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Abstract. Organosulfates (OSs) represent an unrecognized fraction and a potentially important source of marine organic
aerosols. Based on shipboard observations over East Asian marginal seas, we characterized OSs in marine aerosols during
spring, summer, and autumn. The C,—C; OSs and isoprene-/monoterpenes-derived OSs were quantified using synthesized
standards. The total quantified OSs concentrations ranged from 4.5 to 109.1 ng/m3, contributing 0.1%—3.2% of the mass
concentration of marine organic aerosols. The highest OSs concentrations, dominated by C,—C3 OSs and isoprene-OSs, were
observed in summer, which surpassed the abundance of methane sulfonic acid, a key component in climate regulation by
oceanic phytoplankton sulphur emissions. Abundant OSs formation in summer was mainly attributed to the increased isoprene
emissions from the ocean. During the spring and autumn cruises, transported continental pollutants resulted in the higher
fraction of monoterpene-derived (nitrooxy-)OSs, as well as the elevated OSs concentrations over regions surrounded by the
continent. This work highlights the joint effects of marine emissions and continental outflows on the formation and distribution

of atmospheric OSs over marginal seas.

1 Introduction

Marine atmospheric aerosols play a vital role in climate change through influencing cloud formation and solar radiative

balance(Li et al., 2022). Marine phytoplankton could generate abundant dimethylsulfide (DMS), which further be oxidized in
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the atmosphere, forms methane sulphonic acid (MSA) or sulfate acrosols and then regulates the cloud condensation nuclei
(CCN) formation and climate in the marine boundary layer (Andreae and Rosenfeld, 2008; Kettle and Andreae, 2000; Kloster
et al., 2006). This is named the CLAW hypothesis, proposed by Charlson et al. (1987) and Ayers et al. (1991). However, the
following observational evidence and modelling studies indicated that CCN formation in marine atmospheres is far more
complex than had been recognized by the CLAW hypothesis (Quinn and Bates, 2011). This is mainly attributed to the unknown
organic fractions in marine aerosols, including those primarily emitted by sea spray and secondarily formed organic aerosols
(SOA) via the oxidation of volatile organic compounds (VOCs).

Traditional SOA tracers, including those from the oxidation of isoprene and monoterpene, etc., could explain only <10% of
marine organic aerosols (Fu et al., 2011; Guo et al., 2020). The majority of the marine SOA components remain unknown till
now. Abundant isoprene could be emitted from the ocean, and isoprene SOA has been proved to be one of the most important
fractions in marine organic aerosols (Hu et al., 2013). Another important SOA formation pathway from isoprene and
monoterpene oxidation is facilitated by acidic sulfate particles under high humidity conditions, resulting in the formation of
organosulfates (OSs) (Briiggemann et al., 2020). In the marine boundary layer, sulfate aerosols could largely be formed via
the oxidation of DMS emitted by marine phytoplankton (Andreae, 1990; Li et al., 2018; Yan et al., 2024). Sulfate aerosols are
generally abundant over various marine environments (Li et al., 2018; Shank et al., 2012), which serve as a key precursor for
the OSs formation and provide an ideal condition for the reactive uptake of VOCs oxidation products. Laboratory studies
suggested that the reactive uptake of isoprene epoxydiols (IEPOX) or monoterpene oxides onto aerosol particles and ring-
opening epoxide reactions could be catalyzed by acidic sulfate aerosols, resulting in the formation of IEPOX-OS and
monoterpene-derived OSs (Surratt et al., 2010; Schindelka et al., 2013; Riva et al., 2016). Biogenic organosulfur formation
via the acidic sulfate-catalyzed aqueous reactions with VOCs has been proved to represent an important source of atmospheric
organic aerosols (Riva et al., 2019). Recent studies also indicated the existence and importance of organic sulfur compounds,
including OSs, in marine aerosols (Bao et al., 2018; Ye et al., 2021).

Atmospheric OSs constitute a large portion of organic aerosols (OA) in the environments with substantial interactions of
biogenic and anthropogenic emissions (Hettiyadura et al., 2019; Meade et al., 2016; Surratt et al., 2008; Wang et al., 2018). A
recent cruise observation over Asian marginal seas suggested that OSs derived from isoprene and monoterpenes could
contribute about 7% of the OA mass concentration (Wang et al., 2023b). Wang et al (2023) also indicated that
isoprene/monoterpene-derived OSs could surpass the traditionally identified SOA tracers generated from isoprene or
monoterpene oxidation (e.g., methylglyceric acid, alkene triols, hydroxyglutaric acid, pinic acid etc.). Besides sulfate and MSA,
atmospheric OSs could be a potential key species in the sulfur cycle in the marine boundary layer. Different from MSA,

organosulfates are generally with larger molecular weights and weakly hygroscopic taking up water even at subsaturated
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humidity conditions (Briiggemann et al., 2020; Peng et al., 2021; Hansen et al., 2015). The OSs molecules have the hydrophilic
sulfate group and the hydrophobic organic group, making them surface-active compounds. It has been suggested that OSs
could lower the surface tension of particles, affect the particles’ ability to absorb water, and to act as CCN (Briiggemann et al.,
2020; Hansen et al., 2015). The roles of OSs in regulating the CCN formation and climate may be different from MSA, which
needs further elaboration via field observations and laboratory studies. We noted that the atmospheric OSs derived from
isoprene or monoterpenes were rarely detected in the marine aerosols collected at a remote island site located in the Southern
Ocean or the southern Indian Ocean (Claeys et al., 2010; Cui et al., 2019). These could be attributed to the low biogenic VOCs
emission/flux or the degradation of OSs over long-term storage (Claeys et al., 2010; Cui et al., 2019).

