
 

1 

 

Responses to the First Reviewer’s Comments 

Pan Jiang, Zhengjing Ma*, Gang Mei** 

School of Engineering and Technology 

China University of Geosciences (Beijing) 

gang.mei@cugb.edu.cn 

 

Acknowledgement The authors would like to thank the editor and the reviewers for their comments. 

-------------------------------------------------------------------------------------------------------------------------------- 

Comment # 1:  

1. The paper is well-organized and includes all the key elements I would expect from a review 

article on this topic. The topic itself (the use of deep learning in identifying landslides) is a 

worthwhile area to have a review on. The discussion of landslide mechanisms in Section 4 is quite 

detailed and interesting (although needs more discussion of how deep learning has been applied, 

see Weaknesses). The recommendations in Section 6, particularly regarding data fusion, feel well-

motivated and salient. The figures are mostly helpful and illustrative overall (see specific 

comments below), and I think would be useful for a landslide researcher who wants to know more 

about deep learning. The review of previous literature is extensive and can point curious readers 

in the right direction.  

Response: 

- Dear reviewer, we appreciate your positive and encouraging evaluation of our manuscript!  We 

are very encouraged by their assessment that the paper is well-organized, comprehensive, and a 

worthwhile contribution to the field. We have carefully considered all the comments and have 

revised the manuscript accordingly. The point-by-point responses are detailed below. 

- * Regarding the discussion of landslide mechanisms in Section 4 

- Following your constructive suggestion regarding Section 4, we have supplemented specific deep 

learning application cases for each major type of landslide. In particular, we have elaborated on 

how the strengths of different models align with the recognition requirements of specific landslide 

types. Please see Comment #27. 

- * Regarding the discussion of figures 

- Thank you for the positive recognition. Based on your specific suggestions, we have carefully 

considered and provided our replies. Please see Comment #7 and Comment #31 for details. 

-  

- Once again, we express our sincere gratitude to the reviewer for their valuable time and 

constructive comments, which have undoubtedly improved the quality of our manuscript. We hope 

that the revised version now fully meets the journal's standards for publication. 

mailto:gang.mei@cugb.edu.cn
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Comment # 2: 

2. Throughout the paper, many claims made by the authors are unsupported by citations to 

relevant works (see below for several examples).  

Response: 

- We sincerely thank you for pointing out this important issue, and we apologize for the insufficient 

citation support in the previous version of the manuscript. Following your suggestion, we have 

carefully reviewed the entire paper and thoroughly examined every statement and reference to 

ensure that all claims are now properly supported by relevant and up-to-date literature. 

- In addition to addressing each of your specific comments below, we have also revised and updated 

the reference list throughout the manuscript to improve citation accuracy and completeness. 

- Once again, we appreciate your careful reading and constructive feedback, which have 

significantly improved the quality and credibility of our work. 

 

Comment # 3:  

2. The figures are helpful but there are not enough references to them in the text. I believe I counted 

exactly one in-text reference per figure, and often they seemed out of place. It would be helpful to 

refer the reader to the appropriate figure more often. 

20. L289-290: The reference to Figure 2 here is confusing. You are in the middle of discussing 

DeepLab, but there is no mention of deeplab in figure 2. 

Response: 

- Thank you for reviewing our manuscript and providing valuable and constructive feedback. Your 

observation that the manuscript contained insufficient and sometimes awkwardly placed references 

to figures and tables is highly insightful. 

- We fully agree with your assessment! In the revised version, we have systematically reviewed and 

refined the entire manuscript, substantially increasing the number of figure references and ensuring 

that each is seamlessly integrated with the corresponding textual discussion to better guide readers 

and strengthen our arguments. 

Original Description 

…… 

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the 

state of landslide masses. These datasets provide foundational inputs for deep learning models, 

enabling multi-dimensional analysis and interpretation of potential landslide conditions. For 

example, ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like 

displacement and tilt angle at frequencies ranging from minutes to seconds, capturing transient, 

anomalous signals just prior to landslide events, thereby filling the temporal resolution gap in remote 
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sensing (Jiang et al., 2022). By integrating time series data with SAR imagery, deep learning models 

can be trained to uncover correlation patterns between surface deformations and subsurface 

parameters. Instruments such as piezometers and soil pressure gauges can directly monitor key 

parameters like pore water pressure and soil stress on the sliding surface. By combining the obtained 

subsurface data with geomechanical equations, the position of the sliding surface or geotechnical 

strength parameters can be inverted. 

…… 

Convolutional neural networks (CNNs) represent the fundamental architecture in image 

processing. A CNN primarily comprises convolutional layers, pooling layers, and fully connected 

layers, each performing predefined functions on its input data (Kattenborn et al., 2021; Liu et al., 

2022a). 

…… 

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks 

are based on a similar idea, which is to establish a "shortcut" between different layers. However, the 

structure of DenseNet is simpler and more effective, with fewer parameters. In ResNet, each layer is 

only connected to the previous layer, while in DenseNet, each layer is directly connected to all 

previous layers, and each layer can obtain gradients from the loss function. This can optimize the 

information flow and gradients of the entire network, making it easier to train and performing better 

on small datasets. The structure of DenseNet can achieve better feature reuse and reduce the number 

of parameters. Moreover, the layers of DenseNet are narrower than those of other deep learning 

networks (Liu et al., 2021c), making it reduce redundancy by learning with fewer feature maps. This 

architecture is suitable for the extraction of multi-scale landslide features under complex terrains, 

even with limited landslide training samples. 

…… 

In contrast, the U-Net architecture is relatively simpler and better suited for small targets and 

high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution 

UAV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection 

and multispectral remote sensing image classification (see Fig. 2). 

…… 

Different from conventional statistical or physical models, deep learning models can 

automatically reveal dynamic change trends and periodic patterns in the data, providing more 

accurate information for landslide prediction and early warning. Recently, deep learning–based 

temporal models, such as recurrent neural networks (RNNs), long short-term memory networks 

(LSTMs), and gated recurrent units (GRUs), have become key tools for extracting nonlinear 

dependencies and temporal evolution patterns in landslide-related time series. 

…… 

To overcome the vanishing gradient problem inherent in RNNs, LSTMs introduce memory cells 

and gating mechanisms that selectively retain relevant temporal information (Landi et al., 2021; 

Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al., 2019). 
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This capability allows them to model the cumulative and delayed responses of slopes to prolonged 

rainfall or reservoir water level fluctuations. 

…… 

Deep generative models are the leading deep learning approach for synthetic data generation 

(Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They utilize deep neural 

networks to learn latent representations of data and optimize the learning process through specific 

objective functions. A key characteristic of deep generative models lies in their probabilistic nature—

they not only classify or reconstruct data but also capture the underlying distribution of geospatial 

features, enabling the creation of new landslide samples that are statistically consistent with observed 

patterns. Commonly used deep generative models include generative adversarial networks (GANs), 

variational autoencoders (VAEs), and diffusion models. 

…… 

GANs consist of a generator and a discriminator that compete in an adversarial process 

(Goodfellow et al., 2014). The generator synthesizes data resembling real samples, while the 

discriminator attempts to distinguish between generated and real data. Through iterative adversarial 

training, the generator learns to produce high-quality synthetic data that closely matches the 

distribution of real data (Gui et al., 2021; Saxena and Cao, 2021). 

…… 

When computational resources and training time permit, diffusion models provide a powerful 

alternative for generating high-quality, diverse, and stable data (Ho et al., 2020; Croitoru et al., 2023; 

Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually adding 

noise to real samples (forward diffusion) and then reconstructing clean data through a reverse 

denoising process. The resulting models can sample new, realistic data points that reflect complex 

terrain and geophysical variability. 

…… 

As previously introduced, VAE a probabilistic extension of AEs. VAEs introduce stochastic 

latent variables characterized by mean and variance, allowing them to model data uncertainty 

(Kingma et al., 2013; Li et al., 2020; Park et al., 2018). During training, VAEs learn the latent 

distribution of normal samples and reconstruct inputs accordingly. When new observation data 

deviate significantly from the learned distribution, the reconstruction error increases accordingly, 

and this phenomenon can be used as an indicator of potential anomalies. 

…… 

Transformer architectures, characterized by the self-attention mechanism, provide another 

promising avenue for landslide-related data fusion (Huang and Chen, 2023; Zhao et al., 2021a). 

Unlike CNNs or RNNs, which process spatial or temporal sequences sequentially, Transformers can 

jointly capture long-range dependencies across spatial and temporal dimensions, enabling unified 

processing of rainfall, InSAR time series, and topographic data (Esser et al., 2021; Lv et al., 2023). 

…… 

In this section, we focus on the analysis of the second type of potential landslides. Based on 

triggering factors, landslides can be classified into four categories: rainfall-induced landslides, 

earthquake-induced landslides, human activity-induced landslides, and multi factor-induced 

landslides. For each category of landslide, we provide a brief outline of its characteristics, discuss 

the applications of deep learning to different types of landslides, and examine the selection of 
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monitoring methods for each category. 

…… 

Multi factor-induced landslides result from the synergistic interaction of multiple natural and 

anthropogenic factors (Hao et al., 2023). Their triggering mechanisms involve the dynamic 

spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials through 

cumulative strength degradation. The formation of such landslides may involve various types of 

movements, including collapse, creep, and flow phenomena. They often exhibit characteristics such 

as complexity, nonlinearity, and suddenness. Therefore, their identification is markedly more 

complex compared to landslides triggered by singular factors. 

…… 

The abstract features extracted by the models also lack correspondence to interpretable 

geological indicators. Even if the model can identify potential landslides through the texture patterns 

of remote sensing images, it cannot explain whether these patterns correspond to the actual 

geomechanical parameters. 

…… 

In reality, the collection of landslide inventories faces many difficulties and it is hard to obtain 

them comprehensively and accurately. Thus, data scarcity is a common problem in the identification 

of potential landslide, especially in remote areas or regions with limited data accessibility. In such 

cases, deep learning models may suffer from overfitting or insufficient generalization ability due to 

a lack of samples (Kong et al., 2025; Lee et al., 2018). Although there are large-scale datasets such 

as the CAS landslide dataset, they are still insufficient compared with the data requirements of deep 

learning models (Xu et al., 2024). 

…… 

Although deep learning models have achieved success in landslide identification, they also have 

certain problems of their own. The most critical challenge is interpretability (Li et al., 2025). This 

means that it is difficult to explain how these models achieve these results. 

…… 

The formation of landslides involves the dynamic coupling of multiple factors such as 

geological structures, geotechnical mechanics, hydrological conditions, topography, meteorological 

factors, vegetation coverage, and human activities (Scheingross et al., 2020). Therefore, the 

triggering mechanisms encompass multiscale processes spanning microscopic interparticle friction 

to macroscopic slope instability, and transient dynamic responses to long-term temporal evolution 

(Yi et al., 2022). 

The knowledge-data dually driven paradigm, operating through an iterative "theory-guided data 

assimilation and data informed theoretical refinement" mechanism, has advanced potential landslide 

identification from empirical reliance to scientifically quantifiable methodologies. 

…… 

Revised Description 

…… 

Ground-based sensing devices are highly diverse, and the data they acquire directly reflect the 

state of landslide masses. These datasets provide foundational inputs for deep learning models, 

enabling multi-dimensional analysis and interpretation of potential landslide conditions. For 

example, ground sensors (e.g., GNSS receivers and crack meters) can collect parameters like 
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displacement and tilt angle at frequencies ranging from minutes to seconds (Jiang et al., 2022), 

capturing transient, anomalous signals just prior to landslide events, thereby filling the temporal 

resolution gap in remote sensing (see Figure 1). By integrating time series data with SAR imagery, 

deep learning models can be trained to uncover correlation patterns between surface deformations 

and subsurface parameters. Instruments such as piezometers and soil pressure gauges can directly 

monitor key parameters like pore water pressure and soil stress on the sliding surface. By combining 

the obtained subsurface data with geomechanical equations, the position of the sliding surface or 

geotechnical strength parameters can be inverted. 

…… 

Convolutional neural networks (CNNs) represent the fundamental architecture in image 

processing. A CNN primarily comprises convolutional layers, pooling layers, and fully connected 

layers, each performing predefined functions on its input data, as illustrated in Fig. 2 (Kattenborn et 

al., 2021; Liu et al., 2022a). 

…… 

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks 

are based on a similar idea, which is to establish a "shortcut" between different layers. However, the 

structure of DenseNet is simpler and more effective, with fewer parameters. The structural 

differences between ResNet and DenseNet are illustrated in Fig. 2. In ResNet, each layer is only 

connected to the previous layer, while in DenseNet, each layer is directly connected to all previous 

layers, and each layer can obtain gradients from the loss function. This can optimize the information 

flow and gradients of the entire network, making it easier to train and performing better on small 

datasets. The structure of DenseNet can achieve better feature reuse and reduce the number of 

parameters. Moreover, the layers of DenseNet are narrower than those of other deep learning 

networks (Liu et al., 2021c), making it reduce redundancy by learning with fewer feature maps. This 

architecture is suitable for the extraction of multi-scale landslide features under complex terrains, 

even with limited landslide training samples. 

…… 

In contrast, the U-Net architecture is relatively simpler and better suited for small targets and 

high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution 

UAV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection 

and multispectral remote sensing image classification. 

…… 

Different from conventional statistical or physical models, deep learning models can 

automatically reveal dynamic change trends and periodic patterns in the data, providing more 

accurate information for landslide prediction and early warning. Recently, deep learning–based 

temporal models, such as recurrent neural networks (RNNs), long short-term memory networks 

(LSTMs), and gated recurrent units (GRUs), have become key tools for extracting nonlinear 

dependencies and temporal evolution patterns in landslide-related time series. The structural 

characteristics and differences among these models are illustrated in Fig. 3. 
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…… 

To overcome the vanishing gradient problem inherent in RNNs, LSTMs introduce memory cells 

and gating mechanisms that selectively retain relevant temporal information (Landi et al., 2021; 

Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al., 2019). As 

shown in Fig. 3, LSTM networks extend the basic RNN structure by incorporating gating units that 

control information flow, enabling them to better capture cumulative and delayed slope responses to 

environmental triggers. This capability allows them to model the cumulative and delayed responses 

of slopes to prolonged rainfall or reservoir water level fluctuations. 

…… 

Deep generative models are the leading deep learning approach for synthetic data generation 

(Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They utilize deep neural 

networks to learn latent representations of data and optimize the learning process through specific 

objective functions. A key characteristic of deep generative models lies in their probabilistic nature—

they not only classify or reconstruct data but also capture the underlying distribution of geospatial 

features, enabling the creation of new landslide samples that are statistically consistent with observed 

patterns. Commonly used deep generative models include generative adversarial networks (GANs), 

variational autoencoders (VAEs), and diffusion models (see Figure 4). 

…… 

GANs consist of a generator and a discriminator that compete in an adversarial process 

(Goodfellow et al., 2014). The generator synthesizes data resembling real samples, while the 

discriminator attempts to distinguish between generated and real data. The workflow of adversarial 

training for GAN-based data generation is schematically depicted in Fig. 4. Through iterative 

adversarial training, the generator learns to produce high-quality synthetic data that closely matches 

the distribution of real data (Gui et al., 2021; Saxena and Cao, 2021). 

…… 

When computational resources and training time permit, diffusion models provide a powerful 

alternative for generating high-quality, diverse, and stable data (Ho et al., 2020; Croitoru et al., 2023; 

Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually adding 

noise to real samples (forward diffusion) and then reconstructing clean data through a reverse 

denoising process (see Figure 4). The resulting models can sample new, realistic data points that 

reflect complex terrain and geophysical variability. 

…… 

As previously introduced, VAE a probabilistic extension of AEs (see Figure 4). VAEs introduce 

stochastic latent variables characterized by mean and variance, allowing them to model data 

uncertainty (Kingma et al., 2013; Li et al., 2020; Park et al., 2018). During training, VAEs learn the 

latent distribution of normal samples and reconstruct inputs accordingly. When new observation data 

deviate significantly from the learned distribution, the reconstruction error increases accordingly, 

and this phenomenon can be used as an indicator of potential anomalies. 

…… 

Transformer architectures, characterized by the self-attention mechanism (see Figure 5), 

provide another promising avenue for landslide-related data fusion (Huang and Chen, 2023; Zhao et 

al., 2021a). Unlike CNNs or RNNs, which process spatial or temporal sequences sequentially, 
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Transformers can jointly capture long-range dependencies across spatial and temporal dimensions, 

enabling unified processing of rainfall, InSAR time series, and topographic data (Esser et al., 2021; 

Lv et al., 2023). 

…… 

In this section, we focus on the analysis of the second type of potential landslides. Based on 

triggering factors, landslides can be classified into four categories: rainfall-induced landslides, 

earthquake-induced landslides, human activity-induced landslides, and multi factor-induced 

landslides (see Figure 6). For each category of landslide, we provide a brief outline of its 

characteristics, discuss the applications of deep learning to different types of landslides, and examine 

the selection of monitoring methods for each category. 

…… 

Multi factor-induced landslides result from the synergistic interaction of multiple natural and 

anthropogenic factors (Hao et al., 2023). Their triggering mechanisms involve the dynamic 

spatiotemporal coupling of these factors, driving progressive destabilization of geomaterials through 

cumulative strength degradation (see Figure 6). The formation of such landslides may involve 

various types of movements, including collapse, creep, and flow phenomena. They often exhibit 

characteristics such as complexity, nonlinearity, and suddenness. Therefore, their identification is 

markedly more complex compared to landslides triggered by singular factors. 

…… 

The abstract features extracted by the models also lack correspondence to interpretable 

geological indicators (see Figure 8). Even if the model can identify potential landslides through the 

texture patterns of remote sensing images, it cannot explain whether these patterns correspond to the 

actual geomechanical parameters. 

…… 

In reality, the collection of landslide inventories faces many difficulties and it is hard to obtain 

them comprehensively and accurately. Thus, data scarcity is a common problem in the identification 

of potential landslide, especially in remote areas or regions with limited data accessibility (as 

illustrated in Fig. 8). In such cases, deep learning models may suffer from overfitting or insufficient 

generalization ability due to a lack of samples (Kong et al., 2025; Lee et al., 2018). Although there 

are large-scale datasets such as the CAS landslide dataset, they are still insufficient compared with 

the data requirements of deep learning models (Xu et al., 2024). 

…… 

Although deep learning models have achieved remarkable success in landslide identification, 

they also face inherent limitations (Li et al., 2025), particularly regarding interpretability, robustness, 

and generalization (see Figure 8). The most critical challenge is interpretability, meaning it is difficult 

to explain how these models achieve their results. 

…… 

The formation of landslides involves the dynamic coupling of multiple factors such as 

geological structures, geotechnical mechanics, hydrological conditions, topography, meteorological 

factors, vegetation coverage, and human activities (Scheingross et al., 2020; Yi et al., 2022). 

Therefore, the triggering mechanisms encompass multiscale processes spanning microscopic 

interparticle friction to macroscopic slope instability, and transient dynamic responses to long-term 

temporal evolution (see Figure 8). 

…… 



 

9 

 

The knowledge-data dually driven paradigm, operating through an iterative "theory-guided data 

assimilation and data informed theoretical refinement" mechanism, has advanced potential landslide 

identification from empirical reliance to scientifically quantifiable methodologies. The overall 

workflow of this knowledge-data dually driven paradigm for potential landslide identification is 

conceptually summarized in Figure 9. 

…… 

 

Comment #4:  

3. I felt the paper provided good background on landslides, and good background on deep learning, 

but was missing emphasis on the intersection: the application of deep learning to landslides. I 

would have expected this to appear in Section 3 or 4. However, section 3 discusses deep learning 

methods (without much specific discussion of how previous works have utilized them for 

landslides), and section 4 is almost entirely about the actual mechanisms of landslides, rather than 

how deep learning can be beneficial here. Section 4 seems almost mis-titled in this regard. To be 

precise, discussions similar to lines 632-638 are what I would have expected to see more of: 

specific examples of specific methods applied to specific problems in landslide applications.  

Response: 

- Thank you for accurately identifying the core weakness of our manuscript and for providing a clear 

direction for improvement. We fully agree with your assessment that the original version did not 

effectively bridge the two domains. 

- To thoroughly address this issue, we have undertaken substantial revisions: 

- (1) We have completely reorganized and rewritten Section 3. Instead of adopting a general, tutorial-

style discussion of deep learning models, the revised section is structured around specific landslide-

related tasks. In each subsection, we explicitly describe the specific deep learning architectures 

employed to address these tasks, accompanied by numerous relevant studies as concrete examples. 

We further elaborate on how these models were applied, as well as their respective advantages and 

limitations. (Please see the new Section 3 for details). 

- (2) We have also substantially expanded Section 4 by incorporating numerous real-world 

applications. For each type of landslide discussed, we now integrate specific research cases to 

analyze which deep learning models are most suitable for that particular type. (Please see 

Comment #27). 
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- Original Description in Section 3 

3.1 Models for Image Analysis and Processing in Potential Landslide Identification 

Image data plays a critical role in potential landslide identification, especially through remote 

sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain data, 

encompassing complex geographical features, vegetation coverage, and ground fissures, which often 

serve as potential precursors to landslide occurrences. The adoption of deep learning has facilitated 

a shift from conventional manual visual interpretation to automated high-precision segmentation. 

Convolutional neural networks (CNNs) represent the fundamental architecture in image 

processing. A CNN primarily comprises convolutional layers, pooling layers, and fully connected 

layers, each performing predefined functions on its input data (Kattenborn et al., 2021; Liu et al., 

2022a). 

The convolutional layer, as the core component of CNNs, contains multiple kernels that 

progressively extract more detailed feature representations (Hussain et al., 2019; Shi et al., 2020; 

Yao et al., 2021). Meanwhile, the shared-weight strategy inherent in convolutional layers allows for 

network training with fewer parameters than fully connected architectures. Convolutional kernels of 

different sizes facilitate multi-scale feature extraction. Small kernels focus on fine details, such as 

small cracks and the texture of localized soil loosening, while large kernels emphasize capturing 

overall shapes, such as the general outline of landslides and the macroscopic morphology of 

mountain bodies. Pooling layers, typically positioned after convolutional layers, serve to reduce the 

size of feature representations and enhancing the model’s resistance to overfitting when handling 

diverse data. Common pooling methods include max pooling and average pooling, which enhance 

robustness to minor transformations such as translation and rotation, ensuring a degree of invariance 

in the features extracted by CNNs. Pooling operations downsample the convolved feature maps, 

reducing computational complexity while reinforcing feature robustness. Through the hierarchical 

stacking of multiple convolutional and pooling layers, CNNs incrementally extract more abstract 

and semantically rich features (Mao et al., 2024). The final fully connected layer flattens the pooled 

feature maps and performs classification, outputting results that distinguish potential landslide areas 

from non-landslide areas or enable further analysis of landslide types (Wu et al., 2024). 

The layers of a CNN can be combined in various ways, forming distinct CNN architectures. 

These architectures are primarily determined by task requirements, which may include image 

classification, multi-class segmentation, or object localization within a scene. 

Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers, 

and fully connected layers. However, increasing network depth introduces challenges such as 

vanishing gradients and degradation arise, resulting in model performance deterioration. 

ResNet addresses these limitations by integrating residual blocks into the foundational CNN 
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framework (Qi et al., 2020; Yang et al., 2022). These residual blocks utilize shortcut connections that 

preserve original feature information. This framework facilitates the construction of ultra-deep 

networks capable of extracting high-level semantic features for landslide detection, thereby 

enhancing adaptability to complex terrain classification tasks (Ullo et al., 2021). Models with higher 

parameter counts generally exhibit greater representational capacity but are prone to overfitting, 

while demanding higher computational resources and temporal costs for both training and inference. 

For instance, ResNet-152 contains orders of magnitude more parameters than ResNet-50, yet the 

latter is often preferable in computationally constrained environments due to its balanced efficiency 

and performance. 

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks 

are based on a similar idea, which is to establish a "shortcut" between different layers. However, the 

structure of DenseNet is simpler and more effective, with fewer parameters. In ResNet, each layer is 

only connected to the previous layer, while in DenseNet, each layer is directly connected to all 

previous layers, and each layer can obtain gradients from the loss function. This can optimize the 

information flow and gradients of the entire network, making it easier to train and performing better 

on small datasets. The structure of DenseNet can achieve better feature reuse and reduce the number 

of parameters. Moreover, the layers of DenseNet are narrower than those of other deep learning 

networks (Liu et al., 2021c), making it reduce redundancy by learning with fewer feature maps. This 

architecture is suitable for the extraction of multi-scale landslide features under complex terrains, 

even with limited landslide training samples. 

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation 

models have increasingly become the standard in landslide detection. Numerous advanced semantic 

segmentation networks have been proposed and validated for automatic landslide detection, 

significantly enhancing the efficiency and accuracy of large-scale detection. U-Net is a typical 

example (Ronneberger et al., 2015), which features a U-shaped architecture. U-Net employs an 

encoder-decoder structure, where the encoder is similar to conventional CNNs, progressively 

reducing image resolution and extracting features through convolution and pooling operations; the 

decoder then restores the image resolution through transposed convolution or upsampling operations 

(Dong et al., 2022; Nava et al., 2022). Skip connections bridge low-level detail features with deep 

semantic features, thereby refining segmentation precision. 

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable 

choice (Sandric et al., 2024). Built upon deep convolutional neural networks, DeepLab employs 

dilated convolutions to expand the receptive field and integrates an atrous spatial pyramid pooling 

(ASPP) module to capture multi-scale contextual information. 

In contrast, the U-Net architecture is relatively simpler and better suited for small targets and 
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high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution 

UAV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection 

and multispectral remote sensing image classification (see Fig. 2). 

After achieving semantic segmentation to obtain the accurate extent of a landslide and the 

classification of ground objects, change detection is employed to monitor the changes in the landslide 

area over time. By comparing the segmentation results of multiple temporal phases or directly 

analyzing the feature differences, the dynamic evolution of potential hazards can be quantifie 

(Amankwah et al., 2022). 

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models 

capture spatial and temporal features using convolutional kernels while transforming multi-temporal 

image sequences into change hotspot maps or temporal variation curves as output. 

Some studies even have integrated attention mechanisms into conventional CNN architectures 

to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the identification 

of landslide hazard evolution over time. 

