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Comment # 1:
1. The objective of this work is to review recent advances in the application of deep learning to
landslide prediction and to highlight the challenges and opportunities in this field. The authors
provide an extensive overview of existing model types, but the manuscript does not go into
sufficient detail on the actual application of deep learning techniques to landslide prediction. I see

potential in this review; however, it requires a thorough revision.

Response:
Dear reviewer, we sincerely appreciate your recognition of the research objectives of this study
and are deeply grateful for your valuable and insightful comments! We fully agree with your
observation that the previous version of the manuscript did not adequately explore the practical
application of deep learning techniques in landslide prediction. This observation prompted us to
conduct a thorough reflection and a comprehensive reconstruction of the manuscript.
Following your suggestion, we carried out a comprehensive and targeted revision of the manuscript.
The central aim of this revision was to shift the focus from a general overview of model types to a
detailed discussion of how these models are specifically applied to address practical problems in
potential landslide identification.
Specifically, we have made the following major revisions:
(1) In Section 2, rather than merely introducing the principles and advantages or disadvantages of
various data sources, we have incorporated numerous case studies demonstrating how these data
sources are integrated with deep learning models (Please see Comment #5).
(2) Section 3 has been thoroughly reconstructed and substantially enriched; in each subsection, we
have added detailed research cases and methodological descriptions. In accordance with your
suggestion, we removed unnecessary descriptions of model architectures and instead focused on
clarifying "which study employed which specific model architecture, addressed what type of
landslide-related problem, utilized what kind of data, and achieved what key achievements. "
(Please see Comment #3).

(3) Similarly, in Section 4, we replaced general discussions with extensive examples illustrating
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which types of landslides are best suited to specific deep learning models. (Please see Section 4).

Original Description in Section 4

4.1 Application of Deep Learning in the Identification of Rainfall-induced Landslides
Following the development of rainfall threshold models, real-time monitoring of historically
rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of
subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating
timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by
continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic
recalibration of threshold parameters. This data assimilation enhances model adaptability to

evolving hydrogeological conditions, ensuring operational relevance across heterogeneous terrains.

Moreover, the triggers of human activity-induced landslides are not only related to natural
conditions but also closely associated with dynamic human activities. Consequently, their analysis
necessitates the integration of multimodal and cross-scale data to capture coupled environmental
and behavioral drivers (see Fig. 6). In engineering operations such as mining or road construction,
factors including proximity to potential landslide zones, excavation depth, and slope angles must be
rigorously evaluated through geohazard risk assessments. During excavation phases, geotechnical
investigations are imperative to identify weak lithological strata or fracture-dense zones predisposed
to instability. Continuous slope stability monitoring requires deploying loT-enabled sensors to track
temporal variations in surface fissure dimensions and subsurface displacement vectors. Monitoring
data from these sensors can be integrated into deep learning models for multimodal analytics,
enabling dynamic risk prediction and adaptive mitigation planning.

To mitigate misclassification between anthropogenic signatures and natural terrain, integrating
multispectral data with topographic elevation data enhances discriminative capacity (Meng et al.,
2021; Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing artificially
excavated steep slopes combined with fractured geological strata from structural maps provide
preliminary evidence of human influence on landslide susceptibility (Lian et al., 2024).

In fact, landslides triggered solely by human activities are relatively rare. Single human
activities are typically insufficient to independently trigger landslides, with natural factors often
acting in conjunction with human activities. Furthermore, the prohibitive cost of acquiring

subsurface disturbance data results in sparse historical landslide samples for specific engineering




scenarios, limiting data-driven model training.
4.4 Application of Deep Learning in the Identification of Human Activity-induced Landslides

Multi factor-induced landslides result from the synergistic interaction of multiple natural and
anthropogenic factors (Hao et al., 2023). Their triggering mechanisms involve the dynamic
spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials through
cumulative strength degradation. The formation of such landslides may involve various types of
movements, including collapse, creep, and flow phenomena. They often exhibit characteristics such
as complexity, nonlinearity, and suddenness. Therefore, their identification is markedly more
complex compared to landslides triggered by singular factors.

Unlike simpler landslide types, identifying composite landslides necessitates multimodal data
fusion to holistically assess predisposing conditions (L1, 2025; Yin et al., 2023). It further requires
disentangling the nonlinear superposition effects of multiple factors and quantifying their relative
contributions to failure initiation. For instance, Dou et al. (2019) analyzed how earthquake intensity
and rainfall metrics jointly modulate landslide susceptibility, deriving failure probabilities under
varying parameter combinations. In multi factor-induced landslides, earthquakes and rainfall often
interact with other factors. For instance, during heavy rainfall, the rate of landslide formation after
an earthquake may be higher, possibly driven by the removal of excessively steep slopes, changes
in vegetation and groundwater, and alterations in the mechanical properties of the bedrock and
weathered layers in the earthquake-induced landslides canopy. This necessitates systematic
investigation of multi-hazard coupling effects to quantify emergent risks.

In addition to the approach of constructing physics-based models that account for multiple
factors, GNNs can be employed. These models represent landslide-prone areas as graph nodes,
dynamically updating node states through spatiotemporal edges (Lei et al., 2025). Furthermore,
cross-attention mechanisms can be integrated into the model to capture spatiotemporal dependencies
among contributing factors. Alternatively, gated fusion units may be incorporated to dynamically
adjust the weights of multi-modal features (Yang et al., 2024a).

With the accumulation of new data and the dynamic variations in multi factor-induced
landslides, regular model updates are critical to ensuring identification accuracy and adaptability.
Existing studies predominantly apply these methods based on comprehensive historical landslide
datasets and employ batch learning theory for identification. However, when new data becomes
available, the model must be retrained from scratch. This approach is not only highly inefficient but
also fails to account for the connections between newly observed and historical landslides. To
address this limitation, incremental learning methods offer a promising solution. These methods
enable gradual parameter optimization through new data without retraining the existing model

(Huang et al., 2022). Compared to conventional deep learning models, those integrated with




incremental learning can more effectively leverage historical landslide data and adaptively learn

from newly incorporated data, thereby better accommodating the dynamic nature of landslides.

- Revised Description in Section 4

4.1 Application of Deep Learning in the Identification of Rainfall-induced Landslides

Following the development of rainfall threshold models, real-time monitoring of historically
rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of
subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating
timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by
continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic
recalibration of threshold parameters. This data assimilation enhances model adaptability to
evolving hydrogeological conditions, ensuring operational relevance across heterogeneous terrains.

While the physical mechanisms governing rainfall-induced slope failures have been well
studied (Arnone et al., 2011; Xiong et al., 2024), recent advances in deep learning have significantly
improved our ability to automatically identify and predict such events using heterogeneous data.

In the context of rainfall-induced landslides, spatiotemporal data (e.g., rainfall intensity,
cumulative precipitation, soil moisture, and slope displacement time series) are the primary inputs.
Deep learning models are selected according to data characteristics and task objectives. For instance,
CNNs are commonly used to extract spatial rainfall-topography features and delineate susceptible
zones from remote sensing images (Peng and Wu 2024; Xu et al., 2022; Zhang et al., 2022). The
encoder—decoder architecture, such as U-Net, enables pixel-level segmentation of rainfall-triggered
landslides (Bhatta et al., 2025), with the inclusion of vegetation or soil moisture layers improving
feature discrimination.

When temporal evolution is essential, RNNs and LSTM networks effectively model sequential
dependencies between rainfall and slope deformation (Biniyaz et al., 2022; Liu et al., 2025). These
models are capable of learning hysteretic responses and time lags between precipitation events and
ground displacement, enabling early warning through time-series forecasting.

Furthermore, hybrid models combining CNN and LSTM components have been proposed to
jointly learn spatial-temporal correlations (Chen and Fun 2022; Wu et al., 2025). By fusing rainfall
distribution maps with displacement monitoring sequences, these architectures provide a more
complete understanding of rainfall-landslide coupling mechanisms.

Deep learning also facilitates data-driven rainfall threshold estimation. Instead of relying solely




on empirical or physically based thresholds, models such as fully connected neural networks (FNNs)
and attention-based transformers can derive adaptive rainfall thresholds from multi-year rainfall-

landslide records, capturing regional nonlinearities (Wu et al., 2023).

Moreover, the triggers of human activity-induced landslides are not only related to natural
conditions but also closely associated with dynamic human activities (Tian et al., 2025).
Consequently, their analysis necessitates the integration of multimodal and cross-scale data to
capture coupled environmental and behavioral drivers (see Fig. 6). In engineering operations such
as mining or road construction, factors including proximity to potential landslide zones, excavation
depth, and slope angles must be rigorously evaluated through geohazard risk assessments. During
excavation phases, geotechnical investigations are imperative to identify weak lithological strata or
fracture-dense zones predisposed to instability. Continuous slope stability monitoring requires
deploying IoT-enabled sensors to track temporal variations in surface fissure dimensions and
subsurface displacement vectors. Monitoring data from these sensors can be integrated into deep
learning models for multimodal analytics, enabling dynamic risk prediction and adaptive mitigation
planning.

For spatial mapping and fissure extraction, CNNs and U-Net-based segmentation models have
demonstrated strong capability in identifying artificial slope features from optical or SAR imagery.
CNN-based models can capture high-level semantic information on excavation scars, road cuts, and
spoil heaps that indicate anthropogenic disturbance. Tao et al. (2024) employed the DRs-UNet
model to investigate the use of deep learning for UAV-based crack identification, the developmental
patterns of fissures, and the feedback interactions between underground mining progress and
corresponding surface conditions. Wu et al. (2021) proposed the PUNet model for detecting and
mapping localized rapid subsidence induced by mining activities. Meng et al. (2025) introduced the
GF-Former model to achieve precise segmentation of ground fissures in remote sensing imagery.

When surface deformation time series or micro-displacement data from GB-InSAR, InSAR, or
IoT sensors are available, RNN-based models are applied to model the temporal evolution of slope
deformation (Han et al., 2022; Li et al., 2025). These models are particularly effective in detecting
precursory motion trends caused by progressive excavation or loading activities.

To mitigate misclassification between anthropogenic signatures and natural terrain, integrating
multispectral data with topographic elevation data enhances discriminative capacity (Meng et al.,
2021; Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing artificially

excavated steep slopes combined with fractured geological strata from structural maps provide




preliminary evidence of human influence on landslide susceptibility (Lian et al., 2024).

In fact, landslides triggered solely by human activities are relatively rare. Single human
activities are typically insufficient to independently trigger landslides, with natural factors often
acting in conjunction with human activities. Furthermore, the prohibitive cost of acquiring
subsurface disturbance data results in sparse historical landslide samples for specific engineering
scenarios, limiting data-driven model training.

4.4 Application of Deep Learning in the Identification of Human Activity-induced Landslides

Multi factor-induced landslides result from the synergistic interaction of multiple natural and
anthropogenic factors (Hao et al., 2023). Their triggering mechanisms involve the dynamic
spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials through
cumulative strength degradation. The formation of such landslides may involve various types of
movements, including collapse, creep, and flow phenomena. They often exhibit characteristics such
as complexity, nonlinearity, and suddenness. Therefore, their identification is markedly more
complex compared to landslides triggered by singular factors.

Unlike simpler landslide types, identifying composite landslides necessitates multimodal data
fusion to holistically assess predisposing conditions (Li, 2025; Yin et al., 2023). It further requires
disentangling the nonlinear superposition effects of multiple factors and quantifying their relative
contributions to failure initiation. For instance, Dou et al. (2019) analyzed how earthquake intensity
and rainfall metrics jointly modulate landslide susceptibility, deriving failure probabilities under
varying parameter combinations. In multi factor-induced landslides, earthquakes and rainfall often
interact with other factors. For instance, during heavy rainfall, the rate of landslide formation after
an earthquake may be higher, possibly driven by the removal of excessively steep slopes, changes
in vegetation and groundwater, and alterations in the mechanical properties of the bedrock and
weathered layers in the earthquake-induced landslides canopy. This necessitates systematic
investigation of multi-hazard coupling effects to quantify emergent risks.

In addition to constructing physics-based models that account for multiple factors and quantify
their interactions through the solution of governing equations, GNNs can also be employed (Lei et
al., 2025). These models are capable of capturing the spatiotemporal dependencies and nonlinear
couplings among various triggering factors. By integrating cross-attention mechanisms, their ability
to dynamically weight the relationships among stresses induced by rainfall, earthquakes, and human
activities can be further enhanced. For example, Ren et al. (2025) employed a Graph Neural Network
(GNN) to capture and model the complex spatiotemporal dependencies among multiple monitoring
locations during landslide deformation. Zeng et al. (2022) used the graphical representation
capability of the GNN model to analyze environmental relationships within a study region, where

nodes were defined as geographic units delineated by terrain surface approximations, and edges




captured the interactions between node pairs. Zhang et al. (2024) constructed a geographically
constrained relational graph based on node features representing environmental similarity and
employed a cosine similarity approach to associate landslides with their surrounding geographic
environments.

Cross-attention mechanisms can also be integrated into the model to capture spatiotemporal
dependencies among contributing factors. For instance, Hu et al. (2025) integrated global landslide
feature vectors with local feature maps through a cross-attention mechanism to enhance the
discriminative capability between landslides and background geomorphology. Alternatively, gated
fusion units may be incorporated to dynamically adjust the weights of multi-modal features (Yang
et al., 2024a). For instance, Liu et al. (2022) proposed a gated fusion unit (GFU) module for
multimodal remote sensing image semantic classification, enabling early fusion of heterogeneous
modality features.

With the accumulation of new data and the dynamic variations in multi factor-induced
landslides, regular model updates are critical to ensuring identification accuracy and adaptability.
Existing studies predominantly apply these methods based on comprehensive historical landslide
datasets and employ batch learning theory for identification. However, when new data becomes
available, the model must be retrained from scratch. This approach is not only highly inefficient but
also fails to account for the connections between newly observed and historical landslides. To
address this limitation, incremental learning methods offer a promising solution. These methods
enable gradual parameter optimization through new data without retraining the existing model
(Huang et al., 2022). Compared to conventional deep learning models, those integrated with
incremental learning can more effectively leverage historical landslide data and adaptively learn

from newly incorporated data, thereby better accommodating the dynamic nature of landslides.
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Comment # 2:

2. Along the manuscript, [ noticed several unsupported statements and a consistent lack of citations.
There is also redundancy in the information presented, numerous grammar errors, and a confusing
structure. For example, definitions and mechanisms of landslides appear scattered across different
sections, rather than being organized logically. Since the manuscript focuses on landslides, I
recommend a restructuring of the paper along the following lines:

1. Introduction
2. Landslide definition
a. Landslide mechanisms
b. Type of landslides
3. Deep learning for potential landslides
a. Data sources and models
b. Applications
c. Challenges and Limitation
d. Opportunities

4. Conclusions

Response:
We sincerely thank the reviewer for the time and effort devoted to evaluating our manuscript and
for providing such constructive and insightful comments! We carefully considered all suggestions
and have made extensive revisions to improve the scientific rigor, clarity, and logical consistency
of the paper. Below, we address each comment in detail and describe the corresponding revisions
made to the manuscript.

* Regarding the issue of unsupported statements and a consistent lack of citations
Thank you for pointing out this important issue. We fully agree that some statements in the previous
version lacked sufficient references. To address this, we carefully reviewed the entire manuscript

and added numerous recent and authoritative citations to support key claims regarding deep
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learning methods, data sources, and landslide mechanisms.

* Regarding the issues of redundant content and numerous grammatical errors

We sincerely apologize for the inadequate writing quality in the original submission and fully
acknowledge that the grammar and expression did not meet the high standards required for journal
publication. We appreciate your detailed remarks, which helped us identify the issues more clearly.
We will also take this valuable feedback as an opportunity to strengthen our own academic writing
competency in future research.

To thoroughly address this concern, we have undertaken a comprehensive revision of the entire

manuscript:

(1) We have carefully checked and polished using advanced Al-powered writing assistance
technology (specifically, Grammarly and ChatGPT) to correct grammatical errors, eliminate
redundancy, and improve sentence clarity.

(2) Following this, all authors have performed multiple rounds of manual proofreading to ensure
the final text is coherent, focused, and meets the high standards expected for publication.

* Regarding the issue of revising the article structure

Thank you for this very insightful and constructive suggestion. We carefully considered the
proposed restructuring and fully understand the motivation behind it. We agree that a clear
definition of landslides, including their specific mechanisms and types, is a crucial aspect. We
acknowledge that this was an important point missing from our original manuscript, and your
detailed feedback has been instrumental in helping us refine our discussion.

