegetation anomalies. The second involves retrospective 

analyses of historical landslides to establish relationships between triggering factors and failure 

characteristics, thereby identifying other slopes that exhibit similar instability patterns. Despite their 
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differing temporal focuses, both types share common methodological foundations and depend on the 

integration of multi-source environmental data for reliable assessment. 

Building on these foundations, this review aims to provide a comprehensive synthesis of deep 

learning applications in the field of potential landslide identification. Specifically,  

(1) we categorize commonly used heterogeneous data into three major types to support research 

on potential landslide identification. These data sources form the foundation for applying deep learning 

in this field. 

(2) we introduce the roles and mechanisms of widely used deep learning models in potential 

landslide identification, and conduct a comparative analysis of their respective advantages and 

limitations. 

(3) we examine the performance of these models across different application scenarios through 

representative case studies, highlighting their adaptability and effectiveness in potential landslide 

detection. 

(4) we summarize the key challenges currently faced in applying deep learning to potential 

landslide identification and outline emerging opportunities and promising future directions for further 

advancement. 

Through our analysis, we identified several key trends in the application of deep learning to 
potential landslide identification. First, researchers are increasingly adopting multi-source data fusion 
approaches, integrating information from diverse sources to construct a more comprehensive 
representation of the geological environment (Guo et al., 2025; Liu et al., 2020b; Wang et al., 2024d). 
Second, deep learning models have been successfully applied across multiple scales, ranging from 
large-scale landslide susceptibility mapping with Convolutional Neural Networks (CNNs) to real-time 
slope deformation monitoring with Recurrent Neural Networks (RNNs) (Azarafza et al., 2021; Soni et 
al., 2025; Xie et al., 2024; Zhao et al., 2024f). Despite these advances, the field continues to face 
critical challenges that will shape its future trajectory. Addressing these challenges requires a paradigm 
shift, future research is expected to place greater emphasis on integrating physical knowledge with 
data driven approaches, thereby advancing the field from conventional, reactive post-disaster 
responses toward intelligent, proactive pre-disaster risk management. 

 

 

2 Deep Learning for Potential Landslide Identification: Data Source 

Accurate identification of potential landslides is the primary step in effectively preventing and 

mitigating the impacts of landslide hazards. Data sources are the cornerstone of achieving this 

objective. Different types of data provide indispensable information for potential landslide 

identification from various perspectives, and drive ongoing advancements in related research and 

practices. 

In potential landslide identification, the richness and reliability of data sources directly determine 
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the accuracy and effectiveness of research. Data sources not only provide fundamental information to 

outline the landslide environments, but also enable dynamic monitoring and precise analysis. This 

section will comprehensively review the critical roles played by three main types of data sources: 

satellite observation data, airborne remote sensing data, and ground-based observation data (see Fig. 

1). 

 

Figure 1. Data sources for potential landslide identification. Satellite observations (e.g., Landsat, 

Sentinel, SPOT, and Envisat) provide optical and radar imagery with varying spatial resolutions for 

detecting and mapping landslides. Airborne observations (LiDAR, UAV) deliver high-resolution 

topographic and photographic data, while ground-based observations (TLS, GBSAR, GNSS, rainfall 

and groundwater sensors) offer continuous in-situ monitoring of slope dynamics. 

2.1 Satellite Observation Data 

Since the launch of Landsat-1, the first Earth observation satellite dedicated to surface research 

and monitoring, on July 23, 1972, satellite data have become widely accessible. Their applications 

have long extended beyond single-purpose analysis or results (Wulder et al., 2022). With the 

continuous development of satellite observation, its immense potential for application in landslide 

research has become evident (Liu et al., 2021d). At present, satellite observation data mainly include 
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space-borne Synthetic Aperture Radar (SAR) and optical remote sensing data, both of which are widely 

used as inputs for deep learning models in landslide identification. 

2.1.1 Space-borne SAR 

SAR is an active microwave remote sensing system (Franceschetti and Lanari, 2018). It is not 

only capable of acquiring data on demand by actively emitting microwave signals but also facilitates 

partial penetration of vegetation cover through its longer wavelength bands (such as the L-band), 

thereby allowing the retrieval of surface deformation information beneath vegetated areas.  

A critical operational advantage of SAR lies in its capacity to image regardless of illumination 
(day or night) and weather conditions (Koukiou, 2024). The continuous, unimpeded time series data 
this provides is essential for serving as input to deep learning models, allowing these models to be 
trained to identify long-term patterns of terrain change. For this reason, SAR is widely employed for 
the crucial task of continuous monitoring in high-risk environments, where cloud cover and the timing 
of a disaster are unpredictable. 

Notably, the NASA–ISRO SAR Mission (NISAR), jointly developed by the National Aeronautics 

and Space Administration (NASA) and the Indian Space Research Organisation (ISRO), was 

successfully launched in 2025 (Indian Space Research Organisation, 2025; NASA, 2025). The satellite 

carries both L-band and S-band SAR systems, enabling more precise and frequent measurements of 

surface deformation. With a revisit period of approximately 12 days, it delivers globally consistent 

coverage with a balanced spatial and temporal resolution. This capability provides researchers with 

abundant and continuous observations, supporting large-scale, high spatiotemporal resolution 

landslide early detection and dynamic monitoring. 

Interferometric SAR (InSAR) has been developed based on the principle of measuring phase 
differences between two or more SAR images of the same area (Dai et al., 2022; Ma et al., 2023b; 
Zeng et al., 2024). By coherently processing these images, InSAR obtains high-precision surface 
elevation information and can be further applied to detect ground deformation. 

In contrast, SAR mainly provide backscatter information of ground objects. Although some 

features of ground objects can be identified according to the scattering characteristics, their ability to 

obtain topographic elevation information is relatively weak. InSAR, on the other hand, can directly 

generate topographic elevation data, which is of great significance for analyzing the topography and 

geomorphology in the identification of potential landslides, and determining key elements such as the 

topographic undulation and slope of potential landslide areas. 

When screening for potential landslides over a large area, InSAR has higher efficiency (Dun et 

al., 2021; Tang et al., 2025; Zhang et al., 2021). When monitoring large potential landslide areas such 

as mountainous regions, InSAR can quickly obtain topographic deformation information over a large 

area, promptly detect potential areas with potential landslides, and reduce the workload and blind spots 

of manual inspections. 

Recent studies have integrated InSAR-derived deformation velocity fields with deep learning 
models to automatically detect slow-moving or latent landslides. For example, Liu et al. (2022d) 
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employed an InSAR-CNN framework tomap active landslides in the Eastern Tibet Plateau area, 
achieving a detection accuracy of over 90%. Similarly, Zhang et al. (2022d) proposed a twostage 
detection deep learning network (InSARNet) for detecting anomalous deformation areas in Maoxian 
County, Sichuan Province, with a recognition accuracy of 93.88%. Targeting the complex deformation 
mechanisms of multi-type landslides in Zigui County, Three Gorges Reservoir Area, Hu et al. (2025b) 
used InSAR time-series displacement as the core data, develop a deep learning architecture based on 
the integrated framework of EMD and GRU, break through the limitations of conventional models 
such as single-type, single-target, and low-accuracy, and achieve dual-accurate prediction of 
displacement and failure time for multi-type landslides. 

Differential SAR (D-InSAR) is an advancement of InSAR that eliminates topographic phase 

through differential processing, focusing specifically on deformation information extraction (Shen et 

al., 2022). The emergence of D-InSAR not only enables the transition from mixed deformation-

topography signals to pure deformation signal extraction but also extends its applicability from 

detecting discrete deformation events to identifying slow-moving landslide processes, significantly 

enhancing the reliability of landslide monitoring (Zhong et al., 2024). 

2.1.2 Optical Remote Sensing 

Optical remote sensing refers to the acquisition of surface information through sensors that 

measure reflected solar radiation. Its application in geological hazard investigations dates back to the 

1970s (Fu et al., 2024; Liu and Wu, 2016). 

Optical remote sensing offers high resolution, currently capable of achieving spatial resolutions 

as fine as 0.3 meters or better. For example, Maxar’s WorldView-3 delivers 0.31 m panchromatic 

imagery (Hu et al., 2016; Longbotham et al., 2014), while India’s Cartosat-3 satellite achieves 

panchromatic imagery with a resolution of up to 0.25 m (Gupta et al., 2024). In potential landslide 

identification, it not only facilitates the retrieval of detailed surface textures and color characteristics 

using rich spectral data but also enables the direct identification of morphological features and object 

contours via visual interpretation of imagery (Cheng and Han, 2016; Li et al., 2022b; Ma and Wang, 

2025). 

Landslide formation typically follows a progressive process from deformation to failure, 

accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized collapses. 

These indicators exhibit distinct spectral signatures in optical imagery compared to their surroundings, 

enabling both manual interpretation and automated detection. In deep learning applications, 

multispectral optical images have been widely used to train CNN-based models for potential landslide 

identification. Lu et al. (2023a) developed a method for achieving accurate landslide mapping using 

medium-resolution remote sensing images and DEM data, which has the potential for deployment in 

large-scale landslide detection. Jiang et al. (2022a) proposed a TL-Mask R-CNN for identifying a small 

number of old landslide samples in the area along the Sichuan-Tibet Transportation Corridor. The 

results show that the pixel accuracy of segmentation for new landslides and old landslides can reach 

Deleted: At present, InSAR is widely employed to generate 

ground deformation velocity maps and time-series data, 

which reveal the dynamic evolution of landslide-prone areas.

Deleted: interferometric synthetic aperture radar



 

7 
 

87.71% and 75.86% respectively. 

In vegetated mountainous regions, surface vegetation often undergoes detectable changes before 

a landslide event. Optical remote sensing leverages multispectral data, particularly red and near-

infrared bands, to monitor vegetation health and identify potential landslide zones (Coluzzi et al., 2025; 

Fiorucci et al., 2018). Furthermore, the calculation of the Normalized Difference Vegetation Index 

(NDVI) facilitates the evaluation of vegetation health in potential landslide regions, providing critical 

insights into potential landslide precursors (Verrelst et al., 2015). 

However, the broad spectral bands of multispectral sensors limit their ability to detect more subtle, 
diagnostically specific precursory signals. The advancement beyond broad-band multispectral imaging 
to hyperspectral imaging has opened new avenues for landslide precursor detection (Kilgore and 
Restrepo, 2025; Ye et al., 2019). Hyperspectral sensors capture hundreds of contiguous spectral bands, 
enabling the identification of specific mineralogies (e.g., expansive clays like smectite that influence 
slope stability) and subtle geochemical alterations on slope surfaces. For instance, the shifting 
absorption features in the short-wave infrared region can signal changes in soil water content and 
mineral composition that often precede failure (Thimsen et al., 2017). The integration of these rich 
spectral datasets with deep learning architectures has significantly advanced automated landslide 
analysis (Huang et al., 2022c; Shahabi et al., 2021). These models excel at learning complex patterns 
from high-dimensional spectral-spatial information, enabling highly accurate detection of landslide 
scars and even precursory features like cracks and seepage zones that are otherwise challenging to 
identify. 

While both space-borne SAR and optical remote sensing are pivotal for large-area landslide 

screening, they offer complementary capabilities and have distinct limitations. Optical remote sensing 

provides intuitive visual interpretation of geomorphological features but is rendered useless by cloud 

cover and darkness. In contrast, space-borne SAR, with its all-weather, day-and-night imaging 

capability, excels in detecting millimeter-to-centimeter-scale surface deformation through InSAR 

techniques, which is a direct precursor to landslide failure. However, InSAR performance can be 

degraded in heavily vegetated areas due to temporal decorrelation and in steep terrain due to geometric 

distortions (Lin et al., 2022; Yan et al., 2024), areas where optical stereo imaging for DEM generation 

might be less affected. Therefore, the integration of SAR-derived deformation maps and optical-based 

geomorphological maps is considered a best practice for regional-scale landslide inventory mapping 

and preliminary hazard assessment (Xun et al., 2022). 

2.2 Airborne Remote Sensing Data 

Airborne remote sensing data, typically acquired by manned aircrafts, provide high-resolution 

imagery of localized areas. Advanced airborne platforms equipped with oblique photogrammetry and, 

more recently, close-range photogrammetry technologies enable millimeter-level accuracy in 3D 

photogrammetry, facilitating the observation of subtle surface deformations, rock mass structures, and 

the construction of highly detailed 3D models of terrain and above-ground infrastructure (Macciotta 
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and Hendry, 2021; Xu et al., 2023). Among these technologies, airborne photogrammetry and airborne 

radar are the most commonly used. 

2.2.1 Airborne Light Detection and Ranging (LiDAR) 

LiDAR has been used for landslide and other geological hazard investigations in many regions 

since the late 1990s. As an active remote sensing system, LiDAR can laterally scan a range of 60◦ and 

capture 400,000 points per second, enabling largescale 3D scanning of terrain, structures, and 

vegetation within a short period (Mallet and Bretar, 2009). It offers centimeter-level accuracy in both 

horizontal and vertical dimensions. 

Airborne LiDAR is irreplaceable in capturing 3D details and penetrating vegetation, particularly 

in densely vegetated areas where conventional aerial photography faces significant limitations. 

Airborne LiDAR not only acquires high- resolution Digital Surface Models (DSMs) from laser point 

cloud data but also generates high-accuracy DEMs by removing vegetation contributions (Fang et al., 

2022; Jaboyedoff et al., 2012; Yan et al., 2023), thereby revealing concealed hazard features such as 

mountain fractures, loose deposits, and landslide masses under vegetation cover. 

Point cloud data obtained from airborne LiDAR can monitor dynamic changes in mountainous 

terrain by detecting deformations such as subsidence, displacement, and uplift, while also facilitating 

the construction of 3D landslide models to simulate sliding directions and impact areas. Through 

intuitive visualization of slope morphology and structure from multiple perspectives, LiDAR enables 

researchers to conduct a comprehensive assessment of slope conditions and identify subtle hazard 

features that may not be easily discernible in 2D imagery. 

These high-precision DEMs and point clouds serve as critical inputs for deep learning models. 

For instance, Wei et al. (2023) proposed the Dynamic Attentive Graph Network (DAG-Net) model to 

construct dynamic edge features for enhancing point cloud representations, achieving the highest mean 

Intersection over Union (mIoU) of 0.743 and an F1-score of 0.786. Based on the advanced PointNet 

and PointNet++ architectures, Farmakis et al. (2022) developed deep neural networks for 3D point 

cloud learning. The best-performing model achieved accuracies of approximately 89% and 84% during 

the final and shortest monitoring campaigns, respectively. These examples demonstrate that airborne 

LiDAR data are not only suitable but have been effectively applied in deep learning-based landslide 

analysis. 

