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Abstract

As global climate change and human activities escalate, the frequency and severity of landslide
hazards have been increasing. Early identification, as an important prerequisite for monitoring,
evaluation, and prevention, has become increasingly critical. Deep learning, as a powerful tool for data

interpretation, has demonstrated remarkable potential in advancing landslide identification

particularly through the automated analysis of remote sensing, geological, and topographic data, This | peleted: Deep learning, as a powerful tool for data

review provides an overview of recent advancements in the utilization of deep learning for potential processing and analysis, has shown significant potential in

landslide identification. First, the sources and characteristics of landslide-related, data are summarized, advancing landslide identification, particularly in the

automated processing and analysis of remote sensing,

including satellite observation data, airborne remote sensing data, and ground-based observation data. ) .
geological, and terrain data.

Next, several commonly used deep learning models are classified based on their roles in potential )
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landslide identification, such as image analysis and time series analysis, Then, the role of deep learning
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in identifying rainfall-induced landslides, earthquake-induced landslides, human activity-induced

landslides, and multizfactor-induced landslides is summarized. Although deep learning has achieved
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1 Introduction

Landslides are complex geological hazards triggered by both natural processes and human
activities, involving intricate interactions among geological, hydrological, topographic, and

meteorological factors (Fidan et al., 2024). Globally, landslides cause significant loss of life and

property each year, particularly in mountainous areas with intense rainfall, seismic activity, and fragile
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geological conditions (Askarinejad et al., 2018; Ehsan et al., 2025; Marin-Rodriguez et al., 2024).
According to United Nations Office for Disaster Risk Reduction (2023). more than 1.000 landslide-
related disasters occur annually, resulting in thousands of fatalities and substantial economic damage.
With the intensification of climate change, extreme weather events are becoming more frequent
further increasing global landslide risks (Wang et al., 2023c).

Faced with these escalating threats, the focus of landslide risk management should shift from
post-disaster response toward proactive identification and prevention. Potential landslides refer to
slopes that exhibit early signs of instability and may evolve into landslides under external triggers such
as rainfall or earthquakes. They represent the precursor stage of landslide development (Lin et al., 2024;
Yang et al., 2020a). Timely identification and monitoring of such slopes are crucial for disaster
prevention and risk mitigation (Strzabala et al., 2024).

However, the inherent uncertainty and dynamic nature of potential landslides make their

identification challenging. , On the one hand, it is not possible to determine that a landslide will

definitely occur just because there are signs of deformation on the slope (Peres and Cancelliere, 2014:
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the United Nations International Strategy for Disaster
Reduction (UNISDR), more than 1,000 landslide-related
disaster events occur annually, causing thousands of fatalities
and substantial economic losses. As global climate change
progresses, the frequency of extreme weather events

increases, leading to a growing risk of landslides.

Zhang et al., 2019). Multiple factors need to be comprehensively considered to assess the possibility
of its instability. On the other hand, the uncertainty of external factors increases the difficulty of
judgment. Sudden events such as heavy rainfall and earthquakes may instantly change the stress state
of the slope and trigger signs of deformation_(Yang et al., 2024c). Given the dynamic characteristics
of potentials, it is also essential to conduct long-term monitoring of the landslides with potential
hazards after identification (Lakhote et al., 2025).

Conventional approaches to potential landslide identification, including field surveys, geological
analysis, and interferometric radar techniques, have contributed substantially to hazard assessment but
remain costly, time-consuming, and limited in spatial coverage (Akosah et al., 2024; Zhao and Lu,
2018). Machine learning has partially improved efficiency but still depends heavily on manual feature

engineering, requiring expert knowledge to design relevant predictors (Sheng et al., 2023). These
limitations restrict the scalability and adaptability of conventional approaches in complex geospatial
environments.

In contrast, deep learning provides an effective data-driven alternative for landslide research. As
a subfield of machine learning, deep learning performs hierarchical feature extraction through multiple
nonlinear transformations (Janiesch et al., 2021; Nava et al., 2023). By leveraging large-scale, multi-

source data, deep learning models can automatically extract representative features, capture nonlinear
dependencies, and conduct pattern recognition in high-dimensional datasets (Aslam et al., 2021; Wang

et al., 2023a; Zhou et al., 2023). These capabilities make deep learning particularly suitable for
identifying and characterizing potential landslides across diverse spatial and temporal scales (Nava et
al., 2021; Yang et al., 2024d).

Within this research context, potential landslide identification can be broadly categorized into two

main types. The first focuses on post-event regional assessments, which are conducted after major

rainfall or earthquakes but prior to large-scale slope failures, using remote sensing data to detect
deformation, topographic changes, or vegetation anomalies. The second involves retrospective

analyses of historical landslides to establish relationships between triggering factors and failure

characteristics, thereby identifying other slopes that exhibit similar instability patterns. Despite their
2
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differing temporal focuses, both types share common methodological foundations and depend on the

integration of multi-source environmental data for reliable assessment.

Building on these foundations, this review aims to provide a comprehensive synthesis of deep

learning applications in the field of potential landslide identification. Specifically,
(1) we categorize commonly used heterogeneous data into three major types to support research

on potential landslide identification. These data sources form the foundation for applying deep learning
in this field,

(2) we introduce the roles and mechanisms of widely used deep learning models in potential
landslide identification, and conduct a comparative analysis of their respective advantages and

limitations,,

(3) we examine the performance of these models across different application scenarios through

representative case studies, highlighting their adaptability and effectiveness in potential landslide
detection,,

(4) we summarize the key challenges currently faced in applying deep learning to potential
landslide identification and outline emerging opportunities and promising future directions for further
advancement,,

Through our analysis, we identified several key trends in the application of deep learning to
potential landslide identification. First, researchers are increasingly adopting multi-source data fusion
approaches, integrating information from diverse sources to construct a more comprehensive
representation of the geological environment (Guo et al., 2025; Liu et al., 2020b; Wang et al., 2024d).
Second, deep learning models have been successfully applied across multiple scales, ranging from
large-scale landslide susceptibility mapping with Convolutional Neural Networks (CNNs) to real-time

slope deformation monitoring with Recurrent Neural Networks (RNNs) (Azarafza et al., 2021; Soni et
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al., 2025; Xie et al., 2024; Zhao et al., 2024f). Despite these advances, the field continues to face
critical challenges that will shape its future trajectory. Addressing these challenges requires a paradigm

shift, future research is expected to place greater emphasis on integrating physical knowledge with
data driven approaches, thereby advancing the field from conventional, reactive post-disaster

responses toward intelligent, proactive pre-disaster risk management.

2 Deep Learning for Potential Landslide Identification: Data Source

Accurate identification of potential landslides is the primary step in effectively preventing and
mitigating the impacts of landslide hazards. Data sources are the cornerstone of achieving this
objective. Different types of data provide indispensable information for potential landslide
identification from various perspectives, and drive ongoing advancements in related research and
practices.

In potential landslide identification, the richness and reliability of data sources directly determine
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the accuracy and effectiveness of research. Data sources not only provide fundamental information to
outline the landslide environments, but also enable dynamic monitoring and precise analysis. This
section will comprehensively review the critical roles played by three main types of data sources:

satellite observation data, airborne remote sensing data, and ground-based observation data (see Fig.
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Figure 1. Data sources for potential landslide identification. Satellite observations (e.g.. Landsat,

Sentinel, SPOT, and Envisat) provide optical and radar imagery with varying spatial resolutions for

detecting and mapping landslides. Airborne observations (LiDAR, UAV) deliver high-resolution

topographic and photographic data, while ground-based observations (TLS, GBSAR, GNSS, rainfall

and groundwater sensors) offer continuous in-situ monitoring of slope dynamics.

2.1 Satellite Observation Data

Since the launch of Landsat-1, the first Earth observation satellite dedicated to surface research

and monitoring, on July 23, 1972, satellite data have become widely accessible. Their applications

have long extended beyond single-purpose analysis or results (Wulder et al., 2022), With the

continuous development of satellite observation, its immense potential for application in landslide

research has become evident (Liu et al., 2021d). At present, satellite observation data mainly include
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space-borne Synthetic Aperture Radar (SAR) and optical remote sensing data, both of which are widely

used as inputs for deep learning models in landslide identification,

2.1.1 Space-borne SAR

SAR is an active microwave remote sensing system (Franceschetti and Lanari, 2018). It is not
only capable of acquiring data on demand by actively emitting microwave signals but also facilitates
partial penetration of vegetation cover through its longer wavelength bands (such as the L-band),
thereby allowing the retrieval of surface deformation information beneath vegetated areas.

A critical operational advantage of SAR lies in its capacity to image regardless of illumination
(day or night) and weather conditions (Koukiou, 2024). The continuous, unimpeded time series data

this provides is essential for serving as input to deep learning models, allowing these models to be
trained to identify long-term patterns of terrain change. For this reason, SAR is widely employed for
the crucial task of continuous monitoring in high-risk environments, where cloud cover and the timing
of a disaster are unpredictable.

Notably, the NASA-ISRO SAR Mission (NISAR), jointly developed by the National Aeronautics

and Space Administration (NASA) and the Indian Space Research Organisation (ISRO), was
successfully launched in 2025 (Indian Space Research Organisation, 2025: NASA, 2025). The satellite

carries both L-band and S-band SAR systems, enabling more precise and frequent measurements of

surface deformation. With a revisit period of approximately 12 days, it delivers globally consistent

coverage with a balanced spatial and temporal resolution. This capability provides researchers with

abundant and continuous observations, supporting large-scale, high spatiotemporal resolution

landslide early detection and dynamic monitoring.

Interferometric SAR (InSAR) has been developed based on the principle of measuring phase
differences between two or more SAR images of the same area (Dai et al., 2022; Ma et al., 2023b;
Zeng et al., 2024). By coherently processing these images, InNSAR obtains high-precision surface
elevation information and can be further applied to detect ground deformation.

In contrast, SAR mainly provide backscatter information of ground objects. Although some
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features of ground objects can be identified according to the scattering characteristics, their ability to
obtain topographic elevation information is relatively weak. InSAR, on the other hand, can directly
generate topographic elevation data, which is of great significance for analyzing the topography and
geomorphology in the identification of potential landslides, and determining key elements such as the
topographic undulation and slope of potential landslide areas.

When screening for potential landslides over a large area, INSAR has higher efficiency (Dun et
al., 2021; Tang et al., 2025; Zhang et al., 2021). When monitoring large potential landslide areas such
as mountainous regions, InSAR can quickly obtain topographic deformation information over a large
area, promptly detect potential areas with potential landslides, and reduce the workload and blind spots
of manual inspections.

Recent studies have integrated InSAR-derived deformation velocity fields with deep learning
models to automatically detect slow-moving or latent landslides. For example, Liu et al. (2022d)
5
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employed an InSAR-CNN framework tomap active landslides in the Eastern Tibet Plateau area.
achieving a detection accuracy of over 90%. Similarly, Zhang et al. (2022d) proposed a twostage
detection deep learning network (InSARNet) for detecting anomalous deformation areas in Maoxian
County, Sichuan Province, with a recognition accuracy of 93.88%. Targeting the complex deformation
mechanisms of multi-type landslides in Zigui County, Three Gorges Reservoir Area, Hu et al. (2025b)
used InSAR time-series displacement as the core data, develop a deep learning architecture based on
the integrated framework of EMD and GRU, break through the limitations of conventional models
such as single-type, single-target, and low-accuracy, and achieve dual-accurate prediction of
displacement and failure time for multi-type landslides.

Differential SAR, (D-InSAR) is an advancement of InSAR that eliminates topographic phase

through differential processing, focusing specifically on deformation information extraction (Shen et
al., 2022). The emergence of D-InSAR not only enables the transition from mixed deformation-
topography signals to pure deformation signal extraction but also extends its applicability from
detecting discrete deformation events to identifying slow-moving landslide processes, significantly

enhancing the reliability of landslide monitoring (Zhong et al., 2024).

2.1.2 Optical Remote Sensing

Optical remote sensing refers to the acquisition of surface information through sensors that
measure reflected solar radiation. Its application in geological hazard investigations dates back to the
1970s (Fu et al., 2024; Liu and Wu, 2016).

Optical remote sensing offers high resolution, currently capable of achieving spatial resolutions

as fine as 0.3 meters or better. For example, Maxar’s WorldView-3 delivers 0.31 m panchromatic

imagery (Hu et al., 2016; Longbotham et al., 2014), while India’s Cartosat-3 satellite achieves

panchromatic imagery with a resolution of up to 0.25 m (Gupta et al., 2024). In potential landslide

identification, it not only facilitates the retrieval of detailed surface textures and color characteristics
using rich spectral data but also enables the direct identification of morphological features and object
contours via visual interpretation of imagery (Cheng and Han, 2016; Li et al., 2022b; Ma and Wang,
2025).

Landslide formation typically follows a progressive process from deformation to failure,
accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized collapses.
These indicators exhibit distinct spectral signatures in optical imagery compared to their surroundings,
enabling both manual interpretation and automated detection. In deep learning applications,

multispectral optical images have been widely used to train CNN-based models for potential landslide
identification. Lu et al. (2023a) developed a method for achieving accurate landslide mapping using

medium-resolution remote sensing images and DEM data, which has the potential for deployment in

large-scale landslide detection. Jiang et al. (2022a) proposed a TL-Mask R-CNN for identifying a small

number of old landslide samples in the area along the Sichuan-Tibet Transportation Corridor. The

results show that the pixel accuracy of segmentation for new landslides and old landslides can reach
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87.71% and 75.86% respectively.

In vegetated mountainous regions, surface vegetation often undergoes detectable changes before

a landslide event. Optical remote sensing leverages multispectral data, particularly red and near-

infrared bands, to monitor vegetation health and identify potential landslide zones (Coluzzi et al., 2025

Fiorucci et al., 2018). Furthermore, the calculation of the Normalized Difference Vegetation Inde

(NDVI) facilitates the evaluation of vegetation health in potential landslide regions, providing critical

insights into potential landslide precursors (Verrelst et al., 2015).
However, the broad spectral bands of multispectral sensors limit their ability to detect more subtle,

diagnostically specific precursory signals. The advancement beyond broad-band multispectral imaging
to hyperspectral imaging has opened new avenues for landslide precursor detection (Kilgore and

Restrepo, 2025; Ye et al., 2019). Hyperspectral sensors capture hundreds of contiguous spectral bands
enabling the identification of specific mineralogies (e.g., expansive clays like smectite that influence
slope stability) and subtle geochemical alterations on slope surfaces. For instance, the shifting

absorption features in the short-wave infrared region can signal changes in soil water content and
mineral composition that often precede failure (Thimsen et al., 2017). The integration of these rich

spectral datasets with deep learning architectures has significantly advanced automated landslide
analysis (Huang et al., 2022¢; Shahabi et al., 2021). These models excel at learning complex patterns
from high-dimensional spectral-spatial information, enabling highly accurate detection of landslide
scars and even precursory features like cracks and seepage zones that are otherwise challenging to
identify.

While both space-borne SAR and optical remote sensing are pivotal for large-arca landslide
screening, they offer complementary capabilities and have distinct limitations. Optical remote sensing
provides intuitive visual interpretation of geomorphological features but is rendered useless by cloud

cover and darkness. In contrast, space-borne SAR, with its all-weather, day-and-night imaging

capability, excels in detecting millimeter-to-centimeter-scale surface deformation through InSAR
techniques, which is a direct precursor to landslide failure. However, InSAR performance can be

degraded in heavily vegetated areas due to temporal decorrelation and in steep terrain due to geometric

distortions (Lin et al., 2022; Yan et al., 2024), areas where optical stereo imaging for DEM generation

might be less affected. Therefore, the integration of SAR-derived deformation maps and optical-based

geomorphological maps is considered a best practice for regional-scale landslide inventory mapping
and preliminary hazard assessment (Xun et al., 2022).

