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Abstract. Methane (CH,) flux estimates from high-latitude North American wetlands remain highly uncertain in magnitude,
seasonality, and spatial distribution. In this study, we evaluate a decade (2007 — 2017) of CH4 flux estimates by comparing
16 process-based models with atmospheric CH4 observations collected from in situ towers. We compare the Global Carbon
Project (GCP) process-based models with a model inter-comparison from a decade earlier called The Wetland and Wetland
CH,4 Intercomparison of Models Project (WETCHIMP). Our analysis reveals that the GCP models have a much smaller inter-
model uncertainty and have an average magnitude that is a factor of 1.5 smaller across Canada and Alaska. However, current
GCP models likely overestimate wetland fluxes by a factor of two or more across Canada and Alaska based on tower-based
atmospheric CHy4 observations. The differences in flux magnitudes among GCP models are more likely driven by uncertainties
in the amount of soil carbon or spatial extent of inundation than in temperature relationships, such as Q¢ factors. The GCP
models do not agree on the timing and amplitude of the seasonal cycle, and we find that models with a seasonal peak in July
and August show the best agreement with atmospheric observations. Models that exhibit the best fit to atmospheric observation
also have a similar spatial distribution; these models concentrate fluxes near Canada’s Hudson Bay Lowlands. Current, state-
of-the-art process-based models are much more consistent with atmospheric observations than models from a decade ago, but

our analysis shows that there are still numerous opportunities for improvement.
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1 Introduction

Natural sources of CH, contribute ~40% of total global fluxes, and wetlands are possibly the largest single source (e.g.,
Kirschke et al., 2013; Saunois et al., 2025). Understanding the magnitude, seasonality, and spatial distribution of wetland CH4
fluxes is important to accurately predicting future carbon-climate feedbacks. However, the response of wetland CH,4 fluxes to
temperature changes is uncertain (e.g., Zhang et al., 2023, 2017), especially in high-latitude regions where warming occurs 2-4
times faster than the global average (e.g., Rantanen et al., 2022).

At least some of this uncertainty is related to uncertain permafrost dynamics. Permafrost covers approximately ~15% of the
land in the Northern Hemisphere (Obu, 2021), and it serves as a massive reservoir for carbon. Globally, permafrost regions store
about 1,000 to 1,672 peta-grams (Pg) of soil organic carbon (SOC), nearly twice the total amount of carbon in the atmosphere
(Schuur et al., 2015; Hugelius et al., 2014; van Huissteden and Dolman, 2012). As permafrost thaws, it changes the soil
environment and triggers microbial decomposition of the stored organic matter. When the soil is wet, microbial decomposition
in permafrost leads to the release of CH4 through the process of anaerobic respiration. One study indicates that wetland CHy
fluxes can be large enough to flip some high latitude regions from a net carbon sink to a net source (Watts et al., 2023).

To understand high-latitude wetland CH4 fluxes and better predict future warming, process-based (bottom-up) models are
important as they can be used to estimate current wetland CH4 fluxes and project future CHy fluxes from regional to global
scales, leveraging current scientific knowledge of different biogeochemical processes (e.g., Saunois et al., 2025; Nzotungicim-
paye et al., 2021; Melton et al., 2013; Zhang et al., 2017). Despite their importance, the CH4 flux estimates from bottom-up
models can have large discrepancies and uncertainties. For example, bottom-up estimates show that total global wetland fluxes
range from 100 to 256 Tg CHy yr‘1 (Xiao et al., 2024; Zhang et al., 2025; Saunois et al., 2025; Liu et al., 2020). In boreal
North America, process-based models also estimate wetland CH, fluxes ranging from 13.8 to 39.6 Tg CH4 per year (Poulter
etal., 2017). In addition, a recent study suggests an increase of 50 to 150% in global wetland CH,4 fluxes by 2100, a large range
of numbers which points to large uncertainties in current projections (Koffi et al., 2020). Model inter-comparison projects like
the Wetland and Wetland CH, Intercomparison of Models Project (WETCHIMP) have been used to compare the state-of-the-
art wetland CH,4 flux models across different regions of the globe (Melton et al., 2013; Wania et al., 2013; Bohn et al., 2015).
In more recent years, the Global Carbon Project (GCP) has been created to synthesize scientific knowledge of the global car-
bon cycle, and this effort includes a large ensemble of the latest process-based CHy flux models (Poulter et al., 2017; Zhang
et al., 2025). There is limited knowledge on how these models have improved or evolved over time compared to the earlier
WETCHIMP inter-comparison. Fortunately, projects like WETCHIMP and GCP make it easier to identify improvements and
diagnose uncertainties in wetland flux models because all modeling groups use similar modeling protocols, meteorological
inputs, and, in some cases, common inundation or wetland maps. By harmonizing inputs across models, we eliminate input-
driven variability due to different climate forcing data, and the remaining model spread therefore primarily reflects differences
in process representations and parameterizations.

Numerous studies have also used atmospheric CHy to quantify CH, fluxes from high-latitude wetlands across North Amer-

ica. Early studies used a sparse network of tower observations in Canada and Alaska to quantify the magnitude, seasonality, and
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spatial distribution of wetland fluxes (e.g., Worthy et al., 1998; Pickett-Heaps et al., 2011; Miller et al., 2014, 2016a; Karion
et al., 2016; Ishizawa et al., 2019). These tower-based studies provide a range of flux estimates from 14.8 to 19.5 Tg CH, per
year for Canada and 1.56 to 3.4 Tg CH, per year for the Hudson Bay Lowlands (HBL), a prominent wetland region in northern
Canada (e.g., Ishizawa et al., 2024; Miller et al., 2014; Pickett-Heaps et al., 2011; Thompson et al., 2017). Existing studies
using tower-based observations have also commented on inter-annual variability, though these studies disagree on whether
high-latitude fluxes have detectable year-to-year variability or a multi-year trend (Ishizawa et al., 2019; Sweeney et al., 2016;
Thompson et al., 2017; Ward et al., 2024). Sweeney et al. (2016) argues that there is no multi-decadal trend in CH, fluxes
using observations from Utqiagvik, Alaska, while inverse modeling studies by Thompson et al. (2017), Ishizawa et al. (2019),
and Ishizawa et al. (2024) identify inter-annual variability in wetland fluxes across high-latitude North America.

NASA scientists began collecting intensive aircraft-based greenhouse gas observations across Alaska in 2012, providing a
complement to the long-term tower-based network, and these aircraft campaigns have led to numerous studies on CH, fluxes
from that state. The authors of these studies quantify the magnitude and spatial distribution of fluxes using inverse modeling
(Chang et al., 2014; Miller et al., 2016b; Hartery et al., 2018; Sweeney et al., 2022). These estimates range from 1.48 to 2.6 Tg
CHy4 per year, a number similar to CHy flux totals from Canada’s Hudson Bay Lowlands (Miller et al., 2016b; Hartery et al.,
2018; Chang et al., 2014; Sweeney et al., 2022). By contrast, the WETCHIMP process-based models span a much wider range
from 0.65 to 6.0 Tg CH,4 per year, a nearly nine-fold spread.

