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Abstract. Methane (CH,) flux estimates from high-latitude North American wetlands remain highly uncertain in magnitude,
seasonality, and spatial distribution. In this study, we evaluate a decade (2007 — 2017) of CH,4 flux estimates by comparing
16 process-based models with atmospheric CH4 observations collected from in situ towers. We compare the Global Carbon
Project (GCP) process-based models with a model inter-comparison from a decade earlier called The Wetland and Wetland
CHy Intercomparison of Models Project (WETCHIMP). Our analysis reveals that the GCP models have a much smaller inter-
model uncertainty and have an average magnitude that is a factor of 1.5 smaller across Canada and Alaska. However, current
GCP models likely overestimate wetland fluxes by a factor of two or more across Canada and Alaska based on tower-based
atmospheric CH4 observations. The differences in flux magnitudes among GCP models are more likely driven by uncertainties
in the amount of soil carbon or spatial extent of inundation than in temperature relationships, such as Qo factors. The GCP
models do not agree on the timing and amplitude of the seasonal cycle, and we find that models with a seasonal peak in July
and August show the best agreement with atmospheric observations. Models that exhibit the best fit to atmospheric observation
also have a similar spatial distribution; these models concentrate fluxes near Canada’s Hudson Bay LowlandséHBE). Current,
state-of-the-art process-based models are much more consistent with atmospheric observations than models from a decade ago,

but our analysis shows that there are still numerous opportunities for improvement.
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1 Introduction

Natural sources of CH, contribute ~40% of total global fluxes, and wetlands are possibly the largest single source (e.g.,
Kirschke et al., 2013; Saunois et al., 2025). Understanding the magnitude, seasonality, and spatial distribution of wetland CH4
fluxes is important to accurately predicting future carbon-climate feedbacks. However, the response of wetland CH,4 fluxes to
temperature changes is uncertain (e.g., Zhang et al., 2023, 2017), especially in high-latitude regions where warming occurs 2-4
times faster than the global average (e.g., Rantanen et al., 2022).

At least some of this uncertainty is related to uncertain permafrost dynamics. Permafrost covers approximately ~15% of the
land in the Northern Hemisphere (Obu, 2021), and it serves as a massive reservoir for carbon. Globally, permafrost regions store
about 1,000 to 1,672 peta-grams (Pg) of soil organic carbon (SOC), nearly twice the total amount of carbon in the atmosphere
(Schuur et al., 2015; Hugelius et al., 2014; van Huissteden and Dolman, 2012). As permafrost thaws, it changes the soil
environment and triggers microbial decomposition of the stored organic matter. When the soil is wet, microbial decomposition
in permafrost leads to the release of CH4 through the process of anaerobic respiration. One study indicates that wetland CHy
fluxes can be large enough to flip some high latitude regions from a net carbon sink to a net source (Watts et al., 2023).

To understand high-latitude wetland CH4 fluxes and better predict future warming, process-based (bottom-up) models are

important as they can be used to estimate current wetland CH, fluxes and provide-insightsto-project future CH, projections

fluxes from regional to global scales, leveraging current scientific knowledge of different biogeochemical processes (e-g=?Nzotungicimpay

.g., Saunois et al., 2025; Nzotungicimpaye et al., 2021; Melton et al., 2013; Zhang et al., 2017). Despite their importance, the

CH, flux estimates from bottom-up models can have large discrepancies and uncertainties. For example, bottom-up estimates
show that total global wetland fluxes range from 100 to 256 Tg CHy yr—! (Xiao et al., 2024; Zhang et al., 2025; Saunois
et al., 2025; Liu et al., 2020). In boreal North America, process-based models also estimate wetland CH4 fluxes ranging
from 13.8 to 39.6 Tg CHy4 per year (Poulter et al., 2017). In addition, a recent study suggests an increase of 50 to 150%
in global wetland CH4 fluxes by 2100, a large range of numbers which points to large uncertainties in current projections
(Koffi et al., 2020). Model inter-comparison projects like the Wetland and Wetland CH, Intercomparison of Models Project
(WETCHIMP) have been used to compare the state-of-the-art wetland CH,4 flux models across different regions of the globe

. In more recent years, the Global Carbon Project (GCP) has been created to synthesize scientific knowledge of the global

carbon cycle, and this effort includes a large ensemble of the latest process-based CH4 flux models (Poulter et al., 2017,

Zhang et al., 2025). Projeets-There is limited knowledge on how these models have improved or evolved over time compared
to the earlier WETCHIMP inter-comparison. Fortunately, projects like WETCHIMP and GCP make it easier to identify

improvements and diagnose uncertainties in wetland flux models because all modeling groups use similar modeling proto-
cols, meteorological inputs, and, in some cases, common inundation or wetland maps. Hewever-there-istimited-knowledge-on
inputs across models, we eliminate input-driven variability due to different climate forcing data, and the remaining model
spread therefore primarily reflects differences in process representations and parameterizations.
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high-latitude wetlands across North America. Early studies used a sparse network of tower observations in Canada and Alaska

to quantify the magnitude, seasonality, and spatial distribution of wetland fluxes (e.g., Worthy et al., 1998; Pickett-Heaps et al., 2011; Mille

. These tower-based studies provide a range of flux estimates from 14.8 to 19.5 Tg CH4 per year for Canada and 1.56 to 3.4 Tg

nd-, though these studies disagree on whether
2019; Sweeney et al., 2016

. Sweeney et al. (2016) argues that there is no multi-decadal trend in CH, fluxes using observations from Utqiagvik, Alaska,
while inverse modeling studies by Thompson et al. (2017), Ishizawa et al. (2019), and Ishizawa et al. (2024) identify significant

inter-annual variability in wetland fluxes across high-latitude North America. The-coarse-spatial-resolution-of some-inverse

high-latitude fluxes have detectable year-to-year variability or a multi-year trend (Ishizawa et al.,

NASA scientists began collecting intensive aircraft-based greenhouse gas observations across Alaska in 2012, providing a
complement to the long-term tower-based network, and these aircraft campaigns have led to numerous studies on CH4 fluxes

from that state. The authors of these studies quantify the magnitude and spatial distribution of fluxes using inverse modelin

Chang et al., 2014; Miller et al., 2016b; Hartery et al., 2018; Sweeney et al., 2022). These estimates range from 1.48 to 2.6 T

CH, per year, a number similar to CH, flux totals from Canada’s Hudson Bay Lowlands (Miller et al., 2016b; Hartery et al., 2018; Chang et

- By contrast, the WETCHIMP process-based models span a much wider range from 0.65 to 6.0 Tg CH, per year, a nearly.
nine-fold spread.