2.2.2 Unmanned Aerial Vehicle (UAV) 

UAV aerial photogrammetry provides outstanding maneuverability and high-precision 

measurements. Traversing over steep slopes and valleys, UAVs are able to monitor areas that are often 

inaccessible to satellites and manned aerial platforms (Niethammer et al., 2012), thus addressing 

critical observational limitations. 

In large-scale and topographically complex regions, UAVs can perform efficient aerial 
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inspections, overcoming the limitations of ground-based inspections in inaccessible or visually 

obstructed regions. By rapidly scanning mountain slopes, embankments, and gullies, UAVs provide a 

comprehensive understanding of the geological conditions and enable timely identification of macro-

scale geomorphic anomalies. However, given cost-effectiveness constraints, UAVs are currently more 

commonly used for periodic and continuous monitoring in localized areas. They are particularly well-

suited for rapid and dynamic monitoring of landslides in high-priority zones. 

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial 

photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on UAVs 

are able to capture the subtle cracks on the surface of the mountain. 

These cracks may be early signs of a landslide (Sun et al., 2024a). By conducting a comparative 

analysis of the images taken at different times, the development and changes of the cracks can be 

monitored, including the increase in the length, width and depth of the cracks, as well as the changes 

in the crack orientation. In some mountainous areas or valleys, there may be a large number of loose 

accumulations. These accumulations may trigger landslides under specific conditions. Aerial 

photography by UAVs can clearly identify information such as the distribution range, accumulation 

quantity and accumulation shape of these loose accumulations, and assess their potential threats to the 

surrounding environment. This capability is leveraged in deep learning applications, where time-series 

UAV imagery is processed using RNNs or 3D CNNs to monitor the spatiotemporal evolution of these 

cracks, providing a data-driven approach for early warning (Xu et al., 2025; Sandric et al., 2024). 

Airborne platforms bridge the gap between satellite and ground-based observations. LiDAR is 

unparalleled in generating high-precision DEM, revealing concealed paleo-landslides and subtle 

topographic features critical for hazard mapping. However, its deployment is costly and logistically 

complex. UAVs, as a flexible and cost-effective alternative, have democratized high-resolution data 

acquisition. They can be equipped with various sensors (e.g., optical, multispectral, and even 

lightweight LiDAR) to conduct rapid response surveys following triggering events such as earthquakes 

or heavy rainfall (Han et al., 2023). While UAV-derived models have ultra-high resolution, their 

coverage is limited per sortie compared to airborne campaigns. The choice between them often 

involves a trade-off between coverage, cost, operational flexibility, and the specific requirement for 

vegetation penetration. 

By equipping UAVs with LiDAR sensors to effectively remove vegetation from the data, this 
integrated approach combines the strengths of photogrammetry and LiDAR (Mandlburger et al., 2020; 
Wallace et al., 2012). It allows researchers to reveal landslide boundaries, crack patterns, and other 
deformation features hidden beneath vegetation cover, enabling rapid deployment and targeted area 
monitoring while mitigating vegetation-related challenges in landslide assessment. 

2.3 Ground-based Observation Data 

Satellite observation and airborne remote sensing are mainly employed for identifying potential 
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landslides based on surface morphology. However, these approaches are often affected by vegetation 

cover, viewing geometry, and atmospheric noise, which may lead to misclassification or omission 

(Almalki et al., 2022; Dubovik et al., 2021). Therefore, ground-based observation techniques play a 

critical complementary role, offering higher temporal resolution, accuracy, and localized verification 

for potential landslide identification. In recent years, data collected from ground-based monitoring 

instruments have not only been used for field validation but also increasingly incorporated into deep 

learning frameworks to improve temporal continuity and physical interpretability in landslide detection 

and forecasting. 

2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR) 

GB-SAR is an active ground-based microwave remote sensing system that has been developed 

over the past decade, effectively integrating the principles of SAR imaging with electromagnetic wave 

interferometry. By leveraging precise measurements of sensor system parameters, attitude parameters, 

and geometric relationships between orbits, GB-SAR quantifies spatial positions and subtle changes 

at specific surface points, allowing for the measurement of surface deformations with millimeter or 

even sub-millimeter precision. 

Compared with spaceborne SAR, GB-SAR can adjust the incidence and azimuth angles of radar 

waves, thereby avoiding phase decorrelation caused by terrain-induced occlusion in spaceborne 

observations. Consequently, they are particularly suitable for monitoring steep slopes, canyons, and 

other areas with limited line-of-sight coverage from satellites (Noferini et al., 2007). 

. 

During landslide movement, the ground experiences noticeable subsidence, displacement, or 

cracking. GB-SAR can be configured for high-resolution, continuous observation to capture 

instantaneous deformations during the landslide creep phase and generate corresponding displacement 

maps (Liu et al., 2021a; Xiao et al., 2021). For example, Long et al. (2018) proposed a GBSAR 

persistent scatterer point selection method based on the mean coherence coefficient, amplitude 

dispersion index, estimated signal-to-noise ratio, and displacement accuracy index. Han et al. (2022) 

proposed an LSTM-based approach for processing GB-InSAR time series data. Kacˇan et al. (2022) 

employed two deep learning methods to investigate the potential and advantages of processing raw 

GBSAR data for automatic radar classification. 

For small-scale regional monitoring, GB-SAR can establish customized geometric configurations 

specifically designed for target areas. Utilizing mobile rail systems or multi-antenna setups, GB-SAR 

reconstructs 3D deformation vector fields of landslide masses (Shi et al., 2025), identifying sliding 

directions and potential failure surfaces. 

2.3.2 Terrestrial Laser Scanning (TLS) 

TLS emerged in the mid-1990s. It plays a unique role in local refined monitoring by emitting 
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laser pulses and measuring their reflection time (Stumvoll et al., 2021; Teza et al., 2007). 

The landslide often manifests as a sharp change in the ground surface. TLS can provide data with 

sufficient accuracy, assisting researchers in identifying the features of these landslides (Abellan et al., 

2009; Teng et al., 2022).  

By quickly and massively collecting spatial point position information, TLS can automatically 

splice and rapidly obtain the appearance of the measured object. It can be used to construct high-

precision surface models and appearance models of buildings and structures. The 3D model can display 

the shape and structure of the mountain and the detailed features of the ground surface from different 

angles and in all directions (Zhou et al., 2024), enabling geological experts and engineers to have a 

more intuitive understanding of the overall situation of the landslide area. For example, the cracks in 

the mountain, the loose accumulations, and the degree of weathering of the rocks can be clearly seen, 

providing richer information for the identification of potential landslide hazards. 

In the context of deep learning, TLS-derived 3D point clouds have become critical inputs for 
morphological feature extraction and automatic landslide identification. For example, Senogles et al. 
(2022) integrated TLS point cloud data to assess surface displacements induced by landslide 
movements. Wang et al. (2025) provided a practical and adaptable solution for landslide monitoring 
by integrating TLS point clouds with embedded RGB imagery. 

These examples confirm that TLS data are not only suitable but already actively used in deep 
learning-based landslide recognition, providing precise geometric constraints for multi-source fusion 
frameworks that combine DEM, optical, and In-SAR information. 

Ground-based techniques provide the highest precision for monitoring a specific slope of interest. 

GB-SAR and TLS are both non-contact remote sensing methods, but they operate on different 

principles. GB-SAR offers continuous, all-weather, mm-level deformation monitoring over a large 

area (several km2) from a single station, making it ideal for early warning. Its drawback is the need for 

a stable, opposing installation point with a clear line-of-sight (Monserrat et al., 2013). TLS, on the 

other hand, provides mm-to-cm-level 3D point clouds of the slope surface, excellent for quantifying 

volume changes and detailed geometric changes. However, it is typically used for periodic surveys 

rather than continuous monitoring and has occlusion shadows (Huang et al., 2019). 

2.3.3 Ground-based Sensor Devices 

Compared to the aforementioned data sources, ground-based sensors offer key advantages, 

including high precision, realtime capabilities, and multi-parameter fusion (Dai et al., 2023). They can 

address the limitations of remote sensing and provide critical ground-based dynamic information for 

potential landslide identification. 

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the 

state of landslide masses. These datasets provide foundational inputs for deep learning models, 

enabling multi-dimensional analysis and interpretation of potential landslide conditions. For example, 

ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like displacement and 
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tilt angle at frequencies ranging from minutes to seconds, capturing transient, anomalous signals just 

prior to landslide events, thereby filling the temporal resolution gap in remote sensing (see Fig. 1). 

These data are often used as input sources for RNN models and 300 their variants (Bai et al., 2022; 

Wang et al., 2021a). By integrating time series data with SAR imagery, deep learning models can be 

trained to uncover correlation patterns between surface deformations and subsurface parameters (Jiang 

et al., 2022). Instruments such as piezometers and soil pressure gauges can directly monitor key 

parameters like pore water pressure and soil stress on the sliding surface. By combining the obtained 

subsurface data with geomechanical equations, the position of the sliding surface or geotechnical 

strength parameters can be inferred. 

Therefore, GB-SAR, TLS, and ground-based sensors are not only auxiliary observation 

techniques but are increasingly serving as key data sources for deep learning-driven landslide 

identification. Their integration into CNN, LSTM, and Generative Adversarial Network (GAN) 

frameworks enables high-resolution spatial-temporal modeling of slope behavior, bridging the gap 

between field-scale monitoring and large-scale hazard prediction. 

2.4 Summary of Data Source for Potential Landslide Identification 

In summary, no single data source is sufficient for a comprehensive potential landslide 

identification framework. Regional-scale satellite data, particularly InSAR, is optimal for the early 

detection of pre-landslide deformations over vast areas. Airborne platforms, such as UAVs, then 

provide high-resolution optical and LiDAR data to characterize the precise geometry and activity of 

identified potential landslides. Finally, ground-based and in-situ sensors enable site-specific, real-time 

monitoring of high-risk slopes, validating remote sensing findings and supporting early warning 

systems. The strategic integration of these multiplatform data is crucial for transitioning from regional 

screening to mechanistic understanding and risk mitigation. 

Beyond these general data modalities, recent years have also witnessed the emergence of 

benchmark datasets that serve as standardized testbeds for developing and evaluating deep learning 

methods in landslide identification. Such datasets are essential for ensuring reproducibility, enabling 

fair comparison across models, and accelerating methodological advances. Representative examples 

include the CAS Landslide Dataset, a large-scale, multi-sensor dataset explicitly designed for deep 

learning-based landslide mapping (Xu et al., 2024); the Landslide4Sense (L4S) benchmark, developed 

within an international competition, which provides multisource satellite image patches 

(Ghorbanzadeh et al., 2022b); and the Diverse Mountainous Landslide Dataset (DMLD), which 

emphasizes high-resolution instances from complex mountainous terrains (Chen et al., 

2024b). In addition, slope-unit-based benchmark datasets have been constructed to support 

susceptibility mapping and regional-scale comparisons (Martinello et al., 2021). 

These datasets serve as valuable resources for pixel-level segmentation and slope-unit-based 
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susceptibility modeling. However, in practice, the compilation of landslide inventories faces 

considerable challenges, making it difficult to obtain comprehensive and accurate records (Kong et al., 

2025; Lee et al., 2018). Consequently, data scarcity remains a common issue in landslide hazard 

identification, particularly in remote regions or areas with limited accessibility. Therefore, it is 

necessary to further expand their geographical coverage and establish standardized evaluation 

protocols. 

 

3 Deep Learning for Potential Landslide Identification: Models 

The effectiveness of deep learning in potential landslide identification largely depends on 
selecting an appropriate model architecture suited to the data type and specific task. While all deep 
learning models excel at automated feature extraction, their internal architectures predispose them to 
excel in different aspects of the overall workflow. Therefore, this section does not merely list models, 
but organizes them based on their primary function in the potential landslide identification pipeline. 
We analyze several commonly used deep learning models by categorizing them into five functional 
roles: image analysis and processing, time series analysis, data generation, anomaly detection, and data 
fusion. 

 

3.1 Models for Image Analysis and Processing in Potential Landslide Identification 

Image data plays a critical role in potential landslide identification, especially through remote 

sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain data, 

encompassing complex geographical features, vegetation coverage, and ground fissures, which often 

serve as potential precursors to landslide occurrences. The adoption of deep learning has facilitated a 

shift from conventional manual visual interpretation to automated high-precision segmentation. 

As illustrated in Fig. 2, a CNN is mainly composed of convolutional, pooling, and fully connected 

layers, each responsible for distinct operations on the input data (Kattenborn et al., 2021; LeCun et al., 

1998; Liu et al., 2022b). 

Convolutional layers, the core of CNNs, use kernels of various sizes to extract multi-scale features 

from geospatial imagery, which is crucial for landslide identification Hussain et al. (2019); Shi et al. 

(2020); Yao et al. (2021). Small kernels are effective in detecting fine-grained precursors such as 

ground fissures and localized soil texture changes. For instance, Hamaguchi et al. (2018) proposed a 

Local Feature Extraction (LFE) module to enhance the capability of CNNs in identifying small object 

instances in remote sensing imagery. Wang et al. (2024a) demonstrated the exceptional capability of 

convolutional layers in extracting extremely small and subtle features by identifying cracks as narrow 

as 0.05 m width using a U-Net–based model. In contrast, larger kernels help in recognizing the overall 

morphology and boundaries of landslide bodies. From the perspective of general visual tasks, Ding et 

al. (2022) demonstrated that larger convolution kernels substantially improve the shape bias of CNNs, 
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facilitating the recognition of large-scale structures and overall morphological patterns compared with 

using small kernels alone. Li et al. (2025) employed multiple large convolution kernels (kernel sizes 

= 5, 7, and 9) within the deep learning-based feature fusion with scale-adaptive kernel attention module 

to fuse multi-scale features, thereby enhancing the global perception of landslide boundaries and 

morphology as well as the capture of contextual background information. 

Pooling layers downsample feature maps, improving computational efficiency and model 

robustness. In landslide mapping, this translation invariance is particularly beneficial, as it allows the 

model to consistently identify landslide features regardless of their slight positional variations across 

different image patches (Mao et al., 2024). 

The final fully connected layer flattens the pooled feature maps and performs classification, 

outputting results that distinguish potential landslide areas from non-landslide areas or enable further 

analysis of landslide types (Wu et al., 2024b). 

The layers of a CNN can be combined in various ways, forming distinct CNN architectures. These 

architectures are primarily determined by task requirements, which may include image classification, 

multi-class segmentation, or object localization within a scene. 

Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers, 

and fully connected layers. However, increasing network depth introduces challenges such as 

vanishing gradients and degradation arise, resulting in model performance deterioration. 