We carefully considered your recommendation to restructure the manuscript. However, since the
primary objective of this review is to systematically summarize deep learning for active landslide
identification, we chose to maintain the existing framework organized around data, models,
applications, challenges, and opportunities. This structure better reflects the methodological logic
and development trajectory of deep learning in geoscientific research. Furthermore, as our review
indicates, the current mainstream application of deep learning for active landslides is heavily
focused on identification and prediction. These approaches are powerful but often treat the problem
primarily as one of pattern recognition from data (e.g., satellite or UAV imagery), and therefore
typically do not incorporate the specific physical mechanisms or geological typologies of the
landslides involved.

Your comment provided us with significant inspiration by highlighting this gap. We strongly agree
that moving beyond simple prediction is a critical and highly promising direction for the field.
Integrating underlying physical mechanisms and specific landslide types is key to transforming
deep learning models from "black boxes" into tools that offer deeper insights into why and how
these disasters occur. This integration is also essential for ensuring the reliable and interpretable

application of artificial intelligence in geoscience.
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Based on the above considerations, we decided to retain the original overall structure of the
manuscript, as it aligns more closely with the thematic focus on deep learning for active landslide
identification. However, we have supplemented and reorganized the relevant content concerning
landslide-related concepts and classifications, which are now integrated cohesively within the
Introduction to improve conceptual clarity and logical consistency (Please see Comment # 4).
In addition, in the Section 6 "Deep Learning for Potential Landslide Identification:
Opportunities", we have expanded our discussion of the field’s current limitations and future
perspectives. Specifically, we highlight the need to bridge the gap between data-driven prediction
and physically interpretable understanding of landslide processes. Furthermore, in our outlook, we
emphasize that developing new frameworks capable of incorporating landslide types and physical
principles represents a vital avenue for future research. We believe these additions, inspired by
your feedback, significantly strengthen the manuscript’s scientific depth and forward-looking
perspective.

Original Description in Subsection 6.3

Conventional knowledge-driven methods, grounded in physical mechanics, rely on precise
prior knowledge of geological structures and hydrological conditions. However, landslides are
influenced by complex, coupled multi-factor interactions, characterized by high parameter
uncertainty, making it challenging to comprehensively address such scenarios (Roy and Saha, 2019).
Purely data-driven approaches, though capable of extracting patterns from massive datasets, lack
physical interpretability, are susceptible to noise interference, and struggle to establish causal
relationships in prediction outcomes (Qi et al., 2024).

Building upon future disaster prevention concepts, such as "digital twin" and "smart Earth", we
propose a knowledge-data dually driven paradigm for potential landslide identification (Chen et al.,
2024b; Das et al., 2024; Huang et al., 2023a; Riahi et al., 2022; Sukor et al., 2019; Zhao et al.,
2024c). The core concept involves leverage knowledge analysis to gain a deeper understanding of
landslide triggering mechanisms and mechanical behaviors, while combine data-driven methods to
extract potential landslide features and patterns from monitoring data and historical records. This
synergy establishes a closed-loop "theory-practice" verification mechanism, thereby advancing the
transformation of geological hazard mitigation from passive response to proactive prevention.

In the second stage, mechanistic constraints are integrated into the data-driven model to achieve
knowledge-data dually driven fusion.

Before model construction, prior knowledge can be derived from external sources, including

domain expertise, historical data, and physical principles. Alternatively, mechanistic models may be
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employed to preprocess raw monitoring data. The outputs of mechanistic models or prior knowledge
serve as a foundation for initializing parameters in data-driven models (Cui et al., 2024; Liu et al.,
2023a; Ma and Mei, 2025). This is because, in data-driven models, the selection of initial parameter
values significantly impacts on both the training process and final model performance. Incorporating
prior knowledge helps define more reasonable initial parameter ranges, enabling the model to
converge toward near-optimal solutions earlier in the training phase.

Knowledge embedding involves translating landslide physics into model constraints to guide
the training and optimization of data-driven models (Dahal and Lombardo, 2025; Liu et al., 2024).
At the architectural level, layers derived from physical equations can be structurally integrated into
the network design. These physical equations can even be directly encoded as network layers,
forming differentiable physics-informed computational modules. Differentiability is essential to
ensure that these physics-based layers function as effective computational modules within the
network. This requirement stems from the fact that training relies on optimization algorithms, which
adjust model parameters by computing gradients of the loss function with respect to those
parameters. Only differentiable physics-encoded layers allow gradient computation during
backpropagation, enabling the model to learn parameters consistent with physical laws. At the loss
function level, physical equations can be directly embedded into the neural network’s loss function
to enforce predictions that adhere to physical principles. As the model seeks to minimize the loss
function, it iteratively adjusts its parameters to align predictions with the constraints imposed by

these physical equations.

Revised Description in Subsection 6.3

Conventional knowledge-driven methods, grounded in physical mechanics, rely on precise
prior knowledge of geological structures and hydrological conditions. However, landslides are
influenced by complex, coupled multi-factor interactions, characterized by high parameter
uncertainty, making it challenging to comprehensively address such scenarios (Roy and Saha, 2019).
Purely data-driven approaches, though capable of extracting patterns from massive datasets, lack
physical interpretability, are susceptible to noise interference, and struggle to establish causal
relationships in prediction outcomes (Qi et al., 2024). A critical challenge and opportunity, therefore,
lies in bridging the gap between data-driven predictive capabilities and a physically interpretable
understanding of landslide processes.

To bridge this critical gap, a fundamental shift towards a knowledge-data dually driven
paradigm is imperative. This paradigm moves beyond simple combination to a deep integration,

where physical principles actively constrain and inform the deep learning architecture. Future
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research should focus on developing novel frameworks capable of explicitly incorporating landslide
typologies and physical laws. For instance, Physics-Informed Neural Networks (PINNs) can embed
governing equations directly into the model's loss function, while knowledge graphs can structurally
represent the complex relationships between predisposing factors and failure mechanisms.

This synergy, aligned with future concepts like "digital twin" and "smart Earth," establishes a
closed-loop "theory-practice" verification mechanism (Chen et al., 2024b; Das et al., 2024; Huang
et al., 2023a; Riahi et al., 2022; Sukor et al., 2019; Zhao et al., 2024c). The ultimate goal is to
advance landslide identification from mere pattern recognition towards physically interpretable,
causally-aware forecasting, thereby transforming geological hazard mitigation from passive
response to proactive prevention.

In the second stage, mechanistic constraints are integrated into the data-driven model to achieve
knowledge-data dually driven fusion.

Prior knowledge can be derived from external sources, including domain expertise, historical
records, and physical principles, or mechanistic models can be employed to preprocess raw
monitoring data. These outputs serve as a foundation for initializing parameters in data-driven
models, which is crucial because the choice of initial values substantially affects both training
efficiency and final performance (Cui et al., 2024; Liu et al., 2023a; Ma and Mei, 2025). Beyond
initialization, knowledge embedding involves translating landslide physics into model constraints to
guide learning and optimization (Dahal and Lombardo, 2025; Liu et al., 2024). At the architectural
level, physical equations can be structurally encoded as differentiable network layers, enabling
gradient-based optimization. At the loss function level, physical constraints can be directly
incorporated into the training objective, ensuring that predictions remain consistent with established
principles.

A representative example of this paradigm is the PINN framework (Raissi et al., 2019). PINNs
embed governing equations (such as partial differential equations describing slope hydrology or
stress-strain processes) into the neural network training objective, thereby constraining the learning
process with domain knowledge. This approach not only reduces dependence on large annotated
datasets but also enhances interpretability and cross-regional transferability (Karniadakis et al.,
2021). Although applications of PINNs in landslide research remain limited (Moeineddin et al.,
2023), they provide a promising avenue for bridging purely data-driven approaches with physically
grounded mechanisms (Wu et al., 2022).
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Comment # 3:

3. In addition, there is excessive discussion on the general use of deep learning, without providing
sufficient concrete examples of its application to landslide prediction. I recommend focusing on
the models currently used (3.a, 3.b) and on the models that could be used and how they will
improve the landslide identification in 3.d. Below I provide some detailed comments (note that I
did not highlight all grammar errors).

12. Line 300. Chapter 3.2. You talk a lot about each model but not the application to landslides.
For example, give more details on the studies cited at line 336.

13. Line 364. Chapter 3.3. There is a lot of information but not related to landslides.

Response:

We sincerely thank you for further highlighting the sections and passages in the manuscript where
the discussion lacked specificity, which has greatly guided our precise revisions. We fully agree
with your observation that the original manuscript presented an overly generalized discussion of
deep learning models in Section 3, without closely linking them to practical applications in
landslide prediction.

In response to your comments (comments 3, 12, and 13), we have undertaken a focused and
detailed revision of Section 3. Our revision strategy closely follows your recommendations: we
concentrate on the currently utilized models, provide detailed explanations of their applications in
landslide prediction, and outline specific prospective applications for models with future potential.

Please see the new Section 3 for details.
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Original Description in Section 3

3.1 Models for Image Analysis and Processing in Potential Landslide Identification

Image data plays a critical role in potential landslide identification, especially through remote
sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain data,
encompassing complex geographical features, vegetation coverage, and ground fissures, which often
serve as potential precursors to landslide occurrences. The adoption of deep learning has facilitated
a shift from conventional manual visual interpretation to automated high-precision segmentation.

Convolutional neural networks (CNNs) represent the fundamental architecture in image
processing. A CNN primarily comprises convolutional layers, pooling layers, and fully connected
layers, each performing predefined functions on its input data (Kattenborn et al., 2021; Liu et al.,
2022a).

The convolutional layer, as the core component of CNNs, contains multiple kernels that
progressively extract more detailed feature representations (Hussain et al., 2019; Shi et al., 2020;
Yao et al., 2021). Meanwhile, the shared-weight strategy inherent in convolutional layers allows for
network training with fewer parameters than fully connected architectures. Convolutional kernels of
different sizes facilitate multi-scale feature extraction. Small kernels focus on fine details, such as
small cracks and the texture of localized soil loosening, while large kernels emphasize capturing
overall shapes, such as the general outline of landslides and the macroscopic morphology of
mountain bodies. Pooling layers, typically positioned after convolutional layers, serve to reduce the
size of feature representations and enhancing the model’s resistance to overfitting when handling
diverse data. Common pooling methods include max pooling and average pooling, which enhance
robustness to minor transformations such as translation and rotation, ensuring a degree of invariance
in the features extracted by CNNs. Pooling operations downsample the convolved feature maps,
reducing computational complexity while reinforcing feature robustness. Through the hierarchical
stacking of multiple convolutional and pooling layers, CNNs incrementally extract more abstract
and semantically rich features (Mao et al., 2024). The final fully connected layer flattens the pooled
feature maps and performs classification, outputting results that distinguish potential landslide areas
from non-landslide areas or enable further analysis of landslide types (Wu et al., 2024).

The layers of a CNN can be combined in various ways, forming distinct CNN architectures.
These architectures are primarily determined by task requirements, which may include image
classification, multi-class segmentation, or object localization within a scene.

Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers,
and fully connected layers. However, increasing network depth introduces challenges such as
vanishing gradients and degradation arise, resulting in model performance deterioration.

ResNet addresses these limitations by integrating residual blocks into the foundational CNN
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framework (Qi et al., 2020; Yang et al., 2022). These residual blocks utilize shortcut connections that
preserve original feature information. This framework facilitates the construction of ultra-deep
networks capable of extracting high-level semantic features for landslide detection, thereby
enhancing adaptability to complex terrain classification tasks (Ullo et al., 2021). Models with higher
parameter counts generally exhibit greater representational capacity but are prone to overfitting,
while demanding higher computational resources and temporal costs for both training and inference.
For instance, ResNet-152 contains orders of magnitude more parameters than ResNet-50, yet the
latter is often preferable in computationally constrained environments due to its balanced efficiency
and performance.

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks
are based on a similar idea, which is to establish a "shortcut" between different layers. However, the
structure of DenseNet is simpler and more effective, with fewer parameters. In ResNet, each layer is
only connected to the previous layer, while in DenseNet, each layer is directly connected to all
previous layers, and each layer can obtain gradients from the loss function. This can optimize the
information flow and gradients of the entire network, making it easier to train and performing better
on small datasets. The structure of DenseNet can achieve better feature reuse and reduce the number
of parameters. Moreover, the layers of DenseNet are narrower than those of other deep learning
networks (Liu et al., 2021c), making it reduce redundancy by learning with fewer feature maps. This
architecture is suitable for the extraction of multi-scale landslide features under complex terrains,
even with limited landslide training samples.

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation
models have increasingly become the standard in landslide detection. Numerous advanced semantic
segmentation networks have been proposed and validated for automatic landslide detection,
significantly enhancing the efficiency and accuracy of large-scale detection. U-Net is a typical
example (Ronneberger et al., 2015), which features a U-shaped architecture. U-Net employs an
encoder-decoder structure, where the encoder is similar to conventional CNNSs, progressively
reducing image resolution and extracting features through convolution and pooling operations; the
decoder then restores the image resolution through transposed convolution or upsampling operations
(Dong et al., 2022; Nava et al., 2022). Skip connections bridge low-level detail features with deep
semantic features, thereby refining segmentation precision.

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable
choice (Sandric et al., 2024). Built upon deep convolutional neural networks, DeepLab employs
dilated convolutions to expand the receptive field and integrates an atrous spatial pyramid pooling
(ASPP) module to capture multi-scale contextual information.

In contrast, the U-Net architecture is relatively simpler and better suited for small targets and
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high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution
UAYV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection
and multispectral remote sensing image classification (see Fig. 2).

After achieving semantic segmentation to obtain the accurate extent of a landslide and the
classification of ground objects, change detection is employed to monitor the changes in the landslide
area over time. By comparing the segmentation results of multiple temporal phases or directly
analyzing the feature differences, the dynamic evolution of potential hazards can be quantifie
(Amankwah et al., 2022).

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models
capture spatial and temporal features using convolutional kernels while transforming multi-temporal
image sequences into change hotspot maps or temporal variation curves as output.

Some studies even have integrated attention mechanisms into conventional CNN architectures
to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the identification

of landslide hazard evolution over time.

3.2 Models for Time Series Analysis in Potential Landslide Identification

The occurrence of a landslide is a gradual accumulation process, usually influenced by a variety
of factors. We refer to data that reflect the changing states of a landslide body over time as time series
data. Time series data analysis aims to excavate the information hidden in the time series data to help
identify potential landslides. Different from conventional time series data analysis methods, using
deep learning models an automatically reveal the dynamic change trends and periodic patterns in the
data, providing more accurate information for landslide prediction.

Recurrent neural networks (RNN5) are a class of deep learning models specialized in processing
sequential data, capable of capturing temporal dependencies within input sequences (Ngo et al.,
2021; Zaremba et al., 2014). Unlike conventional feedforward neural networks, in an RNN, each
neuron not only receives the current input but also the output of the previous time step as additional
input. This structure endows the RNN with a memory mechanism.

The architecture contains three primary components working in coordination:(1) The input
layer means that one data point is input at each time step. (2) The hidden layer contains recurrent
connections, which enable the information from the previous time step to be passed to the current
time step, and the output serves as the input for the next time step simultaneously. (3) The output
layer generates the output under the control of the state of the hidden layer (Cho et al., 2014; Zhao
etal., 2021b).

During the training process, the RNN will process the data at each time step in sequence,

continuously updating the hidden state. By combining the input of the current time step with the
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hidden state of the previous moment for calculation to gain an understanding of the data at the current
moment, this structure enables the RNN to capture the temporal evolution patterns of landslide-
related factors.

Due to conventional RNNs struggle to model long-term dependencies and limit their
applicability to short-term temporal sequences, long short-term memory networks (LSTM) were
developed (Wang et al., 2023b).

LSTM is an enhancement of RNNs, primarily processing long sequence data. Compared to
standard RNNs, the hidden layer architecture of LSTM is much more complex. By incorporating
memory cells and gating mechanisms, LSTM selectively propagates critical information across
multiple time steps, thereby effectively capturing long-range temporal dependencies(Landi et al.,
2021; Yu et al., 2019).

The basic unit of an LSTM consists of three primary gates: (1) the input gate, which determines
what new information should be added to the cell state; (2) the forget gate, which decides what old
information should be discarded; and (3) the output gate, which selects the information to be output
from the cell state as the hidden state at the current time step (Sherstinsky, 2020; Smagulova and
James, 2019; Staudemeyer and Morris, 2019). The output hidden state, after a nonlinear
transformation, can be used for prediction or as the input for the next time step (Yang et al., 2019).

This structure allows the LSTM to retain key information over long sequences while selectively
forgetting irrelevant information according to the requirements. Through learning from historical
data, the LSTM can predict the likelihood of landslides occurring, as well as the possible scale and
impact range of landslides under different future conditions.

