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Abstract. Methane (CH4) flux estimates from high-latitude North American wetlands remain highly uncertain in magnitude,

seasonality, and spatial distribution. In this study, we evaluate a decade (2007 – 2017) of CH4 flux estimates by comparing

16 process-based models with atmospheric CH4 observations collected from in situ towers. We compare the Global Carbon

Project (GCP) process-based models with a model inter-comparison from a decade earlier called The Wetland and Wetland

CH4 Intercomparison of Models Project (WETCHIMP). Our analysis reveals that the GCP models have a much smaller inter-5

model uncertainty and have an average magnitude that is a factor of 1.5 smaller across Canada and Alaska. However, current

GCP models likely overestimate wetland fluxes by a factor of two or more across Canada and Alaska based on tower-based

atmospheric CH4 observations. The differences in flux magnitudes among GCP models are more likely driven by uncertainties

in the amount of soil carbon or spatial extent of inundation than in temperature relationships, such as Q10 factors. The GCP

models do not agree on the timing and amplitude of the seasonal cycle, and we find that models with a seasonal peak in July10

and August show the best agreement with atmospheric observations. Models that exhibit the best fit to atmospheric observation

also have a similar spatial distribution; these models concentrate fluxes near Canada’s Hudson Bay Lowlands(HBL). Current,

state-of-the-art process-based models are much more consistent with atmospheric observations than models from a decade ago,

but our analysis shows that there are still numerous opportunities for improvement.
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1 Introduction15

Natural sources of CH4 contribute ∼40% of total global fluxes, and wetlands are possibly the largest single source (e.g.,

Kirschke et al., 2013; Saunois et al., 2025). Understanding the magnitude, seasonality, and spatial distribution of wetland CH4

fluxes is important to accurately predicting future carbon-climate feedbacks. However, the response of wetland CH4 fluxes to

temperature changes is uncertain (e.g., Zhang et al., 2023, 2017), especially in high-latitude regions where warming occurs 2-4

times faster than the global average (e.g., Rantanen et al., 2022).20

At least some of this uncertainty is related to uncertain permafrost dynamics. Permafrost covers approximately ∼15% of the

land in the Northern Hemisphere (Obu, 2021), and it serves as a massive reservoir for carbon. Globally, permafrost regions store

about 1,000 to 1,672 peta-grams (Pg) of soil organic carbon (SOC), nearly twice the total amount of carbon in the atmosphere

(Schuur et al., 2015; Hugelius et al., 2014; van Huissteden and Dolman, 2012). As permafrost thaws, it changes the soil

environment and triggers microbial decomposition of the stored organic matter. When the soil is wet, microbial decomposition25

in permafrost leads to the release of CH4 through the process of anaerobic respiration. One study indicates that wetland CH4

fluxes can be large enough to flip some high latitude regions from a net carbon sink to a net source (Watts et al., 2023).

To understand high-latitude wetland CH4 fluxes and better predict future warming, process-based (bottom-up) models are

important as they can be used to estimate current wetland CH4 fluxes and provide insights to
::::::
project future CH4 projections

:::::
fluxes from regional to global scales, leveraging current scientific knowledge of different biogeochemical processes (e.g., ?Nzotungicimpaye et al., 2021; Melton et al., 2013; Zhang et al., 2017)30

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Saunois et al., 2025; Nzotungicimpaye et al., 2021; Melton et al., 2013; Zhang et al., 2017). Despite their importance, the

CH4 flux estimates from bottom-up models can have large discrepancies and uncertainties. For example, bottom-up estimates

show that total global wetland fluxes range from 100 to 256 Tg CH4 yr−1 (Xiao et al., 2024; Zhang et al., 2025; Saunois

et al., 2025; Liu et al., 2020). In boreal North America, process-based models also estimate wetland CH4 fluxes ranging

from 13.8 to 39.6 Tg CH4 per year (Poulter et al., 2017). In addition, a recent study suggests an increase of 50 to 150%35

in global wetland CH4 fluxes by 2100, a large range of numbers which points to large uncertainties in current projections

(Koffi et al., 2020). Model inter-comparison projects like the Wetland and Wetland CH4 Intercomparison of Models Project

(WETCHIMP) have been used to compare the state-of-the-art wetland CH4 flux models across different regions of the globe

(e.g., Miller et al., 2016b; Wania et al., 2013; Miller et al., 2016a; Bohn et al., 2015)
:::::::::::::::::::::::::::::::::::::::::::::::
(Melton et al., 2013; Wania et al., 2013; Bohn et al., 2015)

. In more recent years, the Global Carbon Project (GCP) has been created to synthesize scientific knowledge of the global40

carbon cycle, and this effort includes a large ensemble of the latest process-based CH4 flux models (Poulter et al., 2017;

Zhang et al., 2025). Projects
:::::
There

::
is

::::::
limited

:::::::::
knowledge

:::
on

::::
how

::::
these

:::::::
models

::::
have

::::::::
improved

::
or

:::::::
evolved

::::
over

::::
time

:::::::::
compared

::
to

:::
the

::::::
earlier

:::::::::::
WETCHIMP

:::::::::::::::
inter-comparison.

:::::::::::
Fortunately,

:::::::
projects

:
like WETCHIMP and GCP make it easier to identify

:::::::::::
improvements

:
and diagnose uncertainties in wetland flux models because all modeling groups use similar modeling proto-

cols, meteorological inputs, and, in some cases, common inundation or wetland maps. However, there is limited knowledge on45

how these modelshave improved or evolved over time compared to the earlier WETCHIMP inter-comparison
::
By

:::::::::::
harmonizing

:::::
inputs

::::::
across

:::::::
models,

:::
we

::::::::
eliminate

::::::::::
input-driven

:::::::::
variability

::::
due

::
to

::::::::
different

::::::
climate

:::::::
forcing

::::
data,

::::
and

:::
the

:::::::::
remaining

::::::
model

:::::
spread

::::::::
therefore

::::::::
primarily

::::::
reflects

:::::::::
differences

:::
in

::::::
process

:::::::::::::
representations

:::
and

:::::::::::::::
parameterizations.

2



A handful of studies have used approaches such as atmospheric modeling and inverse modeling to suggest improvements

to process-based
::::::::
Numerous

::::::
studies

:::::
have

::::
also

::::
used

:::::::::::
atmospheric

:::::
CH4 ::

to
::::::::
quantify CH4 flux models across high latitudes50

(e.g., Miller et al., 2016a; Karion et al., 2016). For example, several existing studies have used intensive aircraft campaign data

to quantify CH4 fluxes from Alaska and provide a range of estimates from 1.48 Tg CH4 per year to 2.9 Tg CH4 per year

(Miller et al., 2016b; Hartery et al., 2018; Chang et al., 2014; Sweeney et al., 2022). Other studies focused on CH4 fluxes from

high latitude North America use in situ CH4 observations from long-term tower observation sites, and these studies
::::
fluxes

:::::
from

::::::::::
high-latitude

::::::::
wetlands

:::::
across

:::::
North

::::::::
America.

:::::
Early

::::::
studies

::::
used

::
a

:::::
sparse

:::::::
network

::
of

:::::
tower

:::::::::::
observations

::
in

::::::
Canada

::::
and

::::::
Alaska55

::
to

:::::::
quantify

::
the

::::::::::
magnitude,

:::::::::
seasonality,

::::
and

:::::
spatial

::::::::::
distribution

::
of

:::::::
wetland

:::::
fluxes

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Worthy et al., 1998; Pickett-Heaps et al., 2011; Miller et al., 2014, 2016a; Karion et al., 2016; Ishizawa et al., 2019)

:
.
:::::
These

::::::::::
tower-based

::::::
studies provide a range of flux estimates from 14.8 to 19.5 Tg CH4 per year for Canada and 1.56 to 3.4 Tg

CH4 per year for the Hudson Bay Lowlands (HBL), a prominent wetland region in northern Canada (e.g., Ishizawa et al., 2024; Miller et al., 2014; Pickett-Heaps et al., 2011; Thompson et al., 2017)

. Although top-down studies provide relatively good agreement on flux totals from these regions, it is also worth noting that

top-down studies do not always agree, particularly on topics like seasonality and
:
,
::::::
though

:::::
these

::::::
studies

:::::::
disagree

:::
on

:::::::
whether60

::::::::::
high-latitude

:::::
fluxes

::::
have

:::::::::
detectable

::::::::::
year-to-year

:::::::::
variability

::
or

:
a
:::::::::
multi-year

::::
trend

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ishizawa et al., 2019; Sweeney et al., 2016; Thompson et al., 2017; Ward et al., 2024)

:
. Sweeney et al. (2016) argues that there is no multi-decadal trend in CH4 fluxes using observations from Utqiagvik, Alaska,

while inverse modeling studies by Thompson et al. (2017),
::::::::::::::::::
Ishizawa et al. (2019)

:
, and Ishizawa et al. (2024) identify significant

inter-annual variability in
:::::::
wetland fluxes across high-latitude North America. The coarse spatial resolution of some inverse

estimates can further limit comparison with process-based flux models. These limitations and disagreements notwithstanding,65

results from top-down studies often provide better constraintson

:::::
NASA

::::::::
scientists

::::::
began

::::::::
collecting

::::::::
intensive

:::::::::::
aircraft-based

::::::::::
greenhouse

:::
gas

:::::::::::
observations

::::::
across

::::::
Alaska

::
in

:::::
2012,

::::::::
providing

::
a

::::::::::
complement

::
to

:::
the

::::::::
long-term

:::::::::::
tower-based

:::::::
network,

::::
and

::::
these

:::::::
aircraft

:::::::::
campaigns

::::
have

:::
led

::
to

:::::::::
numerous

::::::
studies

::
on

:
CH4 :::::

fluxes

::::
from

:::
that

:::::
state.

