Supplement of "Methane fluxes from arctic & boreal North America: Comparisons between process-based estimates and atmospheric observations"

Hanyu Liu¹, Felix R. Vogel⁵, Misa Ishizawa ⁵, Zhen Zhang⁴, Benjamin Poulter⁷, Doug E.J. Worthy⁵, Leyang Feng¹, Anna Laure Gagné-Landmann³, Ao Chen¹, Ziting Huang¹, Dylan C. Gaeta¹, Joe R. Melton⁶, Douglas Chan⁵, Vineet Yadav², Deborah Huntzinger³, Scot M. Miller¹

¹Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
³School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
⁴Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
⁵Environment and Climate Change Canada, Toronto, ON, Canada
⁶Environment and Climate Change Canada, Victoria, BC, Canada
⁷National Aeronautics and Space Administration, Greenbelt, MD, USA

Hanyu Liu et al. Correspondence to: Hanyu Liu (hliu154@jhu.edu)

Contents of this file

- 1. Tables S1 to S5
- 2. Figures S1 to S5

Details on the in situ tower sites

Tower Site	ID	Lat	Long	Elevation (masl)	Intake Height (magl)
Abbotsford	ABT	$49.0^{\circ}\mathrm{N}$	$122.3^{\circ}\mathrm{W}$	60	33
Bratt's Lake	BRA	$50.2^{\circ}\mathrm{N}$	$104.7^{\circ}\mathrm{W}$	595	35
Barrow Atmospheric					
Baseline Observatory	BRW	$71.3^{\circ}\mathrm{N}$	$156.6^{\circ}\mathrm{W}$	11	16
Behchoko	BCK	$62.8^{\circ}\mathrm{N}$	$115.9^{\circ}\mathrm{W}$	160	60
Cambridge Bay	CBY	$69.1^{\circ}\mathrm{N}$	$105.1^{\circ}\mathrm{W}$	35	12
Churchill	CHL	58.7°N	$93.8^{\circ}\mathrm{W}$	29	60
CARVE	CRV	$65.0^{\circ}\mathrm{N}$	$147.6^{\circ}\mathrm{W}$	611	32
Chapais	CPS	49.8°N	$75.0^{\circ}\mathrm{W}$	391	40
Egbert	EGB	$44.2^{\circ}\mathrm{N}$	$79.8^{\circ}\mathrm{W}$	251	25
Estevan Point	ESP	$49.4^{\circ}\mathrm{N}$	$126.5^{\circ}\mathrm{W}$	7	40
Esther	EST	$51.7^{\circ}\mathrm{N}$	$110.2^{\circ}\mathrm{W}$	707	50
East Trout Lake	ETL	$54.4^{\circ}\mathrm{N}$	$104.9^{\circ}\mathrm{W}$	493	105
Fort Nelson	FNE	$58.8^{\circ}\mathrm{N}$	$122.6^{\circ}\mathrm{W}$	361	15
Fraserdale	FSD	$49.9^{\circ}\mathrm{N}$	$81.6^{\circ}\mathrm{W}$	210	40
Hanlan's Point	HNP	$43.6^{\circ}\mathrm{N}$	$79.4^{\circ}\mathrm{W}$	87	10
Inuvik	INU	$68.3^{\circ}\mathrm{N}$	$133.5^{\circ}\mathrm{W}$	113	10
Park Falls	LEF	$45.9^{\circ}\mathrm{N}$	$90.3^{\circ}\mathrm{W}$	472	396
Lac La Biche	LLB	$55.0^{\circ}\mathrm{N}$	$112.5^{\circ}\mathrm{W}$	540	50
Toronto Atmospheric Observatory	TAO	$43.7^{\circ}\mathrm{N}$	$79.4^{\circ}\mathrm{W}$	100	174
Turkey Point	TPD	$42.6^{\circ}\mathrm{N}$	$80.6^{\circ}\mathrm{W}$	231	35
Sable Island	WSA	$43.9^{\circ}\mathrm{N}$	$60.0^{\circ}\mathrm{W}$	5	25

Table S1. Summary of 21 in-situ tall tower sites across Canada and the US, detailing their names, site codes, longitudes, latitudes, elevation (Surface elevation in meters above sea level), and intake height (Sample intake height in meters above ground level (magl)). Note that the abbreviation "CARVE" is short for 'Carbon in Arctic Reservoirs Vulnerability Experiment.'

