
   

 

   

 

Review paper egusphere-2025-2157 

Assessing the Impact of Earth Observation Data-Driven Calibration of the Melting 

Coefficient on the LISFLOOD Snow Module 

By Premier et al. 

We thank the Anonymous Reviewer for providing valuable feedback. We believe that the manuscript can 
be improved by considering his suggestions and by clarifying several critical aspects that were not 
previously well explained. Below, we provide our point-by-point responses, highlighted in red. 

General Comments 

This study investigates the calibration of the snowmelt coefficient in the LISFLOOD hydrological 

model using Earth Observation (EO)-derived snow cover data. The authors propose two EO-

based calibration methods and assess their impact on snow cover fraction (SCF), snow water 

equivalent (SWE), and discharge simulations across nine European river basins. The manuscript 

contributes to ongoing efforts to integrate remotely sensed data into large-scale hydrological 

modeling. 

We thank the Reviewer for recognizing the topic importance. 

However, several methodological ambiguities, design inconsistencies, and literature gaps limit 

the manuscript’s clarity, reproducibility, and broader relevance. The introduction focuses 

heavily on LISFLOOD while neglecting to situate the work within the substantial body of existing 

literature on EO-based snow calibration and assimilation techniques, many of which have long 

addressed multi-objective calibration using snow and streamflow data. The authors should 

better articulate the novelty of their approach beyond its application to LISFLOOD. 

We thank the Reviewer for the thoughtful comments and for highlighting areas where the manuscript 
could benefit from improved clarity and contextualization. We acknowledge that the introduction 
currently focuses predominantly on LISFLOOD, and we agree that it could be expanded in a revised 
version of this manuscript. However, as explained in the following responses, the emphasis on 
LISFLOOD reflects the practical scope of our study—since it is the model that is relevant within our 
operational context. 

We believe that the main novelty of this work lies in assessing the effects of a more consistent 
representation of a specific LISFLOOD component—the snow module—on hydrological response. To 
this end, we calibrated the snowmelt coefficient using EO data and re-ran the model using the EO-
derived snowmelt coefficient, with all other settings consistent with the EFAS setup. However, the same 
approach can be applied to any other hydrological model.  



   

 

   

 

This approach allowed us to directly evaluate the behavior of the snow module. Our analysis shows that 
adjusting the snowmelt coefficient to better represent the snow cover did not necessarily require 
recalibrating the other parameters. While the original model was already accurate for snow cover when 
considering the entire basin, this adjustment provided a more accurate agreement at the pixel scale 
when evaluating SCF. Crucially, these improvements in SCF did not alter the resulting streamflow.  

We acknowledge that we did not develop an entirely new methodology, as many of the techniques used 
are established in the literature. However, we combined these techniques in a novel way to evaluate the 
LISFLOOD snow module differently from previous studies (e.g., Thirel et al., 2012; Pistocchi et al., 
2017). Our approach includes a novel calibration technique made possible by the use of a newly 
developed, gap-filled high-resolution snow cover time series, which is expected to have higher accuracy 
than commonly used gap-filled SCA products. This is largely due to the integration of high-resolution 
data, which we elaborate on later in the answers.

 

Figure 1 Workflow overview. 

In this graphical abstract, we present our approach. We derive detailed daily SCF information from 
satellite data, which serves as a benchmark in our workflow. Concurrently, the LISFLOOD model is run, 
and the resulting SWE is converted to SCF using an appropriate parameterization. In this process, the 
snowmelt coefficient (Cm) is treated as a free parameter and calibrated through a pixel-wise 
optimization on a yearly basis. Finally, a pixel-wise average is computed. One season from the dataset 
is excluded from the optimization and reserved solely for evaluation purposes.  

While this results in a post-replacement of the snowmelt coefficient, it could be possibly integrated 
upstream and result in a better representation of a specific module of the model. 

We would also like to highlight that we initially considered submitting this work as a technical note. 
However, a HESS associated editor pointed out in such a case, the format would have required 



   

 

   

 

significant shortening and potentially omitted key methodological details. We chose the full research 
article format to provide a more comprehensive presentation of our methods and findings. 

Should we be given the opportunity to revise the manuscript, we are confident that we can improve its 
clarity, reproducibility, and broader relevance by addressing these points. 

This is particularly important given that the improvements achieved with EO-calibrated 

snowmelt coefficients remain modest, or even questionable, with respect to discharge 

simulations. This raises broader concerns about the hydrological value and operational 

significance of the proposed methodology. 

We thank the Reviewer for raising this important point. Indeed, we recognize that the improvements in 
discharge simulations achieved through EO-calibrated snowmelt coefficients are modest and, in some 
cases, may appear limited. However, we can obtain a more accurate representation of the snow cover 
fraction (SCF).  This said, we try to address a broader methodological question: should multi-objective 
calibration (e.g., streamflow + SCA) be pursued, or are alternative strategies that aim at a more realistic 
representation of SCA feasible? 

Our findings suggest that a sequential calibration strategy—where the snowmelt coefficient is first 
adjusted upstream using EO-derived Snow Cover Area (SCA), followed by downstream calibration on 
streamflow—can serve as a viable and potentially more efficient alternative to full multi-objective 
calibration. In addition, we demonstrate that a standard calibration on streamflow, followed by a 
targeted post-adjustment of the snowmelt coefficient based on SCA, can still yield acceptable 
performance without the need for recalibrating the full model. 

Moreover, several critical aspects of the methodology—such as the SWE–SCF parameterization, 

spatial resolution strategy, calibration procedure, and test basin selection—are poorly 

explained, inconsistently justified, or insufficiently analyzed. The comparison between models, 

methods, and performance metrics is often difficult to follow and underinterpreted. Key 

information for reproducibility (e.g., calibration configurations, data preprocessing protocols) is 

also lacking. 

Many of the methodological components applied in this study (e.g., SWE–SCF parameterization, 
calibration procedures) are based on previously published and validated approaches. For the sake of 
brevity and to avoid unnecessary repetition, we opted to refer to those sources and keep the 
descriptions concise. In a revised version, we will aim to strike a better balance between brevity and 
completeness. 

While the topic is relevant and the integration of EO data into hydrological modeling remains 

important, the manuscript in its current form suffers from fundamental methodological 

opacity, weak novelty positioning, and limited hydrological impact. Key sections are unclear or 



   

 

   

 

poorly justified, the experimental design is inconsistent, and the results do not support the 

claimed contributions. For these reasons, I recommend rejection. A revised version would 

require a substantial restructuring of both the methodology and the scientific framing to meet 

the standards expected for publication in HESS. 

We thank the Reviewer for highlighting the weaknesses of the manuscript. We are confident that by 
addressing these points in the revised version, we can significantly improve the quality and clarity of the 
work. 

 

Specific Comments 

L14–15: This sentence is too vague to provide meaningful insight into the methodology or 

key contributions. 

