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Abstract. Methane (CH4) flux estimates from high-latitude North American wetlands remain highly uncertain in magnitude,

seasonality, and spatial distribution. In this study, we evaluate a decade (2007 – 2017) of CH4 flux estimates by comparing

16 process-based models with atmospheric CH4 observations collected from in situ towers. We compare the Global Carbon

Project (GCP) process-based models with a model inter-comparison from a decade earlier called The Wetland and Wetland

CH4 Intercomparison of Models Project (WETCHIMP). Our analysis reveals that the GCP models have a much smaller inter-5

model uncertainty and have an average magnitude that is a factor of 1.5 smaller across Canada and Alaska. However, current

GCP models likely overestimate wetland fluxes by a factor of two or more across Canada and Alaska based on tower-based

atmospheric CH4 observations. The differences in flux magnitudes among GCP models are more likely driven by uncertainties

in the amount of soil carbon or spatial extent of inundation than in temperature relationships, such as Q10 factors. The GCP

models do not agree on the timing and amplitude of the seasonal cycle, and we find that models with a seasonal peak in July10

and August show the best agreement with atmospheric observations. Models that exhibit the best fit to atmospheric observation

also have a similar spatial distribution; these models concentrate fluxes near Canada’s Hudson Bay Lowlands. Current, state-

of-the-art process-based models are much more consistent with atmospheric observations than models from a decade ago, but

our analysis shows that there are still numerous opportunities for improvement.
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1 Introduction15

Natural sources of CH4 contribute ∼40% of total global fluxes, and wetlands are possibly the largest single source (e.g.,

Kirschke et al., 2013; Saunois et al., 2025). Understanding the magnitude, seasonality, and spatial distribution of wetland CH4

fluxes is important to accurately predicting future carbon-climate feedbacks. However, the response of wetland CH4 fluxes to

temperature changes is uncertain (e.g., Zhang et al., 2023, 2017), especially in high-latitude regions where warming occurs 2-4

times faster than the global average (e.g., Rantanen et al., 2022).20

At least some of this uncertainty is related to uncertain permafrost dynamics. Permafrost covers approximately ∼15% of the

land in the Northern Hemisphere (Obu, 2021), and it serves as a massive reservoir for carbon. Globally, permafrost regions store

about 1,000 to 1,672 peta-grams (Pg) of soil organic carbon (SOC), nearly twice the total amount of carbon in the atmosphere

(Schuur et al., 2015; Hugelius et al., 2014; van Huissteden and Dolman, 2012). As permafrost thaws, it changes the soil

environment and triggers microbial decomposition of the stored organic matter. When the soil is wet, microbial decomposition25

in permafrost leads to the release of CH4 through the process of anaerobic respiration. One study indicates that wetland CH4

fluxes can be large enough to flip some high latitude regions from a net carbon sink to a net source (Watts et al., 2023).

To understand high-latitude wetland CH4 fluxes and better predict future warming, process-based (bottom-up) models are

important as they can be used to estimate current wetland CH4 fluxes and project future CH4 fluxes from regional to global

scales, leveraging current scientific knowledge of different biogeochemical processes (e.g., Saunois et al., 2025; Nzotungicim-30

paye et al., 2021; Melton et al., 2013; Zhang et al., 2017). Despite their importance, the CH4 flux estimates from bottom-up

models can have large discrepancies and uncertainties. For example, bottom-up estimates show that total global wetland fluxes

range from 100 to 256 Tg CH4 yr−1 (Xiao et al., 2024; Zhang et al., 2025; Saunois et al., 2025; Liu et al., 2020). In boreal

North America, process-based models also estimate wetland CH4 fluxes ranging from 13.8 to 39.6 Tg CH4 per year (Poulter

et al., 2017). In addition, a recent study suggests an increase of 50 to 150% in global wetland CH4 fluxes by 2100, a large range35

of numbers which points to large uncertainties in current projections (Koffi et al., 2020). Model inter-comparison projects like

the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) have been used to compare the state-of-the-

art wetland CH4 flux models across different regions of the globe (Melton et al., 2013; Wania et al., 2013; Bohn et al., 2015).

In more recent years, the Global Carbon Project (GCP) has been created to synthesize scientific knowledge of the global car-

bon cycle, and this effort includes a large ensemble of the latest process-based CH4 flux models (Poulter et al., 2017; Zhang40

et al., 2025). There is limited knowledge on how these models have improved or evolved over time compared to the earlier

WETCHIMP inter-comparison. Fortunately, projects like WETCHIMP and GCP make it easier to identify improvements and

diagnose uncertainties in wetland flux models because all modeling groups use similar modeling protocols, meteorological

inputs, and, in some cases, common inundation or wetland maps. By harmonizing inputs across models, we eliminate input-

driven variability due to different climate forcing data, and the remaining model spread therefore primarily reflects differences45

in process representations and parameterizations.

Numerous studies have also used atmospheric CH4 to quantify CH4 fluxes from high-latitude wetlands across North Amer-

ica. Early studies used a sparse network of tower observations in Canada and Alaska to quantify the magnitude, seasonality, and
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spatial distribution of wetland fluxes (e.g., Worthy et al., 1998; Pickett-Heaps et al., 2011; Miller et al., 2014, 2016a; Karion

et al., 2016; Ishizawa et al., 2019). These tower-based studies provide a range of flux estimates from 14.8 to 19.5 Tg CH4 per50

year for Canada and 1.56 to 3.4 Tg CH4 per year for the Hudson Bay Lowlands (HBL), a prominent wetland region in northern

Canada (e.g., Ishizawa et al., 2024; Miller et al., 2014; Pickett-Heaps et al., 2011; Thompson et al., 2017). Existing studies

using tower-based observations have also commented on inter-annual variability, though these studies disagree on whether

high-latitude fluxes have detectable year-to-year variability or a multi-year trend (Ishizawa et al., 2019; Sweeney et al., 2016;

Thompson et al., 2017; Ward et al., 2024). Sweeney et al. (2016) argues that there is no multi-decadal trend in CH4 fluxes55

using observations from Utqiagvik, Alaska, while inverse modeling studies by Thompson et al. (2017), Ishizawa et al. (2019),

and Ishizawa et al. (2024) identify inter-annual variability in wetland fluxes across high-latitude North America.