Due to the ability to self-update weights and significantly improve network accuracy, LSTMs
can also be used as a complex nonlinear component in the construction of larger deep neural
networks. The model does not require separating trend and periodic components from the original
deformation data, yet it can compensate for deformation trend predictions caused by unexpected
interruptions in monitoring data. These properties make LSTMs particularly suited for high-accuracy
research and analytical scenarios requiring large-scale datasets (Gidon et al., 2023; Xu and Niu,
2018).

Gated recurrent unit (GRU) is a simplified version of LSTM(Chung et al., 2014; Zhang et al.,
2022b), which has fewer parameters. Due to their higher computational efficiency, GRU has
potential advantages in real-time data processing scenarios in landslide monitoring.

GRU mainly consists of the update gate and reset gate. The update gate is used to control how
much of the previous information should be preserved at the current time step, while the reset gate
is used to determine whether to ignore the hidden state of the previous time step, enabling the model

to adaptively learn information across different temporal scales. This dual-gate mechanism enables
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adaptive learning of multi-scale temporal patterns.

Compared with the LSTM, the GRU has fewer parameters and higher computational efficiency,
giving it an advantage in some landslide monitoring scenarios where real-time performance is
critical.

GRU is capable of effectively handling time series data with long-term dependencies, making
it suitable for long-term prediction of landslide hazards. Moreover, by learning temporal patterns in
historical data, GRU can identify critical conditions for landslide occurrence in advance. GRU
particularly well-suited for applications involving real-time analysis of on-site monitoring data,
where rapid detection of imminent landslide risks is essential and data volume is relatively limited.

Transformer was originally designed to handle sequential data in natural language processing,
which was first introduced by Vaswani in 2017 (Vaswani et al., 2017). Unlike conventional recurrent
and convolutional structures, the Transformer employs employs a self-attention mechanism to
directly model the entire sequence.

Since the Transformer has the ability to adaptively learn latent features and patterns within the
data, when it comes to processing landslide time series data, it can automatically tweak the model
parameters to accommodate diverse landslide scenarios and temporal data variability (Wang et al.,
2024a; Zerveas et al., 2021).

Transformer also can analyze positional relationships across the entire sequence, better
capturing complex dependencies in long sequences, making it especially suitable for handling large-
scale, long-term sequential datasets.

In contrast, RNN-based models exhibit a relatively simple architecture (Li et al., 2021a; Wang
et al., 2020b). Their mechanisms are conceptually intuitive, making them more interpretable (see
Fig. 3). On the other hand, Transformers are more complex in structure with numerous parameters,
necessitating substantial computational resources during early training to process large-scale data,
while being susceptible to overfitting on small datasets. Understanding how the model extracts
features and makes decisions is not straightforward from large amounts of landslide data, posing

challenges for its interpretability and practical deployment.

3.3 Models for Data Generation in Potential Landslide Identification

Data generation refers to modeling the underlying data distribution of data to generate entirely
new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020;
Shorten and Khoshgoftaar, 2019), thereby enriching the dataset. In potential landslide identification,
data generation mitigates challenges of data scarcity and imbalanced class distributions, thereby
enhancing the generalization capability of predictive models.

Deep generative models are the leading deep learning approach for synthetic data generation
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(Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They operate on principles
similar to those of deep learning, utilizing deep neural networks to learn data representations and
optimizing the learning process through objective functions.

A fundamental characteristic of deep generative models lies in their probabilistic nature. These
models learn an approximate probability distribution from observed samples and subsequently
generate novel samples that maintain statistical consistency with the original dataset. Unlike
conventional discriminative models, generative models not only classify data but also learn the
underlying distribution and generate new data points. Commonly used deep generative models
include generative adversarial networks (GANSs), variational autoencoders (VAEs, a variant of
autoencoders), and diffusion models.

GAN is a suitable choice to generate highly realistic and diverse new images (Goodfellow et
al., 2014; Tran et al., 2021). Instead of explicitly modeling data distributions, GANs implicitly learn
distributions through adversarial training between generator and discriminator networks.

During data generation, the generator network in a GAN synthesizes images or data resembling
real samples by processing input noise vectors (Gui et al., 2021; Saxena and Cao, 2021). The
discriminator, on the other hand, is used to distinguish between the generated data and the real
data.These two components are continuously optimized through adversarial training. Eventually, the
generator is able to produce high-quality synthetic data, which is highly similar to the real data in
terms of features.

With this adversarial structure (Al-Najjar et al., 2021), GANs can generate high-quality data
that closely matches the distribution of real data in an unsupervised learning context, making them
well-suited for high-resolution image synthesis.

With the proposal and development of GANSs, researchers have introduced various enhanced
structures that are more effectively applied to potential landslide identification. For example, the
conditional GAN (CGAN) (Kim and Lee, 2020; Loey et al., 2020), Pix2Pix (Qu et al., 2019), and
Wasserstein GAN (WGAN) (Wang et al., 2019).

In the case of GANSs, although the generated high-quality images may visually resemble real
potential landslide regions, mode collapse can lead to a lack of diversity in the generated data, failing
to cover all possible types of hazards (Fang et al., 2020). If certain types of potential landslides are
underrepresented in the training dataset, GANs may struggle to generate those types effectively,
thereby limiting the effectiveness of data augmentation. Given that the inherently unstable training
process of the GANs may require more hyperparameter tuning and computational resources, this
model will pose additional challenges in scenarios with limited data availability (Al-Najjar and
Pradhan, 2021; Feng et al., 2024).

As a variant of the autoencoders (AEs), the variational autoencoder (VAE) introduces the idea
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of probabilistic generation (Kingma et al., 2013). VAE constrains the latent space through variational
inference, thus enabling the generation, reconstruction, and transformation of sample data.

Compared to GANs, the samples generated by the VAE may have better diversity (Cai et al.,
2024; Islam et al., 2021; Oliveira et al., 2022), because the structured constraints of its latent space
are helpful for generating samples with continuous changes. This is beneficial for simulating
potential landslides under different geological conditions.

The encoder of the VAE maps the input data to a low-dimensional latent space, where each
vector represents the underlying features of the input. The decoder then reconstructs the original data
based on the vectors in the latent space. Different from conventional AEs, the output of the VAE
encoder includes two parameters: the mean value and the standard deviation. These two parameters
define the probability distribution in the latent space, which is usually assumed to be a Gaussian
distribution. The decoder samples a latent variable from this probability distribution and reconstructs
it into output data, thus generating data with inherent randomness and diversity. Therefore, the VAE
can extract latent features from landslide data and generate new landslide data based on these
features.

By learning from extensive landslide datasets, VAEs capture critical geomorphological features
and patterns, enabling the generation of novel samples that preserve these characteristics. This
capability enables innovative applications in potential landslide analysis. This is crucial for exploring
landslide scenarios under different feature combinations and identifying potential landslide patterns.
Compared to GANs, VAEs exhibit superior sample diversity and training stability though the
generated samples often lack the fine-grained details produced by GANSs, particularly in high-
resolution geospatial contexts. Moreover, VAEs may still face challenges in handling highly
imbalanced data, as the generated samples tend to favor majority classes, which can limit its
effectiveness in augmenting minority class data.

When computational resources and time are sufficient, and high-quality data generation with
exceptional diversity is prioritized, diffusion models are the recommended choice (Croitoru et al.,
2023; Yang et al., 2023a; Zhu et al., 2023a).

Diffusion models fundamentally learn the distribution of data. During training, the model
applies a forward diffusion process that gradually adds noise to the original data until it approximates
a Gaussian distribution. Then, in the reverse diffusion process, the model learns to iteratively refine
its reconstruction of the original data distribution from the noisy data. After being fully trained, the
model is able to capture the latent distribution patterns of the data, and thus can sample based on the
learned distribution to generate new data (Ho et al., 2022). That is to say, by grasping the inherent
laws and features of the data, the model has the ability to generate data that conforms to the

distribution of the data.
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Denoising diffusion probabilistic model (DDPM) is a classic implementation of the diffusion
models, which lays the probabilistic framework for the diffusion models (Choi et al., 2021; Ho et al.,
2020; Jing et al., 2023; Perera et al., 2023). The generation quality is optimized through variational
inference and noise scheduling. Denoising diffusion implicit model (DDIM) has made improvements
on the basis of DDPM (Song et al., 2020). It uses non-Markov chain reparameterization and
deterministic sampling, and greatly improves the efficiency with almost no loss of quality.

Notably, DDIMs utilize the same training framework as DDPMs. If certain parameters of
DDIMs are assigned particular values, its generation process becomes equivalent to DDPMs. Thus,
DDIMs function as an accelerated sampling variant of DDPMs. The critical distinction lies in their
sampling mechanisms. DDPMs employ stochastic and Markovian sampling, whereas DDIMs
enhance efficiency through non-Markovian deterministic sampling, though this comes at the expense
of reduced sample diversity.

Although diffusion models demonstrate strong capabilities in generating high-quality images
and handling noise, they generate superior-quality data and ensure greater training stability compared
to GANs and VAEs. However, diffusion models have not yet been widely applied directly to the
identification of potential landslides and remain in the exploratory stage (see Fig. 4). We believe that
as generative models advance in the field of geospatial remote sensing, they hold vast potential for

application and could play a pivotal role in future landslide risk analysis and monitoring systems.

3.4 Models for Data Cleaning in Potential Landslide Identification

In potential landslide identification, data cleaning, particularly anomaly detection, is a critical
issue (Deijns et al., 2020; Jiang et al., 2020). It can distinguish between normal fluctuations and true
anomalies, identifying early signs such as subtle changes in the mountain’s state or abnormal trends
in surface displacement, thus enabling more accurate landslide hazard assessment. With the rapid
development of deep learning, the applications in data cleaning have become increasingly
widespread, enabling models to automatically learn latent data patterns and identify potential
anomalies.

AEs and their variational counterparts are highly effective in unsupervised data cleaning. These
models autonomously learn normal geomechanical patterns from data and flag deviations, achieving
effective hazard identification even when labeled anomaly samples are scarce.

The AE is a typical unsupervised learning model consisting of an encoder and a decoder The
encoder compresses the input data into low-dimensional features, and then the decoder reconstructs
the input. During the training process, the autoencoder learns the intrinsic features and patterns of
normal landslide data, so that for normal data, the reconstruction error is small. When abnormal

landslide data is input, due to the difference between its features and the distribution of normal data,
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the reconstruction error will be large.

When performing anomaly detection, a suitable reconstruction error threshold is set. When the
reconstruction error of the test data exceeds this threshold, it can be determined as abnormal data. In
the anomaly detection of landslide displacement data monitored by sensors, if the error of the
displacement data after being reconstructed by AEs during a certain period is significantly higher
than the normal level, it may indicate that there is an abnormal situation of potential landslides during
this period.

As previously introduced, VAE is an extension of AE. Compared to conventional autoencoders,
VAE introduces randomness into the latent space, making it more effective in handling data
uncertainty (Li et al., 2020; Park et al., 2018).

During training, VAEs learn the latent distribution of the data and can generate new samples
resembling the training set. When input samples deviate significantly from this learned distribution,
the VAE fails to reconstruct them accurately, thereby flagging anomalies through elevated
reconstruction errors. For landslide monitoring, if a VAE is trained on imagery of stable slopes, it
internalizes stable terrain features. When an image significantly differs from the stable region, the
model will produce a high reconstruction error, indicating the presence of anomalous data.

In contrast, AEs are well-suited for univariate anomaly detection, particularly for landslide
precursor detection, while VAEs capture latent space distributions and are more effective for
multivariate anomaly detection.

GANS can also be utilized in data cleaning (Kang et al., 2024; Xia et al., 2022). In data cleaning,
the discriminator is trained to distinguish between generated data and real data. When new test data
is input, if the discriminator struggles to determine whether it is real or generated data, the test data
may significantly deviate from the distribution of normal data, indicating a potential anomaly. In
landslide monitoring, data may be influenced by various factors, GANs demonstrate robustness by
filtering out such interference, thereby enhancing data cleaning accuracy (Radoi, 2022).

AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its
primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder during
training, which maps input data to the latent space. The difference between this latent vector and the
latent vector of normal samples generated by the generator serves as the basis for data cleaning.

RNNs, LSTMs, and GRUs are also effective for identifying anomalous patterns in sequential
data (Zhang et al., 2022a). In potential landslide identification, these models process time series
inputs to learn normal temporal dynamics and trends. When new data deviates significantly from the
normal patterns learned by the model, such deviations can be flagged as anomalies. However, these
models are primarily used for time series data, performing data cleaning by predicting future values

of the sequence. For instance, if displacement measurements exhibit abrupt deviations while rainfall
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remains within historical norms, the model detects such discrepancies by comparing observed values

with predictions based on learned temporal dependencies.

3.5 Models for Data Fusion in Potential Landslide Identification

In practical applications, the identification of potential landslide hazards is a complex task that
influences by multiple factors (Zhang et al., 2018). These factors are often reflected through different
data sources. We can roughly divide heterogeneous data into four categories: image data, time series
data, structured data, and textual data. Data fusion is essential for the accurate identification of
potential landslides. In order to better identify potential landslides, data fusion is essential.

Since the features, scales, and resolutions of heterogeneous data are all different, currently, the
powerful feature learning ability of deep learning models is often utilized to automatically capture
the nonlinear relationships and high-order interaction information among these heterogeneous data.

Due to the complex non-Euclidean structural characteristics of the geological environment,
topographic data and their spatial relationships related to landslide hazards, conventional methods
such as CNNs have difficulty in handling these relationships. As a neural network architecture for
processing graph-structured data, graph neural networks (GNNs) can effectively model such spatial
relationships (Ying et al., 2018; Zeng et al., 2022). They can treat the nodes in the geographical space
(such as different geographical location points) and their connection relationships (such as the
distance between adjacent nodes, terrain undulations, etc.) as the structure of a graph for processing.

When dealing with heterogeneous data, GNNs support feature interaction between different
types of nodes through the message passing mechanism, thereby eliminating redundancy and mutual
exclusivity among data sources and enabling dynamic fusion of multi-modal features (Zhang et al.,
2024d; Zhao et al., 2024b). By passing and aggregating information across nodes, GNNs can also
conduct a detailed analysis of various heterogeneous data in local areas. This capability allows GNNs
to capture subtle geological structural changes and detect localized anomalies inmonitoring data,
providing advantages for analyzing local features and early signs of potential landslide movements.

By learning a large amount of landslide potential cases, GNNs can discover the general patterns
and rules of landslides, thus having good generalization ability. When facing new and unseen regions
or data, GNNs can predict and assess the potential landslides in those regions based on the knowledge
they have already learned.

According to the differences in message passing and aggregation methods, GNNs have derived
various variants. For example, graph convolutional network (GCN) is generated by generalizing the
convolutional operation to graph-structured data (Sharma et al., 2022; Wang et al., 2020a), and graph
attention network (GAT) dynamically weights the importance of neighboring nodes by introducing

the attention mechanism (Yuan et al., 2022; Zhou and Li, 2021). The emergence of these new
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architectures makes GNN variants more targeted than conventional GNNs and suitable for modeling
heterogeneous relationships. Currently, they are often used for weighted analysis of the impacts of
different geographical factors on landslides.

Transformer is also composed of stacked encoders and decoders (see Fig. 5). However, unlike
other architectures, the Transformer architecture introduces the self-attention mechanism (Zhao et
al., 2021a), which is a crucial innovation. This enables the Transformer to automatically calculate a
weight vector for each position in the input sequence based on the relationship between this position
and other positions, so as to represent the importance of this position in the entire sequence. Such a
weight vector can be regarded as the "attention distribution" of each position in the input sequence,
that is, the model determines which positions in the sequence to focus on. By considering all
positions in the input sequence simultaneously, Transformer is able to calculate the correlations
between each position and other positions in the sequence in parallel (Esser et al., 2021; Huang and
Chen, 2023; Zerveas et al., 2021), rather than processing them step by step like CNNs or RNNs.

Transformer can also convert multimodal dFor different types of data, it transforms them into
vector representations via different embedding layers.ata into a unified vector representation through
different embedding layers. Subsequently, through the use of the self-attention mechanism and
multilayer neural networks, these vectors are fused and feature representations are extracted,
enabling the model to process and integrate data from various modalities within the same model
framework (Lv et al., 2023; Tang et al., 2022).

Revised Description in Section 3

3.1 Models for Image Analysis and Processing in Potential Landslide Identification

Image data plays a critical role in potential landslide identification, especially through remote
sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain data,
encompassing complex geographical features, vegetation coverage, and ground fissures, which often
serve as potential precursors to landslide occurrences. The adoption of deep learning has facilitated
a shift from conventional manual visual interpretation to automated high-precision segmentation.

Convolutional neural networks (CNNs) represent the fundamental architecture in image
processing. A CNN primarily comprises convolutional layers, pooling layers, and fully connected
layers, each performing predefined functions on its input data (Kattenborn et al., 2021; Liu et al.,
2022a).