Several studies also leverage aircraft observations to conduct a detailed evaluation of flux processes and of numerous process-
based models, mostly from the WETCHIMP inter-comparison (Miller et al., 2016b; Hartery et al., 2018). For example, these
inverse modeling estimates indicate that tundra ecosystems contribute a disproportionate share of Alaskan CH4 fluxes (often
> 50% of total Alaskan CH, fluxes despite their smaller areal extents). The North Slope alone accounts for ~ 24% of the total
statewide CHy fluxes, which is ~ 20% higher than the estimates of process-based models (Miller et al., 2016b; Hartery et al.,
2018). Collectively, these aircraft-based studies demonstrate that process-based flux estimates not only diverge substantially
from one another, but also from atmospheric constraints. The main driver of this divergence is how models represent wetland
extent and water table dynamics, and these factors have a salient influence on the magnitude and spatial distribution of high-
latitude wetland CH, fluxes estimated by process-based models (Miller et al., 2016b). Hartery et al. (2018) also argue that in
wetland soils, CH4 fluxes are likely driven by near-surface soil temperature and moisture while fluxes from non-wetland soils
are more likely driven by temperature and moisture at greater depths, a difference in processes that may be key for effectively
modeling CH4 fluxes across Alaska.

Since the early 2010s, the tower-based observing network has greatly expanded across high-latitude North America, pro-
viding a new opportunity to evaluate process-based models and to suggest future opportunities for improvement. In addition,
we can now compare two different process-based model ensembles, generated over a decade apart, to assess how process-
based estimates of high-latitude wetland fluxes have evolved over time (i.e., the WETCHIMP and GCP ensembles). In this
study, we use atmospheric CH4 observations from tower sites to evaluate the GCP process-based models across high-latitude
North America. We specifically use four sets of analyses to compare atmospheric CH4 observations and the GCP wetland flux

models with a goal of suggesting future improvements to these models. For each of these analyses, we run each GCP flux
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estimate through an atmospheric transport model to simulate atmospheric CH,4, and we compare the results against available
atmospheric CH4 observations. First, we compare the GCP models across high latitudes against the WETCHIMP models and
explore how process-based flux models have evolved over the past decade. Second, we examine how the GCP models vary in
CH, flux magnitude and what potential factors might drive agreement or disagreement among the models. Third, we investi-
gate differences in seasonal cycles across models that best match atmospheric observations versus models that show seasonal
discrepancies with atmospheric observations. Lastly, we examine the spatial distribution of the CH4 fluxes estimated by the

GCP models and identify spatial patterns that appear to yield better agreement with the available atmospheric CH, data.

2 Data and methods
2.1 Atmospheric CH, Measurements

To better understand current wetland CH,4 fluxes, we compare GCP CH,4 flux estimates with 11 years of in situ tower data from
the United States and Canada, spanning 2007 to 2017. We note that several previous studies have already used intensive aircraft
campaigns to examine CH, fluxes across specific regions of Alaska and to evaluate process-based flux models in those regions
(e.g., Miller et al., 2016b; Hartery et al., 2018; Chang et al., 2014; Sweeney et al., 2022). We build upon these existing studies
by evaluating process-based models using long-term tower observation sites that are distributed cross both Canada and Alaska,
and we compare and contrast our results with previous aircraft-based studies in the Results and discussion section (Sect. 3).

We also focus on the months of May through October each year. Wetland CH, fluxes are largest during these months, and
many existing top-down studies have focused on these months for their analyses (e.g., Miller et al., 2016b; Chang et al., 2014;
Pickett-Heaps et al., 2011). By contrast, the ratio of wetland fluxes to anthropogenic CH,4 emissions is much smaller in other
months of the year across Alaska and Canada, making it more difficult to uniquely constrain wetland fluxes using atmospheric
observations. The geographic domain of this study covers the high-latitude regions of North America, ranging from 40° N to
80° N and 170° W to 50° W.

The atmospheric data used in this study come from the NOAA Observation Package (ObsPack) CH, GlobalViewPlus v5.1
dataset (Di Sarra et al., 2023). There are 21 available tower sites within the study domain, and the towers provide a combination
of continuous and flask measurements. We list a more detailed description of each tower site and its location in Table S1. In
addition, we extract afternoon averages of the observations between 1pm and 6pm local time when the boundary layer is
generally well-mixed, and we do this to reduce transport uncertainties in STILT. During this time of day, CH4 measurements
are arguably influenced by fluxes from a broader region than at night. By contrast, the atmosphere is usually stable in the
morning and at night with lower boundary layer heights, making accurate atmospheric trace gas modeling challenging. As
a result, we prioritize robust transport over full diurnal coverage, and this approach is similar to multiple existing top-down
studies (e.g., Miller et al., 2014, 2016a; Karion et al., 2016; Ishizawa et al., 2024).
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2.2 Wetland CH4 flux model ensembles: GCP and WETCHIMP

The Global Carbon Project (GCP) includes global-scale wetland CH4 flux models that use diverse hydrological and biogeo-
chemical schemes (Zhang et al., 2025). The most recent GCP model ensemble includes 16 process-based models spanning the
period from 2000 to 2020, though some models end earlier or later than 2020. A general description of these GCP models
is provided in Table S2 and in Zhang et al. (2025). Each of the these models is run in two different ways: diagnostically and
prognostically. The diagnostic runs for each model are constrained by a predefined inundation map from the product Wetland
Area and Dynamics for Methane Modeling version 2 (WAD2Mv2), while the prognostic runs estimate the inundation inter-
nally using their own hydrological schemes such as soil moisture (Zhang et al., 2021). As a result, prognostic inundation is
not observation-driven, and inter-model differences are driven by the hydrological scheme and climate forcing. Note that each
GCP modeling group did not submit variables like soil carbon, and this fact limits our ability to diagnose disagreements in
the CHy4 flux estimates from different models. More detailed descriptions of the current GCP model ensemble, including their
approaches to wetland inundation and model parametrization can be found in Zhang et al. (2025).

In this study, we evaluate the 11 prognostic and 16 diagnostic models included in the GCP ensemble. Each of these models
was run using two different meteorological reanalysis products to examine the effects of meteorological uncertainties on esti-
mated CH4 fluxes. These products include the Global Soil Wetness Project Phase 3 (GSWP3) and the Climate Research Unit
(CRU) Time-Series 4.06 (Harris et al., 2022; Lange and Biichner, 2020). A recent study shows that the differences between
these two climate-forcing datasets are negligible (Ito et al., 2023). Nevertheless, both datasets are included in this study to
provide a comprehensive evaluation.