NASA scientists began collecting intensive aircraft-based greenhouse gas observations across Alaska in 2012, providing a

complement to the long-term tower-based network, and these aircraft campaigns have led to numerous studies on CH4 fluxes

from that state. The authors of these studies quantify the magnitude and spatial distribution of fluxes using inverse modeling60

(Chang et al., 2014; Miller et al., 2016b; Hartery et al., 2018; Sweeney et al., 2022). These estimates range from 1.48 to 2.6 Tg

CH4 per year, a number similar to CH4 flux totals from Canada’s Hudson Bay Lowlands (Miller et al., 2016b; Hartery et al.,

2018; Chang et al., 2014; Sweeney et al., 2022). By contrast, the WETCHIMP process-based models span a much wider range

from 0.65 to 6.0 Tg CH4 per year, a nearly nine-fold spread.

Several studies also leverage aircraft observations to conduct a detailed evaluation of flux processes and of numerous process-65

based models, mostly from the WETCHIMP inter-comparison (Miller et al., 2016b; Hartery et al., 2018). For example, these

inverse modeling estimates indicate that tundra ecosystems contribute a disproportionate share of Alaskan CH4 fluxes (often

> 50% of total Alaskan CH4 fluxes despite their smaller areal extents). The North Slope alone accounts for ∼ 24% of the total

statewide CH4 fluxes, which is ∼ 20% higher than the estimates of process-based models (Miller et al., 2016b; Hartery et al.,

2018). Collectively, these aircraft-based studies demonstrate that process-based flux estimates not only diverge substantially70

from one another, but also from atmospheric constraints. The main driver of this divergence is how models represent wetland

extent and water table dynamics, and these factors have a salient influence on the magnitude and spatial distribution of high-

latitude wetland CH4 fluxes estimated by process-based models (Miller et al., 2016b). Hartery et al. (2018) also argue that in

wetland soils, CH4 fluxes are likely driven by near-surface soil temperature and moisture while fluxes from non-wetland soils

are more likely driven by temperature and moisture at greater depths, a difference in processes that may be key for effectively75

modeling CH4 fluxes across Alaska.

Since the early 2010s, the tower-based observing network has greatly expanded across high-latitude North America, pro-

viding a new opportunity to evaluate process-based models and to suggest future opportunities for improvement. In addition,

we can now compare two different process-based model ensembles, generated over a decade apart, to assess how process-

based estimates of high-latitude wetland fluxes have evolved over time (i.e., the WETCHIMP and GCP ensembles). In this80

study, we use atmospheric CH4 observations from tower sites to evaluate the GCP process-based models across high-latitude

North America. We specifically use four sets of analyses to compare atmospheric CH4 observations and the GCP wetland flux

models with a goal of suggesting future improvements to these models. For each of these analyses, we run each GCP flux
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estimate through an atmospheric transport model to simulate atmospheric CH4, and we compare the results against available

atmospheric CH4 observations. First, we compare the GCP models across high latitudes against the WETCHIMP models and85

explore how process-based flux models have evolved over the past decade. Second, we examine how the GCP models vary in

CH4 flux magnitude and what potential factors might drive agreement or disagreement among the models. Third, we investi-

gate differences in seasonal cycles across models that best match atmospheric observations versus models that show seasonal

discrepancies with atmospheric observations. Lastly, we examine the spatial distribution of the CH4 fluxes estimated by the

GCP models and identify spatial patterns that appear to yield better agreement with the available atmospheric CH4 data.90

2 Data and methods

2.1 Atmospheric CH4 Measurements

To better understand current wetland CH4 fluxes, we compare GCP CH4 flux estimates with 11 years of in situ tower data from

the United States and Canada, spanning 2007 to 2017. We note that several previous studies have already used intensive aircraft

campaigns to examine CH4 fluxes across specific regions of Alaska and to evaluate process-based flux models in those regions95

(e.g., Miller et al., 2016b; Hartery et al., 2018; Chang et al., 2014; Sweeney et al., 2022). We build upon these existing studies

by evaluating process-based models using long-term tower observation sites that are distributed cross both Canada and Alaska,

and we compare and contrast our results with previous aircraft-based studies in the Results and discussion section (Sect. 3).

We also focus on the months of May through October each year. Wetland CH4 fluxes are largest during these months, and

many existing top-down studies have focused on these months for their analyses (e.g., Miller et al., 2016b; Chang et al., 2014;100

Pickett-Heaps et al., 2011). By contrast, the ratio of wetland fluxes to anthropogenic CH4 emissions is much smaller in other

months of the year across Alaska and Canada, making it more difficult to uniquely constrain wetland fluxes using atmospheric

observations. The geographic domain of this study covers the high-latitude regions of North America, ranging from 40◦ N to

80◦ N and 170◦ W to 50◦ W.

The atmospheric data used in this study come from the NOAA Observation Package (ObsPack) CH4 GlobalViewPlus v5.1105

dataset (Di Sarra et al., 2023). There are 21 available tower sites within the study domain, and the towers provide a combination

of continuous and flask measurements. We list a more detailed description of each tower site and its location in Table S1. In

addition, we extract afternoon averages of the observations between 1pm and 6pm local time when the boundary layer is

generally well-mixed, and we do this to reduce transport uncertainties in STILT. During this time of day, CH4 measurements

are arguably influenced by fluxes from a broader region than at night. By contrast, the atmosphere is usually stable in the110

morning and at night with lower boundary layer heights, making accurate atmospheric trace gas modeling challenging. As

a result, we prioritize robust transport over full diurnal coverage, and this approach is similar to multiple existing top-down

studies (e.g., Miller et al., 2014, 2016a; Karion et al., 2016; Ishizawa et al., 2024).
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2.2 Wetland CH4 flux model ensembles: GCP and WETCHIMP

The Global Carbon Project (GCP) includes global-scale wetland CH4 flux models that use diverse hydrological and biogeo-115

chemical schemes (Zhang et al., 2025). The most recent GCP model ensemble includes 16 process-based models spanning the

period from 2000 to 2020, though some models end earlier or later than 2020. A general description of these GCP models

is provided in Table S2 and in Zhang et al. (2025). Each of the these models is run in two different ways: diagnostically and

prognostically. The diagnostic runs for each model are constrained by a predefined inundation map from the product Wetland

Area and Dynamics for Methane Modeling version 2 (WAD2Mv2), while the prognostic runs estimate the inundation inter-120

nally using their own hydrological schemes such as soil moisture (Zhang et al., 2021). As a result, prognostic inundation is

not observation-driven, and inter-model differences are driven by the hydrological scheme and climate forcing. Note that each

GCP modeling group did not submit variables like soil carbon, and this fact limits our ability to diagnose disagreements in

the CH4 flux estimates from different models. More detailed descriptions of the current GCP model ensemble, including their

approaches to wetland inundation and model parametrization can be found in Zhang et al. (2025).125

In this study, we evaluate the 11 prognostic and 16 diagnostic models included in the GCP ensemble. Each of these models

was run using two different meteorological reanalysis products to examine the effects of meteorological uncertainties on esti-

mated CH4 fluxes. These products include the Global Soil Wetness Project Phase 3 (GSWP3) and the Climate Research Unit

(CRU) Time-Series 4.06 (Harris et al., 2022; Lange and Büchner, 2020). A recent study shows that the differences between

these two climate-forcing datasets are negligible (Ito et al., 2023). Nevertheless, both datasets are included in this study to130

provide a comprehensive evaluation.