2.2 Airborne Remote Sensing Data

Airborne remote sensing data, typically acquired by manned aircrafts, provide high-resolution
imagery of localized areas. Advanced airborne platforms equipped with oblique photogrammetry and,
more recently, close-range photogrammetry technologies enable millimeter-level accuracy in 3D
photogrammetry, facilitating the observation of subtle surface deformations, rock mass structures, and

the construction of highly detailed 3D models of terrain and above-ground infrastructure (Macciotta
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and Hendry, 2021; Xu et al., 2023). Among these technologies, airborne photogrammetry and airborne
radar are the most commonly used.
2.2.1 Airborne Light Detection and Ranging (LiDAR)

LiDAR has been used for landslide and other geological hazard investigations in many regions
since the late 1990s. As an active remote sensing system, LiDAR can laterally scan a range of 60 and
capture 400,000 points per second, enabling largescale 3D scanning of terrain, structures, and
vegetation within a short period (Mallet and Bretar, 2009). It offers centimeter-level accuracy in both
horizontal and vertical dimensions.

Airborne LiDAR is irreplaceable in capturing 3D details and penetrating vegetation, particularly

in densely vegetated areas where conventional aerial photography faces significant limitations.

Airborne LiDAR not only acquires high- resolution Digital Surface Models, (DSMs) from laser point //{ Deleted: digital surface models

cloud data but also generates high-accuracy DEMs by removing vegetation contributions (Fang et al.,
2022; Jaboyedoff et al., 2012; Yan et al., 2023), thereby revealing concealed hazard features such as
mountain fractures, loose deposits, and landslide masses under vegetation cover.

Point cloud data obtained from airborne LIDAR can monitor dynamic changes in mountainous
terrain by detecting deformations such as subsidence, displacement, and uplift, while also facilitating
the construction of 3D landslide models to simulate sliding directions and impact areas. Through
intuitive visualization of slope morphology and structure from multiple perspectives, LIDAR enables
researchers to conduct a comprehensive assessment of slope conditions and identify subtle hazard
features that may not be easily discernible in 2D imagery.

These high-precision DEMs and point clouds serve as critical inputs for deep learning models.

For instance, Wei et al. (2023) proposed the Dynamic Attentive Graph Network (DAG-Net) model to

construct dynamic edge features for enhancing point cloud representations, achieving the highest mean

Intersection over Union (mloU) of 0.743 and an F1-score of 0.786. Based on the advanced PointNet

and PointNet++ architectures, Farmakis et al. (2022) developed deep neural networks for 3D point

cloud learning. The best-performing model achieved accuracies of approximately 89% and 84% during

the final and shortest monitoring campaigns, respectively. These examples demonstrate that airborne

LiDAR data are not only suitable but have been effectively applied in deep learning-based landslide

analysis.
2.2.2 Unmanned Aerial Vehicle (UAV)

UAV aerial photogrammetry provides outstanding maneuverability and high-precision
measurements. Traversing over steep slopes and valleys, UAVs are able to monitor areas that are often
inaccessible to satellites and manned aerial platforms (Niethammer et al., 2012), thus addressing
critical observational limitations.

In large-scale and topographically complex regions, UAVs can perform efficient aerial
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inspections, overcoming the limitations of ground-based inspections in inaccessible or visually
obstructed regions. By rapidly scanning mountain slopes, embankments, and gullies, UAVs provide a
comprehensive understanding of the geological conditions and enable timely identification of macro-
scale geomorphic anomalies. However, given cost-effectiveness constraints, UAVs are currently more
commonly used for periodic and continuous monitoring in localized areas. They are particularly well-
suited for rapid and dynamic monitoring of landslides in high-priority zones.

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial
photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on UAV's
are able to capture the subtle cracks on the surface of the mountain.

These cracks may be early signs of a landslide (Sun et al., 2024a). By conducting a comparative
analysis of the images taken at different times, the development and changes of the cracks can be
monitored, including the increase in the length, width and depth of the cracks, as well as the changes
in the crack orientation. In some mountainous areas or valleys, there may be a large number of loose

accumulations. These accumulations may trigger landslides under specific conditions. Aerial
photography by UAVs can clearly identify information such as the distribution range, accumulation
quantity and accumulation shape of these loose accumulations, and assess their potential threats to the
surrounding environment. This capability is leveraged in deep learning applications, where time-series

UAV imagery is processed using RNNs or 3D CNNs to monitor the spatiotemporal evolution of these
roach for early warning (Xu et al., 2025; Sandric et al., 2024).

cracks, providing a data-driven a
Airborne platforms bridge the gap between satellite and ground-based observations. LiDAR is

unparalleled in generating high-precision DEM, revealing concealed paleo-landslides and subtle

topographic features critical for hazard mapping. However, its deployment is costly and logistically

complex. UAVs, as a flexible and cost-effective alternative, have democratized high-resolution data

acquisition. They can be equipped with various sensors (e.g., optical, multispectral, and even

lightweight LiDAR) to conduct rapid response surveys following triggering events such as earthquakes

or heavy rainfall (Han et al., 2023). While UAV-derived models have ultra-high resolution, their

coverage is limited per sortic compared to airborne campaigns. The choice between them often

involves a trade-off between coverage, cost, operational flexibility, and the specific requirement for

vegetation penetration.
By equipping UAVs with LiDAR sensors to effectively remove vegetation from the data, this

integrated approach combines the strengths of photogrammetry and LiDAR (Mandlburger et al., 2020:;
Wallace et al., 2012). It allows researchers to reveal landslide boundaries, crack patterns, and other
deformation features hidden beneath vegetation cover, enabling rapid deployment and targeted area
monitoring while mitigating vegetation-related challenges in landslide assessment.

2.3 Ground-based Observation Data

Satellite observation and airborne remote sensing are mainly employed for identifying potential

9

Deleted: When equipped with LiDAR sensors, UAVs can
effectively remove vegetation from the data. Then, assisting
researchers to reveal landslide boundaries, crack patterns, and
other deformation features hidden beneath vegetation cover.
This integrated approach combines the strengths of
photogrammetry and LiDAR, allowing for rapid deployment
and targeted area monitoring while mitigating the challenges
posed by vegetation cover in landslide detection and
assessment.

rainstorms or geological events like earthquakes occur, the
stability of the mountain may be affected, making it prone to
triggering geological hazards. UAV's even can quickly

conduct aerial monitoring of the relevant areas after extreme

weather.




landslides based on surface morphology. However, these approaches are often affected by vegetation

cover, viewing geometry, and atmospheric noise, which may lead to misclassification or omission

(Almalki et al., 2022: Dubovik et al., 2021). Therefore, ground-based observation techniques play a

critical complementary role, offering higher temporal resolution, accuracy, and localized verification

for potential landslide identification. In recent years, data collected from ground-based monitoring

instruments have not only been used for field validation but also increasingly incorporated into deep
learning frameworks to improve temporal continuity and physical interpretability in landslide detection

and forecasting,,

2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR)

GB-SAR is an active ground-based microwave remote sensing system that has been developed
over the past decade, effectively integrating the principles of SAR imaging with electromagnetic wave
interferometry. By leveraging precise measurements of sensor system parameters, attitude parameters,
and geometric relationships between orbits, GB-SAR quantifies spatial positions and subtle changes
at specific surface points, allowing for the measurement of surface deformations with millimeter or
even sub-millimeter precision.

Compared with spaceborne SAR, GB-SAR can adjust the incidence and azimuth angles of radar
waves, thereby avoiding phase decorrelation caused by terrain-induced occlusion in spaceborne

observations. Consequently, they are particularly suitable for monitoring steep slopes, canyons, and

other areas with limited line-of-sight coverage from satellites (Noferini et al., 2007).

v
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During landslide movement, the ground experiences noticeable subsidence, displacement, or
cracking. GB-SAR can be configured for high-resolution, continuous observation to capture
instantaneous deformations during the landslide creep phase and generate corresponding displacement
maps (Liu et al., 2021a; Xiao et al., 2021). For example, Long et al. (2018) proposed a GBSAR

persistent scatterer point selection method based on the mean coherence coefficient, amplitude

dispersion index, estimated signal-to-noise ratio, and displacement accuracy index. Han et al. (2022

proposed an LSTM-based approach for processing GB-InSAR time series data. Kac an et al. (2022)

employed two deep learning methods to investigate the potential and advantages of processing raw
GBSAR data for automatic radar classification,,

For small-scale regional monitoring, GB-SAR can establish customized geometric configurations
specifically designed for target areas. Utilizing mobile rail systems or multi-antenna setups, GB-SAR
reconstructs 3D deformation vector fields of landslide masses (Shi et al., 2025), identifying sliding

directions and potential failure surfaces.
2.3.2 Terrestrial Laser Scanning (TLS)
TLS emerged in the mid-1990s. It plays a unique role in local refined monitoring by emitting
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Deleted: GB-SAR is an active ground-based microwave
remote sensing system that has been developed over the past
decade. Compared to spaceborne SAR, GB-SAR allows
adjustment of radar wave incidence angles and azimuths,
preventing phase decorrelation issues caused by terrain
obstructions in satellite SAR, making it particularly suitable
for monitoring steep slopes, canyons, and other areas with
limited satellite line-of-sight (Noferini et al., 2007).

SAR effectively integrates the principles of SAR imaging
with electromagnetic wave interferometry. By leveraging
precise measurements of sensor system parameters, attitude
parameters, and geometric relationships between orbits, GB-
SAR quantifies spatial positions and subtle changes at
specific surface points, allowing for the measurement of
surface deformations with millimeter or even sub-millimeter

precision

Deleted: This capability facilitates the distinction between
evolutionary stages of landslides and further analysis of the

dynamics of landslide activity.




laser pulses and measuring their reflection time (Stumvoll et al., 2021; Teza et al., 2007).

The landslide often manifests as a sharp change in the ground surface. TLS can provide data with
sufficient accuracy, assisting researchers in identifying the features of these landslides (Abellan et al.,
2009; Teng et al., 2022). ,

By quickly and massively collecting spatial point position information, TLS can automatically
splice and rapidly obtain the appearance of the measured object. It can be used to construct high-
precision surface models and appearance models of buildings and structures. The 3D model can display
the shape and structure of the mountain and the detailed features of the ground surface from different
angles and in all directions (Zhou et al., 2024), enabling geological experts and engineers to have a
more intuitive understanding of the overall situation of the landslide area. For example, the cracks in
the mountain, the loose accumulations, and the degree of weathering of the rocks can be clearly seen,

providing richer information for the identification of potential landslide hazards.

In the context of deep learning, TLS-derived 3D point clouds have become critical inputs for
morphological feature extraction and automatic landslide identification. For example, Senogles et al.
(2022) integrated TLS point cloud data to assess surface displacements induced by landslide

movements. Wang et al. (2025) provided a practical and adaptable solution for landslide monitoring

by integrating TLS point clouds with embedded RGB imagery.

These examples confirm that TLS data are not only suitable but already actively used in deep

learning-based landslide recognition, providing precise geometric constraints for multi-source fusion
frameworks that combine DEM, optical, and In-SAR information.

Ground-based techniques provide the highest precision for monitoring a specific slope of interest.

GB-SAR and TLS are both non-contact remote sensing methods, but they operate on different

principles. GB-SAR offers continuous, all-weather, mm-level deformation monitoring over a large

area (several km?) from a single station, making it ideal for early warning. Its drawback is the need for

a stable, opposing installation point with a clear line-of-sight (Monserrat et al., 2013). TLS, on the

other hand, provides mm-to-cm-level 3D point clouds of the slope surface, excellent for quantifying

volume changes and detailed geometric changes. However, it is typically used for periodic surveys

rather than continuous monitoring and has occlusion shadows (Huang et al., 2019).

2.3.3 Ground-based Sensor Devices

Deleted: By combining topographic analysis, the location of
the landslide surface can be accurately determined. TLS
scanner can also help identify the landslide mass, that is, the
flow path of the landslide materials. Through analyzing the
point cloud data, the movement path of the landslide area, the
soil accumulation area, and the accumulation location of the
landslide materials can be extracted, providing detailed
information for the analysis and assessment of potential

landslides.

Compared to the aforementioned data sources, ground-based sensors offer key advantages,
including high precision, realtime capabilities, and multi-parameter fusion (Dai et al., 2023). They can
address the limitations of remote sensing and provide critical ground-based dynamic information for
potential landslide identification.

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the
state of landslide masses. These datasets provide foundational inputs for deep learning models,
enabling multi-dimensional analysis and interpretation of potential landslide conditions. For example,
ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like displacement and
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tilt angle at frequencies ranging from minutes to seconds, capturing transient, anomalous signals just

prior to landslide events, thereby filling the temporal resolution gap in remote sensing (see Fig. IL/{D leted: (Jiang ct al., 2022)

These data are often used as input sources for RNN models and 300 their variants (Bai et al., 2022;
Wang et al., 2021a). By integrating time series data with SAR imagery, deep learning models can be

trained to uncover correlation patterns between surface deformations and subsurface parameters_(Jiang

et al., 2022). Instruments such as piezometers and soil pressure gauges can directly monitor key
parameters like pore water pressure and soil stress on the sliding surface. By combining the obtained

subsurface data with geomechanical equations, the position of the sliding surface or geotechnical

strength parameters can be inferred, /{ Deleted: inverted

Therefore, GB-SAR, TLS, and ground-based sensors are not only auxiliary observation
techniques but are increasingly serving as key data sources for deep learning-driven landslide
identification. Their integration into CNN, LSTM, and Generative Adversarial Network (GAN)

frameworks enables high-resolution spatial-temporal modeling of slope behavior, bridging the gap
between field-scale monitoring and large-scale hazard prediction.

2.4 Summary of Data Source for Potential Landslide Identification

In summary, no single data source is sufficient for a comprehensive potential landslides— Formatted: Line spacing: Multiple 1.25 1i

identification framework. Regional-scale satellite data, particularly InNSAR, is optimal for the early

detection of pre-landslide deformations over vast areas. Airborne platforms, such as UAVs, then

provide high-resolution optical and LiDAR data to characterize the precise geometry and activity of

identified potential landslides. Finally, ground-based and in-situ sensors enable site-specific, real-time

monitoring of high-risk slopes, validating remote sensing findings and supporting early warning

systems. The strategic integration of these multiplatform data is crucial for transitioning from regional
screening to mechanistic understanding and risk mitigation.

Beyond these general data modalities, recent years have also witnessed the emergence of

benchmark datasets that serve as standardized testbeds for developing and evaluating deep learning
methods in landslide identification. Such datasets are essential for ensuring reproducibility, enabling

fair comparison across models, and accelerating methodological advances. Representative examples

include the CAS Landslide Dataset, a large-scale, multi-sensor dataset explicitly designed for deep
learning-based landslide mapping (Xu et al., 2024); the Landslide4Sense (L4S) benchmark, developed
within _an international competition, which provides multisource satellite image patches
(Ghorbanzadeh et al., 2022b); and the Diverse Mountainous Landslide Dataset (DMLD), which

emphasizes high-resolution instances from complex mountainous terrains (Chen et al.,

2024b). In addition, slope-unit-based benchmark datasets have been constructed to support

susceptibility mapping and regional-scale comparisons (Martinello et al., 2021).

These datasets serve as valuable resources for pixel-level segmentation and slope-unit-based
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susceptibility modeling. However, in practice, the compilation of landslide inventories faces

considerable challenges, making it difficult to obtain comprehensive and accurate records (Kong et al.,
2025; Lee et al., 2018). Consequently, data scarcity remains a common issue in landslide hazard
identification, particularly in remote regions or areas with limited accessibility. Therefore, it is
necessary to further expand their geographical coverage and establish standardized evaluation
protocols.