::::
The

::::::
authors

:::
of

::::
these

::::::
studies

::::::::
quantify

:::
the

:::::::::
magnitude

:::
and

::::::
spatial

::::::::::
distribution

::
of

:::::
fluxes

:::::
using

:::::::
inverse

::::::::
modeling

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chang et al., 2014; Miller et al., 2016b; Hartery et al., 2018; Sweeney et al., 2022).

:::::
These

::::::::
estimates

:::::
range

::::
from

::::
1.48

::
to

:::
2.6

:::
Tg70

::::
CH4 :::

per
::::
year,

:
a
:::::::
number

::::::
similar

:
to
:::::
CH4 :::

flux
:::::
totals

::::
from

::::::::
Canada’s

::::::
Hudson

::::
Bay

::::::::
Lowlands

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Miller et al., 2016b; Hartery et al., 2018; Chang et al., 2014; Sweeney et al., 2022)

:
.
::
By

::::::::
contrast,

:::
the

:::::::::::
WETCHIMP

::::::::::::
process-based

:::::::
models

::::
span

:
a
:::::

much
::::::

wider
:::::
range

::::
from

::::
0.65

:::
to

:::
6.0

:::
Tg

::::
CH4:::

per
:::::
year,

:
a
::::::
nearly

:::::::
nine-fold

:::::::
spread.

::::::
Several

::::::
studies

::::
also

::::::::
leverage

::::::
aircraft

:::::::::::
observations

:::
to

:::::::
conduct

::
a

:::::::
detailed

:::::::::
evaluation

::
of

::::
flux

:::::::::
processes

::::
and

::
of

:::::::::
numerous

:::::::::::
process-based

:::::::
models,

::::::
mostly

::::
from

:::
the

:::::::::::
WETCHIMP

::::::::::::::
inter-comparison

:::::::::::::::::::::::::::::::::
(Miller et al., 2016b; Hartery et al., 2018)

:
.
:::
For

::::::::
example,75

::::
these

::::::
inverse

:::::::::
modeling

::::::::
estimates

:::::::
indicate

:::
that

::::::
tundra

::::::::::
ecosystems

::::::::
contribute

::
a
::::::::::::::
disproportionate

:::::
share

::
of

:::::::
Alaskan

::::
CH4::::::

fluxes

:::::
(often

::::::
> 50%

::
of

::::
total

:::::::
Alaskan

::::
CH4:::::

fluxes
::::::
despite

::::
their

:::::::
smaller

::::
areal

:::::::
extents).

::::
The

:::::
North

:::::
Slope

:::::
alone

:::::::
accounts

:::
for

::::::
∼ 24%

::
of

:::
the

::::
total

:::::::
statewide

::::
CH4::::::

fluxes,
:::::
which

::
is

::::::
∼ 20%

::::::
higher

:::
than

:::
the

::::::::
estimates

::
of

::::::::::::
process-based

::::::
models

::::::::::::::::::::::::::::::::::
(Miller et al., 2016b; Hartery et al., 2018)

:
.
::::::::::
Collectively,

:::::
these

::::::::::::
aircraft-based

::::::
studies

::::::::::
demonstrate

::::
that

::::::::::::
process-based

:::
flux

:::::::::
estimates

:::
not

::::
only

::::::
diverge

:::::::::::
substantially

:::::
from

:::
one

:::::::
another,

:::
but

::::
also

::::
from

::::::::::
atmospheric

::::::::::
constraints.

:::
The

:::::
main

:::::
driver

::
of

::::
this

:::::::::
divergence

::
is

:::
how

:::::::
models

::::::::
represent

::::::
wetland

::::::
extent80

:::
and

:::::
water

::::
table

:::::::::
dynamics,

:::
and

:::::
these

::::::
factors

::::
have

::
a
:::::
salient

::::::::
influence

:::
on

:::
the

:::::::::
magnitude

:::
and

::::::
spatial

::::::::::
distribution

::
of

:::::::::::
high-latitude

::::::
wetland

::::
CH4:

fluxes over large regional domains with a narrower range of uncertainties compared to
::::::::
estimated

::
by

:
process-based

::::::
models

:::::::::::::::::
(Miller et al., 2016b).

::::::::::::::::::
Hartery et al. (2018)

:::
also

:::::
argue

:::
that

::
in

:::::::
wetland

::::
soils,

:::::
CH4 :::::

fluxes
:::
are

:::::
likely

:::::
driven

::
by

:::::::::::
near-surface
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:::
soil

::::::::::
temperature

:::
and

::::::::
moisture

::::
while

:::::
fluxes

:::::
from

::::::::::
non-wetland

::::
soils

:::
are

:::::
more

::::
likely

::::::
driven

::
by

::::::::::
temperature

::::
and

:::::::
moisture

::
at

::::::
greater

::::::
depths,

:
a
:::::::::
difference

::
in

::::::::
processes

:::
that

::::
may

:::
be

:::
key

:::
for

:::::::::
effectively

::::::::
modeling

::::
CH4:::::

fluxes
::::::
across

::::::
Alaska.

:
85

::::
Since

:::
the

:::::
early

:::::
2010s,

:::
the

::::::::::
tower-based

::::::::
observing

:::::::
network

:::
has

::::::
greatly

::::::::
expanded

::::::
across

::::::::::
high-latitude

:::::
North

::::::::
America,

::::::::
providing

:
a
::::
new

::::::::::
opportunity

::
to

:::::::
evaluate

:::::::::::
process-based

:
models .

In
:::
and

:::
to

::::::
suggest

::::::
future

:::::::::::
opportunities

::::
for

:::::::::::
improvement.

:::
In

::::::::
addition,

:::
we

:::
can

:::::
now

:::::::
compare

::::
two

::::::::
different

::::::::::::
process-based

:::::
model

:::::::::
ensembles,

:::::::::
generated

::::
over

:
a
:::::::
decade

:::::
apart,

::
to

:::::
assess

::::
how

::::::::::::
process-based

::::::::
estimates

::
of

:::::::::::
high-latitude

:::::::
wetland

:::::
fluxes

:::::
have

::::::
evolved

::::
over

:::::
time

::::
(i.e.,

:::
the

::::::::::::
WETCHIMP

:::
and

:::::
GCP

::::::::::
ensembles).