We also evaluate process-based wetland CH4 fluxes using the Wetland and Wetland CH4 Intercomparison of Models Project

(WETCHIMP), which is designed to compare modeled monthly CH4 fluxes across the globe between 1993 and 2004 (Melton

et al., 2013; Wania et al., 2013). There are seven models available that provide CH4 fluxes in the North America domain. These

models are CLM4Me (Riley et al., 2011), DLEM (Tian et al., 2010), LPJ-Bern (Spahni et al., 2011), LPJ-WHyMe (Wania135

et al., 2010), LPJ-WSL (Hodson et al., 2011), ORCHIDEE (Ringeval et al., 2010), and SDGVM (Singarayer et al., 2011).

We regrid the GCP and WETCHIMP models into an uniform spatial resolution of 1◦ latitude by 1◦ longitude. This regridding

process is performed using the “remapcon” function from the Climate Data Operators (CDO) software, which conserves the

total fluxes of each model during interpolation (Schulzweida, 2023).

2.3 Anthropogenic CH4 emissions140

We include three distinct combinations of anthropogenic CH4 flux products to highlight the variability and uncertainty in our

analysis due to anthropogenic CH4 fluxes. Bottom-up inventories such as Canada’s National Inventory Report (NIR) estimate

total anthropogenic fluxes of approximately 3.7 Tg of CH4 per year (Scarpelli et al., 2021). In contrast, top-down inverse

modeling and observation-constrained studies generally infer higher national totals, on the order of 5 to 7 Tg of CH4 per year

(e.g., Thompson et al., 2017; Lu et al., 2022; Scarpelli et al., 2021; Chan et al., 2020; MacKay et al., 2021; Ishizawa et al.,145

2024). Existing bottom-up and top-down studies show particularly large discrepancies in oil and gas producing regions of
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western Canada (Ishizawa et al., 2024; Chan et al., 2020; MacKay et al., 2021; Baray et al., 2021). Collectively, the spread

among bottom-up and top-down studies highlights the large uncertainty in Canadian anthropogenic CH4 flux estimates and

underscores the importance of exploring multiple flux products in our analysis.

We use three specific anthropogenic flux products and regrid them to a spatial resolution of 1◦ latitude by 1◦ longitude for150

the study domain, and we aggregate them to a monthly temporal resolution for 2007–2017:

1. CarbonTracker CH4 2023 (Oh et al., 2023): CarbonTracker is an inverse modeling system designed to estimate CH4

fluxes on a global scale (Oh et al., 2023).

2. A combination of the gridded U.S. Greenhouse Gas Inventory (Version 2) and a gridded inventory of Canada’s an-

thropogenic CH4 fluxes (Monforti Ferrario et al., 2021; Maasakkers et al., 2023; Scarpelli et al., 2021): Scarpelli et al.155

(2021) constructed a gridded Canadian anthropogenic flux inventory based on the Canadian National Inventory Report

(NIR), the Canadian Greenhouse Gas Reporting Program (GHGRP), and other datasets to provide a detailed sectoral

breakdown of fluxes. Similarly, Maasakkers et al. (2023) created a U.S. gridded inventory integrating data from the U.S.

Environmental Protection Agency’s (EPA) Greenhouse Gas Inventory (GHGI) to provide fluxes from different sectors.

3. The Copernicus Atmosphere Monitoring Service (CAMS) (Granier et al., 2019): CAMS is a global inverse modeling160

system that provides estimates of global atmospheric CH4 fluxes and atmospheric mixing ratios. This product is de-

rived from a combination of the EDGARv4.3.2 and Community Emissions Data System (CEDSv3) inventories, and the

product includes estimates of fluxes from different source sectors (Granier et al., 2019).

2.4 Atmospheric modeling

We use the WRF-STILT (The Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian Transport) to simulate165

the atmospheric transport of CH4 fluxes, which has been widely used in numerous studies of regional greenhouse gas fluxes

(e.g., Miller et al., 2016b; Henderson et al., 2015; McKain et al., 2015; Kort et al., 2010; Feng et al., 2023; Miller et al., 2014).

STILT is a Lagrangian particle dispersion model that simulates atmospheric transport using an ensemble of tracer particles

(Lin et al., 2003). For the setup here, the model releases those particles from each measurement site, and the particles travel

backward in time for 10 days following the wind fields in WRF meteorology. STILT uses these particle trajectories to calculate170

surface influence maps or footprints for each atmospheric CH4 observation (Figure 1). These footprint maps have units of

mixing ratio per unit flux (ppb per µmol m−2 s−1) on a 1◦ by 1◦ grid. We can directly multiply these footprints by CH4 fluxes

from the process-based models to predict atmospheric CH4 mixing ratios at each tower site. The footprints used in this study

were generated as part of the NOAA CarbonTracker-Lagrange project and are available from 2007 to 2017, which defines our

study time frame (Hu et al., 2019).175

Since CH4 has an atmospheric lifetime of about 10 years, it can remain in the atmosphere and travel around the globe. To

account for the large-scale movements of CH4, we estimate CH4 boundary conditions using CH4 observations collected over

the Pacific and Atlantic oceans, from high-altitude tower sites in the continental US, and from regular aircraft flights across

the US and Canada. We use these observations to interpolate a curtain of CH4 mixing ratios around the boundaries of the
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model domain. For each STILT simulation, we sample from this boundary condition curtain based on the ending locations of180

the particle trajectories. This procedure thus accounts for CH4 that enters the domain from other regions of the globe. The

approach used here is identical to that used in numerous existing regional CH4 studies (e.g., Miller et al., 2013, 2014, 2016a).