The existence or abundance of atmospheric OSs in marine aerosols have not been well evaluated or quantified till now
(Hawkins et al., 2010; Wang et al., 2023b; Ye et al., 2021), which limited the understanding on their formation processes or
their roles in the sulfur cycle and aerosol climate effects in marine atmospheres. In this study, atmospheric OSs over East Asian
marginal seas were quantified using synthesized OSs standards. We characterized the particulate OSs derived from isoprene
and monoterpenes, and investigated their spatial distributions, seasonal variations, as well as the dominant environmental
factors of OSs formation. Our results suggested that, over marginal seas, the spatiotemporal distribution of OSs abundance and
composition was dependent on the relative importance of marine emissions and continental outflows. This work highlights the
vital roles of OSs in altering the sulfur cycle in marine boundary layer, and further studies in open ocean are needed to

understand the influence of OSs on the climate effects of marine aerosols.

2 Methods

2.1 Cruise observation and sample collection

Marine aerosol samples were collected during summer (16 July—26 July) and autumn (21 October—2 November) in 2021, and
during spring (14 April-25 April) in 2022 over the Yellow Sea and Bohai Sea (YBS). The YBS are marginal seas surrounded
by the East Asian continents (Figure 1), where there are active interactions between transported continent outflows (e.g. Asian
dust, anthropogenic pollutants) and marine emissions. The atmosphere over the YBS is dominantly influenced by the marine
emissions or the continental outflows in different seasons, making it an ideal region to understand the roles of marine emissions
and continental pollutants in the marine aerosol formation. The fine particle (PM2s) and total suspended particulate (TSP)
samples were collected using high-volume aerosol samplers (KB-1000, Qingdao Genstar Electronic Technology, China). The
quartz fiber filters were pre-baked at 500 °C for 4.5 hours and wrapped in pre-baked aluminum foil after sampling. Aerosol
samplers were placed on the top deck of the vessel “Lanhai 101, approximately 8 m above the sea surface. Each aerosol

sample was collected for 10—24 hrs, and a field blank sample was collected during each cruise. The field blank sample was



92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

used to correct the potential sampling artifacts for the quantified OSs and other species in the marine aerosol samples.

During the observation, wind speed (WS), air temperature, and relative humidity (RH) were simultaneously measured by a
shipboard meteorological observatory, with a time resolution of 10s. The surface seawater (2—5 m) samples were collected by
a conductivity—temperature—depth (CTD) assembly (Seabird 9/11), and the chlorophyll-a (Chl/-a) concentration in surface
seawater was measured using a CE Turner Designs fluorometer. There were 2—12 CTD sites during the sampling period of
each filter sample. Concentrations of seawater isoprene were then estimated by empirical formulas based on previous studies
(Ooki et al., 2015; Wang et al., 2023b). The 72 h backward trajectories of air masses from an altitude of 500 m above ground
level were calculated using the HYSPLIT model (Version 5.2.1, NOAA), starting every 6 h (Fig. S1). Trajectories at the center

site of the observation region were calculated to represent the air masses during each cruise over the YBS.

2.2 HPLC-MS analysis and OSs quantification

An aliquot of each filter sample was extracted by methanol. The solutions were filtered using PTFE syringe filter (0.22 pm),
and evaporated to dryness under a gentle stream of N» gas. The dried residues were redissolved in methanol containing 0.1%
formic acid (100 pL). Organosulfates compounds were quantified using a QTRAP 4500 mass spectrometer (AB Sciex) coupled
with an UHPLC system (Ultimate 3000, Thermo Scientific, DE) for the low-molecular-weight OSs, and an Exactive Plus-
Orbitrap mass spectrometer (Thermo Scientific Inc.) with an UHPLC system (Ultimate 3000) for monoterpene-derived
compounds. Mass spectrometry was operated using a negative-mode electrospray ionization. The monoterpene NOSs
(CioH16NO7S™ and CoH14NO3S™) were identified in the extracted ion chromatogram mode, and other OSs compounds were
quantified in multiple-reaction monitoring (MRM) mode. In this work, C,—C; OSs (HAS, GAS, and LAS), isoprene-OSs
(IEPOX-0S, MAE-OS, and CsH;07S"), monoterpene-OSs, and nitrooxy-OSs (NOSs) were quantified using synthesized OSs
standards (Tables S1, S2) (Wang et al., 2018).