ResNet mitigates the vanishing gradient problem in very deep networks through residual 

connections (Qi et al., 2020; Yang et al., 2022). This architectural advancement has been successfully 

applied to landslide detection in complex terrains, such as the work by Ullo et al. (2021), who 

demonstrated that a ResNet-based classifier could achieve high accuracy in distinguishing landslide 

scars from surrounding vegetation and bare soil in satellite imagery by effectively learning hierarchical 

features.  

Models with higher parameter counts generally exhibit greater representational capacity but are 

prone to overfitting, while demanding higher computational resources and temporal costs for both 

training and inference (Ebrahimi and Abadi, 2021). For instance, (He et al., 2016) introduced ResNet-

152 and other deep residual network architectures, demonstrating that deeper structure achieve 

superior performance compared with shallower counterparts. Hasanah et al. (2023) explicitly 

highlighted the differences in layer depth and parameter count among various ResNet versions 

(ResNet-50, 101, and 152), noting that the increased number of parameters in deeper networks 

inevitably leads to longer training times. 

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks 

are based on a similar idea, which is to establish a "shortcut" between different layers. However, the 

structure of DenseNet is simpler and more effective, with fewer parameters. The structural differences 
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between ResNet and DenseNet are illustrated in Fig. 2.  In ResNet, each layer is only connected to 

the previous layer, while in DenseNet, each layer is directly connected to all previous layers, and each 

layer can obtain gradients from the loss function. This can optimize the information flow and gradients 

of the entire network, making it easier to train and performing better on small datasets. The structure 

of DenseNet enables more effective reuse of features, meaning that each layer can directly access and 

build upon the feature maps generated by all preceding layers instead of re-learning similar 

representations. This dense connectivity not only strengthens information and gradient flow across the 

network but also reduces redundancy and the total number of parameters. Moreover, the layers of 

DenseNet are narrower than those of other deep learning networks (Liu et al., 2021c), making it reduce 

redundancy by learning with fewer feature maps. This architecture is suitable for the extraction of 

multi-scale landslide features under complex terrains, even with limited landslide training samples 

(Cai et al., 2021; Li et al., 2021; Ullo et al., 2021). 
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Figure 2. The role of deep learning models in image analysis and processing. (a) Comparison of 

landslide images before and after identification. (b) Schematic of a basic CNN architecture. A 

conventional CNN typically comprises stacked convolutional layers, pooling layers, and fully 

connected layers. (c) Comparative schematic of ResNet and DenseNet architectures. In contrast to 

ResNet, which combines features through summation before passing them to subsequent layers, 

DenseNet integrates features via channelwise concatenation. 

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation 

models have increasingly become the standard in landslide detection (Lu et al., 2023b; Zhou et al., 

2024b). As a fundamental task in computer vision, semantic segmentation assigns a specific class label 

(e.g., "landslide" or "non-landslide") to each pixel in an image, thereby enabling dense pixel-level 

classification (Guo et al., 2018). 

Numerous advanced semantic segmentation networks have been proposed and validated for 

automatic landslide detection, significantly enhancing the efficiency and accuracy of large-scale 

detection.  

U-Net is a typical example (Ronneberger et al., 2015), which features a U-shaped architecture. 

U-Net’s encoder-decoder structure with skip connections has become a benchmark for landslide 

segmentation (Chandra et al., 2023; Chen et al., 2022b; Meena et al., 2022). For example, Nava et al. 

(2022) applied the attention U-Net to Sentinel-1 SAR data for rapid mapping of earthquake-induced 

landslides, demonstrating the effectiveness of U-Net variants in pixel-level segmentation of landslide 

bodies under cloud-covered or topographically complex conditions. 

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable choice 
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(Sandric et al., 2024). While U-Net excels at preserving fine-grained spatial details through its skip-

connections, its ability to capture longrange contextual information is limited by its relatively small 

receptive field. DeepLab, built upon deep CNNs, addresses this critical limitation by employing dilated 

convolutions to exponentially expand the receptive field without sacrificing resolution or increasing 

parameters substantially. 

More importantly, DeepLab integrates an Atrous Spatial Pyramid Pooling (ASPP) module, which 

is key to its superior performance on multi-scale objects like landslides (Chen et al., 2017; Huang et 

al., 2024a). The ASPP module operates in parallel on the same feature map using multiple 

convolutional branches with different dilation rates (e.g., rates = 6, 12, 18). Each branch effectively 

captures contextual information at a different scale, from fine details to broad, image-level contexts 

(Niu et al., 2018). All these multi-scale features are then concatenated and fused. This allows the 

network to simultaneously leverage both local textual cues and global contextual cues, thereby 

significantly improving recognition accuracy and reducing false positives in geologically complex 

environments. 

After achieving semantic segmentation to obtain the accurate extent of a landslide and the 

classification of ground objects, change detection is employed to monitor the changes in the landslide 

area over time. By comparing the segmentation results of multiple temporal phases or directly 

analyzing the feature differences, the dynamic evolution of potential hazards can be quantifie 

(Amankwah et al., 2022). 

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models 

capture both spatial and temporal dependencies through 3D convolutional kernels, enabling the direct 

processing of multi-temporal image sequences. The outputs typically take two complementary forms: 

(1) change hotspot maps, which highlight regions of significant spatial change across time, and (2) 

temporal variation curves, which illustrate the evolution of pixel- or region-based feature values 

throughout the temporal sequence. Together, these representations provide intuitive and 

complementary tools for characterizing dynamic processes in landslide-prone areas, such as the 

initiation, progression, and spatial distribution of slope failures. 

Some studies even have integrated attention mechanisms into conventional CNN architectures to 

enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the identification of 

landslide hazard evolution over time. For example, Meng et al. (2024) proposed a framework based 

on CNN and optimized Bidirectional Gated Recurrent Unit (BiGRU) with an attention mechanism, 

designed to forecast landslide displacement with a step-like curve. Dong et al. (2022) proposed L-Unet 

which combines multi-scale feature fusion with attention modules to improve landslide segmentation 

performance, particularly at boundaries. 
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3.2 Models for Time Series Analysis in Potential Landslide Identification 

The occurrence of a landslide is a gradual accumulation process, usually influenced by a variety 

of factors. We refer to data that reflect the changing states of a landslide body over time as time series 

data. Time series data analysis aims to excavate the information hidden in the time series data to help 

identify potential landslides.  

Different from conventional statistical or physical models, deep learning models can 

automatically reveal dynamic change trends and periodic patterns in the data, providing more accurate 

information for landslide prediction and early warning. Recently, deep learning–based temporal 

models have become key tools for extracting nonlinear dependencies and temporal evolution patterns 

in landslide-related time series. The structural characteristics and differences among these models are 

illustrated in Fig. 3.RNNs are a class of deep learning models specialized in processing sequential data, 

capable of capturing temporal dependencies within input sequences (Elman, 1990). Unlike 

conventional feedforward neural networks, in an RNN, each neuron not only receives the current input 

but also the output of the previous time step as additional input. This structure endows the RNN with 

a memory mechanism (Ngo et al., 2021; Zaremba et al., 2014). 

In landslide prediction, RNNs have been employed to model displacement time series under 

rainfall or groundwater fluctuations, revealing short-term deformation patterns preceding slope failure 

(Chen et al., 2015; Zhang et al., 2022c). 

 

Figure 3. The role of deep learning models in time series analysis. (a) In potential landslide 
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identification, time series data can be obtained through monitoring. (b) RNNs, LSTMs, and GRUs 

provide more accurate information for landslide prediction by processing time series data. 

To overcome the vanishing gradient problem inherent in RNNs, LSTM introduces memory cells 

and gating mechanisms that selectively retain relevant temporal information (Graves, 2012; Landi et 

al., 2021; Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al., 

2019). As shown in Fig. 3, LSTM networks extend the basic RNN structure by incorporating gating 

units that control information flow, enabling them to better capture cumulative and delayed slope 

responses to environmental triggers. This capability allows them to model the cumulative and delayed 

responses of slopes to prolonged rainfall or reservoir water level fluctuations.  

LSTM models have been widely applied in landslide displacement prediction and early warning. 

Yang et al. (2019) analyzed the relationships among landslide deformation, rainfall, and reservoir water 

levels, and found that compared with static models, the LSTM approach more accurately captured the 

dynamic characteristics of landslides and effectively leveraged historical information. Xu and Niu 

(2018) used a LSTM model to predict the displacement evolution of the Baijiabao landslide using 

rainfall and hydrological level data, achieving a higher correlation compared with traditional 

regression models. In another study focused on shallow landslides, Xiao et al. (2022) used a week-

ahead LSTM model, which exhibited stable performance and improved prediction accuracy in short-

term prediction scenarios. Additionally, Gidon et al. (2023) constructed a Bi-LSTM model and 

achieved a detection accuracy of 93% in the Mawiongrim area. This effectively addresses the 

limitations of traditional methods and can provide a reliable technical solution for disaster early 

warning in this area as well as other similar landslide-prone areas. 

The GRU is a simplified variant of the LSTM that achieves similar accuracy with fewer 

parameters and reduced computational costs (Cho et al., 2014), making it well-suited for real-time 

landslide monitoring systems (Chung et al., 2014; Rawat and Barthwal, 2024; Zhang et al., 2022e). 

Furthermore, GRU models effectively identify precursory displacement acceleration, allowing 

early detection of slope instability triggered by rainfall or seismic shaking (Chang et al., 2025; Yang 

et al., 2025). 

Transformer, first introduced by Vaswani et al. (2017), was originally designed for natural 

language processing but has since become a cornerstone architecture in modern machine learning, 

achieving state-of-the-art performance across diverse domains such as computer vision and 

multimodal learning. 

Unlike conventional recurrent or convolutional models, the Transformer is built upon stacked 

encoder–decoder layers and relies on a key innovation: the self-attention mechanism (see Fig. 5). This 

mechanism enables the model to automatically compute a weight vector (i.e., an attention distribution) 

for each element in the sequence based on its relevance to all other elements. By evaluating all 
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information according to the requirements. Through learning 

from historical data, the LSTM can predict the likelihood of 
... [3]

Deleted: Gated recurrent unit (GRU) is a simplified version 

of LSTM(Chung et al., 2014; Zhang et al., 2022b), which has 

fewer parameters. Due to their higher computational 

efficiency, GRU has potential advantages in real-time data 

processing scenarios in landslide monitoring.

GRU mainly consists of the update gate and reset gate. The 

update gate is used to control how much of the previous 

information should be preserved at the current time step, 

while the reset gate is used to determine whether to ignore the 

hidden state of the previous time step, enabling the model to 

adaptively learn information across different temporal scales. 

This dual-gate mechanism enables adaptive learning of multi-

scale temporal patterns.

Compared with the LSTM, the GRU has fewer parameters 

and higher computational efficiency, giving it an advantage in 

some landslide monitoring scenarios where real-time 

performance is critical.

GRU is capable of effectively handling time series data with 

long-term dependencies, making it suitable for long-term 

prediction of landslide hazards. Moreover, by learning 

temporal patterns in historical data, GRU can identify critical 

conditions for landslide occurrence in advance. GRU 
... [4]
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positions simultaneously (Esser et al., 2021; Huang and Chen, 2023), the Transformer efficiently 

captures global dependencies across long sequences in parallel, making it more effective than RNNs 

or CNNs at modeling long-range relationships. 

When applied to landslide-related time series data, the Transformer can adaptively learn latent 

temporal features and patterns, automatically adjusting parameters to accommodate diverse landslide 

scenarios (Wang et al., 2024b; Zerveas et al., 2021). 

However, a key drawback of the standard Transformer is its quadratic computational complexity 

with respect to sequence length, which becomes prohibitive for very long sequences (Zhuang et al., 

2023). This also complicates the interpretation of how the model extracts features and makes decisions 

from large amounts of landslide data, posing challenges for practical deployment. It is worth noting 

that mitigating this quadratic complexity is an active research area, with many efficient Transformer 

variants being developed. 480 For example, Zhao et al. (2024f) combined the strengths of CNN and 

Transformer architectures, selecting and analyzing nine landslide-conditioning factors to successfully 

achieve accurate landslide localization and detailed feature capture. Ge et al. (2024) proposed the 

LiteTransNet model based on the Transformer framework, effectively capturing and interpreting the 

varying importance of historical information during the prediction process. Therefore, while powerful, 

the vanilla Transformer may not be the optimal choice for all practitioners, and its computational 

demands should be carefully considered. 

In contrast, RNN-based models exhibit a relatively simple architecture and are conceptually 

intuitive (Li et al., 2021; Wang et al., 2020b), making them more interpretable. Transformers, however, 

are structurally more complex with numerous parameters, requiring substantial computational 

resources during training and being susceptible to overfitting on small datasets. 

 

3.3 Models for Data Generation in Potential Landslide Identification 

Data generation refers to modeling the underlying data distribution of data to generate entirely 

new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020; 

Shorten and Khoshgoftaar, 2019), thereby enriching the dataset. In potential landslide identification, 

data generation mitigates challenges of data scarcity and imbalanced class distributions, thereby 

enhancing the generalization capability of predictive models. 

Deep generative models are the leading deep learning approach for synthetic data generation (Alam et 

al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They utilize deep neural networks to 

learn latent representations of data and optimize the learning process through specific objective 

functions. A key characteristic of deep generative models lies in their probabilistic nature. They not 

only classify or reconstruct data but also capture the underlying distribution of geospatial features, 

thereby enabling the generation of new landslide samples that are statistically consistent with observed 

Deleted: Transformer was originally designed to handle 

sequential data in natural language processing, which was 

first introduced by Vaswani in 2017 (Vaswani et al., 2017). 

Unlike conventional recurrent and convolutional structures, 

the Transformer employs employs a self-attention mechanism 

to directly model the entire sequence.

Since the Transformer has the ability to adaptively learn 

latent features and patterns within the data, when it comes to 

processing landslide time series data, it can automatically 

tweak the model parameters to accommodate diverse 

landslide scenarios and temporal data variability (Wang et al., 

2024a; Zerveas et al., 2021).

Transformer also can analyze positional relationships across 

the entire sequence, better capturing complex dependencies in 

long sequences, making it especially suitable for handling 

large-scale, long-term sequential datasets.

Deleted: In contrast, RNN-based models exhibit a relatively 

simple architecture (Li et al., 2021a; Wang et al., 2020b). 

Their mechanisms are conceptually intuitive, making them 

more interpretable (see Fig. 3). On the other hand, 

Transformers are more complex in structure with numerous 

parameters, necessitating substantial computational resources 

during early training to process large-scale data, while being 

susceptible to overfitting on small datasets. Understanding 

how the model extracts features and makes decisions is not 

straightforward from large amounts of landslide data, posing 

challenges for its interpretability and practical deployment.
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patterns. Commonly used deep generative models include GANs, Variational Autoencoders (VAEs), 

and diffusion models (see Fig. 4).