Several studies also leverage aircraft observations to conduct a detailed evaluation of flux processes and of numerous
process-based models, mostly from the WETCHIMP inter-comparison (Miller et al., 2016b; Hartery et al., 2018). For example,
these inverse modeling estimates indicate that tundra ecosystems contribute a disproportionate share of Alaskan CHy fluxes
(often > 50% of total Alaskan CH, fluxes despite their smaller areal extents). The North Slope alone accounts for ~ 247% of the.

total statewide CH, fluxes, which is ~ 20% higher than the estimates of process-based models (Miller et al.

2

- Collectively, these aircraft-based studies demonstrate that process-based flux estimates not only diverge substantially from
one another, but also from atmospheric constraints. The main driver of this divergence is how models represent wetland extent
and water table dynamics, and these factors have a salient influence on the magnitude and spatial distribution of high-latitude

ton mains-with-an errange § intie mpare estimated by process-based
models (Miller et al., 2016b). Hartery et al. (2018) also argue that in wetland soils, CHy fluxes are likely driven by near-surface

wetland CH, fluxes ove

CHy per year for the Hudson Bay Lowlands (HBL), a prominent wetland region in northern Canada {e-gtshizawa-et-al52024- Milleret-al-

: Thompson et

2016b; Hartery et al., 2018
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soil temperature and moisture while fluxes from non-wetland soils are more likely driven by temperature and moisture at greater
depths, a difference in processes that may be key for effectively modeling CH, fluxes across Alaska.

Since the early 2010s, the tower-based observing network has greatly expanded across high-latitude North America, providing
anew opportunity to evaluate process-based models -

fr-and to suggest future opportunities for improvement. In addition, we can now _compare two different process-based
model ensembles, generated over a decade apart, to assess how process-based estimates of high-latitude wetland fluxes have
evolved over time (i.e., the WETCHIMP and GCP ensembles). In this study, we use atmospheric CHy observations from

tower sites to evaluate the GCP process-based models across high-latitude North America. We specifically use four sets of
analyses to compare atmospheric CH,4 observations and the GCP wetland flux models with a goal of suggesting future im-
provements to these models. For each of these analyses, we run each GCP flux estimate through an atmospheric transport
model to simulate atmospheric CHy, and we compare the results against available atmospheric CH, observations. First, we
compare the GCP models across high latitudes against the WETCHIMP models and explore how process-based flux mod-

els have evolved over the past decade.

models vary in CH4 flux magnitude and what potential factors might drive agreement or disagreement among the models. Third,

we investigate differences in seasonal cycles across models that best match atmospheric observations versus models that show
seasonal discrepancies with atmospheric observations. Lastly, we examine the spatial distribution of the CH,4 fluxes estimated
by the GCP models and identify spatial patterns that appear to yield better agreement with the available atmospheric CHy
data, . o . .

2 Data and Methodsmethods

2.1 Atmospheric CH, Measurements

To better understand current wetland CH4 fluxes, we compare GCP CH, flux estimates with 11 years of in situ tal-tower data
from the United States and Canada, spanning 2007 to 2017. We note that several previous studies have already used intensive
aircraft campaigns to examine CHy fluxes across specific regions of Alaska and to evaluate process-based flux models in those
regions (e.g., Miller et al., 2016b; Hartery et al., 2018; Chang et al., 2014; Sweeney et al., 2022). We build upon these existin
studies by evaluating process-based models using long-term tower observation sites that are distributed cross both Canada and
Alaska, and we compare and contrast our results with previous aircraft-based studies in the Results and discussion section

We also focus on the months of May through October each year. Wetland CH, fluxes are largest during these months, and

many existing top-down studies have focused on these months for their analyses (e.g., Miller et al., 2016b; Chang et al., 2014;



120

125

130

135

140

145

Pickett-Heaps et al., 2011). By contrast, the ratio of wetland fluxes to anthropogenic CHy emissions is much smaller in other
months of the year across Alaska and Canada, making it more difficult to uniquely constrain wetland fluxes using atmospheric
observations. The geographic domain of this study covers the high-latitude regions of North America, ranging from 40° N to
80° N and 170° W to 50° W.

2.2

years2007-and-2017-and-the-atmospherie-data-The atmospheric data used in this study come from the NOAA Observation
Package (ObsPack) CH,4 Global ViewPlus v5.1 dataset (Di Sarra et al., 2023). There are 21 available tower sites within the study

domain, and the towers provide a combination of continuous and flask measurements. We list a more detailed description of

each tower site and its location in Table S1. We-In addition, we extract afternoon averages of the observations between 1pm and

6pm local time when the boundary layer is generally well-mixed, an-approach-similar-to-multiple-existing-top-dewn-—studies
and we do this to reduce transport uncertainties in

STILT. During this time of day, CH4 measurements are arguably influenced by fluxes from a broader region than at night.

By contrast, the atmosphere is usually stable in the morning and at night with lower boundary layer heights, making accurate

atmospheric trace gas modeling challenging.

a result, we prioritize robust transport over full diurnal coverage, and this approach is similar to multiple existing top-down
studies (e.g., Miller et al., 2014, 2016a; Karion et al., 2016; Ishizawa et al., 2024).

2.2 Glebal-€CarbonProjectModelstWetland CH,4 flux model ensembles: GCP Meodelsjand WETCHIMP

The-GCP-

The Global Carbon Project (GCP) includes global-scale wetland CH4 flux models that use diverse hydrological and bio-
geochemical schemes (Zhang et al., 2025). The most recent GCP model ensemble includes 16 process-based models span-
ning the period from 2000 to 2020, though some models end earlier or later than 2020. A general description of these GCP
models is provided in Table S2 and in Zhang et al. (2025). Each of the these models is run in two different ways: diagnosti-

cally and prognostically. The diagnostic runs frem-for each model are constrained by a predefined inundation map from the

product Wetland Area and Dynamics for Methane Modeling version 2 (WAD2Myv2)produet,-whileeach-modetinggroup-ean

determine-their-own-inundation-map-for-, while the prognostic runs (Zhanget-al;202h—estimate the inundation internall

using their own hydrological schemes such as soil moisture (Zhang et al., 2021). As a result, prognostic inundation is not




150 observation-driven, and inter-model differences are driven by the hydrological scheme and climate forcing. Note that each

tde-GCP modeling group did

not submit variables like soil carbon—Fhis-, and this fact limits our ability to diagnose disagreements in the CHy flux estimates

from different models. More detailed descriptions of the current GCP model ensemble, including their approaches to wetland
inundation and model parametrization can be found in Zhang et al. (2025).