 

3.2 Models for Time Series Analysis in Potential Landslide Identification 

The occurrence of a landslide is a gradual accumulation process, usually influenced by a variety 

of factors. We refer to data that reflect the changing states of a landslide body over time as time series 

data. Time series data analysis aims to excavate the information hidden in the time series data to help 

identify potential landslides. Different from conventional time series data analysis methods, using 

deep learning models an automatically reveal the dynamic change trends and periodic patterns in the 

data, providing more accurate information for landslide prediction. 

Recurrent neural networks (RNNs) are a class of deep learning models specialized in processing 

sequential data, capable of capturing temporal dependencies within input sequences (Ngo et al., 

2021; Zaremba et al., 2014). Unlike conventional feedforward neural networks, in an RNN, each 

neuron not only receives the current input but also the output of the previous time step as additional 

input. This structure endows the RNN with a memory mechanism. 

The architecture contains three primary components working in coordination:(1) The input 

layer means that one data point is input at each time step. (2) The hidden layer contains recurrent 

connections, which enable the information from the previous time step to be passed to the current 

time step, and the output serves as the input for the next time step simultaneously. (3) The output 

layer generates the output under the control of the state of the hidden layer (Cho et al., 2014; Zhao 

et al., 2021b). 

During the training process, the RNN will process the data at each time step in sequence, 

continuously updating the hidden state. By combining the input of the current time step with the 
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hidden state of the previous moment for calculation to gain an understanding of the data at the current 

moment, this structure enables the RNN to capture the temporal evolution patterns of landslide-

related factors. 

Due to conventional RNNs struggle to model long-term dependencies and limit their 

applicability to short-term temporal sequences, long short-term memory networks (LSTM) were 

developed (Wang et al., 2023b). 

LSTM is an enhancement of RNNs, primarily processing long sequence data (Hochreiter and 

Schmidhuber, 1997). Compared to standard RNNs, the hidden layer architecture of LSTM is much 

more complex. By incorporating memory cells and gating mechanisms, LSTM selectively 

propagates critical information across multiple time steps, thereby effectively capturing long-range 

temporal dependencies (Landi et al., 2021; Yu et al., 2019). 

The basic unit of an LSTM consists of three primary gates: (1) the input gate, which determines 

what new information should be added to the cell state; (2) the forget gate, which decides what old 

information should be discarded; and (3) the output gate, which selects the information to be output 

from the cell state as the hidden state at the current time step (Sherstinsky, 2020; Smagulova and 

James, 2019; Staudemeyer and Morris, 2019). The output hidden state, after a nonlinear 

transformation, can be used for prediction or as the input for the next time step (Yang et al., 2019). 

This structure allows the LSTM to retain key information over long sequences while selectively 

forgetting irrelevant information according to the requirements. Through learning from historical 

data, the LSTM can predict the likelihood of landslides occurring, as well as the possible scale and 

impact range of landslides under different future conditions. 

Due to the ability to self-update weights and significantly improve network accuracy, LSTMs 

can also be used as a complex nonlinear component in the construction of larger deep neural 

networks. The model does not require separating trend and periodic components from the original 

deformation data, yet it can compensate for deformation trend predictions caused by unexpected 

interruptions in monitoring data. These properties make LSTMs particularly suited for high-accuracy 

research and analytical scenarios requiring large-scale datasets (Gidon et al., 2023; Xu and Niu, 

2018). 

Gated recurrent unit (GRU) is a simplified version of LSTM(Chung et al., 2014; Zhang et al., 

2022b), which has fewer parameters. Due to their higher computational efficiency, GRU has 

potential advantages in real-time data processing scenarios in landslide monitoring. 

GRU mainly consists of the update gate and reset gate. The update gate is used to control how 

much of the previous information should be preserved at the current time step, while the reset gate 

is used to determine whether to ignore the hidden state of the previous time step, enabling the model 

to adaptively learn information across different temporal scales. This dual-gate mechanism enables 
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adaptive learning of multi-scale temporal patterns. 

Compared with the LSTM, the GRU has fewer parameters and higher computational efficiency, 

giving it an advantage in some landslide monitoring scenarios where real-time performance is 

critical. 

GRU is capable of effectively handling time series data with long-term dependencies, making 

it suitable for long-term prediction of landslide hazards. Moreover, by learning temporal patterns in 

historical data, GRU can identify critical conditions for landslide occurrence in advance. GRU 

particularly well-suited for applications involving real-time analysis of on-site monitoring data, 

where rapid detection of imminent landslide risks is essential and data volume is relatively limited. 

Transformer was originally designed to handle sequential data in natural language processing, 

which was first introduced by Vaswani in 2017 (Vaswani et al., 2017). Unlike conventional recurrent 

and convolutional structures, the Transformer employs employs a self-attention mechanism to 

directly model the entire sequence. 

Since the Transformer has the ability to adaptively learn latent features and patterns within the 

data, when it comes to processing landslide time series data, it can automatically tweak the model 

parameters to accommodate diverse landslide scenarios and temporal data variability (Wang et al., 

2024a; Zerveas et al., 2021). 

Transformer also can analyze positional relationships across the entire sequence, better 

capturing complex dependencies in long sequences, making it especially suitable for handling large-

scale, long-term sequential datasets. 

In contrast, RNN-based models exhibit a relatively simple architecture (Li et al., 2021a; Wang 

et al., 2020b). Their mechanisms are conceptually intuitive, making them more interpretable (see 

Fig. 3). On the other hand, Transformers are more complex in structure with numerous parameters, 

necessitating substantial computational resources during early training to process large-scale data, 

while being susceptible to overfitting on small datasets. Understanding how the model extracts 

features and makes decisions is not straightforward from large amounts of landslide data, posing 

challenges for its interpretability and practical deployment. 

 

3.3 Models for Data Generation in Potential Landslide Identification 

Data generation refers to modeling the underlying data distribution of data to generate entirely 

new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020; 

Shorten and Khoshgoftaar, 2019), thereby enriching the dataset. In potential landslide identification, 

data generation mitigates challenges of data scarcity and imbalanced class distributions, thereby 

enhancing the generalization capability of predictive models. 

Deep generative models are the leading deep learning approach for synthetic data generation 
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(Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They operate on principles 

similar to those of deep learning, utilizing deep neural networks to learn data representations and 

optimizing the learning process through objective functions. 

A fundamental characteristic of deep generative models lies in their probabilistic nature. These 

models learn an approximate probability distribution from observed samples and subsequently 

generate novel samples that maintain statistical consistency with the original dataset. Unlike 

conventional discriminative models, generative models not only classify data but also learn the 

underlying distribution and generate new data points. Commonly used deep generative models 

include generative adversarial networks (GANs), variational autoencoders (VAEs, a variant of 

autoencoders), and diffusion models. 

GAN is a suitable choice to generate highly realistic and diverse new images (Goodfellow et 

al., 2014; Tran et al., 2021). Instead of explicitly modeling data distributions, GANs implicitly learn 

distributions through adversarial training between generator and discriminator networks. 

During data generation, the generator network in a GAN synthesizes images or data resembling 

real samples by processing input noise vectors (Gui et al., 2021; Saxena and Cao, 2021). The 

discriminator, on the other hand, is used to distinguish between the generated data and the real 

data.These two components are continuously optimized through adversarial training. Eventually, the 

generator is able to produce high-quality synthetic data, which is highly similar to the real data in 

terms of features. 

With this adversarial structure (Al-Najjar et al., 2021), GANs can generate high-quality data 

that closely matches the distribution of real data in an unsupervised learning context, making them 

well-suited for high-resolution image synthesis. 

With the proposal and development of GANs, researchers have introduced various enhanced 

structures that are more effectively applied to potential landslide identification. For example, the 

conditional GAN (CGAN) (Kim and Lee, 2020; Loey et al., 2020), Pix2Pix (Qu et al., 2019), and 

Wasserstein GAN (WGAN) (Wang et al., 2019). 

In the case of GANs, although the generated high-quality images may visually resemble real 

potential landslide regions, mode collapse can lead to a lack of diversity in the generated data, failing 

to cover all possible types of hazards (Fang et al., 2020). If certain types of potential landslides are 

underrepresented in the training dataset, GANs may struggle to generate those types effectively, 

thereby limiting the effectiveness of data augmentation. Given that the inherently unstable training 

process of the GANs may require more hyperparameter tuning and computational resources, this 

model will pose additional challenges in scenarios with limited data availability (Al-Najjar and 

Pradhan, 2021; Feng et al., 2024). 

As a variant of the autoencoders (AEs), the variational autoencoder (VAE) introduces the idea 
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of probabilistic generation (Kingma et al., 2013). VAE constrains the latent space through variational 

inference, thus enabling the generation, reconstruction, and transformation of sample data. 

Compared to GANs, the samples generated by the VAE may have better diversity (Cai et al., 

2024; Islam et al., 2021; Oliveira et al., 2022), because the structured constraints of its latent space 

are helpful for generating samples with continuous changes. This is beneficial for simulating 

potential landslides under different geological conditions. 

The encoder of the VAE maps the input data to a low-dimensional latent space, where each 

vector represents the underlying features of the input. The decoder then reconstructs the original data 

based on the vectors in the latent space. Different from conventional AEs, the output of the VAE 

encoder includes two parameters: the mean value and the standard deviation. These two parameters 

define the probability distribution in the latent space, which is usually assumed to be a Gaussian 

distribution. The decoder samples a latent variable from this probability distribution and reconstructs 

it into output data, thus generating data with inherent randomness and diversity. Therefore, the VAE 

can extract latent features from landslide data and generate new landslide data based on these 

features. 

By learning from extensive landslide datasets, VAEs capture critical geomorphological features 

and patterns, enabling the generation of novel samples that preserve these characteristics. This 

capability enables innovative applications in potential landslide analysis. This is crucial for exploring 

landslide scenarios under different feature combinations and identifying potential landslide patterns. 

Compared to GANs, VAEs exhibit superior sample diversity and training stability though the 

generated samples often lack the fine-grained details produced by GANs, particularly in high-

resolution geospatial contexts. Moreover, VAEs may still face challenges in handling highly 

imbalanced data, as the generated samples tend to favor majority classes, which can limit its 

effectiveness in augmenting minority class data. 

When computational resources and time are sufficient, and high-quality data generation with 

exceptional diversity is prioritized, diffusion models are the recommended choice (Croitoru et al., 

2023; Yang et al., 2023a; Zhu et al., 2023a). 

Diffusion models fundamentally learn the distribution of data. During training, the model 

applies a forward diffusion process that gradually adds noise to the original data until it approximates 

a Gaussian distribution. Then, in the reverse diffusion process, the model learns to iteratively refine 

its reconstruction of the original data distribution from the noisy data. After being fully trained, the 

model is able to capture the latent distribution patterns of the data, and thus can sample based on the 

learned distribution to generate new data (Ho et al., 2022). That is to say, by grasping the inherent 

laws and features of the data, the model has the ability to generate data that conforms to the 

distribution of the data. 
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Denoising diffusion probabilistic model (DDPM) is a classic implementation of the diffusion 

models, which lays the probabilistic framework for the diffusion models (Choi et al., 2021; Ho et al., 

2020; Jing et al., 2023; Perera et al., 2023). The generation quality is optimized through variational 

inference and noise scheduling. Denoising diffusion implicit model (DDIM) has made improvements 

on the basis of DDPM (Song et al., 2020). It uses non-Markov chain reparameterization and 

deterministic sampling, and greatly improves the efficiency with almost no loss of quality. 

Notably, DDIMs utilize the same training framework as DDPMs. If certain parameters of 

DDIMs are assigned particular values, its generation process becomes equivalent to DDPMs. Thus, 

DDIMs function as an accelerated sampling variant of DDPMs. The critical distinction lies in their 

sampling mechanisms. DDPMs employ stochastic and Markovian sampling, whereas DDIMs 

enhance efficiency through non-Markovian deterministic sampling, though this comes at the expense 

of reduced sample diversity. 

Although diffusion models demonstrate strong capabilities in generating high-quality images 

and handling noise, they generate superior-quality data and ensure greater training stability compared 

to GANs and VAEs. However, diffusion models have not yet been widely applied directly to the 

identification of potential landslides and remain in the exploratory stage (see Fig. 4). We believe that 

as generative models advance in the field of geospatial remote sensing, they hold vast potential for 

application and could play a pivotal role in future landslide risk analysis and monitoring systems. 

 

3.4 Models for Data Cleaning in Potential Landslide Identification 

In potential landslide identification, data cleaning, particularly anomaly detection, is a critical 

issue (Deijns et al., 2020; Jiang et al., 2020). It can distinguish between normal fluctuations and true 

anomalies, identifying early signs such as subtle changes in the mountain’s state or abnormal trends 

in surface displacement, thus enabling more accurate landslide hazard assessment. With the rapid 

development of deep learning, the applications in data cleaning have become increasingly 

widespread, enabling models to automatically learn latent data patterns and identify potential 

anomalies. 

AEs and their variational counterparts are highly effective in unsupervised data cleaning. These 

models autonomously learn normal geomechanical patterns from data and flag deviations, achieving 

effective hazard identification even when labeled anomaly samples are scarce. 

The AE is a typical unsupervised learning model consisting of an encoder and a decoder The 

encoder compresses the input data into low-dimensional features, and then the decoder reconstructs 

the input. During the training process, the autoencoder learns the intrinsic features and patterns of 

normal landslide data, so that for normal data, the reconstruction error is small. When abnormal 

landslide data is input, due to the difference between its features and the distribution of normal data, 
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the reconstruction error will be large. 

When performing anomaly detection, a suitable reconstruction error threshold is set. When the 

reconstruction error of the test data exceeds this threshold, it can be determined as abnormal data. In 

the anomaly detection of landslide displacement data monitored by sensors, if the error of the 

displacement data after being reconstructed by AEs during a certain period is significantly higher 

than the normal level, it may indicate that there is an abnormal situation of potential landslides during 

this period. 

As previously introduced, VAE is an extension of AE. Compared to conventional autoencoders, 

VAE introduces randomness into the latent space, making it more effective in handling data 

uncertainty (Li et al., 2020; Park et al., 2018). 

During training, VAEs learn the latent distribution of the data and can generate new samples 

resembling the training set. When input samples deviate significantly from this learned distribution, 

the VAE fails to reconstruct them accurately, thereby flagging anomalies through elevated 

reconstruction errors. For landslide monitoring, if a VAE is trained on imagery of stable slopes, it 

internalizes stable terrain features. When an image significantly differs from the stable region, the 

model will produce a high reconstruction error, indicating the presence of anomalous data. 

In contrast, AEs are well-suited for univariate anomaly detection, particularly for landslide 

precursor detection, while VAEs capture latent space distributions and are more effective for 

multivariate anomaly detection. 

GANs can also be utilized in data cleaning (Kang et al., 2024; Xia et al., 2022). In data cleaning, 

the discriminator is trained to distinguish between generated data and real data. When new test data 

is input, if the discriminator struggles to determine whether it is real or generated data, the test data 

may significantly deviate from the distribution of normal data, indicating a potential anomaly. In 

landslide monitoring, data may be influenced by various factors, GANs demonstrate robustness by 

filtering out such interference, thereby enhancing data cleaning accuracy (Radoi, 2022). 

AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its 

primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder during 

training, which maps input data to the latent space. The difference between this latent vector and the 

latent vector of normal samples generated by the generator serves as the basis for data cleaning. 

RNNs, LSTMs, and GRUs are also effective for identifying anomalous patterns in sequential 

data (Zhang et al., 2022a). In potential landslide identification, these models process time series 

inputs to learn normal temporal dynamics and trends. When new data deviates significantly from the 

normal patterns learned by the model, such deviations can be flagged as anomalies. However, these 

models are primarily used for time series data, performing data cleaning by predicting future values 

of the sequence. For instance, if displacement measurements exhibit abrupt deviations while rainfall 
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remains within historical norms, the model detects such discrepancies by comparing observed values 

with predictions based on learned temporal dependencies. 

 

3.5 Models for Data Fusion in Potential Landslide Identification 

In practical applications, the identification of potential landslide hazards is a complex task that 

influences by multiple factors (Zhang et al., 2018). These factors are often reflected through different 

data sources. We can roughly divide heterogeneous data into four categories: image data, time series 

data, structured data, and textual data. Data fusion is essential for the accurate identification of 

potential landslides. In order to better identify potential landslides, data fusion is essential. 

Since the features, scales, and resolutions of heterogeneous data are all different, currently, the 

powerful feature learning ability of deep learning models is often utilized to automatically capture 

the nonlinear relationships and high-order interaction information among these heterogeneous data. 

Due to the complex non-Euclidean structural characteristics of the geological environment, 

topographic data and their spatial relationships related to landslide hazards, conventional methods 

such as CNNs have difficulty in handling these relationships. As a neural network architecture for 

processing graph-structured data, graph neural networks (GNNs) can effectively model such spatial 

relationships (Ying et al., 2018; Zeng et al., 2022). They can treat the nodes in the geographical space 

(such as different geographical location points) and their connection relationships (such as the 

distance between adjacent nodes, terrain undulations, etc.) as the structure of a graph for processing. 

When dealing with heterogeneous data, GNNs support feature interaction between different 

types of nodes through the message passing mechanism, thereby eliminating redundancy and mutual 

exclusivity among data sources and enabling dynamic fusion of multi-modal features (Zhang et al., 

2024d; Zhao et al., 2024b). By passing and aggregating information across nodes, GNNs can also 

conduct a detailed analysis of various heterogeneous data in local areas. This capability allows GNNs 

to capture subtle geological structural changes and detect localized anomalies inmonitoring data, 

providing advantages for analyzing local features and early signs of potential landslide movements. 

By learning a large amount of landslide potential cases, GNNs can discover the general patterns 

and rules of landslides, thus having good generalization ability. When facing new and unseen regions 

or data, GNNs can predict and assess the potential landslides in those regions based on the knowledge 

they have already learned. 

According to the differences in message passing and aggregation methods, GNNs have derived 

various variants. For example, graph convolutional network (GCN) is generated by generalizing the 

convolutional operation to graph-structured data (Sharma et al., 2022; Wang et al., 2020a), and graph 

attention network (GAT) dynamically weights the importance of neighboring nodes by introducing 

the attention mechanism (Yuan et al., 2022; Zhou and Li, 2021). The emergence of these new 
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architectures makes GNN variants more targeted than conventional GNNs and suitable for modeling 

heterogeneous relationships. Currently, they are often used for weighted analysis of the impacts of 

different geographical factors on landslides. 

Transformer is also composed of stacked encoders and decoders (see Fig. 5). However, unlike 

other architectures, the Transformer architecture introduces the self-attention mechanism (Zhao et 

al., 2021a), which is a crucial innovation. This enables the Transformer to automatically calculate a 

weight vector for each position in the input sequence based on the relationship between this position 

and other positions, so as to represent the importance of this position in the entire sequence. Such a 

weight vector can be regarded as the "attention distribution" of each position in the input sequence, 

that is, the model determines which positions in the sequence to focus on. By considering all 

positions in the input sequence simultaneously, Transformer is able to calculate the correlations 

between each position and other positions in the sequence in parallel (Esser et al., 2021; Huang and 

Chen, 2023; Zerveas et al., 2021), rather than processing them step by step like CNNs or RNNs. 

Transformer can also convert multimodal dFor different types of data, it transforms them into 

vector representations via different embedding layers.ata into a unified vector representation through 

different embedding layers. Subsequently, through the use of the self-attention mechanism and 

multilayer neural networks, these vectors are fused and feature representations are extracted, 

enabling the model to process and integrate data from various modalities within the same model 

framework (Lv et al., 2023; Tang et al., 2022). 

Revised Description in Section 3 

3.1 Models for Image Analysis and Processing in Potential Landslide Identification 

Image data plays a critical role in potential landslide identification, especially through remote 

sensing, satellite, and UAV imagery. These images enable the acquisition of large-scale terrain data, 

encompassing complex geographical features, vegetation coverage, and ground fissures, which often 

serve as potential precursors to landslide occurrences. The adoption of deep learning has facilitated 

a shift from conventional manual visual interpretation to automated high-precision segmentation. 

Convolutional neural networks (CNNs) represent the fundamental architecture in image 

processing (LeCun et al., 1998). A CNN primarily comprises convolutional layers, pooling layers, 

and fully connected layers, each performing predefined functions on its input data (Kattenborn et al., 

2021; Liu et al., 2022a). 

Convolutional layers, the core of CNNs, use kernels of various sizes to extract multi-scale 

features from geospatial imagery, which is crucial for landslide identification (Hussain et al., 2019; 

Shi et al., 2020; Yao et al., 2021). Small kernels are effective in detecting fine-grained precursors 

such as ground fissures and localized soil texture changes. For instance, Hamaguchi et al. (2018) 

proposed a Local Feature Extraction (LFE) module to enhance the capability of CNNs in identifying 
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small object instances in remote sensing imagery. Wang et al. (2024) demonstrated the exceptional 

capability of convolutional layers in extracting extremely small and subtle features by identifying 

cracks as narrow as 0.05 m width using a U-Net–based model.  In contrast, larger kernels help in 

recognizing the overall morphology and boundaries of landslide bodies. From the perspective of 

general visual tasks, Ding et al. (2022) demonstrated that larger convolution kernels substantially 

improve the shape bias of CNNs, facilitating the recognition of large-scale structures and overall 

morphological patterns compared with using small kernels alone. Li et al. (2025) employed multiple 

large convolution kernels (kernel sizes = 5, 7, and 9) within the DLFFSKA module to fuse multi-

scale features, thereby enhancing the global perception of landslide boundaries and morphology as 

well as the capture of contextual background information. 

Pooling layers downsample feature maps, improving computational efficiency and model 

robustness. In landslide mapping, this translation invariance is particularly beneficial, as it allows 

the model to consistently identify landslide features regardless of their slight positional variations 

across different image patches (Mao et al., 2024). 

The final fully connected layer flattens the pooled feature maps and performs classification, 

outputting results that distinguish potential landslide areas from non-landslide areas or enable further 

analysis of landslide types (Wu et al., 2024). 

The layers of a CNN can be combined in various ways, forming distinct CNN architectures. 

These architectures are primarily determined by task requirements, which may include image 

classification, multi-class segmentation, or object localization within a scene. 

Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers, 

and fully connected layers. However, increasing network depth introduces challenges such as 

vanishing gradients and degradation arise, resulting in model performance deterioration. 

ResNet mitigates the vanishing gradient problem in very deep networks through residual 

connections (He et al., 2016; Qi et al., 2020; Yang et al., 2022)). This architectural advancement has 

been successfully applied to landslide detection in complex terrains, such as the work by Ullo et al. 

(2021), who demonstrated that a ResNet-based classifier could achieve high accuracy in 

distinguishing landslide scars from surrounding vegetation and bare soil in satellite imagery by 

effectively learning hierarchical features. 

Models with higher parameter counts generally exhibit greater representational capacity but are 

prone to overfitting, while demanding higher computational resources and temporal costs for both 

training and inference (Ebrahimi et al., 2021). For instance, He et al. (2016) introduced ResNet-152 

and other deep residual network architectures, demonstrating that deeper structure achieve superior 

performance compared with shallower counterparts. Hasanah et al. (2023) explicitly highlighted the 

differences in layer depth and parameter count among various ResNet versions (ResNet-50, 101, and 
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152), noting that the increased number of parameters in deeper networks inevitably leads to longer 

training times. 

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks 

are based on a similar idea, which is to establish a "shortcut" between different layers. However, the 

structure of DenseNet is simpler and more effective, with fewer parameters. In ResNet, each layer is 

only connected to the previous layer, while in DenseNet, each layer is directly connected to all 

previous layers, and each layer can obtain gradients from the loss function. This can optimize the 

information flow and gradients of the entire network, making it easier to train and performing better 

on small datasets. The structure of DenseNet can achieve better feature reuse and reduce the number 

of parameters. Moreover, the layers of DenseNet are narrower than those of other deep learning 

networks (Liu et al., 2021c), making it reduce redundancy by learning with fewer feature maps. This 

architecture is suitable for the extraction of multi-scale landslide features under complex terrains, 

even with limited landslide training samples. 

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation 

models have increasingly become the standard in landslide detection. Numerous advanced semantic 

segmentation networks have been proposed and validated for automatic landslide detection, 

significantly enhancing the efficiency and accuracy of large-scale detection. 

U-Net's encoder-decoder structure with skip connections has become a benchmark for landslide 

segmentation (Ronneberger et al., 2015). For example, Dong et al. (2022) proposed a new model, L-

UNet, based on the U-Net architecture and successfully applied it to landslide extraction from remote 

sensing imagery. Nava et al. (2022) applied the Attention U-Net to Sentinel-1 SAR data for rapid 

mapping of earthquake-induced landslides, demonstrating the effectiveness of U-Net variants in 

pixel-level segmentation of landslide bodies under cloud-covered or topographically complex 

conditions. 

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable 

choice (Chen et al., 2017; Sandric et al., 2024). Built upon deep convolutional neural networks, 

DeepLab employs dilated convolutions to expand the receptive field and integrates an atrous spatial 

pyramid pooling (ASPP) module to capture multi-scale contextual information. 

In contrast, the U-Net architecture is relatively simpler and better suited for small targets and 

high-resolution imagery, such as landslide crack segmentation or fine annotation of high-resolution 

UAV images. DeepLab, on the other hand, is more effective for large-scale landslide area detection 

and multispectral remote sensing image classification (see Fig. 2). 

After achieving semantic segmentation to obtain the accurate extent of a landslide and the 

classification of ground objects, change detection is employed to monitor the changes in the landslide 

area over time. By comparing the segmentation results of multiple temporal phases or directly 
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analyzing the feature differences, the dynamic evolution of potential hazards can be quantifie 

(Amankwah et al., 2022). 

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models 

capture spatial and temporal features using convolutional kernels while transforming multi-temporal 

image sequences into change hotspot maps or temporal variation curves as output. 

Some studies even have integrated attention mechanisms into conventional CNN architectures 

to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the identification 

of landslide hazard evolution over time. 

 

3.2 Models for Time Series Analysis in Potential Landslide Identification 

The occurrence of a landslide is a gradual accumulation process, usually influenced by a variety 

of factors. We refer to data that reflect the changing states of a landslide body over time as time series 

data. Time series data analysis aims to excavate the information hidden in the time series data to help 

identify potential landslides. 

Different from conventional statistical or physical models, deep learning models can 

automatically reveal dynamic change trends and periodic patterns in the data, providing more 

accurate information for landslide prediction and early warning. Recently, deep learning–based 

temporal models, such as recurrent neural networks (RNNs), long short-term memory networks 

(LSTMs), and gated recurrent units (GRUs), have become key tools for extracting nonlinear 

dependencies and temporal evolution patterns in landslide-related time series. 