 

We thank the Reviewer for this comment. We agree that the original sentence “These findings 
highlight the potential of integrating EO data to enhance snowmelt simulations and improve water 
balance predictions, with important implications for hydrological modeling and water resource 
management” is too vague. The sentence will be changed as “These findings highlight the potential 
of integrating EO data to calibrate the snow melt coefficient without changing other calibration 
parameters. This approach may offer practical advantages in situations requiring accurate snow 
cover representation, although our results also show that standard calibration procedures 
provided in this case an acceptable representation of snow dynamics”.  

 

L15–75: The introduction overfocuses on LISFLOOD and insufficiently addresses broader 

research on EO-based calibration and snow data assimilation. The authors should frame 

the novelty of their study in light of widely used multi-objective calibration approaches and 

explain how their work differs in terms of technique or purpose—not merely model 

specificity. 

 

We thank the Reviewer for this comment. However, we believe that an explanation of LISFLOOD in 
the introduction is necessary, as it is the model we use and central to our analysis. The emphasis 
on LISFLOOD reflects the practical scope of our study—it is the tool available and relevant for our 
operational context. 
 
That said, the core objective of this work is to address a broader methodological question: should 
multi-objective calibration (e.g., streamflow + SCA) be pursued, or are alternative strategies 
feasible? 



   

 

   

 

Our findings suggest that a sequential calibration approach—first adjusting the snowmelt 
coefficient upstream using EO-derived SCA, followed by downstream calibration on streamflow—
can be a viable and potentially more efficient alternative. Furthermore, we find that a standard 
calibration on streamflow alone, followed by a post replacement of the snowmelt coefficient based 
on SCA, can still yield acceptable results without the need to recalibrate the entire model. 

Although our experiments were conducted using LISFLOOD, we believe the rationale and 
calibration strategy explored here are applicable to other similar distributed hydrological models.  

In response to this comment, we will revise the introduction to better highlight the broader 
methodological implications of our work and clarify how our approach differs from conventional 
multi-objective calibration strategies. 

 

L59–60: The use of snow data in hydrological model calibration is not new and has become 

a common practice for over a decade. The statement should be revised to reflect this 

context. 
 

Thanks for the comment. We will rephrase the sentence from “This calibration approach differs 
from traditional hydrological calibration methods by introducing an independent process that does 
not rely solely on discharge data” to “This study investigates the effects of adjusting the snowmelt 
coefficient with a post replacement of the snowmelt coefficient based on EO snow cover data 
without the need for a complete recalibration of the entire model.” also based on the previous 
answer. 

 

L66–67: The role of Sentinel-2 data here is unclear. If its main function is downscaling 

MODIS, this should be stated explicitly. Furthermore, cloud-free MODIS products (e.g., 

MOD10A1 Version 6) and well-documented gap-filling techniques are already available—

please clarify why these were not used or compared. 

We thank the Reviewer for the insightful comment, which allows us to clarify the role of high-
resolution data in our methodology. While a simplified interpretation might suggest that Sentinel-2 
data are used solely to downscale MODIS, this is not entirely accurate. As described in Premier et 
al. (2021), Sentinel-2 data are also employed to correct MODIS observations. Our method relies on 
the assumption that high-resolution (HR) data are more accurate than low-resolution (LR) data, 
particularly for fractional snow cover, where Sentinel-2 can detect snow patches that MODIS may 
miss. 

Unlike other state-of-the-art approaches that only downscale MODIS while preserving its Snow 
Cover Fraction (SCF), our method also corrects SCF, offering a novel improvement. While we 
acknowledge the existence of various gap-filling and downscaling algorithms in literature, we 



   

 

   

 

consider the validation of our methodology beyond the scope of this paper, as it has already been 
published in Premier et al. (2021). 

That said, we agree with the Reviewer on the importance of comparing our method with other 
existing and operational products. For this reason, Appendix A includes a comparison with the gap-
filled VNP10A1F product, which demonstrates that it can serve as a good alternative to our more 
complex and labor-intensive algorithm. Although MOD10A1F could also be tested, we expect 
similar performance due to its comparable characteristics and gap-filling strategy. Additionally, 
VNP10A1F offers a slightly higher spatial resolution, which is advantageous. 

L110–115: Calibrating 14 parameters without detailed justification seems excessive. A 

summary table of parameters and ranges is essential. A sensitivity analysis would help 

assess the importance of the snowmelt coefficient relative to other parameters and reveal 

possible interdependencies. 

The table below specifies the 14 model parameters typically fitted in a LISFLOOD calibration. The 
model has more parameters (for instance, the temperature thresholds that define precipitation as 
snowfall or the start of snowmelt), but this is the selection of the most sensitive parameters after 
years of working with the model. Not all parameters are sensitive in all the catchments, e.g., the 
reservoir parameters are not in a catchment without reservoirs, or the snowmelt coefficient in 
areas where snowfall never occurs. These cases are identified by the calibration tool and the 
irrelevant model parameters are removed from the calibration. Further details can be found here: 
https://ec-jrc.github.io/lisflood-code/4_annex_parameters/.  

 
Table 1. Calibration model parameters in the OS-LISFLOOD model. 

Process Parameter 

Range  

Unit Minimum Default Maximum  
Snow Snowmelt coefficient 2.5 4 6.5  mm/°C·day 
Soil Xinanjiang b 0.01 0.5 5  - 

Preferential flow 0.5 4 8  - 
Groundwater 
percolation 

0.01 0.8 2  mm/day 

Upper GW zone 
constant 

0.01 10 40  days 

Lower GW zone 
constant 

40 100 1000  days 

Lower GW zone 
threshold 

0 10 30  mm 

Groundwater loss 0 0 0.5  mm/day 
Streamflow 
routing 

Manning’s n modifier: 
main channel 

0.5 1 2  - 

https://ec-jrc.github.io/lisflood-code/4_annex_parameters/


   

 

   

 

Mainning’s n modifier: 
floodplain 

0.5 1 2  - 

Trigger of split routing 0 2 20  - 
Reservoirs 
and lakes 

Reservoir: normal 
storage 

0.01 0.8 0.99  - 

Reservoir: normal 
release 

0.25 1 2  - 

Lake multiplier 0.5 1 2  - 
 
Regarding the purpose of this research, the independent calibration of the snowmelt coefficient 
does not interfere with the rest of the model parameters. On the contrary, that is what sequential 
calibration tries to avoid. In the “traditional” calibration, the snowmelt coefficient would be 
calibrated together with the other 13 parameters to streamflow. In that scenario, due to 
equifinality, it may happen that the calibrated snowmelt coefficient does not correctly reproduce 
snow processes, but the streamflow simulation performs well. That is actually what we wanted to 
explore with this study. 

L111: Please clarify whether model calibration is based solely on streamflow using KGE. If 

so, this should be justified in light of the study’s stated focus on snow processes. 