We note that the STILT particle trajectories used here from CarbonTracker-Lagrange do not include atmospheric oxidation

processes. However, CH4 oxidation by hydroxyl radicals likely has a small impact in our study given the short, 10-day time

frame of the regional STILT simulations used here. For example, Miller et al. (2013) argue that CH4 mixing ratios decay less185

than 1 to 1.5 ppb over the first 2–3 days of STILT back trajectories given the average global-averaged lifetime of CH4 of

7-11 years. This corresponds to less than 5% of the average modeled CH4 mixing ratio enhancement relative to background in

our study. The impact of OH in our study may be even smaller because OH mixing ratios are usually lower at high latitudes

compared to the continental US. In addition, our estimated boundary conditions also account for long-range CH4 oxidation

processes that occur upwind of our domain.190

We combine the aforementioned modeling components using the following equation to compare atmospheric CH4 observa-

tions with the STILT model predictions using the GCP flux models:

Z ∼H
[
s+A+B

]
+ b. (1)

where Z represents the atmospheric observations from the in situ towers across the US and Canada (dimensions n×1, where

n are the number of observations). H is a matrix of influence footprints assembled from the WRF-STILT model (dimensions195

n×m, where m is the number of flux model grid boxes in space and time). Within the brackets, s refers to wetland CH4 flux

estimates from the process-based GCP or WETCHIMP models (dimensions m× 1, Sect. 2.2), A refers to the anthropogenic

CH4 fluxes estimate from one anthropogenic product (dimensions m× 1, Sect. 2.3), and B denotes biomass burning fluxes

from the Global Fire Emissions Database (GFED v4.1) (Randerson et al., 2017) (dimensions m× 1). The last variable, b,

represents the CH4 boundary condition (dimensions m× 1).200

We run STILT simulations both with and without the lake and reservoir emissions from Maasakkers et al. (2016), which

contribute approximately 0.72 Tg of CH4 per year in Canada from May to October. The WAD2M v2 inundation map (used

by GCP models) represents vegetated wetlands only, but small lakes and ponds could still overlap because these features are

difficult to distinguish from wetlands in satellite observations (Kyzivat and Smith, 2023). Adding a separate lake component

could therefore lead to partial double-counting of freshwater emissions and further increase the modeled CH4 mixing ratios.205

Given this potential for double-counting, we present results without the additional lake term, while we acknowledge that adding

lake and reservoir emissions would further increase modeled CH4 mixing ratios.

Note that we only include observation sites in our analysis if those sites are predominantly influenced by CH4 fluxes from

wetlands. By contrast, we exclude urban sites and sites proximal to oil and gas operations. We specifically include sites where

the average ratio of modeled CH4 from STILT using the GCP model mean to modeled CH4 using the CAMS anthropogenic210

flux product is greater than 1.3 (Sect. 2.4, sect.2.2, sect.2.3). This screening means that the wetland contributions at each

site are at least 30% higher than the likely influence of anthropogenic emissions. If we set a lower threshold, then we would
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Figure 1. The US and Canadian atmospheric CH4 observing network from 2007-2017. The figure also shows the WRF-STILT mean 10-day

footprint map in ppb / (µmol m−2 s−1) across the study domain of 40◦N to 80◦N and 170◦W to 50◦W, and footprints are evaluated from

2007-2017. Red circle dots show in situ tall tower sites from NOAA and Environmental Canada from the ObsPack GlobalViewPlus v5.1

dataset (Di Sarra et al., 2023). The lime-colored dots represent non-wetland sites, where the wetland-to-anthropogenic CH4 concentration

ratio is less than 1.3 (using anthropogenic emissions from the CAMS product). In contrast, the red-colored dots indicate wetland-dominated

sites, where this ratio exceeds 1.3.

begin to include sites in urban and/or oil and gas producing areas. For example, the site with the next highest wetland-to-

anthropogenic ratio is Abbotsford (ABT), which is an urban site near Vancouver, British Columbia. By contrast, if we set a

higher threshold, we would exclude the East Trout Lake (ETL) tower site, which is located in a sparsely populated wetland215

region of northern Saskatchewan. We focus on these sites because we aim to better quantify the contribution of wetlands to

atmospheric CH4 levels while minimizing the confounding effects of anthropogenic sources, the magnitudes of which are also

uncertain. The ten sites that we include within this study are Churchill, Manitoba (CHL); Cambridge Bay, Nunavut (CBY); East

Trout Lake, Saskatchewan (ETL); Estevan Point, British Columbia (ESP); Fort Nelson, British Columbia (FNE); Fraserdale,

Ontario (FSD); Inuvik, Northwest Territories (INU); Behchoko, Northwest Territories (BCK); Chapais, Quebec (CPS); and the220

Carbon in Arctic Reservoirs Vulnerability Experiment Tower, Fairbanks, Alaska (CRV) (see Table S1 for additional details).

The remaining sites that are not included in this analysis are towers in urban environments (e.g., sites in the Toronto and

Vancouver metropolitan areas); towers close to oil and gas production in Alberta, Canada, or Prudhoe Bay, Alaska; towers that

are frequently used as clean air background sites (e.g., Sable Island, Nova Scotia), and sites proximal to intensive agriculture.

These sites are indicated by the solid red circles in Fig. 1.225
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3 Results and discussion

In this section, we compare the modeled CH4 mixing ratios using the GCP models to atmospheric observations. We use these

comparisons to evaluate the magnitude, seasonality, and spatial distribution of the GCP flux models over 2007 to 2017. In each

subsection, we also speculate on the possible reasons driving the agreement or disagreements that we see in our analyses.

3.1 Comparisons between the GCP and WETCHIMP models230

The GCP model ensemble is an updated version of the earlier WETCHIMP inter-comparison over a decade ago (Melton et al.,

2013; Wania et al., 2013). Overall, we find that, compared to the WETCHIMP models, the GCP models have a smaller flux

magnitude with reduced inter-model spread and better inter-model agreement on the spatial distribution of fluxes within our

study domain.