Details on the GCP models

Model	Spatial Resolution (Rows \times Columns)	References
$\mathrm{CH_{4}MOD_{wetland}}$	$360 \ge 720$	Li et al., 2010
CLASSIC	53×128	Arora et al., 2018
DLEM	360×720	Tian et al., 2010
ELM-ECA	360×720	Zhu et al., 2019
ISAM	360×720	Shu et al., 2020
JSBACH	96×192	Kleinen et al., 2020
JULES	360×720	Clark et al., 2011
LPJ-GUESS	360×720	McGuire et al., 2012; Wania et al., 2010
LPJ-MPI	360×720	Kleinen et al., 2012
LPJ-wsl	360×720	Zhang et al., 2016
LPX-Bern	360×720	Spahni et al., 2011
ORCHIDEE	180×360	Ringeval et al., 2010
SDGVM	360×720	Singarayer et al., 2011
TEM-MDM	360×720	Liu et al., 2020
TRIPLEX-GHG	582×1440	Zhu et al., 2014
VISIT	360×720	Ito and Inatomi, 2012

Table S2. The 16 GCP global wetland flux models that we use in the study, including the number of global latitude and longitude grid cells in each model.

Details on the wetland to anthropogenic ratios at each in-situ tower site

Tower Site ID	Biome Type	Wetland to Anthropogenic Ratios	
ABT	Temperate Forests	1.06	
BRA	Temperate Grasslands	0.26	
BRW	Tundra	0.85	
BCK	Boreal Forests/Taiga	8.79	
CBY	${f Tundra}$	7.56	
CHL	Boreal Forests/Taiga	14.00	
CRV	${f Tundra}$	5.09	
CPS	Boreal Forests/Taiga	2.51	
EGB	Temperate Forests	0.52	
ESP	Temperate Forests	3.57	
EST	Temperate Grasslands	0.34	
\mathbf{ETL}	Boreal Forests/Taiga	1.31	
FNE	Boreal Forests/Taiga	1.43	
FSD	Boreal Forests/Taiga	3.93	
HNP	Temperate Forests	0.18	
INU	Boreal Forests/Taiga	$\boldsymbol{9.17}$	
LEF	Temperate Forests	0.78	
LLB	Temperate Grasslands	0.62	
TAO	Temperate Forests	0.21	
TPD	Temperate Forests	0.31	
WSA	Temperate Forests	1.07	

Table S3. The 21 in-situ tall tower sites with biome types and wetland to anthropogenic ratios. The ratios represent averages computed from prognostic and diagnostic model outputs, calculated as the modeled CAMS-derived CH₄ mixing ratios divided by the modeled mixing rations using the GCP models. In this study, we define sites with ratios greater than 1.5 as wetland-dominated; however, we also include ETL and FNE because their ratios (1.31 and 1.43) are close to this 1.5 threshold. The sites in bold are the wetland-dominated sites used in our analysis, and we exclude other sites because they are more influenced by anthropogenic emissions.

Detailed Groupings of Prognostic GCP Models Based on Their \mathbb{R}^2 Values

GCP Wetland Models	R^2 Values	Group
VISIT	0.5	High
CLASSIC	0.47	High
LPJ-wsl	0.46	High
LPJ-MPI	0.42	High
SDGVM	0.41	High
JSBACH	0.35	Average
LPX-Bern	0.34	Average
ORCHIDEE	0.32	Average
JULES	0.22	Low
ISAM	0.22	Low
ELM	0.21	Low

Table S4. Detailed groupings of Prognostic GCP models based on their R^2 values. The table presents each GCP wetland model alongside its R^2 value and assigned group (High, Average, or Low) as determined by the performance criteria (High > 0.4; Average > 0.3; Low > 0.2).