We also evaluate process-based wetland CHy fluxes using the Wetland and Wetland CH,4 Intercomparison of Models Project
(WETCHIMP), which is designed to compare modeled monthly CH4 fluxes across the globe between 1993 and 2004 (Melton
etal., 2013; Wania et al., 2013). There are seven models available that provide CH, fluxes in the North America domain. These
models are CLM4Me (Riley et al., 2011), DLEM (Tian et al., 2010), LPJ-Bern (Spahni et al., 2011), LPJ-WHyMe (Wania
etal., 2010), LPJ-WSL (Hodson et al., 2011), ORCHIDEE (Ringeval et al., 2010), and SDGVM (Singarayer et al., 2011).

We regrid the GCP and WETCHIMP models into an uniform spatial resolution of 1° latitude by 1° longitude. This regridding
process is performed using the “remapcon” function from the Climate Data Operators (CDO) software, which conserves the

total fluxes of each model during interpolation (Schulzweida, 2023).
2.3 Anthropogenic CH, emissions

We include three distinct combinations of anthropogenic CH, flux products to highlight the variability and uncertainty in our
analysis due to anthropogenic CH4 fluxes. Bottom-up inventories such as Canada’s National Inventory Report (NIR) estimate
total anthropogenic fluxes of approximately 3.7 Tg of CHy per year (Scarpelli et al., 2021). In contrast, top-down inverse
modeling and observation-constrained studies generally infer higher national totals, on the order of 5 to 7 Tg of CH,4 per year
(e.g., Thompson et al., 2017; Lu et al., 2022; Scarpelli et al., 2021; Chan et al., 2020; MacKay et al., 2021; Ishizawa et al.,

2024). Existing bottom-up and top-down studies show particularly large discrepancies in oil and gas producing regions of
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western Canada (Ishizawa et al., 2024; Chan et al., 2020; MacKay et al., 2021; Baray et al., 2021). Collectively, the spread
among bottom-up and top-down studies highlights the large uncertainty in Canadian anthropogenic CH4 flux estimates and
underscores the importance of exploring multiple flux products in our analysis.

We use three specific anthropogenic flux products and regrid them to a spatial resolution of 1° latitude by 1° longitude for

the study domain, and we aggregate them to a monthly temporal resolution for 2007-2017:

1. CarbonTracker CH4 2023 (Oh et al., 2023): CarbonTracker is an inverse modeling system designed to estimate CHy
fluxes on a global scale (Oh et al., 2023).

2. A combination of the gridded U.S. Greenhouse Gas Inventory (Version 2) and a gridded inventory of Canada’s an-
thropogenic CHy fluxes (Monforti Ferrario et al., 2021; Maasakkers et al., 2023; Scarpelli et al., 2021): Scarpelli et al.
(2021) constructed a gridded Canadian anthropogenic flux inventory based on the Canadian National Inventory Report
(NIR), the Canadian Greenhouse Gas Reporting Program (GHGRP), and other datasets to provide a detailed sectoral
breakdown of fluxes. Similarly, Maasakkers et al. (2023) created a U.S. gridded inventory integrating data from the U.S.

Environmental Protection Agency’s (EPA) Greenhouse Gas Inventory (GHGI) to provide fluxes from different sectors.

3. The Copernicus Atmosphere Monitoring Service (CAMS) (Granier et al., 2019): CAMS is a global inverse modeling
system that provides estimates of global atmospheric CH, fluxes and atmospheric mixing ratios. This product is de-
rived from a combination of the EDGARV4.3.2 and Community Emissions Data System (CEDSv3) inventories, and the

product includes estimates of fluxes from different source sectors (Granier et al., 2019).

2.4 Atmospheric modeling

We use the WRF-STILT (The Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian Transport) to simulate
the atmospheric transport of CHy fluxes, which has been widely used in numerous studies of regional greenhouse gas fluxes
(e.g., Miller et al., 2016b; Henderson et al., 2015; McKain et al., 2015; Kort et al., 2010; Feng et al., 2023; Miller et al., 2014).
STILT is a Lagrangian particle dispersion model that simulates atmospheric transport using an ensemble of tracer particles
(Lin et al., 2003). For the setup here, the model releases those particles from each measurement site, and the particles travel
backward in time for 10 days following the wind fields in WRF meteorology. STILT uses these particle trajectories to calculate
surface influence maps or footprints for each atmospheric CH, observation (Figure 1). These footprint maps have units of
mixing ratio per unit flux (ppb per umol m~2 s~!) on a 1° by 1° grid. We can directly multiply these footprints by CH, fluxes
from the process-based models to predict atmospheric CH, mixing ratios at each tower site. The footprints used in this study
were generated as part of the NOAA CarbonTracker-Lagrange project and are available from 2007 to 2017, which defines our
study time frame (Hu et al., 2019).

Since CH,4 has an atmospheric lifetime of about 10 years, it can remain in the atmosphere and travel around the globe. To
account for the large-scale movements of CHy, we estimate CH4 boundary conditions using CH,4 observations collected over
the Pacific and Atlantic oceans, from high-altitude tower sites in the continental US, and from regular aircraft flights across

the US and Canada. We use these observations to interpolate a curtain of CH4 mixing ratios around the boundaries of the
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model domain. For each STILT simulation, we sample from this boundary condition curtain based on the ending locations of
the particle trajectories. This procedure thus accounts for CHy that enters the domain from other regions of the globe. The
approach used here is identical to that used in numerous existing regional CH, studies (e.g., Miller et al., 2013, 2014, 2016a).

We note that the STILT particle trajectories used here from CarbonTracker-Lagrange do not include atmospheric oxidation
processes. However, CHy oxidation by hydroxyl radicals likely has a small impact in our study given the short, 10-day time
frame of the regional STILT simulations used here. For example, Miller et al. (2013) argue that CH4 mixing ratios decay less
than 1 to 1.5 ppb over the first 2-3 days of STILT back trajectories given the average global-averaged lifetime of CH4 of
7-11 years. This corresponds to less than 5% of the average modeled CH, mixing ratio enhancement relative to background in
our study. The impact of OH in our study may be even smaller because OH mixing ratios are usually lower at high latitudes
compared to the continental US. In addition, our estimated boundary conditions also account for long-range CH, oxidation
processes that occur upwind of our domain.