155 In this study, we evaluate the 11 prognostic and 16 diagnostic models included in the GCP ensemble. Each of these models
was run using two different meteorological reanalysis products to examine the effects of meteorological uncertainties on esti-
mated CH, fluxes. These products include the Global Soil Wetness Project Phase 3 (GSWP3) and the Climate Research Unit
(CRU) Time-Series 4.06 (Harris et al., 2022; Lange and Biichner, 2020). A recent study shewed-shows that the differences
between these two climate-forcing datasets are negligible (Ito et al., 2023). Nevertheless, both datasets are included in this

160 study to provide a comprehensive evaluation. We-regrid-these-GEP-

We also evaluate process-based wetland CHy fluxes using the Wetland and Wetland CHy Intercomparison of Models
Project (WETCHIMP), which is designed to compare modeled monthly CHy fluxes across the globe between 1993 and
We regrid the GCP and WETCHIMP models into an uniform spatial resolution of 1° latitude by 1° longitude. This regridding
process is performed using the “remapcon” function from the Climate Data Operators (CDO) software, which conserves the

total fluxes of each model during interpolation (Schulzweida, 2023).

170 2.3 Anthropogenic CH, emissions

175 the-nationatinventory—As—aresutt—we-We include three distinct combinations of anthropogenic CHy4 flux products to high-
light the variability and uncertainty in our analysis due to anthropogenic CH, fluxes. This-approach-allowsus-te—captare-a
%M@WMW%WW&B@MW%&%W&
fluxes of approximately 3.7 Tg of CH, fi
WM@%

180  generally infer higher national totals, on the order of 5 to 7 Tg of CHy fluxes-and their potential-impacton-high-latitude North
Americaregions—per year (e.g., Thompson et al., 2017; Lu et al., 2022; Scarpelli et al., 2021; Chan et al., 2020; MacKay et al.

. Existing bottom-up and top-down studies show particularly large discrepancies in oil and gas producing regions of western
2024; Chan et al., 2020; MacKay et al., 2021; Baray et al., 2021). Collectivel

2021; Ishi

Canada (Ishizawa et al., s the spread among bottom-u
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and top-down studies highlights the large uncertainty in Canadian anthropogenic CH, flux estimates and underscores the
importance of exploring multiple flux products in our analysis.

We use three specific anthropogenic flux products and regrid them to a spatial resolution of 1° latitude by 1° longitude for

the study domain:-, and we aggregate them to a monthly temporal resolution for 2007-2017:

1. CarbonTracker CH4 2023 (Oh et al., 2023): CarbonTracker is an inverse modeling system designed to estimate CH
fluxes on a global scale (Oh et al., 2023).

2. A combination of the gridded U.S. Greenhouse Gas Inventory (Version 2) ;-and a gridded inventory of Canada’s anthro-

pogenic CHy fluxes (Monforti Ferrario et al., 2021; Maasakkers et al., 2023; Scarpelli et al., 2021)-

system—designed-to—estimate-CHyfluxes—on—a—global-seale (Oh-etal52023)— Scarpelli et al. (2021) constructed a
gridded Canadian anthropogenic flux inventory based on the Canadian National Inventory Report (NIR), the Canadian

Greenhouse Gas Reporting Program (GHGRP), and other datasets to provide a detailed sectoral breakdown of fluxes.
MeanwhileSimilarly, Maasakkers et al. (2023) created a U.S. gridded inventory integrating data from the U.S. Environ-
mental Protection Agency’s (EPA) Greenhouse Gas Inventory (GHGI) to provide fluxes from different sectors. CAMS

4. The Copernicus Atmosphere Monitoring Service (CAMS) (Granier et al., 2019): CAMS is a global data-assimilation

inverse modeling system that provides estimates of global atmospheric CH4 fluxes and atmospheric mixing ratios. This
product is derived from a combination of the EDGARV4.3.2 and Community Emissions Data System (CEDSv3) inven-

tories, and the product includes estimates of fluxes from different source sectors (Granier et al., 2019).

2.4 Atmospheric Modeling Frameworkmodeling

use the WRF-STILT (The Weather Research and
Forecasting-Stochastic Time-Inverted Lagrangian Transport) medelto simulate the atmospheric transport of CHy fluxes, which
has been widely used in numerous studies of regional greenhouse gas fluxes (e.g., Miller et al., 2016b; Henderson et al., 2015;
McKain et al., 2015; Kort et al., 2010; Feng et al., 2023; Miller et al., 2014). STILT is a Lagrangian particle dispersion model
that simulates atmospheric transport using an ensemble of tracer particles (Lin et al., 2003). For the setup here, the model
releases those particles from each measurement site, and the particles travel backward in time for 10 days following the wind
fields in WRF meteorology. STILT uses these particle trajectories to calculate surface influence maps or footprints for each
atmospheric CH,4 observation (Figure 1). These footprint maps have units of mixing ratio per unit flux (ppb per gmol m~2
s~1)ona 1° by 1° grid-and-we-, We can directly multiply these footprints by CHy fluxes from the process-based models with
these-footprint-maps-to predict atmospheric CH, mixing ratios at each tower site. Speeifically;—the-The footprints used in this
study are-were generated as part of the NOAA CarbonTracker-Lagrange project and are available from 2007 to May-26482017,
which defines our study time frame (Hu et al., 2019).
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Since CHy4 has an atmospheric lifetime of about 10 years, it can remain in the atmosphere and travel around the globe. To
account for the large-scale movements of CHy, we estimate CH4 boundary conditions using CH,4 observations collected over
the Pacific and Atlantic oceans, from high-altitude tower sites in the continental US, and from regular aircraft flights across
the US and Canada. We use these observations to interpolate a curtain of CH, mixing ratios around the boundaries of the
model domain. For each STILT simulation, we sample from this boundary condition curtain based on the ending locations of
the particle trajectories. This procedure thus accounts for CHy that enters the domain from other regions of the globe. The
approach used here is identical to that used in numerous existing regional CH, studies (e.g., Miller et al., 2013, 2014, 2016a).

We note that the STILT particle trajectories used here from CarbonTracker-Lagrange do not include atmospheric oxidation
processes. However, CHy oxidation by hydroxyl radicals likely has a small impact in our study given the short, 10-day time

frame of the regional STILT simulations used here. For example, Miller et al. (2013) argue that CH, mixing ratios decay

less than 1 to 1.5 ppb duri

hecontinen nd-ectimated-OH-(eld a1 EO hem—Ove hic de
O ar—o aha atca—g & O - v IV art; G ay

is-over the first 2—3 days of STILT back

trajectories given the average global-averaged lifetime of CHy of 7-11 years. This corresponds to less than 5% of the average 5
total-modeled CH, enhancements-in-this-mixing ratio enhancement relative to background in our study. The impact of OH in

our study may be even smaller because OH mixing ratios are usually lower at high latitudes —compared to the continental US.
In addition, our estimated boundary conditions also account for long-range CHy oxidation processes that occur upwind of our
We combine the aforementioned modeling components using the following equation to compare atmospheric CH4 observa-

tions with the STILT model predictions using the GCP flux models:

Z~H[s+A+B]+b. (1)

where Z represents the atmospheric observations from the in situ towers across the US and Canada (dimensions n x 1, where
n are the number of observations). H is a matrix of influence footprints assembled from the WRF-STILT model ;-showing-hew

tens-(dimensions n X m, where m is the number of
flux model grid boxes in space and time). Within the brackets, s refers to wetland CH, flux estimates from the process-based
GCP or WETCHIMP models (dimensions m X 1, Sect. 2.2), A refers to the anthropogenic CH4 fluxes estimate from one
anthropogenic product (dimensions m x 1, Sect. 2.3), and B denotes biomass burning fluxes from the Global Fire Emissions
Database (GFED v4.1) (Randerson et al., 2017) (dimensions m x 1). The last variable, b, represents the CH4 boundary condition

(dimensions m x 1).