 

Figure 4. The role of deep learning models in data generation. (a) Comparative schematic of three 

commonly used deep generative model architectures. GAN: adversarial training. VAE: maximize 

variational lower bound. Diffusion models: gradually add Gaussian noise and then reverse. (b) 

Schematic of the adversarial training workflow for GAN-based data generation. (c) Comparative 

architecture of AE and its variational counterpart, VAE. (d) Schematic of a diffusion model applied to 

denoise potential landslide data. 

GANs consist of a generator and a discriminator that compete in an adversarial process 

(Goodfellow et al., 2014). The generator synthesizes data resembling real samples, while the 

discriminator attempts to distinguish between generated and real data. The workflow of adversarial 

training for GAN-based data generation is schematically depicted in Fig. 4. Through iterative 

adversarial training, the generator learns to produce high-quality synthetic data that closely matches 

the distribution of real data (Gui et al., 2021; Saxena and Cao, 2021). 

In the context of landslide studies, GANs have demonstrated strong capabilities in data 

augmentation and remote sensing image enhancement. For example, Feng et al. (2024) achieved the 

first implementation of using a GAN to generate synthetic high-quality landslide images, aiming to 

address the data scarcity issue that undermines the performance of landslide segmentation models. Al-

Najjar and Pradhan (2021b) proposed a novel approach that employs a GAN to generate synthetic 

inventory data. The results indicate that additional samples produced by the proposed GAN model can 

enhance the predictive performance of Decision Trees (DT), Random Forest (RF), Artificial Neural 

Network (ANN), and Bagging ensemble models. 

Deleted: They operate on principles similar to those of deep 

learning, utilizing deep neural networks to learn data 

representations and optimizing the learning process through 

objective functions.

A fundamental characteristic of deep generative models lies 

in their probabilistic nature. These models learn an 

approximate probability distribution from observed samples 

and subsequently generate novel samples that maintain 

statistical consistency with the original dataset. Unlike 

conventional discriminative models, generative models not 

only classify data but also learn the underlying distribution 

and generate new data points. Commonly used deep 

generative models include generative adversarial networks 

(GANs), variational autoencoders (VAEs, a variant of 

autoencoders), and diffusion models.

Deleted: GAN is a suitable choice to generate highly realistic 

and diverse new images (Goodfellow et al., 2014; Tran et al., 

2021). Instead of explicitly modeling data distributions, 

GANs implicitly learn distributions through adversarial 

training between generator and discriminator networks.

During data generation, the generator network in a GAN 

synthesizes images or data resembling real samples by 

processing input noise vectors (Gui et al., 2021; Saxena and 

Cao, 2021). The discriminator, on the other hand, is used to 

distinguish between the generated data and the real 

data.These two components are continuously optimized 

through adversarial training. Eventually, the generator is able 

to produce high-quality synthetic data, which is highly similar 

to the real data in terms of features.

With this adversarial structure (Al-Najjar et al., 2021), GANs 

can generate high-quality data that closely matches the 

distribution of real data in an unsupervised learning context, 

making them well-suited for high-resolution image synthesis.
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Despite their advantages, GANs may suffer from mode collapse, leading to limited diversity in 

the generated data, especially when certain landslide types are underrepresented (Fang et al., 2020a). 

Moreover, their unstable training process requires careful hyperparameter tuning and substantial 

computational resources, which may constrain their application in real-time hazard scenarios. 

Nevertheless, with improved architectures such as Conditional GAN (CGAN) (Kim and Lee, 2020; 

Loey et al., 2020; Mirza and Osindero, 2014), image-to-image translation with GAN (Pix2Pix) (Isola 

et al., 2017; Qu et al., 2019), and Wasserstein GAN (WGAN) (Arjovsky et al., 2017; Wang et al., 2019), 

GANs are becoming increasingly viable tools for high-resolution landslide mapping and synthetic data 

generation in remote sensing-based susceptibility analysis. 

As a probabilistic variant of AEs, VAEs introduce latent-space regularization through variational 

inference (Hinton and Salakhutdinov, 2006; Kingma andWelling, 2013). The encoder compresses input 

data into a latent representation characterized by a mean and a standard deviation, while the decoder 

reconstructs the data by sampling from this distribution. This enables the model to generate new data 

with inherent randomness and diversity (Islam et al., 2021; Oliveira et al., 2022). 

In landslide research, VAEs have been successfully applied to learn and reconstruct 

geomorphological patterns of slope instability. For instance, Cai et al. (2024) proposed and 

demonstrated the superior capability of the VAE-GRU model in generating narrow predictive intervals 

while maintaining high coverage probabilities, representing a substantial improvement over the state-

of-the-art methods for probabilistic landslide prediction. 

Compared with GANs, VAEs produce more diverse but slightly less detailed samples, due to their 

structured latent space constraints. This characteristic is particularly beneficial for exploring a wide 

range of potential landslide morphologies and for augmenting training datasets used in susceptibility 

prediction. However, VAEs may still struggle with highly imbalanced datasets, as their probabilistic 

reconstruction tends to favor majority classes. Integrating VAEs with stratified sampling or cost-

sensitive learning could help overcome this limitation and further enhance landslide prediction 

performance. 

When computational resources and training time permit, diffusion models provide a powerful 

alternative for generating high-quality, diverse, and stable data (Croitoru et al., 2023; Ho et al., 2020; 

Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually adding 

noise to real samples (forward diffusion) and then reconstructing clean data through a reverse 

denoising process (see Fig. 4). The resulting models can sample new, realistic data points that reflect 

complex terrain and geophysical variability. For example, Lo and Peters (2024) proposed a Terrain-

Feature-Guided Diffusion Model (TFDM) to fill gaps in DEM data. Similarly, Zhao et al. (2024b) 

employed a Denoising Diffusion Probabilistic Model (DDPM) conditioned on incomplete DEMs, 

which serves as a transitional kernel during diffusion reversal to progressively reconstruct sharp and 

Deleted: With the proposal and development of GANs, 

researchers have introduced various enhanced structures that 

are more effectively applied to potential landslide 

identification. For example, the conditional GAN (CGAN) 

(Kim and Lee, 2020; Loey et al., 2020), Pix2Pix (Qu et al., 

2019), and Wasserstein GAN (WGAN) (Wang et al., 2019).

In the case of GANs, although the generated high-quality 

images may visually resemble real potential landslide regions, 

mode collapse can lead to a lack of diversity in the generated 

data, failing to cover all possible types of hazards (Fang et al., 

2020). If certain types of potential landslides are 

underrepresented in the training dataset, GANs may struggle 

to generate those types effectively, thereby limiting the 

effectiveness of data augmentation. Given that the inherently 

unstable training process of the GANs may require more 

hyperparameter tuning and computational resources, this 

model will pose additional challenges in scenarios with 

limited data availability (Al-Najjar and Pradhan, 2021; Feng 

et al., 2024).

Deleted: As a variant of the autoencoders (AEs), the 

variational autoencoder (VAE) introduces the idea of 

probabilistic generation (Kingma et al., 2013). VAE 

constrains the latent space through variational inference, thus 

enabling the generation, reconstruction, and transformation of 

sample data.

the VAE may have better diversity (Cai et al., 2024; Islam et 

al., 2021; Oliveira et al., 2022), because the structured 

constraints of its latent space are helpful for generating 

samples with continuous changes. This is beneficial for 

simulating potential landslides under different geological 

conditions.

low-dimensional latent space, where each vector represents 

the underlying features of the input. The decoder then 

reconstructs the original data based on the vectors in the 

latent space. Different from conventional AEs, the output of 

the VAE encoder includes two parameters: the mean value 

and the standard deviation. These two parameters define the 

probability distribution in the latent space, which is usually 

assumed to be a Gaussian distribution. The decoder samples a 

latent variable from this probability distribution and 

reconstructs it into output data, thus generating data with 

inherent randomness and diversity. Therefore, the VAE can 

extract latent features from landslide data and generate new 

landslide data based on these features.
... [5]
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accurate DEMs. 

Despite their successful applications in image synthesis, denoising, and remote-sensing image 

enhancement (Leher et al., 2025; Sui et al., 2024; Xiao et al., 2023; Zou et al., 2024), diffusion models 

have not yet been widely applied directly to the identification of potential landslides and remain in the 

exploratory stage. Nonetheless, our optimism for their application is grounded in their potential to 

address key challenges such as limited labeled data through generative augmentation and, more 

importantly, to provide uncertainty quantification in predictions, which is vital for risk assessment. 

In conclusion, deep generative models provide a transformative solution for overcoming the 

challenges of limited and imbalanced landslide datasets. By synthesizing realistic, diverse, and 

statistically consistent samples, these models can improve the robustness and generalization of 

landslide prediction frameworks. Among them, GANs are effective for generating visually realistic 

imagery and data augmentation; VAEs capture probabilistic geomorphic transitions; and diffusion 

models ensure stability and fidelity in high-resolution terrain synthesis. 

 

 

3.4 Models for Anomaly detection in Potential Landslide Identification 

Anomaly detection plays a critical role in potential landslide identification, as it enables the 

distinction between normal environmental variations and genuine precursors of slope instability 

(Deijns et al., 2020; Jiang et al., 2020). In landslide monitoring, the goal of anomaly detection is to 

identify subtle yet significant deviations. Examples include abnormal surface displacements, changes 

in surface coherence, or irregularities in sensor signals. Such deviations may occur prior to landslide 

events. With the advancement of deep learning, data filtering has evolved from rule-based threshold 

detection to automated feature learning, allowing models to capture complex spatiotemporal 

dependencies and identify anomalies within high-dimensional, multi-source datasets. 

AEs are widely used for unsupervised anomaly detection due to their ability to reconstruct input 

data and highlight deviations from learned normal patterns (Sakurada and Yairi, 2014; Zhou and 

Paffenroth, 2017). An AE consists of an encoder that compresses data into a low-dimensional latent 

representation and a decoder that reconstructs it. 

During training, the AE learns the intrinsic features of normal landslide data, such as sensor-based 

displacement time series or radar backscatter from stable slopes. When abnormal data are input, such 

as sudden displacement spikes or incoherent radar signals, the reconstruction error increases 

significantly, serving as an indicator of potential instability. For instance, Shakeel et al. (2022) 

developed an InSAR deformation anomaly detector based on an AE–LSTM architecture. Experimental 

analyses using synthetic deformation test scenarios achieved an overall performance accuracy of 

91.25%. 

Deleted: When computational resources and time are 

sufficient, and high-quality data generation with exceptional 

diversity is prioritized, diffusion models are the 

recommended choice (Croitoru et al., 2023; Yang et al., 

2023a; Zhu et al., 2023a).

learn the distribution of data. During training, the model 

applies a forward diffusion process that gradually adds noise 

to the original data until it approximates a Gaussian 

distribution. Then, in the reverse diffusion process, the model 

learns to iteratively refine its reconstruction of the original 

data distribution from the noisy data. After being fully 

trained, the model is able to capture the latent distribution 

patterns of the data, and thus can sample based on the learned 

distribution to generate new data (Ho et al., 2022). That is to 

say, by grasping the inherent laws and features of the data, the 

model has the ability to generate data that conforms to the 

distribution of the data.

model (DDPM) is a classic implementation of the diffusion 

models, which lays the probabilistic framework for the 

diffusion models (Choi et al., 2021; Ho et al., 2020; Jing et 

al., 2023; Perera et al., 2023). The generation quality is 
... [6]

Deleted: Although diffusion models demonstrate strong 

capabilities in generating high-quality images and handling 

noise, they generate superior-quality data and ensure greater 

training stability compared to GANs and VAEs. However, 

diffusion models have not yet been widely applied directly to 

the identification of potential landslides and remain in the 

exploratory stage (see Fig. 4). We believe that as generative 

models advance in the field of geospatial remote sensing, they 

hold vast potential for application and could play a pivotal 

role in future landslide risk analysis and monitoring systems.

Deleted: Data Cleaning

Deleted: In potential landslide identification, data cleaning, 

particularly anomaly detection, is a critical issue (Deijns et 

al., 2020; Jiang et al., 2020). It can distinguish between 

normal fluctuations and true anomalies, identifying early 

signs such as subtle changes in the mountain’s state or 

abnormal trends in surface displacement, thus enabling more 

accurate landslide hazard assessment. With the rapid 

development of deep learning, the applications in data 

cleaning have become increasingly widespread, enabling 

models to automatically learn latent data patterns and identify 

potential anomalies.
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By defining a reconstruction error threshold, anomalies can be quantitatively detected.When the 

reconstruction error of new sensor data exceeds this threshold, it may signal slope movement 

acceleration or surface disturbance associated with potential landslides. Thus, AEs provide a data-

driven method to detect early-warning signs without requiring manually labeled failure data. 

As previously introduced, VAE is an extension of AE (Nawaz et al., 2024). VAEs introduce 

stochastic latent variables characterized by mean and variance, allowing them to model data 

uncertainty (see Fig. 4). During training, VAEs learn the latent distribution of normal samples and 

reconstruct inputs accordingly. When new observation data deviate significantly from the learned 

distribution, the reconstruction error increases accordingly, and this phenomenon can be used as an 

indicator of potential anomalies (Kingma and Welling, 2013; Li et al., 2020; Park et al., 2018).In 

landslide applications, VAEs have been shown to outperform conventional AEs in handling complex, 

multivariate datasets that integrate topographic, meteorological, and geotechnical factors. For example, 

Han et al. (2025) proposed an unsupervised failure mode recognition algorithm based on a deep 

convolutional autoencoder, which integrates surface displacement, vertical displacement, and rainfall 

monitoring data from slopes to accurately identify the developmental stages of slope failure, achieving 

a recognition accuracy of 99.30%. 

Compared to AEs, VAEs are particularly advantageous for capturing uncertainty and latent 

correlations between environmental variables, making them ideal for anomaly detection in integrated 

landslide early-warning systems (Kumar et al., 2024; Pol et al., 2019). However, they require larger 

datasets for stable training, and their probabilistic outputs may demand postprocessing for operational 

thresholding. 

GANs can also be adapted for anomaly detection by exploiting their discriminator network’s 

ability to distinguish between real and generated data (Kang et al., 2024; Xia et al., 2022). In landslide 

monitoring, GAN-based anomaly detection models learn the distribution of stable slope features, and 

deviations from this distribution can indicate abnormal conditions (Radoi, 2022). 

AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its 

primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder during 

training, which maps input data to the latent space. The difference between this latent vector and the 

latent vector of normal samples generated by the generator serves as the basis for anomaly detection. 