:::
In this study, we use atmospheric CH4 observations from90

tower sites to evaluate the GCP process-based models across high-latitude North America. We specifically use four sets of

analyses to compare atmospheric CH4 observations and the GCP wetland flux models with a goal of suggesting future im-

provements to these models. For each of these analyses, we run each GCP flux estimate through an atmospheric transport

model to simulate atmospheric CH4, and we compare the results against available atmospheric CH4 observations. First, we

compare the GCP models across high latitudes against the WETCHIMP models and explore how process-based flux mod-95

els have evolved over the past decade. Several existing studies have evaluated the WETCHIMP models using atmospheric

observations, and this retrospective comparison provides useful context on how the state of science has changed since those

studies (e.g., Miller et al., 2016b; Wania et al., 2013; Miller et al., 2016a; Bohn et al., 2015). Second, we examine how the GCP

models vary in CH4 flux magnitude and what potential factors might drive agreement or disagreement among the models. Third,

we investigate differences in seasonal cycles across models that best match atmospheric observations versus models that show100

seasonal discrepancies with atmospheric observations. Lastly, we examine the spatial distribution of the CH4 fluxes estimated

by the GCP models and identify spatial patterns that appear to yield better agreement with
::
the

:
available atmospheric CH4

data. We note that the GCP models are global in scale and not specifically designed for high-latitude regions. With that said,

state-of-the-art process-based models should ideally provide accurate flux estimates across all global regions, and we argue

that regional comparisons are important to inform future model development.105

2 Data and Methods
:::::::
methods

2.1 Atmospheric CH4 Measurements

To better understand current wetland CH4 fluxes, we compare GCP CH4 flux estimates with 11 years of in situ tall tower data

from the United States and Canada, spanning 2007 to 2017. We
:::
note

::::
that

::::::
several

:::::::
previous

::::::
studies

::::
have

:::::::
already

::::
used

::::::::
intensive

::::::
aircraft

:::::::::
campaigns

::
to

:::::::
examine

::::
CH4:::::

fluxes
::::::
across

:::::::
specific

::::::
regions

::
of

::::::
Alaska

:::
and

::
to
:::::::
evaluate

::::::::::::
process-based

::::
flux

::::::
models

::
in

:::::
those110

::::::
regions

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Miller et al., 2016b; Hartery et al., 2018; Chang et al., 2014; Sweeney et al., 2022).

:::
We

:::::
build

::::
upon

:::::
these

:::::::
existing

::::::
studies

::
by

:::::::::
evaluating

:::::::::::
process-based

:::::::
models

:::::
using

::::::::
long-term

:::::
tower

::::::::::
observation

::::
sites

:::
that

:::
are

:::::::::
distributed

:::::
cross

::::
both

::::::
Canada

::::
and

::::::
Alaska,

::::
and

:::
we

:::::::
compare

::::
and

:::::::
contrast

:::
our

::::::
results

::::
with

::::::::
previous

::::::::::::
aircraft-based

::::::
studies

::
in

:::
the

:::::::
Results

:::
and

:::::::::
discussion

:::::::
section

:::::
(Sect.

::
3).

:

:::
We

:::
also

:
focus on the months of May through October each year. Wetland CH4 fluxes are largest during these months, and115

many existing top-down studies have focused on these months for their analyses (e.g., Miller et al., 2016b; Chang et al., 2014;
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Pickett-Heaps et al., 2011). By contrast, the ratio of wetland fluxes to anthropogenic CH4 emissions is much smaller in other

months of the year across Alaska and Canada, making it more difficult to uniquely constrain wetland fluxes using atmospheric

observations. The geographic domain of this study covers the high-latitude regions of North America, ranging from 40◦ N to

80◦ N and 170◦ W to 50◦ W.120

2.2

In this study, we use continuous atmospheric CH4 measurements from in situ towers across the Canada and the US between

years 2007 and 2017, and the atmospheric data
:::
The

:::::::::::
atmospheric

::::
data

::::
used

::
in

::::
this

::::
study

:
come from the NOAA Observation

Package (ObsPack) CH4 GlobalViewPlus v5.1 dataset (Di Sarra et al., 2023). There are 21 available tower sites within the study

domain, and the towers provide a combination of continuous and flask measurements. We list a more detailed description of125

each tower site and its location in Table S1. We
:
In

::::::::
addition,

:::
we extract afternoon averages of the observations between 1pm and

6pm local time when the boundary layer is generally well-mixed, an approach similar to multiple existing top-down studies

(e.g., Miller et al., 2014, 2016a; Karion et al., 2016; Ishizawa et al., 2024)
:::
and

:::
we

:::
do

:::
this

:::
to

::::::
reduce

:::::::
transport

:::::::::::
uncertainties

:::
in

:::::
STILT. During this time of day, CH4 measurements are arguably influenced by fluxes from a broader region than at night.

By contrast, the atmosphere is usually stable in the morning and at night with lower boundary layer heights, making accurate130

atmospheric trace gas modeling challenging.

We note that several previous studies have already used intensive aircraft campaigns to examine regional CH4 fluxes across

high-latitude North America (e.g., Miller et al., 2016b; Hartery et al., 2018; Chang et al., 2014; Sweeney et al., 2022). These

studies use inverse modeling to provide detailed evaluations of several key aspects of CH4 fluxes including magnitude and

seasonality. Existing, intensive aircraft campaigns are largely centered in Alaska, while tower-based measurements offer broad135

spatial coverageacross North America. In the present study, we focus on tower data to evaluate CH4 dynamics broadly across

northern North America, and we refer the reader to the aforementioned studies for detailed analyses of intensive aircraft data
::
As

:
a
:::::
result,

:::
we

::::::::
prioritize

::::::
robust

::::::::
transport

::::
over

:::
full

:::::::
diurnal

::::::::
coverage,

:::
and

::::
this

::::::::
approach

::
is

::::::
similar

::
to

::::::::
multiple

::::::
existing

:::::::::
top-down

::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Miller et al., 2014, 2016a; Karion et al., 2016; Ishizawa et al., 2024).

2.2 Global Carbon Project Models (
:::::::
Wetland

:::::
CH4 :::

flux
::::::
model

::::::::::
ensembles: GCP Models)

:::
and

::::::::::::
WETCHIMP140

The GCP

:::
The

::::::
Global

:::::::
Carbon

::::::
Project

::::::
(GCP)

:
includes global-scale wetland CH4 flux models that use diverse hydrological and bio-

geochemical schemes
::::::::::::::::
(Zhang et al., 2025). The most recent GCP model ensemble includes 16 process-based models span-

ning the period from 2000 to 2020, though some models end earlier or later than 2020. A general description of these GCP

models is provided in Table S2 and in Zhang et al. (2025). Each of the these models is run in two different ways: diagnosti-145

cally and prognostically. The diagnostic runs from
::
for

:
each model are constrained by a predefined inundation map from the

::::::
product

:
Wetland Area and Dynamics for Methane Modeling version 2 (WAD2Mv2)product, while each modeling group can

determine their own inundation map for ,
:::::
while

:
the prognostic runs (Zhang et al., 2021).

:::::::
estimate

:::
the

:::::::::
inundation

:::::::::
internally

::::
using

:::::
their

::::
own

:::::::::::
hydrological

:::::::
schemes

:::::
such

::
as

::::
soil

:::::::
moisture

:::::::::::::::::
(Zhang et al., 2021)

:
.
:::
As

:
a
::::::
result,

:::::::::
prognostic

:::::::::
inundation

::
is
::::

not
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:::::::::::::::
observation-driven,

::::
and

::::::::::
inter-model

::::::::::
differences

:::
are

::::::
driven

::
by

:::
the

:::::::::::
hydrological

:::::::
scheme

:::
and

:::::::
climate

:::::::
forcing.

:
Note that each150

modeling group submitted estimates of CH4 fluxes to the GCP, but the submissions do not include
::::
GCP

::::::::
modeling

::::::
group

:::
did

:::
not

:::::
submit

:
variables like soil carbon. This ,

::::
and

:::
this

:
fact limits our ability to diagnose disagreements in the CH4 flux estimates

from different models. More detailed descriptions of the current GCP model ensemble, including their approaches to wetland

inundation and model parametrization can be found in Zhang et al. (2025).

In this study, we evaluate the 11 prognostic and 16 diagnostic models included in the GCP ensemble. Each of these models155

was run using two different meteorological reanalysis products to examine the effects of meteorological uncertainties on esti-

mated CH4 fluxes. These products include the Global Soil Wetness Project Phase 3 (GSWP3) and the Climate Research Unit

:::::
(CRU)

:
Time-Series 4.06 (Harris et al., 2022; Lange and Büchner, 2020). A recent study showed

::::
shows

:
that the differences

between these two climate-forcing datasets are negligible (Ito et al., 2023). Nevertheless, both datasets are included in this

study to provide a comprehensive evaluation. We regrid these GCP160

:::
We

::::
also

:::::::
evaluate

::::::::::::
process-based

:::::::
wetland

:::::
CH4::::::

fluxes
:::::
using

:::
the

::::::::
Wetland

:::
and

::::::::
Wetland

::::
CH4::::::::::::::

Intercomparison
:::

of
:::::::
Models

::::::
Project

:::::::::::::
(WETCHIMP),

::::::
which

::
is

::::::::
designed

::
to

::::::::
compare

::::::::
modeled

:::::::
monthly

:::::
CH4 :::::

fluxes
::::::

across
:::
the

::::::
globe

:::::::
between

:::::
1993

::::
and

::::
2004

::::::::::::::::::::::::::::::::
(Melton et al., 2013; Wania et al., 2013)

:
.
:::::
There

:::
are

:::::
seven

::::::
models

::::::::
available

:::
that

:::::::
provide

::::
CH4:::::

fluxes
::
in

:::
the

:::::
North

::::::::
America

:::::::
domain.