Recurrent neural networks (RNNs) are a class of deep learning models specialized in processing 

sequential data, capable of capturing temporal dependencies within input sequences (Elman, 1990). 

Unlike conventional feedforward neural networks, in an RNN, each neuron not only receives the 

current input but also the output of the previous time step as additional input. This structure endows 

the RNN with a memory mechanism (Ngo et al., 2021; Zaremba et al., 2014). 

In landslide prediction, RNNs have been employed to model displacement time series under 

rainfall or groundwater fluctuations, revealing short-term deformation patterns preceding slope 

failure (Chen et al., 2015; Zhang et al., 2022). 

To overcome the vanishing gradient problem inherent in RNNs, LSTMs introduce memory cells 

and gating mechanisms that selectively retain relevant temporal information (Landi et al., 2021; 

Sherstinsky, 2020; Smagulova and James, 2019; Staudemeyer and Morris, 2019; Yu et al., 2019). 

This capability allows them to model the cumulative and delayed responses of slopes to prolonged 

rainfall or reservoir water level fluctuations. 

LSTM models have been widely applied in landslide displacement prediction and early 

warning. Yang et al. (2019) analyzed the relationships among landslide deformation, rainfall, and 
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reservoir water levels, and found that compared with static models, the LSTM approach more 

accurately captured the dynamic characteristics of landslides and effectively leveraged historical 

information. Xu and Niu (2018) used a LSTM model to predict the displacement evolution of the 

Baijiabao landslide using rainfall and hydrological level data, achieving a higher correlation 

compared with traditional regression models. In another study focused on shallow landslides, Xiao 

et al (2022) used a week-ahead LSTM model, which exhibited stable performance and improved 

prediction accuracy in short-term prediction scenarios. Additionally, Gidon et al (2023) constructed 

a Bi-LSTM model and achieved a detection accuracy of 93% in the Mawiongrim area. This 

effectively addresses the limitations of traditional methods and can provide a reliable technical 

solution for disaster early warning in this area as well as other similar landslide-prone areas.  

The GRU is a simplified variant of the LSTM (Cho et al., 2014; Chung et al., 2014; Zhang et 

al., 2022b) that achieves similar accuracy with fewer parameters and reduced computational costs, 

making it well-suited for real-time landslide monitoring systems (Rawat et al., 2024). 

Furthermore, GRU models effectively identify precursory displacement acceleration, allowing 

early detection of slope instability triggered by rainfall or seismic shaking (Chang et al., 2025; Yang 

et al., 2025). 

Recently, Transformer architectures (Vaswani et al., 2017) have been introduced for time series 

modeling due to their ability to capture global dependencies across long sequences through the self-

attention mechanism. 

Unlike RNNs or LSTMs that process data sequentially, Transformers analyze all time steps in 

parallel, offering better scalability and modeling of long-term deformation trends. 

In landslide applications, Transformer-based approaches have shown promise in integrating 

multi-source time series—such as rainfall, soil moisture, and deformation—into a unified temporal 

framework. Zhao et al. (2024) combined the strengths of CNN and Transformer architectures, 

selecting and analyzing nine landslide-conditioning factors to successfully achieve accurate 

landslide localization and detailed feature capture. Ge et al. (2024) proposed the LiteTransNet model 

based on the Transformer framework, effectively capturing and interpreting the varying importance 

of historical information during the prediction process. 

Although Transformer-based models require larger training datasets and higher computational 

resources, their capacity to model complex, long-range dependencies and integrate multi-factor 

information offers significant potential for the next generation of intelligent landslide early warning 

systems. 

In summary, RNNs and their advanced variants (LSTM, GRU) have demonstrated strong 

capabilities in modeling landslide time series, enabling early detection of slope deformation 

acceleration and rainfall-induced instability (Li et al., 2021a; Wang et al., 2020b). Transformer 
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architectures further extend this capability to capture cross-variable and long-term dependencies 

(Wang et al., 2024a; Zerveas et al., 2021), offering a new direction for multi-sensor, data-driven 

landslide hazard prediction (see Fig. 3). 

3.3 Models for Data Generation in Potential Landslide Identification 

Data generation refers to modeling the underlying data distribution of data to generate entirely 

new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020; 

Shorten and Khoshgoftaar, 2019), thereby enriching the dataset. In potential landslide identification, 

data generation mitigates challenges related to data scarcity and class imbalance, which are 

particularly pronounced in geohazard mapping tasks where labeled landslide samples are limited. 

This process enhances the generalization capability of predictive models and enables the simulation 

of diverse landslide scenarios. 

Deep generative models are the leading deep learning approach for synthetic data generation 

(Alam et al., 2018; Karras et al., 2020; Ma et al., 2024; Xu et al., 2015). They utilize deep neural 

networks to learn latent representations of data and optimize the learning process through specific 

objective functions. A key characteristic of deep generative models lies in their probabilistic nature—

they not only classify or reconstruct data but also capture the underlying distribution of geospatial 

features, enabling the creation of new landslide samples that are statistically consistent with observed 

patterns. Commonly used deep generative models include generative adversarial networks (GANs), 

variational autoencoders (VAEs), and diffusion models. 

GANs consist of a generator and a discriminator that compete in an adversarial process 

(Goodfellow et al., 2014). The generator synthesizes data resembling real samples, while the 

discriminator attempts to distinguish between generated and real data. Through iterative adversarial 

training, the generator learns to produce high-quality synthetic data that closely matches the 

distribution of real data (Gui et al., 2021; Saxena and Cao, 2021). 

In the context of landslide studies, GANs have demonstrated strong capabilities in data 

augmentation and remote sensing image enhancement. For example, Al-Najjar and Pradhan (2021) 

proposed a novel approach that employs a GAN to generate synthetic inventory data. The results 

indicate that additional samples produced by the proposed GAN model can enhance the predictive 

performance of Decision Trees (DT), Random Forest (RF), Artificial Neural Network (ANN), and 

Bagging ensemble models. Feng et al. (2024) achieved the first implementation of using a GAN to 

generate synthetic high-quality landslide images, aiming to address the data scarcity issue that 

undermines the performance of landslide segmentation models. 

Despite their advantages, GANs may suffer from mode collapse, leading to limited diversity in 

the generated data, especially when certain landslide types are underrepresented (Fang et al., 2020). 

Moreover, their unstable training process requires careful hyperparameter tuning and substantial 
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computational resources, which may constrain their application in real-time hazard scenarios. 

Nevertheless, with improved architectures such as CGAN, Pix2Pix, and Wasserstein GAN (WGAN) 

((Arjovsky et al., 2017; Isola et al., 2017; Kim and Lee, 2020; Loey et al., 2020; Qu et al., 2019; 

Mirza et al., 2014; Wang et al., 2019), GANs are becoming increasingly viable tools for high-

resolution landslide mapping and synthetic data generation in remote sensing-based susceptibility 

analyses. 

As a probabilistic variant of autoencoders (AEs), VAEs introduce latent-space regularization 

through variational inference (Kingma et al., 2013). The encoder compresses input data into a latent 

representation characterized by a mean and a standard deviation, while the decoder reconstructs the 

data by sampling from this distribution. This enables the model to generate new data with inherent 

randomness and diversity (Islam et al., 2021; Oliveira et al., 2022). 

In landslide research, VAEs have been successfully applied to learn and reconstruct 

geomorphological patterns of slope instability. For instance, Cai et al. (2024) proposed and 

demonstrated the superior capability of the VAE-GRU model in generating narrow predictive 

intervals while maintaining high coverage probabilities, representing a substantial improvement over 

the state-of-the-art methods for probabilistic landslide prediction. 

Compared with GANs, VAEs produce more diverse but slightly less detailed samples, due to 

their structured latent space constraints. This characteristic is particularly beneficial for exploring a 

wide range of potential landslide morphologies and for augmenting training datasets used in 

susceptibility prediction. However, VAEs may still struggle with highly imbalanced datasets, as their 

probabilistic reconstruction tends to favor majority classes. Integrating VAEs with stratified 

sampling or cost-sensitive learning could help overcome this limitation and further enhance landslide 

prediction performance. 

When computational resources and training time permit, diffusion models provide a powerful 

alternative for generating high-quality, diverse, and stable data (Ho et al., 2020; Croitoru et al., 2023; 

Yang et al., 2023a; Zhu et al., 2023a). These models learn the data distribution by gradually adding 

noise to real samples (forward diffusion) and then reconstructing clean data through a reverse 

denoising process. The resulting models can sample new, realistic data points that reflect complex 

terrain and geophysical variability. 

Although diffusion models are still in the exploratory phase for landslide applications, recent 

geospatial AI research indicates their high potential for terrain simulation and deformation modeling. 

Lo et al. (2024) proposed a Terrain-Feature-Guided Diffusion Model (TFDM) to fill gaps in DEM 

data. Similarly, Zhao et al. (2024) employed a Denoising Diffusion Probabilistic Model (DDPM) 

conditioned on incomplete DEMs, which serves as a transitional kernel during diffusion reversal to 

progressively reconstruct sharp and accurate DEM surfaces. 
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Deep generative models provide a transformative solution for overcoming the challenges of 

limited and imbalanced landslide datasets. By synthesizing realistic, diverse, and statistically 

consistent samples, these models can improve the robustness and generalization of landslide 

prediction frameworks. GANs are effective for generating visually realistic imagery and data 

augmentation; VAEs capture probabilistic geomorphic transitions; and diffusion models ensure 

stability and fidelity in high-resolution terrain synthesis. 

As generative AI continues to evolve, integrating these models with multi-source remote 

sensing inputs and physics-based constraints holds great promise for next-generation landslide 

hazard identification systems. Such integration is expected to enhance data diversity, reduce labeling 

dependency, and enable more precise, interpretable, and generalizable predictions for landslide risk 

assessment and early warning. 

 

3.4 Models for Anomaly detection in Potential Landslide Identification 

Anomaly detection plays a critical role in potential landslide identification, as it enables the 

distinction between normal environmental variations and genuine precursors of slope instability 

(Deijns et al., 2020; Jiang et al., 2020). In landslide monitoring, the goal of anomaly detection is to 

identify subtle yet significant deviations—such as abnormal surface displacements, changes in 

surface coherence, or irregular sensor signals—that may occur prior to failure events. With the 

advancement of deep learning, data filtering has evolved from rule-based threshold detection to 

automated feature learning, allowing models to capture complex spatiotemporal dependencies and 

identify anomalies within high-dimensional, multi-source datasets. 

AEs are widely used for unsupervised anomaly detection due to their ability to reconstruct input 

data and highlight deviations from learned normal patterns. An AE consists of an encoder that 

compresses data into a low-dimensional latent representation and a decoder that reconstructs it.  

During training, the AE learns the intrinsic features of normal landslide data—such as sensor-

based displacement time series or radar backscatter from stable slopes. When abnormal data are 

input, such as sudden displacement spikes or incoherent radar signals, the reconstruction error 

increases significantly, serving as an indicator of potential instability. For instance, Shakeel et al. 

(2022) developed an InSAR deformation anomaly detector based on an AE–LSTM architecture 

(ALADDIn). Experimental analyses using synthetic deformation test scenarios achieved an overall 

performance accuracy of 91.25%. 

By defining a reconstruction error threshold, anomalies can be quantitatively detected. When 

the reconstruction error of new sensor data exceeds this threshold, it may signal slope movement 

acceleration or surface disturbance associated with potential landslides. Thus, AEs provide a data-

driven method to detect early-warning signs without requiring manually labeled failure data. 
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As previously introduced, VAE a probabilistic extension of AEs. VAEs introduce stochastic 

latent variables characterized by mean and variance, allowing them to model data uncertainty 

(Kingma et al., 2013; Li et al., 2020; Park et al., 2018). During training, VAEs learn the latent 

distribution of normal samples and reconstruct inputs accordingly. When new observation data 

deviate significantly from the learned distribution, the reconstruction error increases accordingly, 

and this phenomenon can be used as an indicator of potential anomalies. 

In landslide applications, VAEs have been shown to outperform traditional AEs in handling 

complex, multivariate datasets that integrate topographic, meteorological, and geotechnical factors. 

For example, Han et al. (2025) proposed an unsupervised failure mode recognition algorithm based 

on a deep convolutional autoencoder, which integrates surface displacement, vertical displacement, 

and rainfall monitoring data from slopes to accurately identify the developmental stages of slope 

failure, achieving a recognition accuracy of 99.30%. 

Another study by Yadav et al. (2024) proposed a novel unsupervised change detection (CD) 

model, termed CLVAE, designed to learn the spatiotemporal correlations within Sentinel-1 SAR time 

series. The model achieved a mean IoU of 70% and a mean F1-score of 81%, outperforming 

comparative models by at least 6% in F1-score and 8% in IoU. 

Compared to AEs, VAEs are particularly advantageous for capturing uncertainty and latent 

correlations between environmental variables, making them ideal for data cleaning in integrated 

landslide early-warning systems. However, they require larger datasets for stable training, and their 

probabilistic outputs may demand post-processing for operational thresholding. 

GANs can also be adapted for anomaly detection by exploiting their discriminator network’s 

ability to distinguish between real and generated data (Kang et al., 2024; Xia et al., 2022). In 

landslide monitoring, GAN-based anomaly detection models learn the distribution of stable slope 

features, and deviations from this distribution can indicate abnormal conditions (Radoi, 2022). 

AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its 

primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder during 

training, which maps input data to the latent space. The difference between this latent vector and the 

latent vector of normal samples generated by the generator serves as the basis for data cleaning. 

RNNs and their variants are particularly effective for time series–based anomaly detection, 

learning temporal dependencies and predicting future trends (Zamanzadeh et al., 2024; Zhang et al., 

2022a). In landslide monitoring, these models can process continuous displacement or rainfall time 

series to identify deviations from expected temporal behavior. These temporal models complement 

image-based approaches by providing continuous surveillance and early detection capabilities (Wu 

et al., 2024). 

When combined with AEs or GANs, RNN-type architectures can form hybrid frameworks 
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capable of both spatial and temporal anomaly detection, enabling multi-source consistency checking 

in landslide early-warning systems. Geiger et al (2020) demonstrated a growing trend of utilizing 

LSTM networks as both the generator and discriminator within GAN frameworks for time-series 

anomaly detection. Similarly, Whitakeret al (2023) illustrated the application of LSTM–GAN 

architectures in identifying temporal anomalies. 

 

3.5 Models for Data Fusion in Potential Landslide Identification 

In practical applications, the identification of potential landslide hazards is a complex task that 

influences by multiple factors (Zhang et al., 2018). These factors are often reflected through different 

data sources. We can roughly divide heterogeneous data into four categories: image data, time series 

data, structured data, and textual data. Data fusion is essential for the accurate identification of 

potential landslides. In order to better identify potential landslides, data fusion is essential. 

Since heterogeneous data differ in feature scale, spatial resolution, and data modality, deep 

learning models are increasingly utilized to automatically extract nonlinear and high-order feature 

interactions across data sources, offering significant advantages over traditional statistical fusion 

techniques. In landslide applications, deep learning-based data fusion can integrate multi-modal 

inputs such as Sentinel-1 InSAR deformation, rainfall time series, and terrain derivatives for 

regional-scale susceptibility mapping or real-time early warning. 

Due to the non-Euclidean and topologically complex nature of landslide-related terrain, 

conventional CNN-based models are limited in representing irregular spatial dependencies (Scarselli 

et al., 2008). Graph Neural Networks (GNNs) have emerged as powerful architectures to model such 

relationships by representing spatial entities (e.g., slope units, grid cells, or sensor nodes) as graph 

nodes and their geospatial or topological interactions as edges (Ying et al., 2018; Zeng et al., 2022). 

In landslide identification, GNNs enable explicit modeling of spatial connectivity and 

geological adjacency, allowing the propagation of geomorphic and hydrological information across 

neighboring units. For example, Kuang et al. (2022) proposed an innovative landslide forecasting 

model based on Graph Neural Networks, in which graph convolutions are employed to aggregate 

spatial correlations among different monitoring sites. Ren et al. (2025) introduced a novel Graph 

Neural Network framework with conformal prediction (GNN-CF) for landslide deformation interval 

forecasting, addressing the limitations of traditional models in handling predictive uncertainty. 

According to the differences in message passing and aggregation methods, GNNs have derived 

various variants. For example, graph convolutional network (GCN) is generated by generalizing the 

convolutional operation to graph-structured data (Kipf et al., 2016; Sharma et al., 2022; Wang et al., 

2020a), and graph attention network (GAT) dynamically weights the importance of neighboring 

nodes by introducing the attention mechanism (Velickovic et al., 2017; Yuan et al., 2022; Zhou and 
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Li, 2021). The emergence of these new architectures makes GNN variants more targeted than 

conventional GNNs and suitable for modeling heterogeneous relationships. Currently, they are often 

used for weighted analysis of the impacts of different geographical factors on landslides. 

Transformer architectures, characterized by the self-attention mechanism, provide another 

promising avenue for landslide-related data fusion (Huang and Chen, 2023; Zhao et al., 2021a). 

Unlike CNNs or RNNs, which process spatial or temporal sequences sequentially, Transformers can 

jointly capture long-range dependencies across spatial and temporal dimensions, enabling unified 

processing of rainfall, InSAR time series, and topographic data (Esser et al., 2021; Lv et al., 2023). 

Recent studies have begun adapting Transformer variants for landslide identification. Li et al. 

(2023) proposed a Transformer-based deep neural network capable of identifying landslides from 

hillshade maps and optical imagery. Piran et al. (2024) enhanced short-term precipitation forecasting 

by applying transfer learning with a pre-trained Transformer model. Zhang et al. (2024) incorporated 

Transformer modules to build a graph-Transformer model that integrates global contextual 

information for the generation and analysis of landslide susceptibility maps (LSMs).  
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Comment #5:  

4. The most notable weakness of this work is the grammar and writing style, which is well below 

the acceptable standards of a journal paper. I found many grammar errors and several sentences 

which essentially repeated sentences just before them, among other issues (see below). The 

language was often vague, passive, and lacking focus. The authors need to carefully proofread their 

paper. This reads like a rough draft, not a publication-ready submission. 

Response: 

- We sincerely apologize for the inadequate writing quality in the original submission and fully 

acknowledge that the grammar and expression did not meet the high standards required for journal 

publication. We appreciate your detailed remarks, which helped us identify the issues more clearly. 

We will also take this valuable feedback as an opportunity to strengthen our own academic writing 

competency in future research. 

- To thoroughly address this concern, we have undertaken a comprehensive revision of the entire 

manuscript:  

- (1) We have meticulously addressed all the specific technical corrections (spelling, grammar, and 

wording/writing style) that you pointed out in the comments below. 

- (2) Furthermore, the entire manuscript has been carefully checked and polished using advanced 

AI-powered writing assistance technology (specifically, Grammarly and ChatGPT) to correct 

grammatical errors, eliminate redundancy, and improve sentence clarity. 

- (3) Following this, all authors have performed multiple rounds of manual proofreading to ensure 

the final text is coherent, focused, and meets the high standards expected for publication. 

- We believe that the revised manuscript has been significantly improved in terms of language 

fluency and clarity. Once again, we are truly grateful for your valuable time and for pointing out 

these issues, which have been instrumental in improving our paper. 

Original Description in L9 

…… 

Next, several commonly used deep learning models are classified based on their roles in 

potential landslide identification, such as image analysis and processing, time series analysis. 

…… 

 

Revised Description in L9 

…… 

Next, several commonly used deep learning models are classified based on their roles in 

potential landslide identification, covering areas such as image analysis and time series analysis. 

…… 
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Original Description in L44-46 

…… 

Through the training of large-scale and multi-source data, deep learning models are able to 

automatically extract features, capture complex nonlinear relationships, and conduct pattern 

recognition in high-dimensional data, which shows great potential in the identification of potential 

landslides (Nava et al., 2021; Yang et al., 2024c). 

…… 

 

Revised Description in L44-46 

…… 

Through training on large-scale and multi-source data, deep learning models are able to 

automatically extract features, capture complex nonlinear relationships, and conduct pattern 

recognition in high-dimensional data, which shows great potential in the identification of landslide 

hazards (Nava et al., 2021; Yang et al., 2024c). 

…… 

 

 

Original Description in L86 

…… 

Interferometric synthetic aperture radar (InSAR) has been developed based on. It obtains 

surface elevation information by performing coherent processing on two sets of SAR images 

observed in the same area (Dai et al., 2022; Ma et al., 2023b; Zeng et al., 2024). 

…… 

 

Revised Description in L84 

…… 

Interferometric synthetic aperture radar (InSAR) has been developed based on the principles of 

radar interferometry. It obtains surface elevation information by performing coherent processing on 

two sets of SAR images observed in the same area (Dai et al., 2022; Ma et al., 2023b; Zeng et al., 

2024). 

…… 

 

 

Original Description in L158 

…… 

When equipped with LiDAR sensors, UAVs can effectively remove vegetation from the data. 

Then, assisting researchers to reveal landslide boundaries, crack patterns, and other deformation 

features hidden beneath vegetation cover.  

…… 
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Revised Description in L158 

…… 

When equipped with LiDAR sensors, UAVs can effectively remove vegetation from the data, 

thereby assisting researchers to reveal landslide boundaries, crack patterns, and other deformation 

features hidden beneath vegetation cover.  

…… 

 

 

Original Description in L193 

…… 

TLS scanner can also help identify the landslide mass, that is, the flow path of the landslide 

materials.  

…… 

 

Revised Description in L193 

…… 

TLS can also help identify the landslide mass-that is, the flow path of the landslide materials.  

…… 

 

 

Original Description in L218-219 

…… 

By combining the obtained subsurface data with geomechanical equations, the position of the 

sliding surface or geotechnical strength parameters can be inverted.  

…… 

 

Revised Description in L218-219 

…… 

By combining the obtained subsurface data with geomechanical equations, the position of the 

sliding surface or geotechnical strength parameters can be inferred.  

…… 

 

 

Original Description in L223-227 

…… 

With continuous exploration, deep learning, through its powerful feature learning capabilities, 

enables the automatic extraction of meaningful features from raw data, significantly reducing manual 

intervention. Especially when dealing with high-dimensional and complex landslide data, deep 

learning models can extract deep features related to landslides from raw data in a data-driven manner, 
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without the need for manual feature design.  

…… 

 

Revised Description in L223-227 

…… 

By leveraging its powerful feature learning capabilities, deep learning models can automatically 

extract salient features from complex, high-dimensional landslide data without manual design, 

thereby minimizing human intervention.  

…… 

 

 

Original Description in L257-258 

…… 

Conventional CNNs typically consist of multiple stacked convolutional layers, pooling layers, 

and fully connected layers. However, increasing network depth introduces challenges such as 

vanishing gradients and degradation arise, resulting in model performance deterioration.  

…… 

 

Revised Description in L257-258 

…… 

As the network depth increases, conventional CNN architectures may encounter issues such as 

vanishing gradients and performance degradation, which hinder effective feature extraction in 

complex landslide imagery. To address these limitations, advanced CNN variants such as ResNet, 

DenseNet, and U-Net have been developed to enhance feature propagation and maintain training 

stability.  

…… 

 

 

Original Description in L294 

…… 

By comparing the segmentation results of multiple temporal phases or directly analyzing the 

feature differences, the dynamic evolution of potential hazards can be quantifie (Amankwah et al., 

2022).  

…… 

 

Revised Description in L294 

…… 

By comparing the segmentation results of multiple temporal phases or directly analyzing the 

feature differences, the dynamic evolution of potential hazards can be quantified (Amankwah et al., 

2022).  
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…… 

 

 

Original Description in L297 

…… 

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models 

capture spatial and temporal features using convolutional kernels while transforming multi-temporal 

image sequences into change hotspot maps or temporal variation curves as output.  

…… 

 

Revised Description in L297 

…… 

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models 

capture spatial and temporal features using convolutional kernels while transforming multi-temporal 

image sequences into change hotspot maps or temporal variation curves as outputs.  

…… 

 

 

Original Description in L304 

…… 

Different from conventional time series data analysis methods, using deep learning models an 

automatically reveal the dynamic change trends and periodic patterns in the data, providing more 

accurate information for landslide prediction.  

…… 

 

Revised Description in L304 

…… 

Different from conventional time series data analysis methods, using deep learning models can 

automatically reveal the dynamic change trends and periodic patterns in the data, providing more 

accurate information for landslide prediction.  

…… 

 

 

Original Description in L315-317 

…… 

During the training process, the RNN will process the data at each time step in sequence, 

continuously updating the hidden state. By combining the input 315 of the current time step with the 

hidden state of the previous moment for calculation to gain an understanding of the data at the current 

moment, this structure enables the RNN to capture the temporal evolution patterns of landslide-
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related factors.  

…… 

 

Revised Description in L315-317 

…… 

During the training process, the RNN processes the data at each time step in sequence, 

continuously updating the hidden state. By combining the input of the current time step with the 

hidden state of the previous moment, this structure enables the RNN to capture the temporal 

evolution patterns of landslide-related factors.  

…… 

 

 

Original Description in L318-319 

…… 

Due to conventional RNNs struggle to model long-term dependencies and limit their 

applicability to short-term temporal sequences, long short-term memory networks (LSTM) were 

developed (Wang et al., 2023b).  

…… 

 

Revised Description in L318-319 

…… 

Conventional RNNs are limited in their ability to capture long-term dependencies, which 

restricts their applicability to short-term temporal sequences. To overcome these limitations, long 

short-term memory (LSTM) networks were developed (Wang et al., 2023b).  

…… 

 

 

Original Description in L344-345 

…… 

Gated recurrent unit (GRU) is a simplified version of LSTM (Chung et al., 2014; Zhang et al., 

2022b), which has fewer parameters. Due to their higher computational efficiency, GRU has 

potential advantages in real-time data processing scenarios in landslide monitoring. 

GRU mainly consists of the update gate and reset gate. The update gate is used to control how 

much of the previous information should be preserved at the current time step, while the reset gate 

is used to determine whether to ignore the hidden state of the previous time step, enabling the model 

to adaptively learn information across different temporal scales. This dual-gate mechanism enables 

adaptive learning of multi-scale temporal patterns.  

…… 
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Revised Description in L344-345 

…… 

Gated recurrent unit (GRU) is a simplified version of the LSTM with fewer parameters and 

higher computational efficiency, making it suitable for real-time landslide monitoring applications 

(Chung et al., 2014; Zhang et al., 2022b). 