RNNs and their variants are particularly effective for time series–based anomaly detection, 

learning temporal dependencies and predicting future trends (Zamanzadeh Darban et al., 2024; Zhang 

et al., 2022a). In landslide monitoring, these models can process continuous displacement or rainfall 

time series to identify deviations from expected temporal behavior. These temporal models 

complement image-based approaches by providing continuous surveillance and early detection 

capabilities (Wu et al., 2024a). 

Deleted: AEs and their variational counterparts are highly 

effective in unsupervised data cleaning. These models 

autonomously learn normal geomechanical patterns from data 

and flag deviations, achieving effective hazard identification 

even when labeled anomaly samples are scarce.

The AE is a typical unsupervised learning model consisting of 

an encoder and a decoder The encoder compresses the input 

data into low-dimensional features, and then the decoder 

reconstructs the input. During the training process, the 

autoencoder learns the intrinsic features and patterns of 

normal landslide data, so that for normal data, the 

reconstruction error is small. When abnormal landslide data is 

input, due to the difference between its features and the 

distribution of normal data, the reconstruction error will be 

large.

reconstruction error threshold is set. When the reconstruction 

error of the test data exceeds this threshold, it can be 

determined as abnormal data. In the anomaly detection of 

landslide displacement data monitored by sensors, if the error 

of the displacement data after being reconstructed by AEs 

during a certain period is significantly higher than the normal 

level, it may indicate that there is an abnormal situation of 
... [7]

Deleted: Compared to conventional autoencoders, VAE 

introduces randomness into the latent space, making it more 

effective in handling data uncertainty (Li et al., 2020; Park et 

al., 2018).

Deleted: During training, VAEs learn the latent distribution 

of the data and can generate new samples resembling the 

training set. When input samples deviate significantly from 

this learned distribution, the VAE fails to reconstruct them 

accurately, thereby flagging anomalies through elevated 

reconstruction errors. For landslide monitoring, if a VAE is 

trained on imagery of stable slopes, it internalizes stable 

terrain features. When an image significantly differs from the 
... [8]

Deleted: GANs can also be utilized in anomaly detection 

(Kang et al., 2024; Xia et al., 2022). In data cleaning, the 

discriminator is trained to distinguish between generated data 

and real data. When new test data is input, if the discriminator 

struggles to determine whether it is real or generated data, the 

test data may significantly deviate from the distribution of 

normal data, indicating a potential anomaly. In landslide 

monitoring, data may be influenced by various factors, GANs 
... [9]

Deleted: data cleaning
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When combined with AEs or GANs, RNN-type architectures can form hybrid frameworks 

capable of both spatial and temporal anomaly detection, enabling multi-source consistency checking 

in landslide early-warning systems. Geiger et al. (2020) demonstrated a growing trend of utilizing 

LSTM networks as both the generator and discriminator within GAN frameworks for time-series 

anomaly detection. Similarly, Whitaker (2023) illustrated the application of LSTM–GAN architectures 

in identifying temporal anomalies. 

 

3.5 Models for Data Fusion in Potential Landslide Identification 

In practical applications, the identification of potential landslide hazards is a complex task that 

influences by multiple factors (Zhang et al., 2018). These factors are often reflected through different 

data sources. We can roughly divide heterogeneous data into four categories: image data, time series 

data, structured data, and textual data. Given this heterogeneity, data fusion is essential for the accurate 

identification of potential landslides. Since heterogeneous data differ in feature scale, spatial resolution, 

and data modality, deep learning models are increasingly utilized to automatically extract nonlinear 

and high-order feature interactions across data sources, offering significant advantages over 

conventional statistical fusion techniques. In landslide applications, deep learning-based data fusion 

can integrate multi-modal inputs such as Sentinel-1 InSAR deformation, rainfall time series, and 

terrain derivatives for regional-scale susceptibility mapping or real-time early warning. 

Deleted: RNNs, LSTMs, and GRUs are also effective for 

identifying anomalous patterns in sequential data (Zhang et 

al., 2022a). In potential landslide identification, these models 

process time series inputs to learn normal temporal dynamics 

and trends. When new data deviates significantly from the 

normal patterns learned by the model, such deviations can be 

flagged as anomalies. However, these models are primarily 

used for time series data, performing data cleaning by 

predicting future values of the sequence. For instance, if 

displacement measurements exhibit abrupt deviations while 

rainfall remains within historical norms, the model detects 

such discrepancies by comparing observed values with 

predictions based on learned temporal dependencies.

Deleted: Data fusion is essential for the accurate 

identification of potential landslides. In order to better 

identify potential landslides, data fusion is essential.
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Figure 5. The role of deep learning models in data fusion. (a) Classification of heterogeneous data for 

potential landslide identification. (b) Schematic of general graph and more complex graphs. (c) 

Schematic of the fundamental Transformer architecture. 

Due to the non-Euclidean and topologically complex nature of landslide-related terrain, 

conventional CNN-based models are limited in representing irregular spatial dependencies. Graph 

Neural Networks (GNNs) have emerged as powerful architectures to model such relationships by 

representing spatial entities (e.g., slope units, grid cells, or sensor nodes) as graph nodes and their 

geospatial or topological interactions as edges (Scarselli et al., 2008; Ying et al., 2018; Zeng et al., 

2022). 

In landslide identification, GNNs enable explicit modeling of spatial connectivity and geological 

adjacency, allowing the propagation of geomorphic and hydrological information across neighboring 

Deleted: Since the features, scales, and resolutions of 

heterogeneous data are all different, currently, the powerful 

feature learning ability of deep learning models is often 

utilized to automatically capture the nonlinear relationships 

and high-order interaction information among these 

heterogeneous data.

Deleted: Due to the complex non-Euclidean structural 

characteristics of the geological environment, topographic 

data and their spatial relationships related to landslide 

hazards, conventional methods such as CNNs have difficulty 

in handling these relationships. As a neural network 

architecture for processing graph-structured data, graph 

neural networks (GNNs) can effectively model such spatial 

relationships (Ying et al., 2018; Zeng et al., 2022). They can 

treat the nodes in the geographical space (such as different 

geographical location points) and their connection 

relationships (such as the distance between adjacent nodes, 

terrain undulations, etc.) as the structure of a graph for 

processing.

support feature interaction between different types of nodes 

through the message passing mechanism, thereby eliminating 

redundancy and mutual exclusivity among data sources and 

enabling dynamic fusion of multi-modal features (Zhang et 

al., 2024d; Zhao et al., 2024b). By passing and aggregating 

information across nodes, GNNs can also conduct a detailed 

analysis of various heterogeneous data in local areas. This 

capability allows GNNs to capture subtle geological 

structural changes and detect localized anomalies 

inmonitoring data, providing advantages for analyzing local 

features and early signs of potential landslide movements.
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units. For example, Kuang et al. (2022) proposed an innovative landslide forecasting model based on 

GNNs, in which graph convolutions are employed to aggregate spatial correlations among different 

monitoring sites. Ren et al. (2025) introduced a novel GNN framework with conformal prediction 

(GNN-CF) for landslide deformation interval forecasting, addressing the limitations of conventional 

models in handling predictive uncertainty. 

According to the differences in message passing and aggregation methods, GNNs have derived 

various variants. For example, Graph Convolutional Network (GCN) is generated by generalizing the 

convolutional operation to graph-structured data (Kipf and Welling, 2016; Sharma et al., 2022; Wang 

et al., 2020a), and Graph Attention Network (GAT) dynamically weights the importance of 

neighboring nodes by introducing the attention mechanism (Veliˇckovi´c et al., 2017; Yuan et al., 2022; 

Zhou and Li, 2021). The emergence of these new architectures makes GNN variants more targeted 

than conventional GNNs and suitable for modeling heterogeneous relationships. Currently, they are 

often used for weighted analysis of the impacts of different geographical factors on landslides (Kuang 

et al., 2022; Li et al., 2025; Zhang et al., 2024e). 

As highlighted in Section 3.2, the Transformer’s self-attention mechanism and modular 

architecture make it a universal framework for processing sequential data and enabling multimodal 

fusion (see Fig. 5). 

In this context, the core advantage of the Transformer lies in its ability to integrate diverse input 

data (e.g., satellite imagery, GPS time series, and geological maps). It achieves this by employing 

independent embedding layers to convert each modality into a unified vector representation, which is 

then fused through the self-attention mechanism. This mechanism computes the interactions and 

correlations among all elements across different modalities, thereby enabling the model to capture 

cross-modal dependencies and extract joint feature representations within a unified framework. This 

capability makes the Transformer particularly suitable for landslide studies (Li et al., 2025). For 

example, Piran et al. (2024) enhanced short-term precipitation forecasting by applying transfer 

learning with a pre-trained Transformer model. Zhang et al. (2024e) incorporated Transformer modules 

to build a graph-Transformer model that integrates global contextual information for the generation 

and analysis of Landslide Susceptibility Maps (LSMs). 

4 Deep Learning for Potential Landslide Identification: Applications 

The preceding sections have laid the groundwork by discussing the data prerequisites and model 
architectures fundamental to deep learning in potential landslide research. Building upon that 
foundation, this section turns to the practical applications of deep learning for identifying potential 
landslides across diverse real-world scenarios. 

Given that landslides are triggered by different dominant factors, the mechanisms, data 
characteristics, and monitoring strategies vary substantially among different types. To provide a 
systematic and targeted analysis, thissection organizes the applications according to four major 

Deleted: By learning a large amount of landslide potential 

cases, GNNs can discover the general patterns and rules of 

landslides, thus having good generalization ability. When 

facing new and unseen regions or data, GNNs can predict and 
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triggering categories: rainfall-induced landslides, earthquake-induced landslides, human activity-
induced landslides, and multi-factor-induced landslides (see Fig. 6). For each category, we briefly 
outline its geological characteristics, summarize representative deep learning applications, and discuss 
model adaptability and monitoring considerations. This structure allows for a comprehensive 
understanding of how deep learning frameworks can be tailored to the unique challenges posed by 
different landslide-inducing mechanisms. 

4.1 Application of Deep Learning in the Identification of Rainfall-induced Landslides 

Rainfall stands as the predominant global trigger for landslides. Intense and short-duration rainfall 

events (lasting from a few hours to several days) often induce shallow landslides (Ma and Wang, 2024), 

whereas prolonged rainfall (lasting from several weeks to months) can lead to deeper and larger 

landslides, with depths ranging from 5 to 20 meters (Casagli et al., 2023). Consequently, rainfall 

intensity, cumulative precipitation, and rainfall duration constitute critical triggering parameters for 

rainfall-induced landslides (Mondini et al., 2023). 

Sustained or intense rainfall elevates slope unit weight and moisture content, alters pore water 

pressure regimes, and reduces shear strength via the principle of effective stress, thereby initiating 

surface instability. This hydro-mechanical coupling establishes a pronounced positive correlation 

between rainfall patterns and slope deformation (Li et al., 2022a). 

Temporally, landslides exhibit both abrupt failure and delayed responses to rainfall. Pre-existing 

fractures act as preferential pathways for rainwater infiltration, yet the time required for percolation to 

reach slip zones introduces a hysteresis effect in slope deformation relative to precipitation events 

(Jiang et al., 2023; Liu et al., 2022b). During wet seasons, intense rainfall elevates groundwater tables, 

inducing fully saturated conditions in slope materials. This saturation amplifies shear strain rates, 

triggering rapid acceleration of landslide movement. Post-rainfall, groundwater levels remain elevated 

for extended periods (weeks to months), resulting in sustained but decelerated sliding velocities rather 

than complete stabilization. Consequently, despite concentrated rainfall during wet seasons, numerous 

landslides occur in subsequent dry periods (Ren et al., 2023), highlighting the delayed destabilization 

governed by lingering pore pressure dynamics. The hysteresis phase reflects progressive energy 

accumulation toward critical thresholds, while abrupt failure signifies rapid energy release during 

instability. This transition is typically characterized by a near-instantaneous shift from stable to 

unstable states when pore water pressures or soil moisture content exceed critical thresholds, with 

minimal intermediate deformation phases. 

The spatial clustering of rainfall-induced landslides fundamentally arises from the coupling of 

moisture transport efficiency and geotechnical strength degradation within specific geomorphic units 

(Wicki et al., 2020; Yu et al., 2021). Spatially, such landslides are concentrated in high-rainfall zones 

and permeable lithologies, where hydro-mechanical feedback dominates slope destabilization. High-

rainfall zones, characterized by frequent and intense precipitation, impose dual hydrological stresses 

on slopes: surface runoff erodes toe regions, while infiltration elevates pore pressures, collectively 
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acting as external drivers of failure. Highly permeable strata, characterized by high porosity or 

interconnected fractures, accelerate water migration. 

Combined with high permeability, these properties regulate water retention time within the slope 

and control the efficiency of pressure transmission, forming an internal transport network that 

facilitates landslide progression. The superposition of these mechanisms drives slope stability beyond 

critical thresholds over short timescales, culminating in abrupt failure. 

What determines the critical threshold for rainfall-induced landslides? First, it is essential to 

define the critical threshold as the minimum amount of rainfall required to trigger a landslide under 

specific geological and topographic conditions (Naidu et al., 2018; Segoni et al., 2018b). This threshold 

is typically classified into two types: empirical thresholds, which are derived from statistical 

relationships between historical landslide events and rainfall data, and physically based thresholds, 

which incorporate hydromechanical models. Both approaches assume rainfall as the primary 

destabilizing driver. To operationalize these thresholds for landslide prediction, monitoring systems 

integrate rain gauge and remote sensing to assess proximity to critical saturation levels (Li et al., 2023; 

Piciullo et al., 2018). Moreover, the relationship between rainfall and landslides is often nonlinear and 

influenced by multiple factors. Deep learning models enable data-driven determination of context-

specific critical rainfall values across diverse geological and topographical settings (Sala et al., 2021; 

Segoni et al., 2018a). For example, Badakhshan et al. (2025) incorporated the role of soil strength. 

Soares et al. (2022) utilized the U-Net model, reveals that the inclusion of a normalized vegetation 

index layer enhances model balance and significantly improves segmentation accuracy. 

Following the development of rainfall threshold models, real-time monitoring of historically 

rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of 

subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating 

timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by 

continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic 

recalibration of threshold parameters. This data assimilation enhances model adaptability to evolving 

hydrogeological conditions, ensuring operational relevance across heterogeneous terrains. 

While the physical mechanisms governing rainfall-induced slope failures have been well studied 

(Arnone et al., 2011; Xiong et al., 2024), recent advances in deep learning have significantly improved 

our ability to automatically identify and predict such events using heterogeneous data. 