We combine the aforementioned modeling components using the following equation to compare atmospheric CH4 observa-

tions with the STILT model predictions using the GCP flux models:

Z~H[s+A+B]+b. M

where Z represents the atmospheric observations from the in situ towers across the US and Canada (dimensions n x 1, where
n are the number of observations). H is a matrix of influence footprints assembled from the WRF-STILT model (dimensions
n X m, where m is the number of flux model grid boxes in space and time). Within the brackets, s refers to wetland CH, flux
estimates from the process-based GCP or WETCHIMP models (dimensions m x 1, Sect. 2.2), A refers to the anthropogenic
CH, fluxes estimate from one anthropogenic product (dimensions m X 1, Sect. 2.3), and B denotes biomass burning fluxes
from the Global Fire Emissions Database (GFED v4.1) (Randerson et al., 2017) (dimensions m x 1). The last variable, b,
represents the CH4 boundary condition (dimensions m x 1).

We run STILT simulations both with and without the lake and reservoir emissions from Maasakkers et al. (2016), which
contribute approximately 0.72 Tg of CHy per year in Canada from May to October. The WAD2M v2 inundation map (used
by GCP models) represents vegetated wetlands only, but small lakes and ponds could still overlap because these features are
difficult to distinguish from wetlands in satellite observations (Kyzivat and Smith, 2023). Adding a separate lake component
could therefore lead to partial double-counting of freshwater emissions and further increase the modeled CH4 mixing ratios.
Given this potential for double-counting, we present results without the additional lake term, while we acknowledge that adding
lake and reservoir emissions would further increase modeled CH,4 mixing ratios.

Note that we only include observation sites in our analysis if those sites are predominantly influenced by CH, fluxes from
wetlands. By contrast, we exclude urban sites and sites proximal to oil and gas operations. We specifically include sites where
the average ratio of modeled CH,4 from STILT using the GCP model mean to modeled CH,4 using the CAMS anthropogenic
flux product is greater than 1.3 (Sect. 2.4, sect.2.2, sect.2.3). This screening means that the wetland contributions at each

site are at least 30% higher than the likely influence of anthropogenic emissions. If we set a lower threshold, then we would
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Figure 1. The US and Canadian atmospheric CH,4 observing network from 2007-2017. The figure also shows the WRF-STILT mean 10-day

-2

footprint map in ppb / (umol m~2 s~ 1) across the study domain of 40°N to 80°N and 170°W to 50°W, and footprints are evaluated from

2007-2017. Red circle dots show in situ tall tower sites from NOAA and Environmental Canada from the ObsPack GlobalViewPlus v5.1
dataset (Di Sarra et al., 2023). The lime-colored dots represent non-wetland sites, where the wetland-to-anthropogenic CH4 concentration
ratio is less than 1.3 (using anthropogenic emissions from the CAMS product). In contrast, the red-colored dots indicate wetland-dominated

sites, where this ratio exceeds 1.3.

begin to include sites in urban and/or oil and gas producing areas. For example, the site with the next highest wetland-to-
anthropogenic ratio is Abbotsford (ABT), which is an urban site near Vancouver, British Columbia. By contrast, if we set a
higher threshold, we would exclude the East Trout Lake (ETL) tower site, which is located in a sparsely populated wetland
region of northern Saskatchewan. We focus on these sites because we aim to better quantify the contribution of wetlands to
atmospheric CHy levels while minimizing the confounding effects of anthropogenic sources, the magnitudes of which are also
uncertain. The ten sites that we include within this study are Churchill, Manitoba (CHL); Cambridge Bay, Nunavut (CBY); East
Trout Lake, Saskatchewan (ETL); Estevan Point, British Columbia (ESP); Fort Nelson, British Columbia (FNE); Fraserdale,
Ontario (FSD); Inuvik, Northwest Territories (INU); Behchoko, Northwest Territories (BCK); Chapais, Quebec (CPS); and the
Carbon in Arctic Reservoirs Vulnerability Experiment Tower, Fairbanks, Alaska (CRV) (see Table S1 for additional details).
The remaining sites that are not included in this analysis are towers in urban environments (e.g., sites in the Toronto and
Vancouver metropolitan areas); towers close to oil and gas production in Alberta, Canada, or Prudhoe Bay, Alaska; towers that
are frequently used as clean air background sites (e.g., Sable Island, Nova Scotia), and sites proximal to intensive agriculture.

These sites are indicated by the solid red circles in Fig. 1.
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3 Results and discussion

In this section, we compare the modeled CH4 mixing ratios using the GCP models to atmospheric observations. We use these
comparisons to evaluate the magnitude, seasonality, and spatial distribution of the GCP flux models over 2007 to 2017. In each

subsection, we also speculate on the possible reasons driving the agreement or disagreements that we see in our analyses.
3.1 Comparisons between the GCP and WETCHIMP models

The GCP model ensemble is an updated version of the earlier WETCHIMP inter-comparison over a decade ago (Melton et al.,
2013; Wania et al., 2013). Overall, we find that, compared to the WETCHIMP models, the GCP models have a smaller flux
magnitude with reduced inter-model spread and better inter-model agreement on the spatial distribution of fluxes within our
study domain.

We find that the CH, flux estimates from the GCP models are much smaller across most of high-latitude North America
compared to the WETCHIMP models. We calculate annual CH4 flux totals for Canada using the 11 prognostic and 16 di-
agnostic GCP models with both climate forcing datasets (GSWP3 and CRU), and the uncertainty bars in Fig. 2 represent the
standard deviation of the CH,4 flux estimates among models within the same group. The mean annual CH,4 flux total for Canada
using the 11 prognostic GCP models with CRU is 14.1947.41 Tg CHy per year, and the mean using the 16 diagnostic models
with CRU is 12.17+ 5.48 Tg CH,4 per year (Fig. 2). In contrast, the Canadian annual CHy4 flux total using all the WETCHIMP
models with CRU meteorology is a factor of more than ~1.5 higher than the prognostic and diagnostic GCP models, with flux
estimates of 21.50+15.12 Tg CHy4 per year (based on the standard deviations of models within the same group). In Alaska,
the annual CH,4 flux total estimated by the 11 prognostic GCP models with CRU is 1.31 £ 0.85 Tg CHy4 per year, whereas the
seven WETCHIMP models yield a higher value of 1.66 +2.02 Tg CH,4 per year. We notice that the annual Canadian CH, flux
total for the LPJ-WHyMe model from WETCHIMP is 46.25 £ 5.88 Tg CH,4 per year (Fig. S5). We subsequently exclude this
model and recalculate the annual CH,4 flux total using the other six WETCHIMP models, and evaluate whether or not it brings
the flux estimates similar to the GCP models. However, the annual CH,4 flux total using the other six WETCHIMP models with
CRU is 17.97+£12.59 Tg CHy4 per year, which is still about a factor of ~1.4 higher than the prognostic GCP models using
CRU meteorology.