We run STILT simulations both with and without the lake and reservoir emissions from Maasakkers et al. (2016), which
contribute approximately 0.72 Te of CH, per year in Canada from May to October. The WAD2M v2 inundation map (used
by GCP models) represents vegetated wetlands only, but small lakes and ponds could still overlap because these features are

difficult to distinguish from wetlands in satellite observations (Kyzivat and Smith, 2023). Adding a separate lake component

could therefore lead to partial double-counting of freshwater emissions and further increase the modeled CH, mixing ratios.
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Figure 1. The US and Canadian atmospheric CH4 observing network from 2007-2017. The figure also shows the WRF-STILT mean daily
10-day footprint map in ppb #met——/ (umol m™~> s™") across the study domain of 40°N to 80°N and 170°W to 50°W, and footprints
are evaluated from 2007-2017. Red circle dots show in situ tall tower sites from NOAA and Environmental Canada from the ObsPack
GlobalViewPlus v5.1 dataset (Di Sarra et al., 2023). The lime-colored dots represent non-wetland sites, where the wetland-to-anthropogenic
CH4 concentration ratio is less than +5-1.3 (using anthropogenic emissions from the CAMS product). In contrast, the red-colored dots

indicate wetland-dominated sites, where this ratio exceeds +-51.3.

Given this potential for double-counting, we present results without the additional lake term, while we acknowledge that addin
lake and reservoir emissions would further increase modeled CH, mixing ratios.
Note that we primarily-analyze-tower-based-observations-sites-only include observation sites in our analysis if those sites are

redominantly influenced by CH, fluxes from wetlands. By contrast, we exclude urban sites and sites proximal to oil and gas
operations. We specifically include sites where the average ratio of modeled CH4 from STILT using al-GEP-medels-the GCP

model mean to modeled CHy from-STH=F-using the CAMS anthropogenic flux product is higher-than-t-5-(seetgreater than 1.3
(Sect. 2.4, sect.2.2, sect.2.3). This screening means that the wetland contributions at each site are at least 50%-30% higher than

the likely influence of anthropogenic emissions

Fe P i - i . If we set a lower threshold, then we would begin to
include sites in urban and/or oil and gas producing areas. For example, the site with the next highest wetland-to-anthropogenic

ratio is Abbotsford (ABT), which is an urban site near Vancouver, British Columbia. By contrast, if we set a higher threshold

we would exclude the East Trout Lake
as-many sites-as-possible to-have-a-broader spatial-coverage(ETL) tower site, which is located in a sparsely populated wetland
region of northern Saskatchewan. We focus on these sites because we aim to better quantify the contribution of wetlands to
atmospheric CHy levels while minimizing the confounding effects of anthropogenic sources, the magnitudes of which are also

uncertain. The ten final-sites that we include within this study are +Churchill, Manitoba (CHL);-; Cambridge Bay, Nunavut



265 Territory-(CBY);—; East Trout Lake, Saskatchewan (ETL);—; Estevan Point, British Columbia (ESP);—; Fort Nelson, British
Columbia (FNE);; Fraserdale, Ontario (FSD);-; Inuvik, Northwest Territories (INU);; Behchoko, Northwest Territories (BCK);
; Chapais, Quebec (CPS);—; and the Carbon in Arctic Reservoirs Vulnerability Experiment Tower, Fairbanks, Alaska (CRV)
(see Table S1 for additional details). The remaining sites that are not included in this analysis are towers in urban environments
(e.g., sites in the Toronto and Vancouver metropolitan areas); towers close to oil and gas production in Alberta, Canada, or
270 Prudhoe Bay, Alaska; towers that are frequently used as clean air background sites (e.g., Sable Island, Nova Scotiaer-W-S4A),

and sites proximal to intensive agriculture.
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are indicated by the solid red circles in Fig. 1.

3 Results and Diseussionsdiscussion

In this section, we compare the modeled CH4 mixing ratios using the GCP models to atmospheric observations. We use these

comparisons to evaluate the magnitude, seasonality, and spatial distribution of the GCP flux models ~over 2007 to 2017, In each

10



295 subsection, we also speculate on the possible reasons driving the agreement or disagreements that we see in our analyses. Noete

300

3.1 Comparisons Between-between the GCP and WETCHIMP Medelsmodels

The GCP model ensemble is an updated version of the earlier WETCHIMP inter-comparison over a decade ago ;-and-these
j Melton et al., 2013; Wania ¢

T AR RA SRR ARAAASRAAAS

. Overall, we find that, compared to the WETCHIMP models, the GCP models have a smaller flux magnitude ;-betterconsensus

305 onflux-magnitadeand-better-with reduced inter-model spread and better inter-model agreement on the spatial distribution of
fluxes within our study domain. Fhis-resultpoints-to-anevolution-and-growing-consenstus-among-state-of-the-art-wetland-CHy
flux-models—

We find that the CH,4 flux estimates from the GCP models are much smaller across most of high-latitude North America
compared to the WETCHIMP models. We calculate annual CH4 flux totals for Canada using the 11 prognostic and 16 di-

310 agnostic GCP models with both climate forcing datasets (GSWP3 and CRU), and the uncertainty bars in Fig. 2 represent the
standard deviation of the CHy4 flux estimates among models within the same group. The mean annual CHy4 flux total for Canada
using the 11 prognostic GCP models with CRU is 14.19 4+ 7.41 Tg CH,4 per year, and the mean using the 16 diagnostic models
with CRU is 12.17 +5.48 Tg CH, per year (Figure-Fig. 2). In contrast, the Canadian annual CHy flux total using the-seven
all the WETCHIMP models with CRU meteorology is a factor of more than ~1.5 higher than the prognostic and diagnostic

315 GCP models, with flux estimates of 21.50 £ 15.12 Tg CHy per year (based on the standard deviations of models within the

same group)ef21-50=+15-12- In Alaska, the annual CH4 flux total estimated by the 11 prognostic GCP models with CRU is

1.31 £0.85 Tg CHy4 per year, whereas the seven WETCHIMP models yield a higher value of 1.66 4- 2.02 Tg CHy per year. We
notice that the annual Canadian CHy4 flux total for the LPJ-WHyMe model from WETCHIMP is 46.25 4+ 5.88 Tg CH4 per year

(Fig. S5). Therefore;~we-We subsequently exclude this model to-and recalculate the annual CH,4 flux total using the other six

320 WETCHIMP models, and evaluate whether or not it brings the flux estimates similar to the GCP models. However, the annual

CH,4 flux total using the other six WETCHIMP models with CRU is 17.97 +12.59 Tg CH4 per year, which is still about a
factor of ~1.4 higher than the prognostic GCP models using CRU meteorology.