Detailed Groupings of Diagnostic GCP Models Based on Their \mathbb{R}^2 Values

GCP Wetland Models	R^2 Values	Group
LPJ-wsl	0.53	High
VISIT	0.5	High
LPJ-MPI	0.43	High
ISAM	0.42	High
CLASSIC	0.40	Average
JSBACH	0.39	Average
JULES	0.39	Average
SDGVM	0.37	Average
ORCHIDEE	0.34	Average
LPX-Bern	0.27	Low
ELM	0.22	Low

Table S5. Detailed groupings of Diagnostic GCP models based on their R^2 values. The table presents each GCP wetland model alongside its R^2 value and assigned group (High, Average, or Low) as determined by the performance criteria (High > 0.4; Average > 0.3; Low > 0.2).

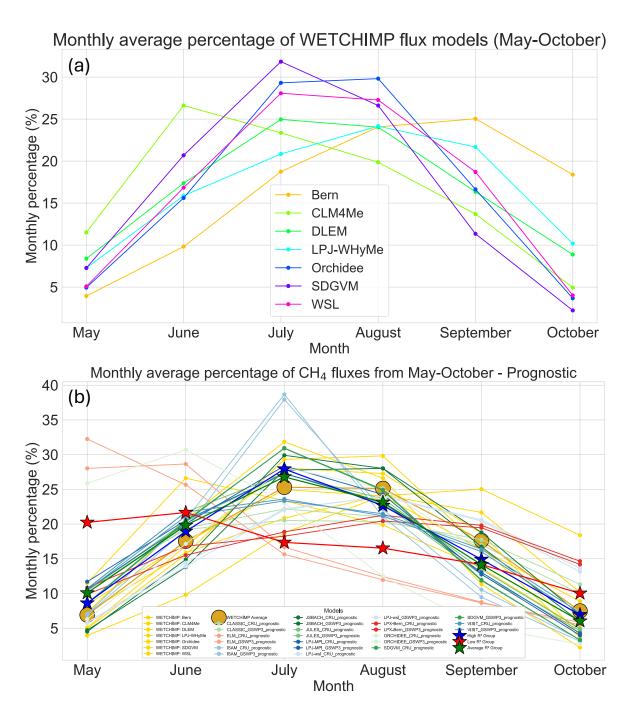
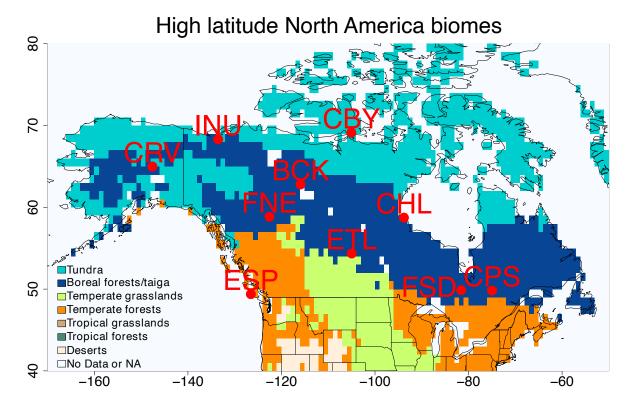
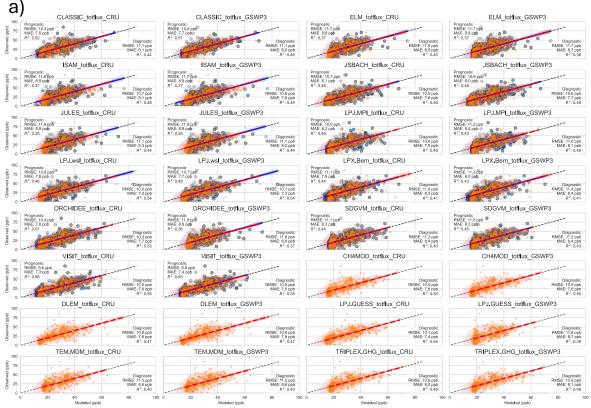
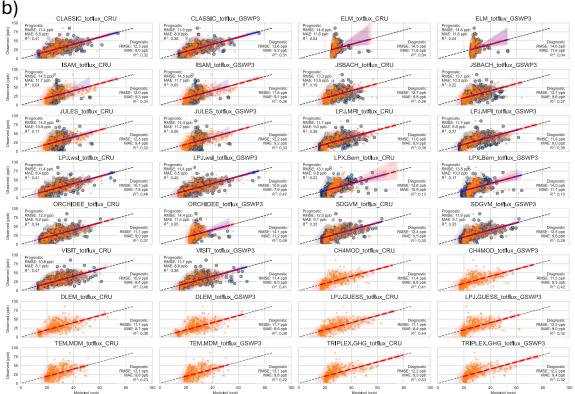