44—‘——£Formatted: Indent: First line: 0 ch

3 Deep Learning for Potential Landslide Identification: Models

The effectiveness of deep learning in potential landslide identification largely depends on
selecting an appropriate model architecture suited to the data type and specific task. While all deep

learning models excel at automated feature extraction, their internal architectures predispose them to
excel in different aspects of the overall workflow. Therefore, this section does not merely list models

but organizes them based on their primary function in the potential landslide identification pipeline.

We analyze several commonly used deep learning models by categorizing them into five functional
roles: image analysis and processing, time series analysis, data generation, anomaly detection, and data

fusion.

2

3.1 Models for Image Analysis and Processing in Potential Landslide Identification

Image data plays a critical role in potential landslide identification, especially through remote
sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain data,
encompassing complex geographical features, vegetation coverage, and ground fissures, which often
serve as potential precursors to landslide occurrences. The adoption of deep learning has facilitated a
shift from conventional manual visual interpretation to automated high-precision segmentation.

As illustrated in Fig. 2, a CNN is mainly composed of convolutional, pooling, and fully connected
layers, each responsible for distinct operations on the input data (Kattenborn et al., 2021; LeCun et al.,
1998: Liu et al., 2022b).

Convolutional layers, the core of CNNs, use kernels of various sizes to extract multi-scale features

from geospatial imagery, which is crucial for landslide identification Hussain et al. (2019); Shi et al.

(2020); Yao et al. (2021). Small kernels are effective in detecting fine-grained precursors such as

ground fissures and localized soil texture changes. For instance, Hamaguchi et al. (2018) proposed a
Local Feature Extraction (LFE) module to enhance the capability of CNNs in identifying small object

instances in remote sensing imagery. Wang et al. (2024a) demonstrated the exceptional capability of

convolutional layers in extracting extremely small and subtle features by identifying cracks as narrow
as 0.05 m width using a U-Net-based model. In contrast, larger kernels help in recognizing the overall
morphology and boundaries of landslide bodies. From the perspective of general visual tasks, Ding et
al. (2022) demonstrated that larger convolution kernels substantially improve the shape bias of CNNs,
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Deleted: Potential landslide identification relies heavily on
extensive data analysis, and the key is how to efficiently and
accurately extract features that are helpful for identifying
landslide occurrences. Conventional landslide identification
methods often rely on human expertise or rules, often
necessitating expert knowledge for identifying relevant
features. With continuous exploration, deep learning, through
its powerful feature learning capabilities, enables the
automatic extraction of meaningful features from raw data,
significantly reducing manual intervention. Especially when
dealing with high-dimensional and complex landslide data,
deep learning models can extract deep features related to
landslides from raw data in a data-driven manner, without the
need for manual feature design.

models typically depends on the type of data and the task
requirements. Although each model typically has multiple
effects, its internal architecture results in different focal points
when it comes to automated feature extraction. This section
analyzes several commonly used deep learning models from
five perspectives: image analysis and processing, time series

analysis, data generation, data cleaning, and data fusion.

Deleted: Convolutional neural networks (CNNs) represent
the fundamental architecture in image processing. A CNN
primarily comprises convolutional layers, pooling layers, and
fully connected layers, each performing predefined functions

on its input data (Kattenborn et al., 2021; Liu et al., 2022a).




facilitating the recognition of large-scale structures and overall morphological patterns compared with

using small kernels alone. Li et al. (2025) employed multiple large convolution kernels (kernel sizes

=5, 7, and 9) within the deep learning-based feature fusion with scale-adaptive kernel attention module

to fuse multi-scale features, thereby enhancing the global perception of landslide boundaries and
morphology as well as the capture of contextual background information.

Pooling layers downsample feature maps, improving computational efficiency and model

robustness. In landslide mapping, this translation invariance is particularly beneficial, as it allows the

model to consistently identify landslide features regardless of their slight positional variations across

different image patches (Mao et al., 2024).

The final fully connected layer flattens the pooled feature maps and performs classification

outputting results that distinguish potential landslide areas from non-landslide areas or enable further

analysis of landslide types (Wu et al., 2024b).

The layers of a CNN can be combined in various ways, forming distinct CNN architectures. These

e

architectures are primarily determined by task requirements, which may include image classification,
multi-class segmentation, or object localization within a scene.

Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers,
and fully connected layers. However, increasing network depth introduces challenges such as
vanishing gradients and degradation arise, resulting in model performance deterioration.

ResNet mitigates the vanishing gradient problem in very deep networks through residual
connections (Qi et al., 2020; Yang et al., 2022). This architectural advancement has been successfully

applied to landslide detection in complex terrains, such as the work by Ullo et al. (2021), who

demonstrated that a ResNet-based classifier could achieve high accuracy in distinguishing landslide
scars from surrounding vegetation and bare soil in satellite imagery by effectively learning hierarchical

features,

Models with higher parameter counts generally exhibit greater representational capacity but are
prone to overfitting, while demanding higher computational resources and temporal costs for both
training and inference (Ebrahimi and Abadi, 2021). For instance, (He et al., 2016) introduced ResNet-

152 and other deep residual network architectures, demonstrating that deeper structure achieve

superior performance compared with shallower counterparts. Hasanah et al. (2023) explicitly

highlighted the differences in layer depth and parameter count among various ResNet versions
(ResNet-50, 101, and 152), noting that the increased number of parameters in deeper networks

inevitably leads to longer training times,

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks
are based on a similar idea, which is to establish a "shortcut" between different layers. However, the

structure of DenseNet is simpler and more effective, with fewer parameters. The structural differences
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CNNs, contains multiple kernels that progressively extract
more detailed feature representations (Hussain et al., 2019;
Shi et al., 2020; Yao et al., 2021). Meanwhile, the shared-
weight strategy inherent in convolutional layers allows for
network training with fewer parameters than fully connected
architectures. Convolutional kernels of different sizes
facilitate multi-scale feature extraction. Small kernels focus
on fine details, such as small cracks and the texture of
localized soil loosening, while large kernels emphasize
capturing overall shapes, such as the general outline of
landslides and the macroscopic morphology of mountain
bodies. Pooling layers, typically positioned after
convolutional layers, serve to reduce the size of feature
representations and enhancing the model’s resistance to
overfitting when handling diverse data. Common pooling
methods include max pooling and average pooling, which
enhance robustness to minor transformations such as
translation and rotation, ensuring a degree of invariance in the
features extracted by CNNs. Pooling operations downsample
the convolved feature maps, reducing computational
complexity while reinforcing feature robustness. Through the
hierarchical stacking of multiple convolutional and pooling
layers, CNNs incrementally extract more abstract and
semantically rich features (Mao et al., 2024). The final fully
connected layer flattens the pooled feature maps and performs
classification, outputting results that distinguish potential
landslide areas from non-landslide areas or enable further

analysis of landslide types (Wu et al., 2024).

Deleted: ResNet addresses these limitations by integrating
residual blocks into the foundational CNN framework (Qi et
al., 2020; Yang et al., 2022). These residual blocks utilize
shortcut connections that preserve original feature
information. This framework facilitates the construction of
ultra-deep networks capable of extracting high-level semantic
features for landslide detection, thereby enhancing
adaptability to complex terrain classification tasks (Ullo et al.,
2021).

| Deleted: ResNet-152 contains orders of magnitude more

parameters than ResNet-50, yet the latter is often preferable
in computationally constrained environments due to its

balanced efficiency and performance.
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between ResNet and DenseNet are illustrated in Fig. 2. In ResNet, each layer is only connected to

the previous layer, while in DenseNet, each layer is directly connected to all previous layers, and each
layer can obtain gradients from the loss function. This can optimize the information flow and gradients
of the entire network, making it easier to train and performing better on small datasets. The structure

of DenseNet enables more effective reuse of features, meaning that each layer can directly access and

build upon the feature maps generated by all preceding layers instead of re-learning similar

representations. This dense connectivity not only strengthens information and gradient flow across the

network but also reduces redundancy and the total number of parameters, Moreover, the layers of

DenseNet are narrower than those of other deep learning networks (Liu et al., 2021¢), making it reduce
redundancy by learning with fewer feature maps. This architecture is suitable for the extraction of
multi-scale landslide features under complex terrains, even with limited landslide training samples
(Caietal.,2021; Lietal., 2021; Ullo et al., 2021).
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Figure 2. The role of deep learning models in image analysis and processing. (a) Comparison of

landslide images before and after identification, (b) Schematic of a basic CNN architecture. A

conventional CNN typically comprises stacked convolutional layers, pooling layers, and fully
connected layers. (¢) Comparative schematic of ResNet and DenseNet architectures. In contrast to
ResNet, which combines features through summation before passing them to subsequent layers,
DenseNet integrates features via channelwise concatenation.

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation

models have increasingly become the standard in landslide detection_(Lu et al., 2023b; Zhou et al.,

2024b). As a fundamental task in computer vision, semantic segmentation assigns a specific class label

(e.g., "landslide" or "non-landslide") to each pixel in an image, thereby enabling dense pixel-level

classification (Guo et al., 2018).

Numerous advanced semantic segmentation networks have been proposed and validated for
automatic landslide detection, significantly enhancing the efficiency and accuracy of large-scale
detection.

U-Net is a typical example (Ronneberger et al., 2015), which features a U-shaped architecture.

U-Net’s encoder-decoder structure with skip connections has become a benchmark for landslide

segmentation (Chandra et al., 2023; Chen et al., 2022b; Meena et al., 2022). For example, Nava et al.

(2022) applied the attention U-Net to Sentinel-1 SAR data for rapid mapping of earthquake-induced

landslides, demonstrating the effectiveness of U-Net variants in pixel-level segmentation of landslide

bodies under cloud-covered or topographically complex conditions,

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable choice
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image processing for potential landslide identification.

Deleted: U-Net employs an encoder-decoder structure, where
/ | the encoder is similar to conventional CNNs, progressively
/| reducing image resolution and extracting features through
/ convolution and pooling operations; the decoder then restores
/ the image resolution through transposed convolution or
upsampling operations (Dong et al., 2022; Nava et al., 2022).

Skip connections bridge low-level detail features with deep

semantic features, thereby refining segmentation precision.




(Sandric et al., 2024). While U-Net excels at preserving fine-grained spatial details through its skip-

connections, its ability to capture longrange contextual information is limited by its relatively small
receptive field. DeepLab, built upon deep CNNs, addresses this critical limitation by employing dilated

convolutions to exponentially expand the receptive field without sacrificing resolution or increasing

parameters substantially,

More importantly, DeepLab integrates an Atrous Spatial Pyramid Pooling (ASPP) module, which

is key to its superior performance on multi-scale objects like landslides (Chen et al., 2017; Huang et

al., 2024a). The ASPP module operates in parallel on the same feature map using multiple

convolutional branches with different dilation rates (e.g., rates = 6, 12, 18). Each branch effectively

captures contextual information at a different scale, from fine details to broad, image-level contexts

(Niu et al., 2018). All these multi-scale features are then concatenated and fused. This allows the

network to simultaneously leverage both local textual cues and global contextual cues, thereby

significantly improving recognition accuracy and reducing false positives in geologically complex
environments.

After achieving semantic segmentation to obtain the accurate extent of a landslide and the

Deleted: Built upon deep convolutional neural networks,
DeepLab employs dilated convolutions to expand the
receptive field and integrates an atrous spatial pyramid
pooling (ASPP) module to capture multi-scale contextual

information.

classification of ground objects, change detection is employed to monitor the changes in the landslide
area over time. By comparing the segmentation results of multiple temporal phases or directly
analyzing the feature differences, the dynamic evolution of potential hazards can be quantifie
(Amankwah et al., 2022).

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models

capture both spatial and temporal dependencies through 3D convolutional kernels, enabling the direct

processing of multi-temporal image sequences. The outputs typically take two complementary forms:

(1) change hotspot maps, which highlight regions of significant spatial change across time, and (2)

temporal variation curves, which illustrate the evolution of pixel- or region-based feature values

throughout the temporal sequence. Together, these representations provide intuitive and

complementary tools for characterizing dynamic processes in landslide-prone areas, such as the

initiation, progression, and spatial distribution of slope failures

Deleted: In contrast, the U-Net architecture is relatively
simpler and better suited for small targets and high-resolution
imagery, such as landslide crack segmentation or fine
annotation of high-resolution UAV images. DeepLab, on the
other hand, is more effective for large-scale landslide area
detection and multispectral remote sensing image

classification (see Fig. 2).

Some studies even have integrated attention mechanisms into conventional CNN architectures to
enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the identification of
landslide hazard evolution over time. For example. Meng et al. (2024) proposed a framework based

on CNN and optimized Bidirectional Gated Recurrent Unit (BiGRU) with an attention mechanism,

designed to forecast landslide displacement with a step-like curve. Dong et al. (2022) proposed L-Unet

which combines multi-scale feature fusion with attention modules to improve landslide segmentation

performance, particularly at boundaries.

Deleted: These models capture spatial and temporal features
using convolutional kernels while transforming multi-
temporal image sequences into change hotspot maps or

temporal variation curves as output.




3.2 Models for Time Series Analysis in Potential Landslide Identification

The occurrence of a landslide is a gradual accumulation process, usually influenced by a variety
of factors. We refer to data that reflect the changing states of a landslide body over time as time series
data. Time series data analysis aims to excavate the information hidden in the time series data to help
identify potential landslides.

Different from conventional statistical or physical models, deep learning models can

automatically reveal dynamic change trends and periodic patterns in the data, providing more accurate

information for landslide prediction and early warning. Recently, deep learning—based temporal
models have become key tools for extracting nonlinear dependencies and temporal evolution patterns

in landslide-related time series. The structural characteristics and differences among these models are
illustrated in Fi

. 3 RNNSs are a class of deep learning models specialized in processing sequential data
1990). Unlike

conventional feedforward neural networks, in an RNN, each neuron not only receives the current input

capable of capturing temporal dependencies within input sequences (Elman

but also the output of the previous time step as additional input. This structure endows the RNN with
o etal., 2021; Zaremba et al., 2014).

In landslide prediction, RNNs have been employed to model displacement time series under

a memory mechanism

rainfall or groundwater fluctuations, revealing short-term deformation patterns preceding slope failure
Chen et al., 2015; Zhang et al., 2022c¢).
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Figure 3. The role of deep learning models in time series analysis. (a) In potential landslide
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Deleted: Different from conventional time series data
analysis methods, using deep learning models an
automatically reveal the dynamic change trends and periodic
patterns in the data, providing more accurate information for

landslide prediction.

Deleted: Recurrent neural networks (RNNs) are a class of
deep learning models specialized in processing sequential
data, capable of capturing temporal dependencies within input
sequences (Ngo et al., 2021; Zaremba et al., 2014). Unlike
conventional feedforward neural networks, in an RNN, each
neuron not only receives the current input but also the output
of the previous time step as additional input. This structure
endows the RNN with a memory mechanism.

The architecture contains three primary components working
in coordination:(1) The input layer means that one data point
is input at each time step. (2) The hidden layer contains
recurrent connections, which enable the information from the
previous time step to be passed to the current time step, and
the output serves as the input for the next time step
simultaneously. (3) The output layer generates the output
under the control of the state of the hidden layer (Cho et al.,
2014; Zhao et al., 2021b).

RNN will process the data at each time step in sequence,
continuously updating the hidden state. By combining the
input of the current time step with the hidden state of the
previous moment for calculation to gain an understanding of
the data at the current moment, this structure enables the
RNN to capture the temporal evolution patterns of landslide-
related factors.

model long-term dependencies and limit their applicability to
short-term temporal sequences, long short-term memory

networks (LSTM) were developed (Wang et al., 2023b).




identification, time series data can be obtained through monitoring. (b) RNNs, LSTMs, and GRUs
provide more accurate information for landslide prediction by processing time series data.