 

This paragraph explains the usual LISFLOOD calibration, where the snowmelt coefficient is fitted 
together with all the other parameters to maximize the Kling-Gupta Efficiency of the streamflow in a 
gauging station downstream. It is introduced here for reference, as a comparison with the 
sequential approach explored in the analysis. We will make clearer that this paragraph refers to the 
“traditional” calibration. 

 

L123–124: If all 14 parameters are optimized per sub-basin against streamflow, why isolate 

the snow module for analysis? The risk of equifinality and parameter interactions should be 

acknowledged and discussed. 

 

We thank the Reviewer for the comment and would like to clarify the calibration routine of 
LISFLOOD. The L-Cm snowmelt coefficient was calibrated as part of the LISFLOOD calibration for 
the European domain within the European Flood Awareness System (EFAS) and the European 
Drought Observatory (EDO). This calibration routine involves 14 parameters, and is based solely on 
streamflow using KGE, as detailed on the CEMS page: 

https://confluence.ecmwf.int/display/CEMS/EFAS+v5.0+-

+Calibration+Methodology+and+Data 
In this study, LISFLOOD itself was not recalibrated. The evaluation of the module structure and the 
calibration routine were not within the scope of our work. 
 

https://confluence.ecmwf.int/display/CEMS/EFAS+v5.0+-+Calibration+Methodology+and+Data
https://confluence.ecmwf.int/display/CEMS/EFAS+v5.0+-+Calibration+Methodology+and+Data


   

 

   

 

Given that the model calibration is based exclusively on streamflow and involves multiple 
parameters, it can lead to satisfactory streamflow reproduction but does not guarantee an 
accurate representation of snowmelt processes. This limitation may arise due to parameter 
interdependencies, model complexity, equifinality, and the common challenge in distributed 
hydrological modeling of “being right for the wrong reasons” (Beven and Cloke, 2012). 
For this reason, we decided to calibrate the snowmelt coefficient using EO data and then re-run the 
model with only the EO-snowmelt coefficient different from the EFAS setup. 
This process allowed us to evaluate how the snow module behaved. 
What we found out is that by changing the Snowmelt coefficient, we observe a quasi-equifinal for 
streamflow but not as equifinal for SCA, SWE and melting. The catchment average runoff and the 
discharge at the outlet have low sensitivity to the changes in the snowmelt coefficient, effects of the 
new parameters in upper basins are expected (as we will show later), but the snowmelt coefficient 
calculated using the traditional calibration compensates for local differences. If we work with a 
model where this holds true, we can calibrate the snowmelt coefficient to our will and then calibrate 
the rest independently, thus arguably achieving higher accuracy on snow but very similar on 
streamflow. We show that for LISFLOOD this holds true. 
We acknowledge that sensitivity analyses have been conducted for LISFLOOD: 
parameter uncertainty ( https://www.tandfonline.com/doi/pdf/10.1623/hysj.53.2.293 ) 

global sensitivity analysis (https://www.gdr-mascotnum.fr/media/mascot13zambrano-

poster.pdf) 

calibrated parameter analysis: 

https://www.sciencedirect.com/science/article/pii/S0022169418307467?via%3Dihub 

sensitivity analysis 

(https://www.sciencedirect.com/science/article/pii/S2214581816300817?via%3Dihub) 

global sensitivity and uncertainty analysis 

(https://www.sciencedirect.com/science/article/pii/S0022169417301671) 

 While we agree with the Reviewer that a detailed sensitivity analysis would be valuable, especially 
in the context of LISFLOOD, we consider it beyond the scope of the current study, which focuses 
primarily on the snow module and the calibration of the snowmelt coefficient. 
We will add a subsection in the methodology section where we address the valuable comment of 
the reviewer: 
 
2.5 Evaluation against current LISFLOOD setup 
To complete the assessment, we evaluated the changes in hydrological response resulting from 
the snowmelt coefficient (Cm) that performed best in simulating the SCA. Specifically, we replaced 
only the snowmelt coefficient originally estimated during the EFAS calibration (ECMWF, 2022) (L-
Cm), with the one calibrated using Earth Observation (EO) data (EO-Cm), and ran the LISFLOOD 
model from 1990 to 2022, including two warm-up years (1990–1991). We stressed that the model 
was not re-calibrated for the other 13 parameters, allowing us to isolate the impact of the Cm on 
river discharge in the selected catchments and to assess whether the current EFAS setup can be 

https://www.tandfonline.com/doi/pdf/10.1623/hysj.53.2.293
https://www.gdr-mascotnum.fr/media/mascot13zambrano-poster.pdf
https://www.gdr-mascotnum.fr/media/mascot13zambrano-poster.pdf
https://www.sciencedirect.com/science/article/pii/S0022169418307467?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2214581816300817?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0022169417301671


   

 

   

 

trusted to realistically model snow accumulation and melting dynamics. The snowmelt coefficient 
in LISFLOOD is traditionally calibrated as part of a multi-parameter routine that optimizes 14 
parameters simultaneously against observed streamflow data, focusing on maximizing the Kling-
Gupta Efficiency (KGE). However, this approach is prone to equifinality, where multiple parameter 
combinations yield similar discharge performance (Beven, 2006), but may mask inaccuracies in 
the representation of other processes because of parameters interactions and errors 
compensation. Consequently, while EFAS calibration achieves good streamflow fits, it can 
produce less realistic simulations of processes not directly constrained by streamflow data 
(Beven, 2019). 
This issue is especially pronounced in large-scale hydrological models applied at continental and 
global scales, where structural uncertainty becomes significant due to the application of a uniform 
model framework across catchments with widely varying climatic and physical characteristics 
(Beven, 2006; Beven and Cloke, 2012). 
  
By calibrating only the Cm with EO data independently from the full 14-parameter calibration, we 
directly constrain the snowmelt process using spatially and temporally explicit snow observations, 
reducing the equifinality problem and compensatory effects among parameters. Replacing only the 
Cm in the LISFLOOD model while maintaining the remaining parameters fixed allows for the 
evaluation of two critical aspects: (1) the extent to which the full multi-parameter calibration 
accurately reproduces snow accumulation and melt dynamics, and so if the model is fit-for-
purpose for snow related evaluations. And (2) the influence of the independently calibrated Cm on 
river discharge, specifically assessing its impact on model performance as measured by the Kling-
Gupta Efficiency (KGE).  
 
The results are presented as monthly averages between 1992 and 2022, derived from the mean 
monthly values of the original 6-hourly model outputs. The outputs include snow water equivalent 
(SWE), snowmelt, total runoff, and discharge, all expressed in mm/month. The discharge monthly 
average was calculated based solely on dates with available observed data. Dashed lines in the 
figure represent the 10th and 90th percentiles of the time series, providing insight into the 
variability and uncertainty of the modeled hydrological response.” 

 

L137: The description of elevation banding is unclear. How are elevation classes defined 

and implemented at the 1.4 km model resolution, which significantly smooths real terrain 

features? What are the implications for snow accumulation and melt representation? 