::::::
These

::::::
models

:::
are

::::::::
CLM4Me

:::::::::::::::
(Riley et al., 2011)

:
,
::::::
DLEM

:::::::::::::::
(Tian et al., 2010),

::::::::
LPJ-Bern

:::::::::::::::::
(Spahni et al., 2011),

::::::::::::
LPJ-WHyMe

::::::::::::::::
(Wania et al., 2010),

:::::::::
LPJ-WSL

:::::::::::::::::
(Hodson et al., 2011),

:::::::::::
ORCHIDEE

::::::::::::::::::
(Ringeval et al., 2010)

:
,
:::
and

::::::::
SDGVM

:::::::::::::::::::
(Singarayer et al., 2011)165

:
.

:::
We

:::::
regrid

:::
the

::::
GCP

:::
and

:::::::::::
WETCHIMP

:
models into an uniform spatial resolution of 1◦ latitude by 1◦ longitude. This regridding

process is performed using the “remapcon” function from the Climate Data Operators (CDO) software, which conserves the

total fluxes of each model during interpolation (Schulzweida, 2023).

2.3 Anthropogenic CH4 emissions170

Anthropogenic CH4 fluxes are not clearly known and are often underestimated in high-latitude North American regions,

including Alberta and other parts of Canada. For example, several existing studies estimate Canadian anthropogenic fluxes

ranging from 3.7 to 6.1 Tg of CH4 per year (Thompson et al., 2017; Scarpelli et al., 2021; Lu et al., 2022). Baray et al. (2021)

also suggest that CH4 fluxes from the Canadian energy and agriculture sectors are likely ∼59% higher than those reported in

the national inventory. As a result, we
::
We

:
include three distinct combinations of anthropogenic CH4 flux products to high-175

light the variability and uncertainty in our analysis due to anthropogenic CH4 fluxes. This approach allows us to capture a

range of anthropogenic
:::::::::
Bottom-up

:::::::::
inventories

::::
such

::
as

::::::::
Canada’s

:::::::
National

::::::::
Inventory

::::::
Report

::::::
(NIR)

:::::::
estimate

::::
total

::::::::::::
anthropogenic

:::::
fluxes

::
of

::::::::::::
approximately

:::
3.7

:::
Tg

:::
of CH4 flux estimates, which helps us to better understand the uncertainties associated with

human-related
:::
per

::::
year

:::::::::::::::::::
(Scarpelli et al., 2021).

::
In

::::::::
contrast,

::::::::
top-down

:::::::
inverse

::::::::
modeling

::::
and

:::::::::::::::::::
observation-constrained

:::::::
studies

:::::::
generally

:::::
infer

:::::
higher

:::::::
national

::::::
totals,

::
on

:::
the

:::::
order

::
of

:
5
:::
to

:
7
:::
Tg

::
of CH4 fluxes and their potential impact on high-latitude North180

America regions .
:::
per

::::
year

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Thompson et al., 2017; Lu et al., 2022; Scarpelli et al., 2021; Chan et al., 2020; MacKay et al., 2021; Ishizawa et al., 2024)

:
.
:::::::
Existing

:::::::::
bottom-up

:::
and

::::::::
top-down

::::::
studies

:::::
show

::::::::::
particularly

:::::
large

:::::::::::
discrepancies

::
in

:::
oil

:::
and

::::
gas

::::::::
producing

:::::::
regions

::
of

:::::::
western

::::::
Canada

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ishizawa et al., 2024; Chan et al., 2020; MacKay et al., 2021; Baray et al., 2021)

:
.
::::::::::
Collectively,

:::
the

::::::
spread

::::::
among

::::::::
bottom-up
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:::
and

::::::::
top-down

:::::::
studies

::::::::
highlights

::::
the

::::
large

::::::::::
uncertainty

::
in
:::::::::

Canadian
::::::::::::
anthropogenic

::::
CH4::::

flux
:::::::::

estimates
:::
and

:::::::::::
underscores

:::
the

:::::::::
importance

::
of

::::::::
exploring

:::::::
multiple

::::
flux

:::::::
products

:::
in

:::
our

:::::::
analysis.

:
185

We use three specific anthropogenic flux products and regrid them to a spatial resolution of 1◦ latitude by 1◦ longitude for

the study domain: ,
::::
and

:::
we

::::::::
aggregate

::::
them

::
to

::
a
:::::::
monthly

::::::::
temporal

::::::::
resolution

:::
for

::::::::::
2007–2017:

1. CarbonTracker CH4 2023 (Oh et al., 2023)
:
:
:::::::::::::
CarbonTracker

::
is

::
an

:::::::
inverse

::::::::
modeling

::::::
system

::::::::
designed

::
to

:::::::
estimate

:::::
CH4

:::::
fluxes

::
on

::
a

:::::
global

:::::
scale

:::::::::::::
(Oh et al., 2023).

2. A combination of the gridded U.S. Greenhouse Gas Inventory (Version 2) , and a gridded inventory of Canada’s anthro-190

pogenic CH4 fluxes (Monforti Ferrario et al., 2021; Maasakkers et al., 2023; Scarpelli et al., 2021).

3. The Copernicus Atmosphere Monitoring Service (CAMS) (Granier et al., 2019). CarbonTracker is a data assimilation

system designed to estimate CH4 fluxes on a global scale (Oh et al., 2023).
:
:
:
Scarpelli et al. (2021) constructed a

::::::
gridded

:
Canadian anthropogenic flux inventory based on the Canadian National Inventory Report (NIR), the Canadian

Greenhouse Gas Reporting Program (GHGRP), and other datasets to provide a detailed sectoral breakdown of fluxes.195

Meanwhile
:::::::
Similarly, Maasakkers et al. (2023) created a U.S. gridded inventory integrating data from the U.S. Environ-

mental Protection Agency’s (EPA) Greenhouse Gas Inventory (GHGI) to provide fluxes from different sectors. CAMS

4.
:::
The

::::::::::
Copernicus

::::::::::
Atmosphere

::::::::::
Monitoring

:::::::
Service

::::::::
(CAMS)

:::::::::::::::::
(Granier et al., 2019)

:
:
::::::
CAMS

:
is a global data assimilation

::::::
inverse

::::::::
modeling system that provides estimates of global atmospheric CH4 fluxes and atmospheric mixing ratios. This200

product is derived from a combination of the EDGARv4.3.2 and Community Emissions Data System (CEDSv3) inven-

tories, and the product includes estimates of fluxes from different source sectors (Granier et al., 2019).

2.4 Atmospheric Modeling Framework
::::::::
modeling

We simulate the atmospheric transport of CH4 and CH4 fluxes using the
::
use

:::
the

:
WRF-STILT (The Weather Research and

Forecasting-Stochastic Time-Inverted Lagrangian Transport) model
:
to
::::::::
simulate

:::
the

::::::::::
atmospheric

:::::::
transport

:::
of

::::
CH4 :::::

fluxes, which205

has been widely used in numerous studies of regional greenhouse gas fluxes (e.g., Miller et al., 2016b; Henderson et al., 2015;

McKain et al., 2015; Kort et al., 2010; Feng et al., 2023; Miller et al., 2014). STILT is a Lagrangian particle dispersion model

that simulates atmospheric transport using an ensemble of tracer particles (Lin et al., 2003). For the setup here, the model

releases those particles from each measurement site, and the particles travel backward in time for 10 days following the wind

fields in WRF meteorology. STILT uses these particle trajectories to calculate surface influence maps or footprints for each210

atmospheric CH4 observation (Figure 1). These footprint maps have units of mixing ratio per unit flux (ppb per µmol m−2

s−1) on a 1◦ by 1◦ grid, and we .
:::
We

:
can directly multiply

::::
these

::::::::
footprints

:::
by CH4 fluxes from the process-based models with

these footprint maps to predict atmospheric CH4 mixing ratios at each tower site. Specifically, the
::::
The footprints used in this

study are
::::
were generated as part of the NOAA CarbonTracker-Lagrange project and are available from 2007 to May 2018

::::
2017,

which defines our study time frame (Hu et al., 2019).215
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Since CH4 has an atmospheric lifetime of about 10 years, it can remain in the atmosphere and travel around the globe. To

account for the large-scale movements of CH4, we estimate CH4 boundary conditions using CH4 observations collected over

the Pacific and Atlantic oceans, from high-altitude tower sites in the continental US, and from regular aircraft flights across

the US and Canada. We use these observations to interpolate a curtain of CH4 mixing ratios around the boundaries of the

model domain. For each STILT simulation, we sample from this boundary condition curtain based on the ending locations of220

the particle trajectories. This procedure thus accounts for CH4 that enters the domain from other regions of the globe. The

approach used here is identical to that used in numerous existing regional CH4 studies (e.g., Miller et al., 2013, 2014, 2016a).