GRU mainly consists of an update gate and a reset gate. The update gate controls how much of 

the previous information is preserved at the current time step, while the reset gate determines whether 

to ignore the hidden state of the previous step, enabling the model to adaptively learn information 

across different temporal scales through this dual-gate mechanism.  

…… 

 

 

Original Description in L348 

…… 

GRU particularly well-suited for applications involving real-time analysis of on-site monitoring 

data, where rapid detection of imminent landslide risks is essential and data volume is relatively 

limited.  

…… 

 

Revised Description in L348 

…… 

GRU is particularly well-suited for applications involving real-time analysis of on-site 

monitoring data, where rapid detection of imminent landslide risks is essential and data volume is 

relatively limited.  

…… 

 

 

Original Description in L352 

…… 

Transformer was originally designed to handle sequential data in natural language processing, 

which was first introduced by Vaswani in 2017 (Vaswani et al., 2017). Unlike conventional recurrent 

and convolutional structures, the Transformer employs employs a self-attention mechanism to 

directly model the entire sequence.  

…… 

 

Revised Description in L352 

…… 

Transformer was originally designed to handle sequential data in natural language processing, 

which was first introduced by Vaswani in 2017 (Vaswani et al., 2017). Unlike conventional recurrent 

and convolutional structures, the Transformer employs a self-attention mechanism to directly model 
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the entire sequence.…… 

 

 

Original Description in L365 

…… 

Data generation refers to modeling the underlying data distribution of data to generate entirely 

new samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020; 

Shorten and Khoshgoftaar, 2019), thereby enriching the dataset.  

…… 

 

Revised Description in L365 

…… 

Data generation refers to modeling the underlying data distribution to generate entirely new 

samples independent of the original dataset (Kingma et al., 2014; Moreno-Barea et al., 2020; Shorten 

and Khoshgoftaar, 2019), thereby enriching the dataset.  

…… 

 

 

Original Description in L434-435 

…… 

Although diffusion models demonstrate strong capabilities in generating high-quality images 

and handling noise, they generate superior-quality data and ensure greater training stability compared 

to GANs and VAEs. 

…… 

 

Revised Description in L434-435 

…… 

In addition to their strong capabilities in generating high-quality images and handling noise, 

diffusion models also generate superior-quality data and ensure greater training stability compared 

to GANs and VAEs.  

…… 

 

 

Original Description in L448 

…… 

The AE is a typical unsupervised learning model consisting of an encoder and a decoder The 

encoder compresses the input data into low-dimensional features, and then the decoder reconstructs 

the input. 

…… 
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Revised Description in L448 

…… 

The AE is a typical unsupervised learning model consisting of an encoder and a decoder The 

encoder compresses the input data into low-dimensional features, and then the decoder reconstructs 

the input.  

…… 

 

 

Original Description in L470 

…… 

In landslide monitoring, data may be influenced by various factors, GANs demonstrate 

robustness by filtering out such interference, thereby enhancing data cleaning accuracy (Radoi, 

2022).  

…… 

 

Revised Description in L470 

…… 

In landslide monitoring, data may be influenced by various factors. To address this, GANs 

demonstrate robustness by filtering out such interference, thereby enhancing data cleaning accuracy 

(Radoi, 2022).  

…… 

 

 

Original Description in L485-486 

…… 

In practical applications, the identification of potential landslide hazards is a complex task that 

influences by multiple factors (Zhang et al., 2018). These factors are often reflected through different 

data sources. We can roughly divide heterogeneous data into four categories: image data, time series 

data, structured data, and textual data. Data fusion is essential for the accurate identification of 

potential landslides. In order to better identify potential landslides, data fusion is essential.  

…… 

 

Revised Description in L485-486 

…… 

In practical applications, the identification of potential landslide hazards is a complex task that 

influences by multiple factors (Zhang et al., 2018). These factors are often reflected through different 

data sources. We can roughly divide heterogeneous data into four categories: image data, time series 

data, structured data, and textual data. Data fusion is essential for the accurate identification of 

potential landslides.  



 

42 

 

…… 

 

 

Original Description in L521-522 

…… 

Transformer can also convert multimodal dFor different types of data, it transforms them into 

vector representations via different embedding layers.ata into a unified vector representation through 

different embedding layers. Subsequently, through the use of the self-attention mechanism and 

multilayer neural networks, these vectors are fused and feature representations are extracted, 

enabling the model to process and integrate data from various modalities within the same model 

framework (Lv et al., 2023; Tang et al., 2022).  

…… 

 

Revised Description in L521-522 

…… 

The Transformer can convert multimodal data into a unified vector representation through 

different embedding layers. For different types of data, it transforms them into vector representations 

via their respective embedding layers. Subsequently, through the use of the self-attention mechanism 

and multilayer neural networks, these vectors are fused and feature representations are extracted, 

enabling the model to process and integrate data from various modalities within the same model 

framework (Lv et al., 2023; Tang et al., 2022). 

.…… 

 

 

Original Description in L542, 692, 708 

…… 

In this section, we focus on the analysis of the second type of potential landslides. Based on 

triggering factors, landslides can be classified into four categories: rainfall-induced landslides, 

earthquake-induced landslides, human activity-induced landslides, and multi factor-induced 

landslides.  

…… 

4.4 Application of Deep Learning in the Identification of Multi factor-induced Landslides 

Multi factor-induced landslides result from the synergistic interaction of multiple natural and 

anthropogenic factors (Hao et al., 2023). 

…… 

In multi factor-induced landslides, earthquakes and rainfall often interact with other factors. 

…… 

With the accumulation of new data and the dynamic variations in multi factor-induced 

landslides, regular model updates are critical to ensuring identification accuracy and adaptability. 

…… 

In contrast, multi factor-induced landslides necessitate models that integrate multiple triggering 
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mechanisms and perform a comprehensive assessment of the cumulative effects of diverse 

contributing factors. 

…… 

Revised Description in L542, 692, 708 

…… 

In this section, we focus on the analysis of the second type of potential landslides. Based on 

triggering factors, landslides can be classified into four categories: rainfall-induced landslides, 

earthquake-induced landslides, human activity-induced landslides, and multi-factor-induced 

landslides.  

…… 

4.4 Application of Deep Learning in the Identification of Multi-factor-induced Landslides 

Multi-factor-induced landslides result from the synergistic interaction of multiple natural and 

anthropogenic factors (Hao et al., 2023). 

…… 

In multi-factor-induced landslides, earthquakes and rainfall often interact with other factors. 

…… 

With the accumulation of new data and the dynamic variations in multi-factor-induced 

landslides, regular model updates are critical to ensuring identification accuracy and adaptability. 

…… 

In contrast, multi-factor-induced landslides necessitate models that integrate multiple triggering 

mechanisms and perform a comprehensive assessment of the cumulative effects of diverse 

contributing factors. 

…… 

 

Original Description in L752 

…… 

Thus, data scarcity is a common problem in the identification of potential landslide, especially 

in remote areas or regions with limited data accessibility.  

…… 

 

Revised Description in L752 

…… 

Thus, data scarcity is a common problem in the identification of potential landslides, especially 

in remote areas or regions with limited data accessibility.  

.…… 

 

 

Original Description in L780 

…… 

Direct fusion of such multi-modal data induces feature space incompatibility, hindering cross-



 

44 

 

modal correlation extraction (Cai et al., 2021; Jin et al., 2022).Zhang et al. (2023) highlights that 

even remote sensing data exhibits high heterogeneity in imaging mechanisms, illumination 

conditions, and spectral characteristics.  

…… 

 

Revised Description in L780 

…… 

Direct fusion of such multi-modal data induces feature space incompatibility, hindering cross-

modal correlation extraction (Cai et al., 2021; Jin et al., 2022). Zhang et al. (2023) highlights that 

even remote sensing data exhibits high heterogeneity in imaging mechanisms, illumination 

conditions, and spectral characteristics.  

.…… 

 

 

Original Description in L913 

…… 

By fusing the static stratum data from geological surveys with the time-series data of surface 

deformation monitored by InSAR, the combination of static and dynamic data is realized, which can 

distinguish between stable slopes and areas with potential creeping deformation.  

…… 

 

Revised Description in L913 

…… 

By fusing the static stratum data from geological surveys with the time-series surface 

deformation data monitored by InSAR, it is possible to distinguish between stable slopes and areas 

with potential creeping deformation. 

.…… 

 

 

Original Description in L928 

…… 

Each deep learning model excels in specific tasks or data types but may underperforming in 

others.  

…… 

 

Revised Description in L928 

…… 

Each deep learning model excels in specific tasks or data types but may underperform in others.  

.…… 
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Original Description in L944-945 

…… 

For example, Guo et al. (2024) utilized a stacked approach integrating a 1D-CNN, RNN, and 

LSTM network can form a CRNN-LSTM ensemble model.  

…… 

 

Revised Description in L944-945 

…… 

For example, Guo et al. (2024) utilized a stacked approach integrating a 1D-CNN, RNN, and 

LSTM network to form a CRNN-LSTM ensemble model.  

.…… 

 

 

Original Description in L958 

…… 

The core concept involves leverage knowledge analysis to gain a deeper understanding of 

landslide triggering mechanisms and mechanical behaviors, while combine data-driven methods to 

extract potential landslide features and patterns from monitoring data and historical records. 

…… 

 

Revised Description in L958 

…… 

The core concept involves leveraging knowledge analysis to gain a deeper understanding of 

landslide triggering mechanisms and mechanical behaviors, while combining data-driven methods 

to extract potential landslide features and patterns from monitoring data and historical records. 

.…… 

 

 

Original Description in L1033 

…… 

In this review, we summarized the latest advancement in the applications of deep learning 

models for potential landslide identification, as well as the challenges and opportunities for the 

future.  

…… 

 

Revised Description in L1033 

…… 

In this review, we summarized the latest advancements in the applications of deep learning 
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models for potential landslide identification, as well as the challenges and opportunities for the 

future. 

.…… 

 

 

 

Comment #6:  

5. L28: I’m not sure what you mean by the “relativity…of potential landslides”. Could you clarify 

what is “relative” about potential landslides? 

Response: 

- We sincerely thank you for this insightful comment. We apologize for the lack of clarity in our 

original phrasing. The term "relativity" was intended to convey that the assessment of landslide 

potential is not absolute but is comparative and context-dependent. It refers to the relative 

likelihood, spatial probability, or comparative susceptibility of a landslide occurring in one area 

versus another, based on a set of conditioning factors (e.g., slope, geology, land use). 

- We have revised the manuscript to improve precision. The phrase has been replaced with "the 

inherent uncertainty and dynamic nature" to better convey that landslide prediction is not absolute 

but is a probabilistic assessment fraught with challenges. 

 

Original Description in Section 1 

…… 

Due to the relativity and dynamic nature of potential landslides, the identification work becomes 

extremely complicated. On the one hand, it is not possible to determine that a landslide will definitely 

occur just because there are signs of deformation on the slope. 

…… 

 

Revised Description in Section 1 

…… 

Due to the inherent uncertainty and dynamic nature of potential landslides, the identification 

work becomes extremely complicated. On the one hand, it is not possible to determine that a 

landslide will definitely occur just because there are signs of deformation on the slope. 

…… 
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Comment #7:  

6. Figure 1 contains reference to several important satellites that are not explained or mentioned 

anywhere in the text (Sentinel, for example). The authors should briefly describe the satellites and 

what kind of images they produce, either in the caption or the main body of the text, where relevant. 

Response: 

- Thank you for carefully pointing out this oversight! We fully agree with this comment. To address 

it, we have added concise descriptions of the major satellites in the caption of Figure 1. These 

descriptions clarify the types of data each satellite provides and their relevance to potential 

landslide identification. 

Original Figure 1 

 

Figure 1. Data sources for potential landslide identification. 
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Revised Figure 1 

 

Figure 1. Data sources for potential landslide identification. Satellite observations (e.g., Landsat, 

Sentinel, SPOT, and Envisat) provide optical and radar imagery with varying spatial resolutions for 

detecting and mapping landslides. Airborne observations (LiDAR, UAV) deliver high-resolution 

topographic and photographic data, while ground-based observations (TLS, GBSAR, GNSS, rainfall 

and groundwater sensors) offer continuous in-situ monitoring of slope dynamics. 

 

Comment #8:  

7. While I appreciate the brevity of Section 1, I feel it would be improved by adding a paragraph 

summarizing the authors’ overall takeaways and findings from this review. 

Response: 

- We sincerely thank you for this valuable suggestion. We have added a summary paragraph at the 

end of Section 1 to clearly outline the overall takeaways and findings of this review. The added 

paragraph synthesizes the core contributions of our work, highlights the value of deep learning in 

potential landslide identification, and points out current challenges and future directions, thereby 

providing readers with a more complete overview. 
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Original Description in Section 1 

…… 

In this review, we aim to summarize the applications of deep learning in the field of potential 

landslide identification, including data, models, applications, challenges, and future directions. 

(1) We classify commonly used heterogeneous data into three categories for research. These 

data sources offer comprehensive data support for the application of deep learning in potential 

landslide identification. 

(2) We introduce the roles of commonly used deep learning models in potential landslide 

identification, and compare the advantages and disadvantages among different models. 

(3) We analyze the performance of deep learning models in different scenarios through case 

studies, discussing the adaptability of deep learning in potential landslide identification. 

(4) We summarize the main challenges currently faced by the application of deep learning in 

potential landslide identification, and highlight new opportunities and promising future directions. 

The remainder of this paper is organized as follows. Section 2 introduces seven main data 

sources. Section 3 summarizes five roles of deep learning models in potential landslide identification. 

Section 4 investigates the application of deep learning. models in four typical landslides and provides 

a comprehensive summary. Section 5 analyzes the current challenges in potential landslide 

identification. Section 6 discusses future research directions. Section 7 provides the concluding 

remarks. 

…… 

Revised Description in Section 1 

…… 

In this review, we aim to summarize the applications of deep learning in the field of potential 

landslide identification, including data, models, applications, challenges, and future directions. 

(1) We classify commonly used heterogeneous data into three categories for research. These 

data sources offer comprehensive data support for the application of deep learning in potential 

landslide identification. 

(2) We introduce the roles of commonly used deep learning models in potential landslide 

identification, and compare the advantages and disadvantages among different models. 

(3) We analyze the performance of deep learning models in different scenarios through case 

studies, discussing the adaptability of deep learning in potential landslide identification. 

(4) We summarize the main challenges currently faced by the application of deep learning in 

potential landslide identification, and highlight new opportunities and promising future directions. 

Through our analysis, we identified several key trends in the application of deep learning to 

potential landslide identification. First, researchers are increasingly adopting multi-source data 

fusion techniques, integrating information from diverse sources to construct a more comprehensive 

representation of the geological environment (Guo et al., 2025; Liu et al., 2020; Wang et al., 2024). 

Second, deep learning models have been successfully applied across multiple scales, ranging from 

large-scale landslide susceptibility mapping with convolutional neural networks (CNNs) to real-time 

slope deformation monitoring with recurrent neural networks (RNNs) (Azarafza et al., 2021; Soni et 

al., 2025; Xie et al., 2024; Zhao et al., 2024). Despite these advances, the field continues to face 

critical challenges that will shape its future trajectory. The main challenges include the scarcity of 

high-quality, well-annotated landslide datasets; limited generalization and transferability of models 
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across diverse geological settings; and the inherent “black box” nature of deep learning, which 

undermines interpretability and trust in high-stakes decision-making contexts. Consequently, future 

research is expected to place greater emphasis on integrating physical knowledge with data-driven 

approaches, thereby advancing the field from traditional, reactive post-disaster responses toward 

intelligent, proactive pre-disaster risk management. 

…… 

 

Newly Added References 
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Guo D, Yang X, Peng P, Zhu L, He H. The intelligent fault identification method based on multi-source 
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Comment #9:  

8. Section 2.1.1: I would recommend the section on SAR also discuss NISAR. This is quite timely; 

the satellite just launched, is the most expensive earth-imaging satellite ever, and part of its mission 

is to monitor and better understand natural processes on Earth. Further, the authors should mention 

that another benefit of SAR is that it can image Earth regardless of illumination (ie day or night) 

and weather conditions (eg cloudy), which is not true of optical remote sensing. 

Response: 

- Thank you for your excellent and constructive suggestions. We fully agree that discussing the 

recently launched NISAR mission is highly timely and relevant for our review, as it represents a 

significant advancement in SAR for Earth observation. We also appreciate the comment regarding 

the all-weather capability of SAR, which is indeed a critical advantage over optical imaging and 
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we apologize for this omission in our original manuscript. 

- According to your reasonable suggestion, we have revised the relevant content. (Please see revised 

Subsection 2.2.1 for details). 

-  

Original Description in Subsection 2.1.1 

…… 

SAR is an active microwave remote sensing system. It is not only capable of acquiring data on 

demand by actively emitting microwave signals but also facilitates partial penetration of vegetation 

cover through its longer wavelength bands (such as the L-band), thereby allowing the retrieval of 

surface deformation information beneath vegetated areas. The time series data provided by SAR can 

serve as input for deep learning models, allowing these models to be trained to identify long-term 

patterns of terrain change. Continuous monitoring of potential landslide areas is crucial, and SAR is 

widely employed in high-risk environments. 

…… 

 

Revised Description in Subsection 2.1.1 

…… 

SAR is an active microwave remote sensing system. It is not only capable of acquiring data on 

demand by actively emitting microwave signals but also facilitates partial penetration of vegetation 

cover through its longer wavelength bands (such as the L-band), thereby allowing the retrieval of 

surface deformation information beneath vegetated areas. 

A critical operational advantage of SAR lies in its capacity to image regardless of illumination 

(day or night) and weather conditions (e.g., cloud cover) (Koukiou, 2024). The continuous, 

unimpeded time series data this provides is essential for serving as input to deep learning models, 

allowing these models to be trained to identify long-term patterns of terrain change. For this reason, 

SAR is widely employed for the crucial task of continuous monitoring in high-risk environments, 

where cloud cover and the timing of a disaster are unpredictable. 

Notably, the NASA–ISRO SAR Mission (NISAR), jointly developed by the National 

Aeronautics and Space Administration (NASA) and the Indian Space Research Organisation 

(ISRO), was successfully launched in 2025 (ISRO, 2025; NASA Science, 2025). The satellite carries 

both L-band and S-band SAR systems, enabling more precise and frequent measurements of surface 

deformation. With a revisit period of approximately 12 days, it delivers globally consistent coverage 

with a balanced spatial and temporal resolution. This capability provides researchers with abundant 

and continuous observations, supporting large-scale, high spatiotemporal resolution landslide early 

detection and dynamic monitoring. 

…… 
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Newly Added References 

ISRO (2025). NISAR – NASA–ISRO Synthetic Aperture Radar Mission. Indian Space Research Organisation. 

Retrieved October 26, 2025, from https://www.isro.gov.in/Mission_GSLVF16_NISAR_Home.html. 

Koukiou, G., 2024. SAR Features and Techniques for Urban Planning—A Review. Remote Sensing, 16(11), 
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NASA Science (2025). Mission overview – NASA–ISRO Synthetic Aperture Radar (NISAR). National 

Aeronautics and Space Administration. Retrieved October 26, 2025, from 

https://science.nasa.gov/mission/nisar/mission-overview/. 

 

 

Comment #10:  

9. Section 2.1.2 would benefit from more citations to previous work. In particular, it needs more 

citations to support its statements. This also benefits readers who want to learn more. For example 

"Its application in geological hazard investigations dates back to the 1970s" and "currently capable 

of achieving spatial resolutions as fine as 0.3 meters or better" are both claims that have no 

supporting citation. 

Response: 

- Thank you for your valuable comment! We agree entirely that providing appropriate citations 

strengthens the arguments in this section and provides valuable resources for readers. We have now 

carefully revised Subsection 2.1.2 and added several key references to support the claims, 

particularly the two specific examples mentioned by you. (Please see new Subsection 2.1.2 for 

details). 

Original Description in Subsection 2.1.2 

…… 

Optical remote sensing refers to the acquisition of surface information through sensors that 

measure reflected solar radiation. Its application in geological hazard investigations dates back to 

the 1970s. 

Optical remote sensing offers high resolution, currently capable of achieving spatial resolutions 

as fine as 0.3 meters or better. In potential landslide identification, it not only facilitates the retrieval 

of detailed surface textures and color characteristics using rich spectral data but also enables the 

direct identification of morphological features and object contours via visual interpretation of 

imagery (Cheng and Han, 2016; Li et al., 2022b). 

Landslide formation typically follows a progressive process from deformation to failure, 

accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized collapses. 

These indicators exhibit distinct spectral signatures in optical imagery compared to their 

surroundings, enabling both manual interpretation and automated detection. 

In vegetated mountainous regions, surface vegetation often undergoes detectable changes 

before a landslide event. Optical remote sensing leverages multispectral data, particularly red and 

https://www.isro.gov.in/Mission_GSLVF16_NISAR_Home.html
https://science.nasa.gov/mission/nisar/mission-overview/
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near-infrared bands, to monitor vegetation health and identify potential landslide zones. 

Furthermore, the calculation of the normalized difference vegetation index (NDVI) facilitates the 

evaluation of vegetation health in potential landslide regions, providing critical insights into potential 

landslide precursors (Verrelst et al., 2015) 

.…… 

 

Revised Description in Subsection 2.1.2 

…… 

Optical remote sensing refers to the acquisition of surface information through sensors that 

measure reflected solar radiation. Its application in geological hazard investigations dates back to 

the 1970s (Fu et al., 2024; Liu and Wu, 2016). 

Optical remote sensing offers high resolution, currently capable of achieving spatial resolutions 

as fine as 0.3 meters or better. For example, Maxar’s WorldView-3 delivers 0.31 m panchromatic 

imagery (Hu et al., 2016; Longbotham et al., 2014), while India’s Cartosat-3 satellite achieves 

panchromatic imagery with a resolution of up to 0.25 m (Gupta et al., 2024). In potential landslide 

identification, it not only facilitates the retrieval of detailed surface textures and color characteristics 

using rich spectral data but also enables the direct identification of morphological features and object 

contours via visual interpretation of imagery (Cheng and Han, 2016; Li et al., 2022b; Ma and Wang, 

2023). 

Landslide formation typically follows a progressive process from deformation to failure, 

accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized collapses. 

These indicators exhibit distinct spectral signatures in optical imagery compared to their 

surroundings, enabling both manual interpretation and automated detection. 

In vegetated mountainous regions, surface vegetation often undergoes detectable changes 

before a landslide event. Optical remote sensing leverages multispectral data, particularly red and 

near-infrared bands, to monitor vegetation health and identify potential landslide zones (Coluzzi et 

al., 2025). Furthermore, the calculation of the normalized difference vegetation index (NDVI) 

facilitates the evaluation of vegetation health in potential landslide regions, providing critical insights 

into potential landslide precursors (Verrelst et al., 2015). 

…… 

 

Newly Added References 
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Comment #11:  

10. Section 2.1.2: I would recommend more detailed discussion of multi- and hyper-spectral 

images and their application to landslides. You briefly mention it but I feel that more discussion is 

warranted given their prevalence in earth monitoring (especially via deep learning). 

Response: 

- We are grateful to you for this excellent suggestion. We completely agree that a more in-depth 

discussion on multi- and hyperspectral imagery is crucial, especially given their growing 

importance in landslide monitoring and the role of deep learning in automating their analysis. This 

expansion undoubtedly strengthens the manuscript and provides readers with a more 

comprehensive overview. 

- In response to this comment, we have significantly expanded Subsection 2.1.2 by adding a 

dedicated paragraph that further explains the characteristics and advantages of multi- and 

hyperspectral data and their applications in traditional machine learning and deep learning 

approaches (Please see new Subsection 2.1.2 for details). 

Original Description in Subsection 2.1.2 

…… 

In vegetated mountainous regions, surface vegetation often undergoes detectable changes 

before a landslide event. Optical remote sensing leverages multispectral data, particularly red and 

near-infrared bands, to monitor vegetation health and identify potential landslide zones. 

Furthermore, the calculation of the normalized difference vegetation index (NDVI) facilitates the 

evaluation of vegetation health in potential landslide regions, providing critical insights into potential 

landslide precursors (Verrelst et al., 2015). 

…… 
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Revised Description in Subsection 2.1.2 

…… 

In vegetated mountainous regions, surface vegetation often undergoes detectable changes 

before a landslide event. Optical remote sensing leverages multispectral data, particularly red and 

near-infrared bands, to monitor vegetation health and identify potential landslide zones. 

Furthermore, the calculation of the normalized difference vegetation index (NDVI) facilitates the 

evaluation of vegetation health in potential landslide regions, providing critical insights into potential 

landslide precursors (Verrelst et al., 2015). 

However, the broad spectral bands of multispectral sensors limit their ability to detect more 

subtle, diagnostically specific precursory signals. The advancement beyond broad-band 

multispectral imaging to hyperspectral imaging has opened new avenues for landslide precursor 

detection (Kilgore and Restrepo, 2025; Ye et al., 2019). Hyperspectral sensors capture hundreds of 

contiguous spectral bands, enabling the identification of specific mineralogies (e.g., expansive clays 

like smectite that influence slope stability) and subtle geochemical alterations on slope surfaces. For 

instance, the shifting absorption features in the short-wave infrared (SWIR) region can signal 

changes in soil water content and mineral composition that often precede failure (Thimsen et al., 

2017). 

The integration of these rich spectral datasets with deep learning architectures has significantly 

advanced automated landslide analysis (Huang et al., 2022; Shahabi et al., 2021). These models excel 

at learning complex patterns from high-dimensional spectral-spatial information, enabling highly 

accurate detection of landslide scars and even precursory features like cracks and seepage zones that 

are otherwise challenging to identify. 

…… 
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Comment #12: 

11. Section 2 would benefit from a more discussion comparing and contrasting these different data 

sources. Lines 173-176 do a good job of this with SAR and GB-SAR. More discussion similar to 

this for other methods would improve this section, in my opinion. 

Response: 

- We sincerely appreciate your constructive and helpful comments! 

- Your suggestion regarding enhancing the discussion by comparing and contrasting the different 

data sources in Section 2 is highly valuable and crucial for improving the depth and clarity of this 

section. We fully agree with your assessment and have thoroughly revised the manuscript based on 

your guidance.  