To overcome the vanishing gradient problem inherent in RNNs, LSTM introduces memory cells
and gating mechanisms that selectively retain relevant temporal information (Graves, 2012; Landi et
al., 2021; Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al.,

2019). As shown in Fig. 3, LSTM networks extend the basic RNN structure by incorporating gating

units that control information flow, enabling them to better capture cumulative and delayed slope

responses to environmental triggers. This capability allows them to model the cumulative and delayed
responses of slopes to prolonged rainfall or reservoir water level fluctuations.

LSTM models have been widely applied in landslide displacement prediction and early warning.
Yang etal. (2019) analyzed the relationships among landslide deformation, rainfall, and reservoir water

levels, and found that compared with static models, the LSTM approach more accurately captured the

dynamic characteristics of landslides and effectively leveraged historical information. Xu and Niu
(2018) used a LSTM model to predict the displacement evolution of the Baijiabao landslide using
rainfall and hydrological level data, achieving a higher correlation compared with traditional
regression models. In another study focused on shallow landslides. Xiao et al. (2022) used a week-

ahead LSTM model, which exhibited stable performance and improved prediction accuracy in short-

term prediction scenarios. Additionally, Gidon et al. (2023) constructed a Bi-LSTM model and

achieved a detection accuracy of 93% in the Mawiongrim area. This effectively addresses the

limitations of traditional methods and can provide a reliable technical solution for disaster early

warning in this area as well as other similar landslide-prone areas. f
Jhe GRU is a simplified variant of the LSTM that achieves similar accuracy with fewer I!
parameters and reduced computational costs (Cho et al., 2014), making it well-suited for real-time
landslide monitoring systems (Chung et al., 2014; Rawat and Barthwal, 2024; Zhang et al., 2022¢).
Furthermore, GRU models effectively identify precursory displacement acceleration, allowing
carly detection of slope instability triggered by rainfall or seismic shaking (Chang et al., 2025; Yang
et al., 2025).

Transformer, first introduced by Vaswani et al. (2017), was originally designed for natural

language processing but has since become a cornerstone architecture in modern machine learning.

achieving state-of-the-art performance across diverse domains such as computer vision and

multimodal learning.
Unlike conventional recurrent or convolutional models, the Transformer is built upon stacked

encoder—decoder layers and relies on a key innovation: the self-attention mechanism (see Fig. 5). This

mechanism enables the model to automatically compute a weight vector (i.e., an attention distribution)

for each element in the sequence based on its relevance to all other elements. By evaluating all
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Deleted: LSTM is an enhancement of RNNs, primarily
processing long sequence data. Compared to standard RNNs,
the hidden layer architecture of LSTM is much more
complex. By incorporating memory cells and gating
mechanisms, LSTM selectively propagates critical
information across multiple time steps, thereby effectively
capturing long-range temporal dependencies(Landi et al.,
2021; Yu et al., 2019).

The basic unit of an LSTM consists of three primary gates:
(1) the input gate, which determines what new information
should be added to the cell state; (2) the forget gate, which
decides what old information should be discarded; and (3) the
output gate, which selects the information to be output from
the cell state as the hidden state at the current time step
(Sherstinsky, 2020; Smagulova and James, 2019;
Staudemeyer and Morris, 2019). The output hidden state,
after a nonlinear transformation, can be used for prediction or
as the input for the next time step (Yang et al., 2019).

This structure allows the LSTM to retain key information
over long sequences while selectively forgetting irrelevant
information according to the requirements. Through learning
from historical data, the LSTM can predict the likel%

Deleted: Gated recurrent unit (GRU) is a simplified version
of LSTM(Chung et al., 2014; Zhang et al., 2022b), which has
fewer parameters. Due to their higher computational
efficiency, GRU has potential advantages in real-time data
processing scenarios in landslide monitoring.

GRU mainly consists of the update gate and reset gate. The
update gate is used to control how much of the previous
information should be preserved at the current time step,
while the reset gate is used to determine whether to ignore the
hidden state of the previous time step, enabling the model to
adaptively learn information across different temporal scales.
This dual-gate mechanism enables adaptive learning of multi-
scale temporal patterns.

Compared with the LSTM, the GRU has fewer parameters
and higher computational efficiency, giving it an advantage in
some landslide monitoring scenarios where real-time
performance is critical.

GRU is capable of effectively handling time series data with
long-term dependencies, making it suitable for long-term
prediction of landslide hazards. Moreover, by learning
temporal patterns in historical data, GRU can identify critical

conditions for landslide occurrence in advance. GRW




positions simultaneously (Esser et al., 2021; Huang and Chen, 2023), the Transformer efficiently

captures global dependencies across long sequences in parallel, making it more effective than RNNs
or CNNs at modeling long-range relationships.

When applied to landslide-related time series data, the Transformer can adaptively learn latent

temporal features and patterns, automatically adjusting parameters to accommodate diverse landslide
scenarios (Wang et al., 2024b; Zerveas et al., 2021).

However, a key drawback of the standard Transformer is its quadratic computational complexity

with respect to sequence length, which becomes prohibitive for very long sequences (Zhuang et al.

2023). This also complicates the interpretation of how the model extracts features and makes decisions

from large amounts of landslide data, posing challenges for practical deployment. It is worth noting

that mitigating this quadratic complexity is an active research area, with many efficient Transformer

variants being developed. 480 For example, Zhao et al. (2024f) combined the strengths of CNN and

Transformer architectures, selecting and analyzing nine landslide-conditioning factors to successfully

achieve accurate landslide localization and detailed feature capture. Ge et al. (2024) proposed the

LiteTransNet model based on the Transformer framework, effectively capturing and interpreting the

varying importance of historical information during the prediction process. Therefore, while powerful

the vanilla Transformer may not be the optimal choice for all practitioners, and its computational
demands should be carefully considered.

In contrast, RNN-based models exhibit a relatively simple architecture and are conceptually

intuitive (Li et al., 2021; Wang et al., 2020b), making them more interpretable. Transformers, however,
are structurally more complex with numerous parameters, requiring substantial computational
resources during training and being susceptible to overfitting on small datasets.

v

3.3 Models for Data Generation in Potential Landslide Identification

Data generation refers to modeling the underlying data distribution of data to generate entirely
new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020;
Shorten and Khoshgoftaar, 2019), thereby enriching the dataset. In potential landslide identification,
data generation mitigates challenges of data scarcity and imbalanced class distributions, thereby
enhancing the generalization capability of predictive models.
Deep generative models are the leading deep learning approach for synthetic data generation (Alam et
al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They utilize deep neural networks to

learn latent representations of data and optimize the learning process through specific objective
functions. A key characteristic of deep generative models lies in their probabilistic nature. They not

only classify or reconstruct data but also capture the underlying distribution of geospatial features,

thereby enabling the generation of new landslide samples that are statistically consistent with observed
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Deleted: Transformer was originally designed to handle
sequential data in natural language processing, which was
first introduced by Vaswani in 2017 (Vaswani et al., 2017).
Unlike conventional recurrent and convolutional structures,
the Transformer employs employs a self-attention mechanism
to directly model the entire sequence.

Since the Transformer has the ability to adaptively learn
latent features and patterns within the data, when it comes to
processing landslide time series data, it can automatically
tweak the model parameters to accommodate diverse
landslide scenarios and temporal data variability (Wang et al.,
2024a; Zerveas et al., 2021).

Transformer also can analyze positional relationships across
the entire sequence, better capturing complex dependencies in
long sequences, making it especially suitable for handling

large-scale, long-term sequential datasets.

Deleted: In contrast, RNN-based models exhibit a relatively
simple architecture (Li et al., 2021a; Wang et al., 2020b).
Their mechanisms are conceptually intuitive, making them
more interpretable (see Fig. 3). On the other hand,
Transformers are more complex in structure with numerous
parameters, necessitating substantial computational resources
during early training to process large-scale data, while being
susceptible to overfitting on small datasets. Understanding
how the model extracts features and makes decisions is not
straightforward from large amounts of landslide data, posing

challenges for its interpretability and practical deployment.




patterns. Commonly used deep generative models include GANs, Variational Autoencoders (VAEs),
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Figure 4. The role of deep learning models in data generation. (a) Comparative schematic of three
commonly used deep generative model architectures. GAN: adversarial training. VAE: maximize
variational lower bound. Diffusion models: gradually add Gaussian noise and then reverse. (b)
Schematic of the adversarial training workflow for GAN-based data generation. (¢) Comparative
architecture of AE and its variational counterpart, VAE. (d) Schematic of a diffusion model applied to
denoise potential landslide data.

GANs consist of a
(Goodfellow et al.
discriminator attempts to distinguish between generated and real data. The workflow of adversarial

training for GAN-based data generation is schematically depicted in Fig. 4. Through iterative
adversarial training, the generator learns to produce high-quality synthetic data that closely matches
the distribution of real data (Gui et al., 2021; Saxena and Cao, 2021).

In the context of landslide studies, GANs have demonstrated strong capabilities in data

enerator and a discriminator that compete in an adversarial process

2014). The generator synthesizes data resembling real samples, while the

augmentation and remote sensing image enhancement. For example, Feng et al. (2024) achieved the
first implementation of using a GAN to generate synthetic high-quality landslide images, aiming to

address the data scarcity issue that undermines the performance of landslide segmentation models. Al-

Najjar and Pradhan (2021b) proposed a novel approach that employs a GAN to generate synthetic

inventory data. The results indicate that additional samples produced by the proposed GAN model can

enhance the predictive performance of Decision Trees (DT), Random Forest (RF), Artificial Neural

Network (ANN), and Bagging ensemble models.
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Deleted: They operate on principles similar to those of deep
learning, utilizing deep neural networks to learn data
representations and optimizing the learning process through
objective functions.

A fundamental characteristic of deep generative models lies
in their probabilistic nature. These models learn an
approximate probability distribution from observed samples
and subsequently generate novel samples that maintain
statistical consistency with the original dataset. Unlike
conventional discriminative models, generative models not
only classify data but also learn the underlying distribution
and generate new data points. Commonly used deep
generative models include generative adversarial networks

(GANSs), variational autoencoders (VAEs, a variant of

autoencoders), and diffusion models.

Deleted: GAN is a suitable choice to generate highly realistic
and diverse new images (Goodfellow et al., 2014; Tran et al.,
2021). Instead of explicitly modeling data distributions,
GANSs implicitly learn distributions through adversarial
training between generator and discriminator networks.
During data generation, the generator network in a GAN
synthesizes images or data resembling real samples by
processing input noise vectors (Gui et al., 2021; Saxena and
Cao, 2021). The discriminator, on the other hand, is used to
distinguish between the generated data and the real
data.These two components are continuously optimized
through adversarial training. Eventually, the generator is able
to produce high-quality synthetic data, which is highly similar
to the real data in terms of features.

With this adversarial structure (Al-Najjar et al., 2021), GANs
can generate high-quality data that closely matches the
distribution of real data in an unsupervised learning context,

making them well-suited for high-resolution image synthesis.




Despite their advantages, GANs may suffer from mode collapse, leading to limited diversity in

the generated data, especially when certain landslide types are underrepresented (Fang et al., 2020a).
Moreover, their unstable training process requires careful hyperparameter tuning and substantial
computational resources, which may constrain their application in real-time hazard scenarios.
Nevertheless, with improved architectures such as Conditional GAN (CGAN) (Kim and Lee, 2020;
Loey et al., 2020; Mirza and Osindero, 2014), image-to-image translation with GAN (Pix2Pix) (Isola
etal.,2017; Quetal., 2019), and Wasserstein GAN (WGAN) (Arjovsky etal., 2017; Wang et al., 2019),

GANSs are becoming increasingly viable tools for high-resolution landslide mapping and synthetic data

generation in remote sensing-based susceptibility analysis.

As a probabilistic variant of AEs, VAEs introduce latent-space regularization through variational |

inference (Hinton and Salakhutdinov, 2006; Kingma andWelling, 2013). The encoder compresses input

data into a latent representation characterized by a mean and a standard deviation, while the decoder

reconstructs the data by sampling from this distribution. This enables the model to generate new data

with inherent randomness and diversity (Islam et al., 2021; Oliveira et al., 2022).

In landslide research, VAEs have been successfully applied to learn and reconstruct
geomorphological patterns of slope instability. For instance, Cai et al. (2024) proposed and

demonstrated the superior capability of the VAE-GRU model in generating narrow predictive intervals

while maintaining high coverage probabilities, representing a substantial improvement over the state-
of-the-art methods for probabilistic landslide prediction.

Compared with GANs, VAEs produce more diverse but slightly less detailed samples, due to their

structured latent space constraints. This characteristic is particularly beneficial for exploring a wide

range of potential landslide morphologies and for augmenting training datasets used in susceptibility

prediction. However, VAEs may still struggle with highly imbalanced datasets, as their probabilistic

reconstruction tends to favor majority classes. Integrating VAEs with stratified sampling or cost-
sensitive learning could help overcome this limitation and further enhance landslide prediction
performance.

When computational resources and training time permit, diffusion models provide a powerful |
alternative for generating high-quality, diverse, and stable data (Croitoru et al., 2023; Ho et al., 2020;

Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually adding

noise to real samples (forward diffusion) and then reconstructing clean data through a reverse

denoising process (see Fig. 4). The resulting models can sample new, realistic data points that reflect
complex terrain and geophysical variability. For example, Lo and Peters (2024) proposed a Terrain-
Feature-Guided Diffusion Model (TFDM) to fill gaps in DEM data. Similarly, Zhao et al. (2024b)

employed a Denoising Diffusion Probabilistic Model (DDPM) conditioned on incomplete DEMs

which serves as a transitional kernel during diffusion reversal to progressively reconstruct sharp and
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Deleted: With the proposal and development of GANs,
researchers have introduced various enhanced structures that
are more effectively applied to potential landslide
identification. For example, the conditional GAN (CGAN)
(Kim and Lee, 2020; Loey et al., 2020), Pix2Pix (Qu et al.,
2019), and Wasserstein GAN (WGAN) (Wang et al., 2019).
In the case of GANS, although the generated high-quality
images may visually resemble real potential landslide regions,
mode collapse can lead to a lack of diversity in the generated
data, failing to cover all possible types of hazards (Fang et al.,
2020). If certain types of potential landslides are
underrepresented in the training dataset, GANs may struggle
to generate those types effectively, thereby limiting the
effectiveness of data augmentation. Given that the inherently
unstable training process of the GANs may require more
hyperparameter tuning and computational resources, this
model will pose additional challenges in scenarios with
limited data availability (Al-Najjar and Pradhan, 2021; Feng
etal., 2024).

Deleted: As a variant of the autoencoders (AEs), the
variational autoencoder (VAE) introduces the idea of
probabilistic generation (Kingma et al., 2013). VAE
constrains the latent space through variational inference, thus
enabling the generation, reconstruction, and transformation of
sample data.

the VAE may have better diversity (Cai et al., 2024; Islam et
al., 2021; Oliveira et al., 2022), because the structured
constraints of its latent space are helpful for generating
samples with continuous changes. This is beneficial for
simulating potential landslides under different geological
conditions.

low-dimensional latent space, where each vector represents
the underlying features of the input. The decoder then
reconstructs the original data based on the vectors in the
latent space. Different from conventional AEs, the output of
the VAE encoder includes two parameters: the mean value
and the standard deviation. These two parameters define the
probability distribution in the latent space, which is usually
assumed to be a Gaussian distribution. The decoder samples a
latent variable from this probability distribution and
reconstructs it into output data, thus generating data with
inherent randomness and diversity. Therefore, the VAE can
extract latent features from landslide data and generate new

... [5]

landslide data based on these features.




accurate DEMs.