We find that the CH4 flux estimates from the GCP models are much smaller across most of high-latitude North America235

compared to the WETCHIMP models. We calculate annual CH4 flux totals for Canada using the 11 prognostic and 16 di-

agnostic GCP models with both climate forcing datasets (GSWP3 and CRU), and the uncertainty bars in Fig. 2 represent the

standard deviation of the CH4 flux estimates among models within the same group. The mean annual CH4 flux total for Canada

using the 11 prognostic GCP models with CRU is 14.19±7.41 Tg CH4 per year, and the mean using the 16 diagnostic models

with CRU is 12.17±5.48 Tg CH4 per year (Fig. 2). In contrast, the Canadian annual CH4 flux total using all the WETCHIMP240

models with CRU meteorology is a factor of more than ∼1.5 higher than the prognostic and diagnostic GCP models, with flux

estimates of 21.50± 15.12 Tg CH4 per year (based on the standard deviations of models within the same group). In Alaska,

the annual CH4 flux total estimated by the 11 prognostic GCP models with CRU is 1.31± 0.85 Tg CH4 per year, whereas the

seven WETCHIMP models yield a higher value of 1.66±2.02 Tg CH4 per year. We notice that the annual Canadian CH4 flux

total for the LPJ-WHyMe model from WETCHIMP is 46.25± 5.88 Tg CH4 per year (Fig. S5). We subsequently exclude this245

model and recalculate the annual CH4 flux total using the other six WETCHIMP models, and evaluate whether or not it brings

the flux estimates similar to the GCP models. However, the annual CH4 flux total using the other six WETCHIMP models with

CRU is 17.97± 12.59 Tg CH4 per year, which is still about a factor of ∼1.4 higher than the prognostic GCP models using

CRU meteorology.

In addition, the annual CH4 flux totals estimated by the WETCHIMP models are a factor of ∼1.3 or higher than the GCP250

models in the two dominant high-latitude biomes across North America (tundra and boreal forests) (Fig. 2). Across the North

American boreal forests and tundra, the annual CH4 flux totals estimated by the 11 prognostic GCP models with CRU are

10.71± 5.73 and 1.64± 1.31 Tg CH4 per year, respectively. In comparison, the annual CH4 flux totals estimated by the seven

WETCHIMP models in these two biomes are 16.62± 8.55 and 2.15± 1.34 Tg CH4 per year, respectively.

We also find that the CH4 fluxes estimated by the 11 prognostic GCP models result in much lower inter-model uncertainty255

compared to the seven WETCHIMP models, with smaller inter-model disagreement across Canada and southern Alaska. Here,

we define the uncertainty among models as the standard deviation across the models of the mean wetland flux CH4 in May-

October. To evaluate model agreement on the spatial distribution of fluxes, we compare the inter-model uncertainty or the
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standard deviation of flux estimates for each individual model grid box of the GCP and WETCHIMP models. Since each

WETCHIMP model identifies the inundation or wetland area differently, we compare these models with the prognostic GCP260

models (Melton et al., 2013). Note, however, that not all of the WETCHIMP modeling groups generated their own wetland or

inundation maps prognostically, and some, like LPJ-Bern and LPJ-WHyMe, use a constant, prescribed wetland map. In Figure

3, darker shades represent higher inter-model uncertainty across these process-based models. We observe that the GCP models

have much lighter shades across the study domain, indicating better inter-model agreement.

We further find that the WETCHIMP models generally exhibit seasonal cycles that are similar to the GCP models (Figs.265

S1a and S1b). Most WETCHIMP models estimate peak CH4 fluxes across Alaska and Canada in July and August, except

CLM4Me (which peaks in June) and LPX-Bern (which peaks in September). This result illustrates that the seasonal cycles

of the GCP models have not changed markedly from the WETCHIMP models. The WETCHIMP models already showed

relatively good agreement on the seasonal cycle of fluxes, but such agreement does not guarantee accuracy, and there remains

scope for improvement. Furthermore, the seasonal cycle of these model estimates is likely dependent on temperature, meaning270

that it is arguably easier to model than other features that depend on more complex processes.

The overall reduction in inter-model uncertainties from WETCHIMP to GCP may relate to how the models estimate wetland

distribution. Different WETCHIMP model yield very different estimates of maximum wetland extent – from 2.7 to 36.4×106

km2 for the global extra-tropics (> 35◦N), depending upon the model. Melton et al. (2013) explain that several WETCHIMP

models use a binary approach to identify wetland areas, where individual model grid boxes are either 100% wetland or 0%275

wetland, and these models tend to have ∼ 3−4 times greater wetland area compared to other models (Fig. 2 and Table 2 in

(Melton et al., 2013)). Other WETCHMIMP models were parameterized to match remote sensing estimates of wetland or open

water extent. In contrast to WETCHIMP, the GCP model ensemble also includes diagnostic experiments in which all modeling

groups used the WAD2M v2 inundation map. These efforts to create a standardized, diagnostic map of wetland extent may

have also influenced the prognostic GCP experiments, and modeling groups may have tuned or modified their setup to be more280

consistent with the diagnostic model simulations. In addition, the lower magnitude of CH4 fluxes estimated by the GCP models

(compared to the WETCHIMP models) is partly attributed to efforts by the GCP modeling group to reduce double-counting of

freshwater areas (e.g., lakes and ponds) in WAD2M v2 (Zhang et al., 2021).

Note that the GCP models show lower flux magnitude and reduced inter-model spread in Canada, even when using the

subset of models that are common to both WETCHIMP and GCP. For diagnostic GCP runs, the overlapping model subsets285

with WETCHIMP are LPX-Bern (a newer version of LPJ-Bern), DLEM, ORCHIDEE, LPJ-wsl, SDGVM. For prognostic

GCP runs, the common models include LPX-Bern, ORCHIDEE, LPJ-wsl, and SDGVM. Using these shared models, we find

that the mean annual flux total from the WETCHIMP models is roughly 4 Tg CH4 per year higher than the matched GCP

ensemble mean, whereas in Alaska WETCHIMP is 0.11 Tg CH4 lower (Figs. S5 and S6). In addition, we also find that the

GCP ensemble exhibits lower inter-model spread in Canada and broadly similar or lower spread in Alaska (Fig. S9). As a290

result, these analyses lead to the conclusion that the GCP ensemble is more tightly constrained than WETCHIMP over Canada

when the same models are compared.
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Figure 2. Annual CH4 flux totals across Canada, Alaska, and several biomes. The four bars on the left of each region or biome represent the

2 different climate forcing data (GSWP3 and CRU) and prognostic versus diagnostic types for the GCP models. The green bar shows the

mean annual CH4 flux total using all WETCHIMP models, and the gray bar denotes the mean flux total excluding the LPJ-WHyMe model.

The uncertainty bars represent the standard deviation of the CH4 flux estimates among models within the same group. The unit of the annual

wetland CH4 flux totals is Tg CH4 per year.

The reduced inter-model spread indicates greater consistency among the current GCP model outputs relative to WETCHIMP;

however, reduced spread alone does not indicate improved accuracy. In the following sections, we compare the GCP and

WETCHIMP models with atmospheric observations to gauge whether the GCP models are indeed more skilled at capturing295

CH4 fluxes across high-latitude North America.