Convolutional layers, the core of CNNs, use kernels of various sizes to extract multi-scale
features from geospatial imagery, which is crucial for landslide identification (Hussain et al., 2019;
Shi et al., 2020; Yao et al., 2021). Small kernels are effective in detecting fine-grained precursors
such as ground fissures and localized soil texture changes. For instance, Hamaguchi et al. (2018)

proposed a Local Feature Extraction (LFE) module to enhance the capability of CNNs in identifying
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small object instances in remote sensing imagery. Wang et al. (2024) demonstrated the exceptional
capability of convolutional layers in extracting extremely small and subtle features by identifying
cracks as narrow as 0.05 m width using a U-Net-based model. In contrast, larger kernels help in
recognizing the overall morphology and boundaries of landslide bodies. From the perspective of
general visual tasks, Ding et al. (2022) demonstrated that larger convolution kernels substantially
improve the shape bias of CNNs, facilitating the recognition of large-scale structures and overall
morphological patterns compared with using small kernels alone. Li et al. (2025) employed multiple
large convolution kernels (kernel sizes = 5, 7, and 9) within the DLFFSKA module to fuse multi-
scale features, thereby enhancing the global perception of landslide boundaries and morphology as
well as the capture of contextual background information.

Pooling layers downsample feature maps, improving computational efficiency and model
robustness. In landslide mapping, this translation invariance is particularly beneficial, as it allows
the model to consistently identify landslide features regardless of their slight positional variations
across different image patches (Mao et al., 2024).

The final fully connected layer flattens the pooled feature maps and performs classification,
outputting results that distinguish potential landslide areas from non-landslide areas or enable further
analysis of landslide types (Wu et al., 2024).

The layers of a CNN can be combined in various ways, forming distinct CNN architectures.
These architectures are primarily determined by task requirements, which may include image
classification, multi-class segmentation, or object localization within a scene.

Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers,
and fully connected layers. However, increasing network depth introduces challenges such as
vanishing gradients and degradation arise, resulting in model performance deterioration.

ResNet mitigates the vanishing gradient problem in very deep networks through residual
connections (Qi et al., 2020; Yang et al., 2022). This architectural advancement has been successfully
applied to landslide detection in complex terrains, such as the work by Ullo et al. (2021), who
demonstrated that a ResNet-based classifier could achieve high accuracy in distinguishing landslide
scars from surrounding vegetation and bare soil in satellite imagery by effectively learning
hierarchical features.

Models with higher parameter counts generally exhibit greater representational capacity but are
prone to overfitting, while demanding higher computational resources and temporal costs for both
training and inference (Ebrahimi et al., 2021). For instance, He et al. (2016) introduced ResNet-152
and other deep residual network architectures, demonstrating that deeper structure achieve superior
performance compared with shallower counterparts. Hasanah et al. (2023) explicitly highlighted the

differences in layer depth and parameter count among various ResNet versions (ResNet-50, 101, and
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152), noting that the increased number of parameters in deeper networks inevitably leads to longer
training times.

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks
are based on a similar idea, which is to establish a "shortcut" between different layers. However, the
structure of DenseNet is simpler and more effective, with fewer parameters. In ResNet, each layer is
only connected to the previous layer, while in DenseNet, each layer is directly connected to all
previous layers, and each layer can obtain gradients from the loss function. This can optimize the
information flow and gradients of the entire network, making it easier to train and performing better
on small datasets. The structure of DenseNet can achieve better feature reuse and reduce the number
of parameters. Moreover, the layers of DenseNet are narrower than those of other deep learning
networks (Liu et al., 2021c¢), making it reduce redundancy by learning with fewer feature maps. This
architecture is suitable for the extraction of multi-scale landslide features under complex terrains,
even with limited landslide training samples.

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation
models have increasingly become the standard in landslide detection. Numerous advanced semantic
segmentation networks have been proposed and validated for automatic landslide detection,
significantly enhancing the efficiency and accuracy of large-scale detection.

U-Net's encoder-decoder structure with skip connections has become a benchmark for landslide
segmentation (Ronneberger et al., 2015). For example, Dong et al. (2022) proposed a new model, L-
UNet, based on the U-Net architecture and successfully applied it to landslide extraction from remote
sensing imagery. Nava et al. (2022) applied the Attention U-Net to Sentinel-1 SAR data for rapid
mapping of earthquake-induced landslides, demonstrating the effectiveness of U-Net variants in
pixel-level segmentation of landslide bodies under cloud-covered or topographically complex
conditions.

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable
choice (Sandric et al., 2024). Built upon deep convolutional neural networks, DeepLab employs
dilated convolutions to expand the receptive field and integrates an atrous spatial pyramid pooling
(ASPP) module to capture multi-scale contextual information.

In contrast, the U-Net architecture is relatively simpler and better suited for small targets and
high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution
UAV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection
and multispectral remote sensing image classification (see Fig. 2).

After achieving semantic segmentation to obtain the accurate extent of a landslide and the
classification of ground objects, change detection is employed to monitor the changes in the landslide

area over time. By comparing the segmentation results of multiple temporal phases or directly
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analyzing the feature differences, the dynamic evolution of potential hazards can be quantifie
(Amankwah et al., 2022).

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models
capture spatial and temporal features using convolutional kernels while transforming multi-temporal
image sequences into change hotspot maps or temporal variation curves as output.

Some studies even have integrated attention mechanisms into conventional CNN architectures
to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the identification

of landslide hazard evolution over time.

3.2 Models for Time Series Analysis in Potential Landslide Identification

The occurrence of a landslide is a gradual accumulation process, usually influenced by a variety
of factors. We refer to data that reflect the changing states of a landslide body over time as time series
data. Time series data analysis aims to excavate the information hidden in the time series data to help
identify potential landslides.

Different from conventional statistical or physical models, deep learning models can
automatically reveal dynamic change trends and periodic patterns in the data, providing more
accurate information for landslide prediction and early warning. Recently, deep learning—based
temporal models, such as recurrent neural networks (RNNs), long short-term memory networks
(LSTMs), and gated recurrent units (GRUs), have become key tools for extracting nonlinear
dependencies and temporal evolution patterns in landslide-related time series.

Recurrent neural networks (RNNs) are a class of deep learning models specialized in processing
sequential data, capable of capturing temporal dependencies within input sequences (Ngo et al.,
2021; Zaremba et al., 2014). Unlike conventional feedforward neural networks, in an RNN, each
neuron not only receives the current input but also the output of the previous time step as additional
input. This structure endows the RNN with a memory mechanism.

In landslide prediction, RNNs have been employed to model displacement time series under
rainfall or groundwater fluctuations, revealing short-term deformation patterns preceding slope
failure (Chen et al., 2015; Zhang et al., 2022).

To overcome the vanishing gradient problem inherent in RNNs, LSTMs introduce memory cells
and gating mechanisms that selectively retain relevant temporal information (Landi et al., 2021;
Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al., 2019).
This capability allows them to model the cumulative and delayed responses of slopes to prolonged
rainfall or reservoir water level fluctuations.

LSTM models have been widely applied in landslide displacement prediction and early

warning. Yang et al. (2019) analyzed the relationships among landslide deformation, rainfall, and
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reservoir water levels, and found that compared with static models, the LSTM approach more
accurately captured the dynamic characteristics of landslides and effectively leveraged historical
information. Xu and Niu (2018) used a LSTM model to predict the displacement evolution of the
Baijiabao landslide using rainfall and hydrological level data, achieving a higher correlation
compared with traditional regression models. In another study focused on shallow landslides, Xiao
et al (2022) used a week-ahead LSTM model, which exhibited stable performance and improved
prediction accuracy in short-term prediction scenarios. Additionally, Gidon et al (2023) constructed
a Bi-LSTM model and achieved a detection accuracy of 93% in the Mawiongrim area. This
effectively addresses the limitations of traditional methods and can provide a reliable technical
solution for disaster early warning in this area as well as other similar landslide-prone areas.

The GRU is a simplified variant of the LSTM (Chung et al., 2014; Zhang et al., 2022b) that
achieves similar accuracy with fewer parameters and reduced computational costs, making it well-
suited for real-time landslide monitoring systems (Rawat et al., 2024).

Furthermore, GRU models effectively identify precursory displacement acceleration, allowing
early detection of slope instability triggered by rainfall or seismic shaking (Chang et al., 2025; Yang
et al., 2025).

Recently, Transformer architectures have been introduced for time series modeling due to their
ability to capture global dependencies across long sequences through the self-attention mechanism
(Vaswani et al., 2017).

Unlike RNNs or LSTMs that process data sequentially, Transformers analyze all time steps in
parallel, offering better scalability and modeling of long-term deformation trends (Esser et al., 2021;
Huang and Chen, 2023; Zerveas et al., 2021).

In landslide applications, Transformer-based approaches have shown promise in integrating
multi-source time series—such as rainfall, soil moisture, and deformation—into a unified temporal
framework. Zhao et al. (2024) combined the strengths of CNN and Transformer architectures,
selecting and analyzing nine landslide-conditioning factors to successfully achieve accurate
landslide localization and detailed feature capture. Ge et al. (2024) proposed the LiteTransNet model
based on the Transformer framework, effectively capturing and interpreting the varying importance
of historical information during the prediction process.

Although Transformer-based models require larger training datasets and higher computational
resources, their capacity to model complex, long-range dependencies and integrate multi-factor
information offers significant potential for the next generation of intelligent landslide early warning
systems.

In summary, RNNs and their advanced variants (LSTM, GRU) have demonstrated strong

capabilities in modeling landslide time series, enabling early detection of slope deformation
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acceleration and rainfall-induced instability (Li et al., 2021a; Wang et al., 2020b). Transformer
architectures further extend this capability to capture cross-variable and long-term dependencies
(Wang et al., 2024a; Zerveas et al., 2021; Zhuang et al., 2023), offering a new direction for multi-

sensor, data-driven landslide prediction (see Fig. 3).

3.3 Models for Data Generation in Potential Landslide Identification

Data generation refers to modeling the underlying data distribution of data to generate entirely
new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020;
Shorten and Khoshgoftaar, 2019), thereby enriching the dataset. In potential landslide identification,
data generation mitigates challenges related to data scarcity and class imbalance, which are
particularly pronounced in geohazard mapping tasks where labeled landslide samples are limited.
This process enhances the generalization capability of predictive models and enables the simulation
of diverse landslide scenarios.

Deep generative models are the leading deep learning approach for synthetic data generation
(Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They utilize deep neural
networks to learn latent representations of data and optimize the learning process through specific
objective functions. A key characteristic of deep generative models lies in their probabilistic nature—
they not only classify or reconstruct data but also capture the underlying distribution of geospatial
features, enabling the creation of new landslide samples that are statistically consistent with observed
patterns. Commonly used deep generative models include generative adversarial networks (GANSs),
variational autoencoders (VAEs), and diffusion models.

GANSs consist of a generator and a discriminator that compete in an adversarial process
(Goodfellow et al., 2014). The generator synthesizes data resembling real samples, while the
discriminator attempts to distinguish between generated and real data. Through iterative adversarial
training, the generator learns to produce high-quality synthetic data that closely matches the
distribution of real data (Gui et al., 2021; Saxena and Cao, 2021).

In the context of landslide studies, GANs have demonstrated strong capabilities in data
augmentation and remote sensing image enhancement. For example, Al-Najjar and Pradhan (2021)
proposed a novel approach that employs a GAN to generate synthetic inventory data. The results
indicate that additional samples produced by the proposed GAN model can enhance the predictive
performance of Decision Trees (DT), Random Forest (RF), Artificial Neural Network (ANN), and
Bagging ensemble models. Feng et al. (2024) achieved the first implementation of using a GAN to
generate synthetic high-quality landslide images, aiming to address the data scarcity issue that
undermines the performance of landslide segmentation models.

Despite their advantages, GANs may suffer from mode collapse, leading to limited diversity in
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the generated data, especially when certain landslide types are underrepresented (Fang et al., 2020).
Moreover, their unstable training process requires careful hyperparameter tuning and substantial
computational resources, which may constrain their application in real-time hazard scenarios.
Nevertheless, with improved architectures such as CGAN, Pix2Pix, and Wasserstein GAN (WGAN)
(Kim and Lee, 2020; Loey et al., 2020; Qu et al., 2019; Wang et al., 2019), GANs are becoming
increasingly viable tools for high-resolution landslide mapping and synthetic data generation in
remote sensing-based susceptibility analyses.

As a probabilistic variant of autoencoders (AEs), VAEs introduce latent-space regularization
through variational inference (Kingma et al., 2013). The encoder compresses input data into a latent
representation characterized by a mean and a standard deviation, while the decoder reconstructs the
data by sampling from this distribution. This enables the model to generate new data with inherent
randomness and diversity (Islam et al., 2021; Oliveira et al., 2022).

In landslide research, VAEs have been successfully applied to learn and reconstruct
geomorphological patterns of slope instability. For instance, Cai et al. (2024) proposed and
demonstrated the superior capability of the VAE-GRU model in generating narrow predictive
intervals while maintaining high coverage probabilities, representing a substantial improvement over
the state-of-the-art methods for probabilistic landslide prediction.

Compared with GANs, VAEs produce more diverse but slightly less detailed samples, due to
their structured latent space constraints. This characteristic is particularly beneficial for exploring a
wide range of potential landslide morphologies and for augmenting training datasets used in
susceptibility prediction. However, VAEs may still struggle with highly imbalanced datasets, as their
probabilistic reconstruction tends to favor majority classes. Integrating VAEs with stratified
sampling or cost-sensitive learning could help overcome this limitation and further enhance landslide
prediction performance.

When computational resources and training time permit, diffusion models provide a powerful
alternative for generating high-quality, diverse, and stable data (Ho et al., 2020; Croitoru et al., 2023;
Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually adding
noise to real samples (forward diffusion) and then reconstructing clean data through a reverse
denoising process. The resulting models can sample new, realistic data points that reflect complex
terrain and geophysical variability.

Although diffusion models are still in the exploratory phase for landslide applications, recent
geospatial Al research indicates their high potential for terrain simulation and deformation modeling.
Lo et al. (2024) proposed a Terrain-Feature-Guided Diffusion Model (TFDM) to fill gaps in DEM
data. Similarly, Zhao et al. (2024) employed a Denoising Diffusion Probabilistic Model (DDPM)

conditioned on incomplete DEMs, which serves as a transitional kernel during diffusion reversal to
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progressively reconstruct sharp and accurate DEM surfaces.

Deep generative models provide a transformative solution for overcoming the challenges of
limited and imbalanced landslide datasets. By synthesizing realistic, diverse, and statistically
consistent samples, these models can improve the robustness and generalization of landslide
prediction frameworks. GANs are effective for generating visually realistic imagery and data
augmentation; VAEs capture probabilistic geomorphic transitions; and diffusion models ensure
stability and fidelity in high-resolution terrain synthesis.

As generative Al continues to evolve, integrating these models with multi-source remote
sensing inputs and physics-based constraints holds great promise for next-generation landslide
hazard identification systems. Such integration is expected to enhance data diversity, reduce labeling
dependency, and enable more precise, interpretable, and generalizable predictions for landslide risk

assessment and early warning.

3.4 Models for Anomaly detection in Potential Landslide Identification

Anomaly detection plays a critical role in potential landslide identification, as it enables the
distinction between normal environmental variations and genuine precursors of slope instability
(Deijns et al., 2020; Jiang et al., 2020). In landslide monitoring, the goal of anomaly detection is to
identify subtle yet significant deviations—such as abnormal surface displacements, changes in
surface coherence, or irregular sensor signals—that may occur prior to failure events. With the
advancement of deep learning, data filtering has evolved from rule-based threshold detection to
automated feature learning, allowing models to capture complex spatiotemporal dependencies and
identify anomalies within high-dimensional, multi-source datasets.

AEs are widely used for unsupervised anomaly detection due to their ability to reconstruct input
data and highlight deviations from learned normal patterns. An AE consists of an encoder that
compresses data into a low-dimensional latent representation and a decoder that reconstructs it.

During training, the AE learns the intrinsic features of normal landslide data—such as sensor-
based displacement time series or radar backscatter from stable slopes. When abnormal data are
input, such as sudden displacement spikes or incoherent radar signals, the reconstruction error
increases significantly, serving as an indicator of potential instability. For instance, Shakeel et al.
(2022) developed an InSAR deformation anomaly detector based on an AE-LSTM architecture
(ALADDIn). Experimental analyses using synthetic deformation test scenarios achieved an overall
performance accuracy of 91.25%.

By defining a reconstruction error threshold, anomalies can be quantitatively detected. When
the reconstruction error of new sensor data exceeds this threshold, it may signal slope movement

acceleration or surface disturbance associated with potential landslides. Thus, AEs provide a data-
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driven method to detect early-warning signs without requiring manually labeled failure data.