- Following your suggestions, we have enhanced Section 2 by adding comparative discussions at 

three main levels: 

- (1) Added comparison within Subsection 2.1: A new paragraph has been added following the 

descriptions of space-borne SAR and optical remote sensing. This paragraph explicitly compares 

and contrasts these two technologies in terms of their operating principles, key strengths, 

limitations, and their complementary roles in regional-scale landslide identification. 

- (2) Added comparison within Subsection 2.2: A new comparative summary paragraph has been 

added after the introductions of airborne LiDAR and UAV. This section now contrasts the 

applicability, cost-effectiveness, and operational complexity of airborne LiDAR and UAVs, 

framing them as a bridge between satellite and ground-based data.  

- (3) Enhanced comparison within Subsection 2.3: The discussion comparing GB-SAR, TLS, and 

ground-based sensor devices has been significantly deepened.  

- Please see the revised Section 2 for details. 

-  

- We sincerely appreciate the time and effort you dedicated to reviewing our manuscript and 

providing these constructive comments, which have significantly improved the quality of our paper. 

Original Description in Section 2 

2.1 Satellite Observation Data 

2.1.1 Space-borne SAR 

…… 

2.1.2 Optical Remote Sensing 

…… 

Landslide formation typically follows a progressive process from deformation to failure, 

accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized collapses. 

These indicators exhibit distinct spectral signatures in optical imagery compared to their 

surroundings, enabling both manual interpretation and automated detection. 

In vegetated mountainous regions, surface vegetation often undergoes detectable changes 

before a landslide event. Optical remote sensing leverages multispectral data, particularly red and 
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near-infrared bands, to monitor vegetation health and identify potential landslide zones. 

Furthermore, the calculation of the normalized difference vegetation index (NDVI) facilitates the 

evaluation of vegetation health in potential landslide regions, providing critical insights into potential 

landslide precursors (Verrelst et al., 2015). 

2.2 Airborne Remote Sensing Data 

2.2.1 Airborne Light Detection and Ranging (LiDAR) 

…… 

2.2.2 Unmanned Aerial Vehicle (UAV) 

…… 

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial 

photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on 

UAVs are able to capture the subtle cracks on the surface of the mountain. 

These cracks may be early signs of a landslide (Sun et al., 2024a). By conducting a comparative 

analysis of the images taken at different times, the development and changes of the cracks can be 

monitored, including the increase in the length, width and depth of the cracks, as well as the changes 

in the crack orientation. In some mountainous areas or valleys, there may be a large number of loose 

accumulations. These accumulations may trigger landslides under specific conditions. Aerial 

photography by UAVs can clearly identify information such as the distribution range, accumulation 

quantity and accumulation shape of these loose accumulations, and assess their potential threats to 

the surrounding environment. 

When equipped with LiDAR sensors, UAVs can effectively remove vegetation from the data. 

Then, assisting researchers to reveal landslide boundaries, crack patterns, and other deformation 

features hidden beneath vegetation cover. This integrated approach combines the strengths of 

photogrammetry and LiDAR, allowing for rapid deployment and targeted area monitoring while 

mitigating the challenges posed by vegetation cover in landslide detection and assessment. 

After extreme weather events such as heavy rainstorms or geological events like earthquakes 

occur, the stability of the mountain may be affected, making it prone to triggering geological hazards. 

UAVs even can quickly conduct aerial monitoring of the relevant areas after extreme weather. 

2.3 Ground-based Observation Data 

2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR) 

…… 

2.3.2 Terrestrial Laser Scanning (TLS) 

…… 

By quickly and massively collecting spatial point position information, TLS can automatically 

splice and rapidly obtain the appearance of the measured object. It can be used to construct high-

precision surface models and appearance models of buildings and structures. The 3D model can 

display the shape and structure of the mountain and the detailed features of the ground surface from 

different angles and in all directions (Zhou et al., 2024), enabling geological experts and engineers 

to have a more intuitive understanding of the overall situation of the landslide area. For example, the 

cracks in the mountain, the loose accumulations, and the degree of weathering of the rocks can be 

clearly seen, providing richer information for the identification of potential landslide hazards. 

Currently, TLS is commonly used in critical areas requiring localized precision. For historical 
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landslide masses, it captures reactivation indicators such as rear tensile cracks and frontal bulging, 

with data input into anomaly detection models to identify reactivation signals. 

…... 

 

Revised Description in Section 2 

2.1 Satellite Observation Data 

2.1.1 Space-borne SAR 

…… 

2.1.2 Optical Remote Sensing 

…… 

Landslide formation typically follows a progressive process from deformation to failure, 

accompanied by precursor indicators such as tensile cracks, stepped scarps, and localized collapses. 

These indicators exhibit distinct spectral signatures in optical imagery compared to their 

surroundings, enabling both manual interpretation and automated detection. 

In vegetated mountainous regions, surface vegetation often undergoes detectable changes 

before a landslide event. Optical remote sensing leverages multispectral data, particularly red and 

near-infrared bands, to monitor vegetation health and identify potential landslide zones (Fiorucci et 

al., 2018). Furthermore, the calculation of the normalized difference vegetation index (NDVI) 

facilitates the evaluation of vegetation health in potential landslide regions, providing critical insights 

into potential landslide precursors (Verrelst et al., 2015). 

While both space-borne SAR and optical remote sensing are pivotal for large-area landslide 

screening, they offer complementary capabilities and have distinct limitations. Optical remote 

sensing provides intuitive visual interpretation of geomorphological features but is rendered useless 

by cloud cover and darkness. In contrast, space-borne SAR, with its all-weather, day-and-night 

imaging capability, excels in detecting millimeter-to-centimeter-scale surface deformation through 

InSAR techniques, which is a direct precursor to landslide failure. However, InSAR performance 

can be degraded in heavily vegetated areas due to temporal decorrelation and in steep terrain due to 

geometric distortions (Lin et al., 2022; Yan et al., 2024), areas where optical stereo imaging for DEM 

generation might be less affected. Therefore, the integration of SAR-derived deformation maps and 

optical-based geomorphological maps is considered a best practice for regional-scale landslide 

inventory mapping and preliminary hazard assessment (Xun et al., 2022). 

2.2 Airborne Remote Sensing Data 

2.2.1 Airborne Light Detection and Ranging (LiDAR) 

…… 

2.2.2 Unmanned Aerial Vehicle (UAV) 

…… 

With the rapid advancement of UAVs, centimeter-level vertical and oblique aerial 

photogrammetry is now achievable (Fan et al., 2020). The high-definition cameras mounted on 

UAVs are able to capture the subtle cracks on the surface of the mountain. 

These cracks may be early signs of a landslide (Sun et al., 2024a). By conducting a comparative 

analysis of the images taken at different times, the development and changes of the cracks can be 
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monitored, including the increase in the length, width and depth of the cracks, as well as the changes 

in the crack orientation. In some mountainous areas or valleys, there may be a large number of loose 

accumulations. These accumulations may trigger landslides under specific conditions. Aerial 

photography by UAVs can clearly identify information such as the distribution range, accumulation 

quantity and accumulation shape of these loose accumulations, and assess their potential threats to 

the surrounding environment. 

Airborne platforms bridge the gap between satellite and ground-based observations. Airborne 

LiDAR is unparalleled in generating high-precision DEM, revealing concealed paleo-landslides and 

subtle topographic features critical for hazard mapping. However, its deployment is costly and 

logistically complex. UAVs, as a flexible and cost-effective alternative, have democratized high-

resolution data acquisition. They can be equipped with various sensors (e.g., optical, multispectral, 

and even lightweight LiDAR) to conduct rapid response surveys following triggering events such as 

earthquakes or heavy rainfall (Han et al., 2023; Sestras et al., 2025). While UAV-derived models 

have ultra-high resolution, their coverage is limited per sortie compared to airborne campaigns. The 

choice between them often involves a trade-off between coverage, cost, operational flexibility, and 

the specific requirement for vegetation penetration. 

2.3 Ground-based Observation Data 

2.3.1 Ground-based Synthetic Aperture Radar (GB-SAR) 

…… 

2.3.2 Terrestrial Laser Scanning (TLS) 

…… 

By quickly and massively collecting spatial point position information, TLS can automatically 

splice and rapidly obtain the appearance of the measured object. It can be used to construct high-

precision surface models and appearance models of buildings and structures. The 3D model can 

display the shape and structure of the mountain and the detailed features of the ground surface from 

different angles and in all directions (Zhou et al., 2024), enabling geological experts and engineers 

to have a more intuitive understanding of the overall situation of the landslide area. For example, the 

cracks in the mountain, the loose accumulations, and the degree of weathering of the rocks can be 

clearly seen, providing richer information for the identification of potential landslide hazards. 

Currently, TLS is commonly used in critical areas requiring localized precision (Abellán et al., 

2009; Teng et al., 2022). For historical landslide masses, it captures reactivation indicators such as 

rear tensile cracks and frontal bulging, with data input into anomaly detection models to identify 

reactivation signals. 

Ground-based techniques provide the highest precision for monitoring a specific slope of 

interest. GB-SAR and TLS are both non-contact remote sensing methods, but they operate on 

different principles. GB-SAR offers continuous, all-weather, mm-level deformation monitoring over 

a large area (several km²) from a single station, making it ideal for early warning. Its drawback is the 

need for a stable, opposing installation point with a clear line-of-sight (Monserrat et al., 2013). TLS, 

on the other hand, provides mm-to-cm-level 3D point clouds of the slope surface, excellent for 

quantifying volume changes and detailed geometric changes. However, it is typically used for 

periodic surveys rather than continuous monitoring and has occlusion shadows (Huang et al., 2019). 

…… 
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Comment #13:  

12. L167: "However, due to the influence of various factors, the identification results may not 

always be fully accurate, leading to potential misjudgments." As a review article, your job is to tell 

the reader what the “various factors” are! You should elaborate and cite sources about what can 

cause inaccuracies in identification. 

Response: 

- We sincerely appreciate your constructive and helpful comments! We agree that a more detailed 

explanation of the factors affecting identification accuracy is necessary in a review paper. We have 

https://doi.org/10.3390/rs15194755
https://www.mdpi.com/1424-8220/22/23/9179
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now elaborated on the specific factors that can lead to inaccuracies in landslide identification using 

remote sensing and have supported these points with relevant literature citations. The revised text 

now reads. Please see the revised Subsection 2.3 for all details. Thanks. 

Original Description in Subsection 2.3 

…… 

Satellite observation and airborne remote sensing are mainly employed for identifying potential 

landslides based on surface morphology. However, due to the influence of various factors, the 

identification results may not always be fully accurate, leading to potential misjudgments. Therefore, 

the potential landslide points identified through remote sensing still necessitate field investigations 

by researchers for verification, differentiation, confirmation, or exclusion of hazards. In some cases, 

additional. on-site observation and monitoring methods are needed for accurate assessment. 

Commonly used ground-based monitoring methods include ground-based SAR, 3D laser scanners 

and various sensor devices deployed or installed on the ground. 

…… 

Revised Description in Subsection 2.3 

…… 

Satellite observation and airborne remote sensing are mainly employed for identifying potential 

landslides based on surface morphology. However, these approaches are often affected by vegetation 

cover, viewing geometry, and atmospheric noise, which may lead to misclassification or omission 

(Almalki et al., 2022; Dubovik et al., 2021). Therefore, the potential landslide points identified 

through remote sensing still necessitate field investigations by researchers for verification, 

differentiation, confirmation, or exclusion of hazards. In some cases, additional. on-site observation 

and monitoring methods are needed for accurate assessment. Commonly used ground-based 

monitoring methods include ground-based SAR, 3D laser scanners and various sensor devices 

deployed or installed on the ground. 

…… 

 

Newly Added References 
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Comment #14: 

13. Figure 2(b) and 2(c) are nice illustrations. However, it is not clear to me Figure 2(a) is trying 

to convey, particularly the top and bottom panels. 

Response: 

- Thank you for pointing this out! We agree that Figure 2(a) was not sufficiently clear in its current 

form. Our intention was to illustrate three typical CNN-based applications in landslide recognition: 

(i) feature extraction, where CNNs learn to highlight potential landslide-prone areas from raw 

imagery; (ii) semantic segmentation, where CNNs classify each pixel as landslide or non-landslide; 

and (iii) change detection, where pre- and post-event images are compared to detect newly emerged 

or expanded landslides. 

- To avoid potential misunderstanding, we have revised Figure 2(a) to consistently display the input 

(pre-identification image) and output (post-identification result) representations. Please see new 

Figure 2. 

Original Figure 2 

 

Figure 2. The role of deep learning models in image analysis and processing. (a) Three commonly used 

applications of CNNs in image processing for potential landslide identification. (b) Schematic of a 

basic CNN architecture. A conventional CNN typically comprises stacked convolutional layers, 

pooling layers, and fully connected layers. (c) Comparative schematic of ResNet and DenseNet 

architectures. In contrast to ResNet, which combines features through summation before passing them 

to subsequent layers, DenseNet integrates features via channelwise concatenation. 
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Revised Figure 2 

 

Figure 2. The role of deep learning models in image analysis and processing. (a) Comparison of 

landslide images before and after identification. (b) Schematic of a basic CNN architecture. A 

conventional CNN typically comprises stacked convolutional layers, pooling layers, and fully 

connected layers. (c) Comparative schematic of ResNet and DenseNet architectures. In contrast to 

ResNet, which combines features through summation before passing them to subsequent layers, 

DenseNet integrates features via channelwise concatenation. 

 

Comment #15:  

14. With regards to data, are there any benchmark datasets for landslide identification? If so, which 

models/methods are state-of-the-art on these datasets? this would be worthwhile to discuss, and if 

not, a strong recommendation to the community would be to construct such benchmark datasets to 

encourage further deep learning research in the area. 

33. Section 5.1 makes good points, but the concept of limited training data should be discussed 

earlier, for example when discussing data in section 2. 

Response: 

- We sincerely appreciate your two highly insightful comments! You have correctly highlighted that 

the issue of "data" represents one of the core challenges in this field, and we acknowledge that our 

discussion of this aspect could indeed be presented earlier and in a more systematic manner. 14, 

concerning benchmark datasets, is particularly critical, while 33 has been instrumental in helping 

us refine the logical structure of the manuscript. 
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- To address both comments simultaneously, we have decided to relocate the discussion on limited 

training data from Subsection 5.1 to the newly added Subsection 2.4. In Subsection 2.4, we also 

introduce the commonly used datasets for landslide identification. In addition, in Section 5 and 

Subsection 6.1, we will strongly recommend that the research community collaboratively establish 

standardized benchmark datasets to further advance deep learning research in this field. 

The revisions are as follows: 

- Several benchmark datasets for landslide detection have recently been released and are now widely 

used in the community. Representative examples include the CAS Landslide Dataset, 

Landslide4Sense (L4S) benchmark, Diverse Mountainous Landslide Dataset (DMLD) and 

slope-unit-based benchmark datasets. 

- On these datasets, state-of-the-art methods typically include advanced segmentation architectures 

such as Transformer-based models (e.g., Swin Transformer, SegFormer) as well as improved U-

Net variants, often combined with multi-source data fusion strategies and self-training techniques. 

- While these datasets represent major progress, remaining gaps include (1) broader geographical 

diversity with held-out test regions, (2) standardized instance-level annotations (polygons vs. 

coarse masks), and (3) common evaluation protocols (splits and metrics). 

 

 

Added Description in Subsection 2.4 

2.4 Summary of Data Source for Potential Landslide Identification 

In summary, no single data source is sufficient for a comprehensive landslide hazard 

identification framework. Regional-scale satellite data, particularly InSAR, is optimal for the early 

detection of pre-landslide deformations over vast areas. Airborne platforms, such as UAVs, then 

provide high-resolution optical and LiDAR data to characterize the precise geometry and activity of 

identified potential landslides. Finally, ground-based and in-situ sensors enable site-specific, real-

time monitoring of high-risk slopes, validating remote sensing findings and supporting early 

warning systems. The strategic integration of these multi-platform data is crucial for transitioning 

from regional screening to mechanistic understanding and risk mitigation. 

Beyond these general data modalities, recent years have also witnessed the emergence of 

benchmark datasets that serve as standardized testbeds for developing and evaluating deep learning 

methods in landslide identification. Such datasets are essential for ensuring reproducibility, enabling 

fair comparison across models, and accelerating methodological advances. Representative examples 

include the CAS Landslide Dataset, a large-scale, multi-sensor dataset explicitly designed for deep-

learning-based landslide mapping (Xu et al., 2024); the Landslide4Sense (L4S) benchmark, 

developed within an international competition, which provides multisource satellite image patches 

(Ghorbanzadeh et al., 2022); and the Diverse Mountainous Landslide Dataset (DMLD), which 

emphasizes high-resolution instances from complex mountainous terrains (Chen et al., 2024). In 

addition, slope-unit-based benchmark datasets have been constructed to support susceptibility 

mapping and regional-scale comparisons (Martinello et al., 2021). 
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Overall, these datasets serve as valuable resources for pixel-level segmentation and slope-unit-

based susceptibility modeling. However, in practice, the compilation of landslide inventories faces 

considerable challenges, making it difficult to obtain comprehensive and accurate records (Kong et 

al., 2025; Lee et al., 2018). Consequently, data scarcity remains a common issue in landslide hazard 

identification, particularly in remote regions or areas with limited accessibility. Therefore, it is 

necessary to further expand their geographical coverage and establish standardized evaluation 

protocols. 
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Original Description in Section 5 

5 Deep Learning for Potential Landslide Identification: Challenges 

5.1 Data Quality and Availability 

In potential landslide identification, the performance of deep learning models is critically 

dependent on both data quality and availability (Alzubaidi et al., 2023; Gaidzik and Ramirez-

Herrera, 2021; Whang et al., 2023). Low-quality or unreliable data directly impair the models’ 

feature extraction capabilities, while insufficient data availability constrains their generalization 

capacity and real-time monitoring efficacy (Azarafza et al., 2021; Xiao and Zhang, 2023). 

In reality, the collection of landslide inventories faces many difficulties and it is hard to obtain 

them comprehensively and accurately. Thus, data scarcity is a common problem in the identification 

of potential landslide, especially in remote areas or regions with limited data accessibility. In such 

cases, deep learning models may suffer from overfitting or insufficient generalization ability due to 

a lack of samples (Kong et al., 2025; Lee et al., 2018). Although there are large-scale datasets such 

as the CAS landslide dataset, they are still insufficient compared with the data requirements of deep 

learning models (Xu et al., 2024). 

In the natural environment, non-landslide states are the norm, while the landslide state is 

relatively rare. This leads to the data collected mainly consisting of normal geological conditions, 

with much less data representing potential landslides. Such a severe skewness in the class 

distribution results in a serious imbalance in the data, that is, there is a huge difference in quantity 
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between the minority class (landslide samples) and the majority class (non-landslide samples) (Jiang 

et al., 2024). Gupta and Shukla (2023) demonstrated that this data imbalance can cause learning 

algorithms to be biased towards the majority class, perform poorly on the minority class. This bias 

impedes the predictive ability of the learning algorithms, and ultimately lead to the final model’s 

poor performance in identifying and predicting the minority class of landslide samples. 

…… 

5.2 Limitations of Deep Learning Models 

…… 

Since the probability values output by the model lack physical significance, they cannot reflect 

geological uncertainties. In practical applications, it often happens that the model’s prediction of 

high-risk areas may not distinguish between the "uncertainty caused by data absence" and the "risk 

of the geological conditions themselves". Even geological experts struggle to verify the rationality 

of these features, thereby hindering the adoption of model results in practical engineering 

applications. 

In addition, there is also a certain contradiction between the data-driven feature learning 

exhibited by deep learning models and the complexity of the real world. This is because the models 

tend to capture the statistical patterns on the surface of the data rather than the physical mechanisms 

that are universal across different fields. However, the natural environment is characterized by 

infinite diversity, dynamism, and uncertainty. In the identification of potential landslides, this may 

lead to the need for repeatedly investing a large amount of annotation costs when deploying across 

regions and different sensors. 

…… 

Revised Description in Section 5 

5 Deep Learning for Potential Landslide Identification: Challenges 

5.1 Data Quality and Availability 

In potential landslide identification, the performance of deep learning models is critically 

dependent on both data quality and availability (Alzubaidi et al., 2023; Gaidzik and Ramirez-

Herrera, 2021; Whang et al., 2023). Low-quality or unreliable data directly impair the models’ 

feature extraction capabilities, while insufficient data availability constrains their generalization 

capacity and real-time monitoring efficacy (Azarafza et al., 2021; Xiao and Zhang, 2023). 

In the natural environment, non-landslide states are the norm, while the landslide state is 

relatively rare. This leads to the data collected mainly consisting of normal geological conditions, 

with much less data representing potential landslides. Such a severe skewness in the class 

distribution results in a serious imbalance in the data, that is, there is a huge difference in quantity 

between the minority class (landslide samples) and the majority class (non-landslide samples) (Jiang 

et al., 2024). Gupta and Shukla (2023) demonstrated that this data imbalance can cause learning 

algorithms to be biased towards the majority class, perform poorly on the minority class. This bias 

impedes the predictive ability of the learning algorithms, and ultimately lead to the final model’s 

poor performance in identifying and predicting the minority class of landslide samples. 

…… 

5.2 Limitations of Deep Learning Models 

…… 
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Since the probability values output by the model lack physical significance, they cannot reflect 

geological uncertainties. In practical applications, it often happens that the model’s prediction of 

high-risk areas may not distinguish between the "uncertainty caused by data absence" and the "risk 

of the geological conditions themselves" (Achu et al., 2023; Feng et al., 2022). Even geological 

experts struggle to verify the rationality of these features, thereby hindering the adoption of model 

results in practical engineering applications. 

There is also a certain contradiction between the data-driven feature learning exhibited by deep 

learning models and the complexity of the real world. This is because the models tend to capture the 

statistical patterns on the surface of the data rather than the physical mechanisms that are universal 

across different fields. However, the natural environment is characterized by infinite diversity, 

dynamism, and uncertainty. In the identification of potential landslides, this may lead to the need for 

repeatedly investing a large amount of annotation costs when deploying across regions and different 

sensors. 

In addition, although various types of data are available, the absence of standardized datasets 

with high-quality annotations has severely hindered the development and fair comparison of deep 

learning models (Fang et al., 2024). Existing models are often trained and evaluated on independent, 

task-specific datasets, which prevents an objective assessment of state-of-the-art performance and 

limits our ability to evaluate their true generalization capacity across different regions and triggering 

factors. 

…… 
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Original Description in Subsection 6.1 

…… 

The combination of multi-source data fusion and deep learning is essentially a deep coupling 

of data advantages and model advantages (Chen et al., 2023a; Zheng et al., 2021). The former fills 

information gaps and reduces uncertainties by integrating diverse heterogeneous data, while the 

latter unleashes the potential of data through automated feature engineering and nonlinear modeling. 

This integration not only improves the accuracy of potential landslide identification but also drives 

the paradigm shift of geological hazard monitoring from experience-driven to data intelligence-

driven. In the future, with the development of cross-modal pre-trained models and edge intelligence 
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technologies, the collaboration between multi-source data fusion and deep learning will demonstrate 

greater application value in fields such as real-time early warning and hazard simulation, becoming 

a core technological engine for building an integrated "aerial-space-ground-subsurface" monitoring 

system. 

…… 

Revised Description in Subsection 6.1 

…… 

The combination of multi-source data fusion and deep learning is essentially a deep coupling 

of data advantages and model advantages (Chen et al., 2023a; Zheng et al., 2021). The former fills 

information gaps and reduces uncertainties by integrating diverse heterogeneous data, while the 

latter unleashes the potential of data through automated feature engineering and nonlinear modeling. 

This integration not only improves the accuracy of potential landslide identification but also drives 

the paradigm shift of geological hazard monitoring from experience-driven to data intelligence-

driven. In the future, with the development of cross-modal pre-trained models and edge intelligence 

technologies, the collaboration between multi-source data fusion and deep learning will demonstrate 

greater application value in fields such as real-time early warning and hazard simulation, becoming 

a core technological engine for building an integrated "aerial-space-ground-subsurface" monitoring 

system. 

To truly leverage the integrated monitoring method, we strongly advocate for the community-

driven development of a benchmark that intrinsically incorporates this multi-modal philosophy. An 

ideal benchmark would not only include optical imagery but also co-registered data from SAR, 

LiDAR, DEM, and even ground-based sensor time series, reflecting the integrated monitoring 

reality. Establishing such a benchmark is the essential next step to translate our data fusion 

capabilities into reliable, reproducible, and advanced AI solutions for global landslide risk reduction. 

…… 

 

 

Comment #16:  

15. Throughout Section 3, when introducing a new architecture, the authors should specifically cite 

the paper that introduced that architecture. This both credits the original work and provides the 

reader with references to important papers. For example, ResNet should be attributed to Kaiming 

He et al., GCN to Kipf and Welling, and so on. 

28. L505: Should cite the original GCN paper by Kipf and Welling 

Response: 

- We are grateful for your constructive feedback in identifying this shortcoming, which has helped 

us improve the clarity and rigor of the manuscript. We fully agree with your observation and 

apologize for the omission of these references in the original manuscript. In line with your 

suggestions, we have thoroughly revised Section 3 (as well as other relevant parts of the manuscript) 

and incorporated the original seminal references for all newly introduced model architectures.  
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Original Description in Section 3 

3 Deep Learning for Potential Landslide Identification: Models 

3.1 Models for Image Analysis and Processing in Potential Landslide Identification 

…… 

Convolutional neural networks (CNNs) represent the fundamental architecture in image 

processing. A CNN primarily comprises convolutional layers, pooling layers, and fully connected 

layers, each performing predefined functions on its input data (Kattenborn et al., 2021; Liu et al., 

2022a). 

…… 

ResNet addresses these limitations by integrating residual blocks into the foundational CNN 

framework (Qi et al., 2020; Yang et al., 2022). These residual blocks utilize shortcut connections 

that preserve original feature information. This framework facilitates the construction of ultra-deep 

networks capable of extracting high-level semantic features for landslide detection, thereby 

enhancing adaptability to complex terrain classification tasks (Ullo et al., 2021). 

…… 

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks 

are based on a similar idea, which is to establish a "shortcut" between different layers. However, the 

structure of DenseNet is simpler and more effective, with fewer parameters. 

…… 

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable 

choice (Sandric et al., 2024). Built upon deep convolutional neural networks, DeepLab employs 

dilated convolutions to expand the receptive field and integrates an atrous spatial pyramid pooling 

(ASPP) module to capture multi-scale contextual information. 