We note that the STILT particle trajectories used here from CarbonTracker-Lagrange do not include atmospheric oxidation

processes. However, CH4 oxidation by hydroxyl radicals likely has a small impact in our study given the short, 10-day time

frame of the regional STILT simulations used here. For example, Miller et al. (2013) argue that CH4 mixing ratios decay225

less than 1 to 1.5 ppb during the course of a typical STILT simulation, based on an analysis of in situ observation sites in

the continental US and estimated OH fields from GEOS-Chem. Overall, this decay is
::::
over

:::
the

:::
first

::::
2–3

::::
days

::
of

::::::
STILT

:::::
back

:::::::::
trajectories

:::::
given

:::
the

::::::
average

::::::::::::::
global-averaged

::::::
lifetime

::
of
:::::
CH4 ::

of
::::
7-11

:::::
years.

::::
This

::::::::::
corresponds

::
to
:
less than 5% of the average ,

total modeled CH4 enhancements in this
::::::
mixing

::::
ratio

:::::::::::
enhancement

:::::::
relative

::
to

::::::::::
background

::
in

:::
our

:
study. The impact of OH in

our study may be even smaller because OH mixing ratios are usually lower at high latitudes .
::::::::
compared

::
to

:::
the

:::::::::
continental

::::
US.230

::
In

:::::::
addition,

:::
our

:::::::::
estimated

::::::::
boundary

::::::::
conditions

::::
also

:::::::
account

:::
for

:::::::::
long-range

::::
CH4::::::::

oxidation
::::::::
processes

::::
that

:::::
occur

::::::
upwind

:::
of

:::
our

:::::::
domain.

:

We combine the aforementioned modeling components using the following equation to compare atmospheric CH4 observa-

tions with the STILT model predictions using the GCP flux models:

Z ∼H
[
s+A+B

]
+ b. (1)235

where Z represents the atmospheric observations from the in situ towers across the US and Canada (dimensions n×1, where

n are the number of observations). H is a matrix of influence footprints assembled from the WRF-STILT model , showing how

surface fluxes from different locations and times contribute to the observations (dimensions n×m, where m is the number of

flux model grid boxes in space and time). Within the brackets, s refers to wetland CH4 flux estimates from the process-based

GCP
:
or

::::::::::::
WETCHIMP models (dimensions m× 1, Sect. 2.2), A refers to the anthropogenic CH4 fluxes estimate from one240

anthropogenic product (dimensions m× 1, Sect. 2.3), and B denotes biomass burning fluxes from the Global Fire Emissions

Database (GFED v4.1) (Randerson et al., 2017) (dimensions m×1). The last variable, b, represents the CH4 boundary condition

(dimensions m× 1).

:::
We

:::
run

::::::
STILT

::::::::::
simulations

::::
both

::::
with

::::
and

:::::::
without

:::
the

::::
lake

:::
and

::::::::
reservoir

:::::::::
emissions

::::
from

:::::::::::::::::::::
Maasakkers et al. (2016),

::::::
which

::::::::
contribute

::::::::::::
approximately

::::
0.72

:::
Tg

::
of
:::::

CH4 :::
per

::::
year

::
in

:::::::
Canada

::::
from

:::::
May

::
to

:::::::
October.

::::
The

::::::::
WAD2M

:::
v2

:::::::::
inundation

::::
map

:::::
(used245

::
by

::::
GCP

:::::::
models)

:::::::::
represents

::::::::
vegetated

::::::::
wetlands

:::::
only,

:::
but

:::::
small

::::
lakes

::::
and

:::::
ponds

:::::
could

::::
still

::::::
overlap

:::::::
because

:::::
these

:::::::
features

:::
are

::::::
difficult

::
to
::::::::::

distinguish
::::
from

::::::::
wetlands

::
in

:::::::
satellite

:::::::::::
observations

::::::::::::::::::::::
(Kyzivat and Smith, 2023).

:::::::
Adding

:
a
:::::::
separate

::::
lake

::::::::::
component

::::
could

::::::::
therefore

::::
lead

::
to

::::::
partial

::::::::::::::
double-counting

::
of

:::::::::
freshwater

::::::::
emissions

::::
and

::::::
further

:::::::
increase

:::
the

::::::::
modeled

::::
CH4::::::

mixing
::::::
ratios.

8



-170 -160 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50
40

50

60

70

80

LEF
ABT BRA

BRW

EGB

LLB

TPD
WSA

EST

HNPTAO

BCK

ESP

ETL
FNE

FSD

CBY

CHL

CPS

CRV
INU

Mean 10-day footprint map in ppb µmol 1 m 2 s 1

Observation Network
Non-wetland in-situ tall towers
Wetland-dominated in-situ tall towers

0 1 2 3 4 5 6
ppb µmol 1 m 2 s 1

Figure 1. The US and Canadian atmospheric CH4 observing network from 2007-2017. The figure also shows the WRF-STILT mean daily

:::::
10-day

:
footprint map in ppb µmol−1

:
/
:::::
(µmol m−2 s−1

:
) across the study domain of 40◦N to 80◦N and 170◦W to 50◦W

:
,
:::
and

::::::::
footprints

::
are

::::::::
evaluated

::::
from

::::::::
2007-2017. Red circle dots show in situ tall tower sites from NOAA and Environmental Canada from the ObsPack

GlobalViewPlus v5.1 dataset (Di Sarra et al., 2023). The lime-colored dots represent non-wetland sites, where the wetland-to-anthropogenic

CH4 concentration ratio is less than 1.5
::
1.3

:
(using anthropogenic emissions from the CAMS product). In contrast, the red-colored dots

indicate wetland-dominated sites, where this ratio exceeds 1.5
::
1.3.

:::::
Given

:::
this

::::::::
potential

::
for

::::::::::::::
double-counting,

:::
we

::::::
present

::::::
results

::::::
without

:::
the

:::::::::
additional

:::
lake

:::::
term,

:::::
while

:::
we

::::::::::
acknowledge

::::
that

::::::
adding

:::
lake

::::
and

:::::::
reservoir

:::::::::
emissions

:::::
would

::::::
further

:::::::
increase

::::::::
modeled

::::
CH4 ::::::

mixing
:::::
ratios.

:
250

Note that we primarily analyze tower-based observations sites
:::
only

:::::::
include

:::::::::
observation

::::
sites

::
in
::::
our

::::::
analysis

::
if
:::::
those

::::
sites

:::
are

::::::::::::
predominantly

:::::::::
influenced

::
by

::::
CH4::::::

fluxes
::::
from

::::::::
wetlands.

:::
By

:::::::
contrast,

:::
we

:::::::
exclude

:::::
urban

::::
sites

::::
and

::::
sites

:::::::
proximal

::
to
:::

oil
::::
and

:::
gas

:::::::::
operations.

:::
We

::::::::::
specifically

::::::
include

::::
sites

:
where the average ratio of modeled CH4 from STILT using all GCP models

::
the

:::::
GCP

:::::
model

:::::
mean to modeled CH4 from STILT using the CAMS anthropogenic flux product is higher than 1.5 (sect

::::::
greater

::::
than

:::
1.3

::::
(Sect. 2.4, sect.2.2, sect.2.3). This screening means that the wetland contributions at each site are at least 50%

:::
30%

:
higher than255

the likely influence of anthropogenic emissions, and we exclude the other sites to prioritize wetland CH4 dominated regions

(see Table S3 for additional details). In this study, we also include ETL (
:
.
::
If

:::
we

::
set

::
a
:::::
lower

::::::::
threshold,

::::
then

:::
we

::::::
would

:::::
begin

::
to

::::::
include

::::
sites

::
in

:::::
urban

::::::
and/or

::
oil

::::
and

:::
gas

::::::::
producing

:::::
areas.

::::
For

:::::::
example,

:::
the

:::
site

:::::
with

::
the

::::
next

:::::::
highest

:::::::::::::::::::::
wetland-to-anthropogenic

::::
ratio

::
is

:::::::::
Abbotsford

::::::
(ABT),

::::::
which

::
is

::
an

:::::
urban

:::
site

::::
near

::::::::::
Vancouver,

::::::
British

:::::::::
Columbia.