In the context of rainfall-induced landslides, spatiotemporal data (e.g., rainfall intensity, 

cumulative precipitation, soil moisture, and slope displacement time series) are the primary inputs. 

Deep learning models are selected according to data characteristics and task objectives. For instance, 

CNNs are commonly used to extract spatial rainfall–topography features and delineate susceptible 

zones from remote sensing images (Peng and Wu, 2024; Xu et al., 2022a; Zhang et al., 2022b). The 
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encoder–decoder architecture, such as U-Net, enables pixel-level segmentation of rainfall-triggered 

landslides (Bhatta et al., 2025), with the inclusion of vegetation or soil moisture layers improving 

feature discrimination. 

When temporal evolution is essential, RNNs and LSTMs effectively model sequential 

dependencies between rainfall and slope deformation (Biniyaz et al., 2022; Liu et al., 2025). These 

models are capable of learning hysteretic responses and time lags between precipitation events and 

ground displacement, enabling early warning through time-series forecasting. 

Deep learning also facilitates data-driven rainfall threshold estimation. Instead of relying solely 

on empirical or physically based thresholds, models such as Fully Connected Neural Networks (FNNs) 

and attention-based transformers can derive adaptive rainfall thresholds from multi-year rainfall–

landslide records, capturing regional nonlinearities (Wu et al., 2023). 

 

 

4.2 Application of Deep Learning in the Identification of Earthquake-induced Landslides 

Earthquakes not only trigger landslides during the seismic phase but also increase the 

susceptibility of post-earthquake landslides by weakening slope materials or forming co-seismic 

landslide deposits (Zhang et al., 2024a; Zhao et al., 2024a). On the one hand, the seismic vibrations 

can loosen the structure of the rock and soil mass on the slope, reducing the cementation between 

particles. The originally intact rock mass may develop cracks, and the density of the soil decreases, 

thus reducing the overall stability of the slope and making it more prone to landslides after the 

earthquake. On the other hand, the landslides that have occurred during the earthquake process will 

generate a large amount of deposits. These co-seismic landslide deposits are usually accumulated at 

positions such as the lower part of the slope or in valleys. They are in a relatively unstable state 

themselves, providing a material basis for subsequent re-sliding (Fan et al., 2019; Yao et al., 2024). 

So, what is the temporal relationship between earthquake-induced landslides and seismic events? 

When an earthquake occurs, landslides may be triggered instantaneously by seismic ground motion, 

typically within seconds to minutes after the earthquake. Such landslides are mainly triggered by the 

peak ground acceleration (PGA) or peak ground velocity (PGV) of the seismic ground motion (Kargel 

et al., 2016; Zhao et al., 2023). When these values reach a certain level, they are sufficient to enable 

the rock and soil masses on the slope to overcome the frictional force and shear strength, thus leading 

to the occurrence of landslides. 

Earthquake-induced landslides are typically concentrated in areas of high seismic intensity, 

particularly on steep slopes or within loose accumulations (Li et al., 2024). A fault is a place where the 

rocks in the earth’s crust break and undergo relative displacement. Its existence destroys the continuity 

and integrity of the rock mass, making it more prone to deformation and damage under the action of 
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seismic forces. On the hanging wall of a reverse fault, the compressive force usually causes the rock 

blocks to break, and mountain landslides are likely to occur during seismic events. In contrast, on the 

footwall of a normal fault, the tensile force may cause the rock blocks to fracture and loosen, thus 

increasing the risk of mountain landslides. 

The Newmark model is a commonly used basic model in the research of earthquake-induced 

landslides (Jibson, 2007;Newmark, 1965). Based on a simplified assumption, it regards the rock and 

soil masses on the slope as rigid blocks. When these rigid blocks are affected by seismic vibrations, 

they slide on the slope surface. By calculating the cumulative downhill displacement of the rigid blocks 

caused by the continuous increase of seismic vibrations, the stability of the slope under the action of 

an earthquake is measured. In other words, the greater the cumulative downslope displacement, the 

more unstable the slope is during the earthquake, and the higher the likelihood of a landslide occurring. 

However, Newmark’s model exhibits critical limitations: (1) dependence on oversimplified soil or rock 

strength assumptions and (2) inadequate integration of high-resolution seismic motion data. Deep 

learning models address these gaps by processing massive real-time datasets, filtering noise from 

obscured remote sensing imagery (Wang et al., 2024b), and fusing seismic parameters with 

multispectral satellite data through cross-modal architectures (Dahal et al., 2024). 

Within hours to days post-main shock, aftershocks can further destabilize already loosened slope 

structures, triggering secondary landslides clustered near co-seismic failure zones or aftershock 

epicenters (Sun et al., 2024b; Zhang et al., 2024c). These landslides are often concentrated around the 

mainshock-induced landslide bodies or the epicentral region of aftershocks, potentially forming 

disaster chains (e.g., landslides blocking rivers, leading to the formation and subsequent failure of 

landslide dams, which may trigger flooding). Even years post-earthquake, relic landslide deposits may 

reactivate through gradual creep or extreme climatic forcing, necessitating long-term spatiotemporal 

monitoring and dynamic risk reassessment (Jones et al., 2021; Li et al., 2021b). Moreover, earthquake-

induced landslides are often associated with complex 3D topographic changes, which are difficult to 

capture using conventional 2D analyses. Deep learning frameworks enable precise reconstruction of 

landslide geometries by processing LiDAR-derived or UAV-derived 3D point clouds, capturing 

volumetric deformation patterns critical for mechanistic modeling. 

Current applications of deep learning in earthquake-induced landslides primarily focus on 

semantic segmentation and change detection (Chowdhuri et al., 2022; Huang et al., 2023b; Liu et al., 

2020a; Yang et al., 2024b). Liu et al. (2021b) employed graph isomorphism networks (GIN) to model 

long-range dependencies among high-level features extracted by ResNet-50. Zi et al. (2021) utilized a 

hybrid architecture combining graph attention networks (GATs) and channel self-attention 

mechanisms enhances the modeling of feature interdependencies from ResNet-50. Yang et al. (2023b) 

incorporated a spatial attention module to capture contextual dependencies and extract rich non-local 

Deleted: D

Deleted: I



 

32 
 

spatial features, proposing a novel semantic segmentation network, EGCN, to enhance landslide 

recognition accuracy. 

Both physics-based and data-driven model calibration rely on earthquake-induced landslides 

inventories (Bhuyan et al., 2023; Tanyas, et al., 2017). Despite increased inventory availability, 

persistent issues of representativeness and completeness limit model generalizability and mechanistic 

fidelity. 

4.3 Application of Deep Learning in the Identification of Human Activity-induced Landslides 

Human activity-induced landslides typically arise unintentionally during construction activities, 

where initial slope equilibrium is disrupted by slope toe excavation or water infiltration into exposed 

fractures (Zhao et al., 2022). Compared to natural landslides, human activity-induced failures are often 

more controllable, underscoring the critical importance of pre-disaster identification for risk mitigation. 

These landslides are characterized by localized micro-deformation and subsurface disturbances, 

necessitating integrated monitoring systems that combine high-resolution remote sensing data with 

ground-based sensors for early anomaly detection. 

Current predominant anthropogenic triggers include mining and loading (Ma et al., 2023a; Xu et 

al., 2022). These activities induce severe surficial damage, with stratigraphic movement and surface 

deformation leading to the formation of ground fissures. Such fissures compromise surface ecosystems 

and vegetation, while also penetrating subsurface mining cavities, posing grave risks to operational 

safety. Consequently, deep learning models are essential for automated ground fracture extraction to 

enable real-time hazard mapping and preventive interventions (Huangfu et al., 2024). 
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Figure 6. Selection of monitoring data for different types of landslides (a) Rain-induced landslides. (b) 

Earthquake-induced landslides. (c) Human activity-induced landslides. (d) Multi factor-induced 

landslides. 

Moreover, the triggers of human activity-induced landslides are not only related to natural 

conditions but also closely associated with dynamic human activities. Consequently, their analysis 

necessitates the integration of multimodal and cross-scale data to capture coupled environmental and 

behavioral drivers (see Fig. 6). In engineering operations such as mining or road construction, factors 

including proximity to potential landslide zones, excavation depth, and slope angles must be rigorously 

evaluated through geohazard risk assessments. During excavation phases, geotechnical investigations 

are imperative to identify weak lithological strata or fracture-dense zones predisposed to instability. 

Continuous slope stability monitoring requires deploying IoT-enabled sensors to track temporal 

variations in surface fissure dimensions and subsurface displacement vectors. Monitoring data from 

these sensors can be integrated into deep learning models for multimodal analytics, enabling dynamic 

risk prediction and adaptive mitigation planning. 

For spatial mapping and fissure extraction, CNNs and U-Net-based segmentation models have 
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demonstrated strong capability in identifying artificial slope features from optical or SAR imagery. 

CNN-based models can capture high-level semantic information on excavation scars, road cuts, and 

spoil heaps that indicate anthropogenic disturbance. Tao et al. (2024) employed the DRs-UNet model 

to investigate the use of deep learning for UAV-based crack identification, the developmental patterns 

of fissures, and the feedback interactions between underground mining progress and corresponding 

surface conditions. Wu et al. (2021) proposed the PUNet model for detecting and mapping localized 

rapid subsidence induced by mining activities. Meng et al. (2025) introduced the GF-Former model to 

achieve precise segmentation of ground fissures in remote sensing imagery. 

When surface deformation time series or micro-displacement data from GB-InSAR, InSAR, or 

IoT sensors are available, RNN-based models are applied to model the temporal evolution of slope 

deformation (Han et al., 2022; Li et al., 2025). These models are particularly effective in detecting 

precursory motion trends caused by progressive excavation or loading activities. 

To mitigate misclassification between anthropogenic signatures and natural terrain, integrating 

multispectral data with topographic elevation data enhances discriminative capacity (Meng et al., 2021; 

Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing artificially excavated 

steep slopes combined with fractured geological strata from structural maps provide preliminary 

evidence of human influence on landslide susceptibility (Lian et al., 2024). 

In fact, landslides triggered solely by human activities are relatively rare. Single human activities 

are typically insufficient to independently trigger landslides, with natural factors often acting in 

conjunction with human activities. Furthermore, the prohibitive cost of acquiring subsurface 

disturbance data results in sparse historical landslide samples for specific engineering scenarios, 

limiting data-driven model training. 

4.4 Application of Deep Learning in the Identification of Multi-factor-induced Landslides 

Multi-factor-induced landslides result from the synergistic interaction of multiple natural and 

anthropogenic factors (Hao et al., 2023). Their triggering mechanisms involve the dynamic 

spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials through 

cumulative strength degradation. The formation of such landslides may involve various types of 

movements, including collapse, creep, and flow phenomena. They often exhibit characteristics such as 

complexity, nonlinearity, and suddenness. Therefore, their identification is markedly more complex 

compared to landslides triggered by singular factors. 

Unlike simpler landslide types, identifying composite landslides necessitates multimodal data 

fusion to holistically assess predisposing conditions (Li, 2025; Yin et al., 2023). It further requires 

disentangling the nonlinear superposition effects of multiple factors and quantifying their relative 

contributions to failure initiation.  

In multi-factor-induced landslides, earthquakes and rainfall often interact with other factors (Dou 
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et al., 2019). During heavy rainfall, the rate of landslide formation after an earthquake may be higher, 

possibly driven by the removal of excessively steep slopes, changes in vegetation and groundwater, 

and alterations in the mechanical properties of the bedrock and weathered layers in the earthquake-

induced landslides canopy. This necessitates systematic investigation of multi-hazard coupling effects 

to quantify emergent risks. 

In addition to constructing physics-based models that account for multiple factors and quantify 

their interactions through the solution of governing equations, GNNs can also be employed (Lei et al., 

2025). These models are capable of capturing the spatiotemporal dependencies and nonlinear 

couplings among various triggering factors. For example, Ren et al. (2025) employed a GNN to capture 

and model the complex spatiotemporal dependencies among multiple monitoring locations during 

landslide deformation. Zeng et al. (2022) used the graphical representation capability of the GNN 

model to analyze environmental relationships within a study region, where nodes were defined as 

geographic units delineated by terrain surface approximations, and edges captured the interactions 

between node pairs. Zhang et al. (2024d) constructed a geographically constrained relational graph 

based on node features representing environmental similarity and employed a cosine similarity 

approach to associate landslides with their surrounding geographic environments. 

Cross-attention mechanisms can also be integrated into the model to capture spatiotemporal 

dependencies among contributing factors. For instance, Hu et al. (2025a) integrated global landslide 

feature vectors with local feature maps through a cross-attention mechanism to enhance the 

discriminative capability between landslides and background geomorphology. Another noteworthy 

fusion strategy is the gated fusion unit. Inspired by the gating structures in recurrent neural networks 

(Arevalo et al., 2017; Kumar and Vepa, 2020; Tsai et al., 2019), this mechanism learns dynamic 

weights (typically implemented through gating functions such as Sigmoid) to adaptively regulate the 

information flow of features from different modalities, thereby emphasizing salient features and 

suppressing noise. Compared with cross-attention, the gated fusion mechanism is generally more 

lightweight and provides an alternative approach for multimodal feature fusion (Yang et al., 2024a). 

For instance, Liu et al. (2022a) proposed a gated fusion unit module for multimodal remote sensing 

image semantic classification, enabling early fusion of heterogeneous modality features. 

With the accumulation of new data and the dynamic variations in multi factor-induced landslides, 

regular model updates are critical to ensuring identification accuracy and adaptability. Existing studies 

predominantly apply deep learning methods based on comprehensive historical landslide datasets. 

However, when new data becomes available, a naive approach is to retrain the model from scratch, 

which is computationally inefficient and fails to capture the connections between new observations 

and historical knowledge. A common strategy from the machine learning literature to address this is 

fine-tuning, where a model pre-trained on a historical dataset is further trained on new data (Sualp and 
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Rezaei, 2025). While this avoids full retraining, standard fine-tuning can still lead to catastrophic 

forgetting of previously learned patterns. 

To better accommodate the dynamic nature of landslides, incremental learning methods offer a 

more advanced and promising solution (Huang et al., 2022a; Wang et al., 2024c). These methods 

enable the model to continuously learn from new data streams, gradually optimizing parameters while 

striving to preserve knowledge from previous tasks. Compared to models that require retraining or 

basic fine-tuning (Zhao et al., 2024c), models integrated with incremental learning can more 

effectively leverage historical data and adaptively incorporate new information, thereby enhancing 

long-term adaptability (Zhen et al., 2025). 