 

We thank the Reviewer for the comment. We agree that our explanation of how elevation zones 
were defined was not sufficiently clear. Due to the relatively coarse resolution of LISFLOOD cells 
(1’, ~1.4 km), significant sub-pixel variability in snow accumulation and melt can occur, particularly 
in areas with large elevation differences within a single pixel. 



   

 

   

 

To address this, snow processes are modeled separately within three elevation zones defined at 
the sub-pixel level. These zones are determined based on a normal distribution of elevation values, 
which has been shown to represent well the actual distribution. To this purpose, the standard 
deviation of elevation within a grid cell is calculated from the Multi-Error-Removed Improved-
Terrain (MERIT) DEM with a spatial resolution of 90 m. The three elevation zones—A, B, and C—are 
each assumed to cover one-third of the pixel area. 
Assuming that the average pixel temperature corresponds to the mean pixel elevation, 
temperatures for the lower zone A and upper zone C zones are estimated by applying a fixed lapse 
rate (L = 0.0065 °C/m) to the elevation differences from the mean. Snow accumulation and melt are 
then modeled separately for each zone, using the temperature at each zone’s centroid as a proxy 
for local conditions. 
To improve clarity, we will add these details that can be found in the LISFLOOD model official 
documentation (https://ec-jrc.github.io/lisflood-model/2_04_stdLISFLOOD_snowmelt/) to the 
manuscript. 

 

L140–164: The SWE–SCF parameterization is central but confusing. Equations (7), (8), and 

(10) appear circular or contradictory. Their derivation, purpose, and assumptions must be 

clarified. Also, kaccum plays a key role but is not explained. A graphical illustration would 

help. The brief mention of the Swenson & Lawrence vs. Zaitchik & Rodell methods lacks 

depth and justification. 

 

We thank the Reviewer for this comment, which lets us clarify the rationale and implementation of 
the SWE-SCF parametrization approach. First, regarding our choice of parameterizations, we are 
aware that several approaches have been proposed in literature. A non-exhaustive list that can be 
included in the manuscript is:  

 

• Luce, C. H., Tarboton, D. G., & Cooley, K. R. (1999). Sub‐grid parameterization of snow 
distribution for an energy and mass balance snow cover model. Hydrological Processes, 13(12‐
13), 1921-1933. 

• Douville, H., Royer, J. F., & Mahfouf, J. F. (1995). A new snow parameterization for the Météo-
France climate model: Part I: validation in stand-alone experiments. Climate Dynamics, 12(1), 
21-35. 

• Roesch, A., Wild, M., Gilgen, H., & Ohmura, A. (2001). A new snow cover fraction 
parametrization for the ECHAM4 GCM. Climate Dynamics, 17, 933-946. 

• Liston, G. E. (2004). Representing subgrid snow cover heterogeneities in regional and global 
models. Journal of climate, 17(6), 1381-1397. 

• Niu, G. Y., & Yang, Z. L. (2007). An observation‐based formulation of snow cover fraction and its 
evaluation over large North American river basins. Journal of geophysical research: 
Atmospheres, 112(D21). 

https://ec-jrc.github.io/lisflood-model/2_04_stdLISFLOOD_snowmelt/


   

 

   

 

• Helbig, N., van Herwijnen, A., Magnusson, J., & Jonas, T. (2015). Fractional snow-covered area 
parameterization over complex topography. Hydrology and Earth System Sciences, 19(3), 1339-
1351. 

• Pimentel, R., Herrero, J., & Polo, M. J. (2017). Subgrid parameterization of snow distribution at a 
Mediterranean site using terrestrial photography. Hydrology and Earth System Sciences, 21(2), 
805-820. 

 

While we acknowledge the importance of a comprehensive treatment of SCF parameterizations, 
this lies beyond the main scope of our study, which is to propose an alternative calibration 
approach for the snowmelt coefficient in the LISFLOOD model. To that end, we chose to test two 
parameterizations that offer a balance between model complexity and data availability. Swenson & 
Lawrence is also an approach widely used in the Community Land Model (CLM). On the other hand, 
Zaitchik & Rodell is a simpler empirical method requiring fewer input data, yet shown to produce 
consistent results. Our results (Table B1) show that both parameterizations yield similar 
performance in our experimental setup, with a general better agreement with the EO data when 
using Swenson & Lawrence. 

 

Regarding the equations, they are derived from the mentioned publication and from the code of the 
CLM model, available here: 

CTSM/src/biogeophys/SnowCoverFractionSwensonLawrence2012Mod.F90 at master · 

ESCOMP/CTSM 

 

While we agree that we could better explain the meaning and role of the equations, we consider a 
full derivation of the SWE–SCF parameterization beyond the scope of this paper, as it would add 
considerable complexity and potentially distract from the main objectives. However, we provide 
here a brief conceptual explanation to help clarify the approach. 
 
The accumulation formulation (Eq. 7) is based on the probability that a pixel becomes snow-
covered after a precipitation event. Specifically, the snow-covered fraction (s) is defined as: 
 

𝑠 = min(1,  𝑘𝑎𝑐𝑐𝑢𝑚 ⋅ 𝑆𝑊𝐸) 
 
This defines s as the probability that a pixel is snow-covered, with kaccum acting as a scaling 
parameter that relates SWE to fractional coverage. Accordingly, the probability that a pixel remains 
snow-free is p = 1 − s. 
 
If multiple snowfall events occur, and assuming independence (i.e., uncorrelated events), the 
cumulative probability that a pixel remains snow-free is the product of the individual p values. 
Therefore, after N+1 events, the snow-covered fraction can be updated as: 
 

https://github.com/ESCOMP/CTSM/blob/master/src/biogeophys/SnowCoverFractionSwensonLawrence2012Mod.F90
https://github.com/ESCOMP/CTSM/blob/master/src/biogeophys/SnowCoverFractionSwensonLawrence2012Mod.F90


   

 

   

 

𝑆𝐶𝐹𝑁+1  =  1  −  (𝑝𝑁+1)(𝑝𝑁)  =  1 − (1 − 𝑠𝑁+1)(1 − 𝑠𝑁) 
 
Similarly, Eq. 7 that is also implemented in 
CTSM/src/biogeophys/SnowCoverFractionSwensonLawrence2012Mod.F90 at master · 
ESCOMP/CTSM, is based on a probabilistic interpretation involving a tanh function, where tanh 
ensures that SCF asymptotically approaches 1 as SWE increases. 
 
Regarding the depletion curve (melting), Equation 8 is derived empirically, as stated by the original 
authors. It is important to note that Equation 10 can be obtained by inverting Equation 8. 
Additionally, in the original paper, Equation 11 is reported with a typographical error; however, the 
correct formulation is implemented in the corresponding code. We have also been in contact with 
the original authors to confirm that we are using the correct version of the formula. Please, for 
deeper understanding check:  
 
Swenson, S. C., & Lawrence, D. M. (2012). A new fractional snow‐covered area parameterization 
for the Community Land Model and its effect on the surface energy balance. Journal of geophysical 
research: Atmospheres, 117(D21). 
 