3.2 Flux magnitude

We find that even though the mean wetland CH4 fluxes of the GCP models are about a factor of two lower than the WETCHIMP

models across northern North America, most of them are still likely an overestimate by a factor of two or more compared to

atmospheric CH4 observations (Fig. 4). Note that we exclude lake and reservoir emissions from the following results because300

adding these emissions could double-count existing freshwater sources already represented in WAD2M v2 and further increase

the modeled CH4 mixing ratios relative to our current results.

We evaluate the magnitude of the GCP models by comparing modeled mixing ratios from STILT against observations at the

tower sites. Specifically, we divide modeled CH4 mixing ratios using wetland fluxes from the GCP models by the observed

increments, shown in Fig. 4. The modeled wetland CH4 mixing ratios are calculated by passing each of the GCP models305

through WRF-STILT. The observed increments are calculated as the atmospheric CH4 observations minus factors unrelated to

wetlands – the CH4 boundary condition and the contributions of anthropogenic and biomass burning fluxes at the observation

sites. In Fig. 4, we compare the magnitude of the modeled wetland CH4 mixing ratios and the observed increments at each

11



(a)

(b)

Figure 3. The inter-model standard deviation for each individual model grid box, calculated using the 11 prognostic GCP models (top) and

WETCHIMP models (bottom). The inter-model uncertainty is higher for the WETCHIMP models than the GCP models. All fluxes have

units µmol m−2 s−1.

wetland-dominated in situ tower site across high-latitude North America. A factor larger than one means that the mixing ratios

of modeled wetland CH4 using the GCP models are higher than the observed increments. By contrast, the gray dashed line at310

the y-axis equal to 1 indicates a perfect alignment between the modeled wetland CH4 mixing and the observed increment. The

error bars in Fig. 4 reflect the range of results when we use different anthropogenic flux estimates in the calculations (Sect.

2.3). Note that CH4MOD, DLEM, LPJ-GUESS, TEM-MDM, and TRIPLEX-GHG only have diagnostic simulations and not

prognostic simulations, and their diagnostic comparisons are represented exclusively by orange bars.

Interestingly, this result is not geographically uniform across high-latitude North America; the GCP models, when passed315

through the WRF-STILT transport model, overshoot observations at towers in the boreal zone but not at towers in the Arctic

(Fig. S4). This result parallels earlier studies that use intensive aircraft campaign data from specific regions of Alaska. For

example, Miller et al. (2016b) estimate CH4 fluxes over Alaska’s North Slope that exceed most process-based model estimates

but find substantially lower fluxes than the model estimates across interior boreal and subarctic southeastern Alaska. Similarly,

Hartery et al. (2018) emphasize the disproportionately large contribution of Arctic Alaska to the state’s total CH4 fluxes, though320

they do not explicitly compare their results with process-based models. Global inverse models, like those included in the most
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recent Global Carbon Project CH4 report, further reiterate these results; most yield lower wetland CH4 fluxes across global

high latitudes compared to process-based models, including across Russia, Europe, Canada, and the US (Saunois et al., 2025).

We also note that anthropogenic CH4 fluxes pose an enormous challenge for isolating and quantifying CH4 fluxes from

wetlands, even at very remote observation sites in Canada and Alaska. The vertical bars in Fig. 4 indicate uncertainties in the325

results due to uncertain anthropogenic fluxes, and we observe a broad spectrum of values depending on which anthropogenic

CH4 flux estimate we use. For example, modeled mixing ratios from STILT using the GCP CH4 model CLASSIC run prognos-

tically are anywhere between ∼2.5 times higher than the observed increment to ∼6 times higher, depending on the choice of

anthropogenic flux product. As a result, we cannot precisely constrain the optimal magnitude of wetland fluxes. These uncer-

tainties notwithstanding, our findings still suggest that wetland fluxes estimated by the 11 prognostic and 16 diagnostic models330

are often higher than implied by atmospheric observations.

It is difficult to determine the specific causes that drive model disagreements over the magnitude of wetland CH4 fluxes.

However, these variations are more likely influenced by factors such as soil carbon or by the simplicity/complexity of the

model structure rather than by disagreements over the effects of temperature on fluxes. We do not have a comprehensive set of

modeled environmental variables (e.g., soil carbon) to conduct a systematic examination of all sources of uncertainty. However,335

the available model outputs allow us to reason through some key contributors to these uncertainties, such the relationships

between fluxes and temperature (i.e., estimated Q10 values) and the effects of using a common diagnostic inundation map

versus prognostically generated inundation.

To explore the temperature sensitivities of each GCP model, we fit a Q10 curve for each GCP model (Figs. S12 – S13). The

Q10 parameter represents the sensitivity of wetland CH4 fluxes to a 10◦C increase in temperature, which provides insight into340

how strongly each model responds to temperature changes. A higher Q10 value indicates that the flux estimates are more prone

to change with temperature variations. Our analysis indicates a large variation in temperature sensitivity across the prognostic

and diagnostic GCP models, but there is not a strong relationship between the magnitude of wetland CH4 fluxes estimated

by these models and the estimated Q10 values (Figs. S12 – S13). As a result, Q10 does not seem to be the most important

contributor driving differences in the flux magnitude of the GCP models.345

We also find that uncertainties in wetland area and inundation likely contribute to but are not the primary cause of these

disagreements in flux magnitude. For example, the prognostic and diagnostic models usually yield a similar magnitude of

fluxes, despite of the fact that these different experiments do not use the same inundation estimates (Fig. 2). For Canada, the

average total flux from the prognostic models is similar to the diagnostic models – 14.19 and 12.17 Tg per year, respectively

(using GSWP3 meteorology). Similarly, the average total flux from the prognostic versus diagnostic models is nearly identical350

for the boreal forest biome. In some regions, the diagnostic models show greater agreement on the total annual flux than the

prognostic models, but in other regions, the prognostic and diagnostic models show similar levels of inter-model agreement

(Fig. 2).