Chromatographic separation of the low-molecular-weight OSs, including C,—Cs OSs and isoprene-OSs/NOSs, was optimized
using an ethylene bridged hybrid (BEH) Amide column (2.1 mmx100 mm, 1.7 pm, Waters, USA) equipped with a pre-column.
Hydrophilic interaction liquid chromatography (HILIC) separation is an accurate analytical method for quantifying the low-
molecular-weight OSs (Hettiyadura et al., 2015). The injection volume was 2.0 uL. The column was maintained at 35°C.
Mobile eluents were solvent A: ammonium acetate buffer (10 mM, pH 9) in ultrapure water and solvent B: 10 mM ammonium
acetate buffer (10 mM, pH 9) in acetonitrile/water (95:5). The flow rate was 0.4 mL/min at 0—2.5 min, then decreased to 0.35
mL/min from 2.5 to 11.5 min, and increased back to 0.4 mL/min from 11.5 to 18 min. The gradient elution was set as follows:
100% B at 0—0.4 min; reduced to 88% B at 0.4—2.4 min and maintained until 11 min; increased to 100% B at 11-11.5 min, and
maintained at 100% B until 18 min to re-equilibrate the column. Monoterpene OSs/NOSs were analyzed using an Acquity

UPLC HSS T3 column (2.1 mmx100 mm, 1.8 pm, Waters, USA) with a pre-column. The mobile eluents were solvent A (0.1%
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acetic acid in ultrapure water) and solvent B (0.1% acetic acid in methanol) at a flow rate of 0.3 mL/min. The gradient elution
procedure was performed as follows: 5% B at 0—1.5 min; increased to 54% B over 13.7 min and held for 1.0 min; then increased
to 90% B over 1.8 min and held for 5 min; decreased to 5% B over 0.5 min and held for 1.5 min to re-equilibrate the column
for next injection. The column temperature was maintained at 45°C, and the injection volume was 5.0 pL.

As shown in Table S1, the UHPLC and MS/MS conditions produce highly linear calibration curves for the quantified OSs
compounds (R? > 0.99). The limit of detection (LOD) and limit of quantification (LOQ) of C,-C3 OSs range 0.07-0.79 pg L™
and 0.24-2.62 pg L. The LOD and LOQ of monoterpene-OSs range 0.73-2.65 pg L! and 2.42-8.85 pg L. The relative
standard deviation (RSD) of the quantified OSs is <12.1% based on ten replicate injections of standards. Spike recoveries of
the OSs standards on the blank filter are 94%—-105%. The measurement uncertainty of OSs concentrations is 5.5-13.2%
considering the relative errors in air volume (5%), extraction efficiency (recovery), and instrumental analysis (Hettiyadura et
al., 2017). Organosulfates are primarily present in the particle phase under ambient conditions due to their low volatilities.
Laboratory studies suggested that hydrolysis could be an atmospheric removal process for some OSs (Chen et al., 2020; Hu et
al.,2011; Lam et al., 2019). The quantified OSs in this study are likely to be chemically stable over the atmospheric time scales
(Chen et al., 2020; Hu et al., 2011; Lam et al., 2019). A previous study showed a potential positive bias of atmospheric OSs
during the filter sampling and subsequent offline analysis (Kristensen et al., 2016). This sampling artifact is because that the
gas-phase epoxides or SO, might absorb onto the filter substrates during the sampling. Subsequent on-filter oxidation and
sulfation of the absorbed epoxides may form OSs, leading to a positive bias in the sampling and quantification of OSs
(Kristensen et al., 2016; Briiggemann et al., 2020). In the present study, the field blanks were analyzed following the same
procedures and used to correct the potential sampling artifacts. The mass loadings of the quantified OSs compounds in the
field blank samples were < 0.1% of those in the marine aerosol samples. All the reported OSs concentrations have been

corrected by subtracting the background values in the corresponding field blank sample.
2.3 Measurements of aerosol chemical composition

The filter samples, with a time resolution of 10—24 hrs, were used for the analysis of organic carbon (OC), elemental carbon
(EC), water-soluble ions, and MSA in the marine aerosols. The concentrations of OC and EC were measured using a carbon
analyzer (Model RT-3131, Sunset Laboratory, OR). The OA concentration was then calculated by multiplying OC by 1.6
(Wang et al., 2023b). Water-soluble cations (Na*, NH4", K*, Mg?*, Ca?"), anions (C1~, NO;~, SO4>"), and MSA were measured
using ion chromatography systems (ICS-2100 and ICS-Aquion RFIC, Thermo Scientific). The concentrations of non-sea-salt
potassium ion (nss-K*) and non-sea-salt sulfate (nss-SO4>) were respectively calculated by [K']-0.037%[Na*] and
[SO4*71-0.2516x[Na’] (Millero and Sohn, 1992; Jung et al., 2020; Balasubramanian et al., 2003; Behera et al., 2013). The

mass loadings of OC and sulfate in the field blank samples were < 8% and < 1.3% of those in the collected marine aerosol
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samples. All the reported concentrations of the aerosol compounds have been corrected by subtracting the background values
measured in the corresponding field blank sample. The concentrations of PM» s or TSP were reconstructed by summing the

concentrations of inorganic ions, OA, and EC in each aerosol sample.