In addition, the annual CHy4 flux totals estimated by the WETCHIMP models are a factor of ~1.3 or higher than the GCP

models in the two dominant high-latitude biomes across North America (tundra and boreal forests) (Fig. 2). In-Adaska;-the

325

and tundra, the annual CH, flux totals estimated by the 11 prognostic GCP models with CRU are 10.71+5.73 and 1.64 4+-1.31

11



330

335

340

345

350

355

360

Tg CHy per year, respectively. In comparison, the annual CHy flux totals estimated by the seven WETCHIMP models in these
two biomes are 16.62 £ 8.55 and 2.15 + 1.34 Tg CHy per year, respectively.

We also find that the CH4 fluxes estimated by the 11 prognostic GCP models result in much lower inter-model uncertainty
compared to the seven WETCHIMP models, with smaller inter-model disagreement across Canada and southern Alaska.
Here, we define the uncertainty among models as the standard deviation across the models of the mean wetland flux CHy in
May-October. To evaluate model agreement on the spatial distribution of fluxes, we compare the inter-model uncertainty or
the standard deviation of flux estimates for each individual model grid box of the GCP and WETCHIMP models. Since each
WETCHIMP model identifies the inundation or wetland area differently, we compare these models with the prognostic GCP
models (Melton et al., 2013). Note, however, that not all of the WETCHIMP modeling groups generated their own wetland or
inundation maps prognostically, and some, like LPJ-Bern and LPJ-WHyMe, use a constant, prescribed wetland map. In Figure
3, darker shades ateach-grid-boxrepresent higher inter-model uncertainty across these process-based models. We observe that
the GCP models have much lighter shades across the study domain, indicating better inter-model agreement.

We further find that the WETCHIMP models generally exhibit seasonal cycles that are similar to the GCP models (Figs. Sla
and S1b). Most WETCHIMP models estimate peak CH,4 fluxes across Alaska and Canada in July and August, except CLM4Me
(which peaks in June) and LPX-Bern (which peaks in September). These-small-model-disagreementsnotwithstanding—this
This result illustrates that the seasonal cycles of the GCP models have not changed markedly from the WETCHIMP models.

VETCHIMP ensemble,but-we-find-ne-such convergenee in-model agreement on-the seasonal-eyele-The WETCHIMP mod-

els already showed relatively good agreement on the seasonal cycle of fluxes, se-there-was-not-much-epportunity-but such

agreement does not guarantee accuracy, and there remains scope for improvement. Furthermore, the seasonal cycle of these
model estimates is targely-likely dependent on temperature, meaning that it is arguably easier to model than other features that

depend on more complex processes.

The overall reduction in inter-model uncertainties from WETCHIMP to GCP may relate to how the models estimate wetland
distribution. Different WETCHIMP model yield very different estimates of maximum wetland extent — from 2.7 to 36.4 x 108
km? for the global extra-tropics (> 35°N), depending upon the model. Melton et al. (2013) explain that several WETCHIMP
models use a binary approach to identify wetland areas, where individual model grid boxes are either 100% wetland or 0%
wetland, and these models tend to have ~ 3—4 times greater wetland area compared to other models (Fig-2-and-Table—-2-. 2
and Table 2 in (Melton et al., 2013)). By-centrast-other-Other WETCHMIMP models were parameterized to match remote
sensing estimates of wetland or open water extent. In contrast to WETCHIMP, the GCP model ensemble also includes diag-
nostic experiments in which all modeling groups used the WAD2M v2 inundation map. These efforts to create a standardized,
diagnostic map of wetland extent may have also influenced the prognostic GCP experiments, and modeling groups may have
tuned or modified their setup to be more consistent with the diagnostic model simulations. In addition, the lower magnitude
of CH,4 fluxes estimated by the GCP models (compared to the WETCHIMP models) is partly attributed to efforts by the GCP
modeling group to reduce double-counting of freshwater areas (e.g., lakes and ponds) in WAD2M v2 (Zhang et al., 2021).
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Comparison of CH4 budgets by region/biome using GCP vs WETCHIMP
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Figure 2. Annual CH4 flux totals across Canada, Alaska, and several biomes. The four bars on the left of each region or biome represent the
2 different climate forcing data (GSWP3 and CRU) and prognostic versus diagnostic types for the GCP models. The green bar shows the
mean annual CHy4 flux total using all WETCHIMP models, and the gray bar denotes the mean flux total excluding the LPJ-WHyMe model.

The uncertainty bars represent the standard deviation of the CH,4 flux estimates among models within the same group. The unit of the annual
wetland CHy4 flux totals is Tg CHy4 per year.

Fhis-improved-Note that the GCP models show lower flux magnitude and reduced inter-model agreementimplies-that-the

O a O a tta omparcea—+to

ateedspread in Canada, even when using the subset of models that
are common to both WETCHIMP and GCP. For diagnostic GCP runs, the overlapping model subsets with WETCHIMP are
LPX-Bern (a newer version of LPJ-Bern), DLEM, ORCHIDEE, LPJ-wsl, SDGVM. For prognostic GCP runs, the common
flux total from the WETCHIMP models is roughly 4 Tg CHy per year higher than the matched GCP ensemble mean, whereas
lower inter-model spread in Canada and broadly similar or lower spread in Alaska (Fig. S9). As a result, these analyses lead to
the conclusion that the GCP ensemble is more tightly constrained than WETCHIMP over Canada when the same models are
compared.

The reduced inter-model spread indicates greater consistency among the current GCP model outputs relative to WETCHIMP;
however, reduced spread alone does not indicate improved accuracy. In the following sections, we compare GEP-the GCP and
WETCHIMP models with atmospheric observations as-a-way-to gauge whether the GCP models are indeed more skilled at

capturing CH,4 fluxes across high-latitude North America.
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Spatial distribution of CH,4 fluxes standard deviation from May-October

Standard deviation of CH, fluxes from Ma

-October using GCP (Prognostic)
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Figure 3. The inter-model standard deviation for each individual model grid box, calculated using the 11 prognostic GCP models (top) and

WETCHIMP models (bottom). The inter-model uncertainty in-mede-toeations-is higher for the WETCHIMP models than the GCP models.

All fluxes have units zmol m =2 s~ 1.

