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Comment # 1:

1. The paper is well-organized and includes all the key elements I would expect from a review
article on this topic. The topic itself (the use of deep learning in identifying landslides) is a
worthwhile area to have a review on. The discussion of landslide mechanisms in Section 4 is
quite detailed and interesting (although needs more discussion of how deep learning has been
applied, see Weaknesses). The recommendations in Section 6, particularly regarding data fusion,
feel well-motivated and salient. The figures are mostly helpful and illustrative overall (see
specific comments below), and I think would be useful for a landslide researcher who wants to
know more about deep learning. The review of previous literature is extensive and can point

curious readers in the right direction.

Response:
Dear reviewer, we appreciate your positive and encouraging evaluation of our manuscript! We
are very encouraged by their assessment that the paper is well-organized, comprehensive, and a
worthwhile contribution to the field. We have carefully considered all the comments and have
revised the manuscript accordingly. The point-by-point responses are detailed below.
* Regarding the discussion of landslide mechanisms in Section 4
Following your constructive suggestion regarding Section 4, we have supplemented specific deep
learning application cases for each major type of landslide. In particular, we have elaborated on
how the strengths of different models align with the recognition requirements of specific
landslide types. Please see Comment #27.
* Regarding the discussion of figures
Thank you for the positive recognition. Based on your specific suggestions, we have carefully

considered and provided our replies. Please see Comment #7 and Comment #31 for details.

Once again, we express our sincere gratitude to the reviewer for their valuable time and
constructive comments, which have undoubtedly improved the quality of our manuscript. We

hope that the revised version now fully meets the journal's standards for publication.
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Comment # 2:

2. Throughout the paper, many claims made by the authors are unsupported by citations to

relevant works (see below for several examples).

Response:

We sincerely thank you for pointing out this important issue, and we apologize for the
insufficient citation support in the previous version of the manuscript. Following your suggestion,
we have carefully reviewed the entire paper and thoroughly examined every statement and
reference to ensure that all claims are now properly supported by relevant and up-to-date
literature.

In addition to addressing each of your specific comments below, we have also revised and
updated the reference list throughout the manuscript to improve citation accuracy and
completeness.

Once again, we appreciate your careful reading and constructive feedback, which have

significantly improved the quality and credibility of our work.

Comment # 3:
2. The figures are helpful but there are not enough references to them in the text. I believe I
counted exactly one in-text reference per figure, and often they seemed out of place. It would be
helpful to refer the reader to the appropriate figure more often.
20. L289-290: The reference to Figure 2 here is confusing. You are in the middle of discussing

DeepLab, but there is no mention of deeplab in figure 2.

Response:
Thank you for reviewing our manuscript and providing valuable and constructive feedback. Your
observation that the manuscript contained insufficient and sometimes awkwardly placed
references to figures and tables is highly insightful.
We fully agree with your assessment! In the revised version, we have systematically reviewed
and refined the entire manuscript, substantially increasing the number of figure references and
ensuring that each is seamlessly integrated with the corresponding textual discussion to better

guide readers and strengthen our arguments.

Original Description

state of landslide masses. These datasets provide foundational inputs for deep learning models,
enabling multi-dimensional analysis and interpretation of potential landslide conditions. For

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the
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example, ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like
displacement and tilt angle at frequencies ranging from minutes to seconds, capturing transient,
anomalous signals just prior to landslide events, thereby filling the temporal resolution gap in
remote sensing (Jiang et al., 2022). By integrating time series data with SAR imagery, deep
learning models can be trained to uncover correlation patterns between surface deformations and
subsurface parameters. Instruments such as piezometers and soil pressure gauges can directly
monitor key parameters like pore water pressure and soil stress on the sliding surface. By
combining the obtained subsurface data with geomechanical equations, the position of the sliding
surface or geotechnical strength parameters can be inverted.

Convolutional neural networks (CNNs) represent the fundamental architecture in image
processing. A CNN primarily comprises convolutional layers, pooling layers, and fully connected
layers, each performing predefined functions on its input data (Kattenborn et al., 2021; Liu et al.,
2022a).

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural
networks are based on a similar idea, which is to establish a "shortcut" between different layers.
However, the structure of DenseNet is simpler and more effective, with fewer parameters. In
ResNet, each layer is only connected to the previous layer, while in DenseNet, each layer is
directly connected to all previous layers, and each layer can obtain gradients from the loss
function. This can optimize the information flow and gradients of the entire network, making it
easier to train and performing better on small datasets. The structure of DenseNet can achieve
better feature reuse and reduce the number of parameters. Moreover, the layers of DenseNet are
narrower than those of other deep learning networks (Liu et al., 2021c), making it reduce
redundancy by learning with fewer feature maps. This architecture is suitable for the extraction of
multi-scale landslide features under complex terrains, even with limited landslide training samples.

In contrast, the U-Net architecture is relatively simpler and better suited for small targets and
high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution
UAYV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection

and multispectral remote sensing image classification (see Fig. 2).

Different from conventional statistical or physical models, deep learning models can
automatically reveal dynamic change trends and periodic patterns in the data, providing more
accurate information for landslide prediction and early warning. Recently, deep learning—based
temporal models, such as recurrent neural networks (RNNs), long short-term memory networks
(LSTMs), and gated recurrent units (GRUs), have become key tools for extracting nonlinear
dependencies and temporal evolution patterns in landslide-related time series.




To overcome the vanishing gradient problem inherent in RNNs, LSTMs introduce memory
cells and gating mechanisms that selectively retain relevant temporal information (Landi et al.,
2021; Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al.,
2019). This capability allows them to model the cumulative and delayed responses of slopes to
prolonged rainfall or reservoir water level fluctuations.

Deep generative models are the leading deep learning approach for synthetic data generation
(Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They utilize deep neural
networks to learn latent representations of data and optimize the learning process through specific
objective functions. A key characteristic of deep generative models lies in their probabilistic
nature—they not only classify or reconstruct data but also capture the underlying distribution of
geospatial features, enabling the creation of new landslide samples that are statistically consistent
with observed patterns. Commonly used deep generative models include generative adversarial
networks (GANSs), variational autoencoders (VAEs), and diffusion models.

GANs consist of a generator and a discriminator that compete in an adversarial process
(Goodfellow et al., 2014). The generator synthesizes data resembling real samples, while the
discriminator attempts to distinguish between generated and real data. Through iterative adversarial
training, the generator learns to produce high-quality synthetic data that closely matches the
distribution of real data (Gui et al., 2021; Saxena and Cao, 2021).

When computational resources and training time permit, diffusion models provide a powerful
alternative for generating high-quality, diverse, and stable data (Ho et al., 2020; Croitoru et al.,
2023; Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually
adding noise to real samples (forward diffusion) and then reconstructing clean data through a
reverse denoising process. The resulting models can sample new, realistic data points that reflect
complex terrain and geophysical variability.

As previously introduced, VAE a probabilistic extension of AEs. VAEs introduce stochastic
latent variables characterized by mean and variance, allowing them to model data uncertainty
(Kingma et al., 2013; Li et al., 2020; Park et al., 2018). During training, VAEs learn the latent
distribution of normal samples and reconstruct inputs accordingly. When new observation data
deviate significantly from the learned distribution, the reconstruction error increases accordingly,
and this phenomenon can be used as an indicator of potential anomalies.

Transformer architectures, characterized by the self-attention mechanism, provide another
promising avenue for landslide-related data fusion (Huang and Chen, 2023; Zhao et al., 2021a).
Unlike CNNs or RNNs, which process spatial or temporal sequences sequentially, Transformers
can jointly capture long-range dependencies across spatial and temporal dimensions, enabling
unified processing of rainfall, InSAR time series, and topographic data (Esser et al., 2021; Lv et al.,
2023).

In this section, we focus on the analysis of the second type of potential landslides. Based on
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triggering factors, landslides can be classified into four categories: rainfall-induced landslides,
earthquake-induced landslides, human activity-induced landslides, and multi factor-induced
landslides. For each category of landslide, we provide a brief outline of its characteristics, discuss
the applications of deep learning to different types of landslides, and examine the selection of
monitoring methods for each category.

Multi factor-induced landslides result from the synergistic interaction of multiple natural and
anthropogenic factors (Hao et al., 2023). Their triggering mechanisms involve the dynamic
spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials
through cumulative strength degradation. The formation of such landslides may involve various
types of movements, including collapse, creep, and flow phenomena. They often exhibit
characteristics such as complexity, nonlinearity, and suddenness. Therefore, their identification is
markedly more complex compared to landslides triggered by singular factors.

In the natural environment, non-landslide states are the norm, while the landslide state is
relatively rare. This leads to the data collected mainly consisting of normal geological conditions,
with much less data representing potential landslides. Such a severe skewness in the class
distribution results in a serious imbalance in the data, that is, there is a huge difference in quantity
between the minority class (landslide samples) and the majority class (non-landslide samples)
(Jiang et al., 2024). Gupta and Shukla (2023) demonstrated that this data imbalance can cause
learning algorithms to be biased towards the majority class, perform poorly on the minority class.
This bias impedes the predictive ability of the learning algorithms, and ultimately lead to the final

model’s poor performance in identifying and predicting the minority class of landslide samples.

The abstract features extracted by the models also lack correspondence to interpretable
geological indicators. Even if the model can identify potential landslides through the texture
patterns of remote sensing images, it cannot explain whether these patterns correspond to the actual
geomechanical parameters.

The formation of landslides involves the dynamic coupling of multiple factors such as
geological structures, geotechnical mechanics, hydrological conditions, topography, meteorological
factors, vegetation coverage, and human activities (Scheingross et al., 2020). Therefore, the
triggering mechanisms encompass multiscale processes spanning microscopic interparticle friction
to macroscopic slope instability, and transient dynamic responses to long-term temporal evolution
(Yietal., 2022).

The knowledge-data dually driven paradigm, operating through an iterative "theory-guided
data assimilation and data informed theoretical refinement" mechanism, has advanced potential

landslide identification from empirical reliance to scientifically quantifiable methodologies.




Revised Description

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the
state of landslide masses. These datasets provide foundational inputs for deep learning models,
enabling multi-dimensional analysis and interpretation of potential landslide conditions. For
example, ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like
displacement and tilt angle at frequencies ranging from minutes to seconds (Jiang et al., 2022),
capturing transient, anomalous signals just prior to landslide events, thereby filling the temporal
resolution gap in remote sensing (see Figure 1). By integrating time series data with SAR imagery,
deep learning models can be trained to uncover correlation patterns between surface deformations
and subsurface parameters. Instruments such as piezometers and soil pressure gauges can directly
monitor key parameters like pore water pressure and soil stress on the sliding surface. By
combining the obtained subsurface data with geomechanical equations, the position of the sliding
surface or geotechnical strength parameters can be inverted.

Convolutional neural networks (CNNs) represent the fundamental architecture in image
processing. A CNN primarily comprises convolutional layers, pooling layers, and fully connected
layers, each performing predefined functions on its input data, as illustrated in Fig. 2 (Kattenborn
etal., 2021; Liu et al., 2022a).

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural
networks are based on a similar idea, which is to establish a "shortcut" between different layers.
However, the structure of DenseNet is simpler and more effective, with fewer parameters. The
structural differences between ResNet and DenseNet are illustrated in Fig. 2. In ResNet, each layer
is only connected to the previous layer, while in DenseNet, each layer is directly connected to all
previous layers, and each layer can obtain gradients from the loss function. This can optimize the
information flow and gradients of the entire network, making it easier to train and performing
better on small datasets. The structure of DenseNet can achieve better feature reuse and reduce the
number of parameters. Moreover, the layers of DenseNet are narrower than those of other deep
learning networks (Liu et al., 2021c), making it reduce redundancy by learning with fewer feature
maps. This architecture is suitable for the extraction of multi-scale landslide features under
complex terrains, even with limited landslide training samples.

In contrast, the U-Net architecture is relatively simpler and better suited for small targets and
high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution
UAV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection

and multispectral remote sensing image classification.

Different from conventional statistical or physical models, deep learning models can
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automatically reveal dynamic change trends and periodic patterns in the data, providing more
accurate information for landslide prediction and early warning. Recently, deep learning—based
temporal models, such as recurrent neural networks (RNNs), long short-term memory networks
(LSTMs), and gated recurrent units (GRUs), have become key tools for extracting nonlinear
dependencies and temporal evolution patterns in landslide-related time series. The structural
characteristics and differences among these models are illustrated in Fig. 3.

To overcome the vanishing gradient problem inherent in RNNs, LSTMs introduce memory
cells and gating mechanisms that selectively retain relevant temporal information (Landi et al.,
2021; Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al.,
2019). As shown in Fig. 3, LSTM networks extend the basic RNN structure by incorporating
gating units that control information flow, enabling them to better capture cumulative and delayed
slope responses to environmental triggers. This capability allows them to model the cumulative and
delayed responses of slopes to prolonged rainfall or reservoir water level fluctuations.

Deep generative models are the leading deep learning approach for synthetic data generation
(Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They utilize deep neural
networks to learn latent representations of data and optimize the learning process through specific
objective functions. A key characteristic of deep generative models lies in their probabilistic
nature—they not only classify or reconstruct data but also capture the underlying distribution of
geospatial features, enabling the creation of new landslide samples that are statistically consistent
with observed patterns. Commonly used deep generative models include generative adversarial
networks (GANSs), variational autoencoders (VAEs), and diffusion models (see Figure 4).

GANs consist of a generator and a discriminator that compete in an adversarial process
(Goodfellow et al., 2014). The generator synthesizes data resembling real samples, while the
discriminator attempts to distinguish between generated and real data. The workflow of adversarial
training for GAN-based data generation is schematically depicted in Fig. 4. Through iterative
adversarial training, the generator learns to produce high-quality synthetic data that closely

matches the distribution of real data (Gui et al., 2021; Saxena and Cao, 2021).

When computational resources and training time permit, diffusion models provide a powerful
alternative for generating high-quality, diverse, and stable data (Ho et al., 2020; Croitoru et al.,
2023; Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually
adding noise to real samples (forward diffusion) and then reconstructing clean data through a
reverse denoising process (see Figure 4). The resulting models can sample new, realistic data
points that reflect complex terrain and geophysical variability.

As previously introduced, VAE a probabilistic extension of AEs (see Figure 4). VAEs
introduce stochastic latent variables characterized by mean and variance, allowing them to model
data uncertainty (Kingma et al., 2013; Li et al., 2020; Park et al., 2018). During training, VAEs
learn the latent distribution of normal samples and reconstruct inputs accordingly. When new




observation data deviate significantly from the learned distribution, the reconstruction error
increases accordingly, and this phenomenon can be used as an indicator of potential anomalies.

Transformer architectures, characterized by the self-attention mechanism (see Figure 5),
provide another promising avenue for landslide-related data fusion (Huang and Chen, 2023; Zhao
et al., 2021a). Unlike CNNs or RNNs, which process spatial or temporal sequences sequentially,
Transformers can jointly capture long-range dependencies across spatial and temporal dimensions,
enabling unified processing of rainfall, InSAR time series, and topographic data (Esser et al., 2021;
Lv et al., 2023).

In this section, we focus on the analysis of the second type of potential landslides. Based on
triggering factors, landslides can be classified into four categories: rainfall-induced landslides,
earthquake-induced landslides, human activity-induced landslides, and multi factor-induced
landslides (see Figure 6). For each category of landslide, we provide a brief outline of its
characteristics, discuss the applications of deep learning to different types of landslides, and
examine the selection of monitoring methods for each category.

Multi factor-induced landslides result from the synergistic interaction of multiple natural and
anthropogenic factors (Hao et al., 2023). Their triggering mechanisms involve the dynamic
spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials
through cumulative strength degradation (see Figure 6). The formation of such landslides may
involve various types of movements, including collapse, creep, and flow phenomena. They often
exhibit characteristics such as complexity, nonlinearity, and suddenness. Therefore, their
identification is markedly more complex compared to landslides triggered by singular factors.

In the natural environment, non-landslide states are the norm, while the landslide state is
relatively rare (see Figure 8). This leads to the data collected mainly consisting of normal
geological conditions, with much less data representing potential landslides. Such a severe
skewness in the class distribution results in a serious imbalance in the data, that is, there is a huge
difference in quantity between the minority class (landslide samples) and the majority class
(non-landslide samples) (Jiang et al., 2024). Gupta and Shukla (2023) demonstrated that this data
imbalance can cause learning algorithms to be biased towards the majority class, perform poorly
on the minority class. This bias impedes the predictive ability of the learning algorithms, and
ultimately lead to the final model’s poor performance in identifying and predicting the minority

class of landslide samples.

The abstract features extracted by the models also lack correspondence to interpretable
geological indicators (see Figure 8). Even if the model can identify potential landslides through the
texture patterns of remote sensing images, it cannot explain whether these patterns correspond to
the actual geomechanical parameters.

The formation of landslides involves the dynamic coupling of multiple factors such as
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geological structures, geotechnical mechanics, hydrological conditions, topography, meteorological
factors, vegetation coverage, and human activities (Scheingross et al., 2020; Yi et al., 2022).
Therefore, the triggering mechanisms encompass multiscale processes spanning microscopic
interparticle friction to macroscopic slope instability, and transient dynamic responses to long-term
temporal evolution (see Figure 8).

The knowledge-data dually driven paradigm, operating through an iterative "theory-guided
data assimilation and data informed theoretical refinement" mechanism, has advanced potential
landslide identification from empirical reliance to scientifically quantifiable methodologies. The
overall workflow of this knowledge-data dually driven paradigm for potential landslide

identification is conceptually summarized in Figure 9.

Comment #4:
3. I felt the paper provided good background on landslides, and good background on deep
learning, but was missing emphasis on the intersection: the application of deep learning to
landslides. I would have expected this to appear in Section 3 or 4. However, section 3 discusses
deep learning methods (without much specific discussion of how previous works have utilized
them for landslides), and section 4 is almost entirely about the actual mechanisms of landslides,
rather than how deep learning can be beneficial here. Section 4 seems almost mis-titled in this
regard. To be precise, discussions similar to lines 632-638 are what I would have expected to see
more of: specific examples of specific methods applied to specific problems in landslide

applications.

Response:

- Thank you for accurately identifying the core weakness of our manuscript and for providing a

clear direction for improvement. We fully agree with your assessment that the original version
did not effectively bridge the two domains.

- To thoroughly address this issue, we have undertaken substantial revisions:

- (1) We have completely reorganized and rewritten Section 3. Instead of adopting a general,

tutorial-style discussion of deep learning models, the revised section is structured around specific

landslide-related tasks. In each subsection, we explicitly describe the specific deep learning

architectures employed to address these tasks, accompanied by numerous relevant studies as

concrete examples. We further elaborate on how these models were applied, as well as their

respective advantages and limitations. (Please see the new Section 3 for details).

- (2) We have also substantially expanded Section 4 by incorporating numerous real-world

applications. For each type of landslide discussed, we now integrate specific research cases to
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analyze which deep learning models are most suitable for that particular type. (Please see

Comment #27).

Original Description in Section 3

3.1 Models for Image Analysis and Processing in Potential Landslide Identification

Image data plays a critical role in potential landslide identification, especially through remote
sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain
data, encompassing complex geographical features, vegetation coverage, and ground fissures,
which often serve as potential precursors to landslide occurrences. The adoption of deep learning
has facilitated a shift from conventional manual visual interpretation to automated high-precision
segmentation.

Convolutional neural networks (CNNs) represent the fundamental architecture in image
processing. A CNN primarily comprises convolutional layers, pooling layers, and fully connected
layers, each performing predefined functions on its input data (Kattenborn et al., 2021; Liu et al.,
2022a).

The convolutional layer, as the core component of CNNs, contains multiple kernels that
progressively extract more detailed feature representations (Hussain et al., 2019; Shi et al., 2020;
Yao et al., 2021). Meanwhile, the shared-weight strategy inherent in convolutional layers allows
for network training with fewer parameters than fully connected architectures. Convolutional
kernels of different sizes facilitate multi-scale feature extraction. Small kernels focus on fine
details, such as small cracks and the texture of localized soil loosening, while large kernels
emphasize capturing overall shapes, such as the general outline of landslides and the macroscopic
morphology of mountain bodies. Pooling layers, typically positioned after convolutional layers,
serve to reduce the size of feature representations and enhancing the model’s resistance to
overfitting when handling diverse data. Common pooling methods include max pooling and
average pooling, which enhance robustness to minor transformations such as translation and
rotation, ensuring a degree of invariance in the features extracted by CNNs. Pooling operations
downsample the convolved feature maps, reducing computational complexity while reinforcing
feature robustness. Through the hierarchical stacking of multiple convolutional and pooling layers,
CNNs incrementally extract more abstract and semantically rich features (Mao et al., 2024). The
final fully connected layer flattens the pooled feature maps and performs classification, outputting
results that distinguish potential landslide areas from non-landslide areas or enable further analysis
of landslide types (Wu et al., 2024).

The layers of a CNN can be combined in various ways, forming distinct CNN architectures.

These architectures are primarily determined by task requirements, which may include image

classification, multi-class segmentation, or object localization within a scene.
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Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers,
and fully connected layers. However, increasing network depth introduces challenges such as
vanishing gradients and degradation arise, resulting in model performance deterioration.

ResNet addresses these limitations by integrating residual blocks into the foundational CNN
framework (Qi et al., 2020; Yang et al., 2022). These residual blocks utilize shortcut connections
that preserve original feature information. This framework facilitates the construction of ultra-deep
networks capable of extracting high-level semantic features for landslide detection, thereby
enhancing adaptability to complex terrain classification tasks (Ullo et al., 2021). Models with
higher parameter counts generally exhibit greater representational capacity but are prone to
overfitting, while demanding higher computational resources and temporal costs for both training
and inference. For instance, ResNet-152 contains orders of magnitude more parameters than
ResNet-50, yet the latter is often preferable in computationally constrained environments due to its
balanced efficiency and performance.

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural
networks are based on a similar idea, which is to establish a "shortcut" between different layers.
However, the structure of DenseNet is simpler and more effective, with fewer parameters. In
ResNet, each layer is only connected to the previous layer, while in DenseNet, each layer is
directly connected to all previous layers, and each layer can obtain gradients from the loss
function. This can optimize the information flow and gradients of the entire network, making it
easier to train and performing better on small datasets. The structure of DenseNet can achieve
better feature reuse and reduce the number of parameters. Moreover, the layers of DenseNet are
narrower than those of other deep learning networks (Liu et al., 2021c), making it reduce
redundancy by learning with fewer feature maps. This architecture is suitable for the extraction of
multi-scale landslide features under complex terrains, even with limited landslide training samples.

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation
models have increasingly become the standard in landslide detection. Numerous advanced
semantic segmentation networks have been proposed and validated for automatic landslide
detection, significantly enhancing the efficiency and accuracy of large-scale detection. U-Net is a
typical example (Ronneberger et al., 2015), which features a U-shaped architecture. U-Net
employs an encoder-decoder structure, where the encoder is similar to conventional CNNs,
progressively reducing image resolution and extracting features through convolution and pooling
operations; the decoder then restores the image resolution through transposed convolution or
upsampling operations (Dong et al., 2022; Nava et al., 2022). Skip connections bridge low-level
detail features with deep semantic features, thereby refining segmentation precision.

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable

11




choice (Sandric et al., 2024). Built upon deep convolutional neural networks, DeepLab employs
dilated convolutions to expand the receptive field and integrates an atrous spatial pyramid pooling
(ASPP) module to capture multi-scale contextual information.

In contrast, the U-Net architecture is relatively simpler and better suited for small targets and
high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution
UAV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection
and multispectral remote sensing image classification (see Fig. 2).

After achieving semantic segmentation to obtain the accurate extent of a landslide and the
classification of ground objects, change detection is employed to monitor the changes in the
landslide area over time. By comparing the segmentation results of multiple temporal phases or
directly analyzing the feature differences, the dynamic evolution of potential hazards can be
quantifie (Amankwabh et al., 2022).

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models
capture spatial and temporal features wusing convolutional kernels while transforming
multi-temporal image sequences into change hotspot maps or temporal variation curves as output.

Some studies even have integrated attention mechanisms into conventional CNN architectures
to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the

identification of landslide hazard evolution over time.

3.2 Models for Time Series Analysis in Potential Landslide Identification

The occurrence of a landslide is a gradual accumulation process, usually influenced by a
variety of factors. We refer to data that reflect the changing states of a landslide body over time as
time series data. Time series data analysis aims to excavate the information hidden in the time
series data to help identify potential landslides. Different from conventional time series data
analysis methods, using deep learning models an automatically reveal the dynamic change trends
and periodic patterns in the data, providing more accurate information for landslide prediction.

Recurrent neural networks (RNNs) are a class of deep learning models specialized in
processing sequential data, capable of capturing temporal dependencies within input sequences
(Ngo et al., 2021; Zaremba et al., 2014). Unlike conventional feedforward neural networks, in an
RNN, each neuron not only receives the current input but also the output of the previous time step
as additional input. This structure endows the RNN with a memory mechanism.

The architecture contains three primary components working in coordination:(1) The input
layer means that one data point is input at each time step. (2) The hidden layer contains recurrent
connections, which enable the information from the previous time step to be passed to the current

time step, and the output serves as the input for the next time step simultaneously. (3) The output
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layer generates the output under the control of the state of the hidden layer (Cho et al., 2014; Zhao
et al., 2021b).

During the training process, the RNN will process the data at each time step in sequence,
continuously updating the hidden state. By combining the input of the current time step with the
hidden state of the previous moment for calculation to gain an understanding of the data at the
current moment, this structure enables the RNN to capture the temporal evolution patterns of
landslide-related factors.

Due to conventional RNNs struggle to model long-term dependencies and limit their
applicability to short-term temporal sequences, long short-term memory networks (LSTM) were
developed (Wang et al., 2023b).

LSTM is an enhancement of RNNs, primarily processing long sequence data (Hochreiter and
Schmidhuber, 1997). Compared to standard RNNs, the hidden layer architecture of LSTM is much
more complex. By incorporating memory cells and gating mechanisms, LSTM selectively
propagates critical information across multiple time steps, thereby effectively capturing long-range
temporal dependencies (Landi et al., 2021; Yu et al., 2019).

The basic unit of an LSTM consists of three primary gates: (1) the input gate, which
determines what new information should be added to the cell state; (2) the forget gate, which
decides what old information should be discarded; and (3) the output gate, which selects the
information to be output from the cell state as the hidden state at the current time step (Sherstinsky,
2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019). The output hidden state, after
a nonlinear transformation, can be used for prediction or as the input for the next time step (Yang et
al., 2019).

This structure allows the LSTM to retain key information over long sequences while
selectively forgetting irrelevant information according to the requirements. Through learning from
historical data, the LSTM can predict the likelihood of landslides occurring, as well as the possible
scale and impact range of landslides under different future conditions.

Due to the ability to self-update weights and significantly improve network accuracy, LSTMs
can also be used as a complex nonlinear component in the construction of larger deep neural
networks. The model does not require separating trend and periodic components from the original
deformation data, yet it can compensate for deformation trend predictions caused by unexpected
interruptions in monitoring data. These properties make LSTMs particularly suited for
high-accuracy research and analytical scenarios requiring large-scale datasets (Gidon et al., 2023;
Xu and Niu, 2018).

Gated recurrent unit (GRU) is a simplified version of LSTM(Chung et al., 2014; Zhang et al.,
2022b), which has fewer parameters. Due to their higher computational efficiency, GRU has
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potential advantages in real-time data processing scenarios in landslide monitoring.

GRU mainly consists of the update gate and reset gate. The update gate is used to control how
much of the previous information should be preserved at the current time step, while the reset gate
is used to determine whether to ignore the hidden state of the previous time step, enabling the
model to adaptively learn information across different temporal scales. This dual-gate mechanism
enables adaptive learning of multi-scale temporal patterns.

Compared with the LSTM, the GRU has fewer parameters and higher computational
efficiency, giving it an advantage in some landslide monitoring scenarios where real-time
performance is critical.

GRU is capable of effectively handling time series data with long-term dependencies, making
it suitable for long-term prediction of landslide hazards. Moreover, by learning temporal patterns in
historical data, GRU can identify critical conditions for landslide occurrence in advance. GRU
particularly well-suited for applications involving real-time analysis of on-site monitoring data,
where rapid detection of imminent landslide risks is essential and data volume is relatively limited.

Transformer was originally designed to handle sequential data in natural language processing,
which was first introduced by Vaswani in 2017 (Vaswani et al., 2017). Unlike conventional
recurrent and convolutional structures, the Transformer employs employs a self-attention
mechanism to directly model the entire sequence.

Since the Transformer has the ability to adaptively learn latent features and patterns within the
data, when it comes to processing landslide time series data, it can automatically tweak the model
parameters to accommodate diverse landslide scenarios and temporal data variability (Wang et al.,
2024a; Zerveas et al., 2021).

Transformer also can analyze positional relationships across the entire sequence, better
capturing complex dependencies in long sequences, making it especially suitable for handling
large-scale, long-term sequential datasets.

In contrast, RNN-based models exhibit a relatively simple architecture (Li et al., 2021a; Wang
et al., 2020b). Their mechanisms are conceptually intuitive, making them more interpretable (see
Fig. 3). On the other hand, Transformers are more complex in structure with numerous parameters,
necessitating substantial computational resources during early training to process large-scale data,
while being susceptible to overfitting on small datasets. Understanding how the model extracts
features and makes decisions is not straightforward from large amounts of landslide data, posing

challenges for its interpretability and practical deployment.

3.3 Models for Data Generation in Potential Landslide Identification

Data generation refers to modeling the underlying data distribution of data to generate entirely
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new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020;
Shorten and Khoshgoftaar, 2019), thereby enriching the dataset. In potential landslide
identification, data generation mitigates challenges of data scarcity and imbalanced class
distributions, thereby enhancing the generalization capability of predictive models.

Deep generative models are the leading deep learning approach for synthetic data generation
(Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They operate on principles
similar to those of deep learning, utilizing deep neural networks to learn data representations and
optimizing the learning process through objective functions.

A fundamental characteristic of deep generative models lies in their probabilistic nature.
These models learn an approximate probability distribution from observed samples and
subsequently generate novel samples that maintain statistical consistency with the original dataset.
Unlike conventional discriminative models, generative models not only classify data but also learn
the underlying distribution and generate new data points. Commonly used deep generative models
include generative adversarial networks (GANSs), variational autoencoders (VAEs, a variant of
autoencoders), and diffusion models.

GAN is a suitable choice to generate highly realistic and diverse new images (Goodfellow et
al., 2014; Tran et al., 2021). Instead of explicitly modeling data distributions, GANs implicitly
learn distributions through adversarial training between generator and discriminator networks.

During data generation, the generator network in a GAN synthesizes images or data
resembling real samples by processing input noise vectors (Gui et al., 2021; Saxena and Cao,
2021). The discriminator, on the other hand, is used to distinguish between the generated data and
the real data.These two components are continuously optimized through adversarial training.
Eventually, the generator is able to produce high-quality synthetic data, which is highly similar to
the real data in terms of features.

With this adversarial structure (Al-Najjar et al., 2021), GANs can generate high-quality data
that closely matches the distribution of real data in an unsupervised learning context, making them
well-suited for high-resolution image synthesis.

With the proposal and development of GANSs, researchers have introduced various enhanced
structures that are more effectively applied to potential landslide identification. For example, the
conditional GAN (CGAN) (Kim and Lee, 2020; Loey et al., 2020), Pix2Pix (Qu et al., 2019), and
Wasserstein GAN (WGAN) (Wang et al., 2019).

In the case of GANSs, although the generated high-quality images may visually resemble real
potential landslide regions, mode collapse can lead to a lack of diversity in the generated data,
failing to cover all possible types of hazards (Fang et al., 2020). If certain types of potential

landslides are underrepresented in the training dataset, GANs may struggle to generate those types
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effectively, thereby limiting the effectiveness of data augmentation. Given that the inherently
unstable training process of the GANs may require more hyperparameter tuning and computational
resources, this model will pose additional challenges in scenarios with limited data availability
(Al-Najjar and Pradhan, 2021; Feng et al., 2024).

As a variant of the autoencoders (AEs), the variational autoencoder (VAE) introduces the idea
of probabilistic generation (Kingma et al., 2013). VAE constrains the latent space through
variational inference, thus enabling the generation, reconstruction, and transformation of sample
data.

Compared to GANSs, the samples generated by the VAE may have better diversity (Cai et al.,
2024; Islam et al., 2021; Oliveira et al., 2022), because the structured constraints of its latent space
are helpful for generating samples with continuous changes. This is beneficial for simulating
potential landslides under different geological conditions.

The encoder of the VAE maps the input data to a low-dimensional latent space, where each
vector represents the underlying features of the input. The decoder then reconstructs the original
data based on the vectors in the latent space. Different from conventional AEs, the output of the
VAE encoder includes two parameters: the mean value and the standard deviation. These two
parameters define the probability distribution in the latent space, which is usually assumed to be a
Gaussian distribution. The decoder samples a latent variable from this probability distribution and
reconstructs it into output data, thus generating data with inherent randomness and diversity.
Therefore, the VAE can extract latent features from landslide data and generate new landslide data
based on these features.

By learning from extensive landslide datasets, VAEs capture critical geomorphological
features and patterns, enabling the generation of novel samples that preserve these characteristics.
This capability enables innovative applications in potential landslide analysis. This is crucial for
exploring landslide scenarios under different feature combinations and identifying potential
landslide patterns. Compared to GANs, VAEs exhibit superior sample diversity and training
stability though the generated samples often lack the fine-grained details produced by GANS,
particularly in high-resolution geospatial contexts. Moreover, VAEs may still face challenges in
handling highly imbalanced data, as the generated samples tend to favor majority classes, which
can limit its effectiveness in augmenting minority class data.

When computational resources and time are sufficient, and high-quality data generation with
exceptional diversity is prioritized, diffusion models are the recommended choice (Croitoru et al.,
2023; Yang et al., 2023a; Zhu et al., 2023a).

Diffusion models fundamentally learn the distribution of data. During training, the model

applies a forward diffusion process that gradually adds noise to the original data until it
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approximates a Gaussian distribution. Then, in the reverse diffusion process, the model learns to
iteratively refine its reconstruction of the original data distribution from the noisy data. After being
fully trained, the model is able to capture the latent distribution patterns of the data, and thus can
sample based on the learned distribution to generate new data (Ho et al., 2022). That is to say, by
grasping the inherent laws and features of the data, the model has the ability to generate data that
conforms to the distribution of the data.

Denoising diffusion probabilistic model (DDPM) is a classic implementation of the diffusion
models, which lays the probabilistic framework for the diffusion models (Choi et al., 2021; Ho et
al., 2020; Jing et al., 2023; Perera et al., 2023). The generation quality is optimized through
variational inference and noise scheduling. Denoising diffusion implicit model (DDIM) has made
improvements on the basis of DDPM (Song et al., 2020). It uses non-Markov chain
reparameterization and deterministic sampling, and greatly improves the efficiency with almost no
loss of quality.

Notably, DDIMs utilize the same training framework as DDPMs. If certain parameters of
DDIMs are assigned particular values, its generation process becomes equivalent to DDPMs. Thus,
DDIMs function as an accelerated sampling variant of DDPMs. The critical distinction lies in their
sampling mechanisms. DDPMs employ stochastic and Markovian sampling, whereas DDIMs
enhance efficiency through non-Markovian deterministic sampling, though this comes at the
expense of reduced sample diversity.

Although diffusion models demonstrate strong capabilities in generating high-quality images
and handling noise, they generate superior-quality data and ensure greater training stability
compared to GANs and VAEs. However, diffusion models have not yet been widely applied
directly to the identification of potential landslides and remain in the exploratory stage (see Fig. 4).
We believe that as generative models advance in the field of geospatial remote sensing, they hold
vast potential for application and could play a pivotal role in future landslide risk analysis and

monitoring systems.

3.4 Models for Data Cleaning in Potential Landslide Identification

In potential landslide identification, data cleaning, particularly anomaly detection, is a critical
issue (Deijns et al., 2020; Jiang et al., 2020). It can distinguish between normal fluctuations and
true anomalies, identifying early signs such as subtle changes in the mountain’s state or abnormal
trends in surface displacement, thus enabling more accurate landslide hazard assessment. With the
rapid development of deep learning, the applications in data cleaning have become increasingly
widespread, enabling models to automatically learn latent data patterns and identify potential

anomalies.
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AEs and their variational counterparts are highly effective in unsupervised data cleaning.
These models autonomously learn normal geomechanical patterns from data and flag deviations,
achieving effective hazard identification even when labeled anomaly samples are scarce.

The AE is a typical unsupervised learning model consisting of an encoder and a decoder The
encoder compresses the input data into low-dimensional features, and then the decoder reconstructs
the input. During the training process, the autoencoder learns the intrinsic features and patterns of
normal landslide data, so that for normal data, the reconstruction error is small. When abnormal
landslide data is input, due to the difference between its features and the distribution of normal
data, the reconstruction error will be large.

When performing anomaly detection, a suitable reconstruction error threshold is set. When the
reconstruction error of the test data exceeds this threshold, it can be determined as abnormal data.
In the anomaly detection of landslide displacement data monitored by sensors, if the error of the
displacement data after being reconstructed by AEs during a certain period is significantly higher
than the normal level, it may indicate that there is an abnormal situation of potential landslides
during this period.

As previously introduced, VAE is an extension of AE. Compared to conventional
autoencoders, VAE introduces randomness into the latent space, making it more effective in
handling data uncertainty (Li et al., 2020; Park et al., 2018).

During training, VAEs learn the latent distribution of the data and can generate new samples
resembling the training set. When input samples deviate significantly from this learned
distribution, the VAE fails to reconstruct them accurately, thereby flagging anomalies through
elevated reconstruction errors. For landslide monitoring, if a VAE is trained on imagery of stable
slopes, it internalizes stable terrain features. When an image significantly differs from the stable
region, the model will produce a high reconstruction error, indicating the presence of anomalous
data.

In contrast, AEs are well-suited for univariate anomaly detection, particularly for landslide
precursor detection, while VAEs capture latent space distributions and are more effective for
multivariate anomaly detection.

GANSs can also be utilized in data cleaning (Kang et al., 2024; Xia et al., 2022). In data
cleaning, the discriminator is trained to distinguish between generated data and real data. When
new test data is input, if the discriminator struggles to determine whether it is real or generated
data, the test data may significantly deviate from the distribution of normal data, indicating a
potential anomaly. In landslide monitoring, data may be influenced by various factors, GANs
demonstrate robustness by filtering out such interference, thereby enhancing data cleaning

accuracy (Radoi, 2022).
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AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its
primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder
during training, which maps input data to the latent space. The difference between this latent vector
and the latent vector of normal samples generated by the generator serves as the basis for data
cleaning.

RNNs, LSTMs, and GRUs are also effective for identifying anomalous patterns in sequential
data (Zhang et al., 2022a). In potential landslide identification, these models process time series
inputs to learn normal temporal dynamics and trends. When new data deviates significantly from
the normal patterns learned by the model, such deviations can be flagged as anomalies. However,
these models are primarily used for time series data, performing data cleaning by predicting future
values of the sequence. For instance, if displacement measurements exhibit abrupt deviations while
rainfall remains within historical norms, the model detects such discrepancies by comparing

observed values with predictions based on learned temporal dependencies.

3.5 Models for Data Fusion in Potential Landslide Identification

In practical applications, the identification of potential landslide hazards is a complex task that
influences by multiple factors (Zhang et al., 2018). These factors are often reflected through
different data sources. We can roughly divide heterogeneous data into four categories: image data,
time series data, structured data, and textual data. Data fusion is essential for the accurate
identification of potential landslides. In order to better identify potential landslides, data fusion is
essential.

Since the features, scales, and resolutions of heterogeneous data are all different, currently, the
powerful feature learning ability of deep learning models is often utilized to automatically capture
the nonlinear relationships and high-order interaction information among these heterogeneous data.

Due to the complex non-Euclidean structural characteristics of the geological environment,
topographic data and their spatial relationships related to landslide hazards, conventional methods
such as CNNs have difficulty in handling these relationships. As a neural network architecture for
processing graph-structured data, graph neural networks (GNNs) can effectively model such spatial
relationships (Ying et al., 2018; Zeng et al., 2022). They can treat the nodes in the geographical
space (such as different geographical location points) and their connection relationships (such as
the distance between adjacent nodes, terrain undulations, etc.) as the structure of a graph for
processing.

When dealing with heterogeneous data, GNNs support feature interaction between different
types of nodes through the message passing mechanism, thereby eliminating redundancy and

mutual exclusivity among data sources and enabling dynamic fusion of multi-modal features
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(Zhang et al., 2024d; Zhao et al., 2024b). By passing and aggregating information across nodes,
GNNs can also conduct a detailed analysis of various heterogeneous data in local areas. This
capability allows GNNs to capture subtle geological structural changes and detect localized
anomalies inmonitoring data, providing advantages for analyzing local features and early signs of
potential landslide movements.

By learning a large amount of landslide potential cases, GNNs can discover the general
patterns and rules of landslides, thus having good generalization ability. When facing new and
unseen regions or data, GNNs can predict and assess the potential landslides in those regions based
on the knowledge they have already learned.

According to the differences in message passing and aggregation methods, GNNs have
derived various variants. For example, graph convolutional network (GCN) is generated by
generalizing the convolutional operation to graph-structured data (Sharma et al., 2022; Wang et al.,
2020a), and graph attention network (GAT) dynamically weights the importance of neighboring
nodes by introducing the attention mechanism (Yuan et al., 2022; Zhou and Li, 2021). The
emergence of these new architectures makes GNN variants more targeted than conventional GNNs
and suitable for modeling heterogeneous relationships. Currently, they are often used for weighted
analysis of the impacts of different geographical factors on landslides.

Transformer is also composed of stacked encoders and decoders (see Fig. 5). However, unlike
other architectures, the Transformer architecture introduces the self-attention mechanism (Zhao et
al., 2021a), which is a crucial innovation. This enables the Transformer to automatically calculate a
weight vector for each position in the input sequence based on the relationship between this
position and other positions, so as to represent the importance of this position in the entire
sequence. Such a weight vector can be regarded as the "attention distribution" of each position in
the input sequence, that is, the model determines which positions in the sequence to focus on. By
considering all positions in the input sequence simultaneously, Transformer is able to calculate the
correlations between each position and other positions in the sequence in parallel (Esser et al.,
2021; Huang and Chen, 2023; Zerveas et al., 2021), rather than processing them step by step like
CNNs or RNNs.

Transformer can also convert multimodal dFor different types of data, it transforms them into
vector representations via different embedding layers.ata into a unified vector representation
through different embedding layers. Subsequently, through the use of the self-attention mechanism
and multilayer neural networks, these vectors are fused and feature representations are extracted,
enabling the model to process and integrate data from various modalities within the same model
framework (Lv et al., 2023; Tang et al., 2022).

Revised Description in Section 3
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3.1 Models for Image Analysis and Processing in Potential Landslide Identification

Image data plays a critical role in potential landslide identification, especially through remote
sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain
data, encompassing complex geographical features, vegetation coverage, and ground fissures,
which often serve as potential precursors to landslide occurrences. The adoption of deep learning
has facilitated a shift from conventional manual visual interpretation to automated high-precision
segmentation.