…… 

3.2 Models for Time Series Analysis in Potential Landslide Identification 

…… 

Recurrent neural networks (RNNs) are a class of deep learning models specialized in 

processing sequential data, capable of capturing temporal dependencies within input sequences (Ngo 

et al., 2021; Zaremba et al., 2014). Unlike conventional feedforward neural networks, in an RNN, 

each neuron not only receives the current input but also the output of the previous time step as 

additional input. This structure endows the RNN with a memory mechanism. 

…… 

LSTM is an enhancement of RNNs, primarily processing long sequence data. Compared to 

standard RNNs, the hidden layer architecture of LSTM is much more complex. By incorporating 

memory cells and gating mechanisms, LSTM selectively propagates critical information across 

multiple time steps, thereby effectively capturing long-range temporal dependencies (Landi et al., 

2021; Yu et al., 2019). 
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…… 

Gated recurrent unit (GRU) is a simplified version of LSTM (Chung et al., 2014; Zhang et al., 

2022b), which has fewer parameters. Due to their higher computational efficiency, GRU has 

potential advantages in real-time data processing scenarios in landslide monitoring. 

…… 

3.3 Models for Data Generation in Potential Landslide Identification 

…… 

With the proposal and development of GANs, researchers have introduced various enhanced 

structures that are more effectively applied to potential landslide identification. For example, the 

conditional GAN (cGAN) (Kim and Lee, 2020; Loey et al., 202), Pix2Pix (Qu et al., 2019), and 

Wasserstein GAN (WGAN) (Wang et al., 2019). 

…… 

3.4 Models for Data Cleaning in Potential Landslide Identification 

…… 

3.5 Models for Data Fusion in Potential Landslide Identification 

…… 

Due to the complex non-Euclidean structural characteristics of the geological environment, 

topographic data and their spatial relationships related to landslide hazards, conventional methods 

such as CNNs have difficulty in handling these relationships. As a neural network architecture for 

processing graph-structured data, graph neural networks (GNNs) can effectively model such spatial 

relationships (Ying et al., 2018; Zeng et al., 2022). They can treat the nodes in the geographical 

space (such as different geographical location points) and their connection relationships (such as the 

distance between adjacent nodes, terrain undulations, etc.) as the structure of a graph for processing. 

…… 

 

 

Revised Description in Section 3 

3 Deep Learning for Potential Landslide Identification: Models 

3.1 Models for Image Analysis and Processing in Potential Landslide Identification 

…… 

Convolutional neural networks (CNNs) represent the fundamental architecture in image 

processing (LeCun et al., 1998). A CNN primarily comprises convolutional layers, pooling layers, 

and fully connected layers, each performing predefined functions on its input data (Kattenborn et 

al., 2021; Liu et al., 2022a). 

…… 

ResNet addresses these limitations by integrating residual blocks into the foundational CNN 

framework (He et al., 2016; Qi et al., 2020; Yang et al., 2022). These residual blocks utilize shortcut 

connections that preserve original feature information. This framework facilitates the construction 

of ultra-deep networks capable of extracting high-level semantic features for landslide detection, 
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thereby enhancing adaptability to complex terrain classification tasks (Ullo et al., 2021). 

…… 

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks 

are based on a similar idea, which is to establish a "shortcut" between different layers. However, the 

structure of DenseNet is simpler and more effective, with fewer parameters. 

…… 

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable 

choice (Chen et al., 2017; Sandric et al., 2024). Built upon deep convolutional neural networks, 

DeepLab employs dilated convolutions to expand the receptive field and integrates an atrous spatial 

pyramid pooling (ASPP) module to capture multi-scale contextual information. 

…… 

3.2 Models for Time Series Analysis in Potential Landslide Identification 

…… 

Recurrent neural networks (RNNs) are a class of deep learning models specialized in 

processing sequential data, capable of capturing temporal dependencies within input sequences 

(Elman, 1990). Unlike conventional feedforward neural networks, in an RNN, each neuron not only 

receives the current input but also the output of the previous time step as additional input. This 

structure endows the RNN with a memory mechanism (Ngo et al., 2021; Zaremba et al., 2014). 

…… 

LSTM is an enhancement of RNNs, primarily processing long sequence data (Hochreiter and 

Schmidhuber, 1997). Compared to standard RNNs, the hidden layer architecture of LSTM is much 

more complex. By incorporating memory cells and gating mechanisms, LSTM selectively 

propagates critical information across multiple time steps, thereby effectively capturing long-range 

temporal dependencies (Landi et al., 2021; Yu et al., 2019). 

…… 

Gated recurrent unit (GRU) is a simplified version of LSTM, which has fewer parameters (Cho 

et al., 2014). Due to their higher computational efficiency, GRU has potential advantages in real-

time data processing scenarios in landslide monitoring (Chung et al., 2014; Zhang et al., 2022b). 

…… 

3.3 Models for Data Generation in Potential Landslide Identification 

…… 

With the proposal and development of GANs, researchers have introduced various enhanced 

structures that are more effectively applied to potential landslide identification. For example, the 

conditional GAN (cGAN) (Kim and Lee, 2020; Loey et al., 2020; Mirza et al., 2014), Pix2Pix (Isola 

et al., 2017; Qu et al., 2019), and Wasserstein GAN (WGAN) (Arjovsky et al., 2017; Wang et al., 

2019). 

…… 

3.4 Models for Data Cleaning in Potential Landslide Identification 
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…… 

3.5 Models for Data Fusion in Potential Landslide Identification 

…… 

Due to the complex non-Euclidean structural characteristics of the geological environment, 

topographic data and their spatial relationships related to landslide hazards, conventional methods 

such as CNNs have difficulty in handling these relationships. As a neural network architecture for 

processing graph-structured data, graph neural networks (GNNs) can effectively model such spatial 

relationships (Scarselli et al., 2008). They can treat the nodes in the geographical space (such as 

different geographical location points) and their connection relationships (such as the distance 

between adjacent nodes, terrain undulations, etc.) as the structure of a graph for processing (Ying et 

al., 2018; Zeng et al., 2022). 

…… 

According to the differences in message passing and aggregation methods, GNNs have derived 

various variants. For example, graph convolutional network (GCN) is generated by generalizing the 

convolutional operation to graph-structured data (Kipf et al., 2016; Sharma et al., 2022; Wang et al., 

2020a), and graph attention network (GAT) dynamically weights the importance of neighboring 

nodes by introducing the attention mechanism (Velickovic et al., 2017; Yuan et al., 2022; Zhou and 

Li, 2021). The emergence of these new architectures makes GNN variants more targeted than 

conventional GNNs and suitable for modeling heterogeneous relationships. Currently, they are often 

used for weighted analysis of the impacts of different geographical factors on landslides. 

…… 
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Comment #17:  

16. L273: What does “feature reuse” mean? Potentially rephrase or clarify. 

Response: 

- Thank you for pointing out the misleading part. To clarify, use the term "feature reuse" to refer to 

the phenomenon where feature maps (the output of layers) from earlier in the network are directly 

used as input for multiple subsequent layers. This allows the network to preserve and leverage low-

level or intermediate features throughout the depth of the network, improving efficiency and 

reducing the need to re-learn redundant features. 

- We apologize for the overly general statement, which may have caused confusion for readers. 

Following your suggestion, we have clarified this term in the revised manuscript. 

Original Description in Subsection 3.1 

…… 

DenseNet is a further innovation of ResNet. Both of these neural networks are based on a 

similar idea, which is to establish a "shortcut" between different layers. However, the structure of 

DenseNet is simpler and more effective, with fewer parameters. In ResNet, each layer is only 

connected to the previous layer, while in DenseNet, each layer is directly connected to all previous 

layers, and each layer can obtain gradients from the loss function. This can optimize the information 

flow and gradients of the entire network, making it easier to train and performing better on small 

datasets. The structure of DenseNet can achieve better feature reuse and reduce the number of 

parameters. Moreover, the layers of DenseNet are narrower than those of other deep learning 

networks, making it reduce redundancy by learning with fewer feature maps. This architecture is 

suitable for the extraction of multi-scale landslide features under complex terrains, even with limited 

landslide training samples. 

…… 
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Revised Description in Subsection 3.1 

…… 

DenseNet is a further innovation of ResNet. Both of these neural networks are based on a 

similar idea, which is to establish a "shortcut" between different layers. However, the structure of 

DenseNet is simpler and more effective, with fewer parameters. In ResNet, each layer is only 

connected to the previous layer, while in DenseNet, each layer is directly connected to all previous 

layers, and each layer can obtain gradients from the loss function. This can optimize the information 

flow and gradients of the entire network, making it easier to train and performing better on small 

datasets. The structure of DenseNet enables more effective reuse of features, meaning that each layer 

can directly access and build upon the feature maps generated by all preceding layers instead of re-

learning similar representations. This dense connectivity not only strengthens information and 

gradient flow across the network but also reduces redundancy and the total number of parameters. 

Moreover, the layers of DenseNet are narrower than those of other deep learning networks, making 

it reduce redundancy by learning with fewer feature maps. This architecture is suitable for the 

extraction of multi-scale landslide features under complex terrains, even with limited landslide 

training samples. 

…… 

 

Comment #18:  

17. L276: “...even with limited landslide training samples”. This claim is not supported by a citation. 

These large networks typically need a lot of training samples. Is there previous work that 

successfully applied ResNet or DenseNet with limited training samples and was successful? If so, 

how much training data did they use? 

Response: 

- We appreciate your observation regarding the insufficient justification of DenseNet/ResNet 

effectiveness under limited sample conditions. We fully agree that large neural networks generally 

require substantial training data. However, in practice, even with relatively small sample sizes (e.g., 

a few hundred or fewer than one hundred images), architectures such as ResNet and DenseNet can 

still achieve satisfactory performance when combined with appropriate strategies such as 

pretraining, data augmentation, and model fine-tuning. To support this point and directly address 

your comment, we have reviewed and incorporated relevant literature and added the corresponding 

references to the manuscript. 

- Li et al., (2021) trained ResNet, DenseNet, and other models with 100, 1,000, and 10,000 samples. 

The results demonstrated that when the sample size reached approximately 1,000, the performance 

of DenseNet was already very close to that achieved with 10,000 samples. This is because 

increasing the number of layers in ResNet and DenseNet can enhance their performance, whereas 

fewer layers can yield better results for VGG and U-Net models. Considering the cost of sample 

generation, it is recommended to use approximately 1,000 samples for deep learning–based 
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landslide detection. 

- Ullo et al., (2021) achieved high performance using only 160 images (landslide and non-landslide) 

by combining data augmentation and fine-tuning, with ResNet-101 as the backbone. The reported 

results were precision equals to 1.00, recall 0.93, and F1 measure 0.97. 

- Cai et al., (2021) constructed a "landslide sample library" (landslide and non-landslide) in the Three 

Gorges Reservoir area. Although the study did not explicitly report experiments under very small 

training sets, the use of data augmentation and fine-tuning enabled DenseNet to perform well even 

when the dataset was not extremely large. While the sample size was not very small (i.e., not 

reduced to only tens or hundreds of images), the "sample library + augmentation + fine-tuning" 

strategy demonstrated that DenseNet remains effective with moderately sized datasets (e.g., several 

thousand to tens of thousands of samples). 

- To bolster the credibility of this claim, we have added the specific sample-size comparisons from 

the two aforementioned studies to the relevant paragraphs of the manuscript. (Please see the new 

Subsection 3.1 for details) 

- We thank you again for your detailed suggestions, which have enabled us to strengthen the rigor 

of our conclusions. 

Original Description in Subsection 3.1 

…… 

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks 

are based on a similar idea, which is to establish a "shortcut" between different layers. However, the 

structure of DenseNet is simpler and more effective, with fewer parameters. In ResNet, each layer 

is only connected to the previous layer, while in DenseNet, each layer is directly connected to all 

previous layers, and each layer can obtain gradients from the loss function. This can optimize the 

information flow and gradients of the entire network, making it easier to train and performing better 

on small datasets. The structure of DenseNet can achieve better feature reuse and reduce the number 

of parameters. Moreover, the layers of DenseNet are narrower than those of other deep learning 

networks (Liu et al., 2021c), making it reduce redundancy by learning with fewer feature maps. This 

architecture is suitable for the extraction of multi-scale landslide features under complex terrains, 

even with limited landslide training samples. 

…… 

Revised Description in Subsection 3.1 

…… 

DenseNet is a further innovation of ResNet (Huang et al., 2017). Both of these neural networks 

are based on a similar idea, which is to establish a "shortcut" between different layers. However, the 

structure of DenseNet is simpler and more effective, with fewer parameters. In ResNet, each layer 

is only connected to the previous layer, while in DenseNet, each layer is directly connected to all 

previous layers, and each layer can obtain gradients from the loss function. This can optimize the 

information flow and gradients of the entire network, making it easier to train and performing better 

on small datasets. The structure of DenseNet can achieve better feature reuse and reduce the number 
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of parameters. Moreover, the layers of DenseNet are narrower than those of other deep learning 

networks (Liu et al., 2021c), making it reduce redundancy by learning with fewer feature maps. This 

architecture is suitable for the extraction of multi-scale landslide features under complex terrains, 

even with limited landslide training samples (Cai et al., 2021; Li et al., 2021; Ullo et al., 2021). 

…… 

Newly Added References 

Cai, H., Chen, T., Niu, R. and Plaza, A., 2021. Landslide detection using densely connected convolutional 

networks and environmental conditions. IEEE Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing, 14, pp.5235-5247. doi:10.1109/JSTARS.2021.3079196. 

Li, C., Yi, B., Gao, P., Li, H., Sun, J., Chen, X. and Zhong, C., 2021. Valuable clues for DCNN-based landslide 

detection from a comparative assessment in the Wenchuan earthquake area. Sensors, 21(15), p.5191. 
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Ullo, S.L., Mohan, A., Sebastianelli, A., Ahamed, S.E., Kumar, B., Dwivedi, R. and Sinha, G.R., 2021. A new 

mask R-CNN-based method for improved landslide detection. IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing, 14, pp.3799-3810. doi:10.1109/JSTARS.2021.3064981. 

 

 

 

Comment #19:  

18. L277: “semantic segmentation” should be defined - it is an important concept that an ML novice 

may not know the meaning of. 

Response: 

- Thank you for pointing out the details of our paper that lack clarity. This is really helpful. Following 

your suggestion, we have added a definition of semantic segmentation in Subsection 3.1. 

Original Description in Subsection 3.1 

…… 

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation 

models have increasingly become the standard in landslide detection. Numerous advanced semantic 

segmentation networks have been proposed and validated for automatic landslide detection, 

significantly enhancing the efficiency and accuracy of large-scale detection. U-Net is a typical 

example (Ronneberger et al., 2015), which features a U-shaped architecture. U-Net employs an 

encoder-decoder structure, where the encoder is similar to conventional CNNs, progressively 

reducing image resolution and extracting features through convolution and pooling operations; the 

decoder then restores the image resolution through transposed convolution or upsampling operations 

(Dong et al., 2022; Nava et al., 2022). Skip connections bridge low-level detail features with deep 

semantic features, thereby refining segmentation precision. 

…… 
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Revised Description in Subsection 3.1 

…… 

With the rapid expansion of deep learning methods based on CNNs, semantic segmentation 

models have increasingly become the standard in landslide detection (Lu et al., 2023; Zhou et al., 

2024). As a fundamental task in computer vision, semantic segmentation assigns a specific class 

label (e.g., "landslide" or "non-landslide") to each pixel in an image, thereby enabling dense, pixel-

level classification (Guo et al., 2018). 

Numerous advanced semantic segmentation networks have been proposed and validated for 

automatic landslide detection, significantly enhancing the efficiency and accuracy of large-scale 

detection. U-Net is a typical example (Ronneberger et al., 2015), which features a U-shaped 

architecture. U-Net employs an encoder-decoder structure, where the encoder is similar to 

conventional CNNs, progressively reducing image resolution and extracting features through 

convolution and pooling operations; the decoder then restores the image resolution through 

transposed convolution or upsampling operations (Dong et al., 2022; Nava et al., 2022). Skip 

connections bridge low-level detail features with deep semantic features, thereby refining 

segmentation precision. 

…… 

 

Newly Added References 

Guo, Y., Liu, Y., Georgiou, T. and Lew, M.S., 2018. A review of semantic segmentation using deep neural 

networks. International journal of multimedia information retrieval, 7(2), pp.87-93.doi: 10.1007/s13735-

017-0141-z. 

Lu, Z., Peng, Y., Li, W., Yu, J., Ge, D., Han, L. and Xiang, W., 2023. An iterative classification and semantic 

segmentation network for old landslide detection using high-resolution remote sensing images. IEEE 

Transactions on Geoscience and Remote Sensing, 61, pp.1-13. doi:10.1109/TGRS.2023.3313586. 

Zhou, N., Hong, J., Cui, W., Wu, S. and Zhang, Z., 2024. A multiscale attention segment network-based 

semantic segmentation model for landslide remote sensing images. Remote Sensing, 16(10), p.1712. 

doi:10.3390/rs16101712. 

 

Comment #20:  

19. L285-287: Why is DeepLab preferable to U-Net? Can you elaborate on what ASPP is or does? 

Response: 

- We sincerely appreciate your valuable comments. Your questions are highly pertinent and have 

provided us with an opportunity to clarify and further strengthen the content of our manuscript. 

Below, we provide a point-by-point response and corresponding revisions to address the two 

concerns you raised.  
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- * Regarding the explanation of why DeepLab is preferred over U-Net 

- We selected DeepLab as the primary architecture, primarily due to its superior ability to handle 

multi-scale objects and delineate smooth boundaries in complex environments—capabilities that 

are essential for extracting landslides, which are highly variable in morphology and scale. 

- While U-Net performs strongly in semantic segmentation owing to its classic encoder–decoder 

structure and skip connections, DeepLab offers distinct advantages in several critical aspects: 

- Receptive field and multi-scale information capture: U-Net primarily enlarges the receptive 

field through pooling operations, which inevitably reduces spatial resolution. Although the decoder 

partially restores this information via upsampling and skip connections, fine details may still be 

lost. In contrast, DeepLab leverages dilated (atrous) convolutions to exponentially expand the 

receptive field without increasing parameter count or reducing feature map resolution. This enables 

the network to integrate contextual information across broader areas—an essential capability for 

accurately identifying landslides, which require global environmental cues (e.g., topography, 

vegetation patterns) for reliable detection. 

- Robustness in complex scenarios: Landslide regions are typically characterized by substantial 

complexity, with scales ranging from small shallow failures to large deep-seated slides, and 

boundaries that are often diffuse and irregular. DeepLab incorporates the unique Atrous Spatial 

Pyramid Pooling (ASPP) module, specifically designed to address multi-scale challenges by 

capturing contextual information at multiple scales in parallel. In contrast, U-Net’s multi-scale 

capabilities rely more implicitly on features from different encoder levels, making its multi-scale 

fusion less explicit and less powerful than that of ASPP. 

- Boundary segmentation accuracy: DeepLab further enhances boundary delineation by 

incorporating a dedicated decoder module. After extracting rich semantic features through the 

encoder (including ASPP), the decoder progressively restores spatial detail. This combined strategy 

retains strong semantic representation while markedly improving boundary localization accuracy. 

- In summary, we do not contend that U-Net is not an excellent model; rather, for the specific task 

of landslide identification—characterized by highly complex morphologies and multi-scale 

variability—the DeepLab family (particularly its ASPP structure and dilated convolutions) 

provides a theoretically more suitable framework. Numerous recent remote sensing segmentation 

studies (e.g., Chen et al., 2017; Huang et al., 2024) have likewise demonstrated the superior 

performance of DeepLab in comparably complex geospatial contexts. 
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- * Regarding the detailed explanation of what ASPP is and what it does 

- Thank you for pointing this out. Our original explanation of ASPP was indeed overly brief. Atrous 

Spatial Pyramid Pooling (ASPP) is a core innovation of the DeepLab family; it is designed to 

enable robust segmentation of objects across multiple scales. 

- Core idea: ASPP mimics the way humans observe objects: to recognize an object we examine both 

its fine local details (small scale/near view) and its surrounding context (large scale/distant view). 

ASPP implements this by applying multiple parallel dilated (atrous) convolution layers with 

different dilation rates to the same input feature map, thereby sampling context at multiple scales. 

- Structure: The ASPP module receives the backbone feature map produced by the encoder. It feeds 

the feature map into four parallel branches: Three dilated convolution branches: each employs a 

different dilation rate (e.g., rates of 6, 12 and 18). Larger dilation rates yield larger receptive fields 

and thus capture increasingly broader contextual information. This is analogous to using multiple 

“magnifying lenses” simultaneously—one focusing on local detail, another on intermediate 

regions, and a third on the global scene. A global average pooling branch: this branch pools the 

feature map to a single global vector, which is then upsampled back to the original spatial 

dimensions. It captures image-level global context and supplies the network with scene-level 

semantic information. 

- The outputs from all parallel branches are concatenated along the channel dimension. 

- Finally, a 1×1 convolution is applied to fuse the multi-scale information from all branches and 

produce the final multi-scale feature representation. 

- Function: By this mechanism, ASPP renders the network largely size-invariant with respect to 

target objects. Whether a landslide is small- or large-scale, one or more ASPP branches will capture 

the contextual cues most relevant for its identification, thereby substantially improving robustness 

to scale variation and segmentation accuracy. 

- We once again thank you for dedicating your time and effort to reviewing our manuscript and for 

providing these constructive comments. We hope that the above explanations adequately address 

your concerns, and we have revised the manuscript accordingly in line with your suggestions (for 

details, please see new Subsection 3.1). 

 

Original Description in Subsection 3.1 

…… 

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable 

choice (Sandric et al., 2024). Built upon deep convolutional neural networks, DeepLab employs 

dilated convolutions to expand the receptive field and integrates an atrous spatial pyramid pooling 

(ASPP) module to capture multi-scale contextual information. 

…… 
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Revised Description in Subsection 3.1 

…… 

When dealing with complex features in landslide-prone areas, DeepLab is a more suitable 

choice than U-Net (Sandric et al., 2024). While U-Net excels at preserving fine-grained spatial 

details through its skip-connections, its ability to capture long-range contextual information is 

limited by its relatively small receptive field. DeepLab, built upon deep convolutional neural 

networks, addresses this critical limitation by employing dilated convolutions to exponentially 

expand the receptive field without sacrificing resolution or increasing parameters substantially. 

More importantly, DeepLab integrates an atrous spatial pyramid pooling (ASPP) module, 

which is key to its superior performance on multi-scale objects like landslides (Chen et al., 2017; 

Huang et al., 2024). The ASPP module operates in parallel on the same feature map using multiple 

convolutional branches with different dilation rates (e.g., rates=6, 12, 18). Each branch effectively 

captures contextual information at a different scale, from fine details to broad, image-level contexts 

(Niu et al., 2018). All these multi-scale features are then concatenated and fused. This allows the 

network to simultaneously leverage both local textual cues and global contextual cues, thereby 

significantly improving recognition accuracy and reducing false positives in geologically complex 

environments. 

…… 

 

Newly Added References 

Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L., 2017. Deeplab: Semantic image 

segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions 

on pattern analysis and machine intelligence, 40(4), pp.834-848.doi:10.1109/TPAMI.2017.2699184. 

Huang, J., Song, W., Liu, T., Cui, X., Yan, J. and Wang, X., 2024. Submarine Landslide Identification Based on 

Improved DeepLabv3 with Spatial and Channel Attention. Remote Sensing, 16(22), p.4205. 

doi:10.3390/rs16224205. 

Niu, Z., Liu, W., Zhao, J. and Jiang, G., 2018. DeepLab-based spatial feature extraction for hyperspectral image 

classification. IEEE Geoscience and Remote Sensing Letters, 16(2), pp.251-255. 

doi:10.1109/LGRS.2018.2871507. 

 

 

Comment #21:  

21. L297: What are temporal variation curves? 

Response: 

- Thank you for raising this question. By "temporal variation curves", we refer to plots that depict 

how pixel- or region-based feature values (e.g., spectral indices, probabilities, or activation 

responses) change over time across multi-temporal remote sensing images. Such curves provide 
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an intuitive representation of dynamic processes, such as the progressive development of landslides 

or vegetation change, by showing temporal trajectories rather than a single snapshot. To avoid 

ambiguity, we have revised the manuscript. Please see the new Subsection 3.1 for details. 

Original Description in Subsection 3.1 

…… 

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models 

capture spatial and temporal features using convolutional kernels while transforming multi-temporal 

image sequences into change hotspot maps or temporal variation curves as output. 

…… 

 

Revised Description in Subsection 3.1 

…… 

Wang (2023) demonstrates that 3D CNNs can directly process these 3D tensors. These models 

capture both spatial and temporal dependencies through three-dimensional convolutional kernels, 

enabling the direct processing of multi-temporal image sequences. The outputs typically take two 

complementary forms: change hotspot maps, which highlight regions of significant spatial change 

across time, and temporal variation curves, which illustrate the evolution of pixel- or region-based 

feature values throughout the temporal sequence. Together, these representations provide intuitive 

and complementary tools for characterizing dynamic processes in landslide-prone areas, such as the 

initiation, progression, and spatial distribution of slope failures. 

…… 

 

Comment #22:  

22. L298-299: Which studies have used attention mechanisms? This paragraph has no citations, so 

it is impossible for the reader to refer to work that has been done regarding attention. 

Response: 

- Thank you for drawing our attention to this omission. We agree that citations are crucial to support 

our statement. We have now revised the manuscript to include references to key studies that have 

successfully integrated attention mechanisms with CNNs for multi-temporal remote sensing 

analysis, particularly in landslide hazard monitoring. (Please see the new Subsection 3.1) 
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Original Description in Subsection 3.1 

…… 

Some studies even have integrated attention mechanisms into conventional CNN architectures 

to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the 

identification of landslide hazard evolution over time. 

…… 

Revised Description in Subsection 3.1 

…… 

Some studies even have integrated attention mechanisms into conventional CNN architectures 

to enhance the analysis of multi-temporal remote sensing imagery, thereby enabling the 

identification of landslide hazard evolution over time. For example, Meng et al. (2024) proposed a 

framework based on CNN and optimized Bidirectional Gated Recurrent Unit (BiGRU) with an 

attention mechanism, designed to forecast landslide displacement with a step-like curve. Dong et al. 

(2022) proposed L-Unet which combines multi-scale feature fusion with attention modules to 

improve landslide segmentation performance, particularly at boundaries. 