We agree that, as stated in the original paper, the accumulation parameter kaccum plays an 
important role. For this reason, we chose not to keep it fixed. Instead, we calculate it dynamically 
using our EO-derived SCF data at the time of the first snow accumulation, as also suggested by the 
original authors. This parameter represents the ratio between SCF and SWE at the onset of 
accumulation—when the pixel is still only partially snow-covered—and is therefore essential for 
determining the rate or "speed" of snow accumulation. 

 

L165: Is the snowmelt factor calibrated independently of other LISFLOOD parameters? If 

so, a discussion of the implications and potential benefits of multi-objective calibration 

(including SCA and runoff) is needed. 

 

We thank the reviewer for this insightful comment. Indeed, the snowmelt coefficient was calibrated 
independently from the other LISFLOOD parameters, and no multi-objective calibration was 
performed in this study. The primary objective of comparing the EFAS setup with the same setup 
incorporating the independently calibrated snowmelt coefficient was to evaluate whether 
recalibrating this single parameter would significantly impact the hydrological cycle. Additionally, 
this approach enabled us to assess the robustness of the full LISFLOOD calibration—which 
involves 14 parameters—in accurately reproducing snow dynamics. 
We acknowledge that this aspect was not clearly articulated in the manuscript. To address this, we 
will consider to include a dedicated paragraph in the Methodology section discussing the 
implications of independent versus multi-objective calibration strategies, highlighting the potential 
benefits of jointly calibrating snow cover area (SCA) and runoff. Furthermore, we will expand the 

https://github.com/ESCOMP/CTSM/blob/master/src/biogeophys/SnowCoverFractionSwensonLawrence2012Mod.F90
https://github.com/ESCOMP/CTSM/blob/master/src/biogeophys/SnowCoverFractionSwensonLawrence2012Mod.F90


   

 

   

 

Discussion section to incorporate these considerations and their relevance to model performance 
and parameter interactions. 

 

L169: The snow balance equation is invalid in glaciated basins where annual melt can 

exceed snow accumulation due to negative mass balances. The method should either 

exclude these basins or account for ice dynamics. 

We thank the Reviewer for this valuable comment. The basins that include glaciers are: Adige, 
Alpenrhein, Arve, and Salzach. The basins without glacierized areas are: Gallego, Guadalfeo, 
Laborec, Mörrumsån, and Umeälven. 

Although the glacier-covered area is relatively small in most of the glacierized basins—less than 
1% of the total area (approximately 0.9% for Adige and Salzach, and 0.6% for Alpenrhein)—we 
acknowledge that glaciers can still have a non-negligible influence, particularly in the Arve basin, 
where the glacierized area is approximately 5%. This influence is also visible in our results (see 
Figure 4 and discussion starting at Line 247). 

We agree that the ice component has not been adequately addressed in the current version of the 
manuscript. Our initial intention was to mask out pixels where the glacier coverage exceeded a 
certain threshold during the calibration of the snowmelt coefficient. A proper representation of 
glaciated areas would require distinguishing between snow and ice surfaces and applying different 
coefficients accordingly. However, we believe this is beyond the scope of our work.  

Furthermore, the LISFLOOD setup does not explicitly model glacier dynamics. The standard 
approach in LISFLOOD adjusts melt rates for ice-covered areas using a sinusoidal function to 
increase melt in summer, accounting for enhanced radiation and changes in surface albedo. 
However, this is a simplified treatment that does not capture true ice mass balance or dynamics. 

L173–176: The intent of this paragraph is unclear. Please rephrase to clarify what is being 

estimated or illustrated. 

Thank you for your comment. The purpose of the paragraph is to clarify the conditions under which 
Eq. 11 is valid. Specifically, this equation assumes a single, continuous snow period—defined as a 
sequence of days during which a pixel remains continuously snow-covered. In such cases, it is 
reasonable to assume that total accumulation equals total melt over the snow season, ignoring 
other processes like wind or gravitational snow transport.  

However, in some pixels—especially at lower elevations or in temperate climates—multiple snow 
periods may occur (e.g., snow melts and re-accumulates later). In these cases, Eq. 11 should 
ideally be applied separately to each distinct snow period. While this would be more accurate, it 
would also introduce additional methodological complexity. 



   

 

   

 

For consistency with the original approach proposed by Pistocchi et al., (2017), we retain their 
simplification of applying the equation across all snow-covered days, regardless of whether snow 
cover is continuous or intermittent. This simplification is a known limitation of the method and one 
reason we expect improved performance from the optimization-based approach proposed in this 
study. 

We propose rephrasing the paragraph as follows to make this point clearer: “Eq. 11 is strictly valid 
only over a single, uninterrupted snow period—defined as a sequence of days when the pixel 
remains continuously snow-covered—we follow the approach of Pistocchi et al. (2017) and apply 
the equation across all snow-covered days, regardless of continuity. This simplification avoids 
additional complexity that would arise from segmenting and analyzing multiple snow periods per 
pixel. However, we acknowledge this as a limitation of the method, particularly in lower-altitude 
regions where snow accumulation and melt cycles occur more frequently within a single season.” 

L178: What is being compared here? A model simulation using observed SCFs? The 

terminology and structure are confusing and require clarification. 

We thank the Reviewer for this comment. By L-SCF (LISFLOOD SCF), we refer to the snow cover 
fraction (SCF) estimated using the LISFLOOD model. The LISFLOOD model itself does not directly 
provide SCF as an output; instead, it outputs snow water equivalent (SWE), which is computed 
using Equations 4 to 6, as a function of the snowmelt coefficient Cm. 

To derive SCF from the modelled SWE, a parameterization (Equations 8–10) must be applied. This 
parameterization derives SCF from SWE to SCF, thus being SCF a function of Cm too. 

The snowmelt coefficient Cm is treated as a free parameter in our framework and is subject to 
optimization. To optimize it, we minimize the error between L-SCF and EO-SCF, which refers to the 
SCF derived from Earth Observation (EO) data and serves as a reference. 

L165–191 (Section 2.4): This section should be rewritten to clearly explain both EO-based 

methods for estimating melt factors. The current text lacks transparency and 

methodological rigor. 

 

Thanks for the comment. For the sake of clarity, we will revise the section and add information 
about parameter ranges, the combination of the different hydrological seasons, and how the 
algorithm works in snow-free pixels.  
Also please refer to Figure 1 to have a general overview of our approach. 

 

The resolution mismatch between EO data (50–500 m) and model grid (1.4 km) introduces 

major issues. Downscaling MODIS to 50 m and then reaggregating to 1.4 km is not clearly 

justified. How are orographic gradients in precipitation and temperature accounted for at 



   

 

   

 

this coarse scale? The authors should better discuss whether a semi-distributed approach 

(e.g., elevation bands) or higher-resolution modeling would improve consistency with EO 

data and SWE estimates. 