3.2 Flux Magnitudes-of GCP-Meodelsmagnitude

We find that even though the mean wetland CH4 fluxes of the GCP models are about a factor of 2-two lower than the
WETCHIMP models across northern North America, most of them are still likely an overestimate by a factor of 2-two or more
compared to atmospheric CH, observations (Fig. 4). Note that we exclude lake and reservoir emissions from the following
results because adding these emissions could double-count existing freshwater sources already represented in WADZM v2 and

further increase the modeled CH, mixing ratios relative to our current results.
We evaluate the magnitude of the GCP models by comparing modeled mixing ratios from STILT against observations at the

tower sites. Specifically, we divide modeled CH4 mixing ratios using wetland fluxes from the GCP models by the observed
increments, shown in Fig. 4. The modeled wetland CH4 mixing ratios are calculated by passing each of the GCP models through
STHEWRE-STILT. The observed increments are calculated as the atmospheric CH4 observations minus factors unrelated to
wetlands — the CH4 boundary condition and the contributions of anthropogenic and biomass burning fluxes at the observation
sites. In Fig. 4, we compare the magnitude of the modeled wetland CH, mixing ratios and the observed increments at each

wetland-dominated in situ tower site across high-latitude North America. A factor larger than one means that the mixing ratios
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of modeled wetland CH4 using the GCP models are higher than the observed increments. By contrast, the gray dashed line at
the y-axis equal to 1 indicates a perfect alignment between the modeled wetland CH4 mixing and the observed increment. The
error bars in Fig. 4 reflect the range of results when we use different anthropogenic flux estimates in the calculations (Sect.
2.3). Note that CH4MOD, DLEM, LPJ-GUESS, TEM-MDM, and TRIPLEX-GHG only have diagnostic simulations and not

prognostic simulations, and their diagnostic comparisons are represented exclusively by orange bars.

Interestingly, this result is not geographically uniform across high-latitude North
America; the GCP models, when passed through the WRE-STILT transport model, overshoot observations at towers in the
boreal zone but not at towers in the Arctic (Fig, S4). This result parallels earlier studies that use intensive aircraft campaign data
from specific regions of Alaska. For example, Miller et al. (2016b) estimate CHy fluxes over Alaska’s North Slope that exceed
most process-based model estimates but find substantially lower fluxes than the model estimates across interior boreal and
subarctic southeastern Alaska. Similarly, Hartery et al. (2018) emphasize the disproportionately large contribution of Arctic
Alaska to the state’s total CHy fluxes, though they do not explicitly compare their results with process-based models. Global
inverse models, like those included in the most recent Global Carbon Project CHy report, further reiterate these results; most
yield lower wetland CHy fluxes across global high latitudes compared to process-based models, including across Russia,
Europe, Canada, and the US (Saunois et al,, 2025).

We also note that anthropogenic CH,4 fluxes pose an enormous challenge for isolating and quantifying CH4 fluxes from

wetlands, even at very remote observation sites in Canada and Alaska. The vertical bars in Fig. 4 indicate uncertainties in the
results due to uncertain anthropogenic fluxes, and we observe a broad spectrum of values depending on which anthropogenic
CH, flux estimate we use. For example, modeled mixing ratios from STILT using the GCP CH4 model CLASSIC run prognos-
tically are anywhere between ~2.5 times higher than the observed increment to ~6 times higher, depending on the choice of
anthropogenic flux product. As a result, we cannot precisely constrain the optimal magnitude of wetland fluxes. These uncer-
tainties notwithstanding, our findings still suggest that wetland fluxes estimated by the 11 prognostic and 16 diagnostic models
are often higher than implied by atmospheric observations.

It is difficult to determine the specific causes that drive model disagreements over the magnitude of wetland CH, fluxes.
However, these variations are more likely influenced by factors such as soil carbon or by the simplicity/complexity of the
model structure rather than by disagreements over the effects of temperature on fluxes. We do not have a comprehensive set of
modeled environmental variables (e.g., soil carbon) to conduct a systematic examination of all sources of uncertainty. However,
the available model outputs allow us to reason through some key contributors to these uncertainties, such the relationships
between fluxes and temperature (i.e., estimated Qo values) and the effects of using a common diagnostic inundation map
versus prognostically generated inundation.

To explore the temperature sensitivities of each GCP model, we fit a Qo curve for each GCP model (Fig—2?Figs. S12 —
S13). The Qo parameter represents the sensitivity of wetland CH4 fluxes to a 10°C increase in temperature, which provides
insight into how strongly each model responds to temperature changes. A higher Qo value indicates that the flux estimates
are more prone to change with temperature variations. Our analysis indicates a large variation in temperature sensitivity across

the prognostic and diagnostic GCP models, but there is not a strong relationship between the magnitude of wetland CH,
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fluxes estimated by these models and the estimated Qo values (Fig—22)—We-find-the EEM-has-the lowest-Qy—value-of-all
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—Figs. S12 — S13). As a result, Qo does not seem to be the

most important contributor driving differences in the flux magnitude of the GCP models.

We also find that uncertainties in wetland area and inundation likely contribute to but are not the primary the-cause of
these disagreements in flux magnitude. For example, the prognostic and diagnostic models usually yield a similar magnitude
of fluxes, in-spite-despite of the fact that these different experiments do not use the same inundation estimates (Fig. 2). For
Canada, the average total flux from the prognostic models is similar to the diagnostic models — 14.19 and 12.17 Tg per year,
respectively (using GSWP3 meteorology). Similarly, the average total flux from the prognostic versus diagnostic models is
nearly identical for the boreal forest biome. In some regions, the diagnostic models show greater agreement on the total annual
flux than the prognostic models, but in other regions, the prognostic and diagnostic models show similar levels of inter-model
agreement (Fig. 2).

InterestingInterestingly, we find models with simpler flux calculations yield flux magnitudes that agree more with atmo-
spheric observations compared to those using more complex equations. GCP models such as LPJ-wsl, SDGVM, and JULES
produce smaller flux magnitudes, and each of these models uses simple approaches to simulate CH, fluxes. For example, these
models rely only on net fluxes without accounting for specific transport pathways (e.g., ebullition, diffusion, or plant-mediated
transport) (Zhang et al., 2025). In contrast, models such as VISIT, JSBACH, and ISAM have the largest flux magnitudes,
and each of these models employs more complex equations that include multiple components of CHy fluxes, such as gross
production, oxidation, and consumption. These models also simulate explicit transport pathways like ebullition, diffusion, and

plant-mediated transport, alongside layered soil temperature schemes for temperature sensitivity (Zhang et al., 2025). Models

with more complex representations generally require additional input data to provide detailed-more accurate flux estimates.

with-more-uneertain-input-dataThus, in data-sparse regions, added process detail could potentially amplify input and parameter
uncertainty and enlarge the flux spread.

3.3 Seasonality

We find that models more consistent with atmospheric observations have a distinct seasonal peak in wetland CH,4 fluxes in July
and August. In contrast, models that do not agree well with atmospheric observations have a flatter seasonal cycle.