As previously introduced, VAE a probabilistic extension of AEs. VAEs introduce stochastic
latent variables characterized by mean and variance, allowing them to model data uncertainty
(Kingma et al., 2013; Li et al., 2020; Park et al., 2018). During training, VAEs learn the latent
distribution of normal samples and reconstruct inputs accordingly. When new observation data
deviate significantly from the learned distribution, the reconstruction error increases accordingly,
and this phenomenon can be used as an indicator of potential anomalies.

In landslide applications, VAEs have been shown to outperform traditional AEs in handling
complex, multivariate datasets that integrate topographic, meteorological, and geotechnical factors.
For example, Han et al. (2025) proposed an unsupervised failure mode recognition algorithm based
on a deep convolutional autoencoder, which integrates surface displacement, vertical displacement,
and rainfall monitoring data from slopes to accurately identify the developmental stages of slope
failure, achieving a recognition accuracy of 99.30%.

Another study by Yadav et al. (2024) proposed a novel unsupervised change detection (CD)
model, termed CLVAE, designed to learn the spatiotemporal correlations within Sentinel-1 SAR time
series. The model achieved a mean IoU of 70% and a mean Fl-score of 81%, outperforming
comparative models by at least 6% in F1-score and 8% in IoU.

Compared to AEs, VAEs are particularly advantageous for capturing uncertainty and latent
correlations between environmental variables, making them ideal for data cleaning in integrated
landslide early-warning systems. However, they require larger datasets for stable training, and their
probabilistic outputs may demand post-processing for operational thresholding.

GANSs can also be adapted for anomaly detection by exploiting their discriminator network’s
ability to distinguish between real and generated data (Kang et al., 2024; Xia et al., 2022). In
landslide monitoring, GAN-based anomaly detection models learn the distribution of stable slope
features, and deviations from this distribution can indicate abnormal conditions (Radoi, 2022).

AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its
primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder during
training, which maps input data to the latent space. The difference between this latent vector and the
latent vector of normal samples generated by the generator serves as the basis for data cleaning.

RNNs and their variants are particularly effective for time series—based anomaly detection,
learning temporal dependencies and predicting future trends (Zamanzadeh et al., 2024; Zhang et al.,
2022a). In landslide monitoring, these models can process continuous displacement or rainfall time
series to identify deviations from expected temporal behavior. These temporal models complement
image-based approaches by providing continuous surveillance and early detection capabilities (Wu
et al., 2024).
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When combined with AEs or GANs, RNN-type architectures can form hybrid frameworks
capable of both spatial and temporal anomaly detection, enabling multi-source consistency checking
in landslide early-warning systems. Geiger et al (2020) demonstrated a growing trend of utilizing
LSTM networks as both the generator and discriminator within GAN frameworks for time-series
anomaly detection. Similarly, Whitakeret al (2023) illustrated the application of LSTM—-GAN

architectures in identifying temporal anomalies.

3.5 Models for Data Fusion in Potential Landslide Identification

In practical applications, the identification of potential landslide hazards is a complex task that
influences by multiple factors (Zhang et al., 2018). These factors are often reflected through different
data sources. We can roughly divide heterogeneous data into four categories: image data, time series
data, structured data, and textual data. Data fusion is essential for the accurate identification of
potential landslides. In order to better identify potential landslides, data fusion is essential.

Since heterogeneous data differ in feature scale, spatial resolution, and data modality, deep
learning models are increasingly utilized to automatically extract nonlinear and high-order feature
interactions across data sources, offering significant advantages over traditional statistical fusion
techniques. In landslide applications, deep learning-based data fusion can integrate multi-modal
inputs such as Sentinel-1 InSAR deformation, rainfall time series, and terrain derivatives for
regional-scale susceptibility mapping or real-time early warning.

Due to the non-Euclidean and topologically complex nature of landslide-related terrain,
conventional CNN-based models are limited in representing irregular spatial dependencies. Graph
Neural Networks (GNNs) have emerged as powerful architectures to model such relationships by
representing spatial entities (e.g., slope units, grid cells, or sensor nodes) as graph nodes and their
geospatial or topological interactions as edges (Ying et al., 2018; Zeng et al., 2022).

In landslide identification, GNNs enable explicit modeling of spatial connectivity and
geological adjacency, allowing the propagation of geomorphic and hydrological information across
neighboring units. For example, Kuang et al. (2022) proposed an innovative landslide forecasting
model based on Graph Neural Networks, in which graph convolutions are employed to aggregate
spatial correlations among different monitoring sites. Ren et al. (2025) introduced a novel Graph
Neural Network framework with conformal prediction (GNN-CF) for landslide deformation interval
forecasting, addressing the limitations of traditional models in handling predictive uncertainty.

According to the differences in message passing and aggregation methods, GNNs have derived
various variants. For example, graph convolutional network (GCN) is generated by generalizing the
convolutional operation to graph-structured data (Sharma et al., 2022; Wang et al., 2020a), and graph

attention network (GAT) dynamically weights the importance of neighboring nodes by introducing
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the attention mechanism (Yuan et al., 2022; Zhou and Li, 2021). The emergence of these new
architectures makes GNN variants more targeted than conventional GNNs and suitable for modeling
heterogeneous relationships. Currently, they are often used for weighted analysis of the impacts of
different geographical factors on landslides.

Transformer architectures, characterized by the self-attention mechanism, provide another
promising avenue for landslide-related data fusion (Huang and Chen, 2023; Zhao et al., 2021a).
Unlike CNNs or RNNs, which process spatial or temporal sequences sequentially, Transformers can
jointly capture long-range dependencies across spatial and temporal dimensions, enabling unified
processing of rainfall, InNSAR time series, and topographic data (Esser et al., 2021; Lv et al., 2023).

Recent studies have begun adapting Transformer variants for landslide identification. Li et al.
(2023) proposed a Transformer-based deep neural network capable of identifying landslides from
hillshade maps and optical imagery. Piran et al. (2024) enhanced short-term precipitation forecasting
by applying transfer learning with a pre-trained Transformer model. Zhang et al. (2024) incorporated
Transformer modules to build a graph-Transformer model that integrates global contextual

information for the generation and analysis of landslide susceptibility maps (LSMs).
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4. Introduction: The section lacks sufficient citations, and the objectives are unclear. I recommend
rephrasing them for clarity.
5. Line 28. What do you mean by relativity?
6. Line 33. What do you mean by potentials? Do you mean driving factors?
7. Line 57. What do you mean by remainder? Do you mean the structure of this paper? You don’t

need to mention it.

Response:
We sincerely appreciate you for your valuable comments and constructive suggestions, which have
greatly helped us improve the quality and clarity of the manuscript. We have carefully revised the
paper according to each comment, and all modifications have been incorporated into the revised

version. The following section provides our detailed, point-by-point responses to your remarks.

* Regarding the general comments on the Introduction

4. Introduction: The section lacks sufficient citations, and the objectives are unclear. I
recommend rephrasing them for clarity.

We fully agree with your comments. In the revised Introduction, we have implemented the

following comprehensive revisions:
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(1) We have added essential references to key statements to provide a more robust academic
background and stronger scholarly support.

(2) We have thoroughly rewritten the section describing the research objectives to make them more
specific and clearly defined. The revised list of objectives now explicitly outlines the four focal
aspects addressed in this review—data, models, applications, and challenges with future

directions—thereby eliminating the ambiguity present in the previous version.

* Regarding the comments on specific terminology and expressions

5. Line 28. What do you mean by relativity?

We apologize for the lack of clarity in our original phrasing. The term "relativity" was intended to
convey that the assessment of landslide potential is not absolute but is comparative and context-
dependent. It refers to the relative likelihood, spatial probability, or comparative susceptibility of
a landslide occurring in one area versus another, based on a set of conditioning factors (e.g., slope,
geology, land use).

We have revised the manuscript to improve precision. The phrase has been replaced with "the
inherent uncertainty and dynamic nature" to better convey that landslide prediction is not absolute
but is a probabilistic assessment fraught with challenges.

6. Line 33. What do you mean by potentials? Do you mean driving factors?

Thank you for pointing out the ambiguity here. We regret that the expression caused confusion.
In Line 33, we used the term "potentials" to refer to the landslide potential or the likelihood of a
slope failure. This potential is inherently dynamic, as it may vary over time due to external factors,
and it does not denote the driving factors themselves.

To clarify, we have revised the sentence to use the more precise term "landslide potential" (Line
33). This change better reflects our intended meaning that the probability of landslide occurrence
is not static.

7. Line 57. What do you mean by remainder? Do you mean the structure of this paper? You
don’t need to mention it.

Thank you for pointing this out. We agree that mentioning "the remainder" is unnecessary. We have

removed the final sentence describing the structure of the paper.

Once again, we would like to express our sincere appreciation to the reviewer for all the valuable

comments and suggestions that have helped us to improve our manuscript.
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Original Description in Introduction

1 Introduction

Landslides are geological hazards induced by either natural forces or human activities, typically
involving the interplay of various factors such as geology, meteorology, hydrology, and topography.
Every year, landslides cause significant global losses, particularly in regions with heavy rainfall,
frequent earthquakes, and complex geological conditions, representing a major threat to human life,
property, and infrastructure.

According to data released by the United Nations International Strategy for Disaster Reduction
(UNISDR), more than 1,000 landslide-related disaster events occur annually, causing thousands of
fatalities and substantial economic losses. As global climate change progresses, the frequency of
extreme weather events increases, leading to a growing risk of landslides.

Potential landslides refer to slopes prone to instability that may fail and trigger disasters within
a certain time frame. Potential landslides represent the precursor stage of landslide occurrence (Lin
et al.,, 2024). If potential landslides are not identified and addressed promptly, the slope may
eventually become unstable and develop into a landslide due to changes in internal stress conditions
and external triggering factors.

Due to the relativity and dynamic nature of potential landslides, the identification work becomes
extremely complicated. On the one hand, it is not possible to determine that a landslide will definitely
occur just because there are signs of deformation on the slope. Multiple factors need to be
comprehensively considered to assess the possibility of its instability. On the other hand, the
uncertainty of external factors increases the difficulty of judgment. Sudden events such as heavy
rainfall and earthquakes may instantly change the stress state of the slope and trigger signs of
deformation. Given the dynamic characteristics of potentials, it is also essential to conduct long-term
monitoring of the landslides with potential hazards after identification.

Conventional methods for landslide identification and monitoring, such as field surveys,
geological analysis, and radar interferometry, can identify potential landslide areas to a certain extent.
However, these methods often have problems such as high costs, significant time consumption, and
difficulties in data collection, and their applications are limited in extensive areas. In addition,
conventional machine learning requires tedious feature selection and lacks autonomy in feature
extraction. As a result, it is difficult for these traditional methods to extract available information
from big data and they are unable to represent complex monitoring processes (Sheng et al., 2023).
For the above reasons, how to effectively identify and monitor areas with potential landslides has
become an important topic in the current prevention and control of geological hazards.

Over the past few years, deep learning has stood out in the application of landslide hazards
(Aslam et al., 2021; Nava et al., 2023; Wang et al., 2023a; Zhou et al., 2023). Deep learning is a
branch of machine learning, consisting of consecutive operations (Janiesch et al., 2021). These
operations gradually extract complex features by using the results of previous operations as inputs.
Through the training of large-scale and multi-source data, deep learning models are able to
automatically extract features, capture complex nonlinear relationships, and conduct pattern
recognition in high-dimensional data, which shows great potential in the identification of potential
landslides (Nava et al., 2021; Yang et al., 2024c).

In this review, we aim to summarize the applications of deep learning in the field of potential
landslide identification, including data, models, applications, challenges, and future directions.
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(1) We classify commonly used heterogeneous data into three categories for research. These
data sources offer comprehensive data support for the application of deep learning in potential
landslide identification.

(2) We introduce the roles of commonly used deep learning models in potential landslide
identification, and compare the advantages and disadvantages among different models.

(3) We analyze the performance of deep learning models in different scenarios through case
studies, discussing the adaptability of deep learning in potential landslide identification.

(4) We summarize the main challenges currently faced by the application of deep learning in
potential landslide identification, and highlight new opportunities and promising future directions.

The remainder of this paper is organized as follows. Section 2 introduces seven main data
sources. Section 3 summarizes five roles of deep learning models in potential landslide identification.
Section 4 investigates the application of deep learning models in four typical landslides and provides
a comprehensive summary. Section 5 analyzes the current challenges in potential landslide
identification. Section 6 discusses future research directions. Section 7 provides the concluding
remarks.

Revised Description in Introduction

1 Introduction

Landslides are complex geological hazards triggered by both natural processes and human
activities, involving intricate interactions among geological, hydrological, topographic, and
meteorological factors (Fidan et al., 2024). Globally, landslides cause significant loss of life and
property each year, particularly in mountainous areas with intense rainfall, seismic activity, and
fragile geological conditions (Askarinejad et al., 2018; Ehsan et al., 2025; Marin-Rodriguez et al.,
2024). According to the United Nations Office for Disaster Risk Reduction (UNDRR, 2023), more
than 1,000 landslide-related disasters occur annually, resulting in thousands of fatalities and
substantial economic damage. With the intensification of climate change, extreme weather events
are becoming more frequent, further increasing global landslide risks (Wang et al., 2023).

Potential landslides refer to slopes that exhibit early signs of instability and may evolve into
landslides under external triggers such as rainfall or earthquakes. They represent the precursor stage
of landslide development (Lin et al., 2024). Timely identification and monitoring of such slopes are
crucial for disaster prevention and risk mitigation (Strzabata et al., 2024; Xie et al. 2020).

However, the inherent uncertainty and dynamic nature of potential landslides make their
identification challenging. On the one hand, it is not possible to determine that a landslide will
definitely occur just because there are signs of deformation on the slope (Peres and Cancelliere 2014;
Zhang et al., 2019). Multiple factors need to be comprehensively considered to assess the possibility
of its instability. On the other hand, the uncertainty of external factors increases the difficulty of
judgment. Sudden events such as heavy rainfall and earthquakes may instantly change the stress state
of the slope and trigger signs of deformation (Yang et al., 2024). Given the dynamic characteristics
of potential landslides, it is also essential to conduct long-term monitoring of the landslides with
potential hazards after identification (Lakhote et al., 2025).

Conventional approaches to potential landslide identification, including field surveys,
geological analysis, and interferometric radar techniques, have contributed substantially to hazard
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assessment but remain costly, time-consuming, and limited in spatial coverage (Akosah et al., 2024;
Zhao and Lu 2018). Machine learning has partially improved efficiency but still depends heavily on
manual feature engineering, requiring expert knowledge to design relevant predictors (Sheng et al.,
2023). These limitations restrict the scalability and adaptability of conventional approaches in
complex geospatial environments.

In contrast, deep learning provides an effective data-driven alternative for landslide research.
As a subfield of machine learning, deep learning performs hierarchical feature extraction through
multiple nonlinear transformations (Janiesch et al., 2021; Nava et al., 2023). By leveraging large-
scale, multi-source data, deep learning models can automatically extract representative features,
capture nonlinear dependencies, and conduct pattern recognition in high-dimensional datasets
(Aslam et al., 2021; Wang et al., 2023a; Zhou et al., 2023). These capabilities make DL particularly
suitable for identifying and characterizing potential landslides across diverse spatial and temporal
scales (Nava et al., 2021; Yang et al., 2024c¢).

In this review, we aim to summarize the applications of deep learning in the field of potential
landslide identification, including data, models, applications, challenges, and future directions.

(1) We classify commonly used heterogeneous data into three categories for research. These
data sources offer comprehensive data support for the application of deep learning in potential
landslide identification.

(2) We introduce the roles of commonly used deep learning models in potential landslide
identification, and compare the advantages and disadvantages among different models.

(3) We analyze the performance of deep learning models in different scenarios through case
studies, discussing the adaptability of deep learning in potential landslide identification.

(4) We summarize the main challenges currently faced by the application of deep learning in
potential landslide identification, and highlight new opportunities and promising future directions.
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8. Line 61. Chapter 2. It is unclear whether the data sources mentioned are actually used in deep
learning for landslide detection, or whether they could be used. If they are used, please provide

specific examples.

Response:
We sincerely appreciate your time and effort in reviewing our manuscript! The comments are
highly insightful and have been instrumental in refining our paper. We fully agree that the
manuscript should explicitly clarify that these data sources have indeed been applied in existing
studies, rather than merely describing their principles and characteristics. Following your
suggestion, we have thoroughly revised Section 2.
The major revisions are as follows:
(1) Structural adjustment: We have closely linked each data category with its specific
applications in deep learning, providing published literature to substantiate each type.
(2) Addition of specific cases: For each data source (e.g., optical remote sensing, InNSAR, and
LiDAR), we now include real-world examples that have been successfully applied in deep
learning-based landslide detection studies, with corresponding references. These cases clearly

demonstrate how specific data types are integrated with particular deep learning models.
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Original Description in Section 2

2 Deep Learning for Potential Landslide Identification: Data Source

Accurate identification of potential landslides is the primary step in effectively preventing and
mitigating the impacts of landslide hazards. Data sources are the cornerstone of achieving this
objective. Different types of data provide indispensable information for potential landslide
identification from various perspectives, and drive ongoing advancements in related research and
practices.