4.5 Summary on the Applications of Deep Learning for Potential Landslide Identification 

In general, the process of the applications of deep learning for potential landslide identification 

involves data collection, preprocessing, model construction, training, and validation, followed by 

deploying the trained model to identify potential landslides. Variations arise in data sources, trigger 

mechanisms, and model handling approaches specific to each landslide type. For rainfall-induced 

landslides, the model prioritizes rainfall-related data, with particular emphasis on simulating rainfall 

infiltration effects. Earthquake-induced landslides require prioritization of seismic data, including 

earthquake magnitude and post-seismic geological alterations. Human activity-induced landslides 

demand focused analysis of the relationship between engineering activities and geological changes. In 

contrast, multi factor-induced landslides necessitate models that integrate multiple triggering 

mechanisms and perform a comprehensive assessment of the cumulative effects of diverse contributing 

factors. 

Whether landslides are triggered by rainfall or earthquakes, gravity remains the dominant driving 

force (She et al., 2024). The primary role of triggering factors lies in reducing slope stability or 

amplifying gravitational effects. Before and during landslide occurrence, deformation of slope 

geomaterials constitutes the most observable phenomenon (Zhou et al., 2025). This deformation often 

manifests as the formation and expansion of cracks. 

Since landslide deformation is a dynamic process, ranging from initial minor changes to eventual 

large-scale sliding, each stage exhibits distinct characteristics. Therefore, landslides can be classified 

into distinct stages based on their deformation characteristics, enabling more accurate identification of 

impending disaster warning signals (Zhang et al., 2024b). Here, we categorize landslide evolution into 

three phases: (1) creep deformation stage, (2) intermediate development stage, and (3) progressive 

failure stage (see Fig. 7). 
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Figure 7. The development of landslides is divided into three stages with distinctive identification 

markers. 

In the creep deformation stage, the slope gradually deforms under the influence of various factors, 

though surface manifestations may not be readily observable. Small, discontinuous cracks with limited 

width may emerge on the slope surface or crest. High-precision measuring instruments can detect 

localized minor displacements or deformations (Zhan et al., 2024). Vegetation on the slope may exhibit 

tilting or leaning patterns, with tree orientations potentially aligning in consistent directions. In the 

intermediate development stage, slope deformation progresses at a relatively stable rate. Initially 

observed surface cracks gradually widen and elongate, eventually interconnecting to form larger 

fracture networks. Crack widths may expand from a few centimeters to tens of centimeters or more, 

accompanied by displacement between soil or rock blocks. Monitoring systems can record slope 

displacements at a relatively constant rate. Slope deformation disrupts pre-existing groundwater flow 

paths, resulting in alterations to groundwater levels, volume, or quality within the landslide mass and 

surrounding areas. The progressive collapse stage predominantly reflects pre-sliding slope deformation 

characteristics and is critical for identifying imminent landslides (Cascini et al., 2022; Chen et al., 

2024a). In progressive landslides, the potential sliding surface gradually evolves into a continuous 

failure plane. In sudden landslides, due to their abrupt evolutionary process, no distinct sliding surface 

is evident, making it necessary to rely on other indicators for identification. Physical phenomena such 

as crack widening and deepening, formation of enclosed boundaries by cracks and drainage holes, 

increased displacement at the rear edge of the slope, bulging at the slope’s toe, increased seepage at 

the slope foot, an increase in slope angle, and reverse tilting of the slope collectively aid in identifying 

potential landslides. 

Theoretically, the unique identification markers of each stage can serve as input features for deep 
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learning models, enabling direct classification of landslides into distinct stages. This facilitates the 

implementation of more targeted mitigation measures for each stage. Since slope changes ultimately 

result from displacement variations, we propose that a landslide identification method based on 

deformation characteristics as indicative factors holds great potential. 

After classifying landslide stages based on deformation characteristics, different mitigation 

strategies should be applied to each phase. In the creep deformation stage, the focus should be placed 

on landslide triggering factors, with risk reduction measures such as drainage systems and slope cutting. 

In the intermediate development stage, monitoring should be intensified alongside temporary 

reinforcement measures. In the progressive collapse stage, emergency evacuation and stabilization of 

the potential landslide mass must be prioritized. 

5 Deep Learning for Potential Landslide Identification: Challenges 

5.1 Data Quality and Availability 

In potential landslide identification, the performance of deep learning models is critically 

dependent on both data quality and availability (Alzubaidi et al., 2023; Gaidzik and Ramirez-Herrera, 

2021; Whang et al., 2023). Low-quality or unreliable data directly impair the models’ feature extraction 

capabilities, while insufficient data availability constrains their generalization capacity and real-time 

monitoring efficacy (Azarafza et al., 2021; Xiao and Zhang, 2023). 

In the natural environment, non-landslide states are the norm, while the landslide state is relatively 

rare (see Fig. 8). This leads to the data collected mainly consisting of normal geological conditions, 

with much less data representing potential landslides. Such a severe skewness in the class distribution 

results in a serious imbalance in the data, that is, there is a huge difference in quantity between the 

minority class (landslide samples) and the majority class (non-landslide samples) (Jiang et al., 2024). 

Gupta and Shukla (2023) demonstrated that this data imbalance can cause learning algorithms to be 

biased towards the majority class, perform poorly on the minority class. This bias impedes the 

predictive ability of the learning algorithms, and ultimately lead to the final model’s poor performance 

in identifying and predicting the minority class of landslide samples. 

Even if some landslide inventory data have been collected, it is often difficult for these data to 

represent the real landslide situations within the study area. There may be issues such as omissions and 

biases, which greatly reduce the credibility of the results derived from these data (Woodard and Mirus, 

2025; Zezere et al., 2017). 

The presence of irrelevant input dimensions within the data necessitates larger training datasets 

for deep learning models to achieve satisfactory generalization performance. This can be attributed to 

the models’ tendency to overfit to noise or spurious patterns within extraneous features, thereby failing 

to capture task-relevant characteristics. Such overfitting diminishes adaptability to unseen data, 

reduces prediction accuracy, and ultimately degrades data efficiency (D’Amario et al., 2022). As a 
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result, deep learning models may exhibit inaccurate recognition or even failure when confronted with 

novel, complex scenarios outside the training distribution. 

Different types of features vary in terms of data format, dimensions, and semantics, posing a key 

challenge in achieving high-level feature fusion for complementary and synergistic information 

integration (Liu et al., 2023b). For example, different sensor data exhibit significant differences in 

physical meaning and data structure (Ghorbanzadeh et al., 2022). Optical imagery (RGB matrices) 

reflects surface coverage but is susceptible to cloud interference. SAR data (complex phase) can 

capture deformation information but contains speckle noise. LiDAR point clouds (3D coordinates) 

provide high-precision terrain data but have limited coverage. Ground sensors (temporal scalars) 

enable real-time monitoring of subsurface parameters but are spatially sparse. Direct fusion of such 

multi-modal data induces feature space incompatibility, hindering cross-modal correlation extraction 

(Cai et al., 2021; Jin et al., 2022). Zhang et al. (2023) highlights that even remote sensing data exhibits 

high heterogeneity in imaging mechanisms, illumination conditions, and spectral characteristics. 

Furthermore, multiple types of heterogeneous data will increase model complexity, potentially 

leading to prolonged training times, excessive computational demands, and overfitting risks. Simple 

combination of low-level detail features with high level semantic features may introduce contextual 

noise, compromising feature robustness and semantic coherence (Ji et al., 2020). When designing 

densely connected convolutional networks, a balance must be struck between model complexity and 

generalization capacity to mitigate overfitting on training data and ensure robust performance on 

unseen scenarios (see Fig. 8). 
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Figure 8. Challenges of deep learning in potential landslide identification. (a) Data quality and 

availability. (b) Limitations of deep learning models. (c) Complexity of landslide mechanisms. 

5.2 Limitations of Deep Learning Models 

Although deep learning models have achieved success in landslide identification (Meena et al., 

2022; Su et al., 2021; Yi and Zhang, 2020), they are plagued by several inherent limitations. Among 

these, the most critical challenge is their lack of interpretability (Li et al., 2025), which refers to the 

difficulty in explaining the internal decision-making processes behind their predictions. 

Deep learning models typically contain a large number of parameters and layers, making it 

challenging to intuitively interpret their internal weights and feature representations. It is often unclear 

whether the model’s predictions are based on key geological features (e.g., slope gradient, lithological 

structure, fracture distribution) or influenced by irrelevant factors such as vegetation color or image 

noise. In potential landslide identification, a common issue is that models may mistakenly classify 

shadows or cloud cover as potential landslides, yet the underlying causes of such misclassifications 

remain opaque. When multimodal data are integrated for landslide detection, it is also challenging to 
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clarify how the model weights different data sources. 

The abstract features extracted by these models also lack a clear correspondence to interpretable 

geological indicators (see Fig. 8). Even when the model successfully identifies potential landslides 

based on texture patterns in remote sensing imagery, it remains unclear whether these patterns 

correspond to actual geomechanical parameters or physical processes. 

Moreover, the probability values output by the models often lack physical meaning and therefore 

cannot effectively represent geological uncertainty. In practice, high-risk areas predicted by the model 

may conflate "uncertainty caused by data absence" with "risk of the geological conditions themselves" 

(Achu et al., 2023; Feng et al., 2022). Even experienced geologists may struggle to validate the 

geological plausibility of such features, thereby constraining the adoption of deep learning results in 

practical engineering applications. 

Compounding these issues, there also exists an inherent inconsistency between data-driven 

feature learning and the complexity of real-world geological processes. Deep learning models tend to 

capture superficial statistical patterns rather than the governing physical mechanisms that are 

generalizable across different regions and environmental conditions. Consequently, in potential 

landslide identification, substantial manual annotation efforts are often required when transferring 

models across regions or sensors. 

Despite the availability of diverse datasets, the lack of standardized, high-quality annotated 

benchmarks has severely hindered the development and fair comparison of deep learning models (Fang 

et al., 2024). Current models are often trained and validated on independent, task-specific datasets, 

thereby preventing an objective assessment of state-of-the-art performance and limiting our ability to 

evaluate their true generalization capacity across varying geological settings and triggering factors. 

5.3.1 Multiple Factors Coupling Interactions 

The formation of landslides involves the dynamic coupling of multiple factors such as geological 

structures, geotechnical mechanics, hydrological conditions, topography, meteorological factors, 

vegetation coverage, and human activities (Scheingross et al., 2020; Yi et al., 2022). Therefore, the 

triggering mechanisms are inherently multiscale, ranging from microscopic interparticle friction to 

macroscopic slope instability, and encompassing both transient dynamic responses and long-term 

temporal evolution (see Fig. 8). 

For example, geotechnical materials and structural features of the geological setting influence soil 

stability, while hydrological factors such as rainfall infiltration and groundwater fluctuations alter soil 

mass properties, critically weakening shear strength due to pore pressure variations. Extreme 

meteorological events can alter slope stress regimes, while topographic parameters define geomorphic 

susceptibility thresholds. Human activities further influence slope stability. The interactions of these 

factors are highly nonlinear and temporally variable, making them difficult to characterize through 
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simple mathematical relationships. 

This implies that changes in individual factors may induce cascading effects rather than linear 

responses. For example, rainfall-triggered landslides exhibit threshold-dependent behavior governed 

by coupled hydro-mechanical processes. When rainfall intensity or duration surpasses critical 

thresholds, the rapid rise in the groundwater table increases pore water pressure, thereby reducing 

effective stress and weakening shear strength according to the principle of effective stress. Such hydro-

mechanical feedback often culminates in abrupt slope failure. 

5.3.2 Spatiotemporal Dynamic Evolution 

The inducing factors of landslides are not only extremely complex in spatial distribution but also 

highly dynamic in terms of time (Gao et al., 2023). This variability makes the research process of the 

landslide mechanism more difficult. 

From the perspective of temporal dynamics, landslide formation is not instantaneous but evolves 

through prolonged stages, each governed by distinct mechanisms (see Fig. 7). This dynamic 

progression across different timescales creates a fundamental modeling challenge: since the numerical 

simulation of long-term creep requires a long time step, while the dynamic process of short-term abrupt 

changes requires a time resolution in the microsecond level, it is difficult to establish a unified model 

for these two situations. This will further intensify the conflict of time scalesIn terms of spatial 

heterogeneity, the influence scope of landslides usually involves geological structures ranging from 

the microscopic structure of geotechnical particles to the regional scale. Moreover, there are 

differences in the stratum structure, slope morphology, vegetation coverage, water content, which 

makes the effects of the same inducing factor vary in different regions. For example, in loose soil 

layers, heavy rainfall may lead to shallow landslides, while on rocky slopes with well developed joints, 

earthquakes or water level fluctuations may trigger deep-seated landslides. 

Through the interaction of factors at different temporal and spatial scales, positive or negative 

feedback affects the evolutionary trend of landslides, making the triggering, evolution and reactivation 

of landslides more complex and increasing the uncertainty of prediction (Haifeng et al., 2022; Li et al., 

2023b). 

5.3.3 Invisibility of Subsurface Structures 

Landslide occurrence is intrinsically linked to subsurface structures. However, due to their 

invisibility, obtaining comprehensive geological information directly is challenging, adding significant 

complexity to the study of landslide mechanisms (Li et al., 2021c; Yan et al., 2020). 

The occurrence of landslides is not merely linked to surficial phenomena but more critically 

governed by subsurface geological structures and hydrogeological characteristics. Subterranean 

features such as faults and folds directly influence the mechanical properties and stability of rock and 

soil masses. However, the inherent opacity of subsurface systems limits the accuracy of delineating 
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these structures’ spatial distribution, scale, and orientation through surface surveys or sparse borehole 

sampling, often yielding fragmented insights. Groundwater dynamics play a critical role in modulating 

slope stability. Fluctuations in the water table alter pore water pressure and effective stress within 

geomaterials, leading to a reduction in shear strength according to the principle of effective stress. Yet, 

direct monitoring of hydraulic head variations is inherently challenging, particularly in heterogeneous 

subsurface environments where localized aquifers exhibit divergent responses to hydrological forcing. 

Despite advancements in geophysical imaging and hydrological monitoring, the structural anisotropy 

and permeability heterogeneity of subsurface formations perpetuate ambiguities in mechanistic 

interpretations, risking oversights in landslide hazard assessments. 

The invisibility of subsurface structures makes it difficult to monitor the specific processes and 

critical points of these dynamic changes in real time. Consequently, researchers can only infer these 

processes based on surface manifestations or limited monitoring data. This results in ambiguity and 

uncertainty in the analysis and interpretation of acquired indirect data. Even when model outputs 

exhibit qualitative agreement with field observations, the validity of underlying assumptions and 

parameterizations cannot be definitively verified. 

5.3.4 Diversity of Landslide Types 

Landslides exhibit considerable typological variation, with distinct instability mechanisms and 

evolutionary pathways governed by geological settings, triggering factors, and kinematic behaviors. 