3 Results and discussion

3.1 Concentration and composition of marine atmospheric OSs

The total quantified OSs and nitrooxy-OSs ranged from 4.5 to 109.1 ng/m*® in marine aerosols during the shipboard
observations over the YBS (Fig. 1, Table S2). The eleven quantified OSs and NOSs compounds contributed 0.1%—3.2% of the
OA mass concentrations over the YBS. The observed OSs concentrations here were generally higher than the wintertime
concentrations at inland sites, and lower than those in coastal regions (Kanellopoulos et al., 2022; Meade et al., 2016; Nguyen
et al., 2014; Wang et al., 2020, 2021, 2022b) (Fig. 2). This was due to the active interactions between biogenic VOCs and
sulfate aerosols under high RH conditions in coastal areas, which favored the aqueous-phase formation of OSs in the
atmosphere. Acid sulfate-catalyzed reactions with isoprene-derived epoxide are widely adopted as the most important pathway
for atmospheric OSs formation (Liao et al., 2015; Surratt et al., 2008; Schindelka et al., 2013; Briiggemann et al., 2020). Under
the high-humidity conditions, OSs could also be formed via the heterogeneous reactions between SO, and monoterpene
ozonolysis intermediates or organic peroxides (Ye et al., 2018). The OSs formation may be limited by the low biogenic
VOCs emissions or ambient RH in the wintertime inland environments (Wang et al., 2020). It is noted that, taking the autumn
observation as an example, we compared the OSs concentrations in the PM; s and the TSP samples simultaneously collected
during the cruise (Fig. S2). The majority of the data points fall along the 1:1 line (Fig. S2). The presence of OSs is dominant

in fine particles, and thus our further discussion is focused on the results of the PM, s samples.
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172  Figure 1. Spatial distributions of OSs in PM> s over the YBS during (a) summer, (b) autumn in 2021, and (c) spring in 2022.
173  The inserted charts in panels (a, b, ¢) are the contribution of different OSs compounds. The dotted lines in the panels are the
174  dividing line of the North Yellow Sea (nYS) and the South Yellow Sea (sYS).

175

176  The C,—Cs OSs, including glycolic acid sulfate (GAS), hydroxyacetone sulfate (HAS), and lactic acid sulfate (LAS), were the
177 most abundant compound group across the observed seasons (Fig. 1, 2). The C,—C3; OSs concentrations were respectively
178  7.243.1,24.2+12.4, and 12.8+14.4 ng/m? in spring, summer, and autumn, comparable to the concentration levels at inland sites
179 and lower than those in coastal areas (Fig. 2). In autumn and spring, the fraction of C,—C; OSs, especially GAS, was much
180 higher than other compound groups. The highest GAS concentration (47.8 ng/m*) over YBS was observed on 30 October
181  during the autumn cruise. We noted that, in marine atmospheres, the contribution of C,—C3; OSs among the quantified OSs was
182 much higher than those observed in various continental environments (Fig. 2). These low-molecular-weight OSs could be
183 formed via the oxidation of VOCs precursors from both biogenic and anthropogenic origins (Wang et al., 2023a), and have
184 been frequently observed as one of the most abundant OSs groups in previous studies (Wang et al., 2018, 2020; Cai et al.,
185 2020).
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Figure 2. Atmospheric OSs concentrations and mass ratios of (OSs+NOSs)/OA over the YBS in this study and in inland and
coastal atmospheres reported in previous studies (Kanellopoulos et al., 2022; Meade et al., 2016; Nguyen et al., 2014; Wang
et al., 2020, 2021, 2022b). The data labels in this work are denoted in blue, and those from previous studies are in black. The
pie charts represent the average contribution of OSs compound groups in each season. It is noted that the OSs abundance over

the YBS and at coastal or inland sites are represented by different y-axes concentration ranges.

The total concentration of quantified isoprene-OSs and NOSs ranged from 1.3 to 56.9 ng/m?, which were the most abundant
group in summer over the YBS (Fig. 1). The predominance of isoprene OSs has been well documented at both coastal and
inland sites (Fig. 2), which is attributed to the substantial biogenic isoprene emissions, especially during warmer seasons. Wu
et al. (2021) reported abundant emission of isoprene from coastal and shelf seas (Wu et al., 2021), and isoprene OSs would
then form via the interaction between sulfate aerosols and isoprene oxidation products (Surratt et al., 2010; Cooke et al., 2022).
In the marine atmosphere over YBS, isoprene-derived OSs displayed a dominance by IEPOX-OS and CsH707S" during summer,
and by CsH707S" during spring and autumn (Fig. 1). The CsH7;07S™ compound has been suggested as a further oxidized or aged
form of IEPOX-OS (Armstrong et al., 2022; Chen et al., 2020). The abundant presence of CsH;07S™ in marine aerosols across
seasons indicated the rapid oxidation and aging processes of isoprene SOA in marine atmospheres. The high contribution of
CsH707S™ molecule among isoprene-derived OSs has been reported in marine aerosols, as well as in coastal and inland
atmospheres (Hettiyadura et al., 2015; Kanellopoulos et al., 2022; Surratt et al., 2008; Wang et al., 2018, 2022b, 2023b).