In addition, the annual CHy4 flux totals estimated by the WETCHIMP models are a factor of ~1.3 or higher than the GCP
models in the two dominant high-latitude biomes across North America (tundra and boreal forests) (Fig. 2). Across the North
American boreal forests and tundra, the annual CH, flux totals estimated by the 11 prognostic GCP models with CRU are
10.71 £5.73 and 1.64 £ 1.31 Tg CHy4 per year, respectively. In comparison, the annual CH, flux totals estimated by the seven
WETCHIMP models in these two biomes are 16.62 +8.55 and 2.15 + 1.34 Tg CH4 per year, respectively.

We also find that the CH4 fluxes estimated by the 11 prognostic GCP models result in much lower inter-model uncertainty
compared to the seven WETCHIMP models, with smaller inter-model disagreement across Canada and southern Alaska. Here,
we define the uncertainty among models as the standard deviation across the models of the mean wetland flux CH, in May-

October. To evaluate model agreement on the spatial distribution of fluxes, we compare the inter-model uncertainty or the
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standard deviation of flux estimates for each individual model grid box of the GCP and WETCHIMP models. Since each
WETCHIMP model identifies the inundation or wetland area differently, we compare these models with the prognostic GCP
models (Melton et al., 2013). Note, however, that not all of the WETCHIMP modeling groups generated their own wetland or
inundation maps prognostically, and some, like LPJ-Bern and LPJ-WHyMe, use a constant, prescribed wetland map. In Figure
3, darker shades represent higher inter-model uncertainty across these process-based models. We observe that the GCP models
have much lighter shades across the study domain, indicating better inter-model agreement.

We further find that the WETCHIMP models generally exhibit seasonal cycles that are similar to the GCP models (Figs.
Sla and S1b). Most WETCHIMP models estimate peak CH, fluxes across Alaska and Canada in July and August, except
CLM4Me (which peaks in June) and LPX-Bern (which peaks in September). This result illustrates that the seasonal cycles
of the GCP models have not changed markedly from the WETCHIMP models. The WETCHIMP models already showed
relatively good agreement on the seasonal cycle of fluxes, but such agreement does not guarantee accuracy, and there remains
scope for improvement. Furthermore, the seasonal cycle of these model estimates is likely dependent on temperature, meaning
that it is arguably easier to model than other features that depend on more complex processes.

The overall reduction in inter-model uncertainties from WETCHIMP to GCP may relate to how the models estimate wetland
distribution. Different WETCHIMP model yield very different estimates of maximum wetland extent — from 2.7 to 36.4 x 10°
km? for the global extra-tropics (> 35°N), depending upon the model. Melton et al. (2013) explain that several WETCHIMP
models use a binary approach to identify wetland areas, where individual model grid boxes are either 100% wetland or 0%
wetland, and these models tend to have ~ 3—4 times greater wetland area compared to other models (Fig. 2 and Table 2 in
(Melton et al., 2013)). Other WETCHMIMP models were parameterized to match remote sensing estimates of wetland or open
water extent. In contrast to WETCHIMP, the GCP model ensemble also includes diagnostic experiments in which all modeling
groups used the WAD2M v2 inundation map. These efforts to create a standardized, diagnostic map of wetland extent may
have also influenced the prognostic GCP experiments, and modeling groups may have tuned or modified their setup to be more
consistent with the diagnostic model simulations. In addition, the lower magnitude of CH, fluxes estimated by the GCP models
(compared to the WETCHIMP models) is partly attributed to efforts by the GCP modeling group to reduce double-counting of
freshwater areas (e.g., lakes and ponds) in WAD2M v2 (Zhang et al., 2021).

Note that the GCP models show lower flux magnitude and reduced inter-model spread in Canada, even when using the
subset of models that are common to both WETCHIMP and GCP. For diagnostic GCP runs, the overlapping model subsets
with WETCHIMP are LPX-Bern (a newer version of LPJ-Bern), DLEM, ORCHIDEE, LPJ-wsl, SDGVM. For prognostic
GCP runs, the common models include LPX-Bern, ORCHIDEE, LPJ-wsl, and SDGVM. Using these shared models, we find
that the mean annual flux total from the WETCHIMP models is roughly 4 Tg CH4 per year higher than the matched GCP
ensemble mean, whereas in Alaska WETCHIMP is 0.11 Tg CH4 lower (Figs. S5 and S6). In addition, we also find that the
GCP ensemble exhibits lower inter-model spread in Canada and broadly similar or lower spread in Alaska (Fig. S9). As a
result, these analyses lead to the conclusion that the GCP ensemble is more tightly constrained than WETCHIMP over Canada

when the same models are compared.
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Figure 2. Annual CH4 flux totals across Canada, Alaska, and several biomes. The four bars on the left of each region or biome represent the
2 different climate forcing data (GSWP3 and CRU) and prognostic versus diagnostic types for the GCP models. The green bar shows the
mean annual CHy flux total using all WETCHIMP models, and the gray bar denotes the mean flux total excluding the LPJ-WHyMe model.
The uncertainty bars represent the standard deviation of the CH4 flux estimates among models within the same group. The unit of the annual

wetland CHy4 flux totals is Tg CHy4 per year.

The reduced inter-model spread indicates greater consistency among the current GCP model outputs relative to WETCHIMP;
however, reduced spread alone does not indicate improved accuracy. In the following sections, we compare the GCP and
WETCHIMP models with atmospheric observations to gauge whether the GCP models are indeed more skilled at capturing
CHy fluxes across high-latitude North America.

3.2 Flux magnitude

We find that even though the mean wetland CH,4 fluxes of the GCP models are about a factor of two lower than the WETCHIMP
models across northern North America, most of them are still likely an overestimate by a factor of two or more compared to
atmospheric CH4 observations (Fig. 4). Note that we exclude lake and reservoir emissions from the following results because
adding these emissions could double-count existing freshwater sources already represented in WAD2M v2 and further increase
the modeled CH4 mixing ratios relative to our current results.

We evaluate the magnitude of the GCP models by comparing modeled mixing ratios from STILT against observations at the
tower sites. Specifically, we divide modeled CH4 mixing ratios using wetland fluxes from the GCP models by the observed
increments, shown in Fig. 4. The modeled wetland CH4 mixing ratios are calculated by passing each of the GCP models
through WRF-STILT. The observed increments are calculated as the atmospheric CHy observations minus factors unrelated to
wetlands — the CH,4 boundary condition and the contributions of anthropogenic and biomass burning fluxes at the observation

sites. In Fig. 4, we compare the magnitude of the modeled wetland CH4 mixing ratios and the observed increments at each
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Figure 3. The inter-model standard deviation for each individual model grid box, calculated using the 11 prognostic GCP models (top) and

WETCHIMP models (bottom). The inter-model uncertainty is higher for the WETCHIMP models than the GCP models. All fluxes have
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wetland-dominated in situ tower site across high-latitude North America. A factor larger than one means that the mixing ratios
of modeled wetland CH,4 using the GCP models are higher than the observed increments. By contrast, the gray dashed line at
the y-axis equal to 1 indicates a perfect alignment between the modeled wetland CH4 mixing and the observed increment. The
error bars in Fig. 4 reflect the range of results when we use different anthropogenic flux estimates in the calculations (Sect.
2.3). Note that CH4MOD, DLEM, LPJ-GUESS, TEM-MDM, and TRIPLEX-GHG only have diagnostic simulations and not
prognostic simulations, and their diagnostic comparisons are represented exclusively by orange bars.