To evaluate these differences, we compare the correlation between atmospheric CH,4 observations and STILT simulations
using each of the different GCP models (Fig. 5). We specifically use this analysis to explore which GCP models better capture
the seasonal and spatial variability of CH, fluxes across our model domain. First, we calculate R? values for each model using

a two-predictor regression model. In each regression, the first predictor variabtes-variable represents modeled CH4 mixing

16



460

465

470

475

Magnitude comparison of prognostic & diagnostic GCP models with WETCHIMP (May-Oct)
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Figure 4. Comparisons between modeled mixing ratios from STILT against observations at the tower sites. The y-axis has values range from
0 to 9, representing the ratio between the modeled wetland CH4 mixing ratios using the GCP and WETCHIMP models and the observed
increment. We define the observed increment as the difference between atmospheric CH4 observations and the sum of the boundary CH4
levels, modeled anthropogenic CH4 mixing ratios, and modeled biomass burning CH4 mixing ratios. A value of 1 on the y-axis indicates

perfect agreement between the modeled wetland CH4 mixing ratios and the observed increment.

ratios due to wetlands using one of the GCP models, and the second predictor variable represents modeled CH, mixing ratios
due to different anthropogenic flux products plus biomass burning from GFED (Sects. 2.3 and 2.4). The regression will scale
the magnitude of the STILT model outputs to optimally match atmospheric observations. As a result, this analysis is not very
sensitive to the absolute magnitude of the original flux estimates. Instead, the overall fit of each regression is more likely a
reflection of the seasonal and spatial patterns in the wetland, anthropogenic, and biomass burning flux estimates; GCP flux
estimates with more accurate seasonal and spatial variability will more likely yield higher correlation coefficients (R? values).
Figure 5 depicts the mean R2 values for 16 GCP diagnostic wetland models and 11 GCP prognostic wetland models. Each
model has a mean R? value that is averaged from the two climate forcing data (GSWP3 and CRU) and three anthropogenic
flux products. These results highlight the large variability in R? values across different GCP models. As shown in Fig. S7,

model comparisons using Root Mean Squared Error (RMSE) are identical to those using RZ, a result that further reinforces the

discussion here.

Based on this analysis, we categorize each of the diagnostic and prognostic GCP models into three groups based on how
they agree with atmospheric observations. By grouping the models, we can look for common patterns that separate models
that exhibit high R? values from those that exhibit lower R? values. Models with R? values greater than 0.4 are grouped into
the high R? group (represented by blue lines in Figs. 6a and 6b), models with R? values between 0.3 and 0.4 are classified as
the average R? group (represented by green lines in Figs. 6a and 6b), and models with R? values below 0.3 are considered as
the low R? group (represented by red lines in Figs. 6a and 6b). Although these cut-offs are inherently subjective, they offer a

practical framework for grouping the models and result in a similar number of models within each group.
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Mean R? values for wetland models at Wetland domlnated sites
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Figure 5. The correlation R? between modeled CH4 mixing ratios using the G&EPprocess-based models and atmospheric observations.
Blue dots represent the mean R? value for prognostic models across different climate forcing data and anthropogenic products. Orange dots

represent the mean R? value for diagnostic models across different climate forcing data and anthropogenic products. The gray dot represents

the mean R? value for the WETCHIMP models across different anthropogenic products. The y-axis lists all the prognostic and diagnostic
GCP models and WETCHIMP models, and the x-axis shows the R? range for these GCP and WETCHIMP models.

Across the high and average R? groups, CH, fluxes exhibit a clear seasonal cycle, and we find that approximately 60—
70% of the total fluxes from these models during the period of May to October occur during the peak summer season (June,
July, and August). In these groups, the models capture the sharp rise and fall of the CH, fluxes, and they also show peak
monthly percentages during July and August (Figs. 6a and 6b). This pattern aligns with the results of aircraft inversion studies

that report a pronounced midsummer maximum Miller et al. (2016b); Chang et al. (2014). The low R? models display a much
flatter seasonal pattern. The-flatter-seasonal-eyele-indicates-that-these-These models do not capture the pronounced summer

peaks observed in the high and average groups, suggesting that they may not fully capture seasonal variations in wetland fluxes.

The relationships between CH, fluxes and temperature may explain some, though not all, of the differences in seasonality
among the GCP models. In our study, diagnostic SDGVM, diagnostic LPJ-MPI, diagnostic JULES, and diagnostic ISAM are
the models that have high and average R? values (>0.35), and both have estimated Qj, values greater than three, indicating

a high sensitivity of their fluxes to temperature changes —(Figs. S12 — S13). Moreover, models in the low R? group (<0.30)
have estimated Qo values below 2, resulting in weaker temperature-driven flux—vartations<Fig—2?mean fluxes (Figs. S12 —
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Figure 6. The seasonal cycles of the diagnostic GCP models (a) and prognostic GCP models (b) from 2007-2017. The blue, green, and red
lines each represent the GCP models that have the highest, average, low R values with atmospheric observations. The x-axis represents the

months from May to October throughout 2007-2017, and y-axis denotes the percentages of CH4 fluxes that occur within that month.

S13). This result shows that temperature relationships can explain at least some differences in the seasonality of the diagnostic
GCP models. By comparison, existing empirical studies find a range of Q¢ values for wetlands in the aretie-Arctic region. Cao
et al. (1996) suggest that a Qo value of 2 is calculated using a simple temperature response model, but Ito (2019); Walter and
Heimann (2000) compute the Qo values of 3.85 and 6 using a more complicated mechanistic temperature response model. In
addition, another study finds that the composition of wetlands can also yield different Qo values in-the-aretic-across the Arctic
region. Specifically, M. Lupascu and Pancost (2012) find that wetlands that contain more Sphagnum moss can result in a Qg
value of 8 or higher. These studies show that Qo values can be highly dynamic in high-latitude regions, and a Q¢ value of 6
does not necessarily mean that the temperature response model is wrong. We also examine the relationship between mean R?
and across models, but we find no consistent association between the two variables (Fig. S13).

atmospheric observations compared to the prognostic version of the model (Fig. 5. Prognostic versions of CLASSIC, SDGVM,
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LPX-Bern, and VISIT have better /2” values compared to diagnostic versions). This result suggests that the better-performed
diagnostic models may also reflect their reliance on a consistent inundation product, which potentially gives them the advantage
in this evaluation framework over the more mechanistic prognostic models. In addition, process-based models with simpler
and more deterministic formulations tend to produce smaller flux magnitudes and higher 222 values compared to more complex.
models. This result indicates that simple formulations can effectively capture regional-to-continental flux patterns as those
more complicated models (e.g., Miller et al., 2014, 2016b). However, more sophisticated process representations may become
increasingly important for simulating finer-scale spatial structure or higher-frequency temporal variability of CHy fluxes.