The IEPOX-OS was one of the dominant OSs compounds during the summer cruise (Fig. 1), which is a typical low-NO
oxidation product of isoprene formed via the acid-catalyzed ring opening of isoprene epoxydiols and subsequent nucleophilic
addition of inorganic sulfate (Surratt et al., 2010; Lin et al., 2012). The dominance of IEPOX-OS among the biogenic OSs
observed here is consistent with previous field observations under low-NO and high-RH conditions (Cooke et al., 2022; Lam
etal.,2019; Liao et al., 2015). For the summertime samples, the contribution of IEPOX-OS among isoprene-OSs here is higher
than that in a previous study conducted in 2019 over the YBS (Wang et al., 2023b). This could be due to the reduction of NOx
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emissions in the North China Plain (Li et al., 2024), resulting in a lower NO condition in 2022 than in 2019. It is also noted
that a BEH Amide column and synthesized OSs standards were employed to separate and quantify the C,-C3 OSs and isoprene
OSs in this study. The HILIC provides better separation and retention for the low-molecular-weight C,-C3 OSs and isoprene
OSs, reflected by the retention time listed in Table S2. The OSs quantification here was more accurate than our previous study
in 2019, in which a reversed-phase column and surrogate standard were used to separate and quantified the low-molecular-
weight and highly polar OSs (Wang et al., 2023b). Separation of polar C,-C3 OSs and isoprene OSs using the reversed-phase
chromatography could result in measurement bias due to the coelution and matrix effects (Hettiyadura et al., 2015; Liang et
al., 2025). This could be an additional reason for the different OSs proportions between the two studies. The concentrations of
methacrylic acid epoxide (MAE)-OS and isoprene-NOS, usually originated via NO/NO;, pathway or under high-NO
conditions(Worton et al., 2013), were much lower than those of IEPOX-OS and its aged product (CsH;07S") in the marine
atmospheres (Fig. 1, Table S2).

The mass concentration and contribution of monoterpene-derived (nitrooxy-)OSs were lower than those of C,—C3 OSs and
isoprene-derived OSs over the YBS (Fig. 1, 2). This compound group was dominated by monoterpene NOSs (C10HisNO7S),
which were formed via the oxidation of monoterpenes in the presence of anthropogenic NOx (Surratt et al., 2008; Wang et al.,
2018). The formation of monoterpene OSs/NOSs in marine atmospheres was driven by the transported continental pollutants.
The concentration levels of monoterpene OSs/NOSs over the YBS were generally lower than those observed in continental

atmospheres (Fig. 2) (He et al., 2014; Meade et al., 2016; Nguyen et al., 2014; Wang et al., 2020, 2021, 2022b).

3.2 Importance of OSs in marine atmospheres

The OSs concentrations and mass contribution among marine OA were the highest in summer, followed by those in autumn
and spring (Fig. 1, 2). The average OSs concentration was 57.8+£38.9, 20.4+19.7, and 13.3£8.3 ng/m? in summer, autumn, and
spring, respectively. During the summer cruise, OSs occupied 1.6%—3.2% (2.5% on average) of the marine OA mass
concentrations, which were comparable to those observed in coastal regions and higher than those at the inland sites (Fig. 2).
The elevated concentration levels and contributions of biogenic OSs, especially isoprene OSs and C,—C3 OSs, in summer were
attributed to the increased biogenic VOCs emissions from marine phytoplankton or photochemical reactions in surface
microlayer (Conte et al., 2020). The filter-sampling-averaged Chl-a concentrations were 0.6—5.3 mg/m?® (n=7, 2.1£1.7 mg/m?
on average) during summer, 1.0—2.4 mg/m? (n=8, 1.7+0.5 mg/m? on average) during spring and 0.5-2.2 mg/m? (n=11, 1.4+0.6
mg/m? on average) during autumn. High seawater Chl/-a conditions (5.3 and 3.6 mg/m?®) were observed during the summer
cruise. In addition, the air temperature in summer was significantly (p< 0.001) higher than that in other seasons (Fig. S3), and

the summertime high temperature favored the sea-to-air transfer process of isoprene. The vital importance of biogenic OSs to
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OA formation in summer has been highlighted in previous observations at both marine and continental sites (Hettiyadura et
al., 2017; Kanellopoulos et al., 2022; Meade et al., 2016; Nguyen et al., 2014; Wang et al., 2020, 2021, 2022b). We cannot
exclude the potential influence of terrestrial biogenic VOCs emissions based on the observational evidence. The air masses
were dominantly from the open ocean in summer (Fig. S1), indicating limited impacts from the continental outflows. During
spring or autumn, the lower Chl-a and air temperature resulted in the decrease of biogenic OSs formation (Fig. 2). Though the
seawater Chl-a was at similar concentration levels in spring and autumn (Fig. S3), the OSs abundance was lower in spring.
The ambient temperature was lower in spring, and the oceanic phytoplankton had not revived from the low temperature
conditions throughout winter. Thus, the biological activity and biogenic VOCs production were likely at low levels during the

spring cruise.