In potential landslide identification, the richness and reliability of data sources directly
determine the accuracy and effectiveness of research. Data sources not only provide fundamental
information to outline the landslide environments, but also enable dynamic monitoring and precise
analysis. This section will comprehensively review the critical roles played by three main types of
data sources: satellite observation data, airborne remote sensing data, and ground-based observation
data (see Fig. 1)

2.1 Satellite Observation Data

Since the launch of Landsat-1, the first earth observation satellite for studying and monitoring
the Earth’ s surface on July 23, 1972, satellite data has become widely accessible, extending beyond
single-purpose analyses or results (Wulder et al., 2022). With the continuous development of satellite
observation, its immense potential for application in landslide research has become evident (Liu et
al., 2021d). Currently, satellite observation data primarily refers to data obtained through space-
borne synthetic aperture radar (SAR) and optical remote sensing.

2.1.1 Space-borne SAR

SAR is an active microwave remote sensing system (Franceschetti and Lanari, 2018). It is not
only capable of acquiring data on demand by actively emitting microwave signals but also facilitates
partial penetration of vegetation cover through its longer wavelength bands (such as the L-band),
thereby allowing the retrieval of surface deformation information beneath vegetated areas. The time
series data provided by SAR can serve as input for deep learning models, allowing these models to
be trained to identify long-term patterns of terrain change. Continuous monitoring of potential
landslide areas is crucial, and SAR is widely employed in high-risk environments.

Interferometric synthetic aperture radar (InSAR) has been developed based on. It obtains
surface elevation information by performing coherent processing on two sets of SAR images
observed in the same area (Dai et al., 2022; Ma et al., 2023b; Zeng et al., 2024).

In contrast, SAR mainly provide backscatter information of ground objects. Although some
features of ground objects can be identified according to the scattering characteristics, their ability
to obtain topographic elevation information is relatively weak. INSAR, on the other hand, can directly
generate topographic elevation data, which is of great significance for analyzing the topography and
geomorphology in the identification of potential landslides, and determining key elements such as
the topographic undulation and slope of potential landslide areas.

When screening for potential landslides over a large area, InNSAR has higher efficiency (Dun et
al., 2021; Tang et al., 2025; Zhang et al., 2021). When monitoring large potential landslide areas
such as mountainous regions, InSAR can quickly obtain topographic deformation information over
a large area, promptly detect potential areas with potential landslides, and reduce the workload and
blind spots of manual inspections.
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At present, InNSAR is widely employed to generate ground deformation velocity maps and time-
series data, which reveal the dynamic evolution of landslide-prone areas.

Differential interferometric synthetic aperture radar (D-InSAR) is an advancement of InSAR
that eliminates topographic phase through differential processing, focusing specifically on
deformation information extraction (Shen et al., 2022). The emergence of D-InSAR not only enables
the transition from mixed deformation-topography signals to pure deformation signal extraction but
also extends its applicability from detecting discrete deformation events to identifying slow-moving
landslide processes, significantly enhancing the reliability of landslide monitoring.

2.1.2 Optical Remote Sensing

Optical remote sensing refers to the acquisition of surface information through sensors that
measure reflected solar radiation. Its application in geological hazard investigations dates back to
the 1970s.

Optical remote sensing offers high resolution, currently capable of achieving spatial resolutions
as fine as 0.3 meters or better. In potential landslide identification, it not only facilitates the retrieval
of detailed surface textures and color characteristics using rich spectral data but also enables the
direct identification of morphological features and object contours via visual interpretation of
imagery (Cheng and Han, 2016; Li et al., 2022b).

Landslide formation typically follows a progressive process from deformation to failure,
accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized collapses.
These indicators exhibit distinct spectral signatures in optical imagery compared to their
surroundings, enabling both manual interpretation and automated detection.

In vegetated mountainous regions, surface vegetation often undergoes detectable changes
before a landslide event. Optical remote sensing leverages multispectral data, particularly red and
near-infrared bands, to monitor vegetation health and identify potential landslide zones.
Furthermore, the calculation of the normalized difference vegetation index (NDVI) facilitates the
evaluation of vegetation health in potential landslide regions, providing critical insights into potential
landslide precursors (Verrelst et al., 2015).

2.2 Airborne Remote Sensing Data

Airborne remote sensing data, typically acquired by manned aircrafts, provide high-resolution
imagery of localized areas. Advanced airborne platforms equipped with oblique photogrammetry
and, more recently, close-range photogrammetry technologies enable millimeter-level accuracy in
3D photogrammetry, facilitating the observation of subtle surface deformations, rock mass
structures, and the construction of highly detailed 3D models of terrain and above-ground
infrastructure (Macciotta and Hendry, 2021; Xu et al., 2023). Among these technologies, airborne
photogrammetry and airborne radar are the most commonly used.

2.2.1 Airborne Light Detection and Ranging (LiDAR)

LiDAR has been used for landslide and other geological hazard investigations in many regions
since the late 1990s. As an active remote sensing system, LiDAR can laterally scan a range of 60
and capture 400,000 points per second, enabling largescale 3D scanning of terrain, structures, and
vegetation within a short period (Mallet and Bretar, 2009). It offers centimeter-level accuracy in both
horizontal and vertical dimensions.

Airborne LiDAR is irreplaceable in capturing 3D details and penetrating vegetation,
particularly in densely vegetated areas where conventional aerial photography faces significant
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limitations. Airborne LiDAR not only acquires high- resolution digital surface models (DSMs) from
laser point cloud data but also generates high-accuracy DEMs by removing vegetation contributions
(Fang et al., 2022; Jaboyedoff et al., 2012; Yan et al., 2023), thereby revealing concealed hazard
features such as mountain fractures, loose deposits, and landslide masses under vegetation cover.

Point cloud data obtained from airborne LiDAR can monitor dynamic changes in mountainous
terrain by detecting deformations such as subsidence, displacement, and uplift, while also facilitating
the construction of 3D landslide models to simulate sliding directions and impact areas. Through
intuitive visualization of slope morphology and structure from multiple perspectives, LIDAR enables
researchers to conduct a comprehensive assessment of slope conditions and identify subtle hazard
features that may not be easily discernible in 2D imagery.

2.2.2 Unmanned Aerial Vehicle (UAV)

UAV aerial photogrammetry provides outstanding maneuverability and high-precision
measurements. Traversing over steep slopes and valleys, UAVs are able to monitor areas that are
often inaccessible to satellites and manned aerial platforms (Niethammer et al., 2012), thus
addressing critical observational limitations.

In large-scale and topographically complex regions, UAVs can perform efficient aerial
inspections, overcoming the limitations of ground-based inspections in inaccessible or visually
obstructed regions. By rapidly scanning mountain slopes, embankments, and gullies, UAVs provide
a comprehensive understanding of the geological conditions and enable timely identification of
macro-scale geomorphic anomalies. However, given cost-effectiveness constraints, UAVs are
currently more commonly used for periodic and continuous monitoring in localized areas. They are
particularly well-suited for rapid and dynamic monitoring of landslides in high-priority zones.

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial
photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on
UAVs are able to capture the subtle cracks on the surface of the mountain.

These cracks may be early signs of a landslide (Sun et al., 2024a). By conducting a comparative
analysis of the images taken at different times, the development and changes of the cracks can be
monitored, including the increase in the length, width and depth of the cracks, as well as the changes
in the crack orientation. In some mountainous areas or valleys, there may be a large number of loose
accumulations. These accumulations may trigger landslides under specific conditions. Aerial
photography by UAVs can clearly identify information such as the distribution range, accumulation
quantity and accumulation shape of these loose accumulations, and assess their potential threats to
the surrounding environment.

When equipped with LiDAR sensors, UAVs can effectively remove vegetation from the data.
Then, assisting researchers to reveal landslide boundaries, crack patterns, and other deformation
features hidden beneath vegetation cover. This integrated approach combines the strengths of
photogrammetry and LiDAR, allowing for rapid deployment and targeted area monitoring while
mitigating the challenges posed by vegetation cover in landslide detection and assessment.

After extreme weather events such as heavy rainstorms or geological events like earthquakes
occur, the stability of the mountain may be affected, making it prone to triggering geological hazards.
UAVs even can quickly conduct aerial monitoring of the relevant areas after extreme weather.

2.3 Ground-based Observation Data

Satellite observation and airborne remote sensing are mainly employed for identifying potential
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landslides based on surface morphology. However, due to the influence of various factors, the
identification results may not always be fully accurate, leading to potential misjudgments. Therefore,
the potential landslide points identified through remote sensing still necessitate field investigations
by researchers for verification, differentiation, confirmation, or exclusion of hazards. In some cases,
additional on-site observation and monitoring methods are needed for accurate assessment.
Commonly used ground-based monitoring methods include ground-based SAR, 3D laser scanners
and various sensor devices deployed or installed on the ground.

2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR)

GB-SAR is an active ground-based microwave remote sensing system that has been developed
over the past decade. Compared to spaceborne SAR, GB-SAR allows adjustment of radar wave
incidence angles and azimuths, preventing phase decorrelation issues caused by terrain obstructions
in satellite SAR, making it particularly suitable for monitoring steep slopes, canyons, and other areas
with limited satellite line-of-sight (Noferini et al., 2007).

GB-SAR effectively integrates the principles of SAR imaging with electromagnetic wave
interferometry. By leveraging precise measurements of sensor system parameters, attitude
parameters, and geometric relationships between orbits, GB-SAR quantifies spatial positions and
subtle changes at specific surface points, allowing for the measurement of surface deformations with
millimeter or even sub-millimeter precision. 180

During landslide movement, the ground experiences noticeable subsidence, displacement, or
cracking. GB-SAR can be configured for high-resolution, continuous observation to capture
instantaneous deformations during the landslide creep phase and generate corresponding
displacement maps (Liu et al., 2021a; Xiao et al., 2021). This capability facilitates the distinction
between evolutionary stages of landslides and further analysis of the dynamics of landslide activity.

For small-scale regional monitoring, GB-SAR can establish customized geometric
configurations specifically designed for target areas. Utilizing mobile rail systems or multi-antenna
setups, GB-SAR reconstructs 3D deformation vector fields of landslide masses, identifying sliding
directions and potential failure surfaces.

2.3.2 Terrestrial Laser Scanning (TLS)

TLS emerged in the mid-1990s. It plays a unique role in local refined monitoring by emitting
laser pulses and measuring their reflection time (Stumvoll et al., 2021; Teza et al., 2007).

The landslide often manifests as a sharp change in the ground surface. TLS can provide data
with sufficient accuracy, assisting researchers in identifying the features of these landslides. By
combining topographic analysis, the location of the landslide surface can be accurately determined.
TLS scanner can also help identify the landslide mass, that is, the flow path of the landslide materials.
Through analyzing the point cloud data, the movement path of the landslide area, the soil
accumulation area, and the accumulation location of the landslide materials can be extracted,
providing detailed information for the analysis and assessment of potential landslides.

By quickly and massively collecting spatial point position information, TLS can automatically
splice and rapidly obtain the appearance of the measured object. It can be used to construct high-
precision surface models and appearance models of buildings and structures. The 3D model can
display the shape and structure of the mountain and the detailed features of the ground surface from
different angles and in all directions (Zhou et al., 2024), enabling geological experts and engineers
to have a more intuitive understanding of the overall situation of the landslide area. For example, the
cracks in the mountain, the loose accumulations, and the degree of weathering of the rocks can be
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clearly seen, providing richer information for the identification of potential landslide hazards.

Currently, TLS is commonly used in critical areas requiring localized precision. For historical
landslide masses, it captures reactivation indicators such as rear tensile cracks and frontal bulging,
with data input into anomaly detection models to identify reactivation signals.

2.3.3 Ground-based Sensor Devices

Compared to the aforementioned data sources, ground-based sensors offer key advantages,
including high precision, realtime capabilities, and multi-parameter fusion (Dai et al., 2023). They
can address the limitations of remote sensing and provide critical ground-based dynamic information
for potential landslide identification.

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the
state of landslide masses. These datasets provide foundational inputs for deep learning models,
enabling multi-dimensional analysis and interpretation of potential landslide conditions. For
example, ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like
displacement and tilt angle at frequencies ranging from minutes to seconds, capturing transient,
anomalous signals just prior to landslide events, thereby filling the temporal resolution gap in remote
sensing (Jiang et al., 2022). By integrating time series data with SAR imagery, deep learning models
can be trained to uncover correlation patterns between surface deformations and subsurface
parameters. Instruments such as piezometers and soil pressure gauges can directly monitor key
parameters like pore water pressure and soil stress on the sliding surface. By combining the obtained
subsurface data with geomechanical equations, the position of the sliding surface or geotechnical
strength parameters can be inverted.

Revised Description in Section 2

2 Deep Learning for Potential Landslide Identification: Data Source

Accurate identification of potential landslides is the primary step in effectively preventing and
mitigating the impacts of landslide hazards. Data sources are the cornerstone of achieving this
objective. Different types of data provide indispensable information for potential landslide
identification from various perspectives, and drive ongoing advancements in related research and
practices.

In potential landslide identification, the richness and reliability of data sources directly
determine the accuracy and effectiveness of research. Data sources not only provide fundamental
information to outline the landslide environments, but also enable dynamic monitoring and precise
analysis. This section will comprehensively review the critical roles played by three main types of
data sources: satellite observation data, airborne remote sensing data, and ground-based observation
data (see Fig. 1)

2.1 Satellite Observation Data

Since the launch of Landsat-1, the first earth observation satellite for studying and monitoring
the Earth” s surface on July 23, 1972, satellite data has become widely accessible, extending beyond
single-purpose analyses or results (Wulder et al., 2022). With the continuous development of satellite
observation, its immense potential for application in landslide research has become evident (Liu et
al., 2021d). At present, satellite observation data mainly include space-borne synthetic aperture radar

47




(SAR) and optical remote sensing data, both of which are widely used as inputs for deep learning
models in landslide identification.
2.1.1 Space-borne SAR

SAR is an active microwave remote sensing system (Franceschetti and Lanari, 2018). It is not
only capable of acquiring data on demand by actively emitting microwave signals but also facilitates
partial penetration of vegetation cover through its longer wavelength bands (such as the L-band),
thereby allowing the retrieval of surface deformation information beneath vegetated areas. The time
series data provided by SAR can serve as input for deep learning models, allowing these models to
be trained to identify long-term patterns of terrain change. Continuous monitoring of potential
landslide areas is crucial, and SAR is widely employed in high-risk environments.

Interferometric synthetic aperture radar (InSAR) has been developed based on. It obtains
surface elevation information by performing coherent processing on two sets of SAR images
observed in the same area (Dai et al., 2022; Ma et al., 2023b; Zeng et al., 2024).

In contrast, SAR mainly provide backscatter information of ground objects. Although some
features of ground objects can be identified according to the scattering characteristics, their ability
to obtain topographic elevation information is relatively weak. InNSAR, on the other hand, can directly
generate topographic elevation data, which is of great significance for analyzing the topography and
geomorphology in the identification of potential landslides, and determining key elements such as
the topographic undulation and slope of potential landslide areas.

When screening for potential landslides over a large area, InNSAR has higher efficiency (Dun et
al., 2021; Tang et al., 2025; Zhang et al., 2021). When monitoring large potential landslide areas
such as mountainous regions, InSAR can quickly obtain topographic deformation information over
a large area, promptly detect potential areas with potential landslides, and reduce the workload and
blind spots of manual inspections. InSAR is widely employed to generate ground deformation
velocity maps and time-series data, which reveal the dynamic evolution of landslide-prone areas.

Recent studies have integrated InSAR-derived deformation velocity fields with deep learning
models to automatically detect slow-moving or latent landslides. For example, Liu et al. (2022)
employed an InSAR-CNN framework to map active landslides in the Eastern Tibet Plateau area,
achieving a detection accuracy of over 90%. Similarly, Zhang et al. (2022) proposed a two-stage
detection deep learning network (InSARNet) for detecting anomalous deformation areas in Maoxian
County, Sichuan Province, with a recognition accuracy of 93.88%. Targeting the complex
deformation mechanisms of multi-type landslides in Zigui County, Three Gorges Reservoir Area, Hu
et al (2025) used InSAR time-series displacement as the core data, develop a deep learning
architecture based on the integrated framework of EMD and GRU, break through the limitations of
traditional models such as single-type, single-target, and low-accuracy, and achieve dual-accurate
prediction of displacement and failure time for multi-type landslides.