CNNs represent the fundamental architecture in image processing. A CNN primarily
comprises convolutional layers, pooling layers, and fully connected layers, each performing
predefined functions on its input data (Kattenborn et al., 2021; Liu et al., 2022a).

Convolutional layers, the core of CNNs, use kernels of various sizes to extract multi-scale
features from geospatial imagery, which is crucial for landslide identification (Hussain et al., 2019;
Shi et al., 2020; Yao et al., 2021). Small kernels are effective in detecting fine-grained precursors
such as ground fissures and localized soil texture changes. For instance, Hamaguchi et al. (2018)
proposed a Local Feature Extraction (LFE) module to enhance the capability of CNNs in
identifying small object instances in remote sensing imagery. Wang et al. (2024) demonstrated the
exceptional capability of convolutional layers in extracting extremely small and subtle features by
identifying cracks as narrow as 0.05 m width using a U-Net-based model. In contrast, larger
kernels help in recognizing the overall morphology and boundaries of landslide bodies. From the
perspective of general visual tasks, Ding et al. (2022) demonstrated that larger convolution kernels
substantially improve the shape bias of CNNs, facilitating the recognition of large-scale structures
and overall morphological patterns compared with using small kernels alone. Li et al. (2025)
employed multiple large convolution kernels (kernel sizes = 5, 7, and 9) within the DLFFSKA
module to fuse multi-scale features, thereby enhancing the global perception of landslide
boundaries and morphology as well as the capture of contextual background information.

Pooling layers downsample feature maps, improving computational efficiency and model
robustness. In landslide mapping, this translation invariance is particularly beneficial, as it allows
the model to consistently identify landslide features regardless of their slight positional variations
across different image patches (Mao et al., 2024).

The final fully connected layer flattens the pooled feature maps and performs classification,
outputting results that distinguish potential landslide areas from non-landslide areas or enable
further analysis of landslide types (Wu et al., 2024).

The layers of a CNN can be combined in various ways, forming distinct CNN architectures.
These architectures are primarily determined by task requirements, which may include image

classification, multi-class segmentation, or object localization within a scene.
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Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers,
and fully connected layers. However, increasing network depth introduces challenges such as
vanishing gradients and degradation arise, resulting in model performance deterioration.

ResNet mitigates the vanishing gradient problem in very deep networks through residual
connections (Qi et al., 2020; Yang et al.,, 2022). This architectural advancement has been
successfully applied to landslide detection in complex terrains, such as the work by Ullo et al.
(2021), who demonstrated that a ResNet-based classifier could achieve high accuracy in
distinguishing landslide scars from surrounding vegetation and bare soil in satellite imagery by
effectively learning hierarchical features.

Models with higher parameter counts generally exhibit greater representational capacity but
are prone to overfitting, while demanding higher computational resources and temporal costs for
both training and inference (Ebrahimi et al., 2021). For instance, He et al. (2016) introduced
ResNet-152 and other deep residual network architectures, demonstrating that deeper structure
achieve superior performance compared with shallower counterparts. Hasanah et al. (2023)
explicitly highlighted the differences in layer depth and parameter count among various ResNet
versions (ResNet-50, 101, and 152), noting that the increased number of parameters in deeper
networks inevitably leads to longer training times.

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural
networks are based on a similar idea, which is to establish a "shortcut" between different layers.
However, the structure of DenseNet is simpler and more effective, with fewer parameters. In
ResNet, each layer is only connected to the previous layer, while in DenseNet, each layer is
directly connected to all previous layers, and each layer can obtain gradients from the loss
function. This can optimize the information flow and gradients of the entire network, making it
easier to train and performing better on small datasets. The structure of DenseNet can achieve
better feature reuse and reduce the number of parameters. Moreover, the layers of DenseNet are
narrower than those of other deep learning networks (Liu et al., 2021c), making it reduce
redundancy by learning with fewer feature maps. This architecture is suitable for the extraction of
multi-scale landslide features under complex terrains, even with limited landslide training samples.

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation
models have increasingly become the standard in landslide detection. Numerous advanced
semantic segmentation networks have been proposed and validated for automatic landslide
detection, significantly enhancing the efficiency and accuracy of large-scale detection.

U-Net's encoder-decoder structure with skip connections has become a benchmark for
landslide segmentation (Ronneberger et al., 2015). For example, Dong et al. (2022) proposed a new

model, L-UNet, based on the U-Net architecture and successfully applied it to landslide extraction
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from remote sensing imagery. Nava et al. (2022) applied the Attention U-Net to Sentinel-1 SAR
data for rapid mapping of earthquake-induced landslides, demonstrating the effectiveness of U-Net
variants in pixel-level segmentation of landslide bodies under cloud-covered or topographically
complex conditions.

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable
choice (Sandric et al., 2024). Built upon deep convolutional neural networks, DeepLab employs
dilated convolutions to expand the receptive field and integrates an atrous spatial pyramid pooling
(ASPP) module to capture multi-scale contextual information.

In contrast, the U-Net architecture is relatively simpler and better suited for small targets and
high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution
UAYV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection
and multispectral remote sensing image classification (see Fig. 2).

After achieving semantic segmentation to obtain the accurate extent of a landslide and the
classification of ground objects, change detection is employed to monitor the changes in the
landslide area over time. By comparing the segmentation results of multiple temporal phases or
directly analyzing the feature differences, the dynamic evolution of potential hazards can be
quantifie (Amankwah et al., 2022).

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models
capture spatial and temporal features wusing convolutional kernels while transforming
multi-temporal image sequences into change hotspot maps or temporal variation curves as output.

Some studies even have integrated attention mechanisms into conventional CNN architectures
to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the

identification of landslide hazard evolution over time.

3.2 Models for Time Series Analysis in Potential Landslide Identification

The occurrence of a landslide is a gradual accumulation process, usually influenced by a
variety of factors. We refer to data that reflect the changing states of a landslide body over time as
time series data. Time series data analysis aims to excavate the information hidden in the time
series data to help identify potential landslides.

Different from conventional statistical or physical models, deep learning models can
automatically reveal dynamic change trends and periodic patterns in the data, providing more
accurate information for landslide prediction and early warning. Recently, deep learning—based
temporal models, such as RNNs, long short-term memory networks (LSTMs), and gated recurrent
units (GRUs), have become key tools for extracting nonlinear dependencies and temporal

evolution patterns in landslide-related time series.
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Recurrent neural networks (RNNs) are a class of deep learning models specialized in
processing sequential data, capable of capturing temporal dependencies within input sequences
(Ngo et al., 2021; Zaremba et al., 2014). Unlike conventional feedforward neural networks, in an
RNN, each neuron not only receives the current input but also the output of the previous time step
as additional input. This structure endows the RNN with a memory mechanism.

In landslide prediction, RNNs have been employed to model displacement time series under
rainfall or groundwater fluctuations, revealing short-term deformation patterns preceding slope
failure (Chen et al., 2015; Zhang et al., 2022).

To overcome the vanishing gradient problem inherent in RNNs, LSTMs introduce memory
cells and gating mechanisms that selectively retain relevant temporal information (Landi et al.,
2021; Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al.,
2019). This capability allows them to model the cumulative and delayed responses of slopes to
prolonged rainfall or reservoir water level fluctuations.

LSTM models have been widely applied in landslide displacement prediction and early
warning. Yang et al. (2019) analyzed the relationships among landslide deformation, rainfall, and
reservoir water levels, and found that compared with static models, the LSTM approach more
accurately captured the dynamic characteristics of landslides and effectively leveraged historical
information. Xu and Niu (2018) used a LSTM model to predict the displacement evolution of the
Baijiabao landslide using rainfall and hydrological level data, achieving a higher correlation
compared with traditional regression models. In another study focused on shallow landslides, Xiao
et al (2022) used a week-ahead LSTM model, which exhibited stable performance and improved
prediction accuracy in short-term prediction scenarios. Additionally, Gidon et al (2023) constructed
a Bi-LSTM model and achieved a detection accuracy of 93% in the Mawiongrim area. This
effectively addresses the limitations of traditional methods and can provide a reliable technical
solution for disaster early warning in this area as well as other similar landslide-prone areas.

The GRU is a simplified variant of the LSTM (Chung et al., 2014; Zhang et al., 2022b) that
achieves similar accuracy with fewer parameters and reduced computational costs, making it
well-suited for real-time landslide monitoring systems (Rawat et al., 2024).

Furthermore, GRU models effectively identify precursory displacement acceleration, allowing
early detection of slope instability triggered by rainfall or seismic shaking (Chang et al., 2025;
Yang et al., 2025).

Recently, Transformer architectures have been introduced for time series modeling due to
their ability to capture global dependencies across long sequences through the self-attention
mechanism (Vaswani et al., 2017).

Unlike RNNs or LSTMs that process data sequentially, Transformers analyze all time steps in
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parallel, offering better scalability and modeling of long-term deformation trends (Esser et al.,
2021; Huang and Chen, 2023).

In landslide applications, Transformer-based approaches have shown promise in integrating
multi-source time series—such as rainfall, soil moisture, and deformation—into a unified temporal
framework. Zhao et al. (2024) combined the strengths of CNN and Transformer architectures,
selecting and analyzing nine landslide-conditioning factors to successfully achieve accurate
landslide localization and detailed feature capture. Ge et al. (2024) proposed the LiteTransNet
model based on the Transformer framework, effectively capturing and interpreting the varying
importance of historical information during the prediction process.

Although Transformer-based models require larger training datasets and higher computational
resources, their capacity to model complex, long-range dependencies and integrate multi-factor
information offers significant potential for the next generation of intelligent landslide early
warning systems.

In summary, RNNs and their advanced variants (LSTM, GRU) have demonstrated strong
capabilities in modeling landslide time series, enabling early detection of slope deformation
acceleration and rainfall-induced instability (Li et al., 2021a; Wang et al., 2020b). Transformer
architectures further extend this capability to capture cross-variable and long-term dependencies
(Wang et al., 2024a; Zerveas et al., 2021), offering a new direction for multi-sensor, data-driven

landslide prediction (see Fig. 3).

3.3 Models for Data Generation in Potential Landslide Identification

Data generation refers to modeling the underlying data distribution of data to generate entirely
new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020;
Shorten and Khoshgoftaar, 2019), thereby enriching the dataset. In potential landslide
identification, data generation mitigates challenges related to data scarcity and class imbalance,
which are particularly pronounced in geohazard mapping tasks where labeled landslide samples are
limited. This process enhances the generalization capability of predictive models and enables the
simulation of diverse landslide scenarios.

Deep generative models are the leading deep learning approach for synthetic data generation
(Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They utilize deep neural
networks to learn latent representations of data and optimize the learning process through specific
objective functions. A key characteristic of deep generative models lies in their probabilistic
nature—they not only classify or reconstruct data but also capture the underlying distribution of
geospatial features, enabling the creation of new landslide samples that are statistically consistent

with observed patterns. Commonly used deep generative models include generative adversarial

25




networks (GANSs), variational autoencoders (VAEs), and diffusion models.

GANs consist of a generator and a discriminator that compete in an adversarial process
(Goodfellow et al., 2014). The generator synthesizes data resembling real samples, while the
discriminator attempts to distinguish between generated and real data. Through iterative adversarial
training, the generator learns to produce high-quality synthetic data that closely matches the
distribution of real data (Gui et al., 2021; Saxena and Cao, 2021).

In the context of landslide studies, GANs have demonstrated strong capabilities in data
augmentation and remote sensing image enhancement. For example, Al-Najjar and Pradhan (2021)
proposed a novel approach that employs a GAN to generate synthetic inventory data. The results
indicate that additional samples produced by the proposed GAN model can enhance the predictive
performance of Decision Trees (DT), Random Forest (RF), Artificial Neural Network (ANN), and
Bagging ensemble models. Feng et al. (2024) achieved the first implementation of using a GAN to
generate synthetic high-quality landslide images, aiming to address the data scarcity issue that
undermines the performance of landslide segmentation models.

Despite their advantages, GANs may suffer from mode collapse, leading to limited diversity
in the generated data, especially when certain landslide types are underrepresented (Fang et al.,
2020). Moreover, their unstable training process requires careful hyperparameter tuning and
substantial computational resources, which may constrain their application in real-time hazard
scenarios. Nevertheless, with improved architectures such as CGAN(Kim and Lee, 2020; Loey et
al., 2020), Pix2Pix(Qu et al., 2019), and Wasserstein GAN (WGAN) (Wang et al., 2019), GANs
are becoming increasingly viable tools for high-resolution landslide mapping and synthetic data
generation in remote sensing-based susceptibility analyses.

As a probabilistic variant of autoencoders (AEs), VAEs introduce latent-space regularization
through variational inference (Kingma et al., 2013). The encoder compresses input data into a
latent representation characterized by a mean and a standard deviation, while the decoder
reconstructs the data by sampling from this distribution. This enables the model to generate new
data with inherent randomness and diversity (Islam et al., 2021; Oliveira et al., 2022).

In landslide research, VAEs have been successfully applied to learn and reconstruct
geomorphological patterns of slope instability. For instance, Cai et al. (2024) proposed and
demonstrated the superior capability of the VAE-GRU model in generating narrow predictive
intervals while maintaining high coverage probabilities, representing a substantial improvement
over the state-of-the-art methods for probabilistic landslide prediction.

Compared with GANs, VAEs produce more diverse but slightly less detailed samples, due to
their structured latent space constraints. This characteristic is particularly beneficial for exploring a

wide range of potential landslide morphologies and for augmenting training datasets used in

26




susceptibility prediction. However, VAEs may still struggle with highly imbalanced datasets, as
their probabilistic reconstruction tends to favor majority classes. Integrating VAEs with stratified
sampling or cost-sensitive learning could help overcome this limitation and further enhance
landslide prediction performance.

When computational resources and training time permit, diffusion models provide a powerful
alternative for generating high-quality, diverse, and stable data (Croitoru et al., 2023; Ho et al.,
2020; Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually
adding noise to real samples (forward diffusion) and then reconstructing clean data through a
reverse denoising process. The resulting models can sample new, realistic data points that reflect
complex terrain and geophysical variability.

Although diffusion models are still in the exploratory phase for landslide applications, recent
geospatial Al research indicates their high potential for terrain simulation and deformation
modeling. Lo et al. (2024) proposed a Terrain-Feature-Guided Diffusion Model (TFDM) to fill
gaps in DEM data. Similarly, Zhao et al. (2024) employed a Denoising Diffusion Probabilistic
Model (DDPM) conditioned on incomplete DEMs, which serves as a transitional kernel during
diffusion reversal to progressively reconstruct sharp and accurate DEM surfaces.

Deep generative models provide a transformative solution for overcoming the challenges of
limited and imbalanced landslide datasets. By synthesizing realistic, diverse, and statistically
consistent samples, these models can improve the robustness and generalization of landslide
prediction frameworks. GANs are effective for generating visually realistic imagery and data
augmentation; VAEs capture probabilistic geomorphic transitions; and diffusion models ensure
stability and fidelity in high-resolution terrain synthesis.

As generative Al continues to evolve, integrating these models with multi-source remote
sensing inputs and physics-based constraints holds great promise for next-generation landslide
hazard identification systems. Such integration is expected to enhance data diversity, reduce
labeling dependency, and enable more precise, interpretable, and generalizable predictions for

landslide risk assessment and early warning.

3.4 Models for Anomaly detection in Potential Landslide Identification

Anomaly detection plays a critical role in potential landslide identification, as it enables the
distinction between normal environmental variations and genuine precursors of slope instability
(Deijns et al., 2020; Jiang et al., 2020). In landslide monitoring, the goal of anomaly detection is to
identify subtle yet significant deviations—such as abnormal surface displacements, changes in
surface coherence, or irregular sensor signals—that may occur prior to failure events. With the

advancement of deep learning, data filtering has evolved from rule-based threshold detection to
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automated feature learning, allowing models to capture complex spatiotemporal dependencies and
identify anomalies within high-dimensional, multi-source datasets.

AEs are widely used for unsupervised anomaly detection due to their ability to reconstruct
input data and highlight deviations from learned normal patterns. An AE consists of an encoder that
compresses data into a low-dimensional latent representation and a decoder that reconstructs it.

During training, the AE learns the intrinsic features of normal landslide data—such as
sensor-based displacement time series or radar backscatter from stable slopes. When abnormal data
are input, such as sudden displacement spikes or incoherent radar signals, the reconstruction error
increases significantly, serving as an indicator of potential instability. For instance, Shakeel et al.
(2022) developed an InSAR deformation anomaly detector based on an AE-LSTM architecture
(ALADDIn). Experimental analyses using synthetic deformation test scenarios achieved an overall
performance accuracy of 91.25%.

By defining a reconstruction error threshold, anomalies can be quantitatively detected. When
the reconstruction error of new sensor data exceeds this threshold, it may signal slope movement
acceleration or surface disturbance associated with potential landslides. Thus, AEs provide a
data-driven method to detect early-warning signs without requiring manually labeled failure data.

As previously introduced, VAE is a probabilistic extension of AEs. VAEs introduce stochastic
latent variables characterized by mean and variance, allowing them to model data uncertainty
(Kingma et al., 2013; Li et al., 2020; Park et al., 2018). During training, VAEs learn the latent
distribution of normal samples and reconstruct inputs accordingly. When new observation data
deviate significantly from the learned distribution, the reconstruction error increases accordingly,
and this phenomenon can be used as an indicator of potential anomalies.

In landslide applications, VAEs have been shown to outperform traditional AEs in handling
complex, multivariate datasets that integrate topographic, meteorological, and geotechnical factors.
For example, Han et al. (2025) proposed an unsupervised failure mode recognition algorithm based
on a deep convolutional autoencoder, which integrates surface displacement, vertical displacement,
and rainfall monitoring data from slopes to accurately identify the developmental stages of slope
failure, achieving a recognition accuracy of 99.30%.

Another study by Yadav et al. (2024) proposed a novel unsupervised change detection (CD)
model, termed CLVAE, designed to learn the spatiotemporal correlations within Sentinel-1 SAR
time series. The model achieved a mean IoU of 70% and a mean F1-score of 81%, outperforming
comparative models by at least 6% in F1-score and 8% in IoU.

Compared to AEs, VAEs are particularly advantageous for capturing uncertainty and latent
correlations between environmental variables, making them ideal for data cleaning in integrated

landslide early-warning systems. However, they require larger datasets for stable training, and their
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probabilistic outputs may demand post-processing for operational thresholding.

GANSs can also be adapted for anomaly detection by exploiting their discriminator network’s
ability to distinguish between real and generated data (Kang et al., 2024; Xia et al., 2022). In
landslide monitoring, GAN-based anomaly detection models learn the distribution of stable slope
features, and deviations from this distribution can indicate abnormal conditions (Radoi et al.,
2022).

AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its
primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder
during training, which maps input data to the latent space. The difference between this latent vector
and the latent vector of normal samples generated by the generator serves as the basis for data
cleaning.

RNNs and their variants are particularly effective for time series—based anomaly detection,
learning temporal dependencies and predicting future trends (Zamanzadeh et al., 2024; Zhang et
al., 2022a). In landslide monitoring, these models can process continuous displacement or rainfall
time series to identify deviations from expected temporal behavior. These temporal models
complement image-based approaches by providing continuous surveillance and early detection
capabilities (Wu et al., 2024).

When combined with AEs or GANs, RNN-type architectures can form hybrid frameworks
capable of both spatial and temporal anomaly detection, enabling multi-source consistency
checking in landslide early-warning systems. Geiger et al (2020) demonstrated a growing trend of
utilizing LSTM networks as both the generator and discriminator within GAN frameworks for
time-series anomaly detection. Similarly, Whitakeret al (2023) illustrated the application of

LSTM-GAN architectures in identifying temporal anomalies.

3.5 Models for Data Fusion in Potential Landslide Identification

In practical applications, the identification of potential landslide hazards is a complex task that
influences by multiple factors (Zhang et al., 2018). These factors are often reflected through
different data sources. We can roughly divide heterogeneous data into four categories: image data,
time series data, structured data, and textual data. Given this heterogeneity, data fusion is essential
for the accurate identification of potential landslides.

Since heterogeneous data differ in feature scale, spatial resolution, and data modality, deep
learning models are increasingly utilized to automatically extract nonlinear and high-order feature
interactions across data sources, offering significant advantages over traditional statistical fusion
techniques. In landslide applications, deep learning-based data fusion can integrate multi-modal

inputs such as Sentinel-1 InSAR deformation, rainfall time series, and terrain derivatives for
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regional-scale susceptibility mapping or real-time early warning.

Due to the non-Euclidean and topologically complex nature of landslide-related terrain,
conventional CNN-based models are limited in representing irregular spatial dependencies. GNNs
have emerged as powerful architectures to model such relationships by representing spatial entities
(e.g., slope units, grid cells, or sensor nodes) as graph nodes and their geospatial or topological
interactions as edges (Ying et al., 2018; Zeng et al., 2022).

In landslide identification, GNNs enable explicit modeling of spatial connectivity and
geological adjacency, allowing the propagation of geomorphic and hydrological information across
neighboring units. For example, Kuang et al. (2022) proposed an innovative landslide forecasting
model based on Graph Neural Networks, in which graph convolutions are employed to aggregate
spatial correlations among different monitoring sites. Ren et al. (2025) introduced a novel GNN
framework with conformal prediction (GNN-CF) for landslide deformation interval forecasting,
addressing the limitations of traditional models in handling predictive uncertainty.

According to the differences in message passing and aggregation methods, GNNs have
derived various variants. For example, graph convolutional network (GCN) is generated by
generalizing the convolutional operation to graph-structured data (Sharma et al., 2022; Wang et al.,
2020a), and graph attention network (GAT) dynamically weights the importance of neighboring
nodes by introducing the attention mechanism (Yuan et al., 2022; Zhou and Li, 2021). The
emergence of these new architectures makes GNN variants more targeted than conventional GNNs
and suitable for modeling heterogeneous relationships. Currently, they are often used for weighted
analysis of the impacts of different geographical factors on landslides.

Transformer architectures, characterized by the self-attention mechanism, provide another
promising avenue for landslide-related data fusion (Huang and Chen, 2023; Zhao et al., 2021a).
Unlike CNNs or RNNs, which process spatial or temporal sequences sequentially, Transformers
can jointly capture long-range dependencies across spatial and temporal dimensions, enabling
unified processing of rainfall, InSAR time series, and topographic data (Esser et al., 2021; Lv et al.,
2023).

Recent studies have begun adapting Transformer variants for landslide identification. Li et al.
(2023) proposed a Transformer-based deep neural network capable of identifying landslides from
hillshade maps and optical imagery. Piran et al. (2024) enhanced short-term precipitation
forecasting by applying transfer learning with a pre-trained Transformer model. Zhang et al. (2024)
incorporated Transformer modules to build a graph-Transformer model that integrates global

contextual information for the generation and analysis of landslide susceptibility maps (LSMs).
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4. The most notable weakness of this work is the grammar and writing style, which is well below
the acceptable standards of a journal paper. I found many grammar errors and several sentences
which essentially repeated sentences just before them, among other issues (see below). The
language was often vague, passive, and lacking focus. The authors need to carefully proofread

their paper. This reads like a rough draft, not a publication-ready submission.
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We sincerely apologize for the inadequate writing quality in the original submission and fully
acknowledge that the grammar and expression did not meet the high standards required for
journal publication. We appreciate your detailed remarks, which helped us identify the issues
more clearly. We will also take this valuable feedback as an opportunity to strengthen our own
academic writing competency in future research.
To thoroughly address this concern, we have undertaken a comprehensive revision of the entire

manuscript:

(1) We have meticulously addressed all the specific technical corrections (spelling, grammar, and
wording/writing style) that you pointed out in the comments below.

(2) Furthermore, the entire manuscript has been carefully checked and polished using advanced
Al-powered writing assistance technology (specifically, Grammarly and ChatGPT) to correct
grammatical errors, eliminate redundancy, and improve sentence clarity.

(3) Following this, all authors have performed multiple rounds of manual proofreading to ensure
the final text is coherent, focused, and meets the high standards expected for publication.

We believe that the revised manuscript has been significantly improved in terms of language
fluency and clarity. Once again, we are truly grateful for your valuable time and for pointing out
these issues, which have been instrumental in improving our paper.

Original Description in L9

potential landslide identification, such as image analysis and processing, time series analysis.

Next, several commonly used deep learning models are classified based on their roles in

Revised Description in L9

potential landslide identification, covering areas such as image analysis and time series analysis.

Next, several commonly used deep learning models are classified based on their roles in
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Original Description in L44-46

Through the training of large-scale and multi-source data, deep learning models are able to
automatically extract features, capture complex nonlinear relationships, and conduct pattern
recognition in high-dimensional data, which shows great potential in the identification of potential
landslides (Nava et al., 2021; Yang et al., 2024c).

Revised Description in L44-46

Through training on large-scale and multi-source data, deep learning models are able to
automatically extract features, capture complex nonlinear relationships, and conduct pattern
recognition in high-dimensional data, which shows great potential in the identification of landslide
hazards (Nava et al., 2021; Yang et al., 2024c).

Original Description in L84

Interferometric synthetic aperture radar (InSAR) has been developed based on. It obtains
surface elevation information by performing coherent processing on two sets of SAR images
observed in the same area (Dai et al., 2022; Ma et al., 2023b; Zeng et al., 2024).

Revised Description in L84

Interferometric synthetic aperture radar (InSAR) has been developed based on the principles
of radar interferometry. It obtains surface elevation information by performing coherent processing
on two sets of SAR images observed in the same area (Dai et al., 2022; Ma et al., 2023b; Zeng et
al., 2024).

Original Description in L158

When equipped with LiDAR sensors, UAVs can effectively remove vegetation from the data.
Then, assisting researchers to reveal landslide boundaries, crack patterns, and other deformation
features hidden beneath vegetation cover.
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Revised Description in L158

When equipped with LiDAR sensors, UAVs can effectively remove vegetation from the data,
thereby assisting researchers to reveal landslide boundaries, crack patterns, and other deformation
features hidden beneath vegetation cover.

Original Description in L193

TLS scanner can also help identify the landslide mass, that is, the flow path of the landslide
materials.

Revised Description in L193

Original Description in L218-219

By combining the obtained subsurface data with geomechanical equations, the position of the
sliding surface or geotechnical strength parameters can be inverted.

Revised Description in L218-219

By combining the obtained subsurface data with geomechanical equations, the position of the
sliding surface or geotechnical strength parameters can be inferred.

Original Description in L223-227

With continuous exploration, deep learning, through its powerful feature learning capabilities,
enables the automatic extraction of meaningful features from raw data, significantly reducing
manual intervention. Especially when dealing with high-dimensional and complex landslide data,
deep learning models can extract deep features related to landslides from raw data in a data-driven
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manner, without the need for manual feature design.

Revised Description in L223-227

By leveraging its powerful feature learning capabilities, deep learning models can
automatically extract salient features from complex, high-dimensional landslide data without
manual design, thereby minimizing human intervention.

Original Description in L257-258

Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers,
and fully connected layers. However, increasing network depth introduces challenges such as
vanishing gradients and degradation arise, resulting in model performance deterioration.

Revised Description in L257-258

As the network depth increases, conventional CNN architectures may encounter issues such
as vanishing gradients and performance degradation, which hinder effective feature extraction in
complex landslide imagery. To address these limitations, advanced CNN variants such as ResNet,
DenseNet, and U-Net have been developed to enhance feature propagation and maintain training
stability.

Original Description in L294

By comparing the segmentation results of multiple temporal phases or directly analyzing the
feature differences, the dynamic evolution of potential hazards can be quantifie (Amankwah et al.,
2022).

Revised Description in L294

By comparing the segmentation results of multiple temporal phases or directly analyzing the
feature differences, the dynamic evolution of potential hazards can be quantified (Amankwabh et al.,
2022).
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Original Description in L297

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models
capture spatial and temporal features wusing convolutional kernels while transforming
multi-temporal image sequences into change hotspot maps or temporal variation curves as output.

Revised Description in L297

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models
capture spatial and temporal features wusing convolutional kernels while transforming
multi-temporal image sequences into change hotspot maps or temporal variation curves as outputs.

Original Description in L304

Different from conventional time series data analysis methods, using deep learning models an
automatically reveal the dynamic change trends and periodic patterns in the data, providing more
accurate information for landslide prediction.

Revised Description in L304

Different from conventional time series data analysis methods, using deep learning models
can automatically reveal the dynamic change trends and periodic patterns in the data, providing
more accurate information for landslide prediction.

Original Description in L315-317

During the training process, the RNN will process the data at each time step in sequence,
continuously updating the hidden state. By combining the input 315 of the current time step with
the hidden state of the previous moment for calculation to gain an understanding of the data at the
current moment, this structure enables the RNN to capture the temporal evolution patterns of
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landslide-related factors.

Revised Description in L315-317

During the training process, the RNN processes the data at each time step in sequence,
continuously updating the hidden state. By combining the input of the current time step with the
hidden state of the previous moment, this structure enables the RNN to capture the temporal
evolution patterns of landslide-related factors.

Original Description in L318-319

Due to conventional RNNs struggle to model long-term dependencies and limit their
applicability to short-term temporal sequences, long short-term memory networks (LSTM) were
developed (Wang et al., 2023b).

Revised Description in L318-319

Conventional RNNs are limited in their ability to capture long-term dependencies, which
restricts their applicability to short-term temporal sequences. To overcome these limitations, long
short-term memory (LSTM) networks were developed (Wang et al., 2023b).

Original Description in L344-345

Gated recurrent unit (GRU) is a simplified version of LSTM (Chung et al., 2014; Zhang et al.,
2022b), which has fewer parameters. Due to their higher computational efficiency, GRU has
potential advantages in real-time data processing scenarios in landslide monitoring.

GRU mainly consists of the update gate and reset gate. The update gate is used to control how
much of the previous information should be preserved at the current time step, while the reset gate
is used to determine whether to ignore the hidden state of the previous time step, enabling the
model to adaptively learn information across different temporal scales. This dual-gate mechanism
enables adaptive learning of multi-scale temporal patterns.
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Revised Description in L344-345

Gated recurrent unit (GRU) is a simplified version of the LSTM with fewer parameters and
higher computational efficiency, making it suitable for real-time landslide monitoring applications
(Chung et al., 2014; Zhang et al., 2022b).

GRU mainly consists of an update gate and a reset gate. The update gate controls how much
of the previous information is preserved at the current time step, while the reset gate determines
whether to ignore the hidden state of the previous step, enabling the model to adaptively learn
information across different temporal scales through this dual-gate mechanism.

Original Description in L348

GRU particularly well-suited for applications involving real-time analysis of on-site
monitoring data, where rapid detection of imminent landslide risks is essential and data volume is
relatively limited.

Revised Description in L348

GRU is particularly well-suited for applications involving real-time analysis of on-site
monitoring data, where rapid detection of imminent landslide risks is essential and data volume is
relatively limited.

Original Description in L352

Transformer was originally designed to handle sequential data in natural language processing,
which was first introduced by Vaswani in 2017 (Vaswani et al., 2017). Unlike conventional
recurrent and convolutional structures, the Transformer employs employs a self-attention
mechanism to directly model the entire sequence.

Revised Description in L352

Transformer was originally designed to handle sequential data in natural language processing,
which was first introduced by Vaswani in 2017 (Vaswani et al., 2017). Unlike conventional
recurrent and convolutional structures, the Transformer employs a self-attention mechanism to
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directly model the entire sequence.......

Original Description in L365

Data generation refers to modeling the underlying data distribution of data to generate entirely
new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020;
Shorten and Khoshgoftaar, 2019), thereby enriching the dataset.

Revised Description in L365

Data generation refers to modeling the underlying data distribution to generate entirely new
samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020;
Shorten and Khoshgoftaar, 2019), thereby enriching the dataset.

Original Description in L434-435

Although diffusion models demonstrate strong capabilities in generating high-quality images
and handling noise, they generate superior-quality data and ensure greater training stability
compared to GANs and VAEs.

Revised Description in L434-435

In addition to their strong capabilities in generating high-quality images and handling noise,
diffusion models also generate superior-quality data and ensure greater training stability compared
to GANs and VAE:s.

Original Description in L448

The AE is a typical unsupervised learning model consisting of an encoder and a decoder The
encoder compresses the input data into low-dimensional features, and then the decoder reconstructs
the input.
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Revised Description in L448

The AE is a typical unsupervised learning model consisting of an encoder and a decoder. The
encoder compresses the input data into low-dimensional features, and then the decoder reconstructs
the input.

Original Description in L470

In landslide monitoring, data may be influenced by various factors, GANs demonstrate
robustness by filtering out such interference, thereby enhancing data cleaning accuracy (Radoi,
2022).

Revised Description in L470

In landslide monitoring, data may be influenced by various factors. To address this, GANs
demonstrate robustness by filtering out such interference, thereby enhancing data cleaning
accuracy (Radoi, 2022).

Original Description in L485-486

In practical applications, the identification of potential landslide hazards is a complex task that
influences by multiple factors (Zhang et al., 2018). These factors are often reflected through
different data sources. We can roughly divide heterogeneous data into four categories: image data,
time series data, structured data, and textual data. Data fusion is essential for the accurate
identification of potential landslides. In order to better identify potential landslides, data fusion is
essential.

Revised Description in L485-486

In practical applications, the identification of potential landslide hazards is a complex task that
influences by multiple factors (Zhang et al., 2018). These factors are often reflected through
different data sources. We can roughly divide heterogeneous data into four categories: image data,
time series data, structured data, and textual data. Data fusion is essential for the accurate
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identification of potential landslides.

Original Description in L521-522

Transformer can also convert multimodal dFor different types of data, it transforms them into
vector representations via different embedding layers.ata into a unified vector representation
through different embedding layers. Subsequently, through the use of the self-attention mechanism
and multilayer neural networks, these vectors are fused and feature representations are extracted,
enabling the model to process and integrate data from various modalities within the same model
framework (Lv et al., 2023; Tang et al., 2022).

Revised Description in L521-522

The Transformer can convert multimodal data into a unified vector representation through
different embedding layers. For different types of data, it transforms them into vector
representations via their respective embedding layers. Subsequently, through the use of the
self-attention mechanism and multilayer neural networks, these vectors are fused and feature
representations are extracted, enabling the model to process and integrate data from various
modalities within the same model framework (Lv et al., 2023; Tang et al., 2022).

Original Description in L542, 692, 708

In this section, we focus on the analysis of the second type of potential landslides. Based on
triggering factors, landslides can be classified into four categories: rainfall-induced landslides,
earthquake-induced landslides, human activity-induced landslides, and multi factor-induced
landslides.

4.4 Application of Deep Learning in the Identification of Multi factor-induced Landslides

Multi factor-induced landslides result from the synergistic interaction of multiple natural and
anthropogenic factors (Hao et al., 2023).

With the accumulation of new data and the dynamic variations in multi factor-induced
landslides, regular model updates are critical to ensuring identification accuracy and adaptability.
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In contrast, multi factor-induced landslides necessitate models that integrate multiple
triggering mechanisms and perform a comprehensive assessment of the cumulative effects of
diverse contributing factors.

Revised Description in L542, 692, 708

In this section, we focus on the analysis of the second type of potential landslides. Based on
triggering factors, landslides can be classified into four categories: rainfall-induced landslides,
earthquake-induced landslides, human activity-induced landslides, and multi-factor-induced
landslides.

4.4 Application of Deep Learning in the Identification of Multi-factor-induced Landslides

Multi-factor-induced landslides result from the synergistic interaction of multiple natural and
anthropogenic factors (Hao et al., 2023).

With the accumulation of new data and the dynamic variations in multi-factor-induced
landslides, regular model updates are critical to ensuring identification accuracy and adaptability.

In contrast, multi-factor-induced landslides necessitate models that integrate multiple
triggering mechanisms and perform a comprehensive assessment of the cumulative effects of
diverse contributing factors.

Original Description in L752

Thus, data scarcity is a common problem in the identification of potential landslide, especially
in remote areas or regions with limited data accessibility.

Revised Description in L752

Thus, data scarcity is a common problem in the identification of potential landslides,
especially in remote areas or regions with limited data accessibility.

Original Description in L780
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Direct fusion of such multi-modal data induces feature space incompatibility, hindering
cross-modal correlation extraction (Cai et al., 2021; Jin et al., 2022).Zhang et al. (2023) highlights
that even remote sensing data exhibits high heterogeneity in imaging mechanisms, illumination
conditions, and spectral characteristics.

Revised Description in L780

Direct fusion of such multi-modal data induces feature space incompatibility, hindering
cross-modal correlation extraction (Cai et al., 2021; Jin et al., 2022). Zhang et al. (2023) highlights
that even remote sensing data exhibits high heterogeneity in imaging mechanisms, illumination
conditions, and spectral characteristics.

Original Description in L913

By fusing the static stratum data from geological surveys with the time-series data of surface
deformation monitored by InSAR, the combination of static and dynamic data is realized, which
can distinguish between stable slopes and areas with potential creeping deformation.

Revised Description in L913

By fusing the static stratum data from geological surveys with the time-series surface
deformation data monitored by InSAR, it is possible to distinguish between stable slopes and areas
with potential creeping deformation.

Original Description in L928

Each deep learning model excels in specific tasks or data types but may underperforming in
others.

Revised Description in L928

Each deep learning model excels in specific tasks or data types but may underperform in
others.
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Original Description in L944-945

For example, Guo et al. (2024) utilized a stacked approach integrating a 1D-CNN, RNN, and
LSTM network can form a CRNN-LSTM ensemble model.

Revised Description in L944-945

For example, Guo et al. (2024) utilized a stacked approach integrating a 1D-CNN, RNN, and
LSTM network to form a CRNN-LSTM ensemble model.

Original Description in L958

The core concept involves leverage knowledge analysis to gain a deeper understanding of
landslide triggering mechanisms and mechanical behaviors, while combine data-driven methods to
extract potential landslide features and patterns from monitoring data and historical records.

Revised Description in L958

The core concept involves leveraging knowledge analysis to gain a deeper understanding of
landslide triggering mechanisms and mechanical behaviors, while combining data-driven methods
to extract potential landslide features and patterns from monitoring data and historical records.

Original Description in L1033

In this review, we summarized the latest advancement in the applications of deep learning
models for potential landslide identification, as well as the challenges and opportunities for the

future.

Revised Description in L1033
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In this review, we summarized the latest advancements in the applications of deep learning
models for potential landslide identification, as well as the challenges and opportunities for the
future.

Comment #6:
5. L28: I’'m not sure what you mean by the “relativity...of potential landslides”. Could you

clarify what is “relative” about potential landslides?

Response:

- We sincerely thank you for this insightful comment. We apologize for the lack of clarity in our
original phrasing. The term "relativity" was intended to convey that the assessment of landslide
potential is not absolute but is comparative and context-dependent. It refers to the relative
likelihood, spatial probability, or comparative susceptibility of a landslide occurring in one area
versus another, based on a set of conditioning factors (e.g., slope, geology, land use).

- We have revised the manuscript to improve precision. The phrase has been replaced with "the
inherent uncertainty and dynamic nature" to better convey that landslide prediction is not

absolute but is a probabilistic assessment fraught with challenges.

Original Description in Section 1

Due to the relativity and dynamic nature of potential landslides, the identification work
becomes extremely complicated. On the one hand, it is not possible to determine that a landslide
will definitely occur just because there are signs of deformation on the slope.

Revised Description in Section 1

Due to the inherent uncertainty and dynamic nature of potential landslides, the identification
work becomes extremely complicated. On the one hand, it is not possible to determine that a
landslide will definitely occur just because there are signs of deformation on the slope.
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Comment #7:
6. Figure 1 contains reference to several important satellites that are not explained or mentioned
anywhere in the text (Sentinel, for example). The authors should briefly describe the satellites
and what kind of images they produce, either in the caption or the main body of the text, where

relevant.

Response:
Thank you for carefully pointing out this oversight! We fully agree with this comment. To
address it, we have added concise descriptions of the major satellites in the caption of Figure 1.
These descriptions clarify the types of data each satellite provides and their relevance to potential
landslide identification.

Original Figure 1
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Figure 1. Data sources for potential landslide identification.
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Revised Figure 1
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Figure 1. Data sources for potential landslide identification. Satellite observations (e.g., Landsat,
Sentinel, SPOT, and Envisat) provide optical and radar imagery with varying spatial resolutions for
detecting and mapping landslides. Airborne observations (LiDAR, UAV) deliver high-resolution
topographic and photographic data, while ground-based observations (TLS, GBSAR, GNSS, rainfall

and groundwater sensors) offer continuous in-situ monitoring of slope dynamics.

Comment #8:
7. While I appreciate the brevity of Section 1, I feel it would be improved by adding a paragraph

summarizing the authors’ overall takeaways and findings from this review.

Response:

- We sincerely thank you for this valuable suggestion. We have added a summary paragraph at the
end of Section 1 to clearly outline the overall takeaways and findings of this review. The added
paragraph synthesizes the core contributions of our work, highlights the value of deep learning in
potential landslide identification, and points out current challenges and future directions, thereby

providing readers with a more complete overview.
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Original Description in Section 1

In this review, we aim to summarize the applications of deep learning in the field of potential
landslide identification, including data, models, applications, challenges, and future directions.

(1) We classify commonly used heterogeneous data into three categories for research. These
data sources offer comprehensive data support for the application of deep learning in potential
landslide identification.

(2) We introduce the roles of commonly used deep learning models in potential landslide
identification, and compare the advantages and disadvantages among different models.

(3) We analyze the performance of deep learning models in different scenarios through case
studies, discussing the adaptability of deep learning in potential landslide identification.

(4) We summarize the main challenges currently faced by the application of deep learning in
potential landslide identification, and highlight new opportunities and promising future directions.

The remainder of this paper is organized as follows. Section 2 introduces seven main data
sources. Section 3 summarizes five roles of deep learning models in potential landslide
identification. Section 4 investigates the application of deep learning. models in four typical
landslides and provides a comprehensive summary. Section 5 analyzes the current challenges in
potential landslide identification. Section 6 discusses future research directions. Section 7 provides
the concluding remarks.

Revised Description in Section 1

In this review, we aim to summarize the applications of deep learning in the field of potential
landslide identification, including data, models, applications, challenges, and future directions.

(1) We classify commonly used heterogeneous data into three categories for research. These
data sources offer comprehensive data support for the application of deep learning in potential
landslide identification.

(2) We introduce the roles of commonly used deep learning models in potential landslide
identification, and compare the advantages and disadvantages among different models.

(3) We analyze the performance of deep learning models in different scenarios through case
studies, discussing the adaptability of deep learning in potential landslide identification.

(4) We summarize the main challenges currently faced by the application of deep learning in
potential landslide identification, and highlight new opportunities and promising future directions.

Through our analysis, we identified several key trends in the application of deep learning to
potential landslide identification. First, researchers are increasingly adopting multi-source data
fusion techniques, integrating information from diverse sources to construct a more comprehensive
representation of the geological environment (Guo et al., 2025; Liu et al., 2020; Wang et al., 2024).
Second, deep learning models have been successfully applied across multiple scales, ranging from
large-scale landslide susceptibility mapping with convolutional neural networks (CNNs) to
real-time slope deformation monitoring with recurrent neural networks (RNNs) (Azarafza et al.,
2021; Soni et al., 2025; Xie et al., 2024; Zhao et al., 2024). Despite these advances, the field
continues to face critical challenges that will shape its future trajectory. The main challenges
include the scarcity of high-quality, well-annotated landslide datasets; limited generalization and
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transferability of models across diverse geological settings; and the inherent “black box” nature of
deep learning, which undermines interpretability and trust in high-stakes decision-making contexts.
Consequently, future research is expected to place greater emphasis on integrating physical
knowledge with data-driven approaches, thereby advancing the field from traditional, reactive
post-disaster responses toward intelligent, proactive pre-disaster risk management.