Despite their successful applications in image synthesis, denoising, and remote-sensing image
enhancement (Leher et al., 2025 Sui et al., 2024; Xiao et al., 2023; Zou et al., 2024). diffusion models
have not yet been widely applied directly to the identification of potential landslides and remain in the
exploratory stage. Nonetheless, our optimism for their application is grounded in their potential to

address key challenges such as limited labeled data through generative augmentation and, more

importantly, to provide uncertainty quantification in predictions, which is vital for risk assessment.

In conclusion, deep generative models provide a transformative solution for overcoming the
\

challenges of limited and imbalanced landslide datasets. By synthesizing realistic, diverse, and

statistically consistent samples, these models can improve the robustness and generalization of

landslide prediction frameworks. Among them, GANSs are effective for generating visually realistic

imagery and data augmentation; VAEs capture probabilistic geomorphic transitions; and diffusion
models ensure stability and fidelity in high-resolution terrain synthesis.

3.4 Models for Anomaly detection,in Potential Landslide Identification

Anomaly detection plays a critical role in potential landslide identification, as it enables the

distinction between normal environmental variations and genuine precursors of slope instability

(Deijns et al., 2020; Jiang et al., 2020). In landslide monitoring, the goal of anomaly detection is to
identify subtle yet significant deviations. Examples include abnormal surface displacements, changes
in surface coherence, or irregularities in sensor signals. Such deviations may occur prior to landslide
events. With the advancement of deep learning, data filtering has evolved from rule-based threshold

detection to automated feature learning, allowing models to capture complex spatiotemporal
dependencies and identify anomalies within high-dimensional, multi-source datasets.

AEs are widely used for unsupervised anomaly detection due to their ability to reconstruct input

data and highlight deviations from learned normal patterns (Sakurada and Yairi, 2014; Zhou and

Paffenroth, 2017). An AE consists of an encoder that compresses data into a low-dimensional latent

Deleted: When computational resources and time are
sufficient, and high-quality data generation with exceptional
diversity is prioritized, diffusion models are the
recommended choice (Croitoru et al., 2023; Yang et al.,
2023a; Zhu et al., 2023a).

learn the distribution of data. During training, the model
applies a forward diffusion process that gradually adds noise
to the original data until it approximates a Gaussian
distribution. Then, in the reverse diffusion process, the model
learns to iteratively refine its reconstruction of the original
data distribution from the noisy data. After being fully
trained, the model is able to capture the latent distribution
patterns of the data, and thus can sample based on the learned
distribution to generate new data (Ho et al., 2022). That is to
say, by grasping the inherent laws and features of the data, the
model has the ability to generate data that conforms to the
distribution of the data.

model (DDPM) is a classic implementation of the diffusion
models, which lays the probabilistic framework for the
diffusion models (Choi et al., 2021; Ho et al., 2020; Jing et
al., 2023; Perera et al., 2023). The generation qualiW

Deleted: Although diffusion models demonstrate strong
capabilities in generating high-quality images and handling
noise, they generate superior-quality data and ensure greater
training stability compared to GANs and VAEs. However,
diffusion models have not yet been widely applied directly to
the identification of potential landslides and remain in the
exploratory stage (see Fig. 4). We believe that as generative
models advance in the field of geospatial remote sensing, they
hold vast potential for application and could play a pivotal

role in future landslide risk analysis and monitoring systems.

Deleted: Data Cleaning

representation and a decoder that reconstructs it.

During training, the AE learns the intrinsic features of normal landslide data, such as sensor-based

displacement time series or radar backscatter from stable slopes. When abnormal data are input, such

as sudden displacement spikes or incoherent radar signals, the reconstruction error increases
significantly, serving as an indicator of potential instability. For instance, Shakeel et al. (2022

developed an InSAR deformation anomaly detector based on an AE-LSTM architecture. Experimental

analyses using synthetic deformation test scenarios achieved an overall performance accuracy of
91.25%.
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Deleted: In potential landslide identification, data cleaning,
particularly anomaly detection, is a critical issue (Deijns et
al., 2020; Jiang et al., 2020). It can distinguish between
normal fluctuations and true anomalies, identifying early
signs such as subtle changes in the mountain’s state or
abnormal trends in surface displacement, thus enabling more
accurate landslide hazard assessment. With the rapid
development of deep learning, the applications in data
cleaning have become increasingly widespread, enabling
models to automatically learn latent data patterns and identify

potential anomalies.




By defining a reconstruction error threshold, anomalies can be quantitatively detected. When the

reconstruction error of new sensor data exceeds this threshold, it may signal slope movement
acceleration or surface disturbance associated with potential landslides. Thus, AEs provide a data-

driven method to detect early-warning signs without requiring manually labeled failure data.

As previously introduced, VAE is an extension of AE (Nawaz et al., 2024). VAEs introduce

stochastic latent variables characterized by mean and variance, allowing them to model data

uncertainty (see Fig. 4). During training, VAEs learn the latent distribution of normal samples and

reconstruct inputs accordingly. When new observation data deviate significantly from the learned
distribution, the reconstruction error increases accordingly, and this phenomenon can be used as an

indicator of potential anomalies (Kingma and Welling, 2013; Li et al., 2020; Park et al., 2018),[3\

landslide applications, VAEs have been shown to outperform conventional AEs in handling complex

multivariate datasets that integrate topographic, meteorological, and geotechnical factors. For example,

Han et al. (2025) proposed an unsupervised failure mode recognition algorithm based on a deep

convolutional autoencoder, which integrates surface displacement, vertical displacement, and rainfall
monitoring data from slopes to accurately identify the developmental stages of slope failure, achieving

a recognition accuracy of 99.30%.

Compared to AEs, VAEs are particularly advantageous for capturing uncertainty and latent
correlations between environmental variables, making them ideal for anomaly detection in integrated

landslide early-warning systems (Kumar et al., 2024; Pol et al., 2019). However, they require larger

datasets for stable training, and their probabilistic outputs may demand postprocessing for operational

thresholding.

GANSs can also be adapted for anomaly detection by exploiting their discriminator network’s
ability to distinguish between real and generated data (Kang et al., 2024; Xia et al., 2022). In landslide

monitoring, GAN-based anomaly detection models learn the distribution of stable slope features, and

deviations from this distribution can indicate abnormal conditions (Radoi, 2022).

AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its

primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder during

training, which maps input data to the latent space. The difference between this latent vector and the

latent vector of normal samples generated by the generator serves as the basis for anomaly detectio
RNNSs and their variants are particularly effective for time series—based anomaly detection,

learning temporal dependencies and predicting future trends (Zamanzadeh Darban et al., 2024; Zhang

these models can process continuous displacement or rainfall

et al., 2022a). In landslide monitorin,

time series to identify deviations from expected temporal behavior. These temporal models

complement image-based approaches by providing continuous surveillance and early detection

Deleted: AEs and their variational counterparts are highly
effective in unsupervised data cleaning. These models
autonomously learn normal geomechanical patterns from data
and flag deviations, achieving effective hazard identification
even when labeled anomaly samples are scarce.

The AE is a typical unsupervised learning model consisting of
an encoder and a decoder The encoder compresses the input
data into low-dimensional features, and then the decoder
reconstructs the input. During the training process, the
autoencoder learns the intrinsic features and patterns of
normal landslide data, so that for normal data, the
reconstruction error is small. When abnormal landslide data is
input, due to the difference between its features and the
distribution of normal data, the reconstruction error will be
large.

reconstruction error threshold is set. When the reconstruction
error of the test data exceeds this threshold, it can be
determined as abnormal data. In the anomaly detection of
landslide displacement data monitored by sensors, if the error
of the displacement data after being reconstructed by AEs
during a certain period is significantly higher than the normal

level, it may indicate that there is an abnormal situafnmfﬁ

Deleted: Compared to conventional autoencoders, VAE
introduces randomness into the latent space, making it more
effective in handling data uncertainty (Li et al., 2020; Park et
al., 2018).

Deleted: During training, VAEs learn the latent distribution
of the data and can generate new samples resembling the
training set. When input samples deviate significantly from
this learned distribution, the VAE fails to reconstruct them
accurately, thereby flagging anomalies through elevated
reconstruction errors. For landslide monitoring, if a VAE is
trained on imagery of stable slopes, it internalizes stable

terrain features. When an image significantly differs[“?ﬂ-mmﬁgjL

capabilities (Wu et al., 2024a).
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Deleted: GANs can also be utilized in anomaly detection
(Kang et al., 2024; Xia et al., 2022). In data cleaning, the
discriminator is trained to distinguish between generated data
and real data. When new test data is input, if the discriminator
struggles to determine whether it is real or generated data, the
test data may significantly deviate from the distribution of
normal data, indicating a potential anomaly. In landslide

monitoring, data may be influenced by various fact(fLGA—[‘leL

Deleted: data cleaning




When combined with AEs or GANs, RNN-type architectures can form hybrid frameworks

capable of both spatial and temporal anomaly detection, enabling multi-source consistency checking

in landslide early-warning systems. Geiger et al. (2020) demonstrated a growing trend of utilizing

LSTM networks as both the generator and discriminator within GAN frameworks for time-series

anomaly detection. Similarly, Whitaker (2023) illustrated the application of LSTM—GAN architectures

in identifying temporal anomalies.

2

3.5 Models for Data Fusion in Potential Landslide Identification

In practical applications, the identification of potential landslide hazards is a complex task that
influences by multiple factors (Zhang et al., 2018). These factors are often reflected through different
data sources. We can roughly divide heterogeneous data into four categories: image data, time series

data, structured data, and textual data. Given this heterogeneity, data fusion is essential for the accurate

identification of potential landslides. Since heterogeneous data differ in feature scale, spatial resolution,

and data modality, deep learning models are increasingly utilized to automatically extract nonlinear

and high-order feature interactions across data sources, offering significant advantages over

conventional statistical fusion techniques. In landslide applications, deep learning-based data fusion

can integrate multi-modal inputs such as Sentinel-1 InSAR deformation, rainfall time series, and
terrain derivatives for regional-scale susceptibility mapping or real-time early warning.
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Deleted: RNNs, LSTMs, and GRUs are also effective for
identifying anomalous patterns in sequential data (Zhang et
al., 2022a). In potential landslide identification, these models
process time series inputs to learn normal temporal dynamics
and trends. When new data deviates significantly from the
normal patterns learned by the model, such deviations can be
flagged as anomalies. However, these models are primarily
used for time series data, performing data cleaning by
predicting future values of the sequence. For instance, if
displacement measurements exhibit abrupt deviations while
rainfall remains within historical norms, the model detects
such discrepancies by comparing observed values with

predictions based on learned temporal dependencies.

Deleted: Data fusion is essential for the accurate
identification of potential landslides. In order to better

identify potential landslides, data fusion is essential.
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Schematic of the fundamental Transformer architecture.

Due to the non-Euclidean and topologically complex nature of landslide-related terrain,

Figure 5. The role of deep learning models in data fusion. (a) Classification of heterogeneous data for

potential landslide identification. (b) Schematic of general graph and more complex graphs. (c)

conventional CNN-based models are limited in representing irregular spatial dependencies. Graph

Neural Networks (GNNs) have emerged as powerful architectures to model such relationships by

.. slope units

rid cells, or sensor nodes) as graph nodes and their

representing spatial entities (e.

geospatial or topological interactions as edges (Scarselli et al., 2008; Ying et al., 2018; Zeng et al.,

2022).

In landslide identification, GNNs enable explicit modeling of spatial connectivity and geological

Deleted: Since the features, scales, and resolutions of
heterogeneous data are all different, currently, the powerful
feature learning ability of deep learning models is often
utilized to automatically capture the nonlinear relationships
and high-order interaction information among these

heterogeneous data.

Deleted: Due to the complex non-Euclidean structural
characteristics of the geological environment, topographic
data and their spatial relationships related to landslide
hazards, conventional methods such as CNNs have difficulty
in handling these relationships. As a neural network
architecture for processing graph-structured data, graph
neural networks (GNNs) can effectively model such spatial
relationships (Ying et al., 2018; Zeng et al., 2022). They can

treat the nodes in the geographical space (such as different

geographical location points) and their connection
relationships (such as the distance between adjacent nodes,
terrain undulations, etc.) as the structure of a graph for
processing.

support feature interaction between different types of nodes
through the message passing mechanism, thereby eliminating

redundancy and mutual exclusivity among data sources and

enabling dynamic fusion of multi-modal features (Zhang et
al., 2024d; Zhao et al., 2024b). By passing and aggregating
information across nodes, GNNs can also conduct a detailed
analysis of various heterogeneous data in local areas. This
IIl capability allows GNNG to capture subtle geological

| structural changes and detect localized anomalies

inmonitoring data, providing advantages for analyzing local

adjacency, allowing the propagation of geomorphic and hydrological information across neighboring
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features and early signs of potential landslide movements.




units. For example, Kuang et al. (2022) proposed an innovative landslide forecasting model based on

GNNs, in which graph convolutions are employed to aggregate spatial correlations among different

monitoring sites. Ren et al. (2025) introduced a novel GNN framework with conformal prediction

(GNN-CF) for landslide deformation interval forecasting, addressing the limitations of conventional

models in handling predictive uncertainty.

According to the differences in message passing and aggregation methods, GNNs have derived

various variants. For example, Graph Convolutional Network (GCN) is generated by generalizing the

convolutional operation to graph-structured data (Kipf and Welling, 2016; Sharma et al., 2022; Wang

et al., 2020a), and Graph Attention Network (GAT) dynamically weights the importance of

neighboring nodes by introducing the attention mechanism (Veli“ckovi’ c etal., 2017; Yuan et al., 2022;

Zhou and Li, 2021). The emergence of these new architectures makes GNN variants more targeted
than conventional GNNs and suitable for modeling heterogeneous relationships. Currently, they are
often used for weighted analysis of the impacts of different geographical factors on landslides (Kuang
etal.. 2022; Li et al., 2025; Zhang et al., 2024e).

As highlighted in Section 3.2, the Transformer’s self-attention mechanism and modular

architecture make it a universal framework for processing sequential data and enabling multimodal

fusion (see Fig. 5).

In this context, the core advantage of the Transformer lies in its ability to integrate diverse input

data (e.g., satellite imagery, GPS time series, and geological maps). It achieves this by employing

independent embedding layers to convert each modality into a unified vector representation, which is

then fused through the self-attention mechanism. This mechanism computes the interactions and

correlations among all elements across different modalities, thereby enabling the model to capture

cross-modal dependencies and extract joint feature representations within a unified framework. This

capability makes the Transformer particularly suitable for landslide studies (Li et al., 2025). For

example, Piran et al. (2024) enhanced short-term precipitation forecasting by applying transfer
learning with a pre-trained Transformer model. Zhang et al. (2024¢) incorporated Transformer modules

to build a graph-Transformer model that integrates global contextual information for the generation

and analysis of Landslide Susceptibility Maps (LSMs).

4 Deep Learning for Potential Landslide Identification: Applications

The preceding sections have laid the groundwork by discussing the data prerequisites and model

architectures fundamental to deep learning in potential landslide research. Building upon that
foundation, this section turns to the practical applications of deep learning for identifying potential
landslides across diverse real-world scenarios.

Given that landslides are triggered by different dominant factors, the mechanisms, data
characteristics, and monitoring strategies vary substantially among different types. To provide a
systematic and targeted analysis, thissection organizes the applications according to four major
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Deleted: By learning a large amount of landslide potential
cases, GNNs can discover the general patterns and rules of
landslides, thus having good generalization ability. When
facing new and unseen regions or data, GNNs can predict and
assess the potential landslides in those regions based on the

knowledge they have already learned.