Thank you for the comment. As also mentioned in a previous response, our methodology is not 
straightforward downscaling of MODIS data. Instead, it includes a correction step aimed at 
addressing known limitations of the MODIS sensor, such as errors due to grain size variability, solar 
zenith angle, viewing geometry, and atmospheric effects that are not fully accounted for in the 
retrieval algorithm. Following the approach described in Premier et al. (2021), we do not treat the 
MODIS-derived snow cover fraction (SCF) as an absolute value. Instead, we interpret it within a 
“safety belt” of uncertainty and primarily rely on high-resolution data to reconstruct snow patterns 
through robust statistical analysis. These reconstructed patterns implicitly account for topographic 
effects, including orographic influences. While the snow cover retrieval method is not the main 
focus of this paper, we agree that this aspect deserves a clearer explanation and will clarify it in a 
revised version.  

Regarding orographic gradients, as noted in a previous response, our model accounts for 
elevation-dependent snow processes by dividing each pixel into three elevation zones. This semi-
distributed approach allows us to represent variations in snow accumulation and melt processes 
with altitude. Also note that meteorological forcing (EMO-1) considers the temperature gradient 
with altitude. That’s not the case for precipitation. 

We agree, however, that higher-resolution modeling could improve consistency between model 
outputs and EO-derived SWE, particularly in complex terrain. Nevertheless, it is important to stress 
the fact that the current model has been developed to run at continental scale (resolution > 1km). 
Increasing the resolution would increase computational time and output data size, crucial 
considerations for a model that runs operationally. Increasing resolution does not guarantee 
improved performance in all model compartments, since some processes, now simplified or 
ignored, might become more relevant and higher resolution (Van Jaarsveld et al., 2025). Moreover, 
we would like to emphasize that fine-resolution modeling is only as accurate as the quality of the 
input forcing data. In many basins—especially at high elevations—observational data are scarce or 
of limited accuracy, which poses challenges for high-resolution modeling. In contrast, EO 
observations may capture some processes, such as wind redistribution of snow, more effectively 
when high-resolution acquisitions are available. Thus, the integration of EO data remains a 
valuable complement to physically based modeling. 

The manuscript suggests the key research question is spatial calibration (pixel vs. basin 

scale, L47–48), but this is insufficiently explored. How do calibration results differ at each 

spatial scale? What is gained or lost? 



   

 

   

 

Thank you for this important comment. As shown in Figures 2 and 3, the pixel-wise calibration 
might result in a distribution that highly differs from that of the lumped coefficients. Initially, our 
idea was to investigate whether snowmelt coefficients calibrated at pixel scale could reveal 
meaningful patterns or correlations with topographic, geographic, or land cover features. Our initial 
guess was that such correlations might eventually allow for snowmelt parameterization based on 
spatial characteristics alone—potentially reducing reliance on EO data, which are often labor-
intensive to process. However, as shown in Table C2 and discussed in Line 370, our analysis did 
not reveal strong correlations between the calibrated snowmelt coefficients and those spatial 
features. We are also aware that while pixel-level calibration allows for more spatial detail and 
potentially better alignment with EO-derived patterns, it increases computational burden. Basin-
scale calibration has shown in this study to be already sufficiently robust but may hide local 
heterogeneity.  

L202–209 & Table 1: The basin selection lacks justification. Several catchments (e.g., Arve, 

Salzach) include glaciers, while others (e.g., Guadalfeo) are subject to strong anthropogenic 

influences (e.g., reservoirs, diversions). These factors are not modeled and introduce 

significant uncertainty. Their inclusion must be explained and justified—or their results 

treated with caution. 

 

We thank the Reviewer for this comment. As already stated in Section 3, the basins were selected 
based on the following criteria: i) they are all snow-dominated catchments, ii) they represent a 
range of geographical contexts, iii) they cover diverse land cover types, and iv) they span a range of 
elevation zones. Additionally, as mentioned in L204 of the manuscript, the initial selection also 
considered the availability of discharge data.  
 
We acknowledge the Reviewer’s point that some of the selected catchments, such as the Arve and 
Salzach (influenced by glacier melt), and Guadalfeo (subject to significant anthropogenic 
influence), include processes that introduce additional sources of uncertainty. In the specific case 
of the Guadalfeo River, the Rules reservoir—constructed in 2006, midway through our analysis 
period (1990–2020)—is included in EFAS. However, EFAS assumes the reservoir was present 
throughout the simulation period, which introduces bias in the model output for this catchment. 
Additionally, the Guadalfeo basin was not part of the EFAS calibration, which further contributes to 
the relatively poor model performance shown in Figure 7. These limitations will be clearly 
acknowledged in the revised discussion to help contextualize the results. 
For a detailed explanation of the reservoir modeling approach in LISFLOOD, we refer the Reviewer 
to the official LISFLOOD documentation: 
https://ec-jrc.github.io/lisflood-model/3_03_optLISFLOOD_reservoirs/ 
And for a comprehensive list of reservoirs included in EFAS, refer to: 
https://hess.copernicus.org/articles/28/2991/2024/ 

 

https://ec-jrc.github.io/lisflood-model/3_03_optLISFLOOD_reservoirs/
https://ec-jrc.github.io/lisflood-model/3_03_optLISFLOOD_reservoirs/
https://hess.copernicus.org/articles/28/2991/2024/


   

 

   

 

Table 1 / Calibration vs. Regionalization: It is unclear why some basins are calibrated while others 
are regionalized. This methodological inconsistency needs to be explained. Consistent baseline 
comparisons are essential to interpret calibration effectiveness. 
 
We thank the reviewer for the comment. Some basin parameters came from a regionalization 
approach and not calibration because of the lack of river discharge observation. The map of the 
domain calibrated with river discharge is presented here:  
https://confluence.ecmwf.int/display/CEMS/EFAS+v5.0+-+Calibration+Methodology+and+Data 

 
Figure 2  In blue the area of the pan-European domain for which discharge observations were available; in yellow the area 
of the pa-European domain for which discharge observations were NOT available for EFAS v5 calibration. The area in 
black is not included in the modeling domain. 

The Adige and Guadalfeo basins were not calibrated during the calibration of the EFAS system; 
their parameters were assigned using the regionalization methodology from Beck et al. (2016) 
[L120]. 
For this study, we managed to get observed data of river discharge, so the comparison against the 
simulated river discharge from LISFLOOD was possible. 
As much as this could be seen as inconsistent, we believe that this was actually an opportunity to 
evaluate the regionalization approach effectiveness, a common challenge in data-
scarce/ungauged basins. We will stress this better in the methodology and discussion 
 
 

Figure 1: The coarse DEM resolution leads to incorrect hypsometry (e.g., Arve basin's 

maximum elevation is ~4800 m a.s.l., not 3700 m). This smoothing likely affects snow (and 

ice) accumulation and melt modeling and should be discussed. 