Based on material composition, landslides can be classified into rock landslides, soil landslides, debris 

flow landslides, and composite landslides, each exhibiting distinct variations in physical properties as 

well as failure modes (McColl and Cook, 2024; Yu et al., 2024). For instance, rock landslides 

dominated by brittle fracture differ fundamentally from soil landslides governed by plastic shear. 

Kinematic categorization further distinguishes translational sliding, toppling, creep, and flow-like 

movements, each involving divergent mechanical processes and triggering thresholds (Shu et al., 2021). 

Due to the diversity of landslide types, with each type having different characteristics and 

influencing factors, it is very difficult to establish a universal research model for the mechanism of 

landslides. For different types of landslides, corresponding models need to be established according to 

their specific characteristics and main influencing factors (Milledge et al., 2022). This not only requires 

a large amount of on-site observation data and experimental research to determine the model 

parameters, but also requires consideration of the applicability and limitations of the models. 

Furthermore, cross-typological interactions among landslides amplify predictive challenges. For 

example, collapsed debris may transition into debris flows, a process that is governed by 

hydromechanical coupling and granular-fluid dynamics. Such multi-typological and multi-process 

couplings resist comprehensive characterization via single-theory frameworks. Instead, they 

necessitate multi-scale numerical simulations to accurately reproduce the entire process. Consequently, 
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the diversity of landslide phenomena requires interdisciplinary integration across solid mechanics, 

fluid dynamics, and multi-physics couplings. This task substantially increases the dimensionality and 

complexity of mechanistic studies, demanding hybrid modeling frameworks and cross-domain 

validation protocols. 

6 Deep Learning for Potential Landslide Identification: Opportunities 

6.1 Multi-source Data Fusion 

Different methods specialize in identifying specific types of landslides, and no single method can 

address addressing all potential landslide types. Therefore, research on potential landslide 

identification should gradually shift from using single source data toward multi-temporal, multi-source 

integrated analysis (Chen et al., 2023b; Ge et al., 2022; Xu et al., 2021).  

Multi-source data can comprehensively represent complex influencing factors by integrating 

various datasets, thereby enhancing information completeness. For instance, topographic and 

geological data reveal slope stability, remote sensing captures surface deformations, meteorological 

and hydrological data describe triggering conditions, and ground monitoring provides high-precision 

dynamic information. Integrating these data enables the construction of a complete feature system 

covering landslide-causing factors, prone environments, and inducing conditions, while avoiding the 

one-sidedness inherent to single source observations. 

In the identification of potential landslides, multi-source data fusion specifically refers to the 

integration of raw data from different sources before feature extraction. Each data source has unique 

strengths in resolution, coverage, and observation scale, and their fusion achieves complementarity 

and cross-verification (Liu et al., 2020b; Wang et al., 2021a).For example, combining satellite and 

UAV data allows both large-scale screening and detailed crack detection (Xia et al., 2021), while 

merging geological surveys with InSAR time-series deformation distinguishes stable slopes from 

creeping zones. This cross validation effectively reduces noise and misjudgment caused by data 

uncertainty. 

Integrating multi-source data fusion with deep learning enables the coupling of data and model 

advantages (Chen et al., 2023; Zheng et al., 2021). The fusion reduces uncertainty through 

comprehensive data representation, while deep learning extracts nonlinear features and captures 

hidden correlations. Together, they improve the accuracy of potential landslide identification and 

promote a shift from experience-driven to intelligence-driven hazard monitoring. In the future, the 

development of cross modal pre-trained models and edge intelligence will further enhance real-time 

early warning and hazard simulation, forming the backbone of an integrated "aerial-space-ground-

subsurface" monitoring framework. 

To advance this paradigm, we advocate for a community-driven benchmark that embodies the 

multi-modal philosophy. Such a benchmark should include co-registered data from optical, SAR, 
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LiDAR, DEM, and ground-based sensors, reflecting the integrated monitoring reality. Establishing this 

benchmark is a crucial step toward translating data fusion capabilities into reliable and reproducible 

AI solutions for global landslide risk reduction. 

6.2 Model Ensemble 

Model performance depends significantly on the nature of tasks, data characteristics, and specific 

requirements. Despite its ability to capture specific feature dimensions, a single deep learning model 

is susceptible to limited generalization, model bias, and overfitting when confronted with data noise 

and scene heterogeneity (Kavzoglu et al., 2021; Lv et al., 2022). Given these differences, model 

ensemble provides an effective approach to optimization and generalization. 

In the identification of potential landslides, model ensemble essentially achieves a synergistic 

effect through the aggregation of diversity. While avoiding the limitations and vulnerabilities of 

individual models, it also unleashes the complementary potential of multiple models through designed 

mechanisms (Zhou et al., 2022). 

This approach can be implemented through several pathways. Feature-level integration involves 

processing different data features with specialized models and fusing the results. A more common 

tactic is heterogeneous model combination, which refers to combining various types of models to 

improve the accuracy of potential landslide identification. Each model can exert its advantages in 

different feature spaces (Fang et al., 2021), thus forming a powerful predictive combination. A 

prominent example is the CNN-LSTM hybrid, which capitalizes on CNNs’ spatial feature extraction 

and LSTMs’ temporal dependency modeling, making it particularly suited for rainfall-terrain coupled 

landslide prediction (Gao et al., 2024). Furthermore, advanced architectures like stacking enable 

deeper model coupling. For instance, Guo et al. (2024) employed a stacked framework integrating 1D-

CNN, RNN, and LSTM to form a CRNN-LSTM ensemble, achieving significant performance gains. 

Therefore, model ensemble is not a mere technical aggregation but a systematic solution to core 

challenges like poor generalization, feature bias, and learning from small samples. It transforms the 

local advantages of multiple models into a global optimum at the system level, achieving 

comprehensive breakthroughs in identification accuracy and engineering applicability. It is important 

to note, however, that these performance gains come with increased computational cost and complexity, 

a necessary trade-off in practice. 

6.3 Knowledge-data Dually Driven Paradigm for Potential Landslide Identification 

Conventional knowledge-driven methods, grounded in physical mechanics, rely on precise prior 

knowledge of geological structures and hydrological conditions. However, landslides are influenced 

by complex, coupled multi-factor interactions, characterized by high parameter uncertainty, making it 

challenging to comprehensively address such scenarios (Roy and Saha, 2019). Purely data-driven 

approaches, though capable of extracting patterns from massive datasets, lack physical interpretability, 
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are susceptible to noise interference, and struggle to establish causal relationships in prediction 

outcomes (Qi et al., 2024). A critical challenge and opportunity, therefore, lies in bridging the gap 

between data-driven predictive capabilities and a physically interpretable understanding of landslide 

processes. 

To bridge this critical gap, a fundamental shift towards a knowledge-data dually driven paradigm 

is imperative. This paradigm moves beyond simple combination to a deep integration, where physical 

principles actively constrain and inform the deep learning architecture. Future research should focus 

on developing novel frameworks capable of explicitly incorporating landslide typologies and physical 

laws. For instance, Physics-Informed Neural Networks (PINNs) can embed governing equations 

directly into the model’s loss function, while knowledge graphs can structurally represent the complex 

relationships between predisposing factors and failure mechanisms. 

This synergy, aligned with future concepts like "digital twin" and "smart Earth," establishes a 

closed-loop "theory-practice" verification mechanism (Chen et al., 2024c; Das et al., 2024; Huang et 

al., 2023a; Riahi et al., 2022; Sukor et al., 2019; Zhao et al., 2024e). The ultimate goal is to advance 

landslide identification from mere pattern recognition towards physically interpretable, causally-aware 

forecasting, thereby transforming geological hazard mitigation from passive response to proactive 

prevention. 

The overall workflow of this knowledge-data dually driven paradigm for potential landslide 

identification is conceptually summarized in Fig. 9. 

In the first stage, multi-source data are systematically collected, organized, and integrated into a 

comprehensive dataset through feature extraction and spatiotemporal alignment (see Fig. 9). 
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Figure 9. Flowchart of knowledge-data dually driven paradigm for potential landslide identification. 

In potential landslide identification, data sources are highly diverse. Thus, the initial step involves 

systematically collecting heterogeneous data and centralizing their management. This approach 

mitigates the limitations of single-source data, facilitating a more comprehensive and robust 

characterization of potential landslides. These data include high-dimensional feature information 

essential for data-driven models, as well as key parameters necessary for knowledge-based analytical 

frameworks. 
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Furthermore, since multi-source data may differ in acquisition time and spatial coverage, 

spatiotemporal alignment is required to ensure interoperability and facilitate synergistic analysis. The 

collected data shoule be preprocessed, including cleaning (removal of errors and outliers), 

standardization (unit homogenization), and classification (based on data type or region). These steps 

ensure that the data retain inherent physical significance and maintain consistent scales before being 

input into models, thereby establishing a reliable foundation for subsequent knowledge-data 

integration. 

If the objective extends beyond identifying landslide locations to distinguishing their types and 

scales, the dataset must encompass information that captures these characteristics. During dataset 

construction, feature extraction and annotation methods should be chosen to emphasize these 

distinctions. For instance, combining texture analysis of remote sensing imagery with slope and aspect 

analysis of terrain data enables the extraction of features correlated with landslide types and 

magnitudes. Explicit annotations indicating each sample’s landslide type and scale are incorporated 

during labeling. 

In the second stage, mechanistic constraints are integrated into the data-driven model to achieve 

knowledge-data dually driven fusion. 

Prior knowledge can be derived from external sources, including domain expertise, historical 

records, and physical principles, or mechanistic models can be employed to preprocess raw monitoring 

data. These outputs serve as a foundation for initializing parameters in data-driven models, which is 

crucial because the choice of initial values substantially affects both training efficiency and final 

performance (Cui et al., 2024; Liu et al., 2023a; Ma and Mei, 2025). 

Beyond initialization, knowledge embedding involves translating landslide physics into model 

constraints to guide learning and optimization (Dahal and Lombardo, 2025; Liu et al., 2024). At the 

architectural level, physical equations can be structurally encoded as differentiable network layers, 

enabling gradient-based optimization. At the loss function level, physical constraints can be directly 

incorporated into the training objective, ensuring that predictions remain consistent with established 

principles. 

A representative example of this paradigm is the PINN framework (Raissi et al., 2019). PINNs 

embed governing equations (such as partial differential equations describing slope hydrology or stress-

strain processes) into the neural network training objective, thereby constraining the learning process 

with domain knowledge. This approach not only reduces dependence on large annotated datasets but 

also enhances interpretability and cross-regional transferability (Karniadakis et al., 2021). Although 

applications of PINNs in landslide research remain limited (Moeineddin et al., 2023), they provide a 

promising avenue for bridging purely data-driven approaches with physically grounded mechanisms 

(Wu et al., 2022). 
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In the third phase, a bidirectional mapping framework for knowledge-data dually driven is 

established to facilitate dynamic collaborative optimization. 

The model’s performance is periodically evaluated using real-time monitoring data, enabling the 

reverse calibration of knowledge analysis parameters to achieve bidirectional feedback. Through this 

feedback mechanism, knowledge-data dually driven models undergo mutual verification and iterative 

refinement. 

In practical applications, model validation can be performed using historical or field monitoring 

data to evaluate predictive accuracy. While optimizing model parameters for region-specific geological 

conditions, fusion weights are dynamically adjusted based on different stages of landslide evolution. 

During the initial phase of a landslide, knowledge analysis is more effective in identifying underlying 

factors and developmental trends, justifying a higher fusion weight for knowledge components. 

Conversely, during the acceleration or sliding phases, real-time monitoring data becomes crucial, and 

data-driven models excel at capturing dynamic changes, requiring a higher weight for data-driven 

components. This dynamic weight adjustment knowledge maximizes the integration of mechanistic 

and data-driven approaches, enhancing the model’s ability to identify landslide risks across different 

evolutionary stages. 

The knowledge-data dually driven paradigm, operating through an iterative "theory-guided data 

assimilation and data informed theoretical refinement" mechanism, has advanced potential landslide 

identification from empirical reliance to scientifically quantifiable methodologies. 

Furthermore, the spatial analysis capabilities of Geographic Information System (GIS) were 

integrated into the practical identification workflow, enabling the study area to be partitioned into 

distinct landslide risk categories. This risk stratification considers the combined influence of region-

specific factors, ensuring scientifically robust and practically viable classifications. 

 

In high-risk areas, detailed investigations can be carried out using spatial remote sensing 

technologies, including high resolution optical satellite image change detection and InSAR 

deformation analysis. Multi-temporal high-resolution optical satellite imagery is analyzed using image 

change detection algorithms to identify anomalous surface alterations. SAR enables precise 

measurement of millimeter-scale surface displacements, facilitating early detection of slope 

deformation precursors. Then, UAVs and airborne LiDAR can then be employed for further 

identification of high-risk areas. High-resolution imagery can be acquired through UAV-mounted 

sensors. Image interpretation and analysis facilitate the identification of potential landslide indicators, 

including irregular slope geometries, soil loosening patterns, and anomalous vegetation growth. 

LiDAR enables the rapid acquisition of high-precision 3D point cloud data, which accurately captures 

topographic changes and penetrates vegetation canopies to reveal concealed ground surfaces, aiding 
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historical data, and physical principles. Alternatively, 
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in the detection of vegetation-obscured landslide precursors. Ground-based observations are 

subsequently integrated to validate findings and acquire real-time dynamic information of landslide 

bodies. A comprehensive assessment, combining expert knowledge with field-derived practical 

experience, is conducted to finalize the screening and confirmation of potential landslides. Critical 

parameters including location, scale, hazard level, and potential sliding direction are determined, 

providing an empirical foundation for subsequent landslide mitigation strategies. 

 

 

7 Conclusions 

In this review, we summarized the latest advancements in the applications of deep learning models 

for potential landslide identification, as well as the challenges and opportunities for the future. First, 

we examined seven major heterogeneous data sources available for potential landslide identification. 

Next, we introduced the five common roles of deep learning models in potential landslide identification. 

Then, we reviewed the applications of deep learning in the analysis of four typical landslides and 

discussed the common-used monitoring methods. Finally, we analyzed the current challenges and 

future research directions. 

Several key conclusions are drawn. (1) Single data source often fail to ensure the accuracy of 

identification, whereas multisource data fusion can address this issue to some extent. (2) Deep learning 

models have been widely applied in potential landslide identification, but they still face challenges in 

terms of interpretability and complexity. Future research should focus on further enhancing the 

structure and algorithms of deep learning models. (3) Knowledge-data dually driven paradigm for 

potential landslide identification can improve its accuracy on both theoretical and practical levels. 
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