Interestingly, this result is not geographically uniform across high-latitude North America; the GCP models, when passed
through the WRF-STILT transport model, overshoot observations at towers in the boreal zone but not at towers in the Arctic
(Fig. S4). This result parallels earlier studies that use intensive aircraft campaign data from specific regions of Alaska. For
example, Miller et al. (2016b) estimate CH, fluxes over Alaska’s North Slope that exceed most process-based model estimates
but find substantially lower fluxes than the model estimates across interior boreal and subarctic southeastern Alaska. Similarly,
Hartery et al. (2018) emphasize the disproportionately large contribution of Arctic Alaska to the state’s total CH4 fluxes, though

they do not explicitly compare their results with process-based models. Global inverse models, like those included in the most

12



325

330

335

340

345

350

355

recent Global Carbon Project CH4 report, further reiterate these results; most yield lower wetland CHy fluxes across global
high latitudes compared to process-based models, including across Russia, Europe, Canada, and the US (Saunois et al., 2025).

We also note that anthropogenic CH4 fluxes pose an enormous challenge for isolating and quantifying CH, fluxes from
wetlands, even at very remote observation sites in Canada and Alaska. The vertical bars in Fig. 4 indicate uncertainties in the
results due to uncertain anthropogenic fluxes, and we observe a broad spectrum of values depending on which anthropogenic
CHy flux estimate we use. For example, modeled mixing ratios from STILT using the GCP CH4 model CLASSIC run prognos-
tically are anywhere between ~2.5 times higher than the observed increment to ~6 times higher, depending on the choice of
anthropogenic flux product. As a result, we cannot precisely constrain the optimal magnitude of wetland fluxes. These uncer-
tainties notwithstanding, our findings still suggest that wetland fluxes estimated by the 11 prognostic and 16 diagnostic models
are often higher than implied by atmospheric observations.

It is difficult to determine the specific causes that drive model disagreements over the magnitude of wetland CH, fluxes.
However, these variations are more likely influenced by factors such as soil carbon or by the simplicity/complexity of the
model structure rather than by disagreements over the effects of temperature on fluxes. We do not have a comprehensive set of
modeled environmental variables (e.g., soil carbon) to conduct a systematic examination of all sources of uncertainty. However,
the available model outputs allow us to reason through some key contributors to these uncertainties, such the relationships
between fluxes and temperature (i.e., estimated Qjo values) and the effects of using a common diagnostic inundation map
versus prognostically generated inundation.

To explore the temperature sensitivities of each GCP model, we fit a Q¢ curve for each GCP model (Figs. S12 — S13). The
Q1o parameter represents the sensitivity of wetland CH, fluxes to a 10°C increase in temperature, which provides insight into
how strongly each model responds to temperature changes. A higher Qo value indicates that the flux estimates are more prone
to change with temperature variations. Our analysis indicates a large variation in temperature sensitivity across the prognostic
and diagnostic GCP models, but there is not a strong relationship between the magnitude of wetland CH, fluxes estimated
by these models and the estimated Qo values (Figs. S12 — S13). As a result, Q¢ does not seem to be the most important
contributor driving differences in the flux magnitude of the GCP models.

We also find that uncertainties in wetland area and inundation likely contribute to but are not the primary cause of these
disagreements in flux magnitude. For example, the prognostic and diagnostic models usually yield a similar magnitude of
fluxes, despite of the fact that these different experiments do not use the same inundation estimates (Fig. 2). For Canada, the
average total flux from the prognostic models is similar to the diagnostic models — 14.19 and 12.17 Tg per year, respectively
(using GSWP3 meteorology). Similarly, the average total flux from the prognostic versus diagnostic models is nearly identical
for the boreal forest biome. In some regions, the diagnostic models show greater agreement on the total annual flux than the
prognostic models, but in other regions, the prognostic and diagnostic models show similar levels of inter-model agreement
(Fig. 2).

Interestingly, we find models with simpler flux calculations yield flux magnitudes that agree more with atmospheric observa-
tions compared to those using more complex equations. GCP models such as LPJ-wsl, SDGVM, and JULES produce smaller

flux magnitudes, and each of these models uses simple approaches to simulate CH, fluxes. For example, these models rely only

13



360

365

370

Magnitude comparison of prognostic & diagnostic GCP models with WETCHIMP (May-Oct)

Il Prognostic mean
Diagnostic mean
s WETCHIMP ensemble mean

Factor (modeled wetland CHy4 / observed increment)

ELM
ISAM
JSBACH
JULES
SDGVM
DLEM

LPJ-MPI
LPJ-wsl
LPX-Bern
CH4MOD
LPJ-GUESS
TEM-MDM

w
w
a
I
]
-4
o

TRIPLEX-GHG

Wetland CH4 models

Figure 4. Comparisons between modeled mixing ratios from STILT against observations at the tower sites. The y-axis has values range from
0 to 9, representing the ratio between the modeled wetland CH4 mixing ratios using the GCP and WETCHIMP models and the observed
increment. We define the observed increment as the difference between atmospheric CH4 observations and the sum of the boundary CH4
levels, modeled anthropogenic CH4 mixing ratios, and modeled biomass burning CH4 mixing ratios. A value of 1 on the y-axis indicates

perfect agreement between the modeled wetland CH4 mixing ratios and the observed increment.

on net fluxes without accounting for specific transport pathways (e.g., ebullition, diffusion, or plant-mediated transport) (Zhang
et al., 2025). In contrast, models such as VISIT, JSBACH, and ISAM have the largest flux magnitudes, and each of these mod-
els employs more complex equations that include multiple components of CH, fluxes, such as gross production, oxidation, and
consumption. These models also simulate explicit transport pathways like ebullition, diffusion, and plant-mediated transport,
alongside layered soil temperature schemes for temperature sensitivity (Zhang et al., 2025). Models with more complex repre-
sentations generally require additional input data to provide more accurate flux estimates. Thus, in data-sparse regions, added

process detail could potentially amplify input and parameter uncertainty and enlarge the flux spread.
3.3 Seasonality

We find that models more consistent with atmospheric observations have a distinct seasonal peak in wetland CH,4 fluxes in July
and August. In contrast, models that do not agree well with atmospheric observations have a flatter seasonal cycle.