Differential interferometric synthetic aperture radar (D-InSAR) is an advancement of InSAR
that eliminates topographic phase through differential processing, focusing specifically on
deformation information extraction (Shen et al., 2022). The emergence of D-InSAR not only enables
the transition from mixed deformation-topography signals to pure deformation signal extraction but
also extends its applicability from detecting discrete deformation events to identifying slow-moving
landslide processes, significantly enhancing the reliability of landslide monitoring (Zhong et al.,
2024).

2.1.2 Optical Remote Sensing
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Optical remote sensing refers to the acquisition of surface information through sensors that
measure reflected solar radiation. Its application in geological hazard investigations dates back to
the 1970s.

Optical remote sensing offers high resolution, currently capable of achieving spatial resolutions
as fine as 0.3 meters or better. In potential landslide identification, it not only facilitates the retrieval
of detailed surface textures and color characteristics using rich spectral data but also enables the
direct identification of morphological features and object contours via visual interpretation of
imagery (Cheng and Han, 2016; Li et al., 2022b).

Landslide formation typically follows a progressive process from deformation to failure,
accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized collapses.
These indicators exhibit distinct spectral signatures in optical imagery compared to their
surroundings, enabling both manual interpretation and automated detection. In deep learning
applications, multispectral optical images have been widely used to train CNN-based models for
landslide identification. Lu et al. (2023) developed a method for achieving accurate landslide
mapping using medium-resolution remote sensing images and DEM data, which has the potential
for deployment in large-scale landslide detection. Jiang et al. (2022) proposed a TL-Mask R-CNN
for identifying a small number of old landslide samples in the area along the Sichuan-Tibet
Transportation Corridor. The results show that the pixel accuracy of segmentation for new landslides
and old landslides can reach 87.71% and 75.86% respectively.

In vegetated mountainous regions, surface vegetation often undergoes detectable changes
before a landslide event. Optical remote sensing leverages multispectral data, particularly red and
near-infrared bands, to monitor vegetation health and identify potential landslide zones.
Furthermore, the calculation of the normalized difference vegetation index (NDVI) facilitates the
evaluation of vegetation health in potential landslide regions, providing critical insights into potential
landslide precursors (Verrelst et al., 2015).

While both space-borne SAR and optical remote sensing are pivotal for large-area landslide
screening, they offer complementary capabilities and have distinct limitations. Optical remote
sensing provides intuitive visual interpretation of geomorphological features but is rendered useless
by cloud cover and darkness. In contrast, space-borne SAR, with its all-weather, day-and-night
imaging capability, excels in detecting millimeter-to-centimeter-scale surface deformation through
InSAR techniques, which is a direct precursor to landslide failure. However, InNSAR performance
can be degraded in heavily vegetated areas due to temporal decorrelation and in steep terrain due to
geometric distortions (Lin et al., 2022; Yan et al., 2024), areas where optical stereo imaging for DEM
generation might be less affected. Therefore, the integration of SAR-derived deformation maps and
optical-based geomorphological maps is considered a best practice for regional-scale landslide
inventory mapping and preliminary hazard assessment (Xun et al., 2022).

2.2 Airborne Remote Sensing Data

Airborne remote sensing data, typically acquired by manned aircrafts, provide high-resolution
imagery of localized areas. Advanced airborne platforms equipped with oblique photogrammetry
and, more recently, close-range photogrammetry technologies enable millimeter-level accuracy in
3D photogrammetry, facilitating the observation of subtle surface deformations, rock mass
structures, and the construction of highly detailed 3D models of terrain and above-ground
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infrastructure (Macciotta and Hendry, 2021; Xu et al., 2023). Among these technologies, airborne
photogrammetry and airborne radar are the most commonly used.
2.2.1 Airborne Light Detection and Ranging (LiDAR)

LiDAR has been used for landslide and other geological hazard investigations in many regions
since the late 1990s. As an active remote sensing system, LiDAR can laterally scan a range of 60°
and capture 400,000 points per second, enabling largescale 3D scanning of terrain, structures, and
vegetation within a short period (Mallet and Bretar, 2009). It offers centimeter-level accuracy in both
horizontal and vertical dimensions.

Airborne LiDAR is irreplaceable in capturing 3D details and penetrating vegetation,
particularly in densely vegetated areas where conventional aerial photography faces significant
limitations. Airborne LiDAR not only acquires high- resolution digital surface models (DSMs) from
laser point cloud data but also generates high-accuracy DEMs by removing vegetation contributions
(Fang et al., 2022; Jaboyedoff et al., 2012; Yan et al., 2023), thereby revealing concealed hazard
features such as mountain fractures, loose deposits, and landslide masses under vegetation cover.

Point cloud data obtained from airborne LiDAR can monitor dynamic changes in mountainous
terrain by detecting deformations such as subsidence, displacement, and uplift, while also facilitating
the construction of 3D landslide models to simulate sliding directions and impact areas. Through
intuitive visualization of slope morphology and structure from multiple perspectives, LIDAR enables
researchers to conduct a comprehensive assessment of slope conditions and identify subtle hazard
features that may not be easily discernible in 2D imagery.

These high-precision DEMs and point clouds serve as critical inputs for deep learning models.
For instance, Wei et al. (2023) proposed the DAG-Net model to construct dynamic edge features for
enhancing point cloud representations, achieving the highest mean Intersection over Union (mloU)
0f 0.743 and an F1-score of 0.786. Similarly, Farmakis et al. (2022) Based on the advanced PointNet
and PointNet++ architectures, we developed deep neural networks for 3D point cloud learning. The
best-performing model achieved accuracies of approximately 89% and 84% during the final and
shortest monitoring campaigns, respectively. These examples demonstrate that airborne LiDAR data
are not only suitable but have been effectively applied in deep learning-based landslide analysis.
2.2.2 Unmanned Aerial Vehicle (UAV)

UAV aerial photogrammetry provides outstanding maneuverability and high-precision
measurements. Traversing over steep slopes and valleys, UAVs are able to monitor areas that are
often inaccessible to satellites and manned aerial platforms (Niethammer et al., 2012), thus
addressing critical observational limitations.

In large-scale and topographically complex regions, UAVs can perform efficient aerial
inspections, overcoming the limitations of ground-based inspections in inaccessible or visually
obstructed regions. By rapidly scanning mountain slopes, embankments, and gullies, UAVs provide
a comprehensive understanding of the geological conditions and enable timely identification of
macro-scale geomorphic anomalies. However, given cost-effectiveness constraints, UAVs are
currently more commonly used for periodic and continuous monitoring in localized areas. They are
particularly well-suited for rapid and dynamic monitoring of landslides in high-priority zones.

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial
photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on
UAUVs are able to capture the subtle cracks on the surface of the mountain.

These cracks may be early signs of a landslide (Sun et al., 2024a). By conducting a comparative
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analysis of the images taken at different times, the development and changes of the cracks can be
monitored, including the increase in the length, width and depth of the cracks, as well as the changes
in the crack orientation. In some mountainous areas or valleys, there may be a large number of loose
accumulations. These accumulations may trigger landslides under specific conditions. Aerial
photography by UAVs can clearly identify information such as the distribution range, accumulation
quantity and accumulation shape of these loose accumulations, and assess their potential threats to
the surrounding environment. This capability is leveraged in deep learning applications, where time-
series UAV imagery is processed using RNNs or 3D CNNs to monitor the spatiotemporal evolution
of these cracks, providing a data-driven approach for early warning (Xu et al., 2025; Sandric et al.,
2024).

When equipped with LiDAR sensors, UAVs can effectively remove vegetation from the data.
Then, assisting researchers to reveal landslide boundaries, crack patterns, and other deformation
features hidden beneath vegetation cover. This integrated approach combines the strengths of
photogrammetry and LiDAR (Mandlburger et al., 2020), allowing for rapid deployment and targeted
area monitoring while mitigating the challenges posed by vegetation cover in landslide detection and
assessment. In addition, Wallace et al (2012) demonstrated that integrating LiDAR with UAVs can
maintain high accuracy while reducing costs to a certain extent.

After extreme weather events such as heavy rainstorms or geological events like earthquakes
occur, the stability of the mountain may be affected, making it prone to triggering geological hazards.
UAVs even can quickly conduct aerial monitoring of the relevant areas after extreme weather.

2.3 Ground-based Observation Data

Satellite- and airborne-based observations primarily identify potential landslides through large-
scale surface morphological analysis. However, these approaches are often affected by vegetation
cover, viewing geometry, and atmospheric noise, which may lead to misclassification or omission.
Therefore, ground-based observation techniques play a critical complementary role, offering higher
temporal resolution, accuracy, and localized verification for potential landslide identification. In
recent years, data collected from ground-based monitoring instruments have not only been used for
field validation but also increasingly incorporated into deep learning frameworks to improve
temporal continuity and physical interpretability in landslide detection and forecasting.

2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR)

GB-SAR is an active ground-based microwave remote sensing system that has been developed
over the past decade. Compared to spaceborne SAR, GB-SAR allows adjustment of radar wave
incidence angles and azimuths, preventing phase decorrelation issues caused by terrain obstructions
in satellite SAR, making it particularly suitable for monitoring steep slopes, canyons, and other areas
with limited satellite line-of-sight (Noferini et al., 2007).

GB-SAR effectively integrates the principles of SAR imaging with electromagnetic wave
interferometry. By leveraging precise measurements of sensor system parameters, attitude
parameters, and geometric relationships between orbits, GB-SAR quantifies spatial positions and
subtle changes at specific surface points, allowing for the measurement of surface deformations with
millimeter or even sub-millimeter precision.

During landslide movement, the ground experiences noticeable subsidence, displacement, or
cracking. GB-SAR can be configured for high-resolution, continuous observation to capture
instantaneous deformations during the landslide creep phase and generate corresponding
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displacement maps (Liu et al., 2021a; Xiao et al., 2021). For example, Long et al. (2018) proposed
a GBSAR persistent scatterer (PS) point selection method based on the mean coherence coefficient,
amplitude dispersion index, estimated signal-to-noise ratio, and displacement accuracy index. Han
et al. (2022) proposed an LSTM (long short-term memory)-based approach for processing GB-
InSAR time series data. Kacan et al. (2022) employed two deep learning methods to investigate the
potential and advantages of processing raw GBSAR data for automatic radar classification.

For small-scale regional monitoring, GB-SAR can establish customized geometric
configurations specifically designed for target areas. Utilizing mobile rail systems or multi-antenna
setups, GB-SAR reconstructs 3D deformation vector fields of landslide masses (Shi et al., 2025),
identifying sliding directions and potential failure surfaces.

2.3.2 Terrestrial Laser Scanning (TLS)

TLS emerged in the mid-1990s. It plays a unique role in local refined monitoring by emitting
laser pulses and measuring their reflection time (Stumvoll et al., 2021; Teza et al., 2007).

The landslide often manifests as a sharp change in the ground surface. TLS can provide data
with sufficient accuracy, assisting researchers in identifying the features of these landslides. By
combining topographic analysis, the location of the landslide surface can be accurately determined.
TLS scanner can also help identify the landslide mass, that is, the flow path of the landslide materials.
Through analyzing the point cloud data, the movement path of the landslide area, the soil
accumulation area, and the accumulation location of the landslide materials can be extracted,
providing detailed information for the analysis and assessment of potential landslides.

By quickly and massively collecting spatial point position information, TLS can automatically
splice and rapidly obtain the appearance of the measured object. It can be used to construct high-
precision surface models and appearance models of buildings and structures. The 3D model can
display the shape and structure of the mountain and the detailed features of the ground surface from
different angles and in all directions (Zhou et al., 2024), enabling geological experts and engineers
to have a more intuitive understanding of the overall situation of the landslide area. For example, the
cracks in the mountain, the loose accumulations, and the degree of weathering of the rocks can be
clearly seen, providing richer information for the identification of potential landslides.

In the context of deep learning, TLS-derived 3D point clouds have become critical inputs for
morphological feature extraction and automatic landslide identification. For example, Senogles et al.
(2022) integrated TLS point cloud data to assess surface displacements induced by landslide
movements. Wang et al. (2025) provided a practical and adaptable solution for landslide monitoring
by integrating TLS point clouds with embedded RGB imagery.

These examples confirm that TLS data are not only suitable but already actively used in deep
learning-based landslide recognition, providing precise geometric constraints for multi-source fusion
frameworks that combine DEM, optical, and InSAR information.

2.3.3 Ground-based Sensor Devices

Compared to the above methods, ground-based sensors offer key advantages, including high
precision, realtime capabilities, and multi-parameter fusion (Dai et al., 2023). They can address the
limitations of remote sensing and provide critical ground-based dynamic information for potential
landslide identification.

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the
state of landslide masses. These datasets provide foundational inputs for deep learning models,
enabling multi-dimensional analysis and interpretation of potential landslide conditions. For
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example, ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like
displacement and tilt angle at frequencies ranging from minutes to seconds, capturing transient,
anomalous signals just prior to landslide events, thereby filling the temporal resolution gap in remote
sensing (Jiang et al., 2022). These data are often used as input sources for RNN models and their
variants (Bai et al., 2022; Wang et al.,2021). By integrating time series data with SAR imagery, deep
learning models can be trained to uncover correlation patterns between surface deformations and
subsurface parameters.

Instruments such as piezometers and soil pressure gauges can directly monitor key parameters
like pore water pressure and soil stress on the sliding surface. By combining the obtained subsurface
data with geomechanical equations, the position of the sliding surface or geotechnical strength
parameters can be inverted.

Therefore, GB-SAR, TLS, and ground-based sensors are not only auxiliary observation
techniques but are increasingly serving as key data sources for deep learning-driven landslide
identification. Their integration into CNN, LSTM, and GAN frameworks enables high-resolution
spatial-temporal modeling of slope behavior, bridging the gap between field-scale monitoring and
large-scale hazard prediction.
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9. Line 84. The phrase stops in the middle of the sentence.
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Thank you for catching this incomplete sentence! We have revised it to be grammatically correct
and clearer.

Please see revised Subsection 2.1.1 for details.
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Original Description in Subsection 2.1.1

Interferometric synthetic aperture radar (InNSAR) has been developed based on. It obtains
surface elevation information by performing coherent processing on two sets of SAR images
observed in the same area (Dai et al., 2022; Ma et al., 2023b; Zeng et al., 2024).

Revised Description in Subsection 2.1.1

Interferometric synthetic aperture radar (InSAR) has been developed based on the principle of
measuring phase differences between two or more SAR images of the same area (Dai et al., 2022;
Ma et al., 2023b; Zeng et al., 2024). By coherently processing these images, InSAR obtains high-
precision surface elevation information and can be further applied to detect ground deformation.

Comment #7:
&. Line 219-227. Theis read as introduction.

Response:

Thank you for this astute observation! We have revised it to be grammatically correct and clearer.
To address this, we have restructured and rewritten the opening paragraph of Section 3 to make it
more concise and focused on the roles and mechanisms of deep learning models in potential
landslide identification. The revised text now removes redundant background discussion (e.g.,
traditional methods and feature extraction challenges) and directly introduces the types of deep
learning models and their applications to landslide analysis. (Please see revised Section 3 for
details).

The modification improves the logical flow and ensures that Section 3 begins with a clear technical

overview consistent with the reviewer’s suggestion.

Original Description in Section 3

3 Deep Learning for Potential Landslide Identification: Models

Potential landslide identification relies heavily on extensive data analysis, and the key is how
to efficiently and accurately extract features that are helpful for identifying landslide occurrences.
Conventional landslide identification methods often rely on human expertise or rules, often
necessitating expert knowledge for identifying relevant features. With continuous exploration, deep
learning, through its powerful feature learning capabilities, enables the automatic extraction of
meaningful features from raw data, significantly reducing manual intervention. Especially when
dealing with high-dimensional and complex landslide data, deep learning models can extract deep
features related to landslides from raw data in a data-driven manner, without the need for manual
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feature design.

The choice of deep learning models typically depends on the type of data and the task
requirements. Although each model typically has multiple effects, its internal architecture results in
different focal points when it comes to automated feature extraction. This section analyzes several
commonly used deep learning models from five perspectives: image analysis and processing, time
series analysis, data generation, data cleaning, and data fusion.

Revised Description in Section 3

3 Deep Learning for Potential Landslide Identification: Models

The effectiveness of deep learning in potential landslide identification largely depends on
selecting an appropriate model architecture suited to the data type and specific task. While all deep
learning models excel at automated feature extraction, their internal architectures predispose them
to excel in different aspects of the overall workflow. Therefore, this section does not merely list
models, but organizes them based on their primary function in the landslide identification pipeline.
We analyze several commonly used deep learning models by categorizing them into five functional
roles: image analysis and processing, time series analysis, data generation, anomaly detection, and
data fusion.

Comment #8:
11. Line 280. The citation refers to medical research. While cross-disciplinary examples can be

useful, this seems out of scope in the current context.