OSs MSA OSs/MSA
240 5
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180 ——
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- 2
E 120 Z
£ | >
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S £
QO 60 =
0 I
Summer I Autumn | Spring

Figure 3. The OSs, MSA concentrations and OSs/MSA mass ratios in atmospheric aerosols over the YBS.

During summer, the active interactions between biogenic VOCs, especially isoprene, and acidic sulfate converted notable
fractions of inorganic sulfate aerosols to OSs in marine atmospheres. The abundance of OSs was comparable to that of MSA
in summer, and their mass ratios were higher than those in autumn and spring (Fig. 3). During the summer cruise, the ratio of
0Ss-S/S04*-S and MSA-S/SO4*-S were respectively 0.2%-1.9% (1.1% on average) and 0.9%-2.5% (1.6% on average) in
terms of the molar mass of sulfur. Previous studies have suggested that atmospheric MSA formed via the oxidation of DMS
contributes to the CCN formation in the marine boundary layer, which is a vital species relevant to the CLAW hypothesis of
oceanic phytoplankton-controlled climate regulation (Ayers et al., 1997; Charlson et al., 1987; Quinn and Bates, 2011).
Atmospheric OSs could modify the aerosol morphology, suppress the surface tension, and might play roles in altering the
cloud formation (Estillore et al., 2016; Riva et al., 2019). The relevance of MSA and OSs in climate regulation and the CLAW
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hypothesis should be assessed considering their abundance in the atmosphere as well as their distinct physicochemical
properties.

We noted that the OSs and MSA displayed strong correlations (r = 0.86, p<< 0.01) in autumn (Fig. S4). This suggested that the
atmospheric OSs and MSA formation were limited by the same environmental factors in autumn, which could be the lower
marine biological activities indicated by the seawater Chl-a and temperatures (Fig. S3). The increase of marine phytoplankton
emissions (e.g., DMS) may drive the formation and elevation of OSs during autumn over the YBS. Atmospheric OSs and MSA
did not show an obvious correlation in summer. The seawater Ch/-a and SST were higher during the summer cruise than during
the other cruises (Fig. S3), indicating abundant marine biogenic emissions and sea-to-air exchange processes in summer. We
proposed that the marine biogenic emitted precursors (e.g., DMS, isoprene) were abundant and in excess for the MSA and OSs
formation in summer. The formation of MSA or OSs might be limited by different atmospheric oxidation or subsequent reaction
processes of these precursors, and the environmental conditions driving their formation in summer need further investigation.
The cruise observations indicated that organosulfates, besides MSA, should be taken into consideration when studying the
sulfur cycle in marine atmospheres. The roles of atmospheric OSs in altering cloud formation need further investigation

through shipboard observations, especially over oceanic regions with high phytoplankton biomass and high temperature.
3.3 Seasonal variation of atmospheric OSs composition

For the seasonal variations of OSs composition, the chemical spaces of the autumn and spring samples are highly overlapped,
which are different from that of the summer samples (Fig. 4a). The fraction of isoprene-derived (nitrooxy-)OSs was higher
during the summer cruise than those observed during the other two seasons. The autumn and spring samples generally showed
a higher contribution by monoterpene-derived OSs compounds. The seasonal variation was attributed to the relatively lower
isoprene emissions, indicated by the lower seawater Chl-a (Fig. S3), and the more severe influence of anthropogenic pollutants
transported from the continent in spring and autumn (Fig. S1). In addition to the air mass back trajectories, the more severe
impacts of continental outflows in spring and autumn were also indicated by elevated elemental carbon (EC) concentrations
(0.5 pgC/m® and 0.4 pgC/m? compared to 0.2 pgC/m? in summer). In marine atmospheres over the YBS, the relative
contribution of monoterpene-derived (nitrooxy-)OSs was lower than that in continental atmospheres under more severe

impacts of anthropogenic pollutants (Fig. 4a).
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Figure 4. (a) Relative abundance of isoprene OSs, monoterpene OSs, and C,—Cs3 OSs, and (b) composition of isoprene OSs
over the YBS in summer (red), autumn (orange) and spring (green). The results previously reported at the inland urban site

(Wang et al., 2020) are colored gray.

In marine atmospheres over the YBS, different influences of marine emissions versus continental outflows across seasons
resulted in the variation of C,—C3 OSs/isoprene-OSs mass ratios (Fig. S5). Strong correlations (r=0.79—0.97, p<0.05) between
isoprene-OSs and C,—C3 OSs suggested their consistent biogenic sources dominated by isoprene oxidation, which has been
reported in previous studies(Schindelka et al., 2013; Surratt et al., 2008; Wang et al., 2020). In summer, the abundance of
C,—C3 OSs was comparable to that of isoprene OSs. However, during autumn and spring, we observed higher mass ratios of
C>—C3 OSs versus isoprene-OSs due to the additional sources of C,—C3; OSs contributed by anthropogenic sources (Fu, 2008;
Huang et al., 2018; Liao et al., 2015).