Deleted: graph convolutional network

Deleted: graph attention network

Deleted: Transformer is also composed of stacked encoders
and decoders (see Fig. 5). However, unlike other
architectures, the Transformer architecture introduces the
self-attention mechanism (Zhao et al., 2021a), which is a
crucial innovation. This enables the Transformer to
automatically calculate a weight vector for each position in
the input sequence based on the relationship between this
position and other positions, so as to represent the importance
of this position in the entire sequence. Such a weight vector
can be regarded as the "attention distribution" of each
position in the input sequence, that is, the model determines
which positions in the sequence to focus on. By considering
all positions in the input sequence simultaneously,
Transformer is able to calculate the correlations between each
position and other positions in the sequence in parallel (Esser
et al., 2021; Huang and Chen, 2023; Zerveas et al., 2021),
rather than processing them step by step like CNNs or RNNs.
Transformer can also convert multimodal dFor different types
of data, it transforms them into vector representations via
different embedding layers.ata into a unified vector
representation through different embedding layers.
Subsequently, through the use of the self-attention mechanism
and multilayer neural networks, these vectors are fused and
feature representations are extracted, enabling the model to
process and integrate data from various modalities within the

same model framework (Lv et al., 2023; Tang et al., 2022).




triggering_categories: rainfall-induced landslides, earthquake-induced landslides, human activity-

induced landslides, and multi-factor-induced landslides (see Fig. 6). For each category, we briefly

outline its geological characteristics, summarize representative deep learning applications, and discuss

model adaptability and monitoring considerations. This structure allows for a comprehensive

understanding of how deep learning frameworks can be tailored to the unique challenges posed by
different landslide-inducing mechanisms.

4.1 Application of Deep Learning in the Identification of Rainfall-induced Landslides

Rainfall stands as the predominant global trigger for landslides. Intense and short-duration rainfall
events (lasting from a few hours to several days) often induce shallow landslides (Ma and Wang, 2024),
whereas prolonged rainfall (lasting from several weeks to months) can lead to deeper and larger
landslides, with depths ranging from 5 to 20 meters (Casagli et al., 2023). Consequently, rainfall
intensity, cumulative precipitation, and rainfall duration constitute critical triggering parameters for
rainfall-induced landslides (Mondini et al., 2023).

Sustained or intense rainfall elevates slope unit weight and moisture content, alters pore water
pressure regimes, and reduces shear strength via the principle of effective stress, thereby initiating
surface instability. This hydro-mechanical coupling establishes a pronounced positive correlation
between rainfall patterns and slope deformation (Li et al., 2022a).

Temporally, landslides exhibit both abrupt failure and delayed responses to rainfall. Pre-existing
fractures act as preferential pathways for rainwater infiltration, yet the time required for percolation to
reach slip zones introduces a hysteresis effect in slope deformation relative to precipitation events
(Jiang et al., 2023; Liu et al., 2022b). During wet seasons, intense rainfall elevates groundwater tables,
inducing fully saturated conditions in slope materials. This saturation amplifies shear strain rates,
triggering rapid acceleration of landslide movement. Post-rainfall, groundwater levels remain elevated
for extended periods (weeks to months), resulting in sustained but decelerated sliding velocities rather
than complete stabilization. Consequently, despite concentrated rainfall during wet seasons, numerous
landslides occur in subsequent dry periods (Ren et al., 2023), highlighting the delayed destabilization
governed by lingering pore pressure dynamics. The hysteresis phase reflects progressive energy
accumulation toward critical thresholds, while abrupt failure signifies rapid energy release during
instability. This transition is typically characterized by a near-instantaneous shift from stable to
unstable states when pore water pressures or soil moisture content exceed critical thresholds, with
minimal intermediate deformation phases.

The spatial clustering of rainfall-induced landslides fundamentally arises from the coupling of
moisture transport efficiency and geotechnical strength degradation within specific geomorphic units
(Wicki et al., 2020; Yu et al., 2021). Spatially, such landslides are concentrated in high-rainfall zones
and permeable lithologies, where hydro-mechanical feedback dominates slope destabilization. High-
rainfall zones, characterized by frequent and intense precipitation, impose dual hydrological stresses

on slopes: surface runoff erodes toe regions, while infiltration elevates pore pressures, collectively
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acting as external drivers of failure. Highly permeable strata, characterized by high porosity or
interconnected fractures, accelerate water migration.

Combined with high permeability, these properties regulate water retention time within the slope
and control the efficiency of pressure transmission, forming an internal transport network that
facilitates landslide progression. The superposition of these mechanisms drives slope stability beyond
critical thresholds over short timescales, culminating in abrupt failure.

What determines the critical threshold for rainfall-induced landslides? First, it is essential to
define the critical threshold as the minimum amount of rainfall required to trigger a landslide under
specific geological and topographic conditions (Naidu et al., 2018; Segoni et al., 2018b). This threshold
is typically classified into two types: empirical thresholds, which are derived from statistical
relationships between historical landslide events and rainfall data, and physically based thresholds,
which incorporate hydromechanical models. Both approaches assume rainfall as the primary

destabilizing driver. To operationalize these thresholds for landslide prediction, monitoring systems

integrate rain gauge and remote sensing to assess proximity to critical saturation levels (Li et al., 2023;

Piciullo et al., 2018)., Moreover, the relationship between rainfall and landslides is often nonlinear and

influenced by multiple factors. Deep learning models enable data-driven determination of context-
specific critical rainfall values across diverse geological and topographical settings (Sala et al., 2021;
Segoni et al., 2018a). For example, Badakhshan et al. (2025) incorporated the role of soil strength.
Soares et al. (2022) utilized the U-Net model, reveals that the inclusion of a normalized vegetation
index layer enhances model balance and significantly improves segmentation accuracy.

Following the development of rainfall threshold models, real-time monitoring of historically
rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of
subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating
timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by
continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic
recalibration of threshold parameters. This data assimilation enhances model adaptability to evolving
hydrogeological conditions, ensuring operational relevance across heterogeneous terrains.

While the physical mechanisms governing rainfall-induced slope failures have been well studied
(Arnone et al., 2011; Xiong et al., 2024), recent advances in deep learning have significantly improved

our ability to automatically identify and predict such events using heterogeneous data.

In the context of rainfall-induced landslides, spatiotemporal data (e.g., rainfall intensity,

cumulative precipitation, soil moisture, and slope displacement time series) are the primary inputs.

Deep learning models are selected according to data characteristics and task objectives. For instance

CNNs are commonly used to extract spatial rainfall-topography features and delineate susceptible

zones from remote sensing images (Peng and Wu, 2024: Xu et al., 2022a; Zhang et al., 2022b). The
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encoder—decoder architecture, such as U-Net, enables pixel-level segmentation of rainfall-triggered
landslides (Bhatta et al., 2025), with the inclusion of vegetation or soil moisture layers improving

feature discrimination.

When temporal evolution is essential, RNNs and LSTMs effectively model sequential

dependencies between rainfall and slope deformation (Biniyaz et al.. 2022: Liu et al., 2025). These

models are capable of learning hysteretic responses and time lags between precipitation events and

ground displacement, enabling early warning through time-series forecasting.

Deep learning also facilitates data-driven rainfall threshold estimation. Instead of relying solely

on empirical or physically based thresholds, models such as Fully Connected Neural Networks (FNNs)

and attention-based transformers can derive adaptive rainfall thresholds from multi-year rainfall-
landslide records, capturing regional nonlinearities (Wu et al., 2023).

4.2 Application of Deep Learning in the Identification of Earthquake-induced Landslides

Earthquakes not only trigger landslides during the seismic phase but also increase the
susceptibility of post-earthquake landslides by weakening slope materials or forming co-seismic
landslide deposits (Zhang et al., 2024a; Zhao et al., 2024a). On the one hand, the seismic vibrations
can loosen the structure of the rock and soil mass on the slope, reducing the cementation between
particles. The originally intact rock mass may develop cracks, and the density of the soil decreases,
thus reducing the overall stability of the slope and making it more prone to landslides after the
earthquake. On the other hand, the landslides that have occurred during the earthquake process will
generate a large amount of deposits. These co-seismic landslide deposits are usually accumulated at
positions such as the lower part of the slope or in valleys. They are in a relatively unstable state
themselves, providing a material basis for subsequent re-sliding (Fan et al., 2019; Yao et al., 2024).

So, what is the temporal relationship between earthquake-induced landslides and seismic events?
When an earthquake occurs, landslides may be triggered instantaneously by seismic ground motion,
typically within seconds to minutes after the earthquake. Such landslides are mainly triggered by the
peak ground acceleration (PGA) or peak ground velocity (PGV) of the seismic ground motion (Kargel
et al., 2016; Zhao et al., 2023). When these values reach a certain level, they are sufficient to enable
the rock and soil masses on the slope to overcome the frictional force and shear strength, thus leading
to the occurrence of landslides.

Earthquake-induced landslides are typically concentrated in areas of high seismic intensity,
particularly on steep slopes or within loose accumulations (Li et al., 2024). A fault is a place where the
rocks in the earth’s crust break and undergo relative displacement. Its existence destroys the continuity

and integrity of the rock mass, making it more prone to deformation and damage under the action of
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seismic forces. On the hanging wall of a reverse fault, the compressive force usually causes the rock
blocks to break, and mountain landslides are likely to occur during seismic events. In contrast, on the
footwall of a normal fault, the tensile force may cause the rock blocks to fracture and loosen, thus
increasing the risk of mountain landslides.

The Newmark model is a commonly used basic model in the research of earthquake-induced

landslides_(Jibson, 2007:Newmark, 1965). Based on a simplified assumption, it regards the rock and

soil masses on the slope as rigid blocks. When these rigid blocks are affected by seismic vibrations,
they slide on the slope surface. By calculating the cumulative downhill displacement of the rigid blocks
caused by the continuous increase of seismic vibrations, the stability of the slope under the action of
an earthquake is measured. In other words, the greater the cumulative downslope displacement, the
more unstable the slope is during the earthquake, and the higher the likelihood of a landslide occurring.

However, Newmark’s model exhibits critical limitations: (1) dependence on oversimplified soil or rock

strength assumptions and (2) inadequate integration of high-resolution seismic motion data. Deep

learning models address these gaps by processing massive real-time datasets, filtering noise from
obscured remote sensing imagery (Wang et al.,, 2024b), and fusing seismic parameters with
multispectral satellite data through cross-modal architectures (Dahal et al., 2024).

Within hours to days post-main shock, aftershocks can further destabilize already loosened slope
structures, triggering secondary landslides clustered near co-seismic failure zones or aftershock
epicenters (Sun et al., 2024b; Zhang et al., 2024c¢). These landslides are often concentrated around the
mainshock-induced landslide bodies or the epicentral region of aftershocks, potentially forming
disaster chains (e.g., landslides blocking rivers, leading to the formation and subsequent failure of
landslide dams, which may trigger flooding). Even years post-earthquake, relic landslide deposits may
reactivate through gradual creep or extreme climatic forcing, necessitating long-term spatiotemporal
monitoring and dynamic risk reassessment (Jones et al., 2021; Li et al., 2021b). Moreover, earthquake-
induced landslides are often associated with complex 3D topographic changes, which are difficult to
capture using conventional 2D analyses. Deep learning frameworks enable precise reconstruction of
landslide geometries by processing LiDAR-derived or UAV-derived 3D point clouds, capturing
volumetric deformation patterns critical for mechanistic modeling.

Current applications of deep learning in earthquake-induced landslides primarily focus on
semantic segmentation and change detection (Chowdhuri et al., 2022; Huang et al., 2023b; Liu et al.,
2020a; Yang et al., 2024b). Liu et al. (2021b) employed graph isomorphism networks (GIN) to model
long-range dependencies among high-level features extracted by ResNet-50. Zi et al. (2021) utilized a
hybrid architecture combining graph attention networks (GATs) and channel self-attention
mechanisms enhances the modeling of feature interdependencies from ResNet-50. Yang et al. (2023b)

incorporated a spatial attention module to capture contextual dependencies and extract rich non-local
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spatial features, proposing a novel semantic segmentation network, EGCN, to enhance landslide
recognition accuracy.

Both physics-based and data-driven model calibration rely on earthquake-induced landslides
inventories (Bhuyan et al., 2023; Tanyas, et al., 2017). Despite increased inventory availability,
persistent issues of representativeness and completeness limit model generalizability and mechanistic
fidelity.

4.3 Application of Deep Learning in the Identification of Human Activity-induced Landslides

Human activity-induced landslides typically arise unintentionally during construction activities,
where initial slope equilibrium is disrupted by slope toe excavation or water infiltration into exposed
fractures (Zhao et al., 2022). Compared to natural landslides, human activity-induced failures are often
more controllable, underscoring the critical importance of pre-disaster identification for risk mitigation.
These landslides are characterized by localized micro-deformation and subsurface disturbances,
necessitating integrated monitoring systems that combine high-resolution remote sensing data with
ground-based sensors for early anomaly detection.

Current predominant anthropogenic triggers include mining and loading (Ma et al., 2023a; Xu et
al., 2022). These activities induce severe surficial damage, with stratigraphic movement and surface
deformation leading to the formation of ground fissures. Such fissures compromise surface ecosystems
and vegetation, while also penetrating subsurface mining cavities, posing grave risks to operational
safety. Consequently, deep learning models are essential for automated ground fracture extraction to

enable real-time hazard mapping and preventive interventions (Huangfu et al., 2024).
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Figure 6. Selection of monitoring data for different types of landslides (a) Rain-induced landslides. (b)
Earthquake-induced landslides. (c) Human activity-induced landslides. (d) Multi factor-induced
landslides.

Moreover, the triggers of human activity-induced landslides are not only related to natural
conditions but also closely associated with dynamic human activities. Consequently, their analysis
necessitates the integration of multimodal and cross-scale data to capture coupled environmental and
behavioral drivers (see Fig. 6). In engineering operations such as mining or road construction, factors
including proximity to potential landslide zones, excavation depth, and slope angles must be rigorously
evaluated through geohazard risk assessments. During excavation phases, geotechnical investigations
are imperative to identify weak lithological strata or fracture-dense zones predisposed to instability.
Continuous slope stability monitoring requires deploying IoT-enabled sensors to track temporal
variations in surface fissure dimensions and subsurface displacement vectors. Monitoring data from
these sensors can be integrated into deep learning models for multimodal analytics, enabling dynamic
risk prediction and adaptive mitigation planning.

For spatial mapping and fissure extraction, CNNs and U-Net-based segmentation models have
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demonstrated strong capability in identifying artificial slope features from optical or SAR imagery.

CNN-based models can capture high-level semantic information on excavation scars, road cuts, and

spoil heaps that indicate anthropogenic disturbance. Tao et al. (2024) employed the DRs-UNet model

to investigate the use of deep learning for UAV-based crack identification, the developmental patterns

of fissures, and the feedback interactions between underground mining progress and corresponding

surface conditions. Wu et al. (2021) proposed the PUNet model for detecting and mapping localized

rapid subsidence induced by mining activities. Meng et al. (2025) introduced the GF-Former model to

achieve precise segmentation of ground fissures in remote sensing imagery.

When surface deformation time series or micro-displacement data from GB-InSAR. InSAR. or

IoT sensors are available, RNN-based models are applied to model the temporal evolution of slope

deformation (Han et al., 2022: Li et al., 2025). These models are particularly effective in detecting

precursory motion trends caused by progressive excavation or loading activities.

To mitigate misclassification between anthropogenic signatures and natural terrain, integrating
multispectral data with topographic elevation data enhances discriminative capacity (Meng et al., 2021;
Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing artificially excavated
steep slopes combined with fractured geological strata from structural maps provide preliminary
evidence of human influence on landslide susceptibility (Lian et al., 2024).

In fact, landslides triggered solely by human activities are relatively rare. Single human activities
are typically insufficient to independently trigger landslides, with natural factors often acting in
conjunction with human activities. Furthermore, the prohibitive cost of acquiring subsurface
disturbance data results in sparse historical landslide samples for specific engineering scenarios,
limiting data-driven model training.