To evaluate these differences, we compare the correlation between atmospheric CH4 observations and STILT simulations
using each of the different GCP models (Fig. 5). We specifically use this analysis to explore which GCP models better capture
the seasonal and spatial variability of CH,4 fluxes across our model domain. First, we calculate R? values for each model using
a two-predictor regression model. In each regression, the first predictor variable represents modeled CHy4 mixing ratios due to
wetlands using one of the GCP models, and the second predictor variable represents modeled CH,4 mixing ratios due to different
anthropogenic flux products plus biomass burning from GFED (Sects. 2.3 and 2.4). The regression will scale the magnitude

of the STILT model outputs to optimally match atmospheric observations. As a result, this analysis is not very sensitive to the
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Figure 5. The correlation R? between modeled CH4 mixing ratios using the process-based models and atmospheric observations. Blue dots
represent the mean R? value for prognostic models across different climate forcing data and anthropogenic products. Orange dots represent
the mean R? value for diagnostic models across different climate forcing data and anthropogenic products. The gray dot represents the mean
R? value for the WETCHIMP models across different anthropogenic products. The y-axis lists all the prognostic and diagnostic GCP models
and WETCHIMP models, and the x-axis shows the R? range for these GCP and WETCHIMP models.

absolute magnitude of the original flux estimates. Instead, the overall fit of each regression is more likely a reflection of the
seasonal and spatial patterns in the wetland, anthropogenic, and biomass burning flux estimates; GCP flux estimates with more
accurate seasonal and spatial variability will more likely yield higher correlation coefficients (R? values). Figure 5 depicts the
mean R? values for 16 GCP diagnostic wetland models and 11 GCP prognostic wetland models. Each model has a mean R?
value that is averaged from the two climate forcing data (GSWP3 and CRU) and three anthropogenic flux products. These
results highlight the large variability in R? values across different GCP models. As shown in Fig. S7, model comparisons using
Root Mean Squared Error (RMSE) are identical to those using R2, a result that further reinforces the discussion here.

Based on this analysis, we categorize each of the diagnostic and prognostic GCP models into three groups based on how
they agree with atmospheric observations. By grouping the models, we can look for common patterns that separate models
that exhibit high R? values from those that exhibit lower R? values. Models with R? values greater than 0.4 are grouped into
the high R? group (represented by blue lines in Figs. 6a and 6b), models with R? values between 0.3 and 0.4 are classified as
the average R? group (represented by green lines in Figs. 6a and 6b), and models with R? values below 0.3 are considered as
the low R? group (represented by red lines in Figs. 6a and 6b). Although these cut-offs are inherently subjective, they offer a

practical framework for grouping the models and result in a similar number of models within each group.
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Across the high and average R? groups, CHy fluxes exhibit a clear seasonal cycle, and we find that approximately 60-70%
of the total fluxes from these models during the period of May to October occur during the peak summer season (June, July,
and August). In these groups, the models capture the sharp rise and fall of the CH, fluxes, and they also show peak monthly
percentages during July and August (Figs. 6a and 6b). This pattern aligns with the results of aircraft inversion studies that
report a pronounced midsummer maximum Miller et al. (2016b); Chang et al. (2014). The low R? models display a much
flatter seasonal pattern. These models do not capture the pronounced summer peaks observed in the high and average groups,
suggesting that they may not fully capture seasonal variations in wetland fluxes.

The relationships between CH, fluxes and temperature may explain some, though not all, of the differences in seasonality
among the GCP models. In our study, diagnostic SDGVM, diagnostic LPJ-MPI, diagnostic JULES, and diagnostic ISAM are
the models that have high and average R? values (>0.35), and both have estimated Q;, values greater than three, indicating a
high sensitivity of their fluxes to temperature changes (Figs. S12 — S13). Moreover, models in the low R? group (<0.30) have
estimated Qj( values below 2, resulting in weaker temperature-driven mean fluxes (Figs. S12 — S13). This result shows that
temperature relationships can explain at least some differences in the seasonality of the diagnostic GCP models. By comparison,
existing empirical studies find a range of Q¢ values for wetlands in the Arctic region. Cao et al. (1996) suggest that a Qo value
of 2 is calculated using a simple temperature response model, but Ito (2019); Walter and Heimann (2000) compute the Qg
values of 3.85 and 6 using a more complicated mechanistic temperature response model. In addition, another study finds that
the composition of wetlands can also yield different Q¢ values across the Arctic region. Specifically, M. Lupascu and Pancost
(2012) find that wetlands that contain more Sphagnum moss can result in a Q¢ value of 8 or higher. These studies show that
Qo values can be highly dynamic in high-latitude regions, and a Q;¢ value of 6 does not necessarily mean that the temperature
response model is wrong. We also examine the relationship between mean R? and Q¢ across models, but we find no consistent
association between the two variables (Fig. S13).

Interestingly, we find that for 64% (7/11) of the models, the diagnostic version of the model yields a better fit (R?) against
atmospheric observations compared to the prognostic version of the model (Fig. 5. Prognostic versions of CLASSIC, SDGVM,
LPX-Bern, and VISIT have better R? values compared to diagnostic versions). This result suggests that the better-performed
diagnostic models may also reflect their reliance on a consistent inundation product, which potentially gives them the advantage
in this evaluation framework over the more mechanistic prognostic models. In addition, process-based models with simpler
and more deterministic formulations tend to produce smaller flux magnitudes and higher R? values compared to more complex
models. This result indicates that simple formulations can effectively capture regional-to-continental flux patterns as those
more complicated models (e.g., Miller et al., 2014, 2016b). However, more sophisticated process representations may become
increasingly important for simulating finer-scale spatial structure or higher-frequency temporal variability of CH,4 fluxes.

We also find that the GCP models result in higher R? values and lower errors compared to the WETCHIMP models, both
when comparing overlapping subsets of models and when considering their respective multi-model ensembles (Fig. S10 and
S11). The ensemble of all WETCHIMP models yields a R? of 0.20 and an RMSE of 13.2 ppb. In contrast, the ensemble of
all prognostic GCP models shows a R? of 0.35 with an RMSE of 11.9 ppb, while the ensemble of all diagnostic GCP models
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Figure 6. The seasonal cycles of the diagnostic GCP models (a) and prognostic GCP models (b) from 2007-2017. The blue, green, and red
lines each represent the GCP models that have the highest, average, low R values with atmospheric observations. The x-axis represents the

months from May to October throughout 2007-2017, and y-axis denotes the percentages of CH4 fluxes that occur within that month.

gives a R? of 0.39 with an RMSE of 11.5 ppb. These results demonstrate a clear improvement over the earlier WETCHIMP

models, at least in comparisons with atmospheric observations.