Figure S1. The seasonal cycles of the WETCHIMP models (a) and a comparison with the GCP models (b). In panel a, each colored line represents the percentage of fluxes that occurred in a specific model in that month compared to the total fluxes from that model for the months of May through October. Panel b displays the same quantity but also includes the GCP models. Each model is color-coded blue, green, or red lines to represent the GCP models that have the highest, average, and low R^2 values, respectively, in the comparisons with atmospheric CH_4 observations. The yellow lines in this panel represent the WETCHIMP models.


Figure S2. Biome map of high-latitude North America highlighting the three out of seven biome types examined in this study: Tundra and Boreal Forests/Taiga, and Temperate Forests. Red dots indicate wetland-dominated measurement sites, comprising a total of ten locations—nine across Canada and one in Alaska. Six sites (FNE, BCK, CHL, ETL, FSD, CPS) are located within the Boreal Forests/Taiga biome, three sites (CRV, INU, CBY) are within the Tundra biome, and one site (ESP) is located in the Temperate Forests biome. The biome map comes from the "Terrestrial Ecoregions of the World" product created by World Wildlife Fund (Olson et al., 2001).

Correlation Coefficients

CH₄ comparison at wetland-dominated sites: observed vs modeled (GCP) using CarbonTracker

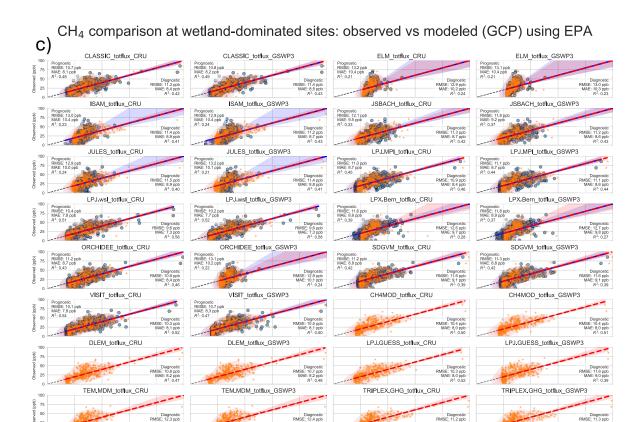
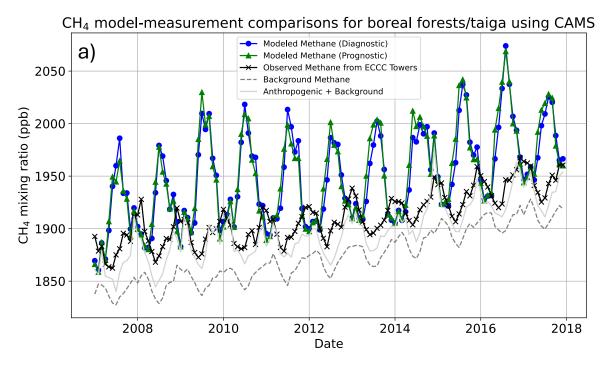



Figure S3. The correlation coefficients and R^2 values between the observed CH₄ increments and the predicted values derived from the GCP models using a multiple linear regression approach. The regression results are shown in panel (a) using CAMS as the anthropogenic flux product. In panel (b), we use the CarbonTracker anthropogenic flux product. And in panel (c), we use the combination of the gridded U.S. EPA CH₄ inventory and Scarpelli's anthropogenic CH₄ flux products covering the regions of Canada and Alaska (Maasakkers et al., 2023; Scarpelli et al., 2021). The blue dots represent the regression results using the prognostic GCP models, and the orange dots represent the regression results using the diagnostic models. The black line in each panel is a 1:1 line, and the colored lines show estimated regression lines. The shaded colors represent the 95% confidence intervals of the regression lines.