4.4 Application of Deep Learning in the Identification of Multizfactor-induced Landslides

_—

Multizfactor-induced landslides result from the synergistic interaction of multiple natural and

anthropogenic factors (Hao et al.,, 2023). Their triggering mechanisms involve the dynamic
spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials through
cumulative strength degradation. The formation of such landslides may involve various types of
movements, including collapse, creep, and flow phenomena. They often exhibit characteristics such as
complexity, nonlinearity, and suddenness. Therefore, their identification is markedly more complex
compared to landslides triggered by singular factors.

Unlike simpler landslide types, identifying composite landslides necessitates multimodal data
fusion to holistically assess predisposing conditions (Li, 2025; Yin et al., 2023). It further requires
disentangling the nonlinear superposition effects of multiple factors and quantifying their relative

contributions to failure initiation. |
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In multizfactor-induced landslides, earthquakes and rainfall often interact with other factors (Dou //{ Deleted:
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etal., 2019). During heavy rainfall, the rate of landslide formation after an earthquake may be higher, /{Deleted: For instance,

possibly driven by the removal of excessively steep slopes, changes in vegetation and groundwater,
and alterations in the mechanical properties of the bedrock and weathered layers in the earthquake-
induced landslides canopy. This necessitates systematic investigation of multi-hazard coupling effects
to quantify emergent risks.

In addition to constructing physics-based models that account for multiple factors and quantify

their interactions through the solution of governing equations, GNNSs can also be employed (Lei et al.,

2025). These models are capable of capturing the spatiotemporal dependencies and nonlinear

couplings among various triggering factors. For example, Ren et al. (2025) employed a GNN to capture

and model the complex spatiotemporal dependencies among multiple monitoring locations during

landslide deformation. Zeng et al. (2022) used the graphical representation capability of the GNN

model to analyze environmental relationships within a study region, where nodes were defined as

geographic units delineated by terrain surface approximations, and edges captured the interactions

between node pairs. Zhang et al. (2024d) constructed a geographically constrained relational graph
based on node features representing environmental similarity and employed a cosine similarity
approach to associate landslides with their surrounding geographic environments.

Cross-attention mechanisms can also be integrated into the model to capture spatiotemporal
dependencies among contributing factors. For instance, Hu et al. (2025a) integrated global landslide

feature vectors with local feature maps through a cross-attention mechanism to enhance the

discriminative capability between landslides and background geomorphology. Another noteworthy

fusion strategy is the gated fusion unit. Inspired by the gating structures in recurrent neural networks

(Arevalo et al., 2017; Kumar and Vepa, 2020; Tsai et al., 2019), this mechanism learns dynamic

weights (typically implemented through gating functions such as Sigmoid) to adaptively regulate the
information flow of features from different modalities, thereby emphasizing salient features and

suppressing noise. Compared with cross-attention, the gated fusion mechanism is generally more
lightweight and provides an alternative approach for multimodal feature fusion (Yang et al., 2024a).

For instance, Liu et al. (2022a) proposed a gated fusion unit module for multimodal remote sensing

image semantic classification, enabling early fusion of heterogeneous modality features.

With the accumulation of new data and the dynamic variations in multi factor-induced landslides,
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regular model updates are critical to ensuring identification accuracy and adaptability. Existing studies

predominantly apply deep learning methods based on comprehensive historical landslide datasets.
However, when new data becomes available, a naive approach is to retrain the model from scratch,

which is computationally inefficient and fails to capture the connections between new observations

and historical knowledge. A common strategy from the machine learning literature to address this is
fine-tuning, where a model pre-trained on a historical dataset is further trained on new data (Sualp and
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To better accommodate the dynamic nature of landslides, incremental learning methods offer a

more advanced and promising solution (Huang et al., 2022a; Wang et al., 2024¢). These methods

enable the model to continuously learn from new data streams, gradually optimizing parameters while

striving to preserve knowledge from previous tasks. Compared to models that require retraining or

basic_fine-tuning (Zhao et al., 2024c¢), models integrated with incremental learning can more

effectively leverage historical data and adaptively incorporate new information, thereby enhancing

long-term adaptability (Zhen et al., 2025).

4.5 Summary on the Applications of Deep Learning for Potential Landslide Identification

In general, the process of the applications of deep learning for potential landslide identification
involves data collection, preprocessing, model construction, training, and validation, followed by
deploying the trained model to identify potential landslides. Variations arise in data sources, trigger
mechanisms, and model handling approaches specific to each landslide type. For rainfall-induced
landslides, the model prioritizes rainfall-related data, with particular emphasis on simulating rainfall
infiltration effects. Earthquake-induced landslides require prioritization of seismic data, including
earthquake magnitude and post-seismic geological alterations. Human activity-induced landslides
demand focused analysis of the relationship between engineering activities and geological changes. In
contrast, multi factor-induced landslides necessitate models that integrate multiple triggering
mechanisms and perform a comprehensive assessment of the cumulative effects of diverse contributing
factors.

Whether landslides are triggered by rainfall or earthquakes, gravity remains the dominant driving
force (She et al., 2024). The primary role of triggering factors lies in reducing slope stability or
amplifying gravitational effects. Before and during landslide occurrence, deformation of slope
geomaterials constitutes the most observable phenomenon (Zhou et al., 2025). This deformation often
manifests as the formation and expansion of cracks.

Since landslide deformation is a dynamic process, ranging from initial minor changes to eventual
large-scale sliding, each stage exhibits distinct characteristics. Therefore, landslides can be classified
into distinct stages based on their deformation characteristics, enabling more accurate identification of

impending disaster warning signals (Zhang et al., 2024b). Here, we categorize landslide evolution into

three phases: (1) ¢reep deformation stage, (2) intermediate development stage, and (3) progressive _—

failure stage (see Fig. 7).
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Figure 7. The development of landslides is divided into three stages with distinctive identification
markers.

In the creep deformation stage, the slope gradually deforms under the influence of various factors,
though surface manifestations may not be readily observable. Small, discontinuous cracks with limited
width may emerge on the slope surface or crest. High-precision measuring instruments can detect
localized minor displacements or deformations (Zhan et al., 2024). Vegetation on the slope may exhibit
tilting or leaning patterns, with tree orientations potentially aligning in consistent directions. In the
intermediate development stage, slope deformation progresses at a relatively stable rate. Initially
observed surface cracks gradually widen and elongate, eventually interconnecting to form larger
fracture networks. Crack widths may expand from a few centimeters to tens of centimeters or more,
accompanied by displacement between soil or rock blocks. Monitoring systems can record slope
displacements at a relatively constant rate. Slope deformation disrupts pre-existing groundwater flow
paths, resulting in alterations to groundwater levels, volume, or quality within the landslide mass and
surrounding areas. The progressive collapse stage predominantly reflects pre-sliding slope deformation
characteristics and is critical for identifying imminent landslides (Cascini et al., 2022; Chen et al.,
2024a). In progressive landslides, the potential sliding surface gradually evolves into a continuous
failure plane. In sudden landslides, due to their abrupt evolutionary process, no distinct sliding surface
is evident, making it necessary to rely on other indicators for identification. Physical phenomena such
as crack widening and deepening, formation of enclosed boundaries by cracks and drainage holes,
increased displacement at the rear edge of the slope, bulging at the slope’s toe, increased seepage at
the slope foot, an increase in slope angle, and reverse tilting of the slope collectively aid in identifying
potential landslides.

Theoretically, the unique identification markers of each stage can serve as input features for deep
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learning models, enabling direct classification of landslides into distinct stages. This facilitates the
implementation of more targeted mitigation measures for each stage. Since slope changes ultimately
result from displacement variations, we propose that a landslide identification method based on
deformation characteristics as indicative factors holds great potential.

After classifying landslide stages based on deformation characteristics, different mitigation

strategies should be applied to each phase. In the creep deformation stage, the focus should be placed

on landslide triggering factors, with risk reduction measures such as drainage systems and slope cutting.

In the intermediate development stage, monitoring should be intensified alongside temporary
reinforcement measures. In the progressive collapse stage, emergency evacuation and stabilization of

the potential landslide mass must be prioritized.

5 Deep Learning for Potential Landslide Identification: Challenges
5.1 Data Quality and Availability

In potential landslide identification, the performance of deep learning models is critically
dependent on both data quality and availability (Alzubaidi et al., 2023; Gaidzik and Ramirez-Herrera,
2021; Whang et al., 2023). Low-quality or unreliable data directly impair the models’ feature extraction
capabilities, while insufficient data availability constrains their generalization capacity and real-time
monitoring efficacy (Azarafza et al., 2021; Xiao and Zhang, 2023).

In the natural environment, non-landslide states are the norm, while the landslide state is relatively

rare (see Fig. 8). This leads to the data collected mainly consisting of normal geological conditions,
with much less data representing potential landslides. Such a severe skewness in the class distribution
results in a serious imbalance in the data, that is, there is a huge difference in quantity between the
minority class (landslide samples) and the majority class (non-landslide samples) (Jiang et al., 2024).
Gupta and Shukla (2023) demonstrated that this data imbalance can cause learning algorithms to be
biased towards the majority class, perform poorly on the minority class. This bias impedes the
predictive ability of the learning algorithms, and ultimately lead to the final model’s poor performance
in identifying and predicting the minority class of landslide samples.

Even if some landslide inventory data have been collected, it is often difficult for these data to
represent the real landslide situations within the study area. There may be issues such as omissions and
biases, which greatly reduce the credibility of the results derived from these data (Woodard and Mirus,
2025; Zezere et al., 2017).

The presence of irrelevant input dimensions within the data necessitates larger training datasets
for deep learning models to achieve satisfactory generalization performance. This can be attributed to
the models’ tendency to overfit to noise or spurious patterns within extraneous features, thereby failing
to capture task-relevant characteristics. Such overfitting diminishes adaptability to unseen data,

reduces prediction accuracy, and ultimately degrades data efficiency (D’Amario et al., 2022). As a
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result, deep learning models may exhibit inaccurate recognition or even failure when confronted with
novel, complex scenarios outside the training distribution.

Different types of features vary in terms of data format, dimensions, and semantics, posing a key
challenge in achieving high-level feature fusion for complementary and synergistic information
integration (Liu et al., 2023b). For example, different sensor data exhibit significant differences in
physical meaning and data structure (Ghorbanzadeh et al., 2022). Optical imagery (RGB matrices)
reflects surface coverage but is susceptible to cloud interference. SAR data (complex phase) can
capture deformation information but contains speckle noise. LIDAR point clouds (3D coordinates)
provide high-precision terrain data but have limited coverage. Ground sensors (temporal scalars)
enable real-time monitoring of subsurface parameters but are spatially sparse. Direct fusion of such
multi-modal data induces feature space incompatibility, hindering cross-modal correlation extraction
(Cai et al., 2021; Jin et al., 2022). Zhang et al. (2023) highlights that even remote sensing data exhibits
high heterogeneity in imaging mechanisms, illumination conditions, and spectral characteristics.

Furthermore, multiple types of heterogeneous data will increase model complexity, potentially
leading to prolonged training times, excessive computational demands, and overfitting risks. Simple
combination of low-level detail features with high level semantic features may introduce contextual
noise, compromising feature robustness and semantic coherence (Ji et al., 2020). When designing
densely connected convolutional networks, a balance must be struck between model complexity and
generalization capacity to mitigate overfitting on training data and ensure robust performance on

unseen scenarios (see Fig. 8).
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Figure 8. Challenges of deep learning in potential landslide identification. (a) Data quality and
availability. (b) Limitations of deep learning models. (c) Complexity of landslide mechanisms.
5.2 Limitations of Deep Learning Models

Although deep learning models have achieved success in landslide identification (Meena et al.,
2022: Su et al., 2021; Yi and Zhang, 2020), they are plagued by several inherent limitations, Among

these, the most critical challenge is their lack of interpretability (Li et al., 2025), which refers to the

difficulty in explaining the internal decision-making processes behind their predictions

Deep learning models typically contain a large number of parameters and layers, making it

challenging to intuitively interpret their internal weights and feature representations, It is often unclear

whether the model’s predictions are based on key geological features (e.g., slope gradient, lithological

structure, fracture distribution) or influenced by irrelevant factors such as vegetation color or image
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noise,, In potential landslide identification, a common issue is that models may mistakenly classif
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remain opaque, When multimodal data are integrated for landslide detection, it is also challenging to
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clarify how the model weights different data sources,,

The abstract features extracted by these models also lack a clear correspondence to interpretable

geological indicators_(see Fig. 8). Even when the model successfully identifies potential landslides

based on texture patterns in remote sensing imagery, it remains unclear whether these patterns

correspond to actual geomechanical parameters or physical processes,

Moreover, the probability values output by the models often lack physical meaning and therefore
cannot effectively represent geological uncertainty, In practice, high-risk areas predicted by the model

may conflate "uncertainty caused by data absence" with "risk of the geological conditions themselves"

(Achu et al., 2023; Feng et al., 2022), Even experienced geologists may struggle to validate the

geological plausibility of such features, thereby constraining the adoption of deep learning results in
practical engineering applications,

Compounding_these issues, there also exists an inherent inconsistency between data-driven

feature learning and the complexity of real-world geological processes. Deep learning models tend to

capture superficial statistical patterns rather than the governing physical mechanisms that are
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generalizable across different regions and environmental conditions. Consequently, in potential

landslide identification, substantial manual annotation efforts are often required when transferring
models across regions or sensors.

Despite the availability of diverse datasets, the lack of standardized, high-quality annotated

benchmarks has severely hindered the development and fair comparison of deep learning models (Fang

et al., 2024). Current models are often trained and validated on independent, task-specific datasets

thereby preventing an objective assessment of state-of-the-art performance and limiting our ability to

evaluate their true generalization capacity across varying geological settings and triggering factors.

5.3.1 Multiple Factors Coupling Interactions

The formation of landslides involves the dynamic coupling of multiple factors such as geological
structures, geotechnical mechanics, hydrological conditions, topography, meteorological factors,
vegetation coverage, and human activities (Scheingross et al., 2020; Yi et al., 2022). Therefore, the

triggering mechanisms are inherently multiscale, ranging from microscopic interparticle friction to
macroscopic slope instability, and encompassing both transient dynamic responses and long-term

temporal evolution (see Fig. 8),

For example, geotechnical materials and structural features of the geological setting influence soil

stability, while hydrological factors such as rainfall infiltration and groundwater fluctuations alter soil
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mass properties, critically weakening shear strength due to pore pressure variations. Extreme
meteorological events can alter slope stress regimes, while topographic parameters define geomorphic
susceptibility thresholds. Human activities further influence slope stability, The interactions of these
factors are highly nonlinear and temporally variable, making them difficult to characterize through
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simple mathematical relationships.

This implies that changes in individual factors may induce cascading effects rather than linear

responses. For example, rainfall-triggered landslides, exhibit threshold-dependent behavior governed ///{ Deleted: failures

by coupled hydro-mechanical processes. When rainfall intensity or duration surpasses critical

thresholds, the, rapid rise in the groundwater table increases pore water pressure, thereby reducing //{Deleted; a

effective stress and weakening shear strength according to the principle of effective stress. Such hydro- ///{ Deleted: This

mechanical feedback often culminates in abrupt slope failure.
5.3.2 Spatiotemporal Dynamic Evolution

The inducing factors of landslides are not only extremely complex in spatial distribution but also
highly dynamic in terms of time (Gao et al., 2023). This variability makes the research process of the
landslide mechanism more difficult.

From the perspective of temporal dynamics, landslide formation is not instantaneous but evolves

through prolonged stages, each governed by distinct mechanisms (see Fig. 7). This dynamic

progression across different timescales creates a fundamental modeling challenge: since the numerical

simulation of long-term creep requires a long time step, while the dynamic process of short-term abrupt

changes requires a time resolution in the microsecond level, it is difficult to establish a unified model

for these two situations. This will further intensify the conflict of time scalesIn terms of spatial

heterogeneity, the influence scope of landslides usually involves geological structures ranging from
the microscopic structure of geotechnical particles to the regional scale. Moreover, there are
differences in the stratum structure, slope morphology, vegetation coverage, water content, which
makes the effects of the same inducing factor vary in different regions. For example, in loose soil
layers, heavy rainfall may lead to shallow landslides, while on rocky slopes with well developed joints,
earthquakes or water level fluctuations may trigger deep-seated landslides.