…… 

 

Newly Added References 

Dong, Z., An, S., Zhang, J., Yu, J., Li, J. and Xu, D., 2022. L-unet: A landslide extraction model using multi-

scale feature fusion and attention mechanism. Remote Sensing, 14(11), p.2552. doi:10.3390/rs14112552. 

Meng, S., Shi, Z., Peng, M., Li, G., Zheng, H., Liu, L. and Zhang, L., 2024. Landslide displacement prediction 

with step-like curve based on convolutional neural network coupled with bi-directional gated recurrent unit 

optimized by attention mechanism. Engineering Applications of Artificial Intelligence, 133, p.108078. 

doi:10.1016/j.engappai.2024.108078. 

 

Comment #23:  

23. L319: You should mention that one reason RNNs struggle to model long term dependencies is 

exploding and vanishing gradients, and that LSTMs avoid this via their special gate design. 

Response: 

- Thank you for your insightful comment! We have revised the paragraph to explicitly state that 

conventional RNNs suffer from exploding and vanishing gradients, which hinder their ability to 

capture long-term dependencies. We further clarified that LSTMs overcome this limitation through 

their gate-based design, which mitigates gradient degradation and enables the modeling of long-

range temporal dependencies. Please see the new Subsection 3.2 for details. 
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Original Description in Subsection 3.2 

…… 

Due to conventional RNNs struggle to model long-term dependencies and limit their 

applicability to short-term temporal sequences, long short-term memory networks (LSTM) were 

developed (Wang et al., 2023b).  

LSTM is an enhancement of RNNs, primarily processing long sequence data. Compared to 

standard RNNs, the hidden layer architecture of LSTM is much more complex. By incorporating 

memory cells and gating mechanisms, LSTM selectively propagates critical information across 

multiple time steps, thereby effectively capturing long-range temporal dependencies (Landi et al., 

2021; Yu et al., 2019). 

…… 

Revised Description in Subsection 3.2 

…… 

To overcome the vanishing gradient problem inherent in RNNs, LSTMs introduce memory 

cells and gating mechanisms that selectively retain relevant temporal information (Hochreiter and 

Schmidhuber, 1997; Landi et al., 2021; Sherstinsky, 2020; Smagulova and James, 2019; Yu et al., 

2019). This capability allows them to model the cumulative and delayed responses of slopes to 

prolonged rainfall or reservoir water level fluctuations. 

LSTM models have been widely applied in landslide displacement prediction and early 

warning. Yang et al. (2019) analyzed the relationships among landslide deformation, rainfall, and 

reservoir water levels, and found that compared with static models, the LSTM approach more 

accurately captured the dynamic characteristics of landslides and effectively leveraged historical 

information. Xu and Niu (2018) used a LSTM model to predict the displacement evolution of the 

Baijiabao landslide using rainfall and hydrological level data, achieving a higher correlation 

compared with traditional regression models. In another study focused on shallow landslides, Xiao 

et al (2022) used a week-ahead LSTM model, which exhibited stable performance and improved 

prediction accuracy in short-term prediction scenarios. Additionally, Gidon et al (2023) constructed 

a Bi-LSTM model and achieved a detection accuracy of 93% in the Mawiongrim area. This 

effectively addresses the limitations of traditional methods and can provide a reliable technical 

solution for disaster early warning in this area as well as other similar landslide-prone areas. 

…… 

Newly Added References 

Gidon, J.S., Borah, J., Sahoo, S., Majumdar, S., Fujita, M., 2023. Bidirectional lstm model for accurate and real-

time landslide detection: A case study in mawiongrim, meghalaya, india. IEEE Internet of Things Journal 

11, 3792–3800. doi:10.1109/JIOT.2023.3326203. 
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Xiao, Y., Ju, N., He, C., Xiao, Z., & Ma, Z. (2022). Week-ahead shallow landslide displacement prediction using 

chaotic models and robust LSTM. Frontiers in Earth Science, 10, 965071. doi:10.3389/feart.2022.965071. 

Xu, S., Niu, R., 2018. Displacement prediction of baijiabao landslide based on empirical mode decomposition 

and long short-term memory neural network in three gorges area, china. Computers & Geosciences 111, 87–

96. doi:10.1016/j.cageo.2017.10.013. 

 

 

Comment #24:  

24. L352: Transformers are hugely important in ML right now, so it should warrant more discussion 

here than the authors have given it, in my opinion. For example, elaborate on what self-attention 

is, and mention that that transformer-based architectures are state of the art in several areas right 

now (language, imaging, etc). Are there more works in landslides that have used transformers? I 

appreciate the author’s discussion of its computational limitations; this is key, and it may not be 

the right choice for all practitioners. You should mention that the main drawback of transformers 

comes from its quadratic complexity, and that this is a current area of research to alleviate this 

issue. 

29. L513: Similar to my comment about AEs/VAEs, you should move this paragraph to when you 

first introduce Transformers, rather than re-introducing them here. 

Response: 

- Thank you for these constructive comments! We fully agree that Transformers represent a major 

advancement in machine learning and warrant a more thorough and better-structured discussion. 

Accordingly, we have revised the manuscript in the following ways:  

- Expanded introduction of Transformers: We elaborated on the self-attention mechanism, 

explaining how it computes pairwise dependencies across the sequence and assigns dynamic 

attention weights, thereby enabling the model to capture long-range dependencies more effectively 

than CNNs or RNNs. We also highlighted that Transformer-based architectures are now state-of-

the-art across multiple domains, including natural language processing, computer vision, and 

multimodal learning. 

- Applications in landslide research: We supplemented the discussion with recent studies where 

Transformers have been applied to landslide detection, susceptibility mapping, and spatiotemporal 

hazard assessment. Although the number of works is still limited, these studies show the growing 

potential of Transformers in this field. 

- Computational limitations and ongoing research: We clarified that the main drawback of 

Transformers lies in their quadratic complexity with respect to sequence length, which leads to 

high computational and memory costs. As the reviewer suggested, we also emphasized that 

alleviating this limitation is an active research area, with efficient variants being proposed to 
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address scalability challenges. 

- Reorganization to avoid redundancy: The detailed explanation of the Transformer’s encoder–

decoder structure, self-attention mechanism, and multimodal embedding strategy, which 

previously appeared in two separate sections, has now been consolidated into the first introduction 

of Transformers. In later sections, we removed the redundant description and instead included 

concise cross-references. This restructuring improves readability and avoids unnecessary repetition. 

Original Description in Subsection 3.2 

3.2 Models for Time Series Analysis in Potential Landslide Identification 

…… 

Transformer was originally designed to handle sequential data in natural language processing, 

which was first introduced by Vaswani in 2017 (Vaswani et al., 2017). Unlike conventional recurrent 

and convolutional structures, the Transformer employs a self-attention mechanism to directly model 

the entire sequence. 

Since the Transformer has the ability to adaptively learn latent features and patterns within the 

data, when it comes to processing landslide time series data, it can automatically tweak the model 

parameters to accommodate diverse landslide scenarios and temporal data variability (Wang et al., 

2024a; Zerveas et al., 2021).  

Transformer also can analyze positional relationships across the entire sequence, better 

capturing complex dependencies in long sequences, making it especially suitable for handling large-

scale, long-term sequential datasets. 

In contrast, RNN-based models exhibit a relatively simple architecture (Li et al., 2021a; Wang 

et al., 2020b). Their mechanisms are conceptually intuitive, making them more interpretable (see 

Fig. 3). On the other hand, Transformers are more complex in structure with numerous parameters, 

necessitating substantial computational resources during early training to process large-scale data, 

while being susceptible to overfitting on small datasets. Understanding how the model extracts 

features and makes decisions is not straightforward from large amounts of landslide data, posing 

challenges for its interpretability and practical deployment. 

…… 

3.5 Models for Data Fusion in Potential Landslide Identification 

…… 

As previously discussed, Transformer has become a universal architecture for processing 

sequential and multimodal data, owing to its self-attention mechanism and modular design. 

Transformer is also composed of stacked encoders and decoders. However, unlike other 

architectures, the Transformer architecture introduces the self-attention mechanism (Zhao et al., 

2021a), which is a crucial innovation. This enables the Transformer to automatically calculate a 
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weight vector for each position in the input sequence based on the relationship between this position 

and other positions, so as to represent the importance of this position in the entire sequence. Such a 

weight vector can be regarded as the "attention distribution" of each position in the input sequence, 

that is, the model determines which positions in the sequence to focus on. By considering all 

positions in the input sequence simultaneously, Transformer is able to calculate the correlations 

between each position and other positions in the sequence in parallel (Esser et al., 2021; Huang and 

Chen, 2023; Zerveas et al., 2021), rather than processing them step by step like CNNs or RNNs. 

Transformer can also convert multimodal data, it transforms them into vector representations 

via different embedding layers into a unified vector representation through different embedding 

layers. Subsequently, through the use of the self-attention mechanism and multilayer neural 

networks, these vectors are fused and feature representations are extracted, enabling the model to 

process and integrate data from various modalities within the same model framework. 

…… 

 

Revised Description in Subsection 3.2 

3.2 Models for Time Series Analysis in Potential Landslide Identification 

…… 

Transformer, first introduced by Vaswani et al. (2017), was originally designed for natural 

language processing but has since become a cornerstone architecture in modern machine learning, 

achieving state-of-the-art performance across diverse domains such as computer vision and 

multimodal learning.  

Unlike conventional recurrent or convolutional models, the Transformer is built upon stacked 

encoder–decoder layers and relies on a key innovation: the self-attention mechanism. This 

mechanism enables the model to automatically compute a weight vector (i.e., an attention 

distribution) for each element in the sequence based on its relevance to all other elements. By 

evaluating all positions simultaneously (Esser et al., 2021; Huang and Chen, 2023; Zerveas et al., 

2021), the Transformer efficiently captures global dependencies across long sequences in parallel, 

making it more effective than RNNs or CNNs at modeling long-range relationships. 

When applied to landslide-related time series data, the Transformer can adaptively learn latent 

temporal features and patterns, automatically adjusting parameters to accommodate diverse 

landslide scenarios (Wang et al., 2024a; Zerveas et al., 2021). Moreover, its capability to analyze 

positional relationships across the entire sequence makes it particularly suitable for processing large-

scale, long-term sequential datasets. Beyond time series, the flexibility of the self-attention 

mechanism also enables Transformers to integrate and fuse multimodal data sources, which will be 

discussed in Section 3.5. 
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In contrast, RNN-based models exhibit a relatively simple architecture (Li et al., 2021a; Wang 

et al., 2020b) and are conceptually intuitive, making them more interpretable (see Fig. 3). 

Transformers, however, are structurally more complex with numerous parameters, requiring 

substantial computational resources during training and being susceptible to overfitting on small 

datasets. Moreover, a key drawback of the standard Transformer is its quadratic computational 

complexity with respect to sequence length, which becomes prohibitive for very long sequences 

(Zhuang et al., 2023). This also complicates the interpretation of how the model extracts features 

and makes decisions from large amounts of landslide data, posing challenges for practical 

deployment. It is worth noting that mitigating this quadratic complexity is an active research area, 

with many efficient Transformer variants being developed. Therefore, while powerful, the vanilla 

Transformer may not be the optimal choice for all practitioners, and its computational demands 

should be carefully considered. 

…… 

3.5 Models for Data Fusion in Potential Landslide Identification 

…… 

As highlighted in Section 3.2, the Transformer’s self-attention mechanism and modular 

architecture make it a universal framework for processing sequential data and enabling multimodal 

fusion (Zhao et al., 2021a). In this context, the core advantage of the Transformer lies in its ability 

to integrate diverse input data (e.g., satellite imagery, GPS time series, and geological maps). It 

achieves this by employing independent embedding layers to convert each modality into a unified 

vector representation, which is then fused through the self-attention mechanism. This mechanism 

computes the interactions and correlations among all elements across different modalities, thereby 

enabling the model to capture cross-modal dependencies and extract joint feature representations 

within a unified framework. This capability makes the Transformer particularly suitable for landslide 

studies (Li et al., 2025). 

In addition, hybrid models can be applied to heterogeneous data processing. Their strength lies 

in integrating the advantages of different models, thereby overcoming the limitations of individual 

approaches and enabling the effective fusion of multimodal, multiscale, and spatiotemporal features. 

When landslide identification requires the simultaneous consideration of spatial features (e.g., 

imagery and topography) and temporal features (e.g., rainfall and displacement monitoring), CNN-

LSTM is a commonly used hybrid model (Gao et al., 2024). This combination leverages the spatial 

perception capacity of CNNs together with the temporal dependency modeling ability of LSTMs, 

making it particularly suitable for rainfall-topography coupled landslide prediction. When potential 

landslides are associated with spatial networks, the GNN-Transformer hybrid is well suited for 

modeling. This combination enables GNNs to capture the topological relationships among landslide 
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sites, while Transformers facilitate cross-modal learning (Liang et al., 2025; Sun et al., 2025), 

making it applicable to complex geological environments and large-scale data analysis. Three 

models can also be integrated. For example, Guo et al. (2024) employed a stacking method that 

combines 1D-CNN, RNNs, and LSTMs, resulting in a CRNN-LSTM ensemble model. 

…… 

 

Newly Added References 

Gao, B., He, Y., Chen, X., Chen, H., Yang, W. and Zhang, L., 2024. A deep neural network framework for 

landslide susceptibility mapping by considering time-series rainfall. IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing, 17, pp.5946-5969. doi:10.1109/JSTARS.2024.3370218. 

Guo, W., Ye, J., Liu, C., Lv, Y., Zeng, Q. and Huang, X., 2024. An approach for predicting landslide 

susceptibility and evaluating predisposing factors. International Journal of Applied Earth Observation and 

Geoinformation, 135, p.104217. doi:10.1016/j.jag.2024.104217. 

Li, W., Hsu, C.Y., Wang, S., Gu, Z., Yang, Y., Rogers, B.M. and Liljedahl, A., 2025. A multi-scale vision 

transformer-based multimodal GeoAI model for mapping Arctic permafrost thaw. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing. doi:10.1109/JSTARS.2025.3564310. 

Liang, J., Wei, X., Chen, M., Wang, Z. and Liang, J., 2025, April. GNN-Transformer Cooperative Architecture 

for Trustworthy Graph Contrastive Learning. In Proceedings of the AAAI Conference on Artificial 

Intelligence (Vol. 39, No. 18, pp. 18667-18675). doi:10.1609/aaai.v39i18.34054. 

Sun, Y., Zhu, D., Wang, Y., Fu, Y. and Tian, Z., 2025. GTC: GNN-transformer co-contrastive learning for self-

supervised heterogeneous graph representation. Neural Networks, 181, p.106645. 

doi:10.1016/j.neunet.2024.106645. 

Zhuang, B., Liu, J., Pan, Z., He, H., Weng, Y. and Shen, C., 2023. A survey on efficient training of transformers. 

arXiv preprint arXiv:2302.01107. doi:10.48550/arXiv.2302.01107. 

 

 

 

Comment #25:  

27. Section 3.4: Based on the way this section is written, it should be titled “Anomaly Detection” 

rather than “data cleaning”. These are somewhat similar, but distinct topics. Anomaly detection is 

about identifying data that is outside the norm of its dataset. Data cleaning is about filling in 

missing values and ensuring overall data quality. To me, anomaly detection fits more with what the 

authors discussed, and seems more relevant to landslides (ie, detecting when a landslide is 

imminent due to some abnormality) 

26. L448: To me, it’s a little backwards to introduce AEs here when you’ve already introduced 

VAEs. Organizationally, it would make more sense to introduce AEs earlier before you talk about 

VAEs. 

25.L445: No citations in this paragraph to back up your claim. 
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Response: 

- Thank you for pointing out this inappropriate organizational issue in our manuscript! We sincerely 

apologize for this oversight, which undoubtedly affected the logical flow of the section.  

- (1) We acknowledge that the content of Section 3.4 focuses more on the identification of abnormal 

patterns or deviations in time-series and spatial data associated with potential landslide events, 

rather than on the conventional data cleaning process. Therefore, we have revised the title of this 

section from "Models for Data Cleaning in Potential Landslide Identification" to "Models for 

Anomaly Detection in Potential Landslide Identification", and we have also refined the 

introductory paragraph to clearly emphasize the role of anomaly detection in identifying early-

warning signals of landslides. 

- (2) We agree that introducing AEs after VAEs may appear logically inverted, as VAEs are indeed 

an extension of AEs. Following your suggestion, we have revised the manuscript to introduce AEs 

first and then proceed to VAEs. Specifically, we now begin with a description of the framework of 

AEs, including their encoder-decoder architecture, reconstruction mechanism, and application in 

anomaly detection for landslide monitoring. We then transition to VAEs, highlighting their 

probabilistic formulation and advantages in handling data uncertainty as an extension of the 

conventional AE. This restructuring improves the logical flow and helps readers better understand 

the progression from AEs to VAEs.  

- (3) We have added several relevant citations to support the claim that AEs and VAEs are effective 

in unsupervised anomaly detection. These revisions improve both the rigor and readability of the 

manuscript. Please see the new Subsection 3.4 for details. 

- Once again, we express our sincere gratitude to you for their valuable time and insightful comments, 

which have greatly improved the quality of our manuscript! 

 

Original Description in Subsection 3.4 

3.4 Models for Data Cleaning in Potential Landslide Identification 

In potential landslide identification, data cleaning, particularly anomaly detection, is a critical 

issue (Deijns et al., 2020; Jiang et al., 2020). It can distinguish between normal fluctuations and true 

anomalies, identifying early signs such as subtle changes in the mountain’s state or abnormal trends 

in surface displacement, thus enabling more accurate landslide hazard assessment. With the rapid 

development of deep learning, the applications in data cleaning have become increasingly 

widespread, enabling models to automatically learn latent data patterns and identify potential 

anomalies. 

AEs and their variational counterparts are highly effective in unsupervised data cleaning. These 

models autonomously learn normal geomechanical patterns from data and flag deviations, achieving 
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effective hazard identification even when labeled anomaly samples are scarce. 

The AE is a typical unsupervised learning model consisting of an encoder and a decoder The 

encoder compresses the input data into low-dimensional features, and then the decoder reconstructs 

the input. During the training process, the autoencoder learns the intrinsic features and patterns of 

normal landslide data, so that for normal data, the reconstruction error is small. When abnormal 

landslide data is input, due to the difference between its features and the distribution of normal data, 

the reconstruction error will be large. 

When performing anomaly detection, a suitable reconstruction error threshold is set. When the 

reconstruction error of the test data exceeds this threshold, it can be determined as abnormal data. 

In the anomaly detection of landslide displacement data monitored by sensors, if the error of the 

displacement data after being reconstructed by AEs during a certain period is significantly higher 

than the normal level, it may indicate that there is an abnormal situation of potential landslides 

during this period. 

As previously introduced, VAE is an extension of AE. Compared to conventional autoencoders, 

VAE introduces randomness into the latent space, making it more effective in handling data 

uncertainty (Li et al., 2020; Park et al., 2018). 

During training, VAEs learn the latent distribution of the data and can generate new samples 

resembling the training set. When input samples deviate significantly from this learned distribution, 

the VAE fails to reconstruct them accurately, thereby flagging anomalies through elevated 

reconstruction errors. For landslide monitoring, if a VAE is trained on imagery of stable slopes, it 

internalizes stable terrain features. When an image significantly differs from the stable region, the 

model will produce a high reconstruction error, indicating the presence of anomalous data. 

In contrast, AEs are well-suited for univariate anomaly detection, particularly for landslide 

precursor detection, while VAEs capture latent space distributions and are more effective for 

multivariate anomaly detection. 

GANs can also be utilized in data cleaning (Kang et al., 2024; Xia et al., 2022). In data cleaning, 

the discriminator is trained to distinguish between generated data and real data. When new test data 

is input, if the discriminator struggles to determine whether it is real or generated data, the test data 

may significantly deviate from the distribution of normal data, indicating a potential anomaly. In 

landslide monitoring, data may be influenced by various factors, GANs demonstrate robustness by 

filtering out such interference, thereby enhancing data cleaning accuracy (Radoi, 2022). 

AnoGAN extends conventional GANs by directly incorporating data cleaning as one of its 

primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder during 

training, which maps input data to the latent space. The difference between this latent vector and the 

latent vector of normal samples generated by the generator serves as the basis for data cleaning. 
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RNNs, LSTMs, and GRUs are also effective for identifying anomalous patterns in sequential 

data (Zhang et al., 2022a). In potential landslide identification, these models process time series 

inputs to learn normal temporal dynamics and trends. When new data deviates significantly from 

the normal patterns learned by the model, such deviations can be flagged as anomalies. However, 

these models are primarily used for time series data, performing data cleaning by predicting future 

values of the sequence. For instance, if displacement measurements exhibit abrupt deviations while 

rainfall remains within historical norms, the model detects such discrepancies by comparing 

observed values with predictions based on learned temporal dependencies. 

Revised Description in Subsection 3.4 

3.4 Models for Anomaly Detection in Potential Landslide Identification 

Anomaly detection refers to identifying patterns or observations that significantly deviate from 

the expected behavior of a system. In the context of landslides, such anomalies often manifest as 

early-warning signals, including abnormal displacements, acceleration in movement, or changes in 

surface deformation patterns. Unlike conventional data cleaning, which focuses on correcting 

missing or inconsistent records, anomaly detection aims to identify these irregularities to support 

potential landslide identification (Deijns et al., 2020; Jiang et al., 2020). 

Among deep learning approaches, autoencoders (AEs) and their probabilistic extension, 

variational autoencoders (VAEs), are widely adopted for unsupervised anomaly detection. 

An AE consists of an encoder and a decoder that learn to reconstruct input data through a 

compressed latent representation (Hinton and Salakhutdinov, 2006; Nawaz et al., 2024). During 

training, AEs can learn the intrinsic features and patterns of normal landslide data, so that for normal 

data, the reconstruction error is small. For normal inputs, the reconstruction error remains small, 

whereas for anomalous inputs, which deviate from the learned distribution, the reconstruction error 

becomes significantly larger. 

By setting a suitable threshold for reconstruction error, anomalies can be effectively detected. 

For example, in the anomaly detection of landslide displacement monitored by sensors, if the 

reconstruction error of displacement data during a specific period is substantially higher than 

normal, this may indicate the onset of potential landslide activity (Zhou and Paffenroth, 2017). 

Building upon AEs, VAEs introduce stochasticity into the latent space to better model 

uncertainty and variability in natural data (Li et al., 2020; Park et al., 2018). 

During training, VAEs learn the latent distribution of the data and can generate new samples 

resembling the training set (Kumar et al., 2024). When input samples deviate significantly from this 

learned distribution, the VAE fails to reconstruct them accurately, thereby flagging anomalies 

through elevated reconstruction errors. For landslide monitoring, if a VAE is trained on imagery of 

stable slopes, it internalizes stable terrain features. When an image significantly differs from the 
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stable region, the model will produce a high reconstruction error, indicating the presence of 

anomalous data. 

Consequently, both AEs and their variational counterparts are highly effective in unsupervised 

data cleaning (Pol et al., 2019; Sakurada and Yairi,2014). These models autonomously learn normal 

geomechanical patterns from data and flag deviations, achieving effective hazard identification even 

when labeled anomaly samples are scarce.  

In contrast, AEs are well-suited for univariate anomaly detection, particularly for landslide 

precursor detection, while VAEs capture latent space distributions and are more effective for 

multivariate anomaly detection. 

GANs can also be utilized in anomaly detection (Kang et al., 2024; Xia et al., 2022). The 

discriminator in a GAN is trained to distinguish between real and generated data. When new test 

data is input, if the discriminator struggles to determine whether it is real or generated data, the test 

data may significantly deviate from the distribution of normal data, indicating a potential anomaly. 

In landslide monitoring, data may be influenced by various factors, GANs demonstrate robustness 

by filtering out such interference, thereby enhancing data cleaning accuracy (Radoi, 2022). 

AnoGAN extends conventional GANs by directly incorporating anomaly detection as one of 

its primary objectives (Lin et al., 2023; Thomine et al., 2023). It introduces an additional encoder 

during training, which maps input data to the latent space. The difference between this latent vector 

and the latent vector of normal samples generated by the generator serves as the basis for data 

cleaning. 

RNNs, LSTMs, and GRUs are also effective for identifying anomalous patterns in sequential 

data (Zhang et al., 2022a). In potential landslide identification, these models process time series 

inputs to learn normal temporal dynamics and trends. When new data deviates significantly from 

the normal patterns learned by the model, such deviations can be flagged as anomalies. However, 

these models are primarily used for time series data, performing data cleaning by predicting future 

values of the sequence (Li et al., 2024). For instance, if displacement measurements exhibit abrupt 

deviations while rainfall remains within historical norms, the model detects such discrepancies by 

comparing observed values with predictions based on learned temporal dependencies. 
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Comment #26:  

30. The description of the mechanisms of landslides in Section 4 is extensive and appreciated. 

However, not enough time is spent discussing the main point of the section: the application of 

DEEP LEARNING to identifying these landslides. Lines 632-638 are a good example of what I 

would have expected more of. This section needs to do a better job answering the questions: What 

kinds of model (and what data) are generally used for what applications? Why? And so on. 

Response: 

- Thank you very much for this valuable and constructive comment! We fully agree that Section 4 

previously emphasized the mechanistic aspects of landslides but did not sufficiently elaborate on 

the application of deep learning models for their identification and prediction. 

- In response, we have significantly revised Section 4 to include a more detailed and structured 

discussion on how different deep learning architectures are applied in landslide studies, what types 

of data they utilize, and why specific models are more suitable for certain tasks. 

- Please see the new Section 4 for details. 

Original Description in Section 4 

4.1 Application of Deep Learning in the Identification of Rainfall-induced Landslides 

…… 

Following the development of rainfall threshold models, real-time monitoring of historically 

rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of 
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subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating 

timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by 

continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic 

recalibration of threshold parameters. This data assimilation enhances model adaptability to 

evolving hydrogeological conditions, ensuring operational relevance across heterogeneous terrains. 

…… 

4.3 Application of Deep Learning in the Identification of Human Activity-induced Landslides 

…… 

Moreover, the triggers of human activity-induced landslides are not only related to natural 

conditions but also closely associated with dynamic human activities. Consequently, their analysis 

necessitates the integration of multimodal and cross-scale data to capture coupled environmental 

and behavioral drivers (see Fig. 6). In engineering operations such as mining or road construction, 

factors including proximity to potential landslide zones, excavation depth, and slope angles must be 

rigorously evaluated through geohazard risk assessments. During excavation phases, geotechnical 

investigations are imperative to identify weak lithological strata or fracture-dense zones predisposed 

to instability. Continuous slope stability monitoring requires deploying IoT-enabled sensors to track 

temporal variations in surface fissure dimensions and subsurface displacement vectors. Monitoring 

data from these sensors can be integrated into deep learning models for multimodal analytics, 

enabling dynamic risk prediction and adaptive mitigation planning. 