The chemical space distributions of isoprene OSs also displayed obvious seasonal variations. The fraction of IEPOX-OS
among the isoprene-derived OSs was substantially higher, and that of MAE-OS was relatively lower in summer compared
with those in spring and autumn (Fig. 4b). The low-NO conditions in summer favored the IEPOX formation from isoprene
oxidation via HO, pathway, and the formation of MAE via NO/NO; pathway increased under the influence of continental
pollutants in autumn and spring (Wang et al., 2020; Worton et al., 2013). The average mass ratio of IEPOX-OS/MAE-OS was
4.7 during the summer cruise, much higher than those observed during spring (1.53) or autumn (0.49). The seasonal variations
of IEPOX-OS/MAE-OS mass ratios indicated that the isoprene oxidation pathways were dominated by the HO, pathway in
summer, and the importance of NO/NO; pathway elevated during the other seasons over the YBS. During summer, the relative
contribution of MAE-OS among isoprene-OSs in marine aerosols over the YBS was lower than those observed in continental
atmospheres, indicated by the gray markers in Fig. 4b. This was due to the lower anthropogenic pollutants and NO conditions
in marine atmospheres than in continental atmospheres. The proportions of CsH;0S", a further oxidation or aged forms of

IEPOX-OS(Armstrong et al., 2022; Chen et al., 2020), were also higher in autumn and spring than in summer. The dominant
12
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presence of CsH707S™ compared to IEPOX-OS indicated a highly oxidized state of marine SOA in spring and autumn.
3.4 Spatial distribution of OSs regulated by continental outflows

As shown in Fig. 5, atmospheric OSs concentrations over the Bohai Sea and the North Yellow Sea (nYBS, 51.3+37.4 ng/m?)
were notably higher than those over the South Yellow Sea (sYS, 16.1£11.9 ng/m?). Surrounded by the continent, the nYBS
region was under more severe impacts of transported anthropogenic pollutants compared with the relatively open sYS. This is
also indicated by the variation of EC concentrations in atmospheric aerosols over nYBS and sYS areas (Fig. S6). Marine
emissions dominated the biogenic OSs formation over the YBS in summer. However, we cannot exclude the potential influence
of transported continental air masses, especially over the nYBS. This could be a reason for the higher OSs concentrations over

the nYBS than those over the sYS.

Summer Autumn Spring

nYBS sYS nYBS sYS nYBS sYS

100 4

OS Conc. ratios over nYBS/over sYS

C,-C, OSs
C,-C, 0Ss
C,-C, 0Ss

Isoprene-OSs
Isoprene-NOSs
Monoterpene-OSs
Monoterpene-NOSs
Isoprene-OSs
Isoprene-NOSs
Monoterpene-OSs
Monoterpene-NOSs
Isoprene-OSs
Isoprene-NOSs
Monoterpene-OSs
Monoterpene-NOSs

Figure 5. Concentration ratios of atmospheric OSs over the nYBS versus those over the sYS. The pie charts show the relative

contribution of OSs compound groups over the nYBS and the sYS during each season.

The concentration levels and compositions of OSs in atmospheric aerosols over the nYBS and the sYS are compared in Fig.
5. Among the quantified OSs derived from different VOCs precursors, monoterpene-NOSs displayed the most obvious
enhancement ratios over the nYBS compared to those over the sYS (Fig. 5). During the summer cruise, monoterpene-NOSs
over the nYBS elevated to nearly two orders of magnitude higher than those over the sYS. The mass contributions of
monoterpene-NOSs among the total OSs over nYBS were higher than those over the sYS, as shown in the pie charts of Fig. 5.
Monoterpene-NOSs are usually formed via the interactions between anthropogenic NOy, sulfate, and monoterpenes (Bryant et

al., 2021, 2023; Wang et al., 2018). A recent study also suggested monoterpenes could be generated by biomass burning,
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besides the biogenic emissions (Wang et al., 2022a). The spatial difference of monoterpene-NOSs further indicated the more
severe influence of anthropogenic pollutants over the nYBS.

The OSs abundance displayed the most obvious enhancement over the nYBS in the summer samples, in which the
concentrations of C,—C3; OSs and isoprene-OSs/NOSs over the nYBS elevated to 2.4 and 3.9 times of those over the sYS. The
biogenic emissions from marine phytoplankton were more abundant in summer than in the other seasons. Transported
anthropogenic pollutants over the nYBS would promote the formation of biogenic OSs via anthropogenic-biogenic interactions
in marine atmospheres. Previous observation has suggested that the formation of biogenic SOA, including isoprene OSs, could
be obviously mediated by anthropogenic sulfate and NOy in regions with substantial anthropogenic-biogenic interactions (Xu
etal., 2015). We noted that isoprene-OSs were not observed in remote marine aerosols over the Southern Ocean or the southern
Indian Ocean, where the influence of transported anthropogenic pollutants was likely limited (Claeys et al., 2010; Cui et al.,
2019). Our results suggested the universal existence of biogenic OSs in marine aerosols over regions with anthropogenic-
marine interactions. Further observation evidences are needed to understand the presence of OSs in different marine

environments.