We also find that the GCP models result in higher R values and lower errors compared to the WETCHIMP models, both
when comparing overlapping subsets of models and when considering their respective multi-model ensembles (Fig. S10 and
S11). The ensemble of all WETCHIMP models yields a R? of 0.20 and an RMSE of 13.2 ppb. In contrast, the ensemble of
all prognostic GCP models shows a 12 of 0.35 with an RMSE of 11.9 ppb, while the ensemble of all diagnostic GCP models.
gives a 1” of 0.39 with an RMSE of 11.5 ppb. These results demonstrate a clear improvement over the earlier WETCHIMP
models, at least in comparisons with atmospheric observations.

3.4 Spatial Distributiondistribution

We find that prognostic models that are most consistent with atmospheric observations concentrate their fluxes near the HBE

Hudson Bay Lowlands (Fig. 7a). In contrast, prognostic models with the lowest R? values focus their fluxes outside this key

region (Fig. 7c).
vary—across—differentregions—We focus this section on the prognostic models because the diagnostic models use the same
inundation map and therefore exhibit similar spatial flux patterns. Similar to the previous analysis of seasonality, we group the
prognostic models into three categories (high, average, low) depending on their R? values when compared against atmospheric
observations. A Principal Component Analysis (PCA) highlights common spatial patterns among the models in each different
group (e.g., Wold et al., 1987; Jolliffe, 1986; Delwiche et al., 2021). The percentage of variance explained by the first principal
component (PC1) shows the degree of spatial patterns shared among models in each group, and this percentage captures how

consistently the models agree in their spatial flux distributions across grid boxes within the study domain. We use the PC1

explained variance as a measure of within-group spatial coherence that quantifies how much of the between-model variance
in a group is captured by a single grid. We find that models in the high R? group have a first-prineipal-component(PC1 )
explaining 63.5% of the variance, followed by the average R? group with 50.1%, and the low R? group with 68.9% explained

variance. Although the low R? group shows the highest explained variance, this number does not necessarily indicate that
the models in this group are more accurately capturing the true spatial patterns of the CH, fluxes compared to those in other
groups.

We find notable common spatial features among the models in the high R?, as seen in the PCA analysis. LPJ-wsl and
CLASSIC have the highest R? values, and these models consistently concentrate their CHy fluxes in the HBEHudson Bay
Lowlands. In contrast, JULES, ISAM, and ELM are the models with lower R? values. These models show large spatial
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PCA and mean standardized CH,4 fluxes from May-October at remote sites (prognostic)
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Figure 7. The PCA results and mean standardized CH4 fluxes for the prognostic GCP models, run separately for each group of models — the

high (a and d), average (b and e), and low (c and f) R? groups. The unit for PCA results is in explained variance by the first component (%),

and darker (or more blue) shades represent better spatial agreements among the models within a same group.

discrepancies in critical wetland regions such as the HBEHudson Bay Lowlands, and they tend to concentrate fluxes outside of
these key regions, particularly in the Great Lakes region of Canada.

An important caveat of this result is that the long-term observation network is sensitive to fluxes from some regions of high-
latitude North America but not others (Fig. 1)
analysis itself is unweighted, and our interpretation of spatial patterns (based on the /” metric) is necessarily influenced by

regions with stronger observational coverage. We also note that none of the atmospheric observing towers are directly located

in the HBEHudson Bay Lowlands, but the STILT footprints shown in Fig. 1 indicates that the network is sensitive to CH4 fluxes

from the broader region, allowing us to draw conclusions about the spatial distribution of fluxes in and around the HBEHudson

Bay Lowlands.
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4 Conclusions

This study highlights areas of convergence and disagreement among state-of-the-art process models of wetland CH4 fluxes.
We compare the estimates with atmospheric CH4 observations between May and October in high-latitude North America. In
the first section of the paper, we find that GCP models have a much smaller flux magnitude and lower inter-model uncertainty
across North America compared to a previous model inter-comparison (WETCHIMP). This-change-in-magnitade-improves
eonsisteney-The GCP models, when passed through an atmospheric transport model, are more consistent with atmospheric
CH, observations compared to the WETCHIMP models, though we argue that the current GCP model ensemble is still too
high across much of Canada and Alaska. In the second section of the study, we find that process-based CH4 models that are
most consistent with atmospheric observations based on our 12 analysis exhibit the highest percentage of fluxes in July and
August relative to other months and have a sharper seasonal cycle. These process-based models also concentrate their fluxes
near the HBE-Hudson Bay Lowlands while less skilled models often concentrate fluxes further south near the Great Lakes.
Overall, this study highlights the eppertunity-opportunities to improve current process-based models to-estimate-regionat-of
wetland CHy4 fluxes. Key areas for improvement i are ization-i : ssiig-include addressing (1) uncer-
tainties in inundation maps-te-capture-or wetland extent and (2) improving estimated maps of soil carbon, though the latter
factor was difficult to evaluate this study. We find that prognostic models show greater room for improvement than the diag-
nostic models :-swhite-because they show less agreement with atmospheric observations based on the B? and RMSE metrics.
While diagnostic models benefit from consistent inundation maps, the development of better prognostic models is nevertheless
very important because these models can be used to project future trends in wetland extent or inundation, which is critical for
future projections of CH4 fluxes under the-ongoing climate change. Overall, we argue that the bottom-up modeling community

had made large strides in reducing inter-model uncertainties, and these improvements are consistent with atmospheric CHy

observations —based on our analysis using the STILT model. We note, however, that the GCP models are global and drivers

vary regionally, so these conclusions apply only to our domain and time period. With that said, there is still an enormous need
for further improvements in these models to advance understanding of high-latitude wetland CH,4 fluxes in a changing climate.
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Data availability. We received the wetland model estimates from Zhen Zhang and the GCP modeling team, and these datasets are available
upon request from the GCP modeling team. The GlobalViewPlus CHs ObsPack v5.1 dataset is available at https:/gml.noaa.gov/ccgg/
obspack/citation.php?product=obspack_ch4_1_GLOBALVIEWplus_v5.1_2023-03-08.

The WRE-STILT footprints for North American CH4 monitoring sites are available at https://gml.noaa.gov/aftp/products/carbontracker/
lagrange/footprints/ctl-na-v1.1/. The North American Boundary Condition product is provided by the NOAA Earth System Research Labo-
ratory, and the dataset is available at https://gml.noaa.gov/aftp/user/arlyn/naboundary/v20190806/ROBJ/. Guidance related to these datasets
can be requested from Lei Hu (lei.hu@noaa.gov) and Kathryn McKain (Kathryn.McKain@noaa.gov).

The CAMS global emission inventory dataset is available from the Copernicus Atmosphere Data Store. DOI:https://doi.org/10.24381/
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