Newly Added References

Azarafza M, Azarafza M, Akgiin H, Atkinson PM, Derakhshani R. Deep learning-based landslide susceptibility
mapping. Scientific reports. 2021 Dec 16;11(1):24112. doi:10.1038/s41598-021-03585-1.

Guo D, Yang X, Peng P, Zhu L, He H. The intelligent fault identification method based on multi-source
information fusion and deep learning. Scientific Reports. 2025 Feb 24;15(1):6643.
doi:10.1038/s41598-025-90823-5.

Liu Y, Xu C, Huang B, Ren X, Liu C, Hu B, Chen Z. Landslide displacement prediction based on multi-source
data fusion and sensitivity states. Engineering Geology. 2020 Jun 20; 271:105608.
doi:10.1016/j.enggeo.2020.105608.

Soni R, Alam MS, Vishwakarma GK. Prediction of InSAR deformation time-series using improved LSTM deep
learning model. Scientific Reports. 2025 Feb 13;15(1):5333. doi:10.1038/s41598-024-83084-1.

Wang X, Wang D, Liu C, Zhang M, Xu L, Sun T, Li W, Cheng S, Dong J. Refined Intelligent Landslide
Identification Based on Multi-Source Information Fusion. Remote Sensing. 2024 Sep 1;16(17).
do0i:10.3390/rs16173119.

Xie Y, Meng X, Wang J, Li H, Lu X, Ding J, Jia Y, Yang Y. Enhancing GNSS deformation monitoring
forecasting with a combined VMD-CNN-LSTM deep learning model. Remote Sensing. 2024 May
16;16(10):1767. doi:10.3390/rs16101767.

Zhao Z, Chen T, Dou J, Liu G, Plaza A. Landslide susceptibility mapping considering landslide local-global

features based on CNN and transformer. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing. 2024 Mar 19; 17:7475-89. doi:10.1109/JSTARS.2024.3379350.

Comment #9:
8. Section 2.1.1: T would recommend the section on SAR also discuss NISAR. This is quite
timely; the satellite just launched, is the most expensive earth-imaging satellite ever, and part of
its mission is to monitor and better understand natural processes on Earth. Further, the authors
should mention that another benefit of SAR is that it can image Earth regardless of illumination

(ie day or night) and weather conditions (eg cloudy), which is not true of optical remote sensing.

Response:

- Thank you for your excellent and constructive suggestions. We fully agree that discussing the
recently launched NISAR mission is highly timely and relevant for our review, as it represents a
significant advancement in SAR for Earth observation. We also appreciate the comment

regarding the all-weather capability of SAR, which is indeed a critical advantage over optical
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imaging and we apologize for this omission in our original manuscript.
- According to your reasonable suggestion, we have revised the relevant content. (Please see

revised Subsection 2.2.1 for details).

Original Description in Subsection 2.1.1

SAR is an active microwave remote sensing system. It is not only capable of acquiring data
on demand by actively emitting microwave signals but also facilitates partial penetration of
vegetation cover through its longer wavelength bands (such as the L-band), thereby allowing the
retrieval of surface deformation information beneath vegetated areas. The time series data provided
by SAR can serve as input for deep learning models, allowing these models to be trained to
identify long-term patterns of terrain change. Continuous monitoring of potential landslide areas is
crucial, and SAR is widely employed in high-risk environments.

Revised Description in Subsection 2.1.1

SAR is an active microwave remote sensing system. It is not only capable of acquiring data
on demand by actively emitting microwave signals but also facilitates partial penetration of
vegetation cover through its longer wavelength bands (such as the L-band), thereby allowing the
retrieval of surface deformation information beneath vegetated areas.

A critical operational advantage of SAR lies in its capacity to image regardless of
illumination (day or night) and weather conditions (e.g., cloud cover) (Koukiou, 2024). The
continuous, unimpeded time series data this provides is essential for serving as input to deep
learning models, allowing these models to be trained to identify long-term patterns of terrain
change. For this reason, SAR is widely employed for the crucial task of continuous monitoring in
high-risk environments, where cloud cover and the timing of a disaster are unpredictable.

Notably, the NASA-ISRO SAR Mission (NISAR), jointly developed by the National
Aeronautics and Space Administration (NASA) and the Indian Space Research Organisation
(ISRO), was successfully launched in 2025 (ISRO, 2025; NASA Science, 2025). The satellite
carries both L-band and S-band SAR systems, enabling more precise and frequent measurements
of surface deformation. With a revisit period of approximately 12 days, it delivers globally
consistent coverage with a balanced spatial and temporal resolution. This capability provides
researchers with abundant and continuous observations, supporting large-scale, high

spatiotemporal resolution landslide early detection and dynamic monitoring.
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ISRO (2025). NISAR — NASA-ISRO Synthetic Aperture Radar Mission. Indian Space Research Organisation.

Koukiou, G., 2024. SAR Features and Techniques for Urban Planning—A Review. Remote Sensing, 16(11),

NASA Science (2025). Mission overview — NASA-ISRO Synthetic Aperture Radar (NISAR). National

Newly Added References

Retrieved October 26, 2025, from https://www.isro.gov.in/Mission GSLVF16 NISAR Home.html.
p.1923. doi:10.3390/rs16111923.

Aeronautics and Space Administration. Retrieved October 26, 2025, from

https://science.nasa.gov/mission/nisar/mission-overview/.

Comment #10:
9. Section 2.1.2 would benefit from more citations to previous work. In particular, it needs more
citations to support its statements. This also benefits readers who want to learn more. For
example "Its application in geological hazard investigations dates back to the 1970s" and
"currently capable of achieving spatial resolutions as fine as 0.3 meters or better" are both claims

that have no supporting citation.

Response:
Thank you for your valuable comment! We agree entirely that providing appropriate citations
strengthens the arguments in this section and provides valuable resources for readers. We have
now carefully revised Subsection 2.1.2 and added several key references to support the claims,

particularly the two specific examples mentioned by you. (Please see new Subsection 2.1.2 for

details).

Original Description in Subsection 2.1.2

Optical remote sensing refers to the acquisition of surface information through sensors that
measure reflected solar radiation. Its application in geological hazard investigations dates back to
the 1970s.

Optical remote sensing offers high resolution, currently capable of achieving spatial
resolutions as fine as 0.3 meters or better. In potential landslide identification, it not only facilitates
the retrieval of detailed surface textures and color characteristics using rich spectral data but also
enables the direct identification of morphological features and object contours via visual
interpretation of imagery (Cheng and Han, 2016; Li et al., 2022b).

Landslide formation typically follows a progressive process from deformation to failure,
accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized
collapses. These indicators exhibit distinct spectral signatures in optical imagery compared to their
surroundings, enabling both manual interpretation and automated detection.

In vegetated mountainous regions, surface vegetation often undergoes detectable changes
before a landslide event. Optical remote sensing leverages multispectral data, particularly red and
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https://www.isro.gov.in/Mission_GSLVF16_NISAR_Home.html
https://science.nasa.gov/mission/nisar/mission-overview/

near-infrared bands, to monitor vegetation health and identify potential landslide zones.
Furthermore, the calculation of the normalized difference vegetation index (NDVI) facilitates the
evaluation of vegetation health in potential landslide regions, providing critical insights into
potential landslide precursors (Verrelst et al., 2015)

Revised Description in Subsection 2.1.2

Optical remote sensing refers to the acquisition of surface information through sensors that
measure reflected solar radiation. Its application in geological hazard investigations dates back to
the 1970s (Fu et al., 2024; Liu and Wu, 2016).

Optical remote sensing offers high resolution, currently capable of achieving spatial
resolutions as fine as 0.3 meters or better. For example, Maxar’s WorldView-3 delivers 0.31 m
panchromatic imagery (Hu et al., 2016; Longbotham et al., 2014), while India’s Cartosat-3 satellite
achieves panchromatic imagery with a resolution of up to 0.25 m (Gupta et al., 2024). In potential
landslide identification, it not only facilitates the retrieval of detailed surface textures and color
characteristics using rich spectral data but also enables the direct identification of morphological
features and object contours via visual interpretation of imagery (Cheng and Han, 2016; Li et al.,
2022b; Ma and Wang, 2023).

Landslide formation typically follows a progressive process from deformation to failure,
accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized
collapses. These indicators exhibit distinct spectral signatures in optical imagery compared to their
surroundings, enabling both manual interpretation and automated detection.

In vegetated mountainous regions, surface vegetation often undergoes detectable changes
before a landslide event. Optical remote sensing leverages multispectral data, particularly red and
near-infrared bands, to monitor vegetation health and identify potential landslide zones (Coluzzi et
al., 2025). Furthermore, the calculation of the normalized difference vegetation index (NDVI)
facilitates the evaluation of vegetation health in potential landslide regions, providing critical
insights into potential landslide precursors (Verrelst et al., 2015).

Newly Added References

Coluzzi R, Perrone A, Samela C, Imbrenda V, Manfreda S, Pace L, Lanfredi M. Rapid landslide detection from
free optical satellite imagery using a robust change detection technique. Scientific Reports. 2025 Feb
8;15(1):4697. doi:10.1038/s41598-025-89542-8.

Fu S, de Jong SM, Hou X, de Vries J, Deijns A, de Haas T. A landslide dating framework using a combination of
Sentinel-1 SAR and-2 optical imagery. Engineering Geology. 2024 Feb 1; 329:107388. doi:
10.1016/j.enggeo.2023.107388.

Gupta A, Paul S, Bhattacharya A, Jain P. A framework for realistic paired dataset generation for deep learning
based restoration of satellite images. InNIGARSS 2024-2024 IEEE International Geoscience and Remote
Sensing Symposium 2024 Jul 7 (pp. 6997-7002). IEEE. doi:10.1109/IGARSS53475.2024.10640440.

Hu F, Gao XM, Li GY, Li M. DEM extraction from worldview-3 stereo-images and accuracy evaluation. The
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2016 Jun
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3;41:327-32. doi:10.5194/isprs-archives-XLI-B1-327-2016.

Liu Y, Wu L. Geological disaster recognition on optical remote sensing images using deep learning. Procedia
Computer Science. 2016 Jan 1; 91:566-75. doi:10.1016/j.procs.2016.07.144.

Longbotham N, Pacifici F, Baugh B, Camps-Valls G. Prelaunch assessment of worldview-3 information content.
In2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS) 2014 Jun 24 (pp. 1-4). IEEE. doi:10.1109/WHISPERS.2014.8077566.

Ma H, Wang F. Factors controlling the formation and movement of clustered shallow landslides triggered by the
extreme rainstorm in July 2023 in Beijing, China. Geomorphology. 2025 Jun 1; 478:109728. doi:
10.1016/j.geomorph.2025.109728.

Comment #11:
10. Section 2.1.2: I would recommend more detailed discussion of multi- and hyper-spectral
images and their application to landslides. You briefly mention it but I feel that more discussion

is warranted given their prevalence in earth monitoring (especially via deep learning).

Response:

- We are grateful to you for this excellent suggestion. We completely agree that a more in-depth
discussion on multi- and hyperspectral imagery is crucial, especially given their growing
importance in landslide monitoring and the role of deep learning in automating their analysis.
This expansion undoubtedly strengthens the manuscript and provides readers with a more
comprehensive overview.

- In response to this comment, we have significantly expanded Subsection 2.1.2 by adding a
dedicated paragraph that further explains the characteristics and advantages of multi- and
hyperspectral data and their applications in traditional machine learning and deep learning

approaches (Please see new Subsection 2.1.2 for details).

Original Description in Subsection 2.1.2

In vegetated mountainous regions, surface vegetation often undergoes detectable changes
before a landslide event. Optical remote sensing leverages multispectral data, particularly red and
near-infrared bands, to monitor vegetation health and identify potential landslide zones.
Furthermore, the calculation of the normalized difference vegetation index (NDVI) facilitates the
evaluation of vegetation health in potential landslide regions, providing critical insights into
potential landslide precursors (Verrelst et al., 2015).

Revised Description in Subsection 2.1.2

In vegetated mountainous regions, surface vegetation often undergoes detectable changes
before a landslide event. Optical remote sensing leverages multispectral data, particularly red and
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near-infrared bands, to monitor vegetation health and identify potential landslide zones.
Furthermore, the calculation of the normalized difference vegetation index (NDVI) facilitates the
evaluation of vegetation health in potential landslide regions, providing critical insights into
potential landslide precursors (Verrelst et al., 2015).

However, the broad spectral bands of multispectral sensors limit their ability to detect more
subtle, diagnostically specific precursory signals. The advancement beyond broad-band
multispectral imaging to hyperspectral imaging has opened new avenues for landslide precursor
detection (Kilgore and Restrepo, 2025; Ye et al., 2019). Hyperspectral sensors capture hundreds of
contiguous spectral bands, enabling the identification of specific mineralogies (e.g., expansive
clays like smectite that influence slope stability) and subtle geochemical alterations on slope
surfaces. For instance, the shifting absorption features in the short-wave infrared (SWIR) region
can signal changes in soil water content and mineral composition that often precede failure
(Thimsen et al., 2017).

The integration of these rich spectral datasets with deep learning architectures has
significantly advanced automated landslide analysis (Huang et al., 2022; Shahabi et al., 2021).
These models excel at learning complex patterns from high-dimensional spectral-spatial
information, enabling highly accurate detection of landslide scars and even precursory features like
cracks and seepage zones that are otherwise challenging to identify.

Newly Added References

Huang L, Luo R, Liu X, Hao X. Spectral imaging with deep learning. Light: Science & Applications. 2022 Mar
16;11(1):61. doi:10.1038/s41377-022-00743-6.

Kilgore A, Restrepo C. Integrating Hyperspectral Imaging, Plant Functional Diversity, and Soil-Lithology to
Uncover Mountainscape Disturbance Dynamics Induced by Landsliding. Remote Sensing. 2025 May
22;17(11):1806. doi:10.3390/rs17111806.

Shahabi H, Rahimzad M, Tavakkoli Piralilou S, Ghorbanzadeh O, Homayouni S, Blaschke T, Lim S, Ghamisi P.
Unsupervised deep learning for landslide detection from multispectral sentinel-2 imagery. Remote Sensing.
2021 Nov 20;13(22):4698. doi:10.3390/rs13224698.

Thimsen E, Sadtler B, Berezin MY. Shortwave-infrared (SWIR) emitters for biological imaging: a review of
challenges and opportunities. Nanophotonics. 2017 Aug 28;6(5):1043-54. doi:10.1515/nanoph-2017-0039.

Ye C, LiY, Cui P, Liang L, Pirasteh S, Marcato J, Goncalves WN, Li J. Landslide detection of hyperspectral
remote sensing data based on deep learning with constrains. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing. 2019 Nov 25;12(12):5047-60.
doi:10.1109/JSTARS.2019.2951725.

Comment #12:
11. Section 2 would benefit from a more discussion comparing and contrasting these different
data sources. Lines 173-176 do a good job of this with SAR and GB-SAR. More discussion

similar to this for other methods would improve this section, in my opinion.
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Response:
- We sincerely appreciate your constructive and helpful comments!
- Your suggestion regarding enhancing the discussion by comparing and contrasting the different
data sources in Section 2 is highly valuable and crucial for improving the depth and clarity of this
section. We fully agree with your assessment and have thoroughly revised the manuscript based

on your guidance.

- Following your suggestions, we have enhanced Section 2 by adding comparative discussions at
three main levels:

- (1) Added comparison within Subsection 2.1: A new paragraph has been added following the
descriptions of space-borne SAR and optical remote sensing. This paragraph explicitly compares
and contrasts these two technologies in terms of their operating principles, key strengths,
limitations, and their complementary roles in regional-scale landslide identification.

- (2) Added comparison within Subsection 2.2: A new comparative summary paragraph has been
added after the introductions of airborne LiDAR and UAV. This section now contrasts the
applicability, cost-effectiveness, and operational complexity of airborne LiDAR and UAVs,
framing them as a bridge between satellite and ground-based data.

- (3) Enhanced comparison within Subsection 2.3: The discussion comparing GB-SAR, TLS, and
ground-based sensor devices has been significantly deepened.

- Please see the revised Section 2 for details.

- We sincerely appreciate the time and effort you dedicated to reviewing our manuscript and
providing these constructive comments, which have significantly improved the quality of our

paper.

Original Description in Section 2

2.1 Satellite Observation Data
2.1.1 Space-borne SAR

Landslide formation typically follows a progressive process from deformation to failure,
accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized
collapses. These indicators exhibit distinct spectral signatures in optical imagery compared to their
surroundings, enabling both manual interpretation and automated detection.

In vegetated mountainous regions, surface vegetation often undergoes detectable changes
before a landslide event. Optical remote sensing leverages multispectral data, particularly red and
near-infrared bands, to monitor vegetation health and identify potential landslide zones.
Furthermore, the calculation of the normalized difference vegetation index (NDVI) facilitates the
evaluation of vegetation health in potential landslide regions, providing critical insights into
potential landslide precursors (Verrelst et al., 2015).

2.2 Airborne Remote Sensing Data
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2.2.1 Airborne Light Detection and Ranging (LiDAR)

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial
photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on
UAVs are able to capture the subtle cracks on the surface of the mountain.

These cracks may be early signs of a landslide (Sun et al., 2024a). By conducting a
comparative analysis of the images taken at different times, the development and changes of the
cracks can be monitored, including the increase in the length, width and depth of the cracks, as
well as the changes in the crack orientation. In some mountainous areas or valleys, there may be a
large number of loose accumulations. These accumulations may trigger landslides under specific
conditions. Aerial photography by UAVs can clearly identify information such as the distribution
range, accumulation quantity and accumulation shape of these loose accumulations, and assess
their potential threats to the surrounding environment.

When equipped with LiDAR sensors, UAVs can effectively remove vegetation from the data.
Then, assisting researchers to reveal landslide boundaries, crack patterns, and other deformation
features hidden beneath vegetation cover. This integrated approach combines the strengths of
photogrammetry and LiDAR, allowing for rapid deployment and targeted area monitoring while
mitigating the challenges posed by vegetation cover in landslide detection and assessment.

After extreme weather events such as heavy rainstorms or geological events like earthquakes
occur, the stability of the mountain may be affected, making it prone to triggering geological
hazards. UAVs even can quickly conduct aerial monitoring of the relevant areas after extreme
weather.

2.3 Ground-based Observation Data
2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR)

By quickly and massively collecting spatial point position information, TLS can automatically
splice and rapidly obtain the appearance of the measured object. It can be used to construct
high-precision surface models and appearance models of buildings and structures. The 3D model
can display the shape and structure of the mountain and the detailed features of the ground surface
from different angles and in all directions (Zhou et al., 2024), enabling geological experts and
engineers to have a more intuitive understanding of the overall situation of the landslide area. For
example, the cracks in the mountain, the loose accumulations, and the degree of weathering of the
rocks can be clearly seen, providing richer information for the identification of potential landslide
hazards.

Currently, TLS is commonly used in critical areas requiring localized precision. For historical
landslide masses, it captures reactivation indicators such as rear tensile cracks and frontal bulging,
with data input into anomaly detection models to identify reactivation signals.
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Revised Description in Section 2

2.1 Satellite Observation Data
2.1.1 Space-borne SAR

Landslide formation typically follows a progressive process from deformation to failure,
accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized
collapses. These indicators exhibit distinct spectral signatures in optical imagery compared to their
surroundings, enabling both manual interpretation and automated detection.

In vegetated mountainous regions, surface vegetation often undergoes detectable changes
before a landslide event. Optical remote sensing leverages multispectral data, particularly red and
near-infrared bands, to monitor vegetation health and identify potential landslide zones (Fiorucci et
al., 2018). Furthermore, the calculation of the normalized difference vegetation index (NDVI)
facilitates the evaluation of vegetation health in potential landslide regions, providing critical
insights into potential landslide precursors (Verrelst et al., 2015).

While both space-borne SAR and optical remote sensing are pivotal for large-area landslide
screening, they offer complementary capabilities and have distinct limitations. Optical remote
sensing provides intuitive visual interpretation of geomorphological features but is rendered
useless by cloud cover and darkness. In contrast, space-borne SAR, with its all-weather,
day-and-night imaging capability, excels in detecting millimeter-to-centimeter-scale surface
deformation through InSAR techniques, which is a direct precursor to landslide failure. However,
InSAR performance can be degraded in heavily vegetated areas due to temporal decorrelation and
in steep terrain due to geometric distortions (Lin et al., 2022; Yan et al., 2024), areas where optical
stereo imaging for DEM generation might be less affected. Therefore, the integration of
SAR-derived deformation maps and optical-based geomorphological maps is considered a best

practice for regional-scale landslide inventory mapping and preliminary hazard assessment (Xun et
al., 2022).

2.2 Airborne Remote Sensing Data

2.2.1 Airborne Light Detection and Ranging (LiDAR)

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial
photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on
UAVs are able to capture the subtle cracks on the surface of the mountain.

These cracks may be early signs of a landslide (Sun et al.,, 2024a). By conducting a
comparative analysis of the images taken at different times, the development and changes of the
cracks can be monitored, including the increase in the length, width and depth of the cracks, as
well as the changes in the crack orientation. In some mountainous areas or valleys, there may be a
large number of loose accumulations. These accumulations may trigger landslides under specific
conditions. Aerial photography by UAVs can clearly identify information such as the distribution
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range, accumulation quantity and accumulation shape of these loose accumulations, and assess
their potential threats to the surrounding environment.

Airborne platforms bridge the gap between satellite and ground-based observations. Airborne
LiDAR is unparalleled in generating high-precision DEM, revealing concealed paleo-landslides
and subtle topographic features critical for hazard mapping. However, its deployment is costly and
logistically complex. UAVs, as a flexible and cost-effective alternative, have democratized
high-resolution data acquisition. They can be equipped with various sensors (e.g., optical,
multispectral, and even lightweight LiDAR) to conduct rapid response surveys following triggering
events such as earthquakes or heavy rainfall (Han et al., 2023). While UAV-derived models have
ultra-high resolution, their coverage is limited per sortie compared to airborne campaigns. The
choice between them often involves a trade-off between coverage, cost, operational flexibility, and
the specific requirement for vegetation penetration.

2.3 Ground-based Observation Data
2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR)

By quickly and massively collecting spatial point position information, TLS can automatically
splice and rapidly obtain the appearance of the measured object. It can be used to construct
high-precision surface models and appearance models of buildings and structures. The 3D model
can display the shape and structure of the mountain and the detailed features of the ground surface
from different angles and in all directions (Zhou et al., 2024), enabling geological experts and
engineers to have a more intuitive understanding of the overall situation of the landslide area. For
example, the cracks in the mountain, the loose accumulations, and the degree of weathering of the
rocks can be clearly seen, providing richer information for the identification of potential landslide
hazards.

Currently, TLS is commonly used in critical areas requiring localized precision (Abellan et al.,
2009; Teng et al., 2022). For historical landslide masses, it captures reactivation indicators such as
rear tensile cracks and frontal bulging, with data input into anomaly detection models to identify
reactivation signals.

Ground-based techniques provide the highest precision for monitoring a specific slope of
interest. GB-SAR and TLS are both non-contact remote sensing methods, but they operate on
different principles. GB-SAR offers continuous, all-weather, mm-level deformation monitoring
over a large area (several km?) from a single station, making it ideal for early warning. Its
drawback is the need for a stable, opposing installation point with a clear line-of-sight (Monserrat
et al., 2013). TLS, on the other hand, provides mm-to-cm-level 3D point clouds of the slope
surface, excellent for quantifying volume changes and detailed geometric changes. However, it is
typically used for periodic surveys rather than continuous monitoring and has occlusion shadows
(Huang et al., 2019).

Newly Added References
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integrating an optical remote sensing image with an InSAR-derived deformation map. Remote Sensing,
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Comment #13:
12. L167: "However, due to the influence of various factors, the identification results may not

always be fully accurate, leading to potential misjudgments." As a review article, your job is to

tell the reader what the “various factors” are! You should elaborate and cite sources about what

can cause inaccuracies in identification.

Response:
- We sincerely appreciate your constructive and helpful comments! We agree that a more detailed
explanation of the factors affecting identification accuracy is necessary in a review paper. We
have now elaborated on the specific factors that can lead to inaccuracies in landslide
identification using remote sensing and have supported these points with relevant literature
citations. The revised text now reads. Please see the revised Subsection 2.3 for all details.

Thanks.
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Original Description in Subsection 2.3

Satellite observation and airborne remote sensing are mainly employed for identifying
potential landslides based on surface morphology. However, due to the influence of various
factors, the identification results may not always be fully accurate, leading to potential
misjudgments. Therefore, the potential landslide points identified through remote sensing still
necessitate field investigations by researchers for verification, differentiation, confirmation, or
exclusion of hazards. In some cases, additional. on-site observation and monitoring methods are
needed for accurate assessment. Commonly used ground-based monitoring methods include
ground-based SAR, 3D laser scanners and various sensor devices deployed or installed on the
ground.

Revised Description in Subsection 2.3

Satellite observation and airborne remote sensing are mainly employed for identifying
potential landslides based on surface morphology. However, these approaches are often affected by
vegetation cover, viewing geometry, and atmospheric noise, which may lead to misclassification or
omission (Almalki et al., 2022; Dubovik et al., 2021). Therefore, the potential landslide points
identified through remote sensing still necessitate field investigations by researchers for
verification, differentiation, confirmation, or exclusion of hazards. In some cases, additional.
on-site observation and monitoring methods are needed for accurate assessment. Commonly used
ground-based monitoring methods include ground-based SAR, 3D laser scanners and various
sensor devices deployed or installed on the ground.

Newly Added References

Almalki R, Khaki M, Saco PM, Rodriguez JF. Monitoring and mapping vegetation cover changes in arid and
semi-arid areas using remote sensing technology: A review. Remote Sensing. 2022 Oct 14;14(20):5143.
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Dubovik O, Schuster GL, Xu F, Hu Y, Bosch H, Landgraf J, Li Z. Grand challenges in satellite remote sensing.
Frontiers in Remote Sensing. 2021 Feb 24; 2:619818. doi:10.3389/frsen.2021.619818.

Comment #14:
13. Figure 2(b) and 2(c) are nice illustrations. However, it is not clear to me Figure 2(a) is trying

to convey, particularly the top and bottom panels.

Response:
- Thank you for pointing this out! We agree that Figure 2(a) was not sufficiently clear in its current
form. Our intention was to illustrate three typical CNN-based applications in landslide

recognition: (i) feature extraction, where CNNs learn to highlight potential landslide-prone areas
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from raw imagery; (ii) semantic segmentation, where CNNs classify each pixel as landslide or
non-landslide; and (iii) change detection, where pre- and post-event images are compared to
detect newly emerged or expanded landslides.

- To avoid potential misunderstanding, we have revised Figure 2(a) to consistently display the
input (pre-identification image) and output (post-identification result) representations. Please see

new Figure 2.

Original Figure 2
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Figure 2. The role of deep learning models in image analysis and processing. (a) Three commonly
used applications of CNNs in image processing for potential landslide identification. (b) Schematic
of a basic CNN architecture. A conventional CNN typically comprises stacked convolutional layers,
pooling layers, and fully connected layers. (c) Comparative schematic of ResNet and DenseNet
architectures. In contrast to ResNet, which combines features through summation before passing

them to subsequent layers, DenseNet integrates features via channelwise concatenation.
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Revised Figure 2
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Figure 2. The role of deep learning models in image analysis and processing. (a) Comparison of
landslide images before and after identification. (b) Schematic of a basic CNN architecture. A
conventional CNN typically comprises stacked convolutional layers, pooling layers, and fully
connected layers. (c) Comparative schematic of ResNet and DenseNet architectures. In contrast to
ResNet, which combines features through summation before passing them to subsequent layers,

DenseNet integrates features via channelwise concatenation.

Comment #15:
14. With regards to data, are there any benchmark datasets for landslide identification? If so,
which models/methods are state-of-the-art on these datasets? this would be worthwhile to discuss,
and if not, a strong recommendation to the community would be to construct such benchmark
datasets to encourage further deep learning research in the area.
33. Section 5.1 makes good points, but the concept of limited training data should be discussed

earlier, for example when discussing data in section 2.

Response:

- We sincerely appreciate your two highly insightful comments! You have correctly highlighted
that the issue of "data" represents one of the core challenges in this field, and we acknowledge
that our discussion of this aspect could indeed be presented earlier and in a more systematic
manner. 14, concerning benchmark datasets, is particularly critical, while 33 has been

instrumental in helping us refine the logical structure of the manuscript.
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To address both comments simultaneously, we have decided to relocate the discussion on limited
training data from Subsection 5.1 to the newly added Subsection 2.4. In Subsection 2.4, we also
introduce the commonly used datasets for landslide identification. In addition, in Section S and
Subsection 6.1, we will strongly recommend that the research community collaboratively
establish standardized benchmark datasets to further advance deep learning research in this field.
The revisions are as follows:

Several benchmark datasets for landslide detection have recently been released and are now
widely used in the community. Representative examples include the CAS Landslide Dataset,
Landslide4Sense (L4S) benchmark, Diverse Mountainous Landslide Dataset (DMLD) and
slope-unit-based benchmark datasets.

On these datasets, state-of-the-art methods typically include advanced segmentation architectures
such as Transformer-based models (e.g., Swin Transformer, SegFormer) as well as improved
U-Net variants, often combined with multi-source data fusion strategies and self-training
techniques.

While these datasets represent major progress, remaining gaps include (1) broader geographical

diversity with held-out test regions, (2) standardized instance-level annotations (polygons vs.

coarse masks), and (3) common evaluation protocols (splits and metrics).

Added Description in Subsection 2.4

2.4 Summary of Data Source for Potential Landslide Identification

In summary, no single data source is sufficient for a comprehensive landslide hazard
identification framework. Regional-scale satellite data, particularly InSAR, is optimal for the early
detection of pre-landslide deformations over vast areas. Airborne platforms, such as UAVs, then
provide high-resolution optical and LiDAR data to characterize the precise geometry and activity
of identified potential landslides. Finally, ground-based and in-situ sensors enable site-specific,
real-time monitoring of high-risk slopes, validating remote sensing findings and supporting early
warning systems. The strategic integration of these multi-platform data is crucial for transitioning
from regional screening to mechanistic understanding and risk mitigation.

Beyond these general data modalities, recent years have also witnessed the emergence of
benchmark datasets that serve as standardized testbeds for developing and evaluating deep
learning methods in landslide identification. Such datasets are essential for ensuring
reproducibility, enabling fair comparison across models, and accelerating methodological
advances. Representative examples include the CAS Landslide Dataset, a large-scale, multi-sensor
dataset explicitly designed for deep-learning-based landslide mapping (Xu et al., 2024); the
Landslide4Sense (L4S) benchmark, developed within an international competition, which provides
multisource satellite image patches (Ghorbanzadeh et al., 2022); and the Diverse Mountainous
Landslide Dataset (DMLD), which emphasizes high-resolution instances from complex
mountainous terrains (Chen et al., 2024). In addition, slope-unit-based benchmark datasets have
been constructed to support susceptibility mapping and regional-scale comparisons (Martinello et
al., 2021).
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Overall, these datasets serve as valuable resources for pixel-level segmentation and
slope-unit-based susceptibility modeling. However, in practice, the compilation of landslide
inventories faces considerable challenges, making it difficult to obtain comprehensive and accurate
records (Kong et al., 2025; Lee et al., 2018). Consequently, data scarcity remains a common issue
in landslide hazard identification, particularly in remote regions or areas with limited accessibility.
Therefore, it is necessary to further expand their geographical coverage and establish standardized
evaluation protocols.
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partitioning in landslide susceptibility mapping. Journal of Maps, 17(3), pp.152-162.
doi:10.1080/17445647.2020.1805807.

Xu, Y., Ouyang, C., Xu, Q., Wang, D., Zhao, B. and Luo, Y., 2024. Cas landslide dataset: A

large-scale and multisensor dataset for deep learning-based landslide detection. Scientific
Data, 11(1), p.12. doi:10.1038/s41597-023-02847-z.

Original Description in Section 5

S Deep Learning for Potential Landslide Identification: Challenges

5.1 Data Quality and Availability

In potential landslide identification, the performance of deep learning models is critically
dependent on both data quality and availability (Alzubaidi et al., 2023; Gaidzik and
Ramirez-Herrera, 2021; Whang et al., 2023). Low-quality or unreliable data directly impair the
models’ feature extraction capabilities, while insufficient data availability constrains their
generalization capacity and real-time monitoring efficacy (Azarafza et al., 2021; Xiao and Zhang,
2023).

In reality, the collection of landslide inventories faces many difficulties and it is hard to
obtain them comprehensively and accurately. Thus, data scarcity is a common problem in the
identification of potential landslide, especially in remote areas or regions with limited data
accessibility. In such cases, deep learning models may suffer from overfitting or insufficient
generalization ability due to a lack of samples (Kong et al., 2025; Lee et al., 2018). Although there
are large-scale datasets such as the CAS landslide dataset, they are still insufficient compared with
the data requirements of deep learning models (Xu et al., 2024).

In the natural environment, non-landslide states are the norm, while the landslide state is
relatively rare. This leads to the data collected mainly consisting of normal geological conditions,
with much less data representing potential landslides. Such a severe skewness in the class
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distribution results in a serious imbalance in the data, that is, there is a huge difference in quantity
between the minority class (landslide samples) and the majority class (non-landslide samples)
(Jiang et al., 2024). Gupta and Shukla (2023) demonstrated that this data imbalance can cause
learning algorithms to be biased towards the majority class, perform poorly on the minority class.
This bias impedes the predictive ability of the learning algorithms, and ultimately lead to the final
model’s poor performance in identifying and predicting the minority class of landslide samples.

Since the probability values output by the model lack physical significance, they cannot
reflect geological uncertainties. In practical applications, it often happens that the model’s
prediction of high-risk areas may not distinguish between the "uncertainty caused by data absence"
and the "risk of the geological conditions themselves". Even geological experts struggle to verify
the rationality of these features, thereby hindering the adoption of model results in practical
engineering applications.

In addition, there is also a certain contradiction between the data-driven feature learning
exhibited by deep learning models and the complexity of the real world. This is because the
models tend to capture the statistical patterns on the surface of the data rather than the physical
mechanisms that are universal across different fields. However, the natural environment is
characterized by infinite diversity, dynamism, and uncertainty. In the identification of potential
landslides, this may lead to the need for repeatedly investing a large amount of annotation costs
when deploying across regions and different sensors.

Revised Description in Section 5

S Deep Learning for Potential Landslide Identification: Challenges

5.1 Data Quality and Availability

In potential landslide identification, the performance of deep learning models is critically
dependent on both data quality and availability (Alzubaidi et al., 2023; Gaidzik and
Ramirez-Herrera, 2021; Whang et al., 2023). Low-quality or unreliable data directly impair the
models’ feature extraction capabilities, while insufficient data availability constrains their
generalization capacity and real-time monitoring efficacy (Azarafza et al., 2021; Xiao and Zhang,
2023).

In the natural environment, non-landslide states are the norm, while the landslide state is
relatively rare. This leads to the data collected mainly consisting of normal geological conditions,
with much less data representing potential landslides. Such a severe skewness in the class
distribution results in a serious imbalance in the data, that is, there is a huge difference in quantity
between the minority class (landslide samples) and the majority class (non-landslide samples)
(Jiang et al., 2024). Gupta and Shukla (2023) demonstrated that this data imbalance can cause
learning algorithms to be biased towards the majority class, perform poorly on the minority class.
This bias impedes the predictive ability of the learning algorithms, and ultimately lead to the final
model’s poor performance in identifying and predicting the minority class of landslide samples.
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5.2 Limitations of Deep Learning Models

Since the probability values output by the model lack physical significance, they cannot
reflect geological uncertainties. In practical applications, it often happens that the model’s
prediction of high-risk areas may not distinguish between the "uncertainty caused by data absence"
and the "risk of the geological conditions themselves" (Achu et al., 2023; Feng et al., 2022). Even
geological experts struggle to verify the rationality of these features, thereby hindering the
adoption of model results in practical engineering applications.

There is also a certain contradiction between the data-driven feature learning exhibited by
deep learning models and the complexity of the real world. This is because the models tend to
capture the statistical patterns on the surface of the data rather than the physical mechanisms that
are universal across different fields. However, the natural environment is characterized by infinite
diversity, dynamism, and uncertainty. In the identification of potential landslides, this may lead to
the need for repeatedly investing a large amount of annotation costs when deploying across
regions and different sensors.

In addition, although various types of data are available, the absence of standardized datasets
with high-quality annotations has severely hindered the development and fair comparison of deep
learning models (Fang et al., 2024). Existing models are often trained and evaluated on
independent, task-specific datasets, which prevents an objective assessment of state-of-the-art
performance and limits our ability to evaluate their true generalization capacity across different

regions and triggering factors.
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Original Description in Subsection 6.1

The combination of multi-source data fusion and deep learning is essentially a deep coupling
of data advantages and model advantages (Chen et al., 2023a; Zheng et al., 2021). The former fills
information gaps and reduces uncertainties by integrating diverse heterogeneous data, while the
latter unleashes the potential of data through automated feature engineering and nonlinear
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modeling. This integration not only improves the accuracy of potential landslide identification but
also drives the paradigm shift of geological hazard monitoring from experience-driven to data
intelligence-driven. In the future, with the development of cross-modal pre-trained models and
edge intelligence technologies, the collaboration between multi-source data fusion and deep
learning will demonstrate greater application value in fields such as real-time early warning and
hazard simulation, becoming a core technological engine for building an integrated
"aerial-space-ground-subsurface" monitoring system.

Revised Description in Subsection 6.1

The combination of multi-source data fusion and deep learning is essentially a deep coupling
of data advantages and model advantages (Chen et al., 2023a; Zheng et al., 2021). The former fills
information gaps and reduces uncertainties by integrating diverse heterogeneous data, while the
latter unleashes the potential of data through automated feature engineering and nonlinear
modeling. This integration not only improves the accuracy of potential landslide identification but
also drives the paradigm shift of geological hazard monitoring from experience-driven to data
intelligence-driven. In the future, with the development of cross-modal pre-trained models and
edge intelligence technologies, the collaboration between multi-source data fusion and deep
learning will demonstrate greater application value in fields such as real-time early warning and
hazard simulation, becoming a core technological engine for building an integrated
"aerial-space-ground-subsurface" monitoring system.

To truly leverage the integrated monitoring method, we strongly advocate for the
community-driven development of a benchmark that intrinsically incorporates this multi-modal
philosophy. An ideal benchmark would not only include optical imagery but also co-registered
data from SAR, LiDAR, DEM, and even ground-based sensor time series, reflecting the integrated
monitoring reality. Establishing such a benchmark is the essential next step to translate our data
fusion capabilities into reliable, reproducible, and advanced Al solutions for global landslide risk
reduction.

Comment #16:
15. Throughout Section 3, when introducing a new architecture, the authors should specifically
cite the paper that introduced that architecture. This both credits the original work and provides
the reader with references to important papers. For example, ResNet should be attributed to
Kaiming He et al., GCN to Kipf and Welling, and so on.

28. L505: Should cite the original GCN paper by Kipf and Welling

Response:
- We are grateful for your constructive feedback in identifying this shortcoming, which has helped

us improve the clarity and rigor of the manuscript. We fully agree with your observation and
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apologize for the omission of these references in the original manuscript. In line with your
suggestions, we have thoroughly revised Section 3 (as well as other relevant parts of the
manuscript) and incorporated the original seminal references for all newly introduced model
architectures.

Original Description in Section 3

3 Deep Learning for Potential Landslide Identification: Models

3.1 Models for Image Analysis and Processing in Potential Landslide Identification

Convolutional neural networks (CNNs) represent the fundamental architecture in image
processing. A CNN primarily comprises convolutional layers, pooling layers, and fully connected
layers, each performing predefined functions on its input data (Kattenborn et al., 2021; Liu et al.,

2022a).

ResNet addresses these limitations by integrating residual blocks into the foundational CNN
framework (Qi et al., 2020; Yang et al., 2022). These residual blocks utilize shortcut connections
that preserve original feature information. This framework facilitates the construction of ultra-deep
networks capable of extracting high-level semantic features for landslide detection, thereby
enhancing adaptability to complex terrain classification tasks (Ullo et al., 2021).

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural
networks are based on a similar idea, which is to establish a "shortcut" between different layers.
However, the structure of DenseNet is simpler and more effective, with fewer parameters.

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable
choice (Sandric et al., 2024). Built upon deep convolutional neural networks, DeepLab employs
dilated convolutions to expand the receptive field and integrates an atrous spatial pyramid pooling

(ASPP) module to capture multi-scale contextual information.

Recurrent neural networks (RNNs) are a class of deep learning models specialized in
processing sequential data, capable of capturing temporal dependencies within input sequences
(Ngo et al., 2021; Zaremba et al., 2014). Unlike conventional feedforward neural networks, in an
RNN, each neuron not only receives the current input but also the output of the previous time step
as additional input. This structure endows the RNN with a memory mechanism.

LSTM is an enhancement of RNNs, primarily processing long sequence data. Compared to
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standard RNNs, the hidden layer architecture of LSTM is much more complex. By incorporating
memory cells and gating mechanisms, LSTM selectively propagates critical information across
multiple time steps, thereby effectively capturing long-range temporal dependencies (Landi et al.,
2021; Yu et al., 2019).

Gated recurrent unit (GRU) is a simplified version of LSTM (Chung et al., 2014; Zhang et al.,
2022b), which has fewer parameters. Due to their higher computational efficiency, GRU has

potential advantages in real-time data processing scenarios in landslide monitoring.

With the proposal and development of GANSs, researchers have introduced various enhanced
structures that are more effectively applied to potential landslide identification. For example, the
conditional GAN (cGAN) (Kim and Lee, 2020; Loey et al., 202), Pix2Pix (Qu et al., 2019), and
Wasserstein GAN (WGAN) (Wang et al., 2019).

Due to the complex non-Euclidean structural characteristics of the geological environment,
topographic data and their spatial relationships related to landslide hazards, conventional methods
such as CNNs have difficulty in handling these relationships. As a neural network architecture for
processing graph-structured data, graph neural networks (GNNs) can effectively model such
spatial relationships (Ying et al., 2018; Zeng et al., 2022). They can treat the nodes in the
geographical space (such as different geographical location points) and their connection
relationships (such as the distance between adjacent nodes, terrain undulations, etc.) as the
structure of a graph for processing.

Revised Description in Section 3

3 Deep Learning for Potential Landslide Identification: Models

3.1 Models for Image Analysis and Processing in Potential Landslide Identification

Convolutional neural networks (CNNs) represent the fundamental architecture in image
processing (LeCun et al., 1998). A CNN primarily comprises convolutional layers, pooling layers,
and fully connected layers, each performing predefined functions on its input data (Kattenborn et
al., 2021; Liu et al., 2022a).