:::
By

:::::::
contrast,

::
if

:::
we

::
set

::
a

:::::
higher

:::::::::
threshold,

::
we

::::::
would

:::::::
exclude

:::
the East Trout Lake ) and FNE (Fort Nelson) because their ratios are close to 1.5 and we want to include260

as many sites as possible to have a broader spatial coverage
:::::
(ETL)

:::::
tower

:::
site,

::::::
which

::
is

::::::
located

::
in

:
a
:::::::
sparsely

:::::::::
populated

:::::::
wetland

:::::
region

::
of

::::::::
northern

::::::::::::
Saskatchewan. We focus on these sites because we aim to better quantify the contribution of wetlands to

atmospheric CH4 levels while minimizing the confounding effects of anthropogenic sources, the magnitudes of which are also

uncertain. The ten final sites that we include within this study are : Churchill, Manitoba (CHL), ;
:

Cambridge Bay, Nunavut
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Territory (CBY),
:
;
:
East Trout Lake, Saskatchewan (ETL), ;

:
Estevan Point, British Columbia (ESP),

:
; Fort Nelson, British265

Columbia (FNE),
:
; Fraserdale, Ontario (FSD),

:
; Inuvik, Northwest Territories (INU),

:
; Behchoko, Northwest Territories (BCK),

:
; Chapais, Quebec (CPS), ;

:
and the Carbon in Arctic Reservoirs Vulnerability Experiment Tower, Fairbanks

:
,
::::::
Alaska (CRV)

(see Table S1 for additional details). The remaining sites that are not included in this analysis are towers in urban environments

(e.g., sites in the Toronto and Vancouver metropolitan areas); towers close to oil and gas production in Alberta, Canada, or

Prudhoe Bay, Alaska; towers that are frequently used as clean air background sites (e.g., Sable Island, Nova Scotiaor WSA),270

and sites proximal to intensive agriculture.

2.5

We assess the relationship between wetland CH4 fluxes from the GCP models and temperatures by fitting Q10 curves for each

GCP model. The Q10 factor illustrates how CH4 wetland fluxes change with a per 10-degree change in temperatures, and a

higher Q10 means that wetland fluxes are more sensitive to temperature changes (e.g., Mundim et al., 2020; James, 1953; van Hulzen et al., 1999)275

. Several of the GCP models explicitly include a Q10 function within the model equations, whereas other models use different

functions or modeling schemes to parameterize the relationships between CH4 fluxes and temperature. Even though not all of

the GCP models explicitly use a Q10 function, we nevertheless fit each of the flux estimates to a Q10 function. Doing so allows

us to directly compare the apparent temperature relationships in the different GCP models. Furthermore, to account for the

impact of inundation dynamics, we adjust the fluxes by multiplying them by the corresponding inundation fraction at each grid280

cell. This adjustment normalizes the fluxes to a standard wetland area, demonstrating a more consistent comparison of how

wetland CH4 fluxes respond to temperature variations.

The following formula represents the Q10 function (e.g., Zhang et al., 2025; Mundim et al., 2020):

R(T ) =Rb ·Q
(T−Tref)

10
10

where R(T ) are monthly wetland CH4 fluxes at near-surface air temperature T (◦C) based on the same meteorological285

products used to generate the GCP models (Sect. 2.2), and Rb is the baseline flux at a reference temperature. In this study, we

set the reference temperature Tref at 15◦C, and the exponential term shows the difference between an ambient temperature

and the reference temperature of 15◦C, capturing the proportional change in wetland CH4 flux with temperature. We use

the Nelder-Mead method to simultaneously optimize the parameters Rb and Q10 by minimizing the sum of squared errors

between the predicted fluxes R(T ) and the actual wetland CH4 fluxes from the GCP models (Gao and Han, 2012)
:::::
These

::::
sites290

::
are

::::::::
indicated

:::
by

:::
the

::::
solid

:::
red

::::::
circles

::
in

::::
Fig.

:
1.

3 Results and Discussions
:::::::::
discussion

In this section, we compare the modeled CH4 mixing ratios using the GCP models to atmospheric observations. We use these

comparisons to evaluate the magnitude, seasonality, and spatial distribution of the GCP flux models .
:::
over

:::::
2007

::
to

:::::
2017. In each
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subsection, we also speculate on the possible reasons driving the agreement or disagreements that we see in our analyses. Note295

that we do not include an extensive discussion of inter-annual variability (IAV) in our analysis; uncertainties in anthropogenic

CH4 sources lead to large uncertainties in our inferences about wetland fluxes, and we argue that it would be difficult to

constrain IAV in wetland fluxes across Alaska and Canada without accurate knowledge of IAV from anthropogenic sources.

Disentangling these changes from changes in CH4 fluxes due to wetlands is a challenge, and existing studies reach conflicting

conclusions (e.g., Ishizawa et al., 2024; Thompson et al., 2017).300

3.1 Comparisons Between
:::::::
between

:
the GCP and WETCHIMP Models

::::::
models

The GCP model ensemble is an updated version of the earlier WETCHIMP inter-comparison over a decade ago , and these

projects share five common models (LPJ-Bern, LPJ-wsl, ORCHIDEE, SDGVM, DLEM) (Melton et al., 2013)
::::::::::::::::::::::::::::::::
(Melton et al., 2013; Wania et al., 2013)

. Overall, we find that, compared to the WETCHIMP models, the GCP models have a smaller flux magnitude , better consensus

on flux magnitude, and better
::::
with

:::::::
reduced

:::::::::
inter-model

::::::
spread

::::
and

:::::
better

::::::::::
inter-model agreement on the spatial distribution of305

fluxes within our study domain. This result points to an evolution and growing consensus among state-of-the-art wetland CH4

flux models.

We find that the CH4 flux estimates from the GCP models are much smaller across most of high-latitude North America

compared to the WETCHIMP models. We calculate annual CH4 flux totals for Canada using the 11 prognostic and 16 di-

agnostic GCP models with both climate forcing datasets (GSWP3 and CRU), and the uncertainty bars in Fig. 2 represent the310

standard deviation of the CH4 flux estimates among models within the same group. The mean annual CH4 flux total for Canada

using the 11 prognostic GCP models with CRU is 14.19±7.41 Tg CH4 per year, and the mean using the 16 diagnostic models

with CRU is 12.17± 5.48 Tg CH4 per year (Figure
:::
Fig. 2). In contrast, the Canadian annual CH4 flux total using the seven

::
all

:::
the

:
WETCHIMP models with CRU

::::::::::
meteorology

:
is a factor of more than ∼1.5 higher than the prognostic and diagnostic

GCP models, with flux estimates
::
of

::::::::::::
21.50± 15.12

:::
Tg

::::
CH4:::

per
::::

year
:

(based on the standard deviations of models within the315

same group)of 21.50± 15.12
:
.
::
In

::::::
Alaska,

:::
the

::::::
annual

::::
CH4::::

flux
::::
total

::::::::
estimated

:::
by

:::
the

::
11

:::::::::
prognostic

:::::
GCP

::::::
models

::::
with

:::::
CRU

::
is

:::::::::
1.31± 0.85

:
Tg CH4 ::

per
::::
year,

:::::::
whereas

:::
the

:::::
seven

:::::::::::
WETCHIMP

:::::::
models

::::
yield

:
a
::::::
higher

:::::
value

::
of

::::::::::
1.66± 2.02

::
Tg

::::
CH4:

per year. We

notice that the annual Canadian CH4 flux total for the LPJ-WHyMe model from WETCHIMP is 46.25±5.88 Tg CH4 per year

(Fig. S5). Therefore, we
:::
We subsequently exclude this model to

:::
and

:
recalculate the annual CH4 flux total using the other six

WETCHIMP models, and evaluate whether or not it brings the flux estimates similar to the GCP models. However, the annual320

CH4 flux total using the other six WETCHIMP models with CRU is 17.97± 12.59 Tg CH4 per year, which is still about a

factor of ∼1.4 higher than the prognostic GCP models using CRU meteorology.

In addition, the annual CH4 flux totals estimated by the WETCHIMP models are a factor of ∼1.3 or higher than the GCP

models in the two dominant high-latitude biomes across North America (tundra and boreal forests) (Fig. 2). In Alaska, the

annual CH4 flux total estimated by the 11 prognostic GCP models with CRU is 1.31± 0.85 Tg CH4 per year, whereas the325

seven WETCHIMP models yield a higher value of 1.66± 2.02 Tg CH4 per year. Across the North American boreal forests

and tundra, the annual CH4 flux totals estimated by the 11 prognostic GCP models with CRU are 10.71±5.73 and 1.64±1.31
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Tg CH4 per year, respectively. In comparison, the annual CH4 flux totals estimated by the seven WETCHIMP models in these

two biomes are 16.62± 8.55 and 2.15± 1.34 Tg CH4 per year, respectively.