Interestingly, we find models with simpler flux calculations yield flux magnitudes that agree more with atmospheric observa-

tions compared to those using more complex equations. GCP models such as LPJ-wsl, SDGVM, and JULES produce smaller355

flux magnitudes, and each of these models uses simple approaches to simulate CH4 fluxes. For example, these models rely only
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Figure 4. Comparisons between modeled mixing ratios from STILT against observations at the tower sites. The y-axis has values range from

0 to 9, representing the ratio between the modeled wetland CH4 mixing ratios using the GCP and WETCHIMP models and the observed

increment. We define the observed increment as the difference between atmospheric CH4 observations and the sum of the boundary CH4

levels, modeled anthropogenic CH4 mixing ratios, and modeled biomass burning CH4 mixing ratios. A value of 1 on the y-axis indicates

perfect agreement between the modeled wetland CH4 mixing ratios and the observed increment.

on net fluxes without accounting for specific transport pathways (e.g., ebullition, diffusion, or plant-mediated transport) (Zhang

et al., 2025). In contrast, models such as VISIT, JSBACH, and ISAM have the largest flux magnitudes, and each of these mod-

els employs more complex equations that include multiple components of CH4 fluxes, such as gross production, oxidation, and

consumption. These models also simulate explicit transport pathways like ebullition, diffusion, and plant-mediated transport,360

alongside layered soil temperature schemes for temperature sensitivity (Zhang et al., 2025). Models with more complex repre-

sentations generally require additional input data to provide more accurate flux estimates. Thus, in data-sparse regions, added

process detail could potentially amplify input and parameter uncertainty and enlarge the flux spread.

3.3 Seasonality

We find that models more consistent with atmospheric observations have a distinct seasonal peak in wetland CH4 fluxes in July365

and August. In contrast, models that do not agree well with atmospheric observations have a flatter seasonal cycle.

To evaluate these differences, we compare the correlation between atmospheric CH4 observations and STILT simulations

using each of the different GCP models (Fig. 5). We specifically use this analysis to explore which GCP models better capture

the seasonal and spatial variability of CH4 fluxes across our model domain. First, we calculate R2 values for each model using

a two-predictor regression model. In each regression, the first predictor variable represents modeled CH4 mixing ratios due to370

wetlands using one of the GCP models, and the second predictor variable represents modeled CH4 mixing ratios due to different

anthropogenic flux products plus biomass burning from GFED (Sects. 2.3 and 2.4). The regression will scale the magnitude

of the STILT model outputs to optimally match atmospheric observations. As a result, this analysis is not very sensitive to the
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Figure 5. The correlation R2 between modeled CH4 mixing ratios using the process-based models and atmospheric observations. Blue dots

represent the mean R2 value for prognostic models across different climate forcing data and anthropogenic products. Orange dots represent

the mean R2 value for diagnostic models across different climate forcing data and anthropogenic products. The gray dot represents the mean

R2 value for the WETCHIMP models across different anthropogenic products. The y-axis lists all the prognostic and diagnostic GCP models

and WETCHIMP models, and the x-axis shows the R2 range for these GCP and WETCHIMP models.

absolute magnitude of the original flux estimates. Instead, the overall fit of each regression is more likely a reflection of the

seasonal and spatial patterns in the wetland, anthropogenic, and biomass burning flux estimates; GCP flux estimates with more375

accurate seasonal and spatial variability will more likely yield higher correlation coefficients (R2 values). Figure 5 depicts the

mean R2 values for 16 GCP diagnostic wetland models and 11 GCP prognostic wetland models. Each model has a mean R2

value that is averaged from the two climate forcing data (GSWP3 and CRU) and three anthropogenic flux products. These

results highlight the large variability in R2 values across different GCP models. As shown in Fig. S7, model comparisons using

Root Mean Squared Error (RMSE) are identical to those using R2, a result that further reinforces the discussion here.380

Based on this analysis, we categorize each of the diagnostic and prognostic GCP models into three groups based on how

they agree with atmospheric observations. By grouping the models, we can look for common patterns that separate models

that exhibit high R2 values from those that exhibit lower R2 values. Models with R2 values greater than 0.4 are grouped into

the high R2 group (represented by blue lines in Figs. 6a and 6b), models with R2 values between 0.3 and 0.4 are classified as

the average R2 group (represented by green lines in Figs. 6a and 6b), and models with R2 values below 0.3 are considered as385

the low R2 group (represented by red lines in Figs. 6a and 6b). Although these cut-offs are inherently subjective, they offer a

practical framework for grouping the models and result in a similar number of models within each group.
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Across the high and average R2 groups, CH4 fluxes exhibit a clear seasonal cycle, and we find that approximately 60–70%

of the total fluxes from these models during the period of May to October occur during the peak summer season (June, July,

and August). In these groups, the models capture the sharp rise and fall of the CH4 fluxes, and they also show peak monthly390

percentages during July and August (Figs. 6a and 6b). This pattern aligns with the results of aircraft inversion studies that

report a pronounced midsummer maximum Miller et al. (2016b); Chang et al. (2014). The low R2 models display a much

flatter seasonal pattern. These models do not capture the pronounced summer peaks observed in the high and average groups,

suggesting that they may not fully capture seasonal variations in wetland fluxes.

The relationships between CH4 fluxes and temperature may explain some, though not all, of the differences in seasonality395

among the GCP models. In our study, diagnostic SDGVM, diagnostic LPJ-MPI, diagnostic JULES, and diagnostic ISAM are

the models that have high and average R2 values (>0.35), and both have estimated Q10 values greater than three, indicating a

high sensitivity of their fluxes to temperature changes (Figs. S12 – S13). Moreover, models in the low R2 group (<0.30) have

estimated Q10 values below 2, resulting in weaker temperature-driven mean fluxes (Figs. S12 – S13). This result shows that

temperature relationships can explain at least some differences in the seasonality of the diagnostic GCP models. By comparison,400

existing empirical studies find a range of Q10 values for wetlands in the Arctic region. Cao et al. (1996) suggest that a Q10 value

of 2 is calculated using a simple temperature response model, but Ito (2019); Walter and Heimann (2000) compute the Q10

values of 3.85 and 6 using a more complicated mechanistic temperature response model. In addition, another study finds that

the composition of wetlands can also yield different Q10 values across the Arctic region. Specifically, M. Lupascu and Pancost

(2012) find that wetlands that contain more Sphagnum moss can result in a Q10 value of 8 or higher. These studies show that405

Q10 values can be highly dynamic in high-latitude regions, and a Q10 value of 6 does not necessarily mean that the temperature

response model is wrong. We also examine the relationship between mean R2 and Q10 across models, but we find no consistent

association between the two variables (Fig. S13).