Through the interaction of factors at different temporal and spatial scales, positive or negative
feedback affects the evolutionary trend of landslides, making the triggering, evolution and reactivation
of landslides more complex and increasing the uncertainty of prediction (Haifeng et al., 2022; Li et al.,
2023b).

5.3.3 Invisibility of Subsurface Structures

Landslide occurrence is intrinsically linked to subsurface structures. However, due to their
invisibility, obtaining comprehensive geological information directly is challenging, adding significant
complexity to the study of landslide mechanisms (Li et al., 2021c; Yan et al., 2020).

The occurrence of landslides is not merely linked to surficial phenomena but more critically
governed by subsurface geological structures and hydrogeological characteristics. Subterranean
features such as faults and folds directly influence the mechanical properties and stability of rock and

soil masses. However, the inherent opacity of subsurface systems limits the accuracy of delineating
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these structures’ spatial distribution, scale, and orientation through surface surveys or sparse borehole
sampling, often yielding fragmented insights. Groundwater dynamics play a critical role in modulating
slope stability. Fluctuations in the water table alter pore water pressure and effective stress within
geomaterials, leading to a reduction in shear strength according to the principle of effective stress. Yet,
direct monitoring of hydraulic head variations is inherently challenging, particularly in heterogeneous
subsurface environments where localized aquifers exhibit divergent responses to hydrological forcing.
Despite advancements in geophysical imaging and hydrological monitoring, the structural anisotropy
and permeability heterogeneity of subsurface formations perpetuate ambiguities in mechanistic
interpretations, risking oversights in landslide hazard assessments.

The invisibility of subsurface structures makes it difficult to monitor the specific processes and
critical points of these dynamic changes in real time. Consequently, researchers can only infer these
processes based on surface manifestations or limited monitoring data. This results in ambiguity and
uncertainty in the analysis and interpretation of acquired indirect data. Even when model outputs
exhibit qualitative agreement with field observations, the validity of underlying assumptions and
parameterizations cannot be definitively verified.

5.3.4 Diversity of Landslide Types

Landslides exhibit considerable typological variation, with distinct instability mechanisms and
evolutionary pathways governed by geological settings, triggering factors, and kinematic behaviors.
Based on material composition, landslides can be classified into rock landslides, soil landslides, debris
flow landslides, and composite landslides, each exhibiting distinct variations in physical properties as
well as failure modes (McColl and Cook, 2024; Yu et al., 2024). For instance, rock landslides
dominated by brittle fracture differ fundamentally from soil landslides governed by plastic shear.
Kinematic categorization further distinguishes translational sliding, toppling, creep, and flow-like
movements, each involving divergent mechanical processes and triggering thresholds (Shu et al., 2021).

Due to the diversity of landslide types, with each type having different characteristics and
influencing factors, it is very difficult to establish a universal research model for the mechanism of
landslides. For different types of landslides, corresponding models need to be established according to
their specific characteristics and main influencing factors (Milledge et al., 2022). This not only requires
a large amount of on-site observation data and experimental research to determine the model
parameters, but also requires consideration of the applicability and limitations of the models.

Furthermore, cross-typological interactions among landslides amplify predictive challenges. For
example, collapsed debris may transition into debris flows, a process that is governed by
hydromechanical coupling and granular-fluid dynamics. Such multi-typological and multi-process
couplings resist comprehensive characterization via single-theory frameworks. Instead, they

necessitate multi-scale numerical simulations to accurately reproduce the entire process. Consequently,
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the diversity of landslide phenomena requires interdisciplinary integration across solid mechanics,
fluid dynamics, and multi-physics couplings. This task substantially increases the dimensionality and
complexity of mechanistic studies, demanding hybrid modeling frameworks and cross-domain

validation protocols.
6 Deep Learning for Potential Landslide Identification: Opportunities

6.1 Multi-source Data Fusion

Different methods specialize in identifying specific types of landslides, and no single method can /
identification should gradually shift from using single source data toward multi-temporal, multi-source |
integrated analysis (Chen et al., 2023b; Ge et al., 2022; Xu et al., 2021).

Multi-source data can comprehensively represent complex influencing factors by integrating

address, addressing all potential landslide types. Therefore, research on potential landslide

various datasets, thereby enhancing information completeness. For instance, topographic and

geological data reveal slope stability, remote sensing captures surface deformations, meteorological

and hydrological data describe triggering conditions, and ground monitoring provides high-precision

dynamic information. Integrating these data enables the construction of a complete feature system

covering landslide-causing factors, prone environments, and inducing conditions, while avoiding the

one-sidedness inherent to single source observations.

In the identification of potential landslides, multi-source data fusion specifically refers to the

integration of raw data from different sources before feature extraction. Each data source has unique
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strengths in resolution, coverage, and observation scale, and their fusion achieves complementarity

/
and cross-verification (Liu et al., 2020b; Wang et al., 2021a) For example, combining satellite and /

UAV data allows both large-scale screening and detailed crack detection (Xia et al., 2021), while

merging geological surveys with InSAR time-series deformation distinguishes stable slopes from

creeping zones. This cross validation effectively reduces noise and misjudgment caused by data

uncertainty,,

Integrating multi-source data fusion with deep learning enables the coupling of data and model
advantages (Chen et al., 2023: Zheng et al., 2021). The fusion reduces uncertainty through

comprehensive data representation, while deep learning extracts nonlinear features and captures

hidden correlations. Together, they improve the accuracy of potential landslide identification and

promote a shift from experience-driven to intelligence-driven hazard monitoring. In the future, the

development of cross modal pre-trained models and edge intelligence will further enhance real-time

early warning and hazard simulation, forming the backbone of an integrated "aerial-space-ground-

subsurface" monitoring framework.

To advance this paradigm, we advocate for a community-driven benchmark that embodies the

multi-modal philosophy. Such a benchmark should include co-registered data from optical, SAR,
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LiDAR. DEM, and ground-based sensors, reflecting the integrated monitoring reality. Establishing this
benchmark is a crucial step toward translating data fusion capabilities into reliable and reproducible
Al solutions for global landslide risk reduction.

6.2 Model Ensemble

Model performance depends significantly on the nature of tasks, data characteristics, and specific

requirements. Despite its ability to capture specific feature dimensions, a single deep learning model

is susceptible to limited generalization, model bias, and overfitting when confronted with data noise
and scene heterogeneity (Kavzoglu et al., 2021; Lv et al., 2022), Given these differences, model | /

ensemble provides an effective approach to optimization and generalization,, /

In the identification of potential landslides, model ensemble essentially achieves a synergistic

effect through the aggregation of diversity. While avoiding the limitations and vulnerabilities of

individual models, it also unleashes the complementary potential of multiple models through designed
mechanisms (Zhou et al., 2022).

/
//
This approach can be implemented through several pathways. Feature-level integration involves /
processing different data features with specialized models and fusing the results. A more common

tactic is heterogeneous model combination, which refers to combining various types of models to

improve the accuracy of potential landslide identification. Each model can exert its advantages in
different feature spaces (Fang et al., 2021), thus forming a powerful predictive combination. A

prominent example is the CNN-LSTM hybrid, which capitalizes on CNNs’ spatial feature extraction

and LSTMs’ temporal dependency modeling, making it particularly suited for rainfall-terrain coupled
landslide prediction (Gao et al., 2024). Furthermore, advanced architectures like stacking enable

deeper model coupling. For instance, Guo et al. (2024) employed a stacked framework integrating 1D- /

CNN, RNN, and LSTM to form a CRNN-LSTM ensemble, achieving significant performance gains. /
Therefore, model ensemble is not a mere technical aggregation but a systematic solution to core /

challenges like poor generalization, feature bias, and learning from small samples. It transforms the

local advantages of multiple models into a global optimum at the system level, achieving
comprehensive breakthroughs in identification accuracy and engineering applicability. It is important

to note, however, that these performance gains come with increased computational cost and complexity,

a necessary trade-off in practice.

6.3 Knowledge-data Dually Driven Paradigm for Potential Landslide Identification
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Conventional knowledge-driven methods, grounded in physical mechanics, rely on precise prior
knowledge of geological structures and hydrological conditions. However, landslides are influenced
by complex, coupled multi-factor interactions, characterized by high parameter uncertainty, making it
challenging to comprehensively address such scenarios (Roy and Saha, 2019). Purely data-driven

approaches, though capable of extracting patterns from massive datasets, lack physical interpretability,
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are susceptible to noise interference, and struggle to establish causal relationships in prediction
outcomes (Qi et al., 2024)._A critical challenge and opportunity, therefore, lies in bridging the gap
between data-driven predictive capabilities and a physically interpretable understanding of landslide
processes.

To bridge this critical gap, a fundamental shift towards a knowledge-data dually driven paradigm

is imperative. This paradigm moves beyond simple combination to a deep integration, where physical

principles actively constrain and inform the deep learning architecture. Future research should focus
on developing novel frameworks capable of explicitly incorporating landslide typologies and physical

laws. For instance, Physics-Informed Neural Networks (PINNs) can embed governing equations
directly into the model’s loss function, while knowledge graphs can structurally represent the complex

relationships between predisposing factors and failure mechanisms.
This synergy, aligned with future concepts like "digital twin" and "smart Earth," establishes a

closed-loop "theory-practice" verification mechanism (Chen et al., 2024c¢; Das et al., 2024 Huang et
al., 2023a; Riahi et al., 2022; Sukor et al., 2019; Zhao et al., 2024¢). The ultimate goal is to advance

landslide identification from mere pattern recognition towards physically interpretable, causally-aware

forecasting, thereby transforming geological hazard mitigation from passive response to proactive

prevention.
The overall workflow of this knowledge-data dually driven paradigm for potential landslide

identification is conceptually summarized in Fig. 9.
In the first stage, multi-source data are systematically collected, organized, and integrated into a

comprehensive dataset through feature extraction and spatiotemporal alignment (see Fig. 9).
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Figure 9. Flowchart of knowledge-data dually driven paradigm for potential landslide identification.

In potential landslide identification, data sources are highly diverse. Thus, the initial step involves
systematically collecting heterogeneous data and centralizing their management. This approach
mitigates the limitations of single-source data, facilitating a more comprehensive and robust
characterization of potential landslides. These data include high-dimensional feature information
essential for data-driven models, as well as key parameters necessary for knowledge-based analytical

frameworks.



Furthermore, since multi-source data may differ in acquisition time and spatial coverage,
spatiotemporal alignment is required to ensure interoperability and facilitate synergistic analysis. The
collected data shoule be preprocessed, including cleaning (removal of errors and outliers),
standardization (unit homogenization), and classification (based on data type or region). These steps
ensure that the data retain inherent physical significance and maintain consistent scales before being
input into models, thereby establishing a reliable foundation for subsequent knowledge-data
integration.

If the objective extends beyond identifying landslide locations to distinguishing their types and
scales, the dataset must encompass information that captures these characteristics. During dataset
construction, feature extraction and annotation methods should be chosen to emphasize these
distinctions. For instance, combining texture analysis of remote sensing imagery with slope and aspect
analysis of terrain data enables the extraction of features correlated with landslide types and
magnitudes. Explicit annotations indicating each sample’s landslide type and scale are incorporated
during labeling.

In the second stage, mechanistic constraints are integrated into the data-driven model to achieve
knowledge-data dually driven fusion.

Prior knowledge can be derived from external sources, including domain expertise, historical

records, and physical principles, or mechanistic models can be employed to preprocess raw monitoring

data. These outputs serve as a foundation for initializing parameters in data-driven models, which is

crucial because the choice of initial values substantially affects both training efficiency and final
performance (Cui et al., 2024 Liu et al., 2023a; Ma and Mei, 2025).

Beyond initialization, knowledge embedding involves translating landslide physics into model

constraints to guide learning and optimization (Dahal and Lombardo, 2025; Liu et al., 2024). At the

architectural level, physical equations can be structurally encoded as differentiable network layers

enabling gradient-based optimization. At the loss function level, physical constraints can be directly

incorporated into the training objective, ensuring that predictions remain consistent with established

principles.
A representative example of this paradigm is the PINN framework (Raissi et al., 2019). PINNs

embed governing equations (such as partial differential equations describing slope hydrology or stress-

strain processes) into the neural network training objective, thereby constraining the learning process

with domain knowledge. This approach not only reduces dependence on large annotated datasets but

also enhances interpretability and cross-regional transferability (Karniadakis et al., 2021). Although

applications of PINNSs in landslide research remain limited (Moeineddin et al., 2023), they provide a

promising avenue for bridging purely data-driven approaches with physically grounded mechanisms
(Wu et al., 2022).
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identification from empirical reliance to scientifically quantifiable methodologies.
Furthermore, the spatial analysis capabilities of Geographic Information System (GIS) were

integrated into the practical identification workflow, enabling the study area to be partitioned into
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distinct landslide risk categories. This risk stratification considers the combined influence of region-

specific factors, ensuring scientifically robust and practically viable classifications.

In high-risk areas, detailed investigations can be carried out using spatial remote sensing

technologies, including high resolution optical satellite image change detection and InSAR \\
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deformation analysis. Multi-temporal high-resolution optical satellite imagery is analyzed using image

change detection algorithms to identify anomalous surface alterations. SAR enables precise

measurement of millimeter-scale surface displacements, facilitating early detection of slope

deformation precursors. Then, UAVs and airborne LiDAR can then be employed for further
Deleted: Figure 10. The process of potential landslide

identification of high-risk areas. High-resolution imagery can be acquired through UAV-mounted

sensors. Image interpretation and analysis facilitate the identification of potential landslide indicators, identification using a knowledge-data dually driven paradigm

(a) Collection, organization, and analysis of real-time
monitoring data. (b) Identification signals for different stages
of landslides. (c) Construction and application of knowledge-

including irregular slope geometries, soil loosening patterns, and anomalous vegetation growth.
data dually driven models. (d) Identification of potential

LiDAR enables the rapid acquisition of high-precision 3D point cloud data, which accurately captures

topographic changes and penetrates vegetation canopies to reveal concealed ground surfaces, aiding
landslides.
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in the detection of vegetation-obscured landslide precursors. Ground-based observations are

subsequently integrated to validate findings and acquire real-time dynamic information of landslide

bodies. A comprehensive assessment, combining expert knowledge with field-derived practical

experience, is conducted to finalize the screening and confirmation of potential landslides. Critical

parameters including location, scale, hazard level, and potential sliding direction are determined,

providing an empirical foundation for subsequent landslide mitigation strategies,

7 Conclusions

— { Deleted: (see Fig. 10)

In this review, we summarized the latest advancements in the applications of deep learning models

for potential landslide identification, as well as the challenges and opportunities for the future. First,

we examined seven major heterogeneous data sources available for potential landslide identification.

Next, we introduced the five common roles of deep learning models in potential landslide identification.

Then, we reviewed the applications of deep learning in the analysis of four typical landslides and

discussed the common-used monitoring methods. Finally, we analyzed the current challenges and

future research directions.

Several key conclusions are drawn. (1) Single data source often fail to ensure the accuracy of

identification, whereas multisource data fusion can address this issue to some extent. (2) Deep learning

models have been widely applied in potential landslide identification, but they still face challenges in

terms of interpretability and complexity. Future research should focus on further enhancing the

structure and algorithms of deep learning models. (3) Knowledge-data dually driven paradigm for

potential landslide identification can improve its accuracy on both theoretical and practical levels.
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