We also find that the CH4 fluxes estimated by the 11 prognostic GCP models result in much lower inter-model uncertainty330

compared to the seven WETCHIMP models, with smaller inter-model disagreement across Canada and southern Alaska.

::::
Here,

:::
we

::::::
define

:::
the

:::::::::
uncertainty

::::::
among

:::::::
models

::
as

:::
the

:::::::
standard

::::::::
deviation

::::::
across

:::
the

::::::
models

:::
of

:::
the

:::::
mean

:::::::
wetland

:::
flux

:::::
CH4 ::

in

:::::::::::
May-October.

:
To evaluate model agreement on the spatial distribution of fluxes, we compare the inter-model uncertainty or

the standard deviation of flux estimates for each individual model grid box of the GCP and WETCHIMP models. Since each

WETCHIMP model identifies the inundation or wetland area differently, we compare these models with the prognostic GCP335

models (Melton et al., 2013). Note, however, that not all of the WETCHIMP modeling groups generated their own wetland or

inundation maps prognostically, and some, like LPJ-Bern and LPJ-WHyMe, use a constant, prescribed wetland map. In Figure

3, darker shades at each grid box represent higher inter-model uncertainty across these process-based models. We observe that

the GCP models have much lighter shades across the study domain, indicating better inter-model agreement.

We further find that the WETCHIMP models generally exhibit seasonal cycles that are similar to the GCP models (Figs. S1a340

and S1b). Most WETCHIMP models estimate peak CH4 fluxes across Alaska and Canada in July and August, except CLM4Me

(which peaks in June) and LPX-Bern (which peaks in September). These small model disagreements notwithstanding, this

::::
This result illustrates that the seasonal cycles of the GCP models have not changed markedly from the WETCHIMP models.

Inter-model agreement on the magnitude and spatial distribution of fluxes improved in the GCP ensemble compared to the

WETCHIMP ensemble, but we find no such convergence in model agreement on the seasonal cycle. The WETCHIMP mod-345

els already showed relatively good agreement on the seasonal cycle of fluxes, so there was not much opportunity
::
but

:::::
such

::::::::
agreement

:::::
does

:::
not

::::::::
guarantee

::::::::
accuracy,

::::
and

::::
there

:::::::
remains

::::::
scope for improvement. Furthermore, the seasonal cycle of these

model estimates is largely
:::::
likely dependent on temperature, meaning that it is arguably easier to model than other features that

depend on more complex processes.

The
:::::
overall reduction in inter-model uncertainties from WETCHIMP to GCP may relate to how the models estimate wetland350

distribution. Different WETCHIMP model yield very different estimates of maximum wetland extent – from 2.7 to 36.4×106

km2 for the global extra-tropics (> 35◦N), depending upon the model. Melton et al. (2013) explain that several WETCHIMP

models use a binary approach to identify wetland areas, where individual model grid boxes are either 100% wetland or 0%

wetland, and these models tend to have ∼ 3−4 times greater wetland area compared to other models (Fig.2 and Table .2 .
::
2

:::
and

:::::
Table

::
2 in (Melton et al., 2013)). By contrast, other

:::::
Other WETCHMIMP models were parameterized to match remote355

sensing estimates of wetland or open water extent. In contrast to WETCHIMP, the GCP model ensemble also includes diag-

nostic experiments in which all modeling groups used the WAD2M v2 inundation map. These efforts to create a standardized,

diagnostic map of wetland extent may have also influenced the prognostic GCP experiments, and modeling groups may have

tuned or modified their setup to be more consistent with the diagnostic model simulations. In addition, the lower magnitude

of CH4 fluxes estimated by the GCP models (compared to the WETCHIMP models) is partly attributed to efforts by the GCP360

modeling group to reduce double-counting of freshwater areas (e.g., lakes and ponds) in WAD2M v2 (Zhang et al., 2021).
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Figure 2. Annual CH4 flux totals across Canada, Alaska, and several biomes. The four bars on the left of each region or biome represent the

2 different climate forcing data (GSWP3 and CRU) and prognostic versus diagnostic types for the GCP models. The green bar shows the

mean annual CH4 flux total using all WETCHIMP models, and the gray bar denotes the mean flux total excluding the LPJ-WHyMe model.

The
::::::::
uncertainty

::::
bars

:::::::
represent

::
the

:::::::
standard

:::::::
deviation

::
of

:::
the

:::
CH4::::

flux
:::::::
estimates

:::::
among

::::::
models

:::::
within

::
the

::::
same

:::::
group.

::::
The unit of the annual

wetland CH4 flux totals is Tg CH4 per year.

This improved
::::
Note

::::
that

:::
the

::::
GCP

:::::::
models

:::::
show

:::::
lower

:::
flux

:::::::::
magnitude

::::
and

:::::::
reduced inter-model agreement implies that the

fluxes estimated by the current process-based GCP models are more accurate compared to the fluxes estimated by the previous

WETCHIMP models , though that outcome is not guaranteed
::::::
spread

::
in

:::::::
Canada,

::::
even

:::::
when

:::::
using

::::
the

:::::
subset

:::
of

::::::
models

::::
that

::
are

::::::::
common

::
to

::::
both

::::::::::::
WETCHIMP

:::
and

:::::
GCP.

:::
For

:::::::::
diagnostic

:::::
GCP

::::
runs,

:::
the

::::::::::
overlapping

::::::
model

::::::
subsets

::::
with

::::::::::::
WETCHIMP

:::
are365

::::::::
LPX-Bern

:::
(a

:::::
newer

:::::::
version

::
of

:::::::::
LPJ-Bern),

:::::::
DLEM,

:::::::::::
ORCHIDEE,

::::::::
LPJ-wsl,

::::::::
SDGVM.

::::
For

:::::::::
prognostic

::::
GCP

:::::
runs,

:::
the

::::::::
common

::::::
models

::::::
include

::::::::::
LPX-Bern,

:::::::::::
ORCHIDEE,

::::::::
LPJ-wsl,

:::
and

:::::::::
SDGVM.

:::::
Using

:::::
these

::::::
shared

:::::::
models,

:::
we

::::
find

::::
that

:::
the

:::::
mean

::::::
annual

:::
flux

::::
total

:::::
from

:::
the

:::::::::::
WETCHIMP

::::::
models

::
is

:::::::
roughly

:
4
:::
Tg

::::
CH4:::

per
::::
year

::::::
higher

::::
than

:::
the

:::::::
matched

::::
GCP

::::::::
ensemble

::::::
mean,

:::::::
whereas

::
in

::::::
Alaska

:::::::::::
WETCHIMP

::
is
::::
0.11

:::
Tg

:::::
CH4 :::::

lower
:::::
(Figs.

:::
S5

:::
and

::::
S6).

:::
In

:::::::
addition,

:::
we

::::
also

::::
find

::::
that

:::
the

:::::
GCP

::::::::
ensemble

:::::::
exhibits

:::::
lower

:::::::::
inter-model

::::::
spread

::
in

:::::::
Canada

:::
and

::::::
broadly

:::::::
similar

::
or

:::::
lower

:::::
spread

::
in
::::::
Alaska

:::::
(Fig.

::::
S9).

::
As

::
a

:::::
result,

:::::
these

:::::::
analyses

::::
lead

::
to370

::
the

::::::::::
conclusion

:::
that

:::
the

:::::
GCP

::::::::
ensemble

::
is

::::
more

::::::
tightly

::::::::::
constrained

::::
than

:::::::::::
WETCHIMP

::::
over

:::::::
Canada

:::::
when

:::
the

::::
same

:::::::
models

:::
are

::::::::
compared.

:

:::
The

:::::::
reduced

::::::::::
inter-model

:::::
spread

::::::::
indicates

::::::
greater

:::::::::
consistency

::::::
among

:::
the

::::::
current

::::
GCP

::::::
model

::::::
outputs

::::::
relative

::
to

::::::::::::
WETCHIMP;

:::::::
however,

:::::::
reduced

::::::
spread

:::::
alone

::::
does

:::
not

:::::::
indicate

::::::::
improved

:::::::
accuracy. In the following sections, we compare GCP

::
the

::::
GCP

::::
and

:::::::::::
WETCHIMP models with atmospheric observations as a way to gauge whether the GCP models are indeed more skilled at375

capturing CH4 fluxes across high-latitude North America.
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(a)

(b)

Figure 3. The inter-model standard deviation for each individual model grid box, calculated using the 11 prognostic GCP models (top) and

WETCHIMP models (bottom). The inter-model uncertainty in mode locations is higher for the WETCHIMP models than the GCP models.