3.4 Spatial distribution

425 We find that prognostic models that are most consistent with atmospheric observations concentrate their fluxes near the Hudson
Bay Lowlands (Fig. 7a). In contrast, prognostic models with the lowest R? values focus their fluxes outside this key region
(Fig. 7¢). We focus this section on the prognostic models because the diagnostic models use the same inundation map and
therefore exhibit similar spatial flux patterns. Similar to the previous analysis of seasonality, we group the prognostic models
into three categories (high, average, low) depending on their R? values when compared against atmospheric observations. A

430 Principal Component Analysis (PCA) highlights common spatial patterns among the models in each different group (e.g., Wold
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et al., 1987; Jolliffe, 1986; Delwiche et al., 2021). The percentage of variance explained by the first principal component (PC1)
shows the degree of spatial patterns shared among models in each group, and this percentage captures how consistently the
models agree in their spatial flux distributions across grid boxes within the study domain. We use the PC1 explained variance as
a measure of within-group spatial coherence that quantifies how much of the between-model variance in a group is captured by
a single grid. We find that models in the high R? group have a PC1 explaining 63.5% of the variance, followed by the average
R2 group with 50.1%, and the low R? group with 68.9% explained variance. Although the low R? group shows the highest
explained variance, this number does not necessarily indicate that the models in this group are more accurately capturing the
true spatial patterns of the CHy fluxes compared to those in other groups.

We find notable common spatial features among the models in the high R2, as seen in the PCA analysis. LPJ-wsl and
CLASSIC have the highest R? values, and these models consistently concentrate their CH,4 fluxes in the Hudson Bay Lowlands.
In contrast, JULES, ISAM, and ELM are the models with lower R? values. These models show large spatial discrepancies in
critical wetland regions such as the Hudson Bay Lowlands, and they tend to concentrate fluxes outside of these key regions,
particularly in the Great Lakes region of Canada.

An important caveat of this result is that the long-term observation network is sensitive to fluxes from some regions of high-
latitude North America but not others (Fig. 1). The PCA analysis itself is unweighted, and our interpretation of spatial patterns
(based on the R? metric) is necessarily influenced by regions with stronger observational coverage. We also note that none of
the atmospheric observing towers are directly located in the Hudson Bay Lowlands, but the STILT footprints shown in Fig. 1
indicates that the network is sensitive to CH, fluxes from the broader region, allowing us to draw conclusions about the spatial

distribution of fluxes in and around the Hudson Bay Lowlands.

4 Conclusions

This study highlights areas of convergence and disagreement among state-of-the-art process models of wetland CH,4 fluxes.
We compare the estimates with atmospheric CH4 observations between May and October in high-latitude North America. In
the first section of the paper, we find that GCP models have a much smaller flux magnitude and lower inter-model uncertainty
across North America compared to a previous model inter-comparison (WETCHIMP). The GCP models, when passed through
an atmospheric transport model, are more consistent with atmospheric CH4 observations compared to the WETCHIMP models,
though we argue that the current GCP model ensemble is still too high across much of Canada and Alaska. In the second section
of the study, we find that process-based CH4 models that are most consistent with atmospheric observations based on our R?
analysis exhibit the highest percentage of fluxes in July and August relative to other months and have a sharper seasonal
cycle. These process-based models also concentrate their fluxes near the Hudson Bay Lowlands while less skilled models often
concentrate fluxes further south near the Great Lakes.

Overall, this study highlights the opportunities to improve current process-based models of wetland CH4 fluxes. Key areas
for improvement include addressing (1) uncertainties in inundation or wetland extent and (2) improving estimated maps of

soil carbon, though the latter factor was difficult to evaluate this study. We find that prognostic models show greater room for
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Figure 7. The PCA results and mean standardized CH4 fluxes for the prognostic GCP models, run separately for each group of models — the
high (a and d), average (b and e), and low (c and f) R? groups. The unit for PCA results is in explained variance by the first component (%),

and darker (or more blue) shades represent better spatial agreements among the models within a same group.

improvement than the diagnostic models because they show less agreement with atmospheric observations based on the R?
and RMSE metrics. While diagnostic models benefit from consistent inundation maps, the development of better prognostic
models is nevertheless very important because these models can be used to project future trends in wetland extent or inundation,
which is critical for future projections of CH4 fluxes under ongoing climate change. Overall, we argue that the bottom-up
modeling community had made large strides in reducing inter-model uncertainties, and these improvements are consistent with
atmospheric CH,4 observations based on our analysis using the STILT model. We note, however, that the GCP models are
global and drivers vary regionally, so these conclusions apply only to our domain and time period. With that said, there is still
an enormous need for further improvements in these models to advance understanding of high-latitude wetland CH4 fluxes in

a changing climate.
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Data availability. We received the wetland model estimates from Zhen Zhang and the GCP modeling team, and these datasets are available
upon request from the GCP modeling team. The GlobalViewPlus CHs ObsPack v5.1 dataset is available at https:/gml.noaa.gov/ccgg/
obspack/citation.php?product=obspack_ch4_1_GLOBALVIEWplus_v5.1_2023-03-08.

The WRE-STILT footprints for North American CH4 monitoring sites are available at https://gml.noaa.gov/aftp/products/carbontracker/
lagrange/footprints/ctl-na-v1.1/. The North American Boundary Condition product is provided by the NOAA Earth System Research Labo-
ratory, and the dataset is available at https://gml.noaa.gov/aftp/user/arlyn/naboundary/v20190806/ROBJ/. Guidance related to these datasets
can be requested from Lei Hu (lei.hu@noaa.gov) and Kathryn McKain (Kathryn.McKain@noaa.gov).

The CAMS global emission inventory dataset is available from the Copernicus Atmosphere Data Store. DOI:https://doi.org/10.24381/
1d158bec. CarbonTracker CT-CH4-2023 data are available from NOAA’s Global Monitoring Laboratory. DOI:https://doi.org/10.25925/
40jt-qd67. The gridded inventory of Canada’s anthropogenic CHy4 fluxes is available from the Harvard Dataverse. https://doi.org/10.7910/
DVN/CC3KLO. The gridded U.S. Greenhous Gas Inventory (Version 2) can be found on Zenodo. DOI: https://doi.org/10.5281/zenodo.
8367082. The Global Fire Emissions Database, Version 4 (GFEDv4) is available through the Oak Ridge National Laboratory (ORNL)
Distributed Active Archive Center (DAAC). DOLI: https://doi.org/10.3334/ORNLDAAC/1293.
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