Response:

Thank you for your valuable comment!

We agree that citing only the original U-Net paper from the medical imaging domain may appear
out of scope. Our intention was to acknowledge the seminal work of Ronneberger et al. (2015),
which first introduced the U-shaped encoder—decoder architecture. To improve the relevance, we
have revised the text to emphasize the subsequent adoption of U-Net in geoscience and remote
sensing applications. In particular, we have added domain-specific references that demonstrate the
application of U-Net in landslide detection and related remote sensing tasks. (Please see revised

Subsection 3.1 for details).

Original Description in Subsection 3.1

U-Net is a typical example (Ronneberger et al., 2015), which features a U-shaped architecture.
U-Net employs an encoder-decoder structure, where the encoder is similar to conventional CNNs,
progressively reducing image resolution and extracting features through convolution and pooling
operations; the decoder then restores the image resolution through transposed convolution or
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upsampling operations (Dong et al., 2022; Nava et al., 2022). Skip connections bridge low-level
detail features with deep semantic features, thereby refining segmentation precision.

Revised Description in Subsection 3.1

U-Net is a typical example, which features a U-shaped architecture (Ronneberger et al., 2015).
U-Net's encoder-decoder structure with skip connections has become a benchmark for landslide
segmentation (Chandra et al., 2023; Chen et al., 2022; Meena et al., 2022). For example, Dong et al.
(2022) proposed a new model, L-UNet, based on the U-Net architecture and successfully applied it
to landslide extraction from remote sensing imagery. Nava et al. (2022) applied the Attention U-Net
to Sentinel-1 SAR data for rapid mapping of earthquake-induced landslides, demonstrating the
effectiveness of U-Net variants in pixel-level segmentation of landslide bodies under cloud-covered

or topographically complex conditions.

Newly Added References

Chandra, N., Sawant, S. and Vaidya, H., 2023. An efficient u-net model for improved landslide detection from
satellite images. PFG—Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 91(1),
pp.13-28. doi:10.1007/s41064-023-00232-4.

Chen, X., Yao, X., Zhou, Z., Liu, Y., Yao, C. and Ren, K., 2022. DRs-UNet: A deep semantic segmentation
network for the recognition of active landslides from InSAR imagery in the three rivers region of the
Qinghai—Tibet Plateau. Remote Sensing, 14(8), p.1848. doi:10.3390/rs14081848.

Meena, S.R., Soares, L.P., Grohmann, C.H., Van Westen, C., Bhuyan, K., Singh, R.P., Floris, M. and Catani, F.,
2022. Landslide detection in the Himalayas using machine learning algorithms and U-Net. Landslides,
19(5), pp.1209-1229. doi:10.1007/s10346-022-01861-3.

Comment #9:
14. Line 434. Although: this expects something negative after.
15. Line 436: widely applied: you need to give reference on what they are applied to.

Response:
Thank you for these critical observations! We agree that the original use of "Although" created an
illogical sentence structure, and the claim that diffusion models have not been "widely applied"
lacked necessary references, weakening our argument.
We have completely rewritten the Subsection 3.3 to simultaneously resolve both issues. The
revision achieves the following:
(1) We replaced "Although" with "Diffusion models" as the sentence subject and restructured the

passage. The revised version clearly presents the advantages of diffusion models first, followed by
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their current limitations and potential for future application.

(2) We have added recent studies demonstrating the use of diffusion models in related geospatial
and remote sensing fields, such as high-resolution satellite image synthesis, cloud removal, and
topographic data reconstruction. These examples illustrate that, while diffusion models have shown
promising performance in image generation and enhancement, their direct application to landslide
identification is still in the exploratory phase.

Original Description in Subsection 3.3

Although diffusion models demonstrate strong capabilities in generating high-quality images
and handling noise, they generate superior-quality data and ensure greater training stability compared
to GANs and VAEs. However, diffusion models have not yet been widely applied directly to the
identification of potential landslides and remain in the exploratory stage (see Fig. 4). We believe that
as generative models advance in the field of geospatial remote sensing, they hold vast potential for
application and could play a pivotal role in future landslide risk analysis and monitoring systems.

Revised Description in Subsection 3.3

Diffusion models demonstrate strong capabilities in generating high-quality images and
handling noise (Liu et al., 2024). They produce superior-quality data and ensure greater training
stability compared to GANs and VAEs. In recent years, diffusion models have been successfully
applied to a variety of geospatial tasks, including remote sensing image super-resolution (Sui et al.,
2024; Xiao et al., 2023), cloud removal and denoising (Leher et al., 2025; Zou et al., 2024), and
terrain surface reconstruction from sparse LiDAR data (Zou et al., 2024). However, diffusion models
have not yet been widely applied directly to the identification of potential landslides and remain in
the exploratory stage (see Fig. 4). We believe that as generative models continue to advance in the
field of geospatial remote sensing, they hold vast potential for application and could play a pivotal
role in future landslide risk analysis and monitoring systems.

Newly Added References

Leher, Q. O., Bezerra, E. S., Paixdo, T., Palomino-Quispe, F., & Alvarez, A. B. (2025). Denoising Diffusion
Probabilistic Models for Cloud Removal and Land Surface Temperature Retrieval From a Single Sample.
IEEE Access. doi:10.1109/ACCESS.2025.3542014.

Liu, Y., Yue, J., Xia, S., Ghamisi, P., Xie, W., & Fang, L. (2024). Diffusion models meet remote sensing:
Principles, methods, and perspectives. IEEE Transactions on Geoscience and Remote Sensing.
doi:10.1109/TGRS.2024.3464685.

Sui, J., Ma, X., Zhang, X., Pun, M. O., & Wu, H. (2024). Adaptive semantic-enhanced denoising diffusion
probabilistic model for remote sensing image super-resolution. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing. doi:10.1109/JSTARS.2024.3504569.

Wang, Z., Li, D., Wu, Y., He, T., Bian, J., & Jiang, R. (2024). Diffusion models in 3d vision: A survey. arXiv
preprint arXiv:2410.04738. doi:10.48550/arXiv.2410.04738.
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Xiao, Y., Yuan, Q., Jiang, K., He, J., Jin, X., & Zhang, L. (2023). EDiffSR: An efficient diffusion probabilistic
model for remote sensing image super-resolution. IEEE Transactions on Geoscience and Remote Sensing,
62, 1-14. doi:10.1109/TGRS.2023.3341437.

Zou, X., Li, K., Xing, J., Zhang, Y., Wang, S., Jin, L., & Tao, P. (2024). Diffcr: A fast conditional diffusion
framework for cloud removal from optical satellite images. IEEE Transactions on Geoscience and Remote
Sensing, 62, 1-14. doi:10.1109/TGRS.2024.3365806.

Comment #10:

16. Line 510: missing reference

Response:
Thank you for the valuable suggestion! We agree that this sentence requires supporting references.
In the revised manuscript, we have added recent studies that demonstrate the use of GNN:s,
particularly GCNs and GATs, for analyzing the spatial dependencies and weighted contributions
of different geo-environmental factors in landslide detection. These works provide empirical

evidence for the statement.

Original Description in Subsection 3.5

According to the differences in message passing and aggregation methods, GNNs have derived
various variants. For example, graph convolutional network (GCN) is generated by generalizing the
convolutional operation to graph-structured data (Sharma et al., 2022; Wang et al., 2020a), and graph
attention network (GAT) dynamically weights the importance of neighboring nodes by introducing
the attention mechanism (Yuan et al., 2022; Zhou and Li, 2021). The emergence of these new
architectures makes GNN variants more targeted than conventional GNNs and suitable for modeling
heterogeneous relationships. Currently, they are often used for weighted analysis of the impacts of
different geographical factors on landslides.

Revised Description in Subsection 3.5

According to the differences in message passing and aggregation methods, GNNs have derived
various variants. For example, graph convolutional network (GCN) is generated by generalizing the
convolutional operation to graph-structured data (Sharma et al., 2022; Wang et al., 2020a), and graph
attention network (GAT) dynamically weights the importance of neighboring nodes by introducing
the attention mechanism (Yuan et al., 2022; Zhou and Li, 2021). The emergence of these new
architectures makes GNN variants more targeted than conventional GNNs and suitable for modeling
heterogeneous relationships. Currently, they are often used for weighted analysis of the impacts of
different geographical factors on landslides (Kuang et al., 2022; Li et al., 2025; Zhang et al., 2024).
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Newly Added References

Kuang, P., Li, R., Huang, Y., Wu, J., Luo, X., & Zhou, F. 2022. Landslide displacement prediction via attentive
graph neural network. Remote Sensing, 14(8), 1919. doi:10.3390/rs14081919.

Li, Y., Chen, T., Lv, L., Niu, R., & Plaza, A. 2025. IED-GCN: An Internal and External Decoupled Graph
Convolutional Network for Landslide Susceptibility Assessment. IEEE Transactions on Geoscience and
Remote Sensing. doi: 10.1109/TGRS.2025.3595205.

Zhang, Q., He, Y., Zhang, Y., Lu, J., Zhang, L., Huo, T., ... & Zhang, Y. 2024. A Graph-Transformer method for
landslide susceptibility mapping. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing. doi:10.1109/JSTARS.2024.3437751.

Comment #11:
17. Line 579. Thus?

Response:
Thank you very much for raising this concern! The term "Thus" was indeed imprecise in indicating
the logical relationship between the preceding discussion on rainfall thresholds and the subsequent
sentence about monitoring systems. To improve clarity and logical coherence, we have revised this

sentence to better reflect the causal connection. Please see the revised Subsection 4.1 for details.

Original Description in Subsection 4.1

What determines the critical threshold for rainfall-induced landslides? First, it is essential to
define the critical threshold as the minimum amount of rainfall required to trigger a landslide under
specific geological and topographic conditions (Naidu et al., 2018; Segoni et al., 2018b). This
threshold is typically classified into two types: empirical thresholds, which are derived from
statistical relationships between historical landslide events and rainfall data, and physically based
thresholds, which incorporate hydromechanical models. Both approaches assume rainfall as the
primary destabilizing driver. Monitoring systems thus integrate rain gauge and remote sensing to
assess proximity to critical saturation thresholds (Li et al., 2023a; Piciullo et al., 2018). Moreover,
the relationship between rainfall and landslides is often nonlinear and influenced by multiple factors.
Deep learning models enable data-driven determination of context-specific critical rainfall values
across diverse geological and topographical settings (Sala et al., 2021; Segoni et al., 2018a). For
example, Badakhshan et al. (2025) incorporated the role of soil strength. Soares et al. (2022) utilized
the U-Net model, reveals that the inclusion of a normalized vegetation index layer enhances model
balance and significantly improves segmentation accuracy.
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Revised Description in Subsection 4.1

What determines the critical threshold for rainfall-induced landslides? First, it is essential to
define the critical threshold as the minimum amount of rainfall required to trigger a landslide under
specific geological and topographic conditions (Naidu et al., 2018; Segoni et al., 2018b). This
threshold is typically classified into two types: empirical thresholds, which are derived from
statistical relationships between historical landslide events and rainfall data, and physically based
thresholds, which incorporate hydromechanical models. Both approaches assume rainfall as the
primary destabilizing driver. To operationalize these thresholds for landslide prediction, monitoring
systems integrate rain gauge and remote sensing to assess proximity to critical saturation levels (Li
et al., 2023a; Piciullo et al., 2018). Moreover, the relationship between rainfall and landslides is often
nonlinear and influenced by multiple factors. Deep learning models enable data-driven determination
of context-specific critical rainfall values across diverse geological and topographical settings (Sala
et al., 2021; Segoni et al., 2018a). For example, Badakhshan et al. (2025) incorporated the role of
soil strength. Soares et al. (2022) utilized the U-Net model, reveals that the inclusion of a normalized
vegetation index layer enhances model balance and significantly improves segmentation accuracy.

Comment #12:

18. Line 612. Missing reference in the first phrase: “The Newmark model is......”

Response:
Thank you for pointing out that this part of our content lacks authoritative citations! In the revised
version, we have added citations to Newmark (1965) and Jibson (2007). Newmark first proposed
this model, while Jibson further extended it and applied it to the assessment of earthquake-induced
landslides. These references provide a solid theoretical and methodological foundation for the

related statements.

Original Description in Subsection 4.2

The Newmark model is a commonly used basic model in the research of earthquake-induced
landslides. Based on a simplified assumption, it regards the rock and soil masses on the slope as rigid
blocks. When these rigid blocks are affected by seismic vibrations, they slide on the slope surface.
By calculating the cumulative downhill displacement of the rigid blocks caused by the continuous
increase of seismic vibrations, the stability of the slope under the action of an earthquake is measured.
In other words, the greater the cumulative downslope displacement, the more unstable the slope is
during the earthquake, and the higher the likelihood of a landslide occurring. However, Newmark’s
model exhibits critical limitations: (1) Dependence on oversimplified soil or rock strength
assumptions and (2) Inadequate integration of high-resolution seismic motion data. Deep learning
models address these gaps by processing massive real-time datasets, filtering noise from obscured
remote sensing imagery (Wang et al., 2024b), and fusing seismic parameters with multispectral
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satellite data through cross-modal architectures (Dahal et al., 2024).

Revised Description in Subsection 4.2

The Newmark model is a commonly used basic model in the research of earthquake-induced
landslides (Jibson 2007; Newmark 1965). Based on a simplified assumption, it regards the rock and
soil masses on the slope as rigid blocks. When these rigid blocks are affected by seismic vibrations,
they slide on the slope surface. By calculating the cumulative downhill displacement of the rigid
blocks caused by the continuous increase of seismic vibrations, the stability of the slope under the
action of an earthquake is measured. In other words, the greater the cumulative downslope
displacement, the more unstable the slope is during the earthquake, and the higher the likelihood of
a landslide occurring. However, Newmark’s model exhibits critical limitations: (1) Dependence on
oversimplified soil or rock strength assumptions and (2) Inadequate integration of high-resolution
seismic motion data. Deep learning models address these gaps by processing massive real-time
datasets, filtering noise from obscured remote sensing imagery (Wang et al., 2024b), and fusing
seismic parameters with multispectral satellite data through cross-modal architectures (Dahal et al.,
2024).

Newly Added References

Jibson, R. W. 2007. Regression models for estimating coseismic landslide displacement. Engineering geology,
91(2-4), 209-218. doi: 10.1016/j.enggeo.2007.01.013.

Newmark, N. M. 1965. Effects of earthquakes on dams and embankments. Geotechnique, 15(2), 139-160.
doi:10.1680/geot.1965.15.2.139.

Comment #13:
19. Line 788. Although deep leaning model. Needs reference

Response:
Thank you for pointing this out! We have added appropriate references to support the statement
that deep learning models have achieved success in landslide identification. Specifically, we now
cite several representative studies demonstrating the successful application of CNNs, U-Net, and
Transformer-based models for landslide mapping and detection. These studies provide empirical
evidence that deep learning has significantly improved the accuracy and efficiency of landslide

identification.
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Original Description in Subsection 5.2

Although deep learning models have achieved success in landslide identification, they also have
certain problems of their own. The most critical challenge is interpretability (Li et al., 2025). This
means that it is difficult to explain how these models achieve these results.

Revised Description in Subsection 5.2

Although deep learning models have achieved success in landslide identification (Meena et al.,
2022; Suetal., 2021; Yi et al., 2020; Zhao et al., 2024), they also have certain problems of their own.
The most critical challenge is interpretability (Li et al., 2025). This means that it is difficult to explain
how these models achieve these results.

Newly Added References

Meena, S. R., Soares, L. P., Grohmann, C. H., Van Westen, C., Bhuyan, K., Singh, R. P., ... & Catani, F. (2022).
Landslide detection in the Himalayas using machine learning algorithms and U-Net. Landslides, 19(5),
1209-1229. doi: 10.1007/s10346-022-01861-3.

Su, Z., Chow, J. K., Tan, P. S., Wu, J., Ho, Y. K., & Wang, Y. H. 2021. Deep convolutional neural network-
based pixel-wise landslide inventory mapping. Landslides, 18(4), 1421-1443. doi:10.1007/s10346-020-
01557-6.

Yi, Y., & Zhang, W. 2020. A new deep-learning-based approach for earthquake-triggered landslide detection
from single-temporal RapidEye satellite imagery. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 13, 6166-6176. doi:10.1109/JSTARS.2020.3028855.

Zhao, Z., Chen, T., Dou, J., Liu, G., & Plaza, A. (2024). Landslide susceptibility mapping considering landslide
local-global features based on CNN and transformer. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 17, 7475-7489. doi:10.1109/JSTARS.2024.3379350.

With our clarifications and revisions, we hope that we have addressed your concerns. Thank you

so much for your kind consideration!
Have a nice day!

Pan Jiang & Zhengjing Ma & Gang Mei
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