To mitigate misclassification between anthropogenic signatures and natural terrain, integrating 

multispectral data with topographic elevation data enhances discriminative capacity (Meng et al., 

2021; Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing artificially 

excavated steep slopes combined with fractured geological strata from structural maps provide 

preliminary evidence of human influence on landslide susceptibility (Lian et al., 2024). 

…… 

Unlike simpler landslide types, identifying composite landslides necessitates multimodal data 

fusion to holistically assess predisposing conditions (Li, 2025; Yin et al., 2023). It further requires 

disentangling the nonlinear superposition effects of multiple factors and quantifying their relative 

contributions to failure initiation. For instance, Dou et al. (2019) analyzed how earthquake intensity 

and rainfall metrics jointly modulate landslide susceptibility, deriving failure probabilities under 

varying parameter combinations. In multi factor-induced landslides, earthquakes and rainfall often 

interact with other factors. For instance, during heavy rainfall, the rate of landslide formation after 

an earthquake may be higher, possibly driven by the removal of excessively steep slopes, changes 

in vegetation and groundwater, and alterations in the mechanical properties of the bedrock and 

weathered layers in the earthquake-induced landslides canopy. This necessitates systematic 
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investigation of multi-hazard coupling effects to quantify emergent risks. 

…… 

With the accumulation of new data and the dynamic variations in multi factor-induced 

landslides, regular model updates are critical to ensuring identification accuracy and adaptability. 

Existing studies predominantly apply these methods based on comprehensive historical landslide 

datasets and employ batch learning theory for identification. However, when new data becomes 

available, the model must be retrained from scratch. This approach is not only highly inefficient but 

also fails to account for the connections between newly observed and historical landslides. To 

address this limitation, incremental learning methods offer a promising solution. These methods 

enable gradual parameter optimization through new data without retraining the existing model 

(Huang et al., 2022). Compared to conventional deep learning models, those integrated with 

incremental learning can more effectively leverage historical landslide data and adaptively learn 

from newly incorporated data, thereby better accommodating the dynamic nature of landslides. 

…… 

 

 

Revised Description in Section 4 

4.1 Application of Deep Learning in the Identification of Rainfall-induced Landslides 

…… 

Following the development of rainfall threshold models, real-time monitoring of historically 

rainfall-induced landslides is imperative. First, continuous surveillance enables early detection of 

subtle deformations and precursory anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facilitating 

timely reactivation warnings to mitigate secondary hazards to lives and infrastructure. Second, by 

continuously monitoring rainfall, soil moisture, and groundwater levels, we can support dynamic 

recalibration of threshold parameters. This data assimilation enhances model adaptability to 

evolving hydrogeological conditions, ensuring operational relevance across heterogeneous terrains. 

While the physical mechanisms governing rainfall-induced slope failures have been well 

studied (Arnone et al., 2011; Xiong et al., 2024), recent advances in deep learning have significantly 

improved our ability to automatically identify and predict such events using heterogeneous data. 

In the context of rainfall-induced landslides, spatiotemporal data (e.g., rainfall intensity, 

cumulative precipitation, soil moisture, and slope displacement time series) are the primary inputs. 

Deep learning models are selected according to data characteristics and task objectives. For instance, 

CNNs are commonly used to extract spatial rainfall–topography features and delineate susceptible 

zones from remote sensing images (Peng and Wu 2024; Xu et al., 2022; Zhang et al., 2022). The 

encoder–decoder architecture, such as U-Net, enables pixel-level segmentation of rainfall-triggered 
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landslides (Bhatta et al., 2025), with the inclusion of vegetation or soil moisture layers improving 

feature discrimination. 

When temporal evolution is essential, RNNs and LSTM networks effectively model sequential 

dependencies between rainfall and slope deformation (Biniyaz et al., 2022; Liu et al., 2025). These 

models are capable of learning hysteretic responses and time lags between precipitation events and 

ground displacement, enabling early warning through time-series forecasting.  

Furthermore, hybrid models combining CNN and LSTM components have been proposed to 

jointly learn spatial–temporal correlations (Chen and Fun 2022; Wu et al., 2025). By fusing rainfall 

distribution maps with displacement monitoring sequences, these architectures provide a more 

complete understanding of rainfall–landslide coupling mechanisms. 

Deep learning also facilitates data-driven rainfall threshold estimation. Instead of relying solely 

on empirical or physically based thresholds, models such as fully connected neural networks (FNNs) 

and attention-based transformers can derive adaptive rainfall thresholds from multi-year rainfall–

landslide records, capturing regional nonlinearities (Wu et al., 2023). 

…… 

4.3 Application of Deep Learning in the Identification of Human Activity-induced Landslides 

…… 

Moreover, the triggers of human activity-induced landslides are not only related to natural 

conditions but also closely associated with dynamic human activities (Tian et al., 2025). 

Consequently, their analysis necessitates the integration of multimodal and cross-scale data to 

capture coupled environmental and behavioral drivers (see Fig. 6). In engineering operations such 

as mining or road construction, factors including proximity to potential landslide zones, excavation 

depth, and slope angles must be rigorously evaluated through geohazard risk assessments. During 

excavation phases, geotechnical investigations are imperative to identify weak lithological strata or 

fracture-dense zones predisposed to instability. Continuous slope stability monitoring requires 

deploying IoT-enabled sensors to track temporal variations in surface fissure dimensions and 

subsurface displacement vectors. Monitoring data from these sensors can be integrated into deep 

learning models for multimodal analytics, enabling dynamic risk prediction and adaptive mitigation 

planning. 

For spatial mapping and fissure extraction, CNNs and U-Net-based segmentation models have 

demonstrated strong capability in identifying artificial slope features from optical or SAR imagery. 

CNN-based models can capture high-level semantic information on excavation scars, road cuts, and 

spoil heaps that indicate anthropogenic disturbance. Tao et al. (2024) employed the DRs-UNet 

model to investigate the use of deep learning for UAV-based crack identification, the developmental 

patterns of fissures, and the feedback interactions between underground mining progress and 
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corresponding surface conditions. Wu et al. (2021) proposed the PUNet model for detecting and 

mapping localized rapid subsidence induced by mining activities. Meng et al. (2025) introduced the 

GF-Former model to achieve precise segmentation of ground fissures in remote sensing imagery. 

When surface deformation time series or micro-displacement data from GB-InSAR, InSAR, or 

IoT sensors are available, RNN-based models are applied to model the temporal evolution of slope 

deformation (Han et al., 2022; Li et al., 2025). These models are particularly effective in detecting 

precursory motion trends caused by progressive excavation or loading activities. 

To mitigate misclassification between anthropogenic signatures and natural terrain, integrating 

multispectral data with topographic elevation data enhances discriminative capacity (Meng et al., 

2021; Selamat et al., 2023). For instance, in mountainous regions, DEMs revealing artificially 

excavated steep slopes combined with fractured geological strata from structural maps provide 

preliminary evidence of human influence on landslide susceptibility (Lian et al., 2024). 

…… 

Unlike simpler landslide types, identifying composite landslides necessitates multimodal data 

fusion to holistically assess predisposing conditions (Li, 2025; Yin et al., 2023). It further requires 

disentangling the nonlinear superposition effects of multiple factors and quantifying their relative 

contributions to failure initiation. For instance, Dou et al. (2019) analyzed how earthquake intensity 

and rainfall metrics jointly modulate landslide susceptibility, deriving failure probabilities under 

varying parameter combinations. In multi factor-induced landslides, earthquakes and rainfall often 

interact with other factors. For instance, during heavy rainfall, the rate of landslide formation after 

an earthquake may be higher, possibly driven by the removal of excessively steep slopes, changes 

in vegetation and groundwater, and alterations in the mechanical properties of the bedrock and 

weathered layers in the earthquake-induced landslides canopy. This necessitates systematic 

investigation of multi-hazard coupling effects to quantify emergent risks. 

In addition to constructing physics-based models that account for multiple factors and quantify 

their interactions through the solution of governing equations, GNNs can also be employed (Lei et 

al., 2025). These models are capable of capturing the spatiotemporal dependencies and nonlinear 

couplings among various triggering factors. By integrating cross-attention mechanisms, their ability 

to dynamically weight the relationships among stresses induced by rainfall, earthquakes, and human 

activities can be further enhanced. For example, Ren et al. (2025) employed a Graph Neural Network 

(GNN) to capture and model the complex spatiotemporal dependencies among multiple monitoring 

locations during landslide deformation. Zeng et al. (2022) used the graphical representation 

capability of the GNN model to analyze environmental relationships within a study region, where 

nodes were defined as geographic units delineated by terrain surface approximations, and edges 

captured the interactions between node pairs. Zhang et al. (2024) constructed a geographically 
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constrained relational graph based on node features representing environmental similarity and 

employed a cosine similarity approach to associate landslides with their surrounding geographic 

environments. 

Cross-attention mechanisms can also be integrated into the model to capture spatiotemporal 

dependencies among contributing factors. For instance, Hu et al. (2025) integrated global landslide 

feature vectors with local feature maps through a cross-attention mechanism to enhance the 

discriminative capability between landslides and background geomorphology. Alternatively, gated 

fusion units may be incorporated to dynamically adjust the weights of multi-modal features (Yang 

et al., 2024a). For instance, Liu et al. (2022) proposed a gated fusion unit (GFU) module for 

multimodal remote sensing image semantic classification, enabling early fusion of heterogeneous 

modality features. 

With the accumulation of new data and the dynamic variations in multi factor-induced 

landslides, regular model updates are critical to ensuring identification accuracy and adaptability. 

Existing studies predominantly apply these methods based on comprehensive historical landslide 

datasets and employ batch learning theory for identification. However, when new data becomes 

available, the model must be retrained from scratch. This approach is not only highly inefficient but 

also fails to account for the connections between newly observed and historical landslides. To 

address this limitation, incremental learning methods offer a promising solution. These methods 

enable gradual parameter optimization through new data without retraining the existing model 

(Huang et al., 2022). Compared to conventional deep learning models, those integrated with 

incremental learning can more effectively leverage historical landslide data and adaptively learn 

from newly incorporated data, thereby better accommodating the dynamic nature of landslides. 

…… 
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Comment #27:  

31. L690: “gated fusion units” are never defined, and I’m not familiar with what they are. Could 

you define them? 

Response: 

- Thank you very much for raising this concern! We apologize for the confusion. To clarify, we have 

presented relevant explanations. 

- Although "gated fusion unit" is not a strictly standardized term, it derives from the concept of gated 

fusion or gated multimodal units, which are commonly employed in fields such as multimodal 

learning, visual question answering, and video recognition. 

- In this study, the term 'gated fusion units' refers to neural modules that integrate heterogeneous 

features using learnable gating mechanisms, dynamically controlling the contribution of each 

modality or feature channel. The concept is related to the Gated Multimodal Unit (GMU) proposed 

by Arevalo et al. (2017). 

- To avoid potential misunderstandings, we have included a definition and explanation of the “gated 

fusion units” in the manuscript. 

Original Description in Subsection 4.4 

…… 

In addition to the approach of constructing physics-based models that account for multiple 

factors, GNNs can be employed. These models represent landslide-prone areas as graph nodes, 

dynamically updating node states through spatiotemporal edge (Lei et al., 2025). Furthermore, cross-

attention mechanisms can be integrated into the model to capture spatiotemporal dependencies 

among contributing factors. Alternatively, gated fusion units may be incorporated to dynamically 

adjust the weights of multi-modal features (Yang et al., 2024a). 

…… 
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Revised Description in Subsection 4.4 

…… 

In addition to the approach of constructing physics-based models that account for multiple 

factors, GNNs can be employed. These models represent landslide-prone areas as graph nodes, 

dynamically updating node states through spatiotemporal edge (Lei et al., 2025). Furthermore, cross-

attention mechanisms can be integrated into the model to capture spatiotemporal dependencies 

among triggering factors. Another noteworthy fusion strategy is the gated fusion unit. Inspired by 

the gating structures in recurrent neural networks (Arevalo et al., 2017; Kumar et al., 2020; Tsai et 

al., 2019), this mechanism learns dynamic weights (typically implemented through gating functions 

such as Sigmoid) to adaptively regulate the information flow of features from different modalities, 

thereby emphasizing salient features and suppressing noise. Compared with cross-attention, the 

gated fusion mechanism is generally more lightweight and provides an alternative approach for 

multimodal feature fusion (Yang et al., 2024a). 

…… 
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Comment #28: 

32. L692: Paragraph may benefit from discussion of “fine-tuning” from the ML literature. 

Response: 

- Thank you for this excellent suggestion. We agree that introducing the concept of "fine-tuning" 

provides a more nuanced and technically accurate progression of ideas in this paragraph. In the 

revised manuscript, we have restructured this section to first discuss the common practice of fine-

tuning with new data, then point out its limitations concerning catastrophic forgetting in non-

stationary environments like landslides, and finally introduce incremental learning as a more robust 

solution to these limitations. This change, we believe, significantly strengthens the logical flow 

and technical depth of our argument. 

- Please see the new Subsection 4.4 for details. 
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Original Description in Subsection 4.4 

…… 

With the accumulation of new data and the dynamic variations in multi factor-induced 

landslides, regular model updates are critical to ensuring identification accuracy and adaptability. 

Existing studies predominantly apply these methods based on comprehensive historical landslide 

datasets and employ batch learning theory for identification. However, when new data becomes 

available, the model must be retrained from scratch. This approach is not only highly inefficient but 

also fails to account for the connections between newly observed and historical landslides. To 

address this limitation, incremental learning methods offer a promising solution. These methods 

enable gradual parameter optimization through new data without retraining the existing model 

(Huang et al., 2022). Compared to conventional deep learning models, those integrated with 

incremental learning can more effectively leverage historical landslide data and adaptively learn 

from newly incorporated data, thereby better accommodating the dynamic nature of landslides. 

…… 

 

Revised Description in Subsection 4.4 

…… 

With the accumulation of new data and the dynamic variations in multi-factor-induced 

landslides, regular model updates are critical to ensuring identification accuracy and adaptability. 

Existing studies predominantly apply deep learning methods based on comprehensive historical 

landslide datasets. However, when new data becomes available, a naive approach is to retrain the 

model from scratch, which is computationally inefficient and fails to capture the connections 

between new observations and historical knowledge. A common strategy from the machine learning 

literature to address this is fine-tuning, where a model pre-trained on a historical dataset is further 

trained on new data (Süalp et al., 2025). While this avoids full retraining, standard fine-tuning can 

still lead to catastrophic forgetting of previously learned patterns. 

To better accommodate the dynamic nature of landslides, incremental learning methods offer a 

more advanced and promising solution (Huang et al., 2022; Wang et al., 2024). These methods 

enable the model to continuously learn from new data streams, gradually optimizing parameters 

while striving to preserve knowledge from previous tasks. Compared to models that require 

retraining or basic fine-tuning (Zhao et al., 2024), models integrated with incremental learning can 

more effectively leverage historical data and adaptively incorporate new information, thereby 

enhancing long-term adaptability (Zhen et al., 2025). 

…… 
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Comment #29:  

34. L805: Paragraph may benefit from discussion of Physics-Informed Neural Networks, which 

may be of interest to scientists in this area. 

Response: 

- Thank you so much for your constructive and valuable comments! We fully agree that Physics-

Informed Neural Networks (PINNs) are highly relevant to the challenges of landslide identification, 

as they directly address the tension between data-driven feature extraction and the underlying 

physical processes governing slope stability. 

- Your suggestion aligns well with Subsection 6.3 of our manuscript, where we also emphasize the 

integration of data-driven models with physical mechanisms. Following your advice, we have 

accordingly expanded the relevant discussion. Specifically, we now highlight that PINNs embed 

physical laws into the training objective of neural networks, thereby constraining data-driven 

learning with domain knowledge. This integration reduces the reliance on large annotated datasets 

and enhances cross-regional transferability, which is particularly valuable in landslide studies 

where data are scarce and heterogeneous. Furthermore, we point out that although applications of 

PINNs to landslide research remain limited, they represent a promising direction for bridging data-

driven models with physically grounded mechanisms. (Please see the revised Subsection 6.3 for 

details.) 

Original Description in Subsection 6.3 

…… 

In the second stage, mechanistic constraints are integrated into the data-driven model to achieve 

knowledge-data dually driven fusion. 
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Before model construction, prior knowledge can be derived from external sources, including 

domain expertise, historical data, and physical principles. Alternatively, mechanistic models may be 

employed to preprocess raw monitoring data. The outputs of mechanistic models or prior knowledge 

serve as a foundation for initializing parameters in data-driven models (Cui et al., 2024; Liu et al., 

2023a; Ma and Mei, 2025). This is because, in data-driven models, the selection of initial parameter 

values significantly impacts on both the training process and final model performance. Incorporating 

prior knowledge helps define more reasonable initial parameter ranges, enabling the model to 

converge toward near-optimal solutions earlier in the training phase. 

Knowledge embedding involves translating landslide physics into model constraints to guide 

the training and optimization of data-driven models (Dahal and Lombardo, 2025; Liu et al., 2024). 

At the architectural level, layers derived from physical equations can be structurally integrated into 

the network design. These physical equations can even be directly encoded as network layers, 

forming differentiable physics-informed computational modules. Differentiability is essential to 

ensure that these physics-based layers function as effective computational modules within the 

network. This requirement stems from the fact that training relies on optimization algorithms, which 

adjust model parameters by computing gradients of the loss function with respect to those 

parameters. Only differentiable physics-encoded layers allow gradient computation during 

backpropagation, enabling the model to learn parameters consistent with physical laws. At the loss 

function level, physical equations can be directly embedded into the neural network’s loss function 

to enforce predictions that adhere to physical principles. As the model seeks to minimize the loss 

function, it iteratively adjusts its parameters to align predictions with the constraints imposed by 

these physical equations. 

…… 

 

Revised Description in Subsection 6.3 

…… 

In the second stage, mechanistic constraints are integrated into the data-driven model to achieve 

knowledge-data dually driven fusion. 

Prior knowledge can be derived from external sources, including domain expertise, historical 

records, and physical principles, or mechanistic models can be employed to preprocess raw 

monitoring data. These outputs serve as a foundation for initializing parameters in data-driven 

models, which is crucial because the choice of initial values substantially affects both training 

efficiency and final performance (Cui et al., 2024; Liu et al., 2023a; Ma and Mei, 2025). Beyond 

initialization, knowledge embedding involves translating landslide physics into model constraints to 

guide learning and optimization (Dahal and Lombardo, 2025; Liu et al., 2024). At the architectural 



 

105 

 

level, physical equations can be structurally encoded as differentiable network layers, enabling 

gradient-based optimization. At the loss function level, physical constraints can be directly 

incorporated into the training objective, ensuring that predictions remain consistent with established 

principles. 

A representative example of this paradigm is the Physics-Informed Neural Network (PINN) 

framework (Raissi et al., 2019). PINNs embed governing equations (such as partial differential 

equations describing slope hydrology or stress-strain processes) into the neural network training 

objective, thereby constraining the learning process with domain knowledge. This approach not only 

reduces dependence on large annotated datasets but also enhances interpretability and cross-regional 

transferability (Karniadakis et al., 2021). Although applications of PINNs in landslide research 

remain limited (Moeineddin et al., 2023), they provide a promising avenue for bridging purely data-

driven approaches with physically grounded mechanisms (Wu et al., 2022). 

…… 
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Comment #30:  

35. L833-841: Perhaps I am misunderstanding, but this information is already conveyed in Section 

4 and Figure 7. 

Response: 

- Thank you for your careful reading and insightful observation! You are correct that the description 

of the three stages of landslides (early, middle, and late) in lines 833–841 was redundant, as it 

overlapped with the content already presented in Section 4 and Figure 7. This repetition was indeed 

unnecessary.  

- In accordance with your suggestion, we have made the following revisions to the relevant section: 

- (1) We have completely removed the repetitive paragraph in lines 833–841. We recognized that 

Section 4 already provides a more detailed, case-based discussion of these stages, making 
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repetition at this point unnecessary. 

- (2) After the deletion, we rewrote the transition sentence to directly guide readers back to the key 

findings in Section 4, thereby maintaining logical flow while avoiding redundancy. 

- Several revisions are listed as follows. All related revisions are made and marked in the revised 

manuscript. Please see the revised Subsection 5.3.2 for all details. Thanks. 

Original Description in Subsection 5.3.2 

…… 

The inducing factors of landslides are not only extremely complex in spatial distribution but 

also highly dynamic in terms of time (Gao et al., 2023). This variability makes the research process 

of the landslide mechanism more difficult. 

From the perspective of temporal dynamics, landslide formation is not instantaneous but 

evolves through prolonged stages. From initial deformation to eventual collapse, dynamic changes 

persist throughout the process, with distinct mechanisms governing each phase. 

The early stage of a landslide is typically characterized by minor surface deformations or 

cracks, many of which remain imperceptible. The absence of conspicuous surface indicators results 

in the frequent omission of initial deformations, thereby heightening instability risks in later phases. 

During the intermediate stage, accelerated deformation and pronounced surface fracturing 

emerge. At this stage, landslide dynamics grow increasingly complex, influenced by competing 

mechanical mechanisms. The evolving stress and strain fields complicate precise quantification of 

failure magnitude and velocity. 

The terminal stage involves abrupt destabilization and catastrophic collapse, resulting in 

extensive surface disruption and mass displacement. Nonlinear dynamics dominate this phase, 

where rapid progression severely limits the feasibility of timely mitigation efforts. 

Since the numerical simulation of long-term creep requires a long-time step, while the dynamic 

process of short-term abrupt changes requires a time resolution in the microsecond level, it is 

difficult to establish a unified model for these two situations. This will further intensify the conflict 

of time scales. 

In terms of spatial heterogeneity, the influence scope of landslides usually involves geological 

structures ranging from the microscopic structure of geotechnical particles to the regional scale. 

Moreover, there are differences in the stratum structure, slope morphology, vegetation coverage, 

water content, which makes the effects of the same inducing factor vary in different regions. For 

example, in loose soil layers, heavy rainfall may lead to shallow landslides, while on rocky slopes 

with well-developed joints, earthquakes or water level fluctuations may trigger deep-seated 

landslides. 

…… 
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Revised Description in Subsection 5.3.2 

…… 

The inducing factors of landslides are not only extremely complex in spatial distribution but 

also highly dynamic in terms of time (Gao et al., 2023). This variability makes the research process 

of the landslide mechanism more difficult. 

From the perspective of temporal dynamics, landslide formation is not instantaneous but 

evolves through prolonged stages, each governed by distinct mechanisms (as detailed in Section 4 

and Figure 7). This dynamic progression across different timescales creates a fundamental modeling 

challenge: since the numerical simulation of long-term creep requires a long time step, while the 

dynamic process of short-term abrupt changes requires a time resolution in the microsecond level, 

it is difficult to establish a unified model for these two situations. This will further intensify the 

conflict of time scales. 

In terms of spatial heterogeneity, the influence scope of landslides usually involves geological 

structures ranging from the microscopic structure of geotechnical particles to the regional scale. 

Moreover, there are differences in the stratum structure, slope morphology, vegetation coverage, 

water content, which makes the effects of the same inducing factor vary in different regions. For 

example, in loose soil layers, heavy rainfall may lead to shallow landslides, while on rocky slopes 

with well-developed joints, earthquakes or water level fluctuations may trigger deep-seated 

landslides. 

…… 

 

 

Comment #31:  

36. Figures 9 and 10 seem redundant to me. It is not clear why you need both instead of just one 

or the other. Moreover, Figure 10(d) seems completely unnecessary. 

Response: 

- Thank you very much for your constructive comment! We carefully reviewed Figures 9 and 10 and 

agree that there is a degree of redundancy between them. Upon re-examination, we found that 

Figure 10 mainly served as a visual integration of concepts that had already been illustrated in 

earlier figures: 

- (1) Figure 10(a) corresponds to the real-time monitoring data source that was already presented in 

Figure 1. 

- (2) Figure 10(b) represents the stages of landslide evolution, which had been clearly illustrated in 

Figure 7. 

- (3) Figure 10(c) conceptually overlaps with the workflow of the knowledge-data dually driven 
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paradigm shown in Figure 9. 

- (4) As you correctly pointed out, Figure 10(d) is indeed redundant and not essential to the overall 

presentation. 

- Therefore, in the revised manuscript, we have deleted Figure 10 to avoid duplication and enhance 

the clarity and conciseness of the paper. We have also adjusted the corresponding text to ensure a 

smooth logical transition from the previous figures to Figure 9, which now serves as the central 

illustration of our proposed framework. 

- We sincerely appreciate this valuable suggestion, which helped us improve the structure and 

readability of the manuscript. 

Original Description in Subsection 6.3 

…… 

The knowledge-data dually driven paradigm, operating through an iterative "theory-guided 

data assimilation and data informed theoretical refinement" mechanism, has advanced potential 

landslide identification from empirical reliance to scientifically quantifiable methodologies. 

Furthermore, the spatial analysis capabilities of geographic information system (GIS) were 

integrated into the practical identification workflow, enabling the study area to be partitioned into 

distinct landslide risk categories. This risk stratification considers the combined influence of region-

specific factors, ensuring scientifically robust and practically viable classifications. 

…… 

Revised Description in Subsection 6.3 

…… 

The knowledge-data dually driven paradigm, operating through an iterative "theory-guided 

data assimilation and data informed theoretical refinement" mechanism, has advanced potential 

landslide identification from empirical reliance to scientifically quantifiable methodologies. The 

overall workflow of this knowledge-data dually driven paradigm for potential landslide 

identification is conceptually summarized in Figure 9. 

Furthermore, the spatial analysis capabilities of geographic information system (GIS) were 

integrated into the practical identification workflow, enabling the study area to be partitioned into 

distinct landslide risk categories. This risk stratification considers the combined influence of region-

specific factors, ensuring scientifically robust and practically viable classifications. 

…… 
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- With our clarifications and revisions, we hope that we have addressed your concerns. Thank you 

so much for your kind consideration! 

- Have a nice day! 

- Pan Jiang & Zhengjing Ma & Gang Mei 