ResNet addresses these limitations by integrating residual blocks into the foundational CNN
framework (He et al., 2016; Qi et al., 2020; Yang et al., 2022). These residual blocks utilize
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shortcut connections that preserve original feature information. This framework facilitates the
construction of ultra-deep networks capable of extracting high-level semantic features for
landslide detection, thereby enhancing adaptability to complex terrain classification tasks (Ullo et
al., 2021).

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural
networks are based on a similar idea, which is to establish a "shortcut" between different layers.
However, the structure of DenseNet is simpler and more effective, with fewer parameters.

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable
choice (Chen et al., 2017; Sandric et al., 2024). Built upon deep convolutional neural networks,
DeepLab employs dilated convolutions to expand the receptive field and integrates an atrous

spatial pyramid pooling (ASPP) module to capture multi-scale contextual information.

Recurrent neural networks (RNNs) are a class of deep learning models specialized in
processing sequential data, capable of capturing temporal dependencies within input sequences
(Elman, 1990). Unlike conventional feedforward neural networks, in an RNN, each neuron not
only receives the current input but also the output of the previous time step as additional input.
This structure endows the RNN with a memory mechanism (Ngo et al., 2021; Zaremba et al.,
2014).

LSTM is an enhancement of RNNs, primarily processing long sequence data (Hochreiter and
Schmidhuber, 1997). Compared to standard RNNs, the hidden layer architecture of LSTM is much
more complex. By incorporating memory cells and gating mechanisms, LSTM selectively
propagates critical information across multiple time steps, thereby effectively capturing long-range
temporal dependencies (Landi et al., 2021; Yu et al., 2019).

Gated recurrent unit (GRU) is a simplified version of LSTM, which has fewer parameters
(Cho et al., 2014). Due to their higher computational efficiency, GRU has potential advantages in
real-time data processing scenarios in landslide monitoring (Chung et al., 2014; Zhang et al.,
2022b).

With the proposal and development of GANSs, researchers have introduced various enhanced
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structures that are more effectively applied to potential landslide identification. For example, the
conditional GAN (cGAN) (Kim and Lee, 2020; Loey et al., 2020; Mirza et al., 2014), Pix2Pix
(Isola et al., 2017; Qu et al., 2019), and Wasserstein GAN (WGAN) (Arjovsky et al., 2017; Wang
etal., 2019).

Due to the complex non-Euclidean structural characteristics of the geological environment,
topographic data and their spatial relationships related to landslide hazards, conventional methods
such as CNNs have difficulty in handling these relationships. As a neural network architecture for
processing graph-structured data, graph neural networks (GNNs) can effectively model such
spatial relationships (Scarselli et al., 2008). They can treat the nodes in the geographical space
(such as different geographical location points) and their connection relationships (such as the
distance between adjacent nodes, terrain undulations, etc.) as the structure of a graph for
processing (Ying et al., 2018; Zeng et al., 2022).

According to the differences in message passing and aggregation methods, GNNs have
derived various variants. For example, graph convolutional network (GCN) is generated by
generalizing the convolutional operation to graph-structured data (Kipf et al., 2016; Sharma et al.,
2022; Wang et al.,, 2020a), and graph attention network (GAT) dynamically weights the
importance of neighboring nodes by introducing the attention mechanism (Velickovic et al., 2017,
Yuan et al., 2022; Zhou and Li, 2021). The emergence of these new architectures makes GNN
variants more targeted than conventional GNNs and suitable for modeling heterogeneous
relationships. Currently, they are often used for weighted analysis of the impacts of different

geographical factors on landslides.

Newly Added References

Arjovsky, M., Chintala, S. and Bottou, L., 2017, July. Wasserstein GAN. arXiv preprint arXiv:1701.07875.
doi:10.48550/arXiv.1701.07875.

Chen, L.C., Papandreou, G., Kokkinos, 1., Murphy, K. and Yuille, A.L., 2017. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions
on pattern analysis and machine intelligence, 40(4), pp.834-848. doi:10.1109/TPAMI.2017.2699184.

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y., 2014.
Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078. doi:10.48550/arXiv.1406.1078.

Elman, J.L., 1990. Finding structure in time. Cognitive science, 14(2), pp.179-211.
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He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp. 770-778). doi:10.1007/978-3-319-24574-4 28.

Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation, 9(8), pp.1735-1780.
doi:10.1162/neco.1997.9.8.1735.

Isola, P., Zhu, J.Y., Zhou, T. and Efros, A.A., 2017. Image-to-image translation with conditional adversarial
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
1125-1134). doi:10.1109/CVPR.2017.632.

Kipf, T.N., 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907. doi:10.48550/arXiv.1609.02907.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), pp.2278-2324. doi:10.1109/5.726791.

Mirza, M. and Osindero, S., 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.

doi:10.48550/arXiv.1411.1784.

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network
model. IEEE transactions on neural networks, 20(1), pp.61-80. doi: 10.1109/TNN.2008.2005605.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. and Bengio, Y., 2017. Graph attention networks.

arXiv preprint arXiv:1710.10903. doi:10.48550/arXiv.1710.10903.

Comment #17:

16. L273: What does “feature reuse” mean? Potentially rephrase or clarify.

Response:

- Thank you for pointing out the misleading part. To clarify, use the term "feature reuse" to refer to
the phenomenon where feature maps (the output of layers) from earlier in the network are
directly used as input for multiple subsequent layers. This allows the network to preserve and
leverage low-level or intermediate features throughout the depth of the network, improving
efficiency and reducing the need to re-learn redundant features.

- We apologize for the overly general statement, which may have caused confusion for readers.
Following your suggestion, we have clarified this term in the revised manuscript.

Original Description in Subsection 3.1

DenseNet is a further innovation of ResNet. Both of these neural networks are based on a
similar idea, which is to establish a "shortcut" between different layers. However, the structure of
DenseNet is simpler and more effective, with fewer parameters. In ResNet, each layer is only
connected to the previous layer, while in DenseNet, each layer is directly connected to all previous
layers, and each layer can obtain gradients from the loss function. This can optimize the
information flow and gradients of the entire network, making it easier to train and performing
better on small datasets. The structure of DenseNet can achieve better feature reuse and reduce the
number of parameters. Moreover, the layers of DenseNet are narrower than those of other deep
learning networks, making it reduce redundancy by learning with fewer feature maps. This
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architecture is suitable for the extraction of multi-scale landslide features under complex terrains,
even with limited landslide training samples.

Revised Description in Subsection 3.1

DenseNet is a further innovation of ResNet. Both of these neural networks are based on a
similar idea, which is to establish a "shortcut" between different layers. However, the structure of
DenseNet is simpler and more effective, with fewer parameters. In ResNet, each layer is only
connected to the previous layer, while in DenseNet, each layer is directly connected to all previous
layers, and each layer can obtain gradients from the loss function. This can optimize the
information flow and gradients of the entire network, making it easier to train and performing
better on small datasets. The structure of DenseNet enables more effective reuse of features,
meaning that each layer can directly access and build upon the feature maps generated by all
preceding layers instead of re-learning similar representations. This dense connectivity not only
strengthens information and gradient flow across the network but also reduces redundancy and the
total number of parameters. Moreover, the layers of DenseNet are narrower than those of other
deep learning networks, making it reduce redundancy by learning with fewer feature maps. This
architecture is suitable for the extraction of multi-scale landslide features under complex terrains,
even with limited landslide training samples.

Comment #18:
17. L276: “...even with limited landslide training samples”. This claim is not supported by a
citation. These large networks typically need a lot of training samples. Is there previous work that
successfully applied ResNet or DenseNet with limited training samples and was successful? If so,

how much training data did they use?

Response:
- We appreciate your observation regarding the insufficient justification of DenseNet/ResNet
effectiveness under limited sample conditions. We fully agree that large neural networks
generally require substantial training data. However, in practice, even with relatively small
sample sizes (e.g., a few hundred or fewer than one hundred images), architectures such as
ResNet and DenseNet can still achieve satisfactory performance when combined with
appropriate strategies such as pretraining, data augmentation, and model fine-tuning. To support
this point and directly address your comment, we have reviewed and incorporated relevant
literature and added the corresponding references to the manuscript.
- Li et al., (2021) trained ResNet, DenseNet, and other models with 100, 1,000, and 10,000

samples. The results demonstrated that when the sample size reached approximately 1,000, the
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performance of DenseNet was already very close to that achieved with 10,000 samples. This is
because increasing the number of layers in ResNet and DenseNet can enhance their performance,
whereas fewer layers can yield better results for VGG and U-Net models. Considering the cost of
sample generation, it is recommended to use approximately 1,000 samples for deep
learning—based landslide detection.

Ullo et al., (2021) achieved high performance using only 160 images (landslide and
non-landslide) by combining data augmentation and fine-tuning, with ResNet-101 as the
backbone. The reported results were precision equals to 1.00, recall 0.93, and F1 measure 0.97.
Cai et al., (2021) constructed a "landslide sample library" (landslide and non-landslide) in the
Three Gorges Reservoir area. Although the study did not explicitly report experiments under very
small training sets, the use of data augmentation and fine-tuning enabled DenseNet to perform
well even when the dataset was not extremely large. While the sample size was not very small
(i.e., not reduced to only tens or hundreds of images), the "sample library + augmentation +
fine-tuning" strategy demonstrated that DenseNet remains effective with moderately sized
datasets (e.g., several thousand to tens of thousands of samples).

To bolster the credibility of this claim, we have added the specific sample-size comparisons from
the two aforementioned studies to the relevant paragraphs of the manuscript. (Please see the new
Subsection 3.1 for details)

We thank you again for your detailed suggestions, which have enabled us to strengthen the rigor
of our conclusions.

Original Description in Subsection 3.1

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural

networks are based on a similar idea, which is to establish a "shortcut" between different layers.
However, the structure of DenseNet is simpler and more effective, with fewer parameters. In
ResNet, each layer is only connected to the previous layer, while in DenseNet, each layer is
directly connected to all previous layers, and each layer can obtain gradients from the loss
function. This can optimize the information flow and gradients of the entire network, making it
easier to train and performing better on small datasets. The structure of DenseNet can achieve
better feature reuse and reduce the number of parameters. Moreover, the layers of DenseNet are
narrower than those of other deep learning networks (Liu et al., 2021c), making it reduce
redundancy by learning with fewer feature maps. This architecture is suitable for the extraction of
multi-scale landslide features under complex terrains, even with limited landslide training samples.

Revised Description in Subsection 3.1

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural
networks are based on a similar idea, which is to establish a "shortcut" between different layers.
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However, the structure of DenseNet is simpler and more effective, with fewer parameters. In
ResNet, each layer is only connected to the previous layer, while in DenseNet, each layer is
directly connected to all previous layers, and each layer can obtain gradients from the loss
function. This can optimize the information flow and gradients of the entire network, making it
easier to train and performing better on small datasets. The structure of DenseNet can achieve
better feature reuse and reduce the number of parameters. Moreover, the layers of DenseNet are
narrower than those of other deep learning networks (Liu et al., 2021c), making it reduce
redundancy by learning with fewer feature maps. This architecture is suitable for the extraction of
multi-scale landslide features under complex terrains, even with limited landslide training samples
(Caietal., 2021; Li et al., 2021; Ullo et al., 2021).

Newly Added References

Cai, H., Chen, T., Niu, R. and Plaza, A., 2021. Landslide detection using densely connected convolutional
networks and environmental conditions. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 14, pp.5235-5247. doi:10.1109/JSTARS.2021.3079196.

Li, C., Yi, B., Gao, P., Li, H., Sun, J., Chen, X. and Zhong, C., 2021. Valuable clues for DCNN-based landslide
detection from a comparative assessment in the Wenchuan earthquake area. Sensors, 21(15), p.5191.
doi:10.3390/s21155191.

Ullo, S.L., Mohan, A., Sebastianelli, A., Ahamed, S.E., Kumar, B., Dwivedi, R. and Sinha, G.R., 2021. A new

mask R-CNN-based method for improved landslide detection. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 14, pp.3799-3810. doi:10.1109/JSTARS.2021.3064981.

Comment #19:
18. L277: “semantic segmentation” should be defined - it is an important concept that an ML

novice may not know the meaning of.

Response:
- Thank you for pointing out the details of our paper that lack clarity. This is really helpful.
Following your suggestion, we have added a definition of semantic segmentation in Subsection
3.1.

Original Description in Subsection 3.1

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation
models have increasingly become the standard in landslide detection. Numerous advanced
semantic segmentation networks have been proposed and validated for automatic landslide
detection, significantly enhancing the efficiency and accuracy of large-scale detection. U-Net is a
typical example (Ronneberger et al., 2015), which features a U-shaped architecture. U-Net
employs an encoder-decoder structure, where the encoder is similar to conventional CNNs,
progressively reducing image resolution and extracting features through convolution and pooling
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operations; the decoder then restores the image resolution through transposed convolution or
upsampling operations (Dong et al., 2022; Nava et al., 2022). Skip connections bridge low-level
detail features with deep semantic features, thereby refining segmentation precision.

Revised Description in Subsection 3.1

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation
models have increasingly become the standard in landslide detection (Lu et al., 2023; Zhou et al.,
2024). As a fundamental task in computer vision, semantic segmentation assigns a specific class
label (e.g., "landslide" or "non-landslide") to each pixel in an image, thereby enabling dense,
pixel-level classification (Guo et al., 2018).

Numerous advanced semantic segmentation networks have been proposed and validated for
automatic landslide detection, significantly enhancing the efficiency and accuracy of large-scale
detection. U-Net is a typical example (Ronneberger et al., 2015), which features a U-shaped
architecture. U-Net employs an encoder-decoder structure, where the encoder is similar to
conventional CNNs, progressively reducing image resolution and extracting features through
convolution and pooling operations; the decoder then restores the image resolution through
transposed convolution or upsampling operations (Dong et al., 2022; Nava et al., 2022). Skip
connections bridge low-level detail features with deep semantic features, thereby refining
segmentation precision.

Newly Added References

Guo, Y., Liu, Y., Georgiou, T. and Lew, M.S., 2018. A review of semantic segmentation using deep neural
networks. International journal of multimedia information retrieval, 7(2), pp.87-93.doi:
10.1007/s13735-017-0141-z.

Lu, Z., Peng, Y., Li, W., Yu, J., Ge, D., Han, L. and Xiang, W., 2023. An iterative classification and semantic
segmentation network for old landslide detection using high-resolution remote sensing images. IEEE
Transactions on Geoscience and Remote Sensing, 61, pp.1-13. doi:10.1109/TGRS.2023.3313586.

Zhou, N., Hong, J., Cui, W., Wu, S. and Zhang, Z., 2024. A multiscale attention segment network-based
semantic segmentation model for landslide remote sensing images. Remote Sensing, 16(10), p.1712.
do0i:10.3390/rs16101712.

Comment #20:
19. L285-287: Why is DeepLab preferable to U-Net? Can you elaborate on what ASPP is or

does?

Response:
- We sincerely appreciate your valuable comments. Your questions are highly pertinent and have

provided us with an opportunity to clarify and further strengthen the content of our manuscript.
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Below, we provide a point-by-point response and corresponding revisions to address the two
concerns you raised.

* Regarding the explanation of why DeepLab is preferred over U-Net

We selected DeepLab as the primary architecture, primarily due to its superior ability to handle
multi-scale objects and delineate smooth boundaries in complex environments—capabilities that
are essential for extracting landslides, which are highly variable in morphology and scale.

While U-Net performs strongly in semantic segmentation owing to its classic encoder—decoder
structure and skip connections, DeepLab offers distinct advantages in several critical aspects:
Receptive field and multi-scale information capture: U-Net primarily enlarges the receptive
field through pooling operations, which inevitably reduces spatial resolution. Although the
decoder partially restores this information via upsampling and skip connections, fine details may
still be lost. In contrast, DeepLab leverages dilated (atrous) convolutions to exponentially expand
the receptive field without increasing parameter count or reducing feature map resolution. This
enables the network to integrate contextual information across broader areas—an essential
capability for accurately identifying landslides, which require global environmental cues (e.g.,
topography, vegetation patterns) for reliable detection.

Robustness in complex scenarios: Landslide regions are typically characterized by substantial
complexity, with scales ranging from small shallow failures to large deep-seated slides, and
boundaries that are often diffuse and irregular. DeepLab incorporates the unique Atrous Spatial
Pyramid Pooling (ASPP) module, specifically designed to address multi-scale challenges by
capturing contextual information at multiple scales in parallel. In contrast, U-Net’s multi-scale
capabilities rely more implicitly on features from different encoder levels, making its multi-scale
fusion less explicit and less powerful than that of ASPP.

Boundary segmentation accuracy: DeepLab further enhances boundary delineation by
incorporating a dedicated decoder module. After extracting rich semantic features through the
encoder (including ASPP), the decoder progressively restores spatial detail. This combined
strategy retains strong semantic representation while markedly improving boundary localization
accuracy.

In summary, we do not contend that U-Net is not an excellent model; rather, for the specific task
of landslide identification—characterized by highly complex morphologies and multi-scale
variability—the DeepLab family (particularly its ASPP structure and dilated convolutions)
provides a theoretically more suitable framework. Numerous recent remote sensing segmentation
studies (e.g., Chen et al., 2017; Huang et al., 2024) have likewise demonstrated the superior

performance of DeepLab in comparably complex geospatial contexts.
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* Regarding the detailed explanation of what ASPP is and what it does

Thank you for pointing this out. Our original explanation of ASPP was indeed overly brief.
Atrous Spatial Pyramid Pooling (ASPP) is a core innovation of the DeepLab family; it is
designed to enable robust segmentation of objects across multiple scales.

Core idea: ASPP mimics the way humans observe objects: to recognize an object we examine
both its fine local details (small scale/near view) and its surrounding context (large scale/distant
view). ASPP implements this by applying multiple parallel dilated (atrous) convolution layers
with different dilation rates to the same input feature map, thereby sampling context at multiple
scales.

Structure: The ASPP module receives the backbone feature map produced by the encoder. It
feeds the feature map into four parallel branches: Three dilated convolution branches: each
employs a different dilation rate (e.g., rates of 6, 12 and 18). Larger dilation rates yield larger
receptive fields and thus capture increasingly broader contextual information. This is analogous
to using multiple “magnifying lenses” simultaneously—one focusing on local detail, another on
intermediate regions, and a third on the global scene. A global average pooling branch: this
branch pools the feature map to a single global vector, which is then upsampled back to the
original spatial dimensions. It captures image-level global context and supplies the network with
scene-level semantic information.

The outputs from all parallel branches are concatenated along the channel dimension.

Finally, a 1x1 convolution is applied to fuse the multi-scale information from all branches and
produce the final multi-scale feature representation.

Function: By this mechanism, ASPP renders the network largely size-invariant with respect to
target objects. Whether a landslide is small- or large-scale, one or more ASPP branches will
capture the contextual cues most relevant for its identification, thereby substantially improving
robustness to scale variation and segmentation accuracy.

We once again thank you for dedicating your time and effort to reviewing our manuscript and for
providing these constructive comments. We hope that the above explanations adequately address
your concerns, and we have revised the manuscript accordingly in line with your suggestions (for
details, please see new Subsection 3.1).

Original Description in Subsection 3.1

choice (Sandric et al., 2024). Built upon deep convolutional neural networks, DeepLab employs
dilated convolutions to expand the receptive field and integrates an atrous spatial pyramid pooling
(ASPP) module to capture multi-scale contextual information.

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable
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Revised Description in Subsection 3.1

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable
choice than U-Net (Sandric et al., 2024). While U-Net excels at preserving fine-grained spatial
details through its skip-connections, its ability to capture long-range contextual information is
limited by its relatively small receptive field. DeepLab, built upon deep convolutional neural
networks, addresses this critical limitation by employing dilated convolutions to exponentially
expand the receptive field without sacrificing resolution or increasing parameters substantially.

More importantly, DeepLab integrates an atrous spatial pyramid pooling (ASPP) module,
which is key to its superior performance on multi-scale objects like landslides (Chen et al., 2017;
Huang et al., 2024). The ASPP module operates in parallel on the same feature map using multiple
convolutional branches with different dilation rates (e.g., rates=6, 12, 18). Each branch eftfectively
captures contextual information at a different scale, from fine details to broad, image-level
contexts (Niu et al., 2018). All these multi-scale features are then concatenated and fused. This
allows the network to simultaneously leverage both local textual cues and global contextual cues,
thereby significantly improving recognition accuracy and reducing false positives in geologically

complex environments.

Newly Added References

Chen, L.C., Papandreou, G., Kokkinos, 1., Murphy, K. and Yuille, A.L., 2017. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions
on pattern analysis and machine intelligence, 40(4), pp.834-848.d0i:10.1109/TPAMI.2017.2699184.

Huang, J., Song, W., Liu, T., Cui, X., Yan, J. and Wang, X., 2024. Submarine Landslide Identification Based on
Improved DeepLabv3 with Spatial and Channel Attention. Remote Sensing, 16(22), p.4205.
doi:10.3390/rs16224205.

Niu, Z., Liu, W., Zhao, J. and Jiang, G., 2018. DeepLab-based spatial feature extraction for hyperspectral image
classification. IEEE Geoscience and Remote Sensing Letters, 16(2), pp.251-255.
doi:10.1109/LGRS.2018.2871507.

Comment #21:

21. L.297: What are temporal variation curves?

Response:
- Thank you for raising this question. By "temporal variation curves", we refer to plots that depict
how pixel- or region-based feature values (e.g., spectral indices, probabilities, or activation

responses) change over time across multi-temporal remote sensing images. Such curves provide
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an intuitive representation of dynamic processes, such as the progressive development of
landslides or vegetation change, by showing temporal trajectories rather than a single snapshot.
To avoid ambiguity, we have revised the manuscript. Please see the new Subsection 3.1 for
details.

Original Description in Subsection 3.1

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These
models capture spatial and temporal features using convolutional kernels while transforming

multi-temporal image sequences into change hotspot maps or temporal variation curves as output.

Revised Description in Subsection 3.1

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These
models capture both spatial and temporal dependencies through three-dimensional convolutional
kernels, enabling the direct processing of multi-temporal image sequences. The outputs typically
take two complementary forms: change hotspot maps, which highlight regions of significant
spatial change across time, and temporal variation curves, which illustrate the evolution of pixel-
or region-based feature values throughout the temporal sequence. Together, these representations
provide intuitive and complementary tools for characterizing dynamic processes in landslide-prone

areas, such as the initiation, progression, and spatial distribution of slope failures.

Comment #22:
22. 1.298-299: Which studies have used attention mechanisms? This paragraph has no citations,

so it is impossible for the reader to refer to work that has been done regarding attention.

Response:
- Thank you for drawing our attention to this omission. We agree that citations are crucial to
support our statement. We have now revised the manuscript to include references to key studies
that have successfully integrated attention mechanisms with CNNs for multi-temporal remote

sensing analysis, particularly in landslide hazard monitoring. (Please see the new Subsection 3.1)

Original Description in Subsection 3.1

Some studies even have integrated attention mechanisms into conventional CNN
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architectures to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling

the identification of landslide hazard evolution over time.

Revised Description in Subsection 3.1

Some studies even have integrated attention mechanisms into conventional CNN
architectures to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling
the identification of landslide hazard evolution over time. For example, Meng et al. (2024)
proposed a framework based on CNN and optimized Bidirectional Gated Recurrent Unit (BiGRU)
with an attention mechanism, designed to forecast landslide displacement with a step-like curve.
Dong et al. (2022) proposed L-Unet which combines multi-scale feature fusion with attention

modules to improve landslide segmentation performance, particularly at boundaries.

Newly Added References

Dong, Z., An, S., Zhang, J., Yu, J., Li, J. and Xu, D., 2022. L-unet: A landslide extraction model using
multi-scale feature fusion and attention mechanism. Remote Sensing, 14(11), p.2552.
do0i:10.3390/rs14112552.

Meng, S., Shi, Z., Peng, M., Li, G., Zheng, H., Liu, L. and Zhang, L., 2024. Landslide displacement prediction
with step-like curve based on convolutional neural network coupled with bi-directional gated recurrent unit
optimized by attention mechanism. Engineering Applications of Artificial Intelligence, 133, p.108078.
doi:10.1016/j.engappai.2024.108078.

Comment #23:
23. L319: You should mention that one reason RNNs struggle to model long term dependencies

is exploding and vanishing gradients, and that LSTMs avoid this via their special gate design.

Response:

- Thank you for your insightful comment! We have revised the paragraph to explicitly state that
conventional RNNs suffer from exploding and vanishing gradients, which hinder their ability to
capture long-term dependencies. We further clarified that LSTMs overcome this limitation
through their gate-based design, which mitigates gradient degradation and enables the modeling

of long-range temporal dependencies. Please see the new Subsection 3.2 for details.
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Original Description in Subsection 3.2

Due to conventional RNNs struggle to model long-term dependencies and limit their
applicability to short-term temporal sequences, long short-term memory networks (LSTM) were
developed (Wang et al., 2023b).

LSTM is an enhancement of RNNs, primarily processing long sequence data. Compared to
standard RNNs, the hidden layer architecture of LSTM is much more complex. By incorporating
memory cells and gating mechanisms, LSTM selectively propagates critical information across
multiple time steps, thereby effectively capturing long-range temporal dependencies (Landi et al.,
2021; Yuet al., 2019).

Revised Description in Subsection 3.2

To overcome the vanishing gradient problem inherent in RNNs, LSTMs introduce memory
cells and gating mechanisms that selectively retain relevant temporal information (Hochreiter and
Schmidhuber, 1997; Landi et al., 2021; Sherstinsky, 2020; Smagulova and James, 2019; Yu et al.,
2019). This capability allows them to model the cumulative and delayed responses of slopes to
prolonged rainfall or reservoir water level fluctuations.

LSTM models have been widely applied in landslide displacement prediction and early
warning. Yang et al. (2019) analyzed the relationships among landslide deformation, rainfall, and
reservoir water levels, and found that compared with static models, the LSTM approach more
accurately captured the dynamic characteristics of landslides and effectively leveraged historical
information. Xu and Niu (2018) used a LSTM model to predict the displacement evolution of the
Baijiabao landslide using rainfall and hydrological level data, achieving a higher correlation
compared with traditional regression models. In another study focused on shallow landslides, Xiao
et al (2022) used a week-ahead LSTM model, which exhibited stable performance and improved
prediction accuracy in short-term prediction scenarios. Additionally, Gidon et al (2023)
constructed a Bi-LSTM model and achieved a detection accuracy of 93% in the Mawiongrim area.
This effectively addresses the limitations of traditional methods and can provide a reliable
technical solution for disaster early warning in this area as well as other similar landslide-prone

arcas.

Newly Added References

Gidon, J.S., Borah, J., Sahoo, S., Majumdar, S., Fujita, M., 2023. Bidirectional Istm model for accurate and
real-time landslide detection: A case study in mawiongrim, meghalaya, india. IEEE Internet of Things
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Journal 11, 3792-3800. doi:10.1109/J10T.2023.3326203.
Xiao, Y., Ju, N., He, C., Xiao, Z., & Ma, Z. (2022). Week-ahead shallow landslide displacement prediction using
chaotic models and robust LSTM. Frontiers in Earth Science, 10, 965071. doi:10.3389/feart.2022.965071.
Xu, S., Niu, R., 2018. Displacement prediction of baijiabao landslide based on empirical mode decomposition
and long short-term memory neural network in three gorges area, china. Computers & Geosciences 111,
87-96. doi:10.1016/j.cageo.2017.10.013.

Comment #24:

24. L352: Transformers are hugely important in ML right now, so it should warrant more

discussion here than the authors have given it, in my opinion. For example, elaborate on what

self-attention is, and mention that that transformer-based architectures are state of the art in

several areas right now (language, imaging, etc). Are there more works in landslides that have

used transformers? I appreciate the author’s discussion of its computational limitations; this is

key, and it may not be the right choice for all practitioners. You should mention that the main

drawback of transformers comes from its quadratic complexity, and that this is a current area of

research to alleviate this issue.

29. L513: Similar to my comment about AEs/VAEs, you should move this paragraph to when

you first introduce Transformers, rather than re-introducing them here.

Response:

- Thank you for these constructive comments! We fully agree that Transformers represent a major

advancement in machine learning and warrant a more thorough and better-structured discussion.
Accordingly, we have revised the manuscript in the following ways:
- Expanded introduction of Transformers: We elaborated on the self-attention mechanism,

explaining how it computes pairwise dependencies across the sequence and assigns dynamic

attention weights, thereby enabling the model to capture long-range dependencies more

effectively than CNNs or RNNs. We also highlighted that Transformer-based architectures are

now state-of-the-art across multiple domains, including natural language processing, computer

vision, and multimodal learning.

- Applications in landslide research: We supplemented the discussion with recent studies where

Transformers have been applied to landslide detection, susceptibility mapping, and

spatiotemporal hazard assessment. Although the number of works is still limited, these studies

show the growing potential of Transformers in this field.

- Computational limitations and ongoing research: We clarified that the main drawback of

Transformers lies in their quadratic complexity with respect to sequence length, which leads to

high computational and memory costs. As the reviewer suggested, we also emphasized that
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alleviating this limitation is an active research area, with efficient variants being proposed to
address scalability challenges.

- Reorganization to avoid redundancy: The detailed explanation of the Transformer’s
encoder—decoder structure, self-attention mechanism, and multimodal embedding strategy, which
previously appeared in two separate sections, has now been consolidated into the first
introduction of Transformers. In later sections, we removed the redundant description and instead
included concise cross-references. This restructuring improves readability and avoids
unnecessary repetition.

Original Description in Subsection 3.2

3.2 Models for Time Series Analysis in Potential Landslide Identification

Transformer was originally designed to handle sequential data in natural language processing,
which was first introduced by Vaswani in 2017 (Vaswani et al., 2017). Unlike conventional
recurrent and convolutional structures, the Transformer employs a self-attention mechanism to
directly model the entire sequence.

Since the Transformer has the ability to adaptively learn latent features and patterns within
the data, when it comes to processing landslide time series data, it can automatically tweak the
model parameters to accommodate diverse landslide scenarios and temporal data variability (Wang
et al., 2024a; Zerveas et al., 2021).

Transformer also can analyze positional relationships across the entire sequence, better
capturing complex dependencies in long sequences, making it especially suitable for handling
large-scale, long-term sequential datasets.

In contrast, RNN-based models exhibit a relatively simple architecture (Li et al., 2021a;
Wang et al., 2020b). Their mechanisms are conceptually intuitive, making them more interpretable
(see Fig. 3). On the other hand, Transformers are more complex in structure with numerous
parameters, necessitating substantial computational resources during early training to process
large-scale data, while being susceptible to overfitting on small datasets. Understanding how the
model extracts features and makes decisions is not straightforward from large amounts of landslide

data, posing challenges for its interpretability and practical deployment.

As previously discussed, Transformer has become a universal architecture for processing

sequential and multimodal data, owing to its self-attention mechanism and modular design.

Transformer is also composed of stacked encoders and decoders. However, unlike other
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architectures, the Transformer architecture introduces the self-attention mechanism (Zhao et al.,
2021a), which is a crucial innovation. This enables the Transformer to automatically calculate a
weight vector for each position in the input sequence based on the relationship between this
position and other positions, so as to represent the importance of this position in the entire
sequence. Such a weight vector can be regarded as the "attention distribution" of each position in
the input sequence, that is, the model determines which positions in the sequence to focus on. By
considering all positions in the input sequence simultaneously, Transformer is able to calculate the
correlations between each position and other positions in the sequence in parallel (Esser et al.,
2021; Huang and Chen, 2023; Zerveas et al., 2021), rather than processing them step by step like
CNNs or RNNs.

Transformer can also convert multimodal data, it transforms them into vector representations
via different embedding layers into a unified vector representation through different embedding
layers. Subsequently, through the use of the self-attention mechanism and multilayer neural
networks, these vectors are fused and feature representations are extracted, enabling the model to

process and integrate data from various modalities within the same model framework.

Revised Description in Subsection 3.2

3.2 Models for Time Series Analysis in Potential Landslide Identification

Transformer, first introduced by Vaswani et al. (2017), was originally designed for natural
language processing but has since become a cornerstone architecture in modern machine learning,
achieving state-of-the-art performance across diverse domains such as computer vision and
multimodal learning.

Unlike conventional recurrent or convolutional models, the Transformer is built upon stacked
encoder—decoder layers and relies on a key innovation: the self-attention mechanism. This
mechanism enables the model to automatically compute a weight vector (i.e., an attention
distribution) for each element in the sequence based on its relevance to all other elements. By
evaluating all positions simultaneously (Esser et al., 2021; Huang and Chen, 2023; Zerveas et al.,
2021), the Transformer efficiently captures global dependencies across long sequences in parallel,
making it more effective than RNNs or CNNs at modeling long-range relationships.

When applied to landslide-related time series data, the Transformer can adaptively learn
latent temporal features and patterns, automatically adjusting parameters to accommodate diverse
landslide scenarios (Wang et al., 2024a; Zerveas et al., 2021). Moreover, its capability to analyze
positional relationships across the entire sequence makes it particularly suitable for processing

large-scale, long-term sequential datasets. Beyond time series, the flexibility of the self-attention
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mechanism also enables Transformers to integrate and fuse multimodal data sources, which will be
discussed in Section 3.5.

In contrast, RNN-based models exhibit a relatively simple architecture (Li et al., 2021a;
Wang et al., 2020b) and are conceptually intuitive, making them more interpretable (see Fig. 3).
Transformers, however, are structurally more complex with numerous parameters, requiring
substantial computational resources during training and being susceptible to overfitting on small
datasets. Moreover, a key drawback of the standard Transformer is its quadratic computational
complexity with respect to sequence length, which becomes prohibitive for very long sequences
(Zhuang et al., 2023). This also complicates the interpretation of how the model extracts features
and makes decisions from large amounts of landslide data, posing challenges for practical
deployment. It is worth noting that mitigating this quadratic complexity is an active research area,
with many efficient Transformer variants being developed. Therefore, while powerful, the vanilla
Transformer may not be the optimal choice for all practitioners, and its computational demands

should be carefully considered.

As highlighted in Section 3.2, the Transformer’s self-attention mechanism and modular
architecture make it a universal framework for processing sequential data and enabling multimodal
fusion (Zhao et al., 2021a). In this context, the core advantage of the Transformer lies in its ability
to integrate diverse input data (e.g., satellite imagery, GPS time series, and geological maps). It
achieves this by employing independent embedding layers to convert each modality into a unified
vector representation, which is then fused through the self-attention mechanism. This mechanism
computes the interactions and correlations among all elements across different modalities, thereby
enabling the model to capture cross-modal dependencies and extract joint feature representations
within a unified framework. This capability makes the Transformer particularly suitable for
landslide studies (Li et al., 2025).

Newly Added References

Li, W., Hsu, C.Y., Wang, S., Gu, Z., Yang, Y., Rogers, B.M. and Liljedahl, A., 2025. A multi-scale vision
transformer-based multimodal GeoAl model for mapping Arctic permafrost thaw. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing. doi:10.1109/JSTARS.2025.3564310.

Zhuang, B., Liu, J., Pan, Z., He, H., Weng, Y. and Shen, C., 2023. A survey on efficient training of transformers.
arXiv preprint arXiv:2302.01107. doi:10.48550/arXiv.2302.01107.
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Comment #25:
27. Section 3.4: Based on the way this section is written, it should be titled “Anomaly Detection”
rather than “data cleaning”. These are somewhat similar, but distinct topics. Anomaly detection is
about identifying data that is outside the norm of its dataset. Data cleaning is about filling in
missing values and ensuring overall data quality. To me, anomaly detection fits more with what
the authors discussed, and seems more relevant to landslides (ie, detecting when a landslide is
imminent due to some abnormality)
26. L448: To me, it’s a little backwards to introduce AEs here when you’ve already introduced
VAEs. Organizationally, it would make more sense to introduce AEs earlier before you talk about
VAEs.
25.1.445: No citations in this paragraph to back up your claim.

Response:
Thank you for pointing out this inappropriate organizational issue in our manuscript! We
sincerely apologize for this oversight, which undoubtedly affected the logical flow of the section.
(1) We acknowledge that the content of Section 3.4 focuses more on the identification of
abnormal patterns or deviations in time-series and spatial data associated with potential landslide
events, rather than on the conventional data cleaning process. Therefore, we have revised the title
of this section from "Models for Data Cleaning in Potential Landslide Identification" to
"Models for Anomaly Detection in Potential Landslide Identification", and we have also
refined the introductory paragraph to clearly emphasize the role of anomaly detection in
identifying early-warning signals of landslides.
(2) We agree that introducing AEs after VAEs may appear logically inverted, as VAEs are indeed
an extension of AEs. Following your suggestion, we have revised the manuscript to introduce
AEs first and then proceed to VAEs. Specifically, we now begin with a description of the
framework of AEs, including their encoder-decoder architecture, reconstruction mechanism, and
application in anomaly detection for landslide monitoring. We then transition to VAEs,
highlighting their probabilistic formulation and advantages in handling data uncertainty as an
extension of the conventional AE. This restructuring improves the logical flow and helps readers
better understand the progression from AEs to VAEs.
(3) We have added several relevant citations to support the claim that AEs and VAEs are effective
in unsupervised anomaly detection. These revisions improve both the rigor and readability of the
manuscript. Please see the new Subsection 3.4 for details.
Once again, we express our sincere gratitude to you for their valuable time and insightful

comments, which have greatly improved the quality of our manuscript!
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Original Description in Subsection 3.4

3.4 Models for Data Cleaning in Potential Landslide Identification

In potential landslide identification, data cleaning, particularly anomaly detection, is a critical
issue (Deijns et al., 2020; Jiang et al., 2020). It can distinguish between normal fluctuations and
true anomalies, identifying early signs such as subtle changes in the mountain’s state or abnormal
trends in surface displacement, thus enabling more accurate landslide hazard assessment. With the
rapid development of deep learning, the applications in data cleaning have become increasingly
widespread, enabling models to automatically learn latent data patterns and identify potential
anomalies.

AEs and their variational counterparts are highly effective in unsupervised data cleaning.
These models autonomously learn normal geomechanical patterns from data and flag deviations,
achieving effective hazard identification even when labeled anomaly samples are scarce.

The AE is a typical unsupervised learning model consisting of an encoder and a decoder The
encoder compresses the input data into low-dimensional features, and then the decoder
reconstructs the input. During the training process, the autoencoder learns the intrinsic features and
patterns of normal landslide data, so that for normal data, the reconstruction error is small. When
abnormal landslide data is input, due to the difference between its features and the distribution of
normal data, the reconstruction error will be large.

When performing anomaly detection, a suitable reconstruction error threshold is set. When
the reconstruction error of the test data exceeds this threshold, it can be determined as abnormal
data. In the anomaly detection of landslide displacement data monitored by sensors, if the error of
the displacement data after being reconstructed by AEs during a certain period is significantly
higher than the normal level, it may indicate that there is an abnormal situation of potential
landslides during this period.

As previously introduced, VAE is an extension of AE. Compared to conventional
autoencoders, VAE introduces randomness into the latent space, making it more effective in
handling data uncertainty (Li et al., 2020; Park et al., 2018).

During training, VAEs learn the latent distribution of the data and can generate new samples
resembling the training set. When input samples deviate significantly from this learned
distribution, the VAE fails to reconstruct them accurately, thereby flagging anomalies through
elevated reconstruction errors. For landslide monitoring, if a VAE is trained on imagery of stable
slopes, it internalizes stable terrain features. When an image significantly differs from the stable
region, the model will produce a high reconstruction error, indicating the presence of anomalous
data.

In contrast, AEs are well-suited for univariate anomaly detection, particularly for landslide
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precursor detection, while VAEs capture latent space distributions and are more effective for
multivariate anomaly detection.

GANSs can also be utilized in data cleaning (Kang et al., 2024; Xia et al., 2022). In data
cleaning, the discriminator is trained to distinguish between generated data and real data. When
new test data is input, if the discriminator struggles to determine whether it is real or generated
data, the test data may significantly deviate from the distribution of normal data, indicating a
potential anomaly. In landslide monitoring, data may be influenced by various factors, GANs
demonstrate robustness by filtering out such interference, thereby enhancing data cleaning
accuracy (Radoi et al., 2022).

AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its
primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder
during training, which maps input data to the latent space. The difference between this latent
vector and the latent vector of normal samples generated by the generator serves as the basis for
data cleaning.

RNNs, LSTMs, and GRUs are also effective for identifying anomalous patterns in sequential
data (Zhang et al., 2022a). In potential landslide identification, these models process time series
inputs to learn normal temporal dynamics and trends. When new data deviates significantly from
the normal patterns learned by the model, such deviations can be flagged as anomalies. However,
these models are primarily used for time series data, performing data cleaning by predicting future
values of the sequence. For instance, if displacement measurements exhibit abrupt deviations
while rainfall remains within historical norms, the model detects such discrepancies by comparing

observed values with predictions based on learned temporal dependencies.

Revised Description in Subsection 3.4

3.4 Models for Anomaly Detection in Potential Landslide Identification

Anomaly detection refers to identifying patterns or observations that significantly deviate
from the expected behavior of a system. In the context of landslides, such anomalies often
manifest as early-warning signals, including abnormal displacements, acceleration in movement,
or changes in surface deformation patterns. Unlike conventional data cleaning, which focuses on
correcting missing or inconsistent records, anomaly detection aims to identify these irregularities
to support potential landslide identification (Deijns et al., 2020; Jiang et al., 2020).

Among deep learning approaches, autoencoders (AEs) and their probabilistic extension,
variational autoencoders (VAEs), are widely adopted for unsupervised anomaly detection.

An AE consists of an encoder and a decoder that learn to reconstruct input data through a
compressed latent representation (Hinton and Salakhutdinov, 2006; Nawaz et al., 2024). During

training, AEs can learn the intrinsic features and patterns of normal landslide data, so that for

90




normal data, the reconstruction error is small. For normal inputs, the reconstruction error remains
small, whereas for anomalous inputs, which deviate from the learned distribution, the
reconstruction error becomes significantly larger.

By setting a suitable threshold for reconstruction error, anomalies can be effectively detected.
For example, in the anomaly detection of landslide displacement monitored by sensors, if the
reconstruction error of displacement data during a specific period is substantially higher than
normal, this may indicate the onset of potential landslide activity (Zhou and Paffenroth, 2017).

Building upon AEs, VAEs introduce stochasticity into the latent space to better model
uncertainty and variability in natural data (Li et al., 2020; Park et al., 2018).

During training, VAEs learn the latent distribution of the data and can generate new samples
resembling the training set (Kumar et al., 2024). When input samples deviate significantly from
this learned distribution, the VAE fails to reconstruct them accurately, thereby flagging anomalies
through elevated reconstruction errors. For landslide monitoring, if a VAE is trained on imagery of
stable slopes, it internalizes stable terrain features. When an image significantly differs from the
stable region, the model will produce a high reconstruction error, indicating the presence of
anomalous data.

Consequently, both AEs and their variational counterparts are highly effective in
unsupervised anomaly detection (Pol et al., 2019; Sakurada and Yairi,2014). These models
autonomously learn normal geomechanical patterns from data and flag deviations, achieving
effective hazard identification even when labeled anomaly samples are scarce.