Interestingly, we find that for 64% (7/11) of the models, the diagnostic version of the model yields a better fit (R2) against

atmospheric observations compared to the prognostic version of the model (Fig. 5. Prognostic versions of CLASSIC, SDGVM,410

LPX-Bern, and VISIT have better R2 values compared to diagnostic versions). This result suggests that the better-performed

diagnostic models may also reflect their reliance on a consistent inundation product, which potentially gives them the advantage

in this evaluation framework over the more mechanistic prognostic models. In addition, process-based models with simpler

and more deterministic formulations tend to produce smaller flux magnitudes and higher R2 values compared to more complex

models. This result indicates that simple formulations can effectively capture regional-to-continental flux patterns as those415

more complicated models (e.g., Miller et al., 2014, 2016b). However, more sophisticated process representations may become

increasingly important for simulating finer-scale spatial structure or higher-frequency temporal variability of CH4 fluxes.

We also find that the GCP models result in higher R2 values and lower errors compared to the WETCHIMP models, both

when comparing overlapping subsets of models and when considering their respective multi-model ensembles (Fig. S10 and

S11). The ensemble of all WETCHIMP models yields a R2 of 0.20 and an RMSE of 13.2 ppb. In contrast, the ensemble of420

all prognostic GCP models shows a R2 of 0.35 with an RMSE of 11.9 ppb, while the ensemble of all diagnostic GCP models
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(a)

(b)

Figure 6. The seasonal cycles of the diagnostic GCP models (a) and prognostic GCP models (b) from 2007-2017. The blue, green, and red

lines each represent the GCP models that have the highest, average, low R2 values with atmospheric observations. The x-axis represents the

months from May to October throughout 2007-2017, and y-axis denotes the percentages of CH4 fluxes that occur within that month.

gives a R2 of 0.39 with an RMSE of 11.5 ppb. These results demonstrate a clear improvement over the earlier WETCHIMP

models, at least in comparisons with atmospheric observations.

3.4 Spatial distribution

We find that prognostic models that are most consistent with atmospheric observations concentrate their fluxes near the Hudson425

Bay Lowlands (Fig. 7a). In contrast, prognostic models with the lowest R2 values focus their fluxes outside this key region

(Fig. 7c). We focus this section on the prognostic models because the diagnostic models use the same inundation map and

therefore exhibit similar spatial flux patterns. Similar to the previous analysis of seasonality, we group the prognostic models

into three categories (high, average, low) depending on their R2 values when compared against atmospheric observations. A

Principal Component Analysis (PCA) highlights common spatial patterns among the models in each different group (e.g., Wold430
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et al., 1987; Jolliffe, 1986; Delwiche et al., 2021). The percentage of variance explained by the first principal component (PC1)

shows the degree of spatial patterns shared among models in each group, and this percentage captures how consistently the

models agree in their spatial flux distributions across grid boxes within the study domain. We use the PC1 explained variance as

a measure of within-group spatial coherence that quantifies how much of the between-model variance in a group is captured by

a single grid. We find that models in the high R2 group have a PC1 explaining 63.5% of the variance, followed by the average435

R2 group with 50.1%, and the low R2 group with 68.9% explained variance. Although the low R2 group shows the highest

explained variance, this number does not necessarily indicate that the models in this group are more accurately capturing the

true spatial patterns of the CH4 fluxes compared to those in other groups.

We find notable common spatial features among the models in the high R2, as seen in the PCA analysis. LPJ-wsl and

CLASSIC have the highest R2 values, and these models consistently concentrate their CH4 fluxes in the Hudson Bay Lowlands.440

In contrast, JULES, ISAM, and ELM are the models with lower R2 values. These models show large spatial discrepancies in

critical wetland regions such as the Hudson Bay Lowlands, and they tend to concentrate fluxes outside of these key regions,

particularly in the Great Lakes region of Canada.

An important caveat of this result is that the long-term observation network is sensitive to fluxes from some regions of high-

latitude North America but not others (Fig. 1). The PCA analysis itself is unweighted, and our interpretation of spatial patterns445

(based on the R2 metric) is necessarily influenced by regions with stronger observational coverage. We also note that none of

the atmospheric observing towers are directly located in the Hudson Bay Lowlands, but the STILT footprints shown in Fig. 1

indicates that the network is sensitive to CH4 fluxes from the broader region, allowing us to draw conclusions about the spatial

distribution of fluxes in and around the Hudson Bay Lowlands.

4 Conclusions450

This study highlights areas of convergence and disagreement among state-of-the-art process models of wetland CH4 fluxes.

We compare the estimates with atmospheric CH4 observations between May and October in high-latitude North America. In

the first section of the paper, we find that GCP models have a much smaller flux magnitude and lower inter-model uncertainty

across North America compared to a previous model inter-comparison (WETCHIMP). The GCP models, when passed through

an atmospheric transport model, are more consistent with atmospheric CH4 observations compared to the WETCHIMP models,455

though we argue that the current GCP model ensemble is still too high across much of Canada and Alaska. In the second section

of the study, we find that process-based CH4 models that are most consistent with atmospheric observations based on our R2

analysis exhibit the highest percentage of fluxes in July and August relative to other months and have a sharper seasonal

cycle. These process-based models also concentrate their fluxes near the Hudson Bay Lowlands while less skilled models often

concentrate fluxes further south near the Great Lakes.460

Overall, this study highlights the opportunities to improve current process-based models of wetland CH4 fluxes. Key areas

for improvement include addressing (1) uncertainties in inundation or wetland extent and (2) improving estimated maps of

soil carbon, though the latter factor was difficult to evaluate this study. We find that prognostic models show greater room for
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Figure 7. The PCA results and mean standardized CH4 fluxes for the prognostic GCP models, run separately for each group of models – the

high (a and d), average (b and e), and low (c and f) R2 groups. The unit for PCA results is in explained variance by the first component (%),

and darker (or more blue) shades represent better spatial agreements among the models within a same group.

improvement than the diagnostic models because they show less agreement with atmospheric observations based on the R2

and RMSE metrics. While diagnostic models benefit from consistent inundation maps, the development of better prognostic465

models is nevertheless very important because these models can be used to project future trends in wetland extent or inundation,

which is critical for future projections of CH4 fluxes under ongoing climate change. Overall, we argue that the bottom-up

modeling community had made large strides in reducing inter-model uncertainties, and these improvements are consistent with

atmospheric CH4 observations based on our analysis using the STILT model. We note, however, that the GCP models are

global and drivers vary regionally, so these conclusions apply only to our domain and time period. With that said, there is still470

an enormous need for further improvements in these models to advance understanding of high-latitude wetland CH4 fluxes in

a changing climate.
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