3.5 Origins and influence factors of atmospheric OSs

Principal Component Analysis (PCA) was performed using 26 aerosol samples to further understand the sources of
atmospheric OSs over the YBS (Fig. 6, Table S3). A total of 18 particulate components, including OSs, water-soluble ions, EC,
and MSA, were chosen to carry out the statistics. Three factors could explain 83% of the measurements. Majority of the OSs
and NOSs compounds showed high loadings in Factor 1, which explained 52% of the measurements. Characterized by high
loadings of nss-sulfate, Cl-, and low loadings of anthropogenic species (e.g., EC, nss-K*), Factor 1 represented the sulfate-
catalyzed reactions with VOCs dominated by marine emissions. Factor 2 shows high loadings of EC, nss-K*, and NOs,
suggesting the transported anthropogenic origins dominated by combustion emissions, which explained 21% of the
measurements (Table S3). Factor 3, dominated by MSA, EC, and sea salts, was a mixed source of marine-anthropogenic
interaction, which explained 10% of the variance (Table S3). In this work, each aerosol sample was collected for 10-24 h, and
the time-averaged aerosol component concentrations were used for the PCA analysis. The PCA factors reflected the overall
variations of the atmospheric OSs sources across seasons over the YBS. The diurnal patterns of atmospheric OSs or their
variation during some short-term episodes cannot be captured based on the filter-based analysis in this study. For example, the
diurnal variations of marine boundary layer heights or atmospheric oxidation conditions may influence the OSs concentrations
or formation pathways. Marine aerosol sampling and analysis with high time resolution are needed to gain insight into the day-

night variations of OSs in marine aerosols in the future studies.
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Figure 6. PCA statistics of the measured OSs and NOSs during the cruise observations. PC1, PC2, and PC3 represent the
source of sulfate-catalyzed reactions with biogenic VOCs, transported anthropogenic origin, and a mixed source of marine-

anthropogenic interaction, respectively.

The majority of quantified OSs compounds, especially the isoprene-derived ones (IEPOX-OS, MAE-OS, CsH;07S™, isoprene-
NOS, GAS, and HAS), were dominated by the source of sulfate-catalyzed reactions with biogenic VOCs (Factor 1), as
displayed in Fig. 6 and Table S3. The homogeneous origin of C,—C3; OSs and isoprene-OSs/NOSs from the oxidation of
isoprene has been approved in this work and previous observations(Surratt et al., 2008; Riva et al., 2016). This source factor
was more related to the marine emissions, rather than anthropogenic pollutants, indicated by the low loadings of anthropogenic
EC or nss-K*. Isoprene could be largely emitted by phytoplankton and from photochemical processes in surface seawater, and
then released into marine atmospheres (Briiggemann et al., 2018; Cui et al., 2023). The reactive uptake of isoprene by sulfate
aerosols could be a vital reaction pathway for OSs formation in marine aerosols (Wang et al., 2023b). OSs concentrations
elevated with increasing air temperature in summer and increasing wind speed in spring (Fig. 7). Higher temperature or wind

speed would promote the sea-to-air exchange of isoprene and favored the OSs formation in marine atmospheres.
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Figure 7. Variations of OSs concentrations as a function of chlorophyll-a (Chl-a) in (a) summer, (b) autumn, and (c) spring.

The markers are colored by air temperature, EC, and wind speed, respectively.

The loadings of monoterpene-OSs/NOSs in anthropogenic-related sources (Factor 2 and Factor 3) cannot be neglected, which
was different from the main source of isoprene OSs from marine-dominated sulfate-biogenic VOCs interaction (Factor 1).
Lactic acid sulfate over the YBS showed comparable loadings in the transported anthropogenic origin (Factor 2, 0.70) and the
marine-dominated sulfate-biogenic VOCs interaction source (Factor 1, 0.59). The loadings of LAS in the mixed source of
marine-anthropogenic interaction (Factor 3) were higher than other identified OSs species (Fig. 6). A relatively high loading
of GAS (0.48) was also observed in Factor 2 (Table S3). The PCA result provided observational evidence on the additional
sources of monoterpene-OSs/NOSs and C,—C; OSs from transported anthropogenic pollutants over marginal seas. During the
autumn cruise, higher OSs concentration levels were observed when higher EC concentrations occurred, which also indicated
the additional contribution of OSs by anthropogenic sources (Fig. 7b).

This work quantified and characterized the atmospheric OSs derived from isoprene and monoterpenes over the Asia marginal
seas. The chemical nature and distribution of OSs were modified by the joint influence of oceanic biological emissions and
transported continental pollutants. The results highlight the abundant formation of airborne OSs in summer, which is promoted
by the elevated biogenic VOCs emissions from the surface ocean. During high biological activity periods, atmospheric OSs
levels could surpass the MSA concentrations in marine aerosols, which is a vital species in the well-known climate regulation
via oceanic phytoplankton sulphur emissions (CLAW hypothesis). In the future studies, isoprene-derived OSs are suggested
to be included as the molecular tracers of marine SOA related to phytoplankton emissions, especially during summer or over
oceanic regions with high phytoplankton activities and high SST. Shipboard observations over open ocean areas are needed to
gain further understanding on the roles of OSs in modifying the sulfur cycle, biogenic VOCs oxidation and regulating climate

in marine boundary layer.
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