In contrast, AEs are well-suited for univariate anomaly detection, particularly for landslide
precursor detection, while VAEs capture latent space distributions and are more effective for
multivariate anomaly detection.

GANSs can also be utilized in anomaly detection (Kang et al., 2024; Xia et al., 2022). The
discriminator in a GAN is trained to distinguish between real and generated data. When new test
data is input, if the discriminator struggles to determine whether it is real or generated data, the test
data may significantly deviate from the distribution of normal data, indicating a potential anomaly.
In landslide monitoring, data may be influenced by various factors, GANs demonstrate robustness
by filtering out such interference, thereby enhancing anomaly detection accuracy (Radoi et al.,
2022).

AnoGAN extends conventional GANs by directly incorporating anomaly detection as one of
its primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder
during training, which maps input data to the latent space. The difference between this latent
vector and the latent vector of normal samples generated by the generator serves as the basis for

anomaly detection.
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RNNs, LSTMs, and GRUs are also effective for identifying anomalous patterns in sequential
data (Zhang et al., 2022a). In potential landslide identification, these models process time series
inputs to learn normal temporal dynamics and trends. When new data deviates significantly from
the normal patterns learned by the model, such deviations can be flagged as anomalies. However,
these models are primarily used for time series data, performing data cleaning by predicting future
values of the sequence (Li et al., 2024). For instance, if displacement measurements exhibit abrupt
deviations while rainfall remains within historical norms, the model detects such discrepancies by

comparing observed values with predictions based on learned temporal dependencies.

Newly Added References

Hinton, G.E. and Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. science,
313(5786), pp.504-507. doi:10.1126/science.1127647.

Kumar, P., Priyanka, P., Uday, K.V. and Dutt, V., 2024, February. Predictive Modelling of Himalayan Soil
Movement: Addressing Imbalance with Synthetic Variational Autoencoder Data in Kamand Valley. In
International Congress on Information and Communication Technology (pp. 137-147). Singapore: Springer
Nature Singapore. doi:10.1007/978-981-97-3299-9 11.

Li, Q., Yao, C., Yao, X., Zhou, Z., & Ren, K., 2024, Time Series Prediction of Reservoir Bank Slope
Deformation Based on Informer and InSAR: A Case Study of Dawanzi Landslide in the Baihetan Reservoir
Area, China. Remote Sensing, 16(15), 2688. d0i:10.3390/rs16152688.

Nawaz, A., Khan, S.S. and Ahmad, A., 2024. Ensemble of autoencoders for anomaly detection in biomedical
data: A narrative review. IEEE Access, 12, pp.17273-17289.d0i:10.1109/ACCESS.2024.3360691.

Pol, A.A., Berger, V., Germain, C., Cerminara, G. and Pierini, M., 2019, December. Anomaly detection with
conditional variational autoencoders. In 2019 18th IEEE international conference on machine learning and
applications (ICMLA) (pp. 1651-1657). IEEE. doi:10.1109/ICMLA.2019.00270.

Sakurada, M. and Yairi, T., 2014, December. Anomaly detection using autoencoders with nonlinear
dimensionality reduction. In Proceedings of the MLSDA 2014 2nd workshop on machine learning for
sensory data analysis (pp. 4-11). doi:10.1145/2689746.2689747.

Yin, A., Zheng, F., Tan, J. and Wang, Y., 2020. An improved variational auto-encoder with reverse supervision
for the obstacles recognition of UGVs. IEEE Sensors Journal, 21(10), pp.11791-11798. doi:
10.1109/JSEN.2020.3013668.

Zhou, C. and Paffenroth, R.C., 2017, August. Anomaly detection with robust deep autoencoders. In Proceedings
of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp.
665-674). doi:10.1145/3097983.3098052.

Comment #26:
30. The description of the mechanisms of landslides in Section 4 is extensive and appreciated.
However, not enough time is spent discussing the main point of the section: the application of

DEEP LEARNING to identifying these landslides. Lines 632-638 are a good example of what I
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would have expected more of. This section needs to do a better job answering the questions:

What kinds of model (and what data) are generally used for what applications? Why? And so on.

Response:

- Thank you very much for this valuable and constructive comment! We fully agree that Section 4
previously emphasized the mechanistic aspects of landslides but did not sufficiently elaborate on
the application of deep learning models for their identification and prediction.

- In response, we have significantly revised Section 4 to include a more detailed and structured
discussion on how different deep learning architectures are applied in landslide studies, what
types of data they utilize, and why specific models are more suitable for certain tasks.

- Please see the new Section 4 for details.

Original Description in Section 4

4.1 Application of Deep Learning in the Identification of Rainfall-induced Landslides
Following the development of rainfall threshold models, real-time monitoring of historically
rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of
subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating
timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by
continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic
recalibration of threshold parameters. This data assimilation enhances model adaptability to
evolving hydrogeological conditions, ensuring operational relevance across heterogeneous

terrains.

Moreover, the triggers of human activity-induced landslides are not only related to natural
conditions but also closely associated with dynamic human activities. Consequently, their analysis
necessitates the integration of multimodal and cross-scale data to capture coupled environmental
and behavioral drivers (see Fig. 6). In engineering operations such as mining or road construction,
factors including proximity to potential landslide zones, excavation depth, and slope angles must
be rigorously evaluated through geohazard risk assessments. During excavation phases,
geotechnical investigations are imperative to identify weak lithological strata or fracture-dense
zones predisposed to instability. Continuous slope stability monitoring requires deploying
IoT-enabled sensors to track temporal variations in surface fissure dimensions and subsurface

displacement vectors. Monitoring data from these sensors can be integrated into deep learning

models for multimodal analytics, enabling dynamic risk prediction and adaptive mitigation
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planning.

To mitigate misclassification between anthropogenic signatures and natural terrain,
integrating multispectral data with topographic elevation data enhances discriminative capacity
(Meng et al., 2021; Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing
artificially excavated steep slopes combined with fractured geological strata from structural maps
provide preliminary evidence of human influence on landslide susceptibility (Lian et al., 2024).

Unlike simpler landslide types, identifying composite landslides necessitates multimodal data
fusion to holistically assess predisposing conditions (Li, 2025; Yin et al., 2023). It further requires
disentangling the nonlinear superposition effects of multiple factors and quantifying their relative
contributions to failure initiation. For instance, Dou et al. (2019) analyzed how earthquake
intensity and rainfall metrics jointly modulate landslide susceptibility, deriving failure probabilities
under varying parameter combinations. In multi factor-induced landslides, earthquakes and rainfall
often interact with other factors. For instance, during heavy rainfall, the rate of landslide formation
after an earthquake may be higher, possibly driven by the removal of excessively steep slopes,
changes in vegetation and groundwater, and alterations in the mechanical properties of the bedrock
and weathered layers in the earthquake-induced landslides canopy. This necessitates systematic
investigation of multi-hazard coupling effects to quantify emergent risks.

With the accumulation of new data and the dynamic variations in multi factor-induced
landslides, regular model updates are critical to ensuring identification accuracy and adaptability.
Existing studies predominantly apply these methods based on comprehensive historical landslide
datasets and employ batch learning theory for identification. However, when new data becomes
available, the model must be retrained from scratch. This approach is not only highly inefficient
but also fails to account for the connections between newly observed and historical landslides. To
address this limitation, incremental learning methods offer a promising solution. These methods
enable gradual parameter optimization through new data without retraining the existing model
(Huang et al., 2022). Compared to conventional deep learning models, those integrated with
incremental learning can more effectively leverage historical landslide data and adaptively learn

from newly incorporated data, thereby better accommodating the dynamic nature of landslides.
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Revised Description in Section 4

4.1 Application of Deep Learning in the Identification of Rainfall-induced Landslides

Following the development of rainfall threshold models, real-time monitoring of historically
rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of
subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating
timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by
continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic
recalibration of threshold parameters. This data assimilation enhances model adaptability to
evolving hydrogeological conditions, ensuring operational relevance across heterogeneous
terrains.

While the physical mechanisms governing rainfall-induced slope failures have been well
studied (Arnone et al., 2011; Xiong et al., 2024), recent advances in deep learning have
significantly improved our ability to automatically identify and predict such events using
heterogeneous data.

In the context of rainfall-induced landslides, spatiotemporal data (e.g., rainfall intensity,
cumulative precipitation, soil moisture, and slope displacement time series) are the primary inputs.
Deep learning models are selected according to data characteristics and task objectives. For
instance, CNNs are commonly used to extract spatial rainfall-topography features and delineate
susceptible zones from remote sensing images (Peng and Wu 2024; Xu et al., 2022; Zhang et al.,
2022). The encoder—decoder architecture, such as U-Net, enables pixel-level segmentation of
rainfall-triggered landslides (Bhatta et al., 2025), with the inclusion of vegetation or soil moisture
layers improving feature discrimination.

When temporal evolution is essential, RNNs and LSTM networks effectively model
sequential dependencies between rainfall and slope deformation (Biniyaz et al., 2022; Liu et al.,
2025). These models are capable of learning hysteretic responses and time lags between
precipitation events and ground displacement, enabling early warning through time-series
forecasting.

Furthermore, hybrid models combining CNN and LSTM components have been proposed to
jointly learn spatial-temporal correlations (Chen and Fun 2022; Wu et al., 2025). By fusing
rainfall distribution maps with displacement monitoring sequences, these architectures provide a
more complete understanding of rainfall-landslide coupling mechanisms.

Deep learning also facilitates data-driven rainfall threshold estimation. Instead of relying
solely on empirical or physically based thresholds, models such as fully connected neural networks

(FNNs) and attention-based transformers can derive adaptive rainfall thresholds from multi-year
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rainfall-landslide records, capturing regional nonlinearities (Wu et al., 2023).

Moreover, the triggers of human activity-induced landslides are not only related to natural
conditions but also closely associated with dynamic human activities (Tian et al., 2025).
Consequently, their analysis necessitates the integration of multimodal and cross-scale data to
capture coupled environmental and behavioral drivers (see Fig. 6). In engineering operations such
as mining or road construction, factors including proximity to potential landslide zones, excavation
depth, and slope angles must be rigorously evaluated through geohazard risk assessments. During
excavation phases, geotechnical investigations are imperative to identify weak lithological strata or
fracture-dense zones predisposed to instability. Continuous slope stability monitoring requires
deploying IoT-enabled sensors to track temporal variations in surface fissure dimensions and
subsurface displacement vectors. Monitoring data from these sensors can be integrated into deep
learning models for multimodal analytics, enabling dynamic risk prediction and adaptive
mitigation planning.

For spatial mapping and fissure extraction, CNNs and U-Net-based segmentation models
have demonstrated strong capability in identifying artificial slope features from optical or SAR
imagery. CNN-based models can capture high-level semantic information on excavation scars,
road cuts, and spoil heaps that indicate anthropogenic disturbance. Tao et al. (2024) employed the
DRs-UNet model to investigate the use of deep learning for UAV-based crack identification, the
developmental patterns of fissures, and the feedback interactions between underground mining
progress and corresponding surface conditions. Wu et al. (2021) proposed the PUNet model for
detecting and mapping localized rapid subsidence induced by mining activities. Meng et al. (2025)
introduced the GF-Former model to achieve precise segmentation of ground fissures in remote
sensing imagery.

When surface deformation time series or micro-displacement data from GB-InSAR, InSAR,
or IoT sensors are available, RNN-based models are applied to model the temporal evolution of
slope deformation (Han et al., 2022; Li et al., 2025). These models are particularly effective in
detecting precursory motion trends caused by progressive excavation or loading activities.

To mitigate misclassification between anthropogenic signatures and natural terrain,
integrating multispectral data with topographic elevation data enhances discriminative capacity
(Meng et al., 2021; Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing
artificially excavated steep slopes combined with fractured geological strata from structural maps

provide preliminary evidence of human influence on landslide susceptibility (Lian et al., 2024).
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Unlike simpler landslide types, identifying composite landslides necessitates multimodal data
fusion to holistically assess predisposing conditions (Li, 2025; Yin et al., 2023). It further requires
disentangling the nonlinear superposition effects of multiple factors and quantifying their relative
contributions to failure initiation. For instance, Dou et al. (2019) analyzed how earthquake
intensity and rainfall metrics jointly modulate landslide susceptibility, deriving failure probabilities
under varying parameter combinations. In multi factor-induced landslides, earthquakes and rainfall
often interact with other factors. For instance, during heavy rainfall, the rate of landslide formation
after an earthquake may be higher, possibly driven by the removal of excessively steep slopes,
changes in vegetation and groundwater, and alterations in the mechanical properties of the bedrock
and weathered layers in the earthquake-induced landslides canopy. This necessitates systematic
investigation of multi-hazard coupling effects to quantify emergent risks.

In addition to constructing physics-based models that account for multiple factors and
quantify their interactions through the solution of governing equations, GNNs can also be
employed (Lei et al., 2025). These models are capable of capturing the spatiotemporal
dependencies and nonlinear couplings among various triggering factors. For example, Ren et al.
(2025) employed a Graph Neural Network (GNN) to capture and model the complex
spatiotemporal dependencies among multiple monitoring locations during landslide deformation.
Zeng et al. (2022) used the graphical representation capability of the GNN model to analyze
environmental relationships within a study region, where nodes were defined as geographic units
delineated by terrain surface approximations, and edges captured the interactions between node
pairs. Zhang et al. (2024) constructed a geographically constrained relational graph based on node
features representing environmental similarity and employed a cosine similarity approach to
associate landslides with their surrounding geographic environments.

Cross-attention mechanisms can also be integrated into the model to capture spatiotemporal
dependencies among contributing factors. For instance, Hu et al. (2025) integrated global landslide
feature vectors with local feature maps through a cross-attention mechanism to enhance the
discriminative capability between landslides and background geomorphology. Alternatively, gated
fusion units may be incorporated to dynamically adjust the weights of multi-modal features (Yang
et al., 2024a). For instance, Liu et al. (2022) proposed a gated fusion unit (GFU) module for
multimodal remote sensing image semantic classification, enabling early fusion of heterogeneous
modality features.

With the accumulation of new data and the dynamic variations in multi factor-induced
landslides, regular model updates are critical to ensuring identification accuracy and adaptability.

Existing studies predominantly apply these methods based on comprehensive historical landslide
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datasets and employ batch learning theory for identification. However, when new data becomes
available, the model must be retrained from scratch. This approach is not only highly inefficient
but also fails to account for the connections between newly observed and historical landslides. To
address this limitation, incremental learning methods offer a promising solution. These methods
enable gradual parameter optimization through new data without retraining the existing model
(Huang et al., 2022). Compared to conventional deep learning models, those integrated with
incremental learning can more effectively leverage historical landslide data and adaptively learn

from newly incorporated data, thereby better accommodating the dynamic nature of landslides.

Newly Added References

Arnone, E., Noto, L.V., Lepore, C. and Bras, R.L., 2011. Physically-based and distributed approach to analyze
rainfall-triggered landslides at watershed scale. Geomorphology, 133(3-4), pp.121-131.
doi:10.1016/j.geomorph.2011.03.019.

Bhatta, S., Roy, A. and Shahandashti, M., 2025. Land Cover Classification Using U-Net for Calibration of
Rainfall-Induced Slope Susceptibility Maps. In International Conference on Transportation and
Development 2025 (pp. 439-448). doi:10.1061/9780784486191.039.

Biniyaz, A., Azmoon, B., Sun, Y. and Liu, Z., 2022. Long short-term memory based subsurface drainage control
for rainfall-induced landslide prevention. Geosciences, 12(2), p.64. doi:10.3390/geosciences12020064.

Chen, C. and Fan, L., 2022. CNN-LSTM-attention deep learning model for mapping landslide susceptibility in
Kerala, India. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10,
pp-25-30. doi:10.5194/isprs-annals-X-3-W1-2022-25-2022.

Han, J., Yang, H., Liu, Y., Lu, Z., Zeng, K. and Jiao, R., 2022. A deep learning application for deformation
prediction from ground-based insar. Remote Sensing, 14(20), p.5067. doi:10.3390/rs14205067.

Hu, W., Sun, G., Zeng, X., Tong, B., Wang, Z., Wu, X. and Song, P., 2025. Hierarchical cross attention achieves
pixel precise landslide segmentation in submeter optical imagery. Scientific Reports, 15(1), p.21933.
doi:10.1038/s41598-025-08695-8.

Li, J., Fan, C., Zhao, K., Zhang, Z. and Duan, P., 2025. Landslide displacement prediction using time series
InSAR with combined LSTM and TCN: application to the Xiao Andong landslide, Yunnan Province,
China. Natural Hazards, 121(4), pp.3857-3884. doi:10.1007/s11069-024-06937-y.

Liu, Q., Kampffmeyer, M., Jenssen, R. and Salberg, A.B., 2022. Multi-modal land cover mapping of remote
sensing images using pyramid attention and gated fusion networks. International Journal of Remote
Sensing, 43(9), pp.3509-3535. doi10.1080/01431161.2022.2098078.

Liu, Y., Brezzi, L., Liang, Z., Gabrieli, F., Zhou, Z. and Cola, S., 2025. Image analysis and LSTM methods for
forecasting surficial displacements of a landslide triggered by snowfall and rainfall. Landslides, 22(3),
pp.619-635. doi:10.1007/s10346-024-02328-3.

Meng, J., Xu, X., Li, P., Zhang, Z., Zhao, W., Ren, J. and Li, Y., 2025. Gf-former: an accurate UAV-based
remote sensing image network for high-precision automatic segmentation of ground fissures in mining
regions. International Journal of Machine Learning and Cybernetics, pp.1-22.
doi:10.1007/s13042-025-02555-7.

Peng, B. and Wu, X., 2024. Optimizing rai.nfall-triggered landslide thresholds for daily landslide hazard

98




warning in the Three Gorges Reservoir area. Natural Hazards and Earth System Sciences, 24(11),
pp-3991-4013. doi:10.5194/nhess-24-3991-2024.

Ren X, Liu W, Yang W, Mao L, Li H. Landslide Deformation Uncertainty Quantification Using Conformalized
Graph Neural Networks: A Case Study in Sichuan Province, China. IEEE Access. 2025 May 8.
doi:10.1109/ACCESS.2025.3568273.

Tao, T., Han, K., Yao, X., Chen, X., Wu, Z., Yao, C., Tian, X., Zhou, Z. and Ren, K., 2024. Identification of
ground fissure development in a semi-desert acolian sand area induced from coal mining: Utilizing UAV
images and deep learning techniques. Remote Sensing, 16(6), p.1046. doi:10.3390/rs16061046.

Tian, N., Lan, H., Li, L., Peng, J., Fu, B. and Clague, J.J., 2025. Human activities are intensifying the spatial
variation of landslides in the Yellow River Basin. Science Bulletin, 70(2), pp.263-272.
doi:10.1016/j.scib.2024.07.007.

Wu, H.,, Niu, J., Li, Y., Wang, Y. and Qiu, D., 2025. Landslide Susceptibility Prediction Based on a
CNN-LSTM-SAM-Attention Hybrid Model. Applied Sciences, 15(13), p.7245. doi:10.3390/app15137245.

Wu, S., Li, X. and Chen, D., 2023, May. A Method of Rainfall-Runoff Prediction Based on Transformer. In
Proceedings of the 15th International Conference on Digital Image Processing (pp. 1-6).
doi:10.1145/3604078.3604095.

Wu, Z., Wang, T., Wang, Y., Wang, R. and Ge, D., 2021. Deep learning for the detection and phase unwrapping
of mining-induced deformation in large-scale interferograms. IEEE Transactions on Geoscience and
Remote Sensing, 60, pp.1-18. doi:10.1109/TGRS.2021.3121907.

Xiong, J., Pei, T. and Qiu, T., 2024. A Novel Framework for Spatiotemporal Susceptibility Prediction of
Rainfall-Induced Landslides: A Case Study in Western Pennsylvania. Remote Sensing, 16(18), p.3526. doi:
10.3390/rs16183526.

Xu, G., Wang, Y., Wang, L., Soares, L.P. and Grohmann, C.H., 2022. Feature-based constraint deep CNN
method for mapping rainfall-induced landslides in remote regions with mountainous terrain: An application
to Brazil. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15,
pp.2644-2659. doi: 10.1109/JSTARS.2022.3161383.

Zeng, H., Zhu, Q., Ding, Y., Hu, H., Chen, L., Xie, X., Chen, M. and Yao, Y., 2022. Graph neural networks with
constraints of environmental consistency for landslide susceptibility evaluation. International journal of
geographical information science, 36(11), pp.2270-2295. doi:10.1080/13658816.2022.2103819.

Zhang, D., Wei, K., Yao, Y., Yang, J., Zheng, G. and Li, Q., 2022. Capture and prediction of rainfall-induced
landslide warning signals using an attention-based temporal convolutional neural network and entropy
weight methods. Sensors, 22(16), p.6240. doi: 10.3390/522166240.

Zhang, Q., He, Y., Zhang, L., Lu, J., Gao, B., Yang, W., Chen, H. and Zhang, Y., 2024. A landslide
susceptibility assessment method considering the similarity of geographic environments based on graph
neural network. Gondwana Research, 132, pp.323-342. doi:10.1016/5.gr.2024.04.013.

Comment #27:

31. L690: “gated fusion units” are never defined, and I’m not familiar with what they are. Could

you define them?

Response:
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Thank you very much for raising this concern! We apologize for the confusion. To clarify, we
have presented relevant explanations.

Although "gated fusion unit" is not a strictly standardized term, it derives from the concept of
gated fusion or gated multimodal units, which are commonly employed in fields such as
multimodal learning, visual question answering, and video recognition.

In this study, the term 'gated fusion units' refers to neural modules that integrate heterogeneous
features using learnable gating mechanisms, dynamically controlling the contribution of each
modality or feature channel. The concept is related to the Gated Multimodal Unit (GMU)
proposed by Arevalo et al. (2017).

To avoid potential misunderstandings, we have included a definition and explanation of the

“gated fusion units” in the manuscript.

Original Description in Subsection 4.4

In addition to the approach of constructing physics-based models that account for multiple
factors, GNNs can be employed. These models represent landslide-prone areas as graph nodes,
dynamically updating node states through spatiotemporal edge (Lei et al., 2025). Furthermore,
cross-attention mechanisms can be integrated into the model to capture spatiotemporal
dependencies among contributing factors. Alternatively, gated fusion units may be incorporated to

dynamically adjust the weights of multi-modal features (Yang et al., 2024a).

Revised Description in Subsection 4.4

In addition to the approach of constructing physics-based models that account for multiple
factors, GNNs can be employed. These models represent landslide-prone areas as graph nodes,
dynamically updating node states through spatiotemporal edge (Lei et al., 2025). Furthermore,
cross-attention mechanisms can be integrated into the model to capture spatiotemporal
dependencies among triggering factors. Another noteworthy fusion strategy is the gated fusion
unit. Inspired by the gating structures in recurrent neural networks (Arevalo et al., 2017; Kumar et
al., 2020; Tsai et al., 2019), this mechanism learns dynamic weights (typically implemented
through gating functions such as Sigmoid) to adaptively regulate the information flow of features
from different modalities, thereby emphasizing salient features and suppressing noise. Compared
with cross-attention, the gated fusion mechanism is generally more lightweight and provides an

alternative approach for multimodal feature fusion (Yang et al., 2024a).
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Comment #28:
32. L692: Paragraph may benefit from discussion of “fine-tuning” from the ML literature.

Response:

- Thank you for this excellent suggestion. We agree that introducing the concept of "fine-tuning"

provides a more nuanced and technically accurate progression of ideas in this paragraph. In the
revised manuscript, we have restructured this section to first discuss the common practice of
fine-tuning with new data, then point out its limitations concerning catastrophic forgetting in
non-stationary environments like landslides, and finally introduce incremental learning as a more
robust solution to these limitations. This change, we believe, significantly strengthens the logical

flow and technical depth of our argument.

- Please see the new Subsection 4.4 for details.

Original Description in Subsection 4.4

With the accumulation of new data and the dynamic variations in multi factor-induced
landslides, regular model updates are critical to ensuring identification accuracy and adaptability.
Existing studies predominantly apply these methods based on comprehensive historical landslide
datasets and employ batch learning theory for identification. However, when new data becomes
available, the model must be retrained from scratch. This approach is not only highly inefficient
but also fails to account for the connections between newly observed and historical landslides. To
address this limitation, incremental learning methods offer a promising solution. These methods
enable gradual parameter optimization through new data without retraining the existing model
(Huang et al., 2022). Compared to conventional deep learning models, those integrated with
incremental learning can more effectively leverage historical landslide data and adaptively learn

from newly incorporated data, thereby better accommodating the dynamic nature of landslides.
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Revised Description in Subsection 4.4

With the accumulation of new data and the dynamic variations in multi-factor-induced
landslides, regular model updates are critical to ensuring identification accuracy and adaptability.
Existing studies predominantly apply deep learning methods based on comprehensive historical
landslide datasets. However, when new data becomes available, a naive approach is to retrain the
model from scratch, which is computationally inefficient and fails to capture the connections
between new observations and historical knowledge. A common strategy from the machine
learning literature to address this is fine-tuning, where a model pre-trained on a historical dataset is
further trained on new data (Stalp et al., 2025). While this avoids full retraining, standard
fine-tuning can still lead to catastrophic forgetting of previously learned patterns.

To better accommodate the dynamic nature of landslides, incremental learning methods offer
a more advanced and promising solution (Huang et al., 2022; Wang et al., 2024). These methods
enable the model to continuously learn from new data streams, gradually optimizing parameters
while striving to preserve knowledge from previous tasks. Compared to models that require
retraining or basic fine-tuning (Zhao et al., 2024), models integrated with incremental learning can
more effectively leverage historical data and adaptively incorporate new information, thereby

enhancing long-term adaptability (Zhen et al., 2025).
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Comment #29:
34. L80S: Paragraph may benefit from discussion of Physics-Informed Neural Networks, which

may be of interest to scientists in this area.

Response:

Thank you so much for your constructive and valuable comments! We fully agree that
Physics-Informed Neural Networks (PINNs) are highly relevant to the challenges of landslide
identification, as they directly address the tension between data-driven feature extraction and the
underlying physical processes governing slope stability.

Your suggestion aligns well with Subsection 6.3 of our manuscript, where we also emphasize the
integration of data-driven models with physical mechanisms. Following your advice, we have
accordingly expanded the relevant discussion. Specifically, we now highlight that PINNs embed
physical laws into the training objective of neural networks, thereby constraining data-driven
learning with domain knowledge. This integration reduces the reliance on large annotated
datasets and enhances cross-regional transferability, which is particularly valuable in landslide
studies where data are scarce and heterogeneous. Furthermore, we point out that although
applications of PINNs to landslide research remain limited, they represent a promising direction
for bridging data-driven models with physically grounded mechanisms. (Please see the revised
Subsection 6.3 for details.)

Original Description in Subsection 6.3

In the second stage, mechanistic constraints are integrated into the data-driven model to

achieve knowledge-data dually driven fusion.

Before model construction, prior knowledge can be derived from external sources, including
domain expertise, historical data, and physical principles. Alternatively, mechanistic models may
be employed to preprocess raw monitoring data. The outputs of mechanistic models or prior
knowledge serve as a foundation for initializing parameters in data-driven models (Cui et al.,
2024; Liu et al., 2023a; Ma and Mei, 2025). This is because, in data-driven models, the selection
of initial parameter values significantly impacts on both the training process and final model
performance. Incorporating prior knowledge helps define more reasonable initial parameter
ranges, enabling the model to converge toward near-optimal solutions earlier in the training phase.

Knowledge embedding involves translating landslide physics into model constraints to guide
the training and optimization of data-driven models (Dahal and Lombardo, 2025; Liu et al., 2024).
At the architectural level, layers derived from physical equations can be structurally integrated into
the network design. These physical equations can even be directly encoded as network layers,

forming differentiable physics-informed computational modules. Differentiability is essential to
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ensure that these physics-based layers function as effective computational modules within the
network. This requirement stems from the fact that training relies on optimization algorithms,
which adjust model parameters by computing gradients of the loss function with respect to those
parameters. Only differentiable physics-encoded layers allow gradient computation during
backpropagation, enabling the model to learn parameters consistent with physical laws. At the loss
function level, physical equations can be directly embedded into the neural network’s loss function
to enforce predictions that adhere to physical principles. As the model seeks to minimize the loss
function, it iteratively adjusts its parameters to align predictions with the constraints imposed by

these physical equations.

Revised Description in Subsection 6.3

In the second stage, mechanistic constraints are integrated into the data-driven model to
achieve knowledge-data dually driven fusion.

Prior knowledge can be derived from external sources, including domain expertise, historical
records, and physical principles, or mechanistic models can be employed to preprocess raw
monitoring data. These outputs serve as a foundation for initializing parameters in data-driven
models, which is crucial because the choice of initial values substantially affects both training
efficiency and final performance (Cui et al., 2024; Liu et al., 2023a; Ma and Mei, 2025). Beyond
initialization, knowledge embedding involves translating landslide physics into model constraints
to guide learning and optimization (Dahal and Lombardo, 2025; Liu et al., 2024). At the
architectural level, physical equations can be structurally encoded as differentiable network layers,
enabling gradient-based optimization. At the loss function level, physical constraints can be
directly incorporated into the training objective, ensuring that predictions remain consistent with
established principles.

A representative example of this paradigm is the Physics-Informed Neural Network (PINN)
framework (Raissi et al., 2019). PINNs embed governing equations (such as partial differential
equations describing slope hydrology or stress-strain processes) into the neural network training
objective, thereby constraining the learning process with domain knowledge. This approach not
only reduces dependence on large annotated datasets but also enhances interpretability and
cross-regional transferability (Karniadakis et al., 2021). Although applications of PINNs in
landslide research remain limited (Moeineddin et al., 2023), they provide a promising avenue for

bridging purely data-driven approaches with physically grounded mechanisms (Wu et al., 2022).
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Comment #30:
35. L833-841: Perhaps I am misunderstanding, but this information is already conveyed in

Section 4 and Figure 7.

Response:
Thank you for your careful reading and insightful observation! You are correct that the
description of the three stages of landslides (early, middle, and late) in lines 833-841 was
redundant, as it overlapped with the content already presented in Section 4 and Figure 7. This
repetition was indeed unnecessary.
In accordance with your suggestion, we have made the following revisions to the relevant
section:
(1) We have completely removed the repetitive paragraph in lines 833—-841. We recognized that
Section 4 already provides a more detailed, case-based discussion of these stages, making
repetition at this point unnecessary.
(2) After the deletion, we rewrote the transition sentence to directly guide readers back to the key
findings in Section 4, thereby maintaining logical flow while avoiding redundancy.
Several revisions are listed as follows. All related revisions are made and marked in the revised
manuscript. Please see the revised Subsection 5.3.2 for all details. Thanks.

Original Description in Subsection 5.3.2

also highly dynamic in terms of time (Gao et al., 2023). This variability makes the research

process of the landslide mechanism more difficult.

The inducing factors of landslides are not only extremely complex in spatial distribution but

From the perspective of temporal dynamics, landslide formation is not instantaneous but
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evolves through prolonged stages. From initial deformation to eventual collapse, dynamic changes
persist throughout the process, with distinct mechanisms governing each phase.

The early stage of a landslide is typically characterized by minor surface deformations or
cracks, many of which remain imperceptible. The absence of conspicuous surface indicators
results in the frequent omission of initial deformations, thereby heightening instability risks in later
phases.

During the intermediate stage, accelerated deformation and pronounced surface fracturing
emerge. At this stage, landslide dynamics grow increasingly complex, influenced by competing
mechanical mechanisms. The evolving stress and strain fields complicate precise quantification of
failure magnitude and velocity.

The terminal stage involves abrupt destabilization and catastrophic collapse, resulting in
extensive surface disruption and mass displacement. Nonlinear dynamics dominate this phase,
where rapid progression severely limits the feasibility of timely mitigation efforts.

Since the numerical simulation of long-term creep requires a long-time step, while the
dynamic process of short-term abrupt changes requires a time resolution in the microsecond level,
it is difficult to establish a unified model for these two situations. This will further intensify the
conflict of time scales.

In terms of spatial heterogeneity, the influence scope of landslides usually involves geological
structures ranging from the microscopic structure of geotechnical particles to the regional scale.
Moreover, there are differences in the stratum structure, slope morphology, vegetation coverage,
water content, which makes the effects of the same inducing factor vary in different regions. For
example, in loose soil layers, heavy rainfall may lead to shallow landslides, while on rocky slopes
with well-developed joints, earthquakes or water level fluctuations may trigger deep-seated

landslides.

Revised Description in Subsection 5.3.2

The inducing factors of landslides are not only extremely complex in spatial distribution but
also highly dynamic in terms of time (Gao et al., 2023). This variability makes the research
process of the landslide mechanism more difficult.

From the perspective of temporal dynamics, landslide formation is not instantaneous but
evolves through prolonged stages, each governed by distinct mechanisms (as detailed in Section 4
and Figure 7). This dynamic progression across different timescales creates a fundamental
modeling challenge: since the numerical simulation of long-term creep requires a long time step,

while the dynamic process of short-term abrupt changes requires a time resolution in the
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microsecond level, it is difficult to establish a unified model for these two situations. This will
further intensify the conflict of time scales.

In terms of spatial heterogeneity, the influence scope of landslides usually involves geological
structures ranging from the microscopic structure of geotechnical particles to the regional scale.
Moreover, there are differences in the stratum structure, slope morphology, vegetation coverage,
water content, which makes the effects of the same inducing factor vary in different regions. For
example, in loose soil layers, heavy rainfall may lead to shallow landslides, while on rocky slopes
with well-developed joints, earthquakes or water level fluctuations may trigger deep-seated

landslides.

Comment #31:
36. Figures 9 and 10 seem redundant to me. It is not clear why you need both instead of just one

or the other. Moreover, Figure 10(d) seems completely unnecessary.

Response:

- Thank you very much for your constructive comment! We carefully reviewed Figures 9 and 10
and agree that there is a degree of redundancy between them. Upon re-examination, we found
that Figure 10 mainly served as a visual integration of concepts that had already been illustrated
in earlier figures:

- (1) Figure 10(a) corresponds to the real-time monitoring data source that was already presented
in Figure 1.

- (2) Figure 10(b) represents the stages of landslide evolution, which had been clearly illustrated
in Figure 7.

- (3) Figure 10(c) conceptually overlaps with the workflow of the knowledge-data dually driven
paradigm shown in Figure 9.

- (4) As you correctly pointed out, Figure 10(d) is indeed redundant and not essential to the
overall presentation.

- Therefore, in the revised manuscript, we have deleted Figure 10 to avoid duplication and enhance
the clarity and conciseness of the paper. We have also adjusted the corresponding text to ensure a
smooth logical transition from the previous figures to Figure 9, which now serves as the central
illustration of our proposed framework.

- We sincerely appreciate this valuable suggestion, which helped us improve the structure and

readability of the manuscript.
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Original Description in Subsection 6.3

The knowledge-data dually driven paradigm, operating through an iterative "theory-guided
data assimilation and data informed theoretical refinement" mechanism, has advanced potential
landslide identification from empirical reliance to scientifically quantifiable methodologies.

Furthermore, the spatial analysis capabilities of geographic information system (GIS) were
integrated into the practical identification workflow, enabling the study area to be partitioned into
distinct landslide risk categories. This risk stratification considers the combined influence of

region-specific factors, ensuring scientifically robust and practically viable classifications.

Revised Description in Subsection 6.3

The knowledge-data dually driven paradigm, operating through an iterative "theory-guided
data assimilation and data informed theoretical refinement" mechanism, has advanced potential
landslide identification from empirical reliance to scientifically quantifiable methodologies. The
overall workflow of this knowledge-data dually driven paradigm for potential landslide
identification is conceptually summarized in Figure 9.

Furthermore, the spatial analysis capabilities of geographic information system (GIS) were
integrated into the practical identification workflow, enabling the study area to be partitioned into
distinct landslide risk categories. This risk stratification considers the combined influence of

region-specific factors, ensuring scientifically robust and practically viable classifications.

- With our clarifications and revisions, we hope that we have addressed your concerns. Thank you

so much for your kind consideration!
- Have a nice day!

- Pan Jiang & Zhengjing Ma & Gang Mei
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Responses to the Second Reviewer’s Comments

Pan Jiang, Zhengjing Ma*, Gang Mei**
School of Engineering and Technology
China University of Geosciences (Beijing)
gang.mei@cugb.edu.cn

Acknowledgement The authors would like to thank the editor and the reviewers for their comments.

Comment # 1:
1. The objective of this work is to review recent advances in the application of deep learning to
landslide prediction and to highlight the challenges and opportunities in this field. The authors
provide an extensive overview of existing model types, but the manuscript does not go into
sufficient detail on the actual application of deep learning techniques to landslide prediction. I see

potential in this review; however, it requires a thorough revision.

Response:
Dear reviewer, we sincerely appreciate your recognition of the research objectives of this study
and are deeply grateful for your valuable and insightful comments! We fully agree with your
observation that the previous version of the manuscript did not adequately explore the practical
application of deep learning techniques in landslide prediction. This observation prompted us to
conduct a thorough reflection and a comprehensive reconstruction of the manuscript.
Following your suggestion, we carried out a comprehensive and targeted revision of the
manuscript. The central aim of this revision was to shift the focus from a general overview of
model types to a detailed discussion of how these models are specifically applied to address
practical problems in potential landslide identification.
Specifically, we have made the following major revisions:
(1) In Section 2, rather than merely introducing the principles and advantages or disadvantages
of various data sources, we have incorporated numerous case studies demonstrating how these
data sources are integrated with deep learning models (Please see Comment #5).
(2) Section 3 has been thoroughly reconstructed and substantially enriched; in each subsection,
we have added detailed research cases and methodological descriptions. In accordance with your
suggestion, we removed unnecessary descriptions of model architectures and instead focused on
clarifying "which study employed which specific model architecture, addressed what type of
landslide-related problem, utilized what kind of data, and achieved what key achievements. "
(Please see Comment #3).

(3) Similarly, in Section 4, we replaced general discussions with extensive examples illustrating
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which types of landslides are best suited to specific deep learning models. (Please see Section 4).

Original Description in Section 4

4.1 Application of Deep Learning in the Identification of Rainfall-induced Landslides
Following the development of rainfall threshold models, real-time monitoring of historically
rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of
subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating
timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by
continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic
recalibration of threshold parameters. This data assimilation enhances model adaptability to
evolving hydrogeological conditions, ensuring operational relevance across heterogeneous

terrains.

Moreover, the triggers of human activity-induced landslides are not only related to natural
conditions but also closely associated with dynamic human activities. Consequently, their analysis
necessitates the integration of multimodal and cross-scale data to capture coupled environmental
and behavioral drivers (see Fig. 6). In engineering operations such as mining or road construction,
factors including proximity to potential landslide zones, excavation depth, and slope angles must
be rigorously evaluated through geohazard risk assessments. During excavation phases,
geotechnical investigations are imperative to identify weak lithological strata or fracture-dense
zones predisposed to instability. Continuous slope stability monitoring requires deploying
IoT-enabled sensors to track temporal variations in surface fissure dimensions and subsurface
displacement vectors. Monitoring data from these sensors can be integrated into deep learning
models for multimodal analytics, enabling dynamic risk prediction and adaptive mitigation
planning.

To mitigate misclassification between anthropogenic signatures and natural terrain,
integrating multispectral data with topographic elevation data enhances discriminative capacity
(Meng et al., 2021; Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing
artificially excavated steep slopes combined with fractured geological strata from structural maps
provide preliminary evidence of human influence on landslide susceptibility (Lian et al., 2024).

In fact, landslides triggered solely by human activities are relatively rare. Single human

activities are typically insufficient to independently trigger landslides, with natural factors often
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acting in conjunction with human activities. Furthermore, the prohibitive cost of acquiring
subsurface disturbance data results in sparse historical landslide samples for specific engineering
scenarios, limiting data-driven model training.

4.4 Application of Deep Learning in the Identification of Human Activity-induced Landslides

Multi factor-induced landslides result from the synergistic interaction of multiple natural and
anthropogenic factors (Hao et al., 2023). Their triggering mechanisms involve the dynamic
spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials
through cumulative strength degradation. The formation of such landslides may involve various
types of movements, including collapse, creep, and flow phenomena. They often exhibit
characteristics such as complexity, nonlinearity, and suddenness. Therefore, their identification is
markedly more complex compared to landslides triggered by singular factors.

Unlike simpler landslide types, identifying composite landslides necessitates multimodal data
fusion to holistically assess predisposing conditions (Li, 2025; Yin et al., 2023). It further requires
disentangling the nonlinear superposition effects of multiple factors and quantifying their relative
contributions to failure initiation. For instance, Dou et al. (2019) analyzed how earthquake
intensity and rainfall metrics jointly modulate landslide susceptibility, deriving failure probabilities
under varying parameter combinations. In multi factor-induced landslides, earthquakes and rainfall
often interact with other factors. For instance, during heavy rainfall, the rate of landslide formation
after an earthquake may be higher, possibly driven by the removal of excessively steep slopes,
changes in vegetation and groundwater, and alterations in the mechanical properties of the bedrock
and weathered layers in the earthquake-induced landslides canopy. This necessitates systematic
investigation of multi-hazard coupling effects to quantify emergent risks.

In addition to the approach of constructing physics-based models that account for multiple
factors, GNNs can be employed. These models represent landslide-prone areas as graph nodes,
dynamically updating node states through spatiotemporal edges (Lei et al., 2025). Furthermore,
cross-attention mechanisms can be integrated into the model to capture spatiotemporal
dependencies among contributing factors. Alternatively, gated fusion units may be incorporated to
dynamically adjust the weights of multi-modal features (Yang et al., 2024a).

With the accumulation of new data and the dynamic variations in multi factor-induced
landslides, regular model updates are critical to ensuring identification accuracy and adaptability.
Existing studies predominantly apply these methods based on comprehensive historical landslide
datasets and employ batch learning theory for identification. However, when new data becomes
available, the model must be retrained from scratch. This approach is not only highly inefficient
but also fails to account for the connections between newly observed and historical landslides. To

address this limitation, incremental learning methods offer a promising solution. These methods
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enable gradual parameter optimization through new data without retraining the existing model
(Huang et al., 2022). Compared to conventional deep learning models, those integrated with
incremental learning can more effectively leverage historical landslide data and adaptively learn

from newly incorporated data, thereby better accommodating the dynamic nature of landslides.

- Revised Description in Section 4

4.1 Application of Deep Learning in the Identification of Rainfall-induced Landslides

Following the development of rainfall threshold models, real-time monitoring of historically
rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of
subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating
timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by
continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic
recalibration of threshold parameters. This data assimilation enhances model adaptability to
evolving hydrogeological conditions, ensuring operational relevance across heterogeneous
terrains.

While the physical mechanisms governing rainfall-induced slope failures have been well
studied (Arnone et al., 2011; Xiong et al., 2024), recent advances in deep learning have
significantly improved our ability to automatically identify and predict such events using
heterogeneous data.