Thank you for the comment. We agree that the resolution is very coarse, but LISFLOOD has been 
developed as a large-scale model. However, as discussed previously in another answer, the intra-

https://confluence.ecmwf.int/display/CEMS/EFAS+v5.0+-+Calibration+Methodology+and+Data


   

 

   

 

pixel variability is partially considered by using three elevation zones inside the pixel. Assuming that 
the average pixel temperature corresponds to the mean pixel elevation, temperatures for the lower 
zone A and upper zone C zones are estimated by applying a fixed lapse rate (L = 0.0065 °C/m) to the 
elevation differences from the mean. Snow accumulation and melt are then modeled separately 
for each zone, using the temperature at each zone’s centroid as a proxy for local conditions.  

 

L204–209: The temporal alignment of model forcing (1992–2022) and snow data (2017–

2023) is confusing. Are independent evaluation years used? If so, how is calibration/control 

separation ensured? A proper split-sample test would strengthen the study. 

 

Thanks for the comment. The snowmelt coefficient has been calibrated over a five-season period, 
from October 1, 2017, to September 30, 2022. The sixth hydrological season, from October 1, 2022, 
to September 30, 2023, is used only for evaluation purposes.  This period was chosen being the 
period of maximum availability of Sentinel 2 data (as stated from L205). After using the previous EO 
seasons to calibrate the snowmelt coefficient, we ran LISFLOOD in the period 1992-2022 to 
compare the effects of the differently calibrated snowmelt coefficients in the SWE climatology. We 
might include also the last seasons to have more consistent periods, however we believe this is not 
affecting our outcomes.  

 

L216 and Throughout: The manuscript uses many overlapping abbreviations for 

calibration methods (e.g., EO-Cm, EO-Cm1, EO-Cm2, LBFGS-B, L-Cm) with insufficient 

explanation. This confuses readers. Provide a summary table of methods and a glossary of 

acronyms. Terms should be redefined when introduced in different sections. 

We thank the Reviewer for his comment. In a future version, we will add a summary table and 
redefine the terms in each section. 

L220–225: The differences in results across basins should be discussed. Are certain 

physiographic features (e.g., elevation, land cover, glacier presence) associated with better 

or worse performance?  

We thank the Reviewer for raising this interesting point, which inspired us to carry out an additional 
analysis. For the sake of brevity, we report here the results in terms of RMSE, evaluated for SCF 
derived from both L-Cm (Figure 3) and EO-Cm,2 (Figure 4). The performances are analyzed against 
selected physiographic features (mean elevation, forest coverage, and slope) and climatic features 
(mean precipitation, temperature, and snowfall). Furthermore, we distinguish basins with and 
without glaciers using different colors. 



   

 

   

 

The results show a tendency for higher errors in lower-elevation and flatter catchments, while 
increased forest coverage is also associated with higher errors. Regarding the climatic features, an 
inverse relationship with RMSE is observed: basins with higher precipitation and snowfall tend to 
show lower errors. This is expected, since basins with less precipitation — especially less solid 
precipitation — have more ephemeral snow cover, leading to a higher fraction of partial snow cover 
and thus greater potential for errors. 

Glacierized catchments do not appear to show substantial differences compared to non-
glacierized ones. It is also noteworthy that the Umealven basin consistently stands out as an 
outlier with lower RMSE. This may be explained by its prolonged and complete snow cover, which 
likely results in more stable snow conditions and fewer errors. 

We can include these additional results in a future version of the manuscript. 

 
Figure 3 Performances in terms of SCF RMSE versus different physiographic and climatic features when using L-Cm. 



   

 

   

 

 
Figure 4  Performances in terms of SCF RMSE versus different physiographic and climatic features when using EO-Cm,2. 

 

 

L270: This section is mischaracterized as a “water balance” analysis, but it is actually a 

comparison of LISFLOOD SWE with other model outputs. The full hydrological balance 

(precipitation, evapotranspiration, storage changes) is not analyzed, which would be 

relevant. 

 

We thank the reviewer for the comment. We agree that the terminology is misleading since we are 
not reviewing the water balance of the model. 
We will create 2 separate subsections. The first one “4.3 Snow Water Equivalent Exploratory 
Evaluation" will cover the comparison against other models that estimate SWE, the other 
subsection will be called “4.4 effects on LISFLOOD long-term simulation” and it will cover the 
comparison of the performance of the LISFLOOD model run against the LISFLOOD results using 
the EO-Cm. The monthly (and daily will be added) averages for discharge, snowmelt, snow cover 
and total runoff will be presented. Moreover, we will include a spatial comparison of river 
discharges that will show us in which areas of the catchment the discharge is affected by the EO-
Cm. 
Regarding the analysis of the other components of the model, our analysis focused on the impact 
of the snowmelt coefficient on discharge. Moreover, given the fact that LISFLOOD is a mass 
balance model, the effects on other components are limited, especially looking at the limited 
impact of EO-Cm on total runoff, shift (decrease) in infiltration/evapotranspiration are expected in 



   

 

   

 

Salzach, Arve, and Alpenrhein for the months of June-July given the higher runoff compared to the 
EFAS simulation.  
 
The limited impact of the new snowmelt factor at catchment scale will be further analysed in the 
revised manuscript where we will include the following analysis that looks at the impact of the EO-
Cm at sub-catchments level, and for upstream areas above 100 km2. The impact of EO-Cm is 
visible locally, and more precisely in some sub-catchments. This corroborates our thesis in saying 
that the current EFAS calibration serves its purpose in representing well catchment average 
snowmelt dynamics. However, users should be careful when using simulated discharge upstream 
of the calibrated stations, since river discharge, in some cases, can be very different between the 
discharge from EFAS5 and the discharge computed using EO-Cm. 
Those differences are shown in the plots below, when we computed the Normalized Euclidian 
distance (NED) between the EFAS river discharge and the EO-snowmelt coefficient of river 
discharge. River discharge was selected for upstream areas above 100 km2 for both model outputs 
and min-max normalized. The NED was then computed between grid cells at the same location. 
The NED is presented for each catchment in Figure 5. Darker colors represent grid cells/river 
sections where the two models produce similar daily discharge outputs (lower NED); lighter colors 
indicate areas where the models diverge more significantly. 
 The spatially heterogeneous EO-snowmelt coefficients have a noticeable local impact in some 
river reaches with low upstream area, here the differences between model outputs are more 
pronounced. However, this influence decreases progressively downstream as localized effects are 
smoothed out along the flow path. By the time the discharge reaches calibration points, typically 
located further downstream, the impact becomes negligible, as the calibration process 
compensates for or overrides local parameter variations. 
This is confirmed also by looking at the daily and monthly averages at catchment level, where 
differences between the two discharges are negligible, besides Salzach, Arve, and Alpenrhein.  
Therefore, while users can trust the current EFAS5 version to represent catchment-scale 
snowmelt-runoff dynamics, we recommend caution when interpreting simulated river discharge in 
upstream or mountainous areas, especially where inflow to reservoirs is critical, as local 
snowmelt-runoff processes may not be fully captured. These points will be clarified and supported 
with references in the revised manuscript. 