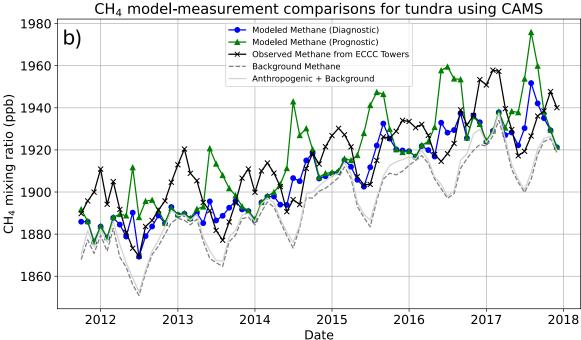


Figure S4. A time series of the mean modeled CH₄ mixing ratios using the STILT model with anthropogenic fluxes from CAMS and wetland fluxes set at the mean of the GCP ensemble across different biomes at ten wetland dominated sites between 2007 and 2017. The two panels correspond to: a) Boreal Forests and Taiga and b) Tundra. The dashed gray line represents the boundary conditions, while the solid gray line shows the sum of the boundary conditions and modeled anthropogenic mixing ratios using CAMS. The green line indicates the total modeled mixing ratios from prognostic models, and the blue line represents those from diagnostic models.

Annual CH₄ flux total using the WETCHIMP models

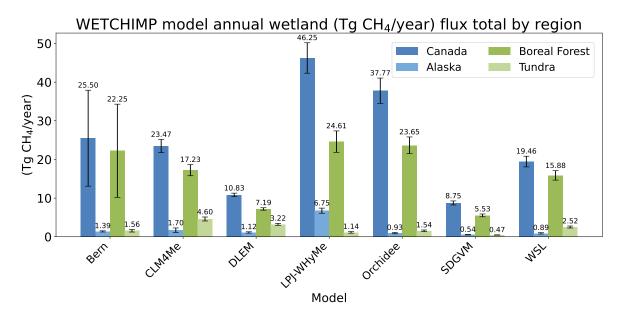


Figure S5. Averaged annual CH_4 flux totals by region and biome type using the WETCHIMP models, averaged across years 1993-2004. There are seven total models included (shown on the x-axis), and the y-axis represents the total annual fluxes in $Tg \ CH_4$ per year. The uncertainty bars represent the standard deviations of the annual CH_4 flux totals across different years.