In the context of rainfall-induced landslides, spatiotemporal data (e.g., rainfall intensity,
cumulative precipitation, soil moisture, and slope displacement time series) are the primary inputs.
Deep learning models are selected according to data characteristics and task objectives. For
instance, CNNs are commonly used to extract spatial rainfall-topography features and delineate
susceptible zones from remote sensing images (Peng and Wu 2024; Xu et al., 2022; Zhang et al.,
2022). The encoder—decoder architecture, such as U-Net, enables pixel-level segmentation of
rainfall-triggered landslides (Bhatta et al., 2025), with the inclusion of vegetation or soil moisture
layers improving feature discrimination.

When temporal evolution is essential, RNNs and LSTM networks effectively model
sequential dependencies between rainfall and slope deformation (Biniyaz et al., 2022; Liu et al.,
2025). These models are capable of learning hysteretic responses and time lags between
precipitation events and ground displacement, enabling early warning through time-series

forecasting.
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Furthermore, hybrid models combining CNN and LSTM components have been proposed to
jointly learn spatial-temporal correlations (Chen and Fun 2022; Wu et al., 2025). By fusing
rainfall distribution maps with displacement monitoring sequences, these architectures provide a
more complete understanding of rainfall-landslide coupling mechanisms.

Deep learning also facilitates data-driven rainfall threshold estimation. Instead of relying
solely on empirical or physically based thresholds, models such as fully connected neural networks
(FNNs) and attention-based transformers can derive adaptive rainfall thresholds from multi-year

rainfall-landslide records, capturing regional nonlinearities (Wu et al., 2023).

Moreover, the triggers of human activity-induced landslides are not only related to natural
conditions but also closely associated with dynamic human activities (Tian et al., 2025).
Consequently, their analysis necessitates the integration of multimodal and cross-scale data to
capture coupled environmental and behavioral drivers (see Fig. 6). In engineering operations such
as mining or road construction, factors including proximity to potential landslide zones, excavation
depth, and slope angles must be rigorously evaluated through geohazard risk assessments. During
excavation phases, geotechnical investigations are imperative to identify weak lithological strata or
fracture-dense zones predisposed to instability. Continuous slope stability monitoring requires
deploying IoT-enabled sensors to track temporal variations in surface fissure dimensions and
subsurface displacement vectors. Monitoring data from these sensors can be integrated into deep
learning models for multimodal analytics, enabling dynamic risk prediction and adaptive
mitigation planning.

For spatial mapping and fissure extraction, CNNs and U-Net-based segmentation models
have demonstrated strong capability in identifying artificial slope features from optical or SAR
imagery. CNN-based models can capture high-level semantic information on excavation scars,
road cuts, and spoil heaps that indicate anthropogenic disturbance. Tao et al. (2024) employed the
DRs-UNet model to investigate the use of deep learning for UAV-based crack identification, the
developmental patterns of fissures, and the feedback interactions between underground mining
progress and corresponding surface conditions. Wu et al. (2021) proposed the PUNet model for
detecting and mapping localized rapid subsidence induced by mining activities. Meng et al. (2025)
introduced the GF-Former model to achieve precise segmentation of ground fissures in remote
sensing imagery.

When surface deformation time series or micro-displacement data from GB-InSAR, InSAR,

or IoT sensors are available, RNN-based models are applied to model the temporal evolution of
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slope deformation (Han et al., 2022; Li et al., 2025). These models are particularly effective in
detecting precursory motion trends caused by progressive excavation or loading activities.

To mitigate misclassification between anthropogenic signatures and natural terrain,
integrating multispectral data with topographic elevation data enhances discriminative capacity
(Meng et al., 2021; Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing
artificially excavated steep slopes combined with fractured geological strata from structural maps
provide preliminary evidence of human influence on landslide susceptibility (Lian et al., 2024).

In fact, landslides triggered solely by human activities are relatively rare. Single human
activities are typically insufficient to independently trigger landslides, with natural factors often
acting in conjunction with human activities. Furthermore, the prohibitive cost of acquiring
subsurface disturbance data results in sparse historical landslide samples for specific engineering
scenarios, limiting data-driven model training.

4.4 Application of Deep Learning in the Identification of Human Activity-induced Landslides

Multi factor-induced landslides result from the synergistic interaction of multiple natural and
anthropogenic factors (Hao et al., 2023). Their triggering mechanisms involve the dynamic
spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials
through cumulative strength degradation. The formation of such landslides may involve various
types of movements, including collapse, creep, and flow phenomena. They often exhibit
characteristics such as complexity, nonlinearity, and suddenness. Therefore, their identification is
markedly more complex compared to landslides triggered by singular factors.

Unlike simpler landslide types, identifying composite landslides necessitates multimodal data
fusion to holistically assess predisposing conditions (Li, 2025; Yin et al., 2023). It further requires
disentangling the nonlinear superposition effects of multiple factors and quantifying their relative
contributions to failure initiation. For instance, Dou et al. (2019) analyzed how earthquake
intensity and rainfall metrics jointly modulate landslide susceptibility, deriving failure probabilities
under varying parameter combinations. In multi factor-induced landslides, earthquakes and rainfall
often interact with other factors. For instance, during heavy rainfall, the rate of landslide formation
after an earthquake may be higher, possibly driven by the removal of excessively steep slopes,
changes in vegetation and groundwater, and alterations in the mechanical properties of the bedrock
and weathered layers in the earthquake-induced landslides canopy. This necessitates systematic
investigation of multi-hazard coupling effects to quantify emergent risks.

In addition to constructing physics-based models that account for multiple factors and
quantify their interactions through the solution of governing equations, GNNs can also be
employed (Lei et al., 2025). These models are capable of capturing the spatiotemporal

dependencies and nonlinear couplings among various triggering factors. By integrating
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cross-attention mechanisms, their ability to dynamically weight the relationships among stresses
induced by rainfall, earthquakes, and human activities can be further enhanced. For example, Ren
et al. (2025) employed a GNN to capture and model the complex spatiotemporal dependencies
among multiple monitoring locations during landslide deformation. Zeng et al. (2022) used the
graphical representation capability of the GNN model to analyze environmental relationships
within a study region, where nodes were defined as geographic units delineated by terrain surface
approximations, and edges captured the interactions between node pairs. Zhang et al. (2024)
constructed a geographically constrained relational graph based on node features representing
environmental similarity and employed a cosine similarity approach to associate landslides with
their surrounding geographic environments.

Cross-attention mechanisms can also be integrated into the model to capture spatiotemporal
dependencies among contributing factors. For instance, Hu et al. (2025) integrated global landslide
feature vectors with local feature maps through a cross-attention mechanism to enhance the
discriminative capability between landslides and background geomorphology. Alternatively, gated
fusion units may be incorporated to dynamically adjust the weights of multi-modal features (Yang
et al., 2024a). For instance, Liu et al. (2022) proposed a gated fusion unit (GFU) module for
multimodal remote sensing image semantic classification, enabling early fusion of heterogeneous
modality features.

With the accumulation of new data and the dynamic variations in multi factor-induced
landslides, regular model updates are critical to ensuring identification accuracy and adaptability.
Existing studies predominantly apply these methods based on comprehensive historical landslide
datasets and employ batch learning theory for identification. However, when new data becomes
available, the model must be retrained from scratch. This approach is not only highly inefficient
but also fails to account for the connections between newly observed and historical landslides. To
address this limitation, incremental learning methods offer a promising solution. These methods
enable gradual parameter optimization through new data without retraining the existing model
(Huang et al., 2022). Compared to conventional deep learning models, those integrated with
incremental learning can more effectively leverage historical landslide data and adaptively learn

from newly incorporated data, thereby better accommodating the dynamic nature of landslides.
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Comment # 2:

2. Along the manuscript, I noticed several unsupported statements and a consistent lack of
citations. There is also redundancy in the information presented, numerous grammar errors, and a
confusing structure. For example, definitions and mechanisms of landslides appear scattered
across different sections, rather than being organized logically. Since the manuscript focuses on
landslides, I recommend a restructuring of the paper along the following lines:

1. Introduction
2. Landslide definition
a. Landslide mechanisms
b. Type of landslides
3. Deep learning for potential landslides
a. Data sources and models
b. Applications
c. Challenges and Limitation
d. Opportunities

4. Conclusions

Response:
We sincerely thank the reviewer for the time and effort devoted to evaluating our manuscript and
for providing such constructive and insightful comments! We carefully considered all suggestions

and have made extensive revisions to improve the scientific rigor, clarity, and logical consistency
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of the paper. Below, we address each comment in detail and describe the corresponding revisions
made to the manuscript.

* Regarding the issue of unsupported statements and a consistent lack of citations

Thank you for pointing out this important issue. We fully agree that some statements in the
previous version lacked sufficient references. To address this, we carefully reviewed the entire
manuscript and added numerous recent and authoritative citations to support key claims
regarding deep learning methods, data sources, and landslide mechanisms.

* Regarding the issues of redundant content and numerous grammatical errors

We sincerely apologize for the inadequate writing quality in the original submission and fully
acknowledge that the grammar and expression did not meet the high standards required for
journal publication. We appreciate your detailed remarks, which helped us identify the issues
more clearly. We will also take this valuable feedback as an opportunity to strengthen our own
academic writing competency in future research.

To thoroughly address this concern, we have undertaken a comprehensive revision of the entire

manuscript:

(1) We have carefully checked and polished using advanced Al-powered writing assistance
technology (specifically, Grammarly and ChatGPT) to correct grammatical errors, eliminate
redundancy, and improve sentence clarity.

(2) Following this, all authors have performed multiple rounds of manual proofreading to ensure
the final text is coherent, focused, and meets the high standards expected for publication.

* Regarding the issue of revising the article structure

Thank you for this very insightful and constructive suggestion. We carefully considered the
proposed restructuring and fully understand the motivation behind it. We agree that a clear
definition of landslides, including their specific mechanisms and types, is a crucial aspect. We
acknowledge that this was an important point missing from our original manuscript, and your
detailed feedback has been instrumental in helping us refine our discussion.

We carefully considered your recommendation to restructure the manuscript. However, since the
primary objective of this review is to systematically summarize deep learning for active landslide
identification, we chose to maintain the existing framework organized around data, models,
applications, challenges, and opportunities. This structure better reflects the methodological logic
and development trajectory of deep learning in geoscientific research. Furthermore, as our review
indicates, the current mainstream application of deep learning for active landslides is heavily
focused on identification and prediction. These approaches are powerful but often treat the
problem primarily as one of pattern recognition from data (e.g., satellite or UAV imagery), and
therefore typically do not incorporate the specific physical mechanisms or geological typologies

of the landslides involved.
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Your comment provided us with significant inspiration by highlighting this gap. We strongly
agree that moving beyond simple prediction is a critical and highly promising direction for the
field. Integrating underlying physical mechanisms and specific landslide types is key to
transforming deep learning models from "black boxes" into tools that offer deeper insights into
why and how these disasters occur. This integration is also essential for ensuring the reliable and
interpretable application of artificial intelligence in geoscience.

Based on the above considerations, we decided to retain the original overall structure of the
manuscript, as it aligns more closely with the thematic focus on deep learning for active landslide
identification. However, we have supplemented and reorganized the relevant content concerning
landslide-related concepts and classifications, which are now integrated cohesively within the
Introduction to improve conceptual clarity and logical consistency (Please see Comment # 4).
In addition, in the Section 6 "Deep Learning for Potential Landslide Identification:
Opportunities", we have expanded our discussion of the field’s current limitations and future
perspectives. Specifically, we highlight the need to bridge the gap between data-driven prediction
and physically interpretable understanding of landslide processes. Furthermore, in our outlook,
we emphasize that developing new frameworks capable of incorporating landslide types and
physical principles represents a vital avenue for future research. We believe these additions,
inspired by your feedback, significantly strengthen the manuscript’s scientific depth and
forward-looking perspective.

Original Description in Subsection 6.3

Conventional knowledge-driven methods, grounded in physical mechanics, rely on precise

prior knowledge of geological structures and hydrological conditions. However, landslides are
influenced by complex, coupled multi-factor interactions, characterized by high parameter
uncertainty, making it challenging to comprehensively address such scenarios (Roy and Saha,
2019). Purely data-driven approaches, though capable of extracting patterns from massive datasets,
lack physical interpretability, are susceptible to noise interference, and struggle to establish causal
relationships in prediction outcomes (Qi et al., 2024).

Building upon future disaster prevention concepts, such as "digital twin" and "smart Earth",
we propose a knowledge-data dually driven paradigm for potential landslide identification (Chen
et al., 2024b; Das et al., 2024; Huang et al., 2023a; Riahi et al., 2022; Sukor et al., 2019; Zhao et
al., 2024c¢). The core concept involves leverage knowledge analysis to gain a deeper understanding
of landslide triggering mechanisms and mechanical behaviors, while combine data-driven methods
to extract potential landslide features and patterns from monitoring data and historical records.

This synergy establishes a closed-loop "theory-practice" verification mechanism, thereby
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advancing the transformation of geological hazard mitigation from passive response to proactive
prevention.

In the second stage, mechanistic constraints are integrated into the data-driven model to
achieve knowledge-data dually driven fusion.

Before model construction, prior knowledge can be derived from external sources, including
domain expertise, historical data, and physical principles. Alternatively, mechanistic models may
be employed to preprocess raw monitoring data. The outputs of mechanistic models or prior
knowledge serve as a foundation for initializing parameters in data-driven models (Cui et al.,
2024; Liu et al., 2023a; Ma and Mei, 2025). This is because, in data-driven models, the selection
of initial parameter values significantly impacts on both the training process and final model
performance. Incorporating prior knowledge helps define more reasonable initial parameter
ranges, enabling the model to converge toward near-optimal solutions earlier in the training phase.

Knowledge embedding involves translating landslide physics into model constraints to guide
the training and optimization of data-driven models (Dahal and Lombardo, 2025; Liu et al., 2024).
At the architectural level, layers derived from physical equations can be structurally integrated into
the network design. These physical equations can even be directly encoded as network layers,
forming differentiable physics-informed computational modules. Differentiability is essential to
ensure that these physics-based layers function as effective computational modules within the
network. This requirement stems from the fact that training relies on optimization algorithms,
which adjust model parameters by computing gradients of the loss function with respect to those
parameters. Only differentiable physics-encoded layers allow gradient computation during
backpropagation, enabling the model to learn parameters consistent with physical laws. At the loss
function level, physical equations can be directly embedded into the neural network’s loss function
to enforce predictions that adhere to physical principles. As the model seeks to minimize the loss
function, it iteratively adjusts its parameters to align predictions with the constraints imposed by

these physical equations.

Revised Description in Subsection 6.3

Conventional knowledge-driven methods, grounded in physical mechanics, rely on precise
prior knowledge of geological structures and hydrological conditions. However, landslides are
influenced by complex, coupled multi-factor interactions, characterized by high parameter
uncertainty, making it challenging to comprehensively address such scenarios (Roy and Saha,
2019). Purely data-driven approaches, though capable of extracting patterns from massive datasets,

lack physical interpretability, are susceptible to noise interference, and struggle to establish causal
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relationships in prediction outcomes (Qi et al., 2024). A critical challenge and opportunity,
therefore, lies in bridging the gap between data-driven predictive capabilities and a physically
interpretable understanding of landslide processes.

To bridge this critical gap, a fundamental shift towards a knowledge-data dually driven
paradigm is imperative. This paradigm moves beyond simple combination to a deep integration,
where physical principles actively constrain and inform the deep learning architecture. Future
research should focus on developing novel frameworks capable of explicitly incorporating
landslide typologies and physical laws. For instance, Physics-Informed Neural Networks (PINNs)
can embed governing equations directly into the model's loss function, while knowledge graphs
can structurally represent the complex relationships between predisposing factors and failure
mechanisms.

This synergy, aligned with future concepts like "digital twin" and "smart Earth," establishes a
closed-loop "theory-practice" verification mechanism (Chen et al., 2024b; Das et al., 2024; Huang
et al., 2023a; Riahi et al., 2022; Sukor et al., 2019; Zhao et al., 2024c). The ultimate goal is to
advance landslide identification from mere pattern recognition towards physically interpretable,
causally-aware forecasting, thereby transforming geological hazard mitigation from passive
response to proactive prevention.

In the second stage, mechanistic constraints are integrated into the data-driven model to
achieve knowledge-data dually driven fusion.

Prior knowledge can be derived from external sources, including domain expertise, historical
records, and physical principles, or mechanistic models can be employed to preprocess raw
monitoring data. These outputs serve as a foundation for initializing parameters in data-driven
models, which is crucial because the choice of initial values substantially affects both training
efficiency and final performance (Cui et al., 2024; Liu et al., 2023a; Ma and Mei, 2025). Beyond
initialization, knowledge embedding involves translating landslide physics into model constraints
to guide learning and optimization (Dahal and Lombardo, 2025; Liu et al., 2024). At the
architectural level, physical equations can be structurally encoded as differentiable network layers,
enabling gradient-based optimization. At the loss function level, physical constraints can be
directly incorporated into the training objective, ensuring that predictions remain consistent with
established principles.

A representative example of this paradigm is the PINN framework (Raissi et al., 2019).
PINNs embed governing equations (such as partial differential equations describing slope
hydrology or stress-strain processes) into the neural network training objective, thereby

constraining the learning process with domain knowledge. This approach not only reduces
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dependence on large annotated datasets but also enhances interpretability and cross-regional
transferability (Karniadakis et al., 2021). Although applications of PINNs in landslide research
remain limited (Moeineddin et al., 2023), they provide a promising avenue for bridging purely

data-driven approaches with physically grounded mechanisms (Wu et al., 2022).

Newly Added References
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catastrophic creeping landslides. Landslides, 20(9), pp.1853-1863. doi:10.1007/s10346-023-02072-0.
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framework for solving forward and inverse problems involving nonlinear partial differential equations.
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Comment # 3:
3. In addition, there is excessive discussion on the general use of deep learning, without
providing sufficient concrete examples of its application to landslide prediction. I recommend
focusing on the models currently used (3.a, 3.b) and on the models that could be used and how
they will improve the landslide identification in 3.d. Below I provide some detailed comments
(note that I did not highlight all grammar errors).
12. Line 300. Chapter 3.2. You talk a lot about each model but not the application to landslides.
For example, give more details on the studies cited at line 336.

13. Line 364. Chapter 3.3. There is a lot of information but not related to landslides.

Response:

- We sincerely thank you for further highlighting the sections and passages in the manuscript
where the discussion lacked specificity, which has greatly guided our precise revisions. We fully
agree with your observation that the original manuscript presented an overly generalized
discussion of deep learning models in Section 3, without closely linking them to practical
applications in landslide prediction.

- In response to your comments (comments 3, 12, and 13), we have undertaken a focused and
detailed revision of Section 3. Our revision strategy closely follows your recommendations: we

concentrate on the currently utilized models, provide detailed explanations of their applications
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in landslide prediction, and outline specific prospective applications for models with future
potential.

- Please see the new Section 3 for details.

Original Description in Section 3

3.1 Models for Image Analysis and Processing in Potential Landslide Identification

Image data plays a critical role in potential landslide identification, especially through remote
sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain
data, encompassing complex geographical features, vegetation coverage, and ground fissures,
which often serve as potential precursors to landslide occurrences. The adoption of deep learning
has facilitated a shift from conventional manual visual interpretation to automated high-precision
segmentation.

Convolutional neural networks (CNNs) represent the fundamental architecture in image
processing. A CNN primarily comprises convolutional layers, pooling layers, and fully connected
layers, each performing predefined functions on its input data (Kattenborn et al., 2021; Liu et al.,
2022a).

The convolutional layer, as the core component of CNNs, contains multiple kernels that
progressively extract more detailed feature representations (Hussain et al., 2019; Shi et al., 2020;
Yao et al., 2021). Meanwhile, the shared-weight strategy inherent in convolutional layers allows
for network training with fewer parameters than fully connected architectures. Convolutional
kernels of different sizes facilitate multi-scale feature extraction. Small kernels focus on fine
details, such as small cracks and the texture of localized soil loosening, while large kernels
emphasize capturing overall shapes, such as the general outline of landslides and the macroscopic
morphology of mountain bodies. Pooling layers, typically positioned after convolutional layers,
serve to reduce the size of feature representations and enhancing the model’s resistance to
overfitting when handling diverse data. Common pooling methods include max pooling and
average pooling, which enhance robustness to minor transformations such as translation and
rotation, ensuring a degree of invariance in the features extracted by CNNs. Pooling operations
downsample the convolved feature maps, reducing computational complexity while reinforcing
feature robustness. Through the hierarchical stacking of multiple convolutional and pooling layers,
CNNs incrementally extract more abstract and semantically rich features (Mao et al., 2024). The
final fully connected layer flattens the pooled feature maps and performs classification, outputting
results that distinguish potential landslide areas from non-landslide areas or enable further analysis
of landslide types (Wu et al., 2024).

The layers of a CNN can be combined in various ways, forming distinct CNN architectures.

These architectures are primarily determined by task requirements, which may include image
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classification, multi-class segmentation, or object localization within a scene.

Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers,
and fully connected layers. However, increasing network depth introduces challenges such as
vanishing gradients and degradation arise, resulting in model performance deterioration.

ResNet addresses these limitations by integrating residual blocks into the foundational CNN
framework (Qi et al., 2020; Yang et al., 2022). These residual blocks utilize shortcut connections
that preserve original feature information. This framework facilitates the construction of ultra-deep
networks capable of extracting high-level semantic features for landslide detection, thereby
enhancing adaptability to complex terrain classification tasks (Ullo et al., 2021). Models with
higher parameter counts generally exhibit greater representational capacity but are prone to
overfitting, while demanding higher computational resources and temporal costs for both training
and inference. For instance, ResNet-152 contains orders of magnitude more parameters than
ResNet-50, yet the latter is often preferable in computationally constrained environments due to its
balanced efficiency and performance.

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural
networks are based on a similar idea, which is to establish a "shortcut" between different layers.
However, the structure of DenseNet is simpler and more effective, with fewer parameters. In
ResNet, each layer is only connected to the previous layer, while in DenseNet, each layer is
directly connected to all previous layers, and each layer can obtain gradients from the loss
function. This can optimize the information flow and gradients of the entire network, making it
easier to train and performing better on small datasets. The structure of DenseNet can achieve
better feature reuse and reduce the number of parameters. Moreover, the layers of DenseNet are
narrower than those of other deep learning networks (Liu et al., 2021c), making it reduce
redundancy by learning with fewer feature maps. This architecture is suitable for the extraction of
multi-scale landslide features under complex terrains, even with limited landslide training samples.

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation
models have increasingly become the standard in landslide detection. Numerous advanced
semantic segmentation networks have been proposed and validated for automatic landslide
detection, significantly enhancing the efficiency and accuracy of large-scale detection. U-Net is a
typical example (Ronneberger et al., 2015), which features a U-shaped architecture. U-Net
employs an encoder-decoder structure, where the encoder is similar to conventional CNNs,
progressively reducing image resolution and extracting features through convolution and pooling
operations; the decoder then restores the image resolution through transposed convolution or
upsampling operations (Dong et al., 2022; Nava et al., 2022). Skip connections bridge low-level

detail features with deep semantic features, thereby refining segmentation precision.
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When dealing with complex features in landslide-prone areas, DeepLab is a more suitable
choice (Sandric et al., 2024). Built upon deep convolutional neural networks, DeepLab employs
dilated convolutions to expand the receptive field and integrates an atrous spatial pyramid pooling
(ASPP) module to capture multi-scale contextual information.

In contrast, the U-Net architecture is relatively simpler and better suited for small targets and
high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution
UAYV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection
and multispectral remote sensing image classification (see Fig. 2).

After achieving semantic segmentation to obtain the accurate extent of a landslide and the
classification of ground objects, change detection is employed to monitor the changes in the
landslide area over time. By comparing the segmentation results of multiple temporal phases or
directly analyzing the feature differences, the dynamic evolution of potential hazards can be
quantifie (Amankwah et al., 2022).

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models
capture spatial and temporal features wusing convolutional kernels while transforming
multi-temporal image sequences into change hotspot maps or temporal variation curves as output.

Some studies even have integrated attention mechanisms into conventional CNN architectures
to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the

identification of landslide hazard evolution over time.

3.2 Models for Time Series Analysis in Potential Landslide Identification

The occurrence of a landslide is a gradual accumulation process, usually influenced by a
variety of factors. We refer to data that reflect the changing states of a landslide body over time as
time series data. Time series data analysis aims to excavate the information hidden in the time
series data to help identify potential landslides. Different from conventional time series data
analysis methods, using deep learning models an automatically reveal the dynamic change trends
and periodic patterns in the data, providing more accurate information for landslide prediction.

Recurrent neural networks (RNNs) are a class of deep learning models specialized in
processing sequential data, capable of capturing temporal dependencies within input sequences
(Ngo et al., 2021; Zaremba et al., 2014). Unlike conventional feedforward neural networks, in an
RNN, each neuron not only receives the current input but also the output of the previous time step
as additional input. This structure endows the RNN with a memory mechanism.

The architecture contains three primary components working in coordination:(1) The input
layer means that one data point is input at each time step. (2) The hidden layer contains recurrent

connections, which enable the information from the previous time step to be passed to the current
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time step, and the output serves as the input for the next time step simultaneously. (3) The output
layer generates the output under the control of the state of the hidden layer (Cho et al., 2014; Zhao
et al., 2021b).

During the training process, the RNN will process the data at each time step in sequence,
continuously updating the hidden state. By combining the input of the current time step with the
hidden state of the previous moment for calculation to gain an understanding of the data at the
current moment, this structure enables the RNN to capture the temporal evolution patterns of
landslide-related factors.

Due to conventional RNNs struggle to model long-term dependencies and limit their
applicability to short-term temporal sequences, long short-term memory networks (LSTM) were
developed (Wang et al., 2023b).

LSTM is an enhancement of RNNs, primarily processing long sequence data. Compared to
standard RNNs, the hidden layer architecture of LSTM is much more complex. By incorporating
memory cells and gating mechanisms, LSTM selectively propagates critical information across
multiple time steps, thereby effectively capturing long-range temporal dependencies(Landi et al.,
2021; Yu et al., 2019).

The basic unit of an LSTM consists of three primary gates: (1) the input gate, which
determines what new information should be added to the cell state; (2) the forget gate, which
decides what old information should be discarded; and (3) the output gate, which selects the
information to be output from the cell state as the hidden state at the current time step (Sherstinsky,
2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019). The output hidden state, after
a nonlinear transformation, can be used for prediction or as the input for the next time step (Yang et
al., 2019).

This structure allows the LSTM to retain key information over long sequences while
selectively forgetting irrelevant information according to the requirements. Through learning from
historical data, the LSTM can predict the likelihood of landslides occurring, as well as the possible
scale and impact range of landslides under different future conditions.

Due to the ability to self-update weights and significantly improve network accuracy, LSTMs
can also be used as a complex nonlinear component in the construction of larger deep neural
networks. The model does not require separating trend and periodic components from the original
deformation data, yet it can compensate for deformation trend predictions caused by unexpected
interruptions in monitoring data. These properties make LSTMs particularly suited for
high-accuracy research and analytical scenarios requiring large-scale datasets (Gidon et al., 2023;
Xu and Niu, 2018).

Gated recurrent unit (GRU) is a simplified version of LSTM(Chung et al., 2014; Zhang et al.,
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2022b), which has fewer parameters. Due to their higher computational efficiency, GRU has
potential advantages in real-time data processing scenarios in landslide monitoring.

GRU mainly consists of the update gate and reset gate. The update gate is used to control how
much of the previous information should be preserved at the current time step, while the reset gate
is used to determine whether to ignore the hidden state of the previous time step, enabling the
model to adaptively learn information across different temporal scales. This dual-gate mechanism
enables adaptive learning of multi-scale temporal patterns.

Compared with the LSTM, the GRU has fewer parameters and higher computational
efficiency, giving it an advantage in some landslide monitoring scenarios where real-time
performance is critical.

GRU is capable of effectively handling time series data with long-term dependencies, making
it suitable for long-term prediction of landslide hazards. Moreover, by learning temporal patterns in
historical data, GRU can identify critical conditions for landslide occurrence in advance. GRU
particularly well-suited for applications involving real-time analysis of on-site monitoring data,
where rapid detection of imminent landslide risks is essential and data volume is relatively limited.

Transformer was originally designed to handle sequential data in natural language processing,
which was first introduced by Vaswani in 2017 (Vaswani et al., 2017). Unlike conventional
recurrent and convolutional structures, the Transformer employs employs a self-attention
mechanism to directly model the entire sequence.

Since the Transformer has the ability to adaptively learn latent features and patterns within the
data, when it comes to processing landslide time series data, it can automatically tweak the model
parameters to accommodate diverse landslide scenarios and temporal data variability (Wang et al.,
2024a; Zerveas et al., 2021).

Transformer also can analyze positional relationships across the entire sequence, better
capturing complex dependencies in long sequences, making it especially suitable for handling
large-scale, long-term sequential datasets.

In contrast, RNN-based models exhibit a relatively simple architecture (Li et al., 2021a; Wang
et al., 2020b). Their mechanisms are conceptually intuitive, making them more interpretable (see
Fig. 3). On the other hand, Transformers are more complex in structure with numerous parameters,
necessitating substantial computational resources during early training to process large-scale data,
while being susceptible to overfitting on small datasets. Understanding how the model extracts
features and makes decisions is not straightforward from large amounts of landslide data, posing

challenges for its interpretability and practical deployment.

3.3 Models for Data Generation in Potential Landslide Identification
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Data generation refers to modeling the underlying data distribution of data to generate entirely
new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020;
Shorten and Khoshgoftaar, 2019), thereby enriching the dataset. In potential landslide
identification, data generation mitigates challenges of data scarcity and imbalanced class
distributions, thereby enhancing the generalization capability of predictive models.

Deep generative models are the leading deep learning approach for synthetic data generation
(Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They operate on principles
similar to those of deep learning, utilizing deep neural networks to learn data representations and
optimizing the learning process through objective functions.

A fundamental characteristic of deep generative models lies in their probabilistic nature.
These models learn an approximate probability distribution from observed samples and
subsequently generate novel samples that maintain statistical consistency with the original dataset.
Unlike conventional discriminative models, generative models not only classify data but also learn
the underlying distribution and generate new data points. Commonly used deep generative models
include generative adversarial networks (GANSs), variational autoencoders (VAEs, a variant of
autoencoders), and diffusion models.

GAN is a suitable choice to generate highly realistic and diverse new images (Goodfellow et
al., 2014; Tran et al., 2021). Instead of explicitly modeling data distributions, GANs implicitly
learn distributions through adversarial training between generator and discriminator networks.

During data generation, the generator network in a GAN synthesizes images or data
resembling real samples by processing input noise vectors (Gui et al., 2021; Saxena and Cao,
2021). The discriminator, on the other hand, is used to distinguish between the generated data and
the real data.These two components are continuously optimized through adversarial training.
Eventually, the generator is able to produce high-quality synthetic data, which is highly similar to
the real data in terms of features.

With this adversarial structure (Al-Najjar et al., 2021), GANs can generate high-quality data
that closely matches the distribution of real data in an unsupervised learning context, making them
well-suited for high-resolution image synthesis.

With the proposal and development of GANSs, researchers have introduced various enhanced
structures that are more effectively applied to potential landslide identification. For example, the
conditional GAN (CGAN) (Kim and Lee, 2020; Loey et al., 2020), Pix2Pix (Qu et al., 2019), and
Wasserstein GAN (WGAN) (Wang et al., 2019).

In the case of GANSs, although the generated high-quality images may visually resemble real
potential landslide regions, mode collapse can lead to a lack of diversity in the generated data,

failing to cover all possible types of hazards (Fang et al., 2020). If certain types of potential

128




landslides are underrepresented in the training dataset, GANs may struggle to generate those types
effectively, thereby limiting the effectiveness of data augmentation. Given that the inherently
unstable training process of the GANs may require more hyperparameter tuning and computational
resources, this model will pose additional challenges in scenarios with limited data availability
(Al-Najjar and Pradhan, 2021; Feng et al., 2024).

As a variant of the autoencoders (AEs), the variational autoencoder (VAE) introduces the idea
of probabilistic generation (Kingma et al., 2013). VAE constrains the latent space through
variational inference, thus enabling the generation, reconstruction, and transformation of sample
data.

Compared to GANSs, the samples generated by the VAE may have better diversity (Cai et al.,
2024; Islam et al., 2021; Oliveira et al., 2022), because the structured constraints of its latent space
are helpful for generating samples with continuous changes. This is beneficial for simulating
potential landslides under different geological conditions.

The encoder of the VAE maps the input data to a low-dimensional latent space, where each
vector represents the underlying features of the input. The decoder then reconstructs the original
data based on the vectors in the latent space. Different from conventional AEs, the output of the
VAE encoder includes two parameters: the mean value and the standard deviation. These two
parameters define the probability distribution in the latent space, which is usually assumed to be a
Gaussian distribution. The decoder samples a latent variable from this probability distribution and
reconstructs it into output data, thus generating data with inherent randomness and diversity.
Therefore, the VAE can extract latent features from landslide data and generate new landslide data
based on these features.

By learning from extensive landslide datasets, VAEs capture critical geomorphological
features and patterns, enabling the generation of novel samples that preserve these characteristics.
This capability enables innovative applications in potential landslide analysis. This is crucial for
exploring landslide scenarios under different feature combinations and identifying potential
landslide patterns. Compared to GANs, VAEs exhibit superior sample diversity and training
stability though the generated samples often lack the fine-grained details produced by GANS,
particularly in high-resolution geospatial contexts. Moreover, VAEs may still face challenges in
handling highly imbalanced data, as the generated samples tend to favor majority classes, which
can limit its effectiveness in augmenting minority class data.

When computational resources and time are sufficient, and high-quality data generation with
exceptional diversity is prioritized, diffusion models are the recommended choice (Croitoru et al.,
2023; Yang et al., 2023a; Zhu et al., 2023a).

Diffusion models fundamentally learn the distribution of data. During training, the model
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applies a forward diffusion process that gradually adds noise to the original data until it
approximates a Gaussian distribution. Then, in the reverse diffusion process, the model learns to
iteratively refine its reconstruction of the original data distribution from the noisy data. After being
fully trained, the model is able to capture the latent distribution patterns of the data, and thus can
sample based on the learned distribution to generate new data (Ho et al., 2022). That is to say, by
grasping the inherent laws and features of the data, the model has the ability to generate data that
conforms to the distribution of the data.

Denoising diffusion probabilistic model (DDPM) is a classic implementation of the diffusion
models, which lays the probabilistic framework for the diffusion models (Choi et al., 2021; Ho et
al., 2020; Jing et al., 2023; Perera et al., 2023). The generation quality is optimized through
variational inference and noise scheduling. Denoising diffusion implicit model (DDIM) has made
improvements on the basis of DDPM (Song et al., 2020). It uses non-Markov chain
reparameterization and deterministic sampling, and greatly improves the efficiency with almost no
loss of quality.

Notably, DDIMs utilize the same training framework as DDPMs. If certain parameters of
DDIMs are assigned particular values, its generation process becomes equivalent to DDPMs. Thus,
DDIMs function as an accelerated sampling variant of DDPMs. The critical distinction lies in their
sampling mechanisms. DDPMs employ stochastic and Markovian sampling, whereas DDIMs
enhance efficiency through non-Markovian deterministic sampling, though this comes at the
expense of reduced sample diversity.

Although diffusion models demonstrate strong capabilities in generating high-quality images
and handling noise, they generate superior-quality data and ensure greater training stability
compared to GANs and VAEs. However, diffusion models have not yet been widely applied
directly to the identification of potential landslides and remain in the exploratory stage (see Fig. 4).
We believe that as generative models advance in the field of geospatial remote sensing, they hold
vast potential for application and could play a pivotal role in future landslide risk analysis and

monitoring systems.

3.4 Models for Data Cleaning in Potential Landslide Identification

In potential landslide identification, data cleaning, particularly anomaly detection, is a critical
issue (Deijns et al., 2020; Jiang et al., 2020). It can distinguish between normal fluctuations and
true anomalies, identifying early signs such as subtle changes in the mountain’s state or abnormal
trends in surface displacement, thus enabling more accurate landslide hazard assessment. With the
rapid development of deep learning, the applications in data cleaning have become increasingly

widespread, enabling models to automatically learn latent data patterns and identify potential
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anomalies.

AEs and their variational counterparts are highly effective in unsupervised data cleaning.
These models autonomously learn normal geomechanical patterns from data and flag deviations,
achieving effective hazard identification even when labeled anomaly samples are scarce.

The AE is a typical unsupervised learning model consisting of an encoder and a decoder The
encoder compresses the input data into low-dimensional features, and then the decoder reconstructs
the input. During the training process, the autoencoder learns the intrinsic features and patterns of
normal landslide data, so that for normal data, the reconstruction error is small. When abnormal
landslide data is input, due to the difference between its features and the distribution of normal
data, the reconstruction error will be large.

When performing anomaly detection, a suitable reconstruction error threshold is set. When the
reconstruction error of the test data exceeds this threshold, it can be determined as abnormal data.
In the anomaly detection of landslide displacement data monitored by sensors, if the error of the
displacement data after being reconstructed by AEs during a certain period is significantly higher
than the normal level, it may indicate that there is an abnormal situation of potential landslides
during this period.

As previously introduced, VAE is an extension of AE. Compared to conventional
autoencoders, VAE introduces randomness into the latent space, making it more effective in
handling data uncertainty (Li et al., 2020; Park et al., 2018).

During training, VAEs learn the latent distribution of the data and can generate new samples
resembling the training set. When input samples deviate significantly from this learned
distribution, the VAE fails to reconstruct them accurately, thereby flagging anomalies through
elevated reconstruction errors. For landslide monitoring, if a VAE is trained on imagery of stable
slopes, it internalizes stable terrain features. When an image significantly differs from the stable
region, the model will produce a high reconstruction error, indicating the presence of anomalous
data.

In contrast, AEs are well-suited for univariate anomaly detection, particularly for landslide
precursor detection, while VAEs capture latent space distributions and are more effective for
multivariate anomaly detection.

GANSs can also be utilized in data cleaning (Kang et al., 2024; Xia et al., 2022). In data
cleaning, the discriminator is trained to distinguish between generated data and real data. When
new test data is input, if the discriminator struggles to determine whether it is real or generated
data, the test data may significantly deviate from the distribution of normal data, indicating a
potential anomaly. In landslide monitoring, data may be influenced by various factors, GANs

demonstrate robustness by filtering out such interference, thereby enhancing data cleaning
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accuracy (Radoi, 2022).

AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its
primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder
during training, which maps input data to the latent space. The difference between this latent vector
and the latent vector of normal samples generated by the generator serves as the basis for data
cleaning.

RNNs, LSTMs, and GRUs are also effective for identifying anomalous patterns in sequential
data (Zhang et al., 2022a). In potential landslide identification, these models process time series
inputs to learn normal temporal dynamics and trends. When new data deviates significantly from
the normal patterns learned by the model, such deviations can be flagged as anomalies. However,
these models are primarily used for time series data, performing data cleaning by predicting future
values of the sequence. For instance, if displacement measurements exhibit abrupt deviations while
rainfall remains within historical norms, the model detects such discrepancies by comparing

observed values with predictions based on learned temporal dependencies.

3.5 Models for Data Fusion in Potential Landslide Identification

In practical applications, the identification of potential landslide hazards is a complex task that
influences by multiple factors (Zhang et al., 2018). These factors are often reflected through
different data sources. We can roughly divide heterogeneous data into four categories: image data,
time series data, structured data, and textual data. Data fusion is essential for the accurate
identification of potential landslides. In order to better identify potential landslides, data fusion is
essential.

Since the features, scales, and resolutions of heterogeneous data are all different, currently, the
powerful feature learning ability of deep learning models is often utilized to automatically capture
the nonlinear relationships and high-order interaction information among these heterogeneous data.

Due to the complex non-Euclidean structural characteristics of the geological environment,
topographic data and their spatial relationships related to landslide hazards, conventional methods
such as CNNs have difficulty in handling these relationships. As a neural network architecture for
processing graph-structured data, graph neural networks (GNNs) can effectively model such spatial
relationships (Ying et al., 2018; Zeng et al., 2022). They can treat the nodes in the geographical
space (such as different geographical location points) and their connection relationships (such as
the distance between adjacent nodes, terrain undulations, etc.) as the structure of a graph for
processing.

When dealing with heterogeneous data, GNNs support feature interaction between different

types of nodes through the message passing mechanism, thereby eliminating redundancy and
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mutual exclusivity among data sources and enabling dynamic fusion of multi-modal features
(Zhang et al., 2024d; Zhao et al., 2024b). By passing and aggregating information across nodes,
GNNs can also conduct a detailed analysis of various heterogeneous data in local areas. This
capability allows GNNs to capture subtle geological structural changes and detect localized
anomalies inmonitoring data, providing advantages for analyzing local features and early signs of
potential landslide movements.

By learning a large amount of landslide potential cases, GNNs can discover the general
patterns and rules of landslides, thus having good generalization ability. When facing new and
unseen regions or data, GNNs can predict and assess the potential landslides in those regions based
on the knowledge they have already learned.

According to the differences in message passing and aggregation methods, GNNs have
derived various variants. For example, graph convolutional network (GCN) is generated by
generalizing the convolutional operation to graph-structured data (Sharma et al., 2022; Wang et al.,
2020a), and graph attention network (GAT) dynamically weights the importance of neighboring
nodes by introducing the attention mechanism (Yuan et al., 2022; Zhou and Li, 2021). The
emergence of these new architectures makes GNN variants more targeted than conventional GNNs
and suitable for modeling heterogeneous relationships. Currently, they are often used for weighted
analysis of the impacts of different geographical factors on landslides.

Transformer is also composed of stacked encoders and decoders (see Fig. 5). However, unlike
other architectures, the Transformer architecture introduces the self-attention mechanism (Zhao et
al., 2021a), which is a crucial innovation. This enables the Transformer to automatically calculate a
weight vector for each position in the input sequence based on the relationship between this
position and other positions, so as to represent the importance of this position in the entire
sequence. Such a weight vector can be regarded as the "attention distribution" of each position in
the input sequence, that is, the model determines which positions in the sequence to focus on. By
considering all positions in the input sequence simultaneously, Transformer is able to calculate the
correlations between each position and other positions in the sequence in parallel (Esser et al.,
2021; Huang and Chen, 2023; Zerveas et al., 2021), rather than processing them step by step like
CNNs or RNNs.

Transformer can also convert multimodal dFor different types of data, it transforms them into
vector representations via different embedding layers.ata into a unified vector representation
through different embedding layers. Subsequently, through the use of the self-attention mechanism
and multilayer neural networks, these vectors are fused and feature representations are extracted,
enabling the model to process and integrate data from various modalities within the same model
framework (Lv et al., 2023; Tang et al., 2022).
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Revised Description in Section 3

3.1 Models for Image Analysis and Processing in Potential Landslide Identification

Image data plays a critical role in potential landslide identification, especially through remote
sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain
data, encompassing complex geographical features, vegetation coverage, and ground fissures,
which often serve as potential precursors to landslide occurrences. The adoption of deep learning
has facilitated a shift from conventional manual visual interpretation to automated high-precision
segmentation.

CNNs represent the fundamental architecture in image processing. A CNN primarily
comprises convolutional layers, pooling layers, and fully connected layers, each performing
predefined functions on its input data (Kattenborn et al., 2021; Liu et al., 2022a).