 



   

 

   

 



   

 

   

 

 
 
Figure 5 normalized Euclidean distance between daily discharge from the EFAS5 model and the discharge from the 
LISFLOOD model run with the new EO-coefficient. In grey the catchment area. In magenta the station used in the 
evaluation in section. 

L279–281: Comparing LISFLOOD SWE with other models without harmonized forcing data 

is misleading. The comparison should be framed as qualitative or exploratory—not as 

validation. 

We completely agree with the reviewer that the analysis does not represent a formal validation. As 
stated in L282 of the manuscript, we refer to the analysis as an intercomparison of existing SWE 
products. We acknowledge that this analysis is not exhaustive and should be considered a 
preliminary step, especially given the lack of reference SWE datasets (as stated in L292-293). Even 
if in-situ SWE measurements were available, they would not provide a suitable reference due to the 
coarse resolution of the LISFLOOD model and the high intra-pixel variability introduced by complex 
topography. Additionally, other models cannot be considered absolute references, as they may 
have inherent limitations stemming from model parameterizations and the quality of forcing inputs. 
We will clarify in the revised version of the manuscript that this is intended as an exploratory 
analysis rather than a comprehensive validation. 

 



   

 

   

 

Figure 7 and L319 etc.: “Climatology” is misused. Use “seasonal average” or “mean 

monthly values.” Also, explain what the envelopes in the figure represent. Monthly 

aggregation may obscure important daily dynamics—consider showing daily averages 

instead. 

 

We agree with the reviewer, and we will amend the terminology in the manuscript. We will add daily 
averages as shown in the following plots. 

 



   

 

   

 

 



   

 

   

 

 
 
 
Metrics Reporting: The interpretation of metrics (e.g., RMSE, KGE) lacks depth. What does 

a specific improvement mean in operational or hydrological terms? A summary table of 

relative improvements across basins would aid comparison. 

 
We thank the reviewer for the comment. Given the limited differences between the 2 performances 
of the LISFLOOD model we do not believe that an extra table is necessary. 
We will include in the result a better description of the metrics. Such as: Bias is practically 
identical, which means that water is not stored nor lost between the two runs. The correlation 
coefficient is slightly worse in some catchments, which means that the time of the peak flows is 
slightly hindered. The variability has mixed outcomes. 
The decreased performance in correlation is the most significant in operational terms. A lower 
correlation coefficient suggests that the timing of peak flows is somewhat less accurately 
captured. This is particularly important in the operational context of EFAS5, where changes in 
correlation directly impact the system’s ability to anticipate or delay peak flows, an aspect that is 
critical for effective flood hazard communication and early warning. 
It should be stressed however that model outputs from the LISFLOOD run using the EO-snowmelt 
coefficient were not recalibrated.  If the model were to be used operationally, it would undergo a 
calibration round where 13 parameters ought to be calibrated, the original ones (14) minus the 
snowmelt coefficient. After the re-calibration of the model, the new metrics should be analyzed in 
terms of their impact in operational terms.  

 

L295–300: This methodological content appears out of place in the results section, 

indicating a need for clearer structure throughout. 

 



   

 

   

 

We thank the Reviewer for the comment. We will move the paragraph to the Methodology section. 

 

L325–385: The discussion should better engage with existing literature on snow data 

assimilation. It is widely recognized that improvements in snow state representation do not 

always lead to improved streamflow prediction. This should be acknowledged and 

contextualized. 

We thank the reviewer for the comment; however, our study does not assimilate the SWE state into 
the model. The SCA is converted into SWE and this value is used to calibrate the snowmelt 
coefficient at pixel level, as further explained in the previous answers. We will clarify better in the 
revised version of the manuscript.  

 

 

L345 & L380: The SWE–SCF conversion is treated superficially. Other formulations exist and 

should be discussed. Additionally, the distinction between calibration and data assimilation 

should be made clearer, especially if the authors position their method as a calibration 

approach. 

Thank you for the comment. We have already provided additional details on the SWE–SCF 
parameterization in our previous response. In the revised manuscript, we will better justify the 
choice of the Swenson and Lawrence, (2012) formulation and mention alternative approaches 
available in the literature. 

Regarding the distinction between calibration and data assimilation, we position our method as a 
calibration approach, since the snowmelt coefficient is statically optimized and kept constant 
across multiple hydrological years. That is, we use EO-SCF to calibrate a model parameter (the 
snowmelt coefficient), rather than dynamically adjusting the model state during runtime. 

However, we also recognize that the methodology could be extended to a data assimilation 
framework, in which EO-SCF is assimilated in near real-time to update model states based on the 
observed EO-SCF. 

Model Structure: The limited impact of improved melt factors on discharge suggests 

structural limitations in LISFLOOD (e.g., degree-day assumptions, decoupling of snow and 

runoff). These issues deserve more attention in the discussion. 

 

We thank the reviewer for the comment.  
The degree-day method is a very simple, conceptual approach that is broadly used in other large-
scale hydrological models, such as PCRGlob, CWatM or mHM. Even though the model might 
benefit from an improved representation of the snow processes, we believed that, given the model 
scale and purpose, LISFLOOD is able to satisfactory  capture the main processes. We will, 



   

 

   

 

however, mention in the manuscript that more sofisticated models should be tested in future, also 
taking into condiration the higher resolution of this model version (1’, ~1.4 km) compared to the 
previous one (5km). 
Regarding the limited impact of the EO-cm on discharge, we believe that this is generally true when 
looking at the discharge at the station outlet (with some seasonal differences in Salzach, Arve, and 
Alpenrhein basins).  As shown in the Normalized Euclidean Distance plots, local differences in 
discharge are present upstream. 

 
L408–409: This conclusion is not strongly supported by the preceding results and should be 

revised or qualified. 

 

We thank the reviewer for the comment. We agree with the comment, and we will amend the 
conclusion accordingly. Our study highlights that calibrating with Snow Cover Area from EO can 
improve local dynamics, but that for the scale of the basin analyzed the impact on river discharge 
simulation is comparable with the parameters estimated by the traditional LISFLOOD calibration. 
 

The manuscript would benefit from careful revision for clarity, structure, and language. 

Sections are often dense and overly technical, with insufficient explanation of key decisions. A 

clearer narrative structure, consistent terminology, and simplified figures would greatly 

improve readability. 

We fully agree with the Reviewer that the manuscript can be further improved thanks to their 
constructive comments. We hope to have the opportunity to revise it accordingly, based on these 
responses.  