References

- Arora, V. K., Melton, J. R., & Plummer, D. (2018). An assessment of natural methane fluxes simulated by the CLASS-CTEM model. *Biogeosciences*, 15(15), 4683–4709. https://doi.org/10.5194/bg-15-4683-2018
- Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., & Cox, P. M. (2011). The Joint UK Land Environment Simulator (JULES), model description Part 2: Carbon fluxes and vegetation dynamics. *Geoscientific Model Development*, 4(3), 701–722. https://doi.org/10.5194/gmd-4-701-2011
- Ito, A., & Inatomi, M. (2012). Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. *Biogeosciences*, 9(2), 759–773.
- Kleinen, T., Brovkin, V., & Schuldt, R. J. (2012). A dynamic model of wetland extent and peat accumulation: results for the Holocene. *Biogeosciences*, 9(1), 235–248. https://doi.org/10.5194/bg-9-235-2012
- Kleinen, T., Mikolajewicz, U., & Brovkin, V. (2020). Terrestrial methane emissions from the Last Glacial Maximum to the preindustrial period. *Climate of the Past*, 16(2), 575–595. https://doi.org/10.5194/cp-16-575-2020
- Li, T., Huang, Y., Zhang, W., & Song, C. (2010). CH4MODwetland: A biogeophysical model for simulating methane emissions from natural wetlands. *Ecological Modelling*, 221(4), 666–680. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2009.05.017
- Liu, L., Zhuang, Q., Oh, Y., Shurpali, N. J., Kim, S., & Poulter, B. (2020). Uncertainty Quantification of Global Net Methane Emissions From Terrestrial Ecosystems Using a Mechanistically Based Biogeochemistry Model [e2019JG005428 2019JG005428]. Journal of Geophysical Research: Biogeosciences, 125(6), e2019JG005428. https://doi.org/https://doi.org/10.1029/2019JG005428
- Maasakkers, J. D., McDuffie, E. E., Sulprizio, M. P., Chen, C., Schultz, M., Brunelle, L., Thrush, R., Steller, J., Sherry, C., Jacob, D. J., Jeong, S., Irving, B., & Weitz, M. (2023). A Gridded Inventory of Annual 2012–2018 U.S. Anthropogenic Methane Emissions [PMID: 37857355]. Environmental Science & Technology, 57(43), 16276–16288. https://doi.org/10.1021/acs.est. 3c05138
- McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin, P., Williams, M., & Yi, Y. (2012). An assessment of the carbon balance of arctic tundra: Comparisons among observations, process models, and atmospheric inversions. *Biogeosciences*, 9(8), 3185–3204. https://doi.org/10.5194/bg-9-3185-2012
- Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. (2001). Terrestrial ecoregions of the world: A new map of life on earth. *BioScience*, 51(11), 933–938.
- Ringeval, B., de Noblet-Ducoudré, N., Ciais, P., Bousquet, P., Prigent, C., Papa, F., & Rossow, W. B. (2010). An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales. *Global Biogeochemical Cycles*, 24(2). https://doi.org/https://doi.org/10.1029/2008GB003354
- Scarpelli, T., Jacob, D., Moran, M., Reuland, F., & Gordon, D. (2021). Gridded inventory of Canada's anthropogenic methane emissions for 2018. https://doi.org/10.7910/DVN/CC3KLO
- Shu, S., Jain, A. K., & Kheshgi, H. S. (2020). Investigating wetland and nonwetland soil methane emissions and sinks across the contiguous united states using a land surface model [e2019GB006251 2019GB006251]. Global Biogeochemical Cycles, 34 (7), e2019GB006251. https://doi.org/https://doi.org/10.1029/2019GB006251
- Singarayer, J. S., Valdes, P. J., Friedlingstein, P., Nelson, S., & Beerling, D. J. (2011). Late holocene methane rise caused by orbitally controlled increase in tropical sources. *Nature*, 470 (7332), 82–85. https://doi.org/10.1038/nature09739
- Spahni, R., Wania, R., Neef, L., van Weele, M., Pison, I., Bousquet, P., Frankenberg, C., Foster, P. N., Joos, F., Prentice, I. C., & van Velthoven, P. (2011). Constraining global methane emissions and uptake by ecosystems. *Biogeosciences*, 8(6), 1643–1665. https://doi.org/10.5194/bg-8-1643-2011

- Tian, H., Xu, X., Liu, M., Ren, W., Zhang, C., Chen, G., & Lu, C. (2010). Spatial and temporal patterns of CH₄ and N₂O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model. Biogeosciences, 7(9), 2673–2694. https://doi.org/10.5194/bg-7-2673-2010
- Wania, R., Ross, I., & Prentice, I. C. (2010). Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1. Geoscientific Model Development, 3(2), 565–584. https://doi.org/10.5194/gmd-3-565-2010
- Zhang, Z., Zimmermann, N. E., Kaplan, J. O., & Poulter, B. (2016). Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. *Biogeosciences*, 13(5), 1387–1408. https://doi.org/10.5194/bg-13-1387-2016
- Zhu, Q., Liu, J., Peng, C., Chen, H., Fang, X., Jiang, H., Yang, G., Zhu, D., Wang, W., & Zhou, X. (2014). Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model. *Geoscientific Model Development*, 7(3), 981–999.
- Zhu, Q., Riley, W. J., Tang, J., Collier, N., Hoffman, F. M., Yang, X., & Bisht, G. (2019). Representing Nitrogen, Phosphorus, and Carbon Interactions in the E3SM Land Model: Development and Global Benchmarking. *Journal of Advances in Modeling Earth Systems*, 11(7), 2238–2258. https://doi.org/https://doi.org/10.1029/2018MS001571