Convolutional layers, the core of CNNs, use kernels of various sizes to extract multi-scale
features from geospatial imagery, which is crucial for landslide identification (Hussain et al., 2019;
Shi et al., 2020; Yao et al., 2021). Small kernels are effective in detecting fine-grained precursors
such as ground fissures and localized soil texture changes. For instance, Hamaguchi et al. (2018)
proposed a Local Feature Extraction (LFE) module to enhance the capability of CNNs in
identifying small object instances in remote sensing imagery. Wang et al. (2024) demonstrated the
exceptional capability of convolutional layers in extracting extremely small and subtle features by
identifying cracks as narrow as 0.05 m width using a U-Net-based model. In contrast, larger
kernels help in recognizing the overall morphology and boundaries of landslide bodies. From the
perspective of general visual tasks, Ding et al. (2022) demonstrated that larger convolution kernels
substantially improve the shape bias of CNNs, facilitating the recognition of large-scale structures
and overall morphological patterns compared with using small kernels alone. Li et al. (2025)
employed multiple large convolution kernels (kernel sizes = 5, 7, and 9) within the DLFFSKA
module to fuse multi-scale features, thereby enhancing the global perception of landslide
boundaries and morphology as well as the capture of contextual background information.

Pooling layers downsample feature maps, improving computational efficiency and model
robustness. In landslide mapping, this translation invariance is particularly beneficial, as it allows
the model to consistently identify landslide features regardless of their slight positional variations
across different image patches (Mao et al., 2024).

The final fully connected layer flattens the pooled feature maps and performs classification,
outputting results that distinguish potential landslide areas from non-landslide areas or enable
further analysis of landslide types (Wu et al., 2024).

The layers of a CNN can be combined in various ways, forming distinct CNN architectures.

These architectures are primarily determined by task requirements, which may include image
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classification, multi-class segmentation, or object localization within a scene.

Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers,
and fully connected layers. However, increasing network depth introduces challenges such as
vanishing gradients and degradation arise, resulting in model performance deterioration.

ResNet mitigates the vanishing gradient problem in very deep networks through residual
connections (Qi et al., 2020; Yang et al.,, 2022). This architectural advancement has been
successfully applied to landslide detection in complex terrains, such as the work by Ullo et al.
(2021), who demonstrated that a ResNet-based classifier could achieve high accuracy in
distinguishing landslide scars from surrounding vegetation and bare soil in satellite imagery by
effectively learning hierarchical features.

Models with higher parameter counts generally exhibit greater representational capacity but
are prone to overfitting, while demanding higher computational resources and temporal costs for
both training and inference (Ebrahimi et al., 2021). For instance, He et al. (2016) introduced
ResNet-152 and other deep residual network architectures, demonstrating that deeper structure
achieve superior performance compared with shallower counterparts. Hasanah et al. (2023)
explicitly highlighted the differences in layer depth and parameter count among various ResNet
versions (ResNet-50, 101, and 152), noting that the increased number of parameters in deeper
networks inevitably leads to longer training times.

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural
networks are based on a similar idea, which is to establish a "shortcut" between different layers.
However, the structure of DenseNet is simpler and more effective, with fewer parameters. In
ResNet, each layer is only connected to the previous layer, while in DenseNet, each layer is
directly connected to all previous layers, and each layer can obtain gradients from the loss
function. This can optimize the information flow and gradients of the entire network, making it
easier to train and performing better on small datasets. The structure of DenseNet can achieve
better feature reuse and reduce the number of parameters. Moreover, the layers of DenseNet are
narrower than those of other deep learning networks (Liu et al., 2021c), making it reduce
redundancy by learning with fewer feature maps. This architecture is suitable for the extraction of
multi-scale landslide features under complex terrains, even with limited landslide training samples.

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation
models have increasingly become the standard in landslide detection. Numerous advanced
semantic segmentation networks have been proposed and validated for automatic landslide
detection, significantly enhancing the efficiency and accuracy of large-scale detection.

U-Net's encoder-decoder structure with skip connections has become a benchmark for

landslide segmentation (Ronneberger et al., 2015). For example, Dong et al. (2022) proposed a new
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model, L-UNet, based on the U-Net architecture and successfully applied it to landslide extraction
from remote sensing imagery. Nava et al. (2022) applied the Attention U-Net to Sentinel-1 SAR
data for rapid mapping of earthquake-induced landslides, demonstrating the effectiveness of U-Net
variants in pixel-level segmentation of landslide bodies under cloud-covered or topographically
complex conditions.

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable
choice (Sandric et al., 2024). Built upon deep convolutional neural networks, DeepLab employs
dilated convolutions to expand the receptive field and integrates an atrous spatial pyramid pooling
(ASPP) module to capture multi-scale contextual information.

In contrast, the U-Net architecture is relatively simpler and better suited for small targets and
high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution
UAYV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection
and multispectral remote sensing image classification (see Fig. 2).

After achieving semantic segmentation to obtain the accurate extent of a landslide and the
classification of ground objects, change detection is employed to monitor the changes in the
landslide area over time. By comparing the segmentation results of multiple temporal phases or
directly analyzing the feature differences, the dynamic evolution of potential hazards can be
quantifie (Amankwah et al., 2022).

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models
capture spatial and temporal features wusing convolutional kernels while transforming
multi-temporal image sequences into change hotspot maps or temporal variation curves as output.

Some studies even have integrated attention mechanisms into conventional CNN architectures
to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the

identification of landslide hazard evolution over time.

3.2 Models for Time Series Analysis in Potential Landslide Identification

The occurrence of a landslide is a gradual accumulation process, usually influenced by a
variety of factors. We refer to data that reflect the changing states of a landslide body over time as
time series data. Time series data analysis aims to excavate the information hidden in the time
series data to help identify potential landslides.

Different from conventional statistical or physical models, deep learning models can
automatically reveal dynamic change trends and periodic patterns in the data, providing more
accurate information for landslide prediction and early warning. Recently, deep learning—based
temporal models, such as RNNs, long short-term memory networks (LSTMs), and gated recurrent

units (GRUs), have become key tools for extracting nonlinear dependencies and temporal
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evolution patterns in landslide-related time series.

Recurrent neural networks (RNNs) are a class of deep learning models specialized in
processing sequential data, capable of capturing temporal dependencies within input sequences
(Ngo et al., 2021; Zaremba et al., 2014). Unlike conventional feedforward neural networks, in an
RNN, each neuron not only receives the current input but also the output of the previous time step
as additional input. This structure endows the RNN with a memory mechanism.

In landslide prediction, RNNs have been employed to model displacement time series under
rainfall or groundwater fluctuations, revealing short-term deformation patterns preceding slope
failure (Chen et al., 2015; Zhang et al., 2022).

To overcome the vanishing gradient problem inherent in RNNs, LSTMs introduce memory
cells and gating mechanisms that selectively retain relevant temporal information (Landi et al.,
2021; Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al.,
2019). This capability allows them to model the cumulative and delayed responses of slopes to
prolonged rainfall or reservoir water level fluctuations.

LSTM models have been widely applied in landslide displacement prediction and early
warning. Yang et al. (2019) analyzed the relationships among landslide deformation, rainfall, and
reservoir water levels, and found that compared with static models, the LSTM approach more
accurately captured the dynamic characteristics of landslides and effectively leveraged historical
information. Xu and Niu (2018) used a LSTM model to predict the displacement evolution of the
Baijiabao landslide using rainfall and hydrological level data, achieving a higher correlation
compared with traditional regression models. In another study focused on shallow landslides, Xiao
et al (2022) used a week-ahead LSTM model, which exhibited stable performance and improved
prediction accuracy in short-term prediction scenarios. Additionally, Gidon et al (2023) constructed
a Bi-LSTM model and achieved a detection accuracy of 93% in the Mawiongrim area. This
effectively addresses the limitations of traditional methods and can provide a reliable technical
solution for disaster early warning in this area as well as other similar landslide-prone areas.

The GRU is a simplified variant of the LSTM (Chung et al., 2014; Zhang et al., 2022b) that
achieves similar accuracy with fewer parameters and reduced computational costs, making it
well-suited for real-time landslide monitoring systems (Rawat et al., 2024).

Furthermore, GRU models effectively identify precursory displacement acceleration, allowing
early detection of slope instability triggered by rainfall or seismic shaking (Chang et al., 2025;
Yang et al., 2025).

Recently, Transformer architectures have been introduced for time series modeling due to
their ability to capture global dependencies across long sequences through the self-attention

mechanism (Vaswani et al., 2017).
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Unlike RNNs or LSTMs that process data sequentially, Transformers analyze all time steps in
parallel, offering better scalability and modeling of long-term deformation trends (Esser et al.,
2021; Huang and Chen, 2023).

In landslide applications, Transformer-based approaches have shown promise in integrating
multi-source time series—such as rainfall, soil moisture, and deformation—into a unified temporal
framework. Zhao et al. (2024) combined the strengths of CNN and Transformer architectures,
selecting and analyzing nine landslide-conditioning factors to successfully achieve accurate
landslide localization and detailed feature capture. Ge et al. (2024) proposed the LiteTransNet
model based on the Transformer framework, effectively capturing and interpreting the varying
importance of historical information during the prediction process.

Although Transformer-based models require larger training datasets and higher computational
resources, their capacity to model complex, long-range dependencies and integrate multi-factor
information offers significant potential for the next generation of intelligent landslide early
warning systems.

In summary, RNNs and their advanced variants (LSTM, GRU) have demonstrated strong
capabilities in modeling landslide time series, enabling early detection of slope deformation
acceleration and rainfall-induced instability (Li et al., 2021a; Wang et al., 2020b). Transformer
architectures further extend this capability to capture cross-variable and long-term dependencies
(Wang et al., 2024a; Zerveas et al., 2021), offering a new direction for multi-sensor, data-driven

landslide prediction (see Fig. 3).

3.3 Models for Data Generation in Potential Landslide Identification

Data generation refers to modeling the underlying data distribution of data to generate entirely
new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020;
Shorten and Khoshgoftaar, 2019), thereby enriching the dataset. In potential landslide
identification, data generation mitigates challenges related to data scarcity and class imbalance,
which are particularly pronounced in geohazard mapping tasks where labeled landslide samples are
limited. This process enhances the generalization capability of predictive models and enables the
simulation of diverse landslide scenarios.

Deep generative models are the leading deep learning approach for synthetic data generation
(Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They utilize deep neural
networks to learn latent representations of data and optimize the learning process through specific
objective functions. A key characteristic of deep generative models lies in their probabilistic
nature—they not only classify or reconstruct data but also capture the underlying distribution of

geospatial features, enabling the creation of new landslide samples that are statistically consistent
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with observed patterns. Commonly used deep generative models include generative adversarial
networks (GANSs), variational autoencoders (VAEs), and diffusion models.

GANs consist of a generator and a discriminator that compete in an adversarial process
(Goodfellow et al., 2014). The generator synthesizes data resembling real samples, while the
discriminator attempts to distinguish between generated and real data. Through iterative adversarial
training, the generator learns to produce high-quality synthetic data that closely matches the
distribution of real data (Gui et al., 2021; Saxena and Cao, 2021).

In the context of landslide studies, GANs have demonstrated strong capabilities in data
augmentation and remote sensing image enhancement. For example, Al-Najjar and Pradhan (2021)
proposed a novel approach that employs a GAN to generate synthetic inventory data. The results
indicate that additional samples produced by the proposed GAN model can enhance the predictive
performance of Decision Trees (DT), Random Forest (RF), Artificial Neural Network (ANN), and
Bagging ensemble models. Feng et al. (2024) achieved the first implementation of using a GAN to
generate synthetic high-quality landslide images, aiming to address the data scarcity issue that
undermines the performance of landslide segmentation models.

Despite their advantages, GANs may suffer from mode collapse, leading to limited diversity
in the generated data, especially when certain landslide types are underrepresented (Fang et al.,
2020). Moreover, their unstable training process requires careful hyperparameter tuning and
substantial computational resources, which may constrain their application in real-time hazard
scenarios. Nevertheless, with improved architectures such as CGAN(Kim and Lee, 2020; Loey et
al., 2020), Pix2Pix(Qu et al., 2019), and Wasserstein GAN (WGAN) (Wang et al., 2019), GANs
are becoming increasingly viable tools for high-resolution landslide mapping and synthetic data
generation in remote sensing-based susceptibility analyses.

As a probabilistic variant of autoencoders (AEs), VAEs introduce latent-space regularization
through variational inference (Kingma et al., 2013). The encoder compresses input data into a
latent representation characterized by a mean and a standard deviation, while the decoder
reconstructs the data by sampling from this distribution. This enables the model to generate new
data with inherent randomness and diversity (Islam et al., 2021; Oliveira et al., 2022).

In landslide research, VAEs have been successfully applied to learn and reconstruct
geomorphological patterns of slope instability. For instance, Cai et al. (2024) proposed and
demonstrated the superior capability of the VAE-GRU model in generating narrow predictive
intervals while maintaining high coverage probabilities, representing a substantial improvement
over the state-of-the-art methods for probabilistic landslide prediction.

Compared with GANs, VAEs produce more diverse but slightly less detailed samples, due to

their structured latent space constraints. This characteristic is particularly beneficial for exploring a
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wide range of potential landslide morphologies and for augmenting training datasets used in
susceptibility prediction. However, VAEs may still struggle with highly imbalanced datasets, as
their probabilistic reconstruction tends to favor majority classes. Integrating VAEs with stratified
sampling or cost-sensitive learning could help overcome this limitation and further enhance
landslide prediction performance.

When computational resources and training time permit, diffusion models provide a powerful
alternative for generating high-quality, diverse, and stable data (Croitoru et al., 2023; Ho et al.,
2020; Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually
adding noise to real samples (forward diffusion) and then reconstructing clean data through a
reverse denoising process. The resulting models can sample new, realistic data points that reflect
complex terrain and geophysical variability.

Although diffusion models are still in the exploratory phase for landslide applications, recent
geospatial Al research indicates their high potential for terrain simulation and deformation
modeling. Lo et al. (2024) proposed a Terrain-Feature-Guided Diffusion Model (TFDM) to fill
gaps in DEM data. Similarly, Zhao et al. (2024) employed a Denoising Diffusion Probabilistic
Model (DDPM) conditioned on incomplete DEMs, which serves as a transitional kernel during
diffusion reversal to progressively reconstruct sharp and accurate DEM surfaces.

Deep generative models provide a transformative solution for overcoming the challenges of
limited and imbalanced landslide datasets. By synthesizing realistic, diverse, and statistically
consistent samples, these models can improve the robustness and generalization of landslide
prediction frameworks. GANs are effective for generating visually realistic imagery and data
augmentation; VAEs capture probabilistic geomorphic transitions; and diffusion models ensure
stability and fidelity in high-resolution terrain synthesis.

As generative Al continues to evolve, integrating these models with multi-source remote
sensing inputs and physics-based constraints holds great promise for next-generation landslide
hazard identification systems. Such integration is expected to enhance data diversity, reduce
labeling dependency, and enable more precise, interpretable, and generalizable predictions for

landslide risk assessment and early warning.

3.4 Models for Anomaly detection in Potential Landslide Identification

Anomaly detection plays a critical role in potential landslide identification, as it enables the
distinction between normal environmental variations and genuine precursors of slope instability
(Deijns et al., 2020; Jiang et al., 2020). In landslide monitoring, the goal of anomaly detection is to
identify subtle yet significant deviations—such as abnormal surface displacements, changes in

surface coherence, or irregular sensor signals—that may occur prior to failure events. With the
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advancement of deep learning, data filtering has evolved from rule-based threshold detection to
automated feature learning, allowing models to capture complex spatiotemporal dependencies and
identify anomalies within high-dimensional, multi-source datasets.

AEs are widely used for unsupervised anomaly detection due to their ability to reconstruct
input data and highlight deviations from learned normal patterns. An AE consists of an encoder that
compresses data into a low-dimensional latent representation and a decoder that reconstructs it.

During training, the AE learns the intrinsic features of normal landslide data—such as
sensor-based displacement time series or radar backscatter from stable slopes. When abnormal data
are input, such as sudden displacement spikes or incoherent radar signals, the reconstruction error
increases significantly, serving as an indicator of potential instability. For instance, Shakeel et al.
(2022) developed an InSAR deformation anomaly detector based on an AE-LSTM architecture
(ALADDIn). Experimental analyses using synthetic deformation test scenarios achieved an overall
performance accuracy of 91.25%.

By defining a reconstruction error threshold, anomalies can be quantitatively detected. When
the reconstruction error of new sensor data exceeds this threshold, it may signal slope movement
acceleration or surface disturbance associated with potential landslides. Thus, AEs provide a
data-driven method to detect early-warning signs without requiring manually labeled failure data.

As previously introduced, VAE is a probabilistic extension of AEs. VAEs introduce stochastic
latent variables characterized by mean and variance, allowing them to model data uncertainty
(Kingma et al., 2013; Li et al., 2020; Park et al., 2018). During training, VAEs learn the latent
distribution of normal samples and reconstruct inputs accordingly. When new observation data
deviate significantly from the learned distribution, the reconstruction error increases accordingly,
and this phenomenon can be used as an indicator of potential anomalies.

In landslide applications, VAEs have been shown to outperform traditional AEs in handling
complex, multivariate datasets that integrate topographic, meteorological, and geotechnical factors.
For example, Han et al. (2025) proposed an unsupervised failure mode recognition algorithm based
on a deep convolutional autoencoder, which integrates surface displacement, vertical displacement,
and rainfall monitoring data from slopes to accurately identify the developmental stages of slope
failure, achieving a recognition accuracy of 99.30%.

Another study by Yadav et al. (2024) proposed a novel unsupervised change detection (CD)
model, termed CLVAE, designed to learn the spatiotemporal correlations within Sentinel-1 SAR
time series. The model achieved a mean IoU of 70% and a mean F1-score of 81%, outperforming
comparative models by at least 6% in F1-score and 8% in IoU.

Compared to AEs, VAEs are particularly advantageous for capturing uncertainty and latent

correlations between environmental variables, making them ideal for data cleaning in integrated
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landslide early-warning systems. However, they require larger datasets for stable training, and their
probabilistic outputs may demand post-processing for operational thresholding.

GANSs can also be adapted for anomaly detection by exploiting their discriminator network’s
ability to distinguish between real and generated data (Kang et al., 2024; Xia et al., 2022). In
landslide monitoring, GAN-based anomaly detection models learn the distribution of stable slope
features, and deviations from this distribution can indicate abnormal conditions (Radoi et al.,
2022).

AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its
primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder
during training, which maps input data to the latent space. The difference between this latent vector
and the latent vector of normal samples generated by the generator serves as the basis for data
cleaning.

RNNs and their variants are particularly effective for time series—based anomaly detection,
learning temporal dependencies and predicting future trends (Zamanzadeh et al., 2024; Zhang et
al., 2022a). In landslide monitoring, these models can process continuous displacement or rainfall
time series to identify deviations from expected temporal behavior. These temporal models
complement image-based approaches by providing continuous surveillance and early detection
capabilities (Wu et al., 2024).

When combined with AEs or GANs, RNN-type architectures can form hybrid frameworks
capable of both spatial and temporal anomaly detection, enabling multi-source consistency
checking in landslide early-warning systems. Geiger et al (2020) demonstrated a growing trend of
utilizing LSTM networks as both the generator and discriminator within GAN frameworks for
time-series anomaly detection. Similarly, Whitakeret al (2023) illustrated the application of

LSTM-GAN architectures in identifying temporal anomalies.

3.5 Models for Data Fusion in Potential Landslide Identification

In practical applications, the identification of potential landslide hazards is a complex task that
influences by multiple factors (Zhang et al., 2018). These factors are often reflected through
different data sources. We can roughly divide heterogeneous data into four categories: image data,
time series data, structured data, and textual data. Given this heterogeneity, data fusion is essential
for the accurate identification of potential landslides.

Since heterogeneous data differ in feature scale, spatial resolution, and data modality, deep
learning models are increasingly utilized to automatically extract nonlinear and high-order feature
interactions across data sources, offering significant advantages over traditional statistical fusion

techniques. In landslide applications, deep learning-based data fusion can integrate multi-modal
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inputs such as Sentinel-1 InSAR deformation, rainfall time series, and terrain derivatives for
regional-scale susceptibility mapping or real-time early warning.

Due to the non-Euclidean and topologically complex nature of landslide-related terrain,
conventional CNN-based models are limited in representing irregular spatial dependencies. GNNs
have emerged as powerful architectures to model such relationships by representing spatial entities
(e.g., slope units, grid cells, or sensor nodes) as graph nodes and their geospatial or topological
interactions as edges (Ying et al., 2018; Zeng et al., 2022).

In landslide identification, GNNs enable explicit modeling of spatial connectivity and
geological adjacency, allowing the propagation of geomorphic and hydrological information across
neighboring units. For example, Kuang et al. (2022) proposed an innovative landslide forecasting
model based on Graph Neural Networks, in which graph convolutions are employed to aggregate
spatial correlations among different monitoring sites. Ren et al. (2025) introduced a novel GNN
framework with conformal prediction (GNN-CF) for landslide deformation interval forecasting,
addressing the limitations of traditional models in handling predictive uncertainty.

According to the differences in message passing and aggregation methods, GNNs have
derived various variants. For example, graph convolutional network (GCN) is generated by
generalizing the convolutional operation to graph-structured data (Sharma et al., 2022; Wang et al.,
2020a), and graph attention network (GAT) dynamically weights the importance of neighboring
nodes by introducing the attention mechanism (Yuan et al., 2022; Zhou and Li, 2021). The
emergence of these new architectures makes GNN variants more targeted than conventional GNNs
and suitable for modeling heterogeneous relationships. Currently, they are often used for weighted
analysis of the impacts of different geographical factors on landslides.

Transformer architectures, characterized by the self-attention mechanism, provide another
promising avenue for landslide-related data fusion (Huang and Chen, 2023; Zhao et al., 2021a).
Unlike CNNs or RNNs, which process spatial or temporal sequences sequentially, Transformers
can jointly capture long-range dependencies across spatial and temporal dimensions, enabling
unified processing of rainfall, InSAR time series, and topographic data (Esser et al., 2021; Lv et al.,
2023).

Recent studies have begun adapting Transformer variants for landslide identification. Li et al.
(2023) proposed a Transformer-based deep neural network capable of identifying landslides from
hillshade maps and optical imagery. Piran et al. (2024) enhanced short-term precipitation
forecasting by applying transfer learning with a pre-trained Transformer model. Zhang et al. (2024)
incorporated Transformer modules to build a graph-Transformer model that integrates global

contextual information for the generation and analysis of landslide susceptibility maps (LSMs).
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Comment # 4:
4. Introduction: The section lacks sufficient citations, and the objectives are unclear. I
recommend rephrasing them for clarity.
5. Line 28. What do you mean by relativity?
6. Line 33. What do you mean by potentials? Do you mean driving factors?
7. Line 57. What do you mean by remainder? Do you mean the structure of this paper? You don’t

need to mention it.

Response:
We sincerely appreciate you for your valuable comments and constructive suggestions, which
have greatly helped us improve the quality and clarity of the manuscript. We have carefully
revised the paper according to each comment, and all modifications have been incorporated into
the revised version. The following section provides our detailed, point-by-point responses to your
remarks.
* Regarding the general comments on the Introduction
4. Introduction: The section lacks sufficient citations, and the objectives are unclear. I
recommend rephrasing them for clarity.
We fully agree with your comments. In the revised Introduction, we have implemented the
following comprehensive revisions:
(1) We have added essential references to key statements to provide a more robust academic
background and stronger scholarly support.
(2) We have thoroughly rewritten the section describing the research objectives to make them
more specific and clearly defined. The revised list of objectives now explicitly outlines the four
focal aspects addressed in this review—data, models, applications, and challenges with future
directions—thereby eliminating the ambiguity present in the previous version.
* Regarding the comments on specific terminology and expressions
5. Line 28. What do you mean by relativity?
We apologize for the lack of clarity in our original phrasing. The term "relativity" was intended
to convey that the assessment of landslide potential is not absolute but is comparative and
context-dependent. It refers to the relative likelihood, spatial probability, or comparative
susceptibility of a landslide occurring in one area versus another, based on a set of conditioning
factors (e.g., slope, geology, land use).
We have revised the manuscript to improve precision. The phrase has been replaced with "the
inherent uncertainty and dynamic nature" to better convey that landslide prediction is not
absolute but is a probabilistic assessment fraught with challenges.

6. Line 33. What do you mean by potentials? Do you mean driving factors?
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Thank you for pointing out the ambiguity here. We regret that the expression caused confusion.

In Line 33, we used the term "potentials" to refer to the landslide potential or the likelihood of
a slope failure. This potential is inherently dynamic, as it may vary over time due to external
factors, and it does not denote the driving factors themselves.

To clarify, we have revised the sentence to use the more precise term "landslide potential" (Line
33). This change better reflects our intended meaning that the probability of landslide occurrence
is not static.

7. Line 57. What do you mean by remainder? Do you mean the structure of this paper? You
don’t need to mention it.

Thank you for pointing this out. We agree that mentioning "the remainder" is unnecessary. We

have removed the final sentence describing the structure of the paper.

Once again, we would like to express our sincere appreciation to the reviewer for all the valuable

comments and suggestions that have helped us to improve our manuscript.

Original Description in Introduction

1 Introduction

Landslides are geological hazards induced by either natural forces or human activities,
typically involving the interplay of various factors such as geology, meteorology, hydrology, and
topography. Every year, landslides cause significant global losses, particularly in regions with
heavy rainfall, frequent earthquakes, and complex geological conditions, representing a major
threat to human life, property, and infrastructure.

According to data released by the United Nations International Strategy for Disaster
Reduction (UNISDR), more than 1,000 landslide-related disaster events occur annually, causing
thousands of fatalities and substantial economic losses. As global climate change progresses, the
frequency of extreme weather events increases, leading to a growing risk of landslides.

Potential landslides refer to slopes prone to instability that may fail and trigger disasters
within a certain time frame. Potential landslides represent the precursor stage of landslide
occurrence (Lin et al., 2024). If potential landslides are not identified and addressed promptly, the
slope may eventually become unstable and develop into a landslide due to changes in internal
stress conditions and external triggering factors.

Due to the relativity and dynamic nature of potential landslides, the identification work
becomes extremely complicated. On the one hand, it is not possible to determine that a landslide
will definitely occur just because there are signs of deformation on the slope. Multiple factors need
to be comprehensively considered to assess the possibility of its instability. On the other hand, the
uncertainty of external factors increases the difficulty of judgment. Sudden events such as heavy
rainfall and earthquakes may instantly change the stress state of the slope and trigger signs of
deformation. Given the dynamic characteristics of potentials, it is also essential to conduct
long-term monitoring of the landslides with potential hazards after identification.
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Conventional methods for landslide identification and monitoring, such as field surveys,
geological analysis, and radar interferometry, can identify potential landslide areas to a certain
extent. However, these methods often have problems such as high costs, significant time
consumption, and difficulties in data collection, and their applications are limited in extensive
areas. In addition, conventional machine learning requires tedious feature selection and lacks
autonomy in feature extraction. As a result, it is difficult for these traditional methods to extract
available information from big data and they are unable to represent complex monitoring processes
(Sheng et al., 2023). For the above reasons, how to effectively identify and monitor areas with
potential landslides has become an important topic in the current prevention and control of
geological hazards.

Over the past few years, deep learning has stood out in the application of landslide hazards
(Aslam et al., 2021; Nava et al., 2023; Wang et al., 2023a; Zhou et al., 2023). Deep learning is a
branch of machine learning, consisting of consecutive operations (Janiesch et al., 2021). These
operations gradually extract complex features by using the results of previous operations as inputs.
Through the training of large-scale and multi-source data, deep learning models are able to
automatically extract features, capture complex nonlinear relationships, and conduct pattern
recognition in high-dimensional data, which shows great potential in the identification of potential
landslides (Nava et al., 2021; Yang et al., 2024c).

In this review, we aim to summarize the applications of deep learning in the field of potential
landslide identification, including data, models, applications, challenges, and future directions.

(1) We classify commonly used heterogeneous data into three categories for research. These
data sources offer comprehensive data support for the application of deep learning in potential
landslide identification.

(2) We introduce the roles of commonly used deep learning models in potential landslide
identification, and compare the advantages and disadvantages among different models.

(3) We analyze the performance of deep learning models in different scenarios through case
studies, discussing the adaptability of deep learning in potential landslide identification.

(4) We summarize the main challenges currently faced by the application of deep learning in
potential landslide identification, and highlight new opportunities and promising future directions.

The remainder of this paper is organized as follows. Section 2 introduces seven main data
sources. Section 3 summarizes five roles of deep learning models in potential landslide
identification. Section 4 investigates the application of deep learning models in four typical
landslides and provides a comprehensive summary. Section 5 analyzes the current challenges in
potential landslide identification. Section 6 discusses future research directions. Section 7 provides
the concluding remarks.

Revised Description in Introduction

1 Introduction

Landslides are complex geological hazards triggered by both natural processes and human
activities, involving intricate interactions among geological, hydrological, topographic, and
meteorological factors (Fidan et al., 2024). Globally, landslides cause significant loss of life and
property each year, particularly in mountainous areas with intense rainfall, seismic activity, and
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fragile geological conditions (Askarinejad et al., 2018; Ehsan et al., 2025; Marin-Rodriguez et al.,
2024). According to the United Nations Office for Disaster Risk Reduction (UNDRR, 2023), more
than 1,000 landslide-related disasters occur annually, resulting in thousands of fatalities and
substantial economic damage. With the intensification of climate change, extreme weather events
are becoming more frequent, further increasing global landslide risks (Wang et al., 2023).

Potential landslides refer to slopes that exhibit early signs of instability and may evolve into
landslides under external triggers such as rainfall or earthquakes. They represent the precursor
stage of landslide development (Lin et al., 2024; Yang et al., 2020). Timely identification and
monitoring of such slopes are crucial for disaster prevention and risk mitigation (Strzabata et al.,
2024).

However, the inherent uncertainty and dynamic nature of potential landslides make their
identification challenging. On the one hand, it is not possible to determine that a landslide will
definitely occur just because there are signs of deformation on the slope (Peres and Cancelliere
2014; Zhang et al., 2019). Multiple factors need to be comprehensively considered to assess the
possibility of its instability. On the other hand, the uncertainty of external factors increases the
difficulty of judgment. Sudden events such as heavy rainfall and earthquakes may instantly change
the stress state of the slope and trigger signs of deformation (Yang et al., 2024). Given the dynamic
characteristics of potential landslides, it is also essential to conduct long-term monitoring of the
landslides with potential hazards after identification (Lakhote et al., 2025).

Conventional approaches to potential landslide identification, including field surveys,
geological analysis, and interferometric radar techniques, have contributed substantially to hazard
assessment but remain costly, time-consuming, and limited in spatial coverage (Akosah et al.,
2024; Zhao and Lu 2018). Machine learning has partially improved efficiency but still depends
heavily on manual feature engineering, requiring expert knowledge to design relevant predictors
(Sheng et al., 2023). These limitations restrict the scalability and adaptability of conventional
approaches in complex geospatial environments.

In contrast, deep learning provides an effective data-driven alternative for landslide research.
As a subfield of machine learning, deep learning performs hierarchical feature extraction through
multiple nonlinear transformations (Janiesch et al., 2021; Nava et al., 2023). By leveraging
large-scale, multi-source data, deep learning models can automatically extract representative
features, capture nonlinear dependencies, and conduct pattern recognition in high-dimensional
datasets (Aslam et al., 2021; Wang et al., 2023a; Zhou et al., 2023). These capabilities make DL
particularly suitable for identifying and characterizing potential landslides across diverse spatial
and temporal scales (Nava et al., 2021; Yang et al., 2024c).

Potential landslide identification can be broadly categorized into two operational types. The
first focuses on post-event regional assessments, conducted after major rainfall or earthquakes but
before the occurrence of large-scale failures, using remote sensing data to detect deformation,
topographic changes, or vegetation anomalies. The second involves retrospective analysis of
historical landslides to establish the relationships between triggering factors and failure
characteristics, thereby identifying other slopes that exhibit similar instability patterns. Given the
increasing availability of high-quality inventories and multi-source environmental data, our study
specifically focuses on the second type—retrospective identification of potential landslides based
on historical events. This approach enables the extraction of spatiotemporal patterns of slope
instability and provides a data-rich foundation for developing and validating deep learning models.
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In this review, we aim to summarize the applications of deep learning in the field of potential
landslide identification, including data, models, applications, challenges, and future directions.

(1) We classify commonly used heterogeneous data into three categories for research. These
data sources offer comprehensive data support for the application of deep learning in potential
landslide identification.

(2) We introduce the roles of commonly used deep learning models in potential landslide
identification, and compare the advantages and disadvantages among different models.

(3) We analyze the performance of deep learning models in different scenarios through case
studies, discussing the adaptability of deep learning in potential landslide identification.

(4) We summarize the main challenges currently faced by the application of deep learning in
potential landslide identification, and highlight new opportunities and promising future directions.
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Comment #5:
8. Line 61. Chapter 2. It is unclear whether the data sources mentioned are actually used in deep
learning for landslide detection, or whether they could be used. If they are used, please provide

specific examples.

Response:

- We sincerely appreciate your time and effort in reviewing our manuscript! The comments are
highly insightful and have been instrumental in refining our paper. We fully agree that the
manuscript should explicitly clarify that these data sources have indeed been applied in existing
studies, rather than merely describing their principles and characteristics. Following your
suggestion, we have thoroughly revised Section 2.

- The major revisions are as follows:

- (1) Structural adjustment: We have closely linked each data category with its specific
applications in deep learning, providing published literature to substantiate each type.

- (2) Addition of specific cases: For each data source (e.g., optical remote sensing, InSAR, and
LiDAR), we now include real-world examples that have been successfully applied in deep
learning-based landslide detection studies, with corresponding references. These cases clearly

demonstrate how specific data types are integrated with particular deep learning models.

Original Description in Section 2

2 Deep Learning for Potential Landslide Identification: Data Source

Accurate identification of potential landslides is the primary step in effectively preventing and
mitigating the impacts of landslide hazards. Data sources are the cornerstone of achieving this
objective. Different types of data provide indispensable information for potential landslide
identification from various perspectives, and drive ongoing advancements in related research and
practices.

In potential landslide identification, the richness and reliability of data sources directly
determine the accuracy and effectiveness of research. Data sources not only provide fundamental
information to outline the landslide environments, but also enable dynamic monitoring and precise
analysis. This section will comprehensively review the critical roles played by three main types of
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data sources: satellite observation data, airborne remote sensing data, and ground-based
observation data (see Fig. 1)

2.1 Satellite Observation Data

Since the launch of Landsat-1, the first earth observation satellite for studying and monitoring
the Earth ’ s surface on July 23, 1972, satellite data has become widely accessible, extending
beyond single-purpose analyses or results (Wulder et al., 2022). With the continuous development
of satellite observation, its immense potential for application in landslide research has become
evident (Liu et al., 2021d). Currently, satellite observation data primarily refers to data obtained
through space-borne synthetic aperture radar (SAR) and optical remote sensing.

2.1.1 Space-borne SAR

SAR is an active microwave remote sensing system (Franceschetti and Lanari, 2018). It is not
only capable of acquiring data on demand by actively emitting microwave signals but also
facilitates partial penetration of vegetation cover through its longer wavelength bands (such as the
L-band), thereby allowing the retrieval of surface deformation information beneath vegetated
areas. The time series data provided by SAR can serve as input for deep learning models, allowing
these models to be trained to identify long-term patterns of terrain change. Continuous monitoring
of potential landslide areas is crucial, and SAR is widely employed in high-risk environments.

Interferometric synthetic aperture radar (InSAR) has been developed based on. It obtains
surface elevation information by performing coherent processing on two sets of SAR images
observed in the same area (Dai et al., 2022; Ma et al., 2023b; Zeng et al., 2024).

In contrast, SAR mainly provide backscatter information of ground objects. Although some
features of ground objects can be identified according to the scattering characteristics, their ability
to obtain topographic elevation information is relatively weak. InSAR, on the other hand, can
directly generate topographic elevation data, which is of great significance for analyzing the
topography and geomorphology in the identification of potential landslides, and determining key
elements such as the topographic undulation and slope of potential landslide areas.

When screening for potential landslides over a large area, InSAR has higher efficiency (Dun
et al., 2021; Tang et al., 2025; Zhang et al., 2021). When monitoring large potential landslide areas
such as mountainous regions, InNSAR can quickly obtain topographic deformation information over
a large area, promptly detect potential areas with potential landslides, and reduce the workload and
blind spots of manual inspections.

At present, InSAR is widely employed to generate ground deformation velocity maps and
time-series data, which reveal the dynamic evolution of landslide-prone areas.

Differential interferometric synthetic aperture radar (D-InSAR) is an advancement of InSAR
that eliminates topographic phase through differential processing, focusing specifically on
deformation information extraction (Shen et al., 2022). The emergence of D-InSAR not only
enables the transition from mixed deformation-topography signals to pure deformation signal
extraction but also extends its applicability from detecting discrete deformation events to
identifying slow-moving landslide processes, significantly enhancing the reliability of landslide
monitoring.

2.1.2 Optical Remote Sensing

Optical remote sensing refers to the acquisition of surface information through sensors that

measure reflected solar radiation. Its application in geological hazard investigations dates back to
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the 1970s.

Optical remote sensing offers high resolution, currently capable of achieving spatial
resolutions as fine as 0.3 meters or better. In potential landslide identification, it not only facilitates
the retrieval of detailed surface textures and color characteristics using rich spectral data but also
enables the direct identification of morphological features and object contours via visual
interpretation of imagery (Cheng and Han, 2016; Li et al., 2022b).

Landslide formation typically follows a progressive process from deformation to failure,
accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized
collapses. These indicators exhibit distinct spectral signatures in optical imagery compared to their
surroundings, enabling both manual interpretation and automated detection.

In vegetated mountainous regions, surface vegetation often undergoes detectable changes
before a landslide event. Optical remote sensing leverages multispectral data, particularly red and
near-infrared bands, to monitor vegetation health and identify potential landslide zones.
Furthermore, the calculation of the normalized difference vegetation index (NDVI) facilitates the
evaluation of vegetation health in potential landslide regions, providing critical insights into
potential landslide precursors (Verrelst et al., 2015).

2.2 Airborne Remote Sensing Data

Airborne remote sensing data, typically acquired by manned aircrafts, provide high-resolution
imagery of localized areas. Advanced airborne platforms equipped with oblique photogrammetry
and, more recently, close-range photogrammetry technologies enable millimeter-level accuracy in
3D photogrammetry, facilitating the observation of subtle surface deformations, rock mass
structures, and the construction of highly detailed 3D models of terrain and above-ground
infrastructure (Macciotta and Hendry, 2021; Xu et al., 2023). Among these technologies, airborne
photogrammetry and airborne radar are the most commonly used.

2.2.1 Airborne Light Detection and Ranging (LiDAR)

LiDAR has been used for landslide and other geological hazard investigations in many
regions since the late 1990s. As an active remote sensing system, LiDAR can laterally scan a range
of 60° and capture 400,000 points per second, enabling largescale 3D scanning of terrain,
structures, and vegetation within a short period (Mallet and Bretar, 2009). It offers centimeter-level
accuracy in both horizontal and vertical dimensions.

Airborne LiDAR is irreplaceable in capturing 3D details and penetrating vegetation,
particularly in densely vegetated areas where conventional aerial photography faces significant
limitations. Airborne LiDAR not only acquires high- resolution digital surface models (DSMs)
from laser point cloud data but also generates high-accuracy DEMs by removing vegetation
contributions (Fang et al., 2022; Jaboyedoff et al., 2012; Yan et al., 2023), thereby revealing
concealed hazard features such as mountain fractures, loose deposits, and landslide masses under
vegetation cover.

Point cloud data obtained from airborne LiDAR can monitor dynamic changes in
mountainous terrain by detecting deformations such as subsidence, displacement, and uplift, while
also facilitating the construction of 3D landslide models to simulate sliding directions and impact
areas. Through intuitive visualization of slope morphology and structure from multiple
perspectives, LiDAR enables researchers to conduct a comprehensive assessment of slope
conditions and identify subtle hazard features that may not be easily discernible in 2D imagery.
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2.2.2 Unmanned Aerial Vehicle (UAV)

UAV aerial photogrammetry provides outstanding maneuverability and high-precision
measurements. Traversing over steep slopes and valleys, UAVs are able to monitor areas that are
often inaccessible to satellites and manned aerial platforms (Niethammer et al., 2012), thus
addressing critical observational limitations.

In large-scale and topographically complex regions, UAVs can perform efficient aerial
inspections, overcoming the limitations of ground-based inspections in inaccessible or visually
obstructed regions. By rapidly scanning mountain slopes, embankments, and gullies, UAVs
provide a comprehensive understanding of the geological conditions and enable timely
identification of macro-scale geomorphic anomalies. However, given cost-effectiveness
constraints, UAVs are currently more commonly used for periodic and continuous monitoring in
localized areas. They are particularly well-suited for rapid and dynamic monitoring of landslides in
high-priority zones.

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial
photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on
UAVs are able to capture the subtle cracks on the surface of the mountain.

These cracks may be early signs of a landslide (Sun et al., 2024a). By conducting a
comparative analysis of the images taken at different times, the development and changes of the
cracks can be monitored, including the increase in the length, width and depth of the cracks, as
well as the changes in the crack orientation. In some mountainous areas or valleys, there may be a
large number of loose accumulations. These accumulations may trigger landslides under specific
conditions. Aerial photography by UAVs can clearly identify information such as the distribution
range, accumulation quantity and accumulation shape of these loose accumulations, and assess
their potential threats to the surrounding environment.

When equipped with LiDAR sensors, UAVs can effectively remove vegetation from the data.
Then, assisting researchers to reveal landslide boundaries, crack patterns, and other deformation
features hidden beneath vegetation cover. This integrated approach combines the strengths of
photogrammetry and LiDAR, allowing for rapid deployment and targeted area monitoring while
mitigating the challenges posed by vegetation cover in landslide detection and assessment.

After extreme weather events such as heavy rainstorms or geological events like earthquakes
occur, the stability of the mountain may be affected, making it prone to triggering geological
hazards. UAVs even can quickly conduct aerial monitoring of the relevant areas after extreme
weather.

2.3 Ground-based Observation Data

Satellite observation and airborne remote sensing are mainly employed for identifying
potential landslides based on surface morphology. However, due to the influence of various factors,
the identification results may not always be fully accurate, leading to potential misjudgments.
Therefore, the potential landslide points identified through remote sensing still necessitate field
investigations by researchers for verification, differentiation, confirmation, or exclusion of hazards.
In some cases, additional on-site observation and monitoring methods are needed for accurate
assessment. Commonly used ground-based monitoring methods include ground-based SAR, 3D
laser scanners and various sensor devices deployed or installed on the ground.

2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR)
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GB-SAR is an active ground-based microwave remote sensing system that has been
developed over the past decade. Compared to spaceborne SAR, GB-SAR allows adjustment of
radar wave incidence angles and azimuths, preventing phase decorrelation issues caused by terrain
obstructions in satellite SAR, making it particularly suitable for monitoring steep slopes, canyons,
and other areas with limited satellite line-of-sight (Noferini et al., 2007).

GB-SAR effectively integrates the principles of SAR imaging with electromagnetic wave
interferometry. By leveraging precise measurements of sensor system parameters, attitude
parameters, and geometric relationships between orbits, GB-SAR quantifies spatial positions and
subtle changes at specific surface points, allowing for the measurement of surface deformations
with millimeter or even sub-millimeter precision. 180

During landslide movement, the ground experiences noticeable subsidence, displacement, or
cracking. GB-SAR can be configured for high-resolution, continuous observation to capture
instantaneous deformations during the landslide creep phase and generate corresponding
displacement maps (Liu et al., 2021a; Xiao et al., 2021). This capability facilitates the distinction
between evolutionary stages of landslides and further analysis of the dynamics of landslide activity.

For small-scale regional monitoring, GB-SAR can establish customized geometric
configurations specifically designed for target areas. Utilizing mobile rail systems or multi-antenna
setups, GB-SAR reconstructs 3D deformation vector fields of landslide masses, identifying sliding
directions and potential failure surfaces.

2.3.2 Terrestrial Laser Scanning (TLS)

TLS emerged in the mid-1990s. It plays a unique role in local refined monitoring by emitting
laser pulses and measuring their reflection time (Stumvoll et al., 2021; Teza et al., 2007).

The landslide often manifests as a sharp change in the ground surface. TLS can provide data
with sufficient accuracy, assisting researchers in identifying the features of these landslides. By
combining topographic analysis, the location of the landslide surface can be accurately determined.
TLS scanner can also help identify the landslide mass, that is, the flow path of the landslide
materials. Through analyzing the point cloud data, the movement path of the landslide area, the soil
accumulation area, and the accumulation location of the landslide materials can be extracted,
providing detailed information for the analysis and assessment of potential landslides.

By quickly and massively collecting spatial point position information, TLS can automatically
splice and rapidly obtain the appearance of the measured object. It can be used to construct
high-precision surface models and appearance models of buildings and structures. The 3D model
can display the shape and structure of the mountain and the detailed features of the ground surface
from different angles and in all directions (Zhou et al., 2024), enabling geological experts and
engineers to have a more intuitive understanding of the overall situation of the landslide area. For
example, the cracks in the mountain, the loose accumulations, and the degree of weathering of the
rocks can be clearly seen, providing richer information for the identification of potential landslide
hazards.

Currently, TLS is commonly used in critical areas requiring localized precision. For historical
landslide masses, it captures reactivation indicators such as rear tensile cracks and frontal bulging,
with data input into anomaly detection models to identify reactivation signals.

2.3.3 Ground-based Sensor Devices

Compared to the aforementioned data sources, ground-based sensors offer key advantages,

including high precision, realtime capabilities, and multi-parameter fusion (Dai et al., 2023). They
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can address the limitations of remote sensing and provide critical ground-based dynamic
information for potential landslide identification.

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the
state of landslide masses. These datasets provide foundational inputs for deep learning models,
enabling multi-dimensional analysis and interpretation of potential landslide conditions. For
example, ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like
displacement and tilt angle at frequencies ranging from minutes to seconds, capturing transient,
anomalous signals just prior to landslide events, thereby filling the temporal resolution gap in
remote sensing (Jiang et al., 2022). By integrating time series data with SAR imagery, deep
learning models can be trained to uncover correlation patterns between surface deformations and
subsurface parameters. Instruments such as piezometers and soil pressure gauges can directly
monitor key parameters like pore water pressure and soil stress on the sliding surface. By
combining the obtained subsurface data with geomechanical equations, the position of the sliding
surface or geotechnical strength parameters can be inverted.

Revised Description in Section 2

2 Deep Learning for Potential Landslide Identification: Data Source

Accurate identification of potential landslides is the primary step in effectively preventing and
mitigating the impacts of landslide hazards. Data sources are the cornerstone of achieving this
objective. Different types of data provide indispensable information for potential landslide
identification from various perspectives, and drive ongoing advancements in related research and
practices.

In potential landslide identification, the richness and reliability of data sources directly
determine the accuracy and effectiveness of research. Data sources not only provide fundamental
information to outline the landslide environments, but also enable dynamic monitoring and precise
analysis. This section will comprehensively review the critical roles played by three main types of
data sources: satellite observation data, airborne remote sensing data, and ground-based
observation data (see Fig. 1)

2.1 Satellite Observation Data

Since the launch of Landsat-1, the first earth observation satellite for studying and monitoring
the Earth’ s surface on July 23, 1972, satellite data has become widely accessible, extending
beyond single-purpose analyses or results (Wulder et al., 2022). With the continuous development
of satellite observation, its immense potential for application in landslide research has become
evident (Liu et al., 2021d). At present, satellite observation data mainly include space-borne
synthetic aperture radar (SAR) and optical remote sensing data, both of which are widely used as
inputs for deep learning models in landslide identification.

2.1.1 Space-borne SAR

SAR is an active microwave remote sensing system (Franceschetti and Lanari, 2018). It is not
only capable of acquiring data on demand by actively emitting microwave signals but also
facilitates partial penetration of vegetation cover through its longer wavelength bands (such as the
L-band), thereby allowing the retrieval of surface deformation information beneath vegetated
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areas. The time series data provided by SAR can serve as input for deep learning models, allowing
these models to be trained to identify long-term patterns of terrain change. Continuous monitoring
of potential landslide areas is crucial, and SAR is widely employed in high-risk environments.

Interferometric synthetic aperture radar (InSAR) has been developed based on. It obtains
surface elevation information by performing coherent processing on two sets of SAR images
observed in the same area (Dai et al., 2022; Ma et al., 2023b; Zeng et al., 2024).

In contrast, SAR mainly provide backscatter information of ground objects. Although some
features of ground objects can be identified according to the scattering characteristics, their ability
to obtain topographic elevation information is relatively weak. InSAR, on the other hand, can
directly generate topographic elevation data, which is of great significance for analyzing the
topography and geomorphology in the identification of potential landslides, and determining key
elements such as the topographic undulation and slope of potential landslide areas.

When screening for potential landslides over a large area, InSAR has higher efficiency (Dun
et al., 2021; Tang et al., 2025; Zhang et al., 2021). When monitoring large potential landslide areas
such as mountainous regions, InNSAR can quickly obtain topographic deformation information over
a large area, promptly detect potential areas with potential landslides, and reduce the workload and
blind spots of manual inspections. InSAR is widely employed to generate ground deformation
velocity maps and time-series data, which reveal the dynamic evolution of landslide-prone areas.

Recent studies have integrated InSAR-derived deformation velocity fields with deep learning
models to automatically detect slow-moving or latent landslides. For example, Liu et al. (2022)
employed an InSAR-CNN framework to map active landslides in the Eastern Tibet Plateau area,
achieving a detection accuracy of over 90%. Similarly, Zhang et al. (2022) proposed a two-stage
detection deep learning network (InSARNet) for detecting anomalous deformation areas in
Maoxian County, Sichuan Province, with a recognition accuracy of 93.88%. Targeting the complex
deformation mechanisms of multi-type landslides in Zigui County, Three Gorges Reservoir Area,
Hu et al (2025) used InSAR time-series displacement as the core data, develop a deep learning
architecture based on the integrated framework of EMD and GRU, break through the limitations of
traditional models such as single-type, single-target, and low-accuracy, and achieve dual-accurate
prediction of displacement and failure time for multi-type landslides.

Differential interferometric synthetic aperture radar (D-InSAR) is an advancement of InSAR
that eliminates topographic phase through differential processing, focusing specifically on
deformation information extraction (Shen et al., 2022). The emergence of D-InSAR not only
enables the transition from mixed deformation-topography signals to pure deformation signal
extraction but also extends its applicability from detecting discrete deformation events to
identifying slow-moving landslide processes, significantly enhancing the reliability of landslide
monitoring (Zhong et al., 2024).

2.1.2 Optical Remote Sensing

Optical remote sensing refers to the acquisition of surface information through sensors that
measure reflected solar radiation. Its application in geological hazard investigations dates back to
the 1970s.

Optical remote sensing offers high resolution, currently capable of achieving spatial
resolutions as fine as 0.3 meters or better. In potential landslide identification, it not only facilitates
the retrieval of detailed surface textures and color characteristics using rich spectral data but also
enables the direct identification of morphological features and object contours via visual
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interpretation of imagery (Cheng and Han, 2016; Li et al., 2022b).

Landslide formation typically follows a progressive process from deformation to failure,
accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized
collapses. These indicators exhibit distinct spectral signatures in optical imagery compared to their
surroundings, enabling both manual interpretation and automated detection. In deep learning
applications, multispectral optical images have been widely used to train CNN-based models for
landslide identification. Lu et al. (2023) developed a method for achieving accurate landslide
mapping using medium-resolution remote sensing images and DEM data, which has the potential
for deployment in large-scale landslide detection. Jiang et al. (2022) proposed a TL-Mask R-CNN
for identifying a small number of old landslide samples in the area along the Sichuan-Tibet
Transportation Corridor. The results show that the pixel accuracy of segmentation for new
landslides and old landslides can reach 87.71% and 75.86% respectively.

In vegetated mountainous regions, surface vegetation often undergoes detectable changes
before a landslide event. Optical remote sensing leverages multispectral data, particularly red and
near-infrared bands, to monitor vegetation health and identify potential landslide zones.
Furthermore, the calculation of the normalized difference vegetation index (NDVI) facilitates the
evaluation of vegetation health in potential landslide regions, providing critical insights into
potential landslide precursors (Verrelst et al., 2015).

While both space-borne SAR and optical remote sensing are pivotal for large-area landslide
screening, they offer complementary capabilities and have distinct limitations. Optical remote
sensing provides intuitive visual interpretation of geomorphological features but is rendered
useless by cloud cover and darkness. In contrast, space-borne SAR, with its all-weather,
day-and-night imaging capability, excels in detecting millimeter-to-centimeter-scale surface
deformation through InSAR techniques, which is a direct precursor to landslide failure. However,
InSAR performance can be degraded in heavily vegetated areas due to temporal decorrelation and
in steep terrain due to geometric distortions (Lin et al., 2022; Yan et al., 2024), areas where optical
stereo imaging for DEM generation might be less affected. Therefore, the integration of
SAR-derived deformation maps and optical-based geomorphological maps is considered a best
practice for regional-scale landslide inventory mapping and preliminary hazard assessment (Xun et
al., 2022).

2.2 Airborne Remote Sensing Data

Airborne remote sensing data, typically acquired by manned aircrafts, provide high-resolution
imagery of localized areas. Advanced airborne platforms equipped with oblique photogrammetry
and, more recently, close-range photogrammetry technologies enable millimeter-level accuracy in
3D photogrammetry, facilitating the observation of subtle surface deformations, rock mass
structures, and the construction of highly detailed 3D models of terrain and above-ground
infrastructure (Macciotta and Hendry, 2021; Xu et al., 2023). Among these technologies, airborne
photogrammetry and airborne radar are the most commonly used.

2.2.1 Airborne Light Detection and Ranging (LiDAR)

LiDAR has been used for landslide and other geological hazard investigations in many
regions since the late 1990s. As an active remote sensing system, LiDAR can laterally scan a range
of 60° and capture 400,000 points per second, enabling largescale 3D scanning of terrain,
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structures, and vegetation within a short period (Mallet and Bretar, 2009). It offers centimeter-level
accuracy in both horizontal and vertical dimensions.

Airborne LiDAR is irreplaceable in capturing 3D details and penetrating vegetation,
particularly in densely vegetated areas where conventional aerial photography faces significant
limitations. Airborne LiDAR not only acquires high- resolution digital surface models (DSMs)
from laser point cloud data but also generates high-accuracy DEMs by removing vegetation
contributions (Fang et al., 2022; Jaboyedoff et al., 2012; Yan et al., 2023), thereby revealing
concealed hazard features such as mountain fractures, loose deposits, and landslide masses under
vegetation cover.

Point cloud data obtained from airborne LiDAR can monitor dynamic changes in
mountainous terrain by detecting deformations such as subsidence, displacement, and uplift, while
also facilitating the construction of 3D landslide models to simulate sliding directions and impact
areas. Through intuitive visualization of slope morphology and structure from multiple
perspectives, LiDAR enables researchers to conduct a comprehensive assessment of slope
conditions and identify subtle hazard features that may not be easily discernible in 2D imagery.

These high-precision DEMs and point clouds serve as critical inputs for deep learning models.
For instance, Wei et al. (2023) proposed the DAG-Net model to construct dynamic edge features
for enhancing point cloud representations, achieving the highest mean Intersection over Union
(mloU) of 0.743 and an F1-score of 0.786. Similarly, Farmakis et al. (2022) Based on the advanced
PointNet and PointNet++ architectures, we developed deep neural networks for 3D point cloud
learning. The best-performing model achieved accuracies of approximately 89% and 84% during
the final and shortest monitoring campaigns, respectively. These examples demonstrate that
airborne LiDAR data are not only suitable but have been effectively applied in deep learning-based
landslide analysis.

2.2.2 Unmanned Aerial Vehicle (UAV)

UAV aerial photogrammetry provides outstanding maneuverability and high-precision
measurements. Traversing over steep slopes and valleys, UAVs are able to monitor areas that are
often inaccessible to satellites and manned aerial platforms (Niethammer et al., 2012), thus
addressing critical observational limitations.

In large-scale and topographically complex regions, UAVs can perform efficient aerial
inspections, overcoming the limitations of ground-based inspections in inaccessible or visually
obstructed regions. By rapidly scanning mountain slopes, embankments, and gullies, UAVs
provide a comprehensive understanding of the geological conditions and enable timely
identification of macro-scale geomorphic anomalies. However, given cost-effectiveness
constraints, UAVs are currently more commonly used for periodic and continuous monitoring in
localized areas. They are particularly well-suited for rapid and dynamic monitoring of landslides in
high-priority zones.

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial
photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on
UAVs are able to capture the subtle cracks on the surface of the mountain.

These cracks may be early signs of a landslide (Sun et al., 2024a). By conducting a
comparative analysis of the images taken at different times, the development and changes of the
cracks can be monitored, including the increase in the length, width and depth of the cracks, as
well as the changes in the crack orientation. In some mountainous areas or valleys, there may be a
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large number of loose accumulations. These accumulations may trigger landslides under specific
conditions. Aerial photography by UAVs can clearly identify information such as the distribution
range, accumulation quantity and accumulation shape of these loose accumulations, and assess
their potential threats to the surrounding environment. This capability is leveraged in deep learning
applications, where time-series UAV imagery is processed using RNNs or 3D CNNs to monitor the
spatiotemporal evolution of these cracks, providing a data-driven approach for early warning (Xu
et al., 2025; Sandric et al., 2024).

When equipped with LiDAR sensors, UAVs can effectively remove vegetation from the data.
Then, assisting researchers to reveal landslide boundaries, crack patterns, and other deformation
features hidden beneath vegetation cover. This integrated approach combines the strengths of
photogrammetry and LiDAR (Mandlburger et al., 2020), allowing for rapid deployment and
targeted area monitoring while mitigating the challenges posed by vegetation cover in landslide
detection and assessment. In addition, Wallace et al (2012) demonstrated that integrating LIDAR
with UAVs can maintain high accuracy while reducing costs to a certain extent.

After extreme weather events such as heavy rainstorms or geological events like earthquakes
occur, the stability of the mountain may be affected, making it prone to triggering geological
hazards. UAVs even can quickly conduct aerial monitoring of the relevant areas after extreme
weather.

2.3 Ground-based Observation Data

Satellite- and airborne-based observations primarily identify potential landslides through
large-scale surface morphological analysis. However, these approaches are often affected by
vegetation cover, viewing geometry, and atmospheric noise, which may lead to misclassification or
omission. Therefore, ground-based observation techniques play a critical complementary role,
offering higher temporal resolution, accuracy, and localized verification for potential landslide
identification. In recent years, data collected from ground-based monitoring instruments have not
only been used for field validation but also increasingly incorporated into deep learning
frameworks to improve temporal continuity and physical interpretability in landslide detection and
forecasting.

2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR)

GB-SAR is an active ground-based microwave remote sensing system that has been
developed over the past decade. Compared to spaceborne SAR, GB-SAR allows adjustment of
radar wave incidence angles and azimuths, preventing phase decorrelation issues caused by terrain
obstructions in satellite SAR, making it particularly suitable for monitoring steep slopes, canyons,
and other areas with limited satellite line-of-sight (Noferini et al., 2007).

GB-SAR effectively integrates the principles of SAR imaging with electromagnetic wave
interferometry. By leveraging precise measurements of sensor system parameters, attitude
parameters, and geometric relationships between orbits, GB-SAR quantifies spatial positions and
subtle changes at specific surface points, allowing for the measurement of surface deformations
with millimeter or even sub-millimeter precision.

During landslide movement, the ground experiences noticeable subsidence, displacement, or
cracking. GB-SAR can be configured for high-resolution, continuous observation to capture
instantaneous deformations during the landslide creep phase and generate corresponding
displacement maps (Liu et al., 2021a; Xiao et al., 2021). For example, Long et al. (2018) proposed
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a GBSAR persistent scatterer (PS) point selection method based on the mean coherence
coefficient, amplitude dispersion index, estimated signal-to-noise ratio, and displacement accuracy
index. Han et al. (2022) proposed an LSTM (long short-term memory)-based approach for
processing GB-InSAR time series data. Kacan et al. (2022) employed two deep learning methods
to investigate the potential and advantages of processing raw GBSAR data for automatic radar
classification.

For small-scale regional monitoring, GB-SAR can establish customized geometric
configurations specifically designed for target areas. Utilizing mobile rail systems or multi-antenna
setups, GB-SAR reconstructs 3D deformation vector fields of landslide masses (Shi et al., 2025),
identifying sliding directions and potential failure surfaces.

2.3.2 Terrestrial Laser Scanning (TLS)

TLS emerged in the mid-1990s. It plays a unique role in local refined monitoring by emitting
laser pulses and measuring their reflection time (Stumvoll et al., 2021; Teza et al., 2007).

The landslide often manifests as a sharp change in the ground surface. TLS can provide data
with sufficient accuracy, assisting researchers in identifying the features of these landslides. By
combining topographic analysis, the location of the landslide surface can be accurately determined.
TLS scanner can also help identify the landslide mass, that is, the flow path of the landslide
materials. Through analyzing the point cloud data, the movement path of the landslide area, the soil
accumulation area, and the accumulation location of the landslide materials can be extracted,
providing detailed information for the analysis and assessment of potential landslides.

By quickly and massively collecting spatial point position information, TLS can automatically
splice and rapidly obtain the appearance of the measured object. It can be used to construct
high-precision surface models and appearance models of buildings and structures. The 3D model
can display the shape and structure of the mountain and the detailed features of the ground surface
from different angles and in all directions (Zhou et al., 2024), enabling geological experts and
engineers to have a more intuitive understanding of the overall situation of the landslide area. For
example, the cracks in the mountain, the loose accumulations, and the degree of weathering of the
rocks can be clearly seen, providing richer information for the identification of potential landslides.

In the context of deep learning, TLS-derived 3D point clouds have become critical inputs for
morphological feature extraction and automatic landslide identification. For example, Senogles et
al. (2022) integrated TLS point cloud data to assess surface displacements induced by landslide
movements. Wang et al. (2025) provided a practical and adaptable solution for landslide
monitoring by integrating TLS point clouds with embedded RGB imagery.

These examples confirm that TLS data are not only suitable but already actively used in deep
learning-based landslide recognition, providing precise geometric constraints for multi-source
fusion frameworks that combine DEM, optical, and InSAR information.

2.3.3 Ground-based Sensor Devices

Compared to the above methods, ground-based sensors offer key advantages, including high
precision, realtime capabilities, and multi-parameter fusion (Dai et al., 2023). They can address the
limitations of remote sensing and provide critical ground-based dynamic information for potential
landslide identification.

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the
state of landslide masses. These datasets provide foundational inputs for deep learning models,
enabling multi-dimensional analysis and interpretation of potential landslide conditions. For
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example, ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like
displacement and tilt angle at frequencies ranging from minutes to seconds, capturing transient,
anomalous signals just prior to landslide events, thereby filling the temporal resolution gap in
remote sensing (Jiang et al., 2022). These data are often used as input sources for RNN models and
their variants (Bai et al., 2022; Wang et al.,2021). By integrating time series data with SAR
imagery, deep learning models can be trained to uncover correlation patterns between surface
deformations and subsurface parameters.

Instruments such as piezometers and soil pressure gauges can directly monitor key parameters
like pore water pressure and soil stress on the sliding surface. By combining the obtained
subsurface data with geomechanical equations, the position of the sliding surface or geotechnical
strength parameters can be inverted.

Therefore, GB-SAR, TLS, and ground-based sensors are not only auxiliary observation
techniques but are increasingly serving as key data sources for deep learning-driven landslide
identification. Their integration into CNN, LSTM, and GAN frameworks enables high-resolution
spatial-temporal modeling of slope behavior, bridging the gap between field-scale monitoring and
large-scale hazard prediction.
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Wang, J., Nie, G., Gao, S., Wu, S., Li, H. and Ren, X., 2021. Landslide deformation prediction based on a GNSS
time series analysis and recurrent neural network model. Remote Sensing, 13(6), p.1055.
doi:10.3390/rs13061055.

Wang, Z., Butt, J.A., Huang, S., Medic, T. and Wieser, A., 2025. Dense 3D Displacement Estimation for
Landslide Monitoring via Fusion of TLS Point Clouds and Embedded RGB Images. arXiv preprint
arXiv:2506.16265. doi:10.48550/arXiv.2506.16265.

Wei, R., Ye, C., Ge, Y., Li, Y. and Li, J., 2023. Dynamic graph attention networks for point cloud landslide
segmentation. International Journal of Applied Earth Observation and Geoinformation, 124, p.103542.
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Xu, H., Wang, L., Shu, B., Zhang, Q. and Li, X., 2025. Automatic Detection of Landslide Surface Cracks from
UAYV Images Using Improved U-Network. Remote Sensing, 17(13), p.2150. doi:10.3390/rs17132150.

Xun, Z., Zhao, C., Kang, Y., Liu, X., Liu, Y. and Du, C., 2022. Automatic extraction of potential landslides by
integrating an optical remote sensing image with an InSAR-derived deformation map. Remote Sensing,
14(11), p.2669. d0i:10.3390/rs14112669.

Yan, L., Xiong, Q., Li, D., Cheon, E., She, X. and Yang, S., 2024. InSAR-Driven Dynamic Landslide Hazard
Mapping in Highly Vegetated Area. Remote Sensing, 16(17), p.3229. doi:10.3390/rs16173229.

Zhang, T., Zhang, W., Cao, D., Y1, Y., & Wu, X. (2022). A new deep learning neural network model for the
identification of InNSAR anomalous deformation areas. Remote Sensing, 14(11), 2690.
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Zhong, J., Li, Q., Zhang, J., Luo, P., & Zhu, W. (2024). Risk assessment of geological landslide hazards using
D-InSAR and remote sensing. Remote Sensing, 16(2), 345. doi:10.3390/rs16020345.

Comment #6:

9. Line 84. The phrase stops in the middle of the sentence.

Response:
- Thank you for catching this incomplete sentence! We have revised it to be grammatically correct
and clearer.

- Please see revised Subsection 2.1.1 for details.
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Original Description in Subsection 2.1.1

Interferometric synthetic aperture radar (InSAR) has been developed based on. It obtains
surface elevation information by performing coherent processing on two sets of SAR images
observed in the same area (Dai et al., 2022; Ma et al., 2023b; Zeng et al., 2024).

Revised Description in Subsection 2.1.1

Interferometric synthetic aperture radar (InSAR) has been developed based on the principle of
measuring phase differences between two or more SAR images of the same area (Dai et al., 2022;
Ma et al., 2023b; Zeng et al., 2024). By coherently processing these images, InSAR obtains
high-precision surface elevation information and can be further applied to detect ground
deformation.

Comment #7:
&. Line 219-227. Theis read as introduction.

Response:

- Thank you for this astute observation! We have revised it to be grammatically correct and clearer.

- To address this, we have restructured and rewritten the opening paragraph of Section 3 to make it
more concise and focused on the roles and mechanisms of deep learning models in potential
landslide identification. The revised text now removes redundant background discussion (e.g.,
traditional methods and feature extraction challenges) and directly introduces the types of deep
learning models and their applications to landslide analysis. (Please see revised Section 3 for
details).

- The modification improves the logical flow and ensures that Section 3 begins with a clear

technical overview consistent with the reviewer’s suggestion.

Original Description in Section 3

3 Deep Learning for Potential Landslide Identification: Models

Potential landslide identification relies heavily on extensive data analysis, and the key is how
to efficiently and accurately extract features that are helpful for identifying landslide occurrences.
Conventional landslide identification methods often rely on human expertise or rules, often
necessitating expert knowledge for identifying relevant features. With continuous exploration, deep
learning, through its powerful feature learning capabilities, enables the automatic extraction of
meaningful features from raw data, significantly reducing manual intervention. Especially when
dealing with high-dimensional and complex landslide data, deep learning models can extract deep
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features related to landslides from raw data in a data-driven manner, without the need for manual
feature design.

The choice of deep learning models typically depends on the type of data and the task
requirements. Although each model typically has multiple effects, its internal architecture results in
different focal points when it comes to automated feature extraction. This section analyzes several
commonly used deep learning models from five perspectives: image analysis and processing, time
series analysis, data generation, data cleaning, and data fusion.

Revised Description in Section 3

3 Deep Learning for Potential Landslide Identification: Models

The effectiveness of deep learning in potential landslide identification largely depends on
selecting an appropriate model architecture suited to the data type and specific task. While all deep
learning models excel at automated feature extraction, their internal architectures predispose them
to excel in different aspects of the overall workflow. Therefore, this section does not merely list
models, but organizes them based on their primary function in the landslide identification pipeline.
We analyze several commonly used deep learning models by categorizing them into five functional
roles: image analysis and processing, time series analysis, data generation, anomaly detection, and
data fusion.

Comment #8:
11. Line 280. The citation refers to medical research. While cross-disciplinary examples can be

useful, this seems out of scope in the current context.

Response:

- Thank you for your valuable comment!

- We agree that citing only the original U-Net paper from the medical imaging domain may appear
out of scope. Our intention was to acknowledge the seminal work of Ronneberger et al. (2015),
which first introduced the U-shaped encoder—decoder architecture. To improve the relevance, we
have revised the text to emphasize the subsequent adoption of U-Net in geoscience and remote
sensing applications. In particular, we have added domain-specific references that demonstrate
the application of U-Net in landslide detection and related remote sensing tasks. (Please see

revised Subsection 3.1 for details).

Original Description in Subsection 3.1

U-Net is a typical example (Ronneberger et al., 2015), which features a U-shaped architecture.
U-Net employs an encoder-decoder structure, where the encoder is similar to conventional CNNss,
progressively reducing image resolution and extracting features through convolution and pooling

165



operations; the decoder then restores the image resolution through transposed convolution or
upsampling operations (Dong et al., 2022; Nava et al., 2022). Skip connections bridge low-level
detail features with deep semantic features, thereby refining segmentation precision.

Revised Description in Subsection 3.1

U-Net is a typical example, which features a U-shaped architecture (Ronneberger et al., 2015).
U-Net's encoder-decoder structure with skip connections has become a benchmark for landslide
segmentation (Chandra et al., 2023; Chen et al., 2022; Meena et al., 2022). For example, Dong et
al. (2022) proposed a new model, L-UNet, based on the U-Net architecture and successfully
applied it to landslide extraction from remote sensing imagery. Nava et al. (2022) applied the
Attention U-Net to Sentinel-1 SAR data for rapid mapping of earthquake-induced landslides,
demonstrating the effectiveness of U-Net variants in pixel-level segmentation of landslide bodies

under cloud-covered or topographically complex conditions.

Newly Added References

Chandra, N., Sawant, S. and Vaidya, H., 2023. An efficient u-net model for improved landslide detection from
satellite images. PFG—Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 91(1),
pp.13-28. doi:10.1007/s41064-023-00232-4.

Chen, X., Yao, X., Zhou, Z., Liu, Y., Yao, C. and Ren, K., 2022. DRs-UNet: A deep semantic segmentation
network for the recognition of active landslides from InSAR imagery in the three rivers region of the
Qinghai-Tibet Plateau. Remote Sensing, 14(8), p.1848. doi:10.3390/rs14081848.

Meena, S.R., Soares, L.P., Grohmann, C.H., Van Westen, C., Bhuyan, K., Singh, R.P., Floris, M. and Catani, F.,
2022. Landslide detection in the Himalayas using machine learning algorithms and U-Net. Landslides,
19(5), pp.1209-1229. doi:10.1007/s10346-022-01861-3.

Comment #9:
14. Line 434. Although: this expects something negative after.
15. Line 436: widely applied: you need to give reference on what they are applied to.

Response:

- Thank you for these critical observations! We agree that the original use of "Although" created an
illogical sentence structure, and the claim that diffusion models have not been "widely applied"
lacked necessary references, weakening our argument.

- We have completely rewritten the Subsection 3.3 to simultaneously resolve both issues. The

revision achieves the following:
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- (1) we removed the ambiguous "Although" construction, expanded the discussion to emphasize
the role of deep generative models in addressing data limitations, and reorganized the paragraph
to present the progression from general advantages to specific model comparisons.

- (2) We have added recent studies demonstrating the use of diffusion models in related geospatial
and remote sensing fields, such as high-resolution satellite image synthesis, cloud removal, and
topographic data reconstruction. These examples illustrate that, while diffusion models have
shown promising performance in image generation and enhancement, their direct application to
landslide identification is still in the exploratory phase.

Original Description in Subsection 3.3

Although diffusion models demonstrate strong capabilities in generating high-quality images
and handling noise, they generate superior-quality data and ensure greater training stability
compared to GANs and VAEs. However, diffusion models have not yet been widely applied
directly to the identification of potential landslides and remain in the exploratory stage (see Fig. 4).
We believe that as generative models advance in the field of geospatial remote sensing, they hold
vast potential for application and could play a pivotal role in future landslide risk analysis and
monitoring systems.

Revised Description in Subsection 3.3

The resulting models can sample new, realistic data points that reflect complex terrain and
geophysical variability. For example, (Lo et al., 2024) proposed a Terrain-Feature-Guided
Diffusion Model (TFDM) to fill gaps in DEM data. Similarly, (Zhao et al., 2024) employed a
Denoising Diffusion Probabilistic Model (DDPM) conditioned on incomplete DEMs, which serves
as a transitional kernel during diffusion reversal to progressively reconstruct sharp and accurate
DEM surfaces.

Despite their successful applications in image synthesis, denoising, and remote-sensing image
enhancement(Leher et al., 2025; Sui et al., 2024; Xiao et al., 2023; Zou et al., 2024), diffusion
models have not yet been widely applied directly to the identification of potential landslides and
remain in the exploratory stage. Nonetheless, our optimism for their application is grounded in
their potential to address key challenges such as limited labeled data through generative
augmentation and, more importantly, to provide uncertainty quantification in predictions, which is
vital for risk assessment.

In conclusion, deep generative models provide a transformative solution for overcoming the
challenges of limited and imbalanced landslide datasets. By synthesizing realistic, diverse, and
statistically consistent samples, these models can improve the robustness and generalization of
landslide prediction frameworks. Among them, GANSs are effective for generating visually realistic
imagery and data augmentation; VAEs capture probabilistic geomorphic transitions; and diffusion
models ensure stability and fidelity in high-resolution terrain synthesis.
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Newly Added References

Leher, Q. O., Bezerra, E. S., Paixdo, T., Palomino-Quispe, F., & Alvarez, A. B. (2025). Denoising Diffusion
Probabilistic Models for Cloud Removal and Land Surface Temperature Retrieval From a Single Sample.
IEEE Access. doi:10.1109/ACCESS.2025.3542014.

Lo, K.S.H. and Peters, J., 2024. Diff-dem: A diffusion probabilistic approach to digital elevation model void
filling. IEEE Geoscience and Remote Sensing Letters, 21, pp.1-5. doi:10.1109/LGRS.2024.3403835.

Sui, J., Ma, X., Zhang, X., Pun, M. O., & Wu, H. (2024). Adaptive semantic-enhanced denoising diffusion
probabilistic model for remote sensing image super-resolution. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing. doi:10.1109/JSTARS.2024.3504569.

Xiao, Y., Yuan, Q., Jiang, K., He, J., Jin, X., & Zhang, L. (2023). EDiffSR: An efficient diffusion probabilistic
model for remote sensing image super-resolution. IEEE Transactions on Geoscience and Remote Sensing,
62, 1-14. doi:10.1109/TGRS.2023.3341437.

Zhao, J., Yuan, Y., Dong, Y., Li, Y., Shao, C. and Yang, H., 2024. Void filling of digital elevation models based
on terrain feature-guided diffusion model. Remote Sensing of Environment, 315, p.114432.
doi:10.1016/j.rse.2024.114432.

Zou, X., Li, K., Xing, J., Zhang, Y., Wang, S., Jin, L., & Tao, P. (2024). Diffcr: A fast conditional diffusion
framework for cloud removal from optical satellite images. IEEE Transactions on Geoscience and Remote
Sensing, 62, 1-14. doi:10.1109/TGRS.2024.3365806.

Comment #10:

16. Line 510: missing reference

Response:

- Thank you for the valuable suggestion! We agree that this sentence requires supporting
references. In the revised manuscript, we have added recent studies that demonstrate the use of
GNNs, particularly GCNs and GATs, for analyzing the spatial dependencies and weighted
contributions of different geo-environmental factors in landslide detection. These works provide

empirical evidence for the statement.

Original Description in Subsection 3.5

According to the differences in message passing and aggregation methods, GNNs have
derived various variants. For example, graph convolutional network (GCN) is generated by
generalizing the convolutional operation to graph-structured data (Sharma et al., 2022; Wang et al.,
2020a), and graph attention network (GAT) dynamically weights the importance of neighboring
nodes by introducing the attention mechanism (Yuan et al., 2022; Zhou and Li, 2021). The
emergence of these new architectures makes GNN variants more targeted than conventional GNNs
and suitable for modeling heterogeneous relationships. Currently, they are often used for weighted
analysis of the impacts of different geographical factors on landslides.
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Revised Description in Subsection 3.5

According to the differences in message passing and aggregation methods, GNNs have
derived various variants. For example, graph convolutional network (GCN) is generated by
generalizing the convolutional operation to graph-structured data (Sharma et al., 2022; Wang et al.,
2020a), and graph attention network (GAT) dynamically weights the importance of neighboring
nodes by introducing the attention mechanism (Yuan et al., 2022; Zhou and Li, 2021). The
emergence of these new architectures makes GNN variants more targeted than conventional GNNs
and suitable for modeling heterogeneous relationships. Currently, they are often used for weighted
analysis of the impacts of different geographical factors on landslides (Kuang et al., 2022; Li et al.,
2025; Zhang et al., 2024).

Newly Added References

Kuang, P., Li, R., Huang, Y., Wu, J., Luo, X., & Zhou, F. 2022. Landslide displacement prediction via attentive
graph neural network. Remote Sensing, 14(8), 1919. doi:10.3390/rs14081919.

Li, Y., Chen, T., Lv, L., Niu, R., & Plaza, A. 2025. IED-GCN: An Internal and External Decoupled Graph
Convolutional Network for Landslide Susceptibility Assessment. IEEE Transactions on Geoscience and
Remote Sensing. doi: 10.1109/TGRS.2025.3595205.

Zhang, Q., He, Y., Zhang, Y., Lu, J., Zhang, L., Huo, T., ... & Zhang, Y. 2024. A Graph-Transformer method for
landslide susceptibility mapping. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing. doi:10.1109/JSTARS.2024.3437751.

Comment #11:
17. Line 579. Thus?

Response:

-  Thank you very much for raising this concern! The term "Thus" was indeed imprecise in
indicating the logical relationship between the preceding discussion on rainfall thresholds and the
subsequent sentence about monitoring systems. To improve clarity and logical coherence, we
have revised this sentence to better reflect the causal connection. Please see the revised

Subsection 4.1 for details.

Original Description in Subsection 4.1

What determines the critical threshold for rainfall-induced landslides? First, it is essential to
define the critical threshold as the minimum amount of rainfall required to trigger a landslide under
specific geological and topographic conditions (Naidu et al., 2018; Segoni et al., 2018b). This
threshold is typically classified into two types: empirical thresholds, which are derived from
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statistical relationships between historical landslide events and rainfall data, and physically based
thresholds, which incorporate hydromechanical models. Both approaches assume rainfall as the
primary destabilizing driver. Monitoring systems thus integrate rain gauge and remote sensing to
assess proximity to critical saturation thresholds (Li et al., 2023a; Piciullo et al., 2018). Moreover,
the relationship between rainfall and landslides is often nonlinear and influenced by multiple
factors. Deep learning models enable data-driven determination of context-specific critical rainfall
values across diverse geological and topographical settings (Sala et al., 2021; Segoni et al., 2018a).
For example, Badakhshan et al. (2025) incorporated the role of soil strength. Soares et al. (2022)
utilized the U-Net model, reveals that the inclusion of a normalized vegetation index layer
enhances model balance and significantly improves segmentation accuracy.

Revised Description in Subsection 4.1

What determines the critical threshold for rainfall-induced landslides? First, it is essential to
define the critical threshold as the minimum amount of rainfall required to trigger a landslide under
specific geological and topographic conditions (Naidu et al., 2018; Segoni et al., 2018b). This
threshold is typically classified into two types: empirical thresholds, which are derived from
statistical relationships between historical landslide events and rainfall data, and physically based
thresholds, which incorporate hydromechanical models. Both approaches assume rainfall as the
primary destabilizing driver. To operationalize these thresholds for landslide prediction, monitoring
systems integrate rain gauge and remote sensing to assess proximity to critical saturation levels (Li
et al., 2023a; Piciullo et al., 2018). Moreover, the relationship between rainfall and landslides is
often nonlinear and influenced by multiple factors. Deep learning models enable data-driven
determination of context-specific critical rainfall values across diverse geological and
topographical settings (Sala et al., 2021; Segoni et al., 2018a). For example, Badakhshan et al.
(2025) incorporated the role of soil strength. Soares et al. (2022) utilized the U-Net model, reveals
that the inclusion of a normalized vegetation index layer enhances model balance and significantly
improves segmentation accuracy.

Comment #12:

b

18. Line 612. Missing reference in the first phrase: “The Newmark model is......"

Response:

- Thank you for pointing out that this part of our content lacks authoritative citations! In the
revised version, we have added citations to Newmark (1965) and Jibson (2007). Newmark first
proposed this model, while Jibson further extended it and applied it to the assessment of
earthquake-induced landslides. These references provide a solid theoretical and methodological

foundation for the related statements.
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Original Description in Subsection 4.2

The Newmark model is a commonly used basic model in the research of earthquake-induced
landslides. Based on a simplified assumption, it regards the rock and soil masses on the slope as
rigid blocks. When these rigid blocks are affected by seismic vibrations, they slide on the slope
surface. By calculating the cumulative downhill displacement of the rigid blocks caused by the
continuous increase of seismic vibrations, the stability of the slope under the action of an
earthquake is measured. In other words, the greater the cumulative downslope displacement, the
more unstable the slope is during the earthquake, and the higher the likelihood of a landslide
occurring. However, Newmark’s model exhibits critical limitations: (1) Dependence on
oversimplified soil or rock strength assumptions and (2) Inadequate integration of high-resolution
seismic motion data. Deep learning models address these gaps by processing massive real-time
datasets, filtering noise from obscured remote sensing imagery (Wang et al., 2024b), and fusing
seismic parameters with multispectral satellite data through cross-modal architectures (Dahal et al.,
2024).

Revised Description in Subsection 4.2

The Newmark model is a commonly used basic model in the research of earthquake-induced
landslides (Jibson 2007; Newmark 1965). Based on a simplified assumption, it regards the rock
and soil masses on the slope as rigid blocks. When these rigid blocks are affected by seismic
vibrations, they slide on the slope surface. By calculating the cumulative downhill displacement of
the rigid blocks caused by the continuous increase of seismic vibrations, the stability of the slope
under the action of an earthquake is measured. In other words, the greater the cumulative
downslope displacement, the more unstable the slope is during the earthquake, and the higher the
likelihood of a landslide occurring. However, Newmark’s model exhibits critical limitations: (1)
Dependence on oversimplified soil or rock strength assumptions and (2) Inadequate integration of
high-resolution seismic motion data. Deep learning models address these gaps by processing
massive real-time datasets, filtering noise from obscured remote sensing imagery (Wang et al.,
2024b), and fusing seismic parameters with multispectral satellite data through cross-modal
architectures (Dahal et al., 2024).

Newly Added References

Jibson, R. W. 2007. Regression models for estimating coseismic landslide displacement. Engineering geology,
91(2-4), 209-218. doi: 10.1016/j.enggeo.2007.01.013.

Newmark, N. M. 1965. Effects of earthquakes on dams and embankments. Geotechnique, 15(2), 139-160.
doi:10.1680/geot.1965.15.2.139.
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Comment #13:
19. Line 788. Although deep leaning model. Needs reference

Response:

- Thank you for pointing this out! We have added appropriate references to support the statement
that deep learning models have achieved success in landslide identification. Specifically, we now
cite several representative studies demonstrating the successful application of CNNs, U-Net, and
Transformer-based models for landslide mapping and detection. These studies provide empirical
evidence that deep learning has significantly improved the accuracy and efficiency of landslide

identification.

Original Description in Subsection 5.2

Although deep learning models have achieved success in landslide identification, they also
have certain problems of their own. The most critical challenge is interpretability (Li et al., 2025).
This means that it is difficult to explain how these models achieve these results.

Revised Description in Subsection 5.2

Although deep learning models have achieved success in landslide identification (Meena et
al., 2022; Su et al., 2021; Yi et al., 2020; Zhao et al., 2024), they also have certain problems of their
own. The most critical challenge is interpretability (Li et al., 2025). This means that it is difficult to
explain how these models achieve these results.

Newly Added References

Meena, S. R., Soares, L. P., Grohmann, C. H., Van Westen, C., Bhuyan, K., Singh, R. P., ... & Catani, F. (2022).
Landslide detection in the Himalayas using machine learning algorithms and U-Net. Landslides, 19(5),
1209-1229. doi: 10.1007/s10346-022-01861-3.

Su, Z., Chow, J. K., Tan, P. S., Wu, J., Ho, Y. K., & Wang, Y. H. 2021. Deep convolutional neural
network-based pixel-wise landslide inventory mapping. Landslides, 18(4), 1421-1443.
do0i:10.1007/s10346-020-01557-6.

Yi, Y., & Zhang, W. 2020. A new deep-learning-based approach for earthquake-triggered landslide detection
from single-temporal RapidEye satellite imagery. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 13, 6166-6176. doi:10.1109/JSTARS.2020.3028855.

Zhao, Z., Chen, T., Dou, J., Liu, G., & Plaza, A. (2024). Landslide susceptibility mapping considering landslide
local-global features based on CNN and transformer. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 17, 7475-7489. doi:10.1109/JSTARS.2024.3379350.
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With our clarifications and revisions, we hope that we have addressed your concerns. Thank you

so much for your kind consideration!
Have a nice day!

Pan Jiang & Zhengjing Ma & Gang Mei
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