All fluxes have units µmol m−2 s−1.

3.2 Flux Magnitudes of GCP Models
:::::::::
magnitude

We find that even though the mean wetland CH4 fluxes of the GCP models are about a factor of 2
:::
two

:
lower than the

WETCHIMP models across northern North America, most of them are still likely an overestimate by a factor of 2
:::
two or more

compared to atmospheric CH4 observations (Fig. 4).
:::
Note

::::
that

:::
we

:::::::
exclude

::::
lake

:::
and

::::::::
reservoir

:::::::::
emissions

::::
from

:::
the

:::::::::
following380

:::::
results

:::::::
because

::::::
adding

:::::
these

::::::::
emissions

:::::
could

:::::::::::
double-count

:::::::
existing

:::::::::
freshwater

::::::
sources

::::::
already

::::::::::
represented

::
in

::::::::
WAD2M

::
v2

::::
and

:::::
further

:::::::
increase

:::
the

::::::::
modeled

::::
CH4::::::

mixing
:::::
ratios

:::::::
relative

::
to

:::
our

::::::
current

::::::
results.

:

We evaluate the magnitude of the GCP models by comparing modeled mixing ratios from STILT against observations at the

tower sites. Specifically, we divide modeled CH4 mixing ratios using wetland fluxes from the GCP models by the observed

increments, shown in Fig. 4. The modeled wetland CH4 mixing ratios are calculated by passing each of the GCP models through385

STILT
:::::::::::
WRF-STILT. The observed increments are calculated as the atmospheric CH4 observations minus factors unrelated to

wetlands – the CH4 boundary condition and the contributions of anthropogenic and biomass burning fluxes at the observation

sites. In Fig. 4, we compare the magnitude of the modeled wetland CH4 mixing ratios and the observed increments at each

wetland-dominated in situ tower site across high-latitude North America. A factor larger than one means that the mixing ratios
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of modeled wetland CH4 using the GCP models are higher than the observed increments. By contrast, the gray dashed line at390

the y-axis equal to 1 indicates a perfect alignment between the modeled wetland CH4 mixing and the observed increment. The

error bars in Fig. 4 reflect the range of results when we use different anthropogenic flux estimates in the calculations (Sect.

2.3). Note that CH4MOD, DLEM, LPJ-GUESS, TEM-MDM, and TRIPLEX-GHG only have diagnostic simulations and not

prognostic simulations, and their diagnostic comparisons are represented exclusively by orange bars.

Based on these results, we also argue
::::::::::
Interestingly,

::::
this

:::::
result

::
is
::::

not
::::::::::::
geographically

::::::::
uniform

:::::
across

:::::::::::
high-latitude

::::::
North395

:::::::
America;

::::
the

::::
GCP

:::::::
models,

:::::
when

::::::
passed

:::::::
through

:::
the

:::::::::::
WRF-STILT

::::::::
transport

::::::
model,

:::::::::
overshoot

::::::::::
observations

::
at
::::::

towers
:::

in
:::
the

:::::
boreal

::::
zone

:::
but

:::
not

::
at

::::::
towers

::
in

:::
the

:::::
Arctic

::::
(Fig.

::::
S4).

::::
This

:::::
result

:::::::
parallels

::::::
earlier

:::::
studies

::::
that

:::
use

::::::::
intensive

::::::
aircraft

::::::::
campaign

::::
data

::::
from

::::::
specific

:::::::
regions

::
of

:::::::
Alaska.

:::
For

:::::::
example,

::::::::::::::::::
Miller et al. (2016b)

::::::
estimate

::::
CH4::::::

fluxes
::::
over

:::::::
Alaska’s

:::::
North

:::::
Slope

::::
that

::::::
exceed

::::
most

::::::::::::
process-based

:::::
model

:::::::::
estimates

:::
but

::::
find

::::::::::
substantially

::::::
lower

:::::
fluxes

::::
than

:::
the

::::::
model

::::::::
estimates

::::::
across

::::::
interior

::::::
boreal

::::
and

:::::::
subarctic

:::::::::::
southeastern

:::::::
Alaska.

::::::::
Similarly,

::::::::::::::::::
Hartery et al. (2018)

::::::::
emphasize

:::
the

::::::::::::::::
disproportionately

::::
large

:::::::::::
contribution

::
of

::::::
Arctic400

::::::
Alaska

::
to

:::
the

:::::
state’s

::::
total

:::::
CH4 :::::

fluxes,
:::::::

though
::::
they

::
do

:::
not

::::::::
explicitly

::::::::
compare

::::
their

::::::
results

::::
with

::::::::::::
process-based

:::::::
models.

::::::
Global

::::::
inverse

:::::::
models,

:::
like

:::::
those

:::::::
included

::
in
:::
the

:::::
most

:::::
recent

::::::
Global

:::::::
Carbon

::::::
Project

::::
CH4::::::

report,
::::::
further

:::::::
reiterate

:::::
these

::::::
results;

:::::
most

::::
yield

:::::
lower

:::::::
wetland

:::::
CH4:::::

fluxes
::::::

across
::::::
global

::::
high

::::::::
latitudes

:::::::::
compared

::
to

::::::::::::
process-based

:::::::
models,

::::::::
including

::::::
across

:::::::
Russia,

::::::
Europe,

:::::::
Canada,

::::
and

:::
the

:::
US

:::::::::::::::::
(Saunois et al., 2025)

:
.

:::
We

::::
also

::::
note that anthropogenic CH4 fluxes pose an enormous challenge for isolating and quantifying CH4 fluxes from405

wetlands, even at very remote observation sites in Canada and Alaska. The vertical bars in Fig. 4 indicate uncertainties in the

results due to uncertain anthropogenic fluxes, and we observe a broad spectrum of values depending on which anthropogenic

CH4 flux estimate we use. For example, modeled mixing ratios from STILT using the GCP CH4 model CLASSIC run prognos-

tically are anywhere between ∼2.5 times higher than the observed increment to ∼6 times higher, depending on the choice of

anthropogenic flux product. As a result, we cannot precisely constrain the optimal magnitude of wetland fluxes. These uncer-410

tainties notwithstanding, our findings still suggest that wetland fluxes estimated by the 11 prognostic and 16 diagnostic models

are often higher than implied by atmospheric observations.

It is difficult to determine the specific causes that drive model disagreements over the magnitude of wetland CH4 fluxes.

However, these variations are more likely influenced by factors such as soil carbon or by the simplicity/complexity of the

model structure rather than by disagreements over the effects of temperature on fluxes. We do not have a comprehensive set of415

modeled environmental variables (e.g., soil carbon) to conduct a systematic examination of all sources of uncertainty. However,

the available model outputs allow us to reason through some key contributors to these uncertainties, such the relationships

between fluxes and temperature (i.e., estimated Q10 values) and the effects of using a common diagnostic inundation map

versus prognostically generated inundation.

To explore the temperature sensitivities of each GCP model, we fit a Q10 curve for each GCP model (Fig. ??
::::
Figs.

::::
S12

::
–420

:::
S13). The Q10 parameter represents the sensitivity of wetland CH4 fluxes to a 10◦C increase in temperature, which provides

insight into how strongly each model responds to temperature changes. A higher Q10 value indicates that the flux estimates

are more prone to change with temperature variations. Our analysis indicates a large variation in temperature sensitivity across

the prognostic and diagnostic GCP models, but there is not a strong relationship between the magnitude of wetland CH4
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fluxes estimated by these models and the estimated Q10 values (Fig. ??). We find the ELM has the lowest Q10 value of all425

models at 1.77, suggesting that CH4 fluxes in ELM are relatively insensitive to temperature changes compared to other models.

In contrast, most of the other prognostic and diagnostic GCP models exhibit Q10 values greater than 2, with the prognostic

ISAM model showing the highest Q10 of 11.92, suggesting a stronger temperature dependence. However, we do not find any

correlation between wetland CH4 fluxes from the GCP models and Q10 values, meaning that models with the highest wetland

CH4 fluxes do not always have the highest temperature sensitivity.
::::
Figs.

::::
S12

:
–
:::::
S13).

:
As a result, Q10 does not seem to be the430

most important contributor driving differences in the flux magnitude of the GCP models.

We also find that uncertainties in wetland area and inundation likely contribute to but are not the primary the cause of

these disagreements in flux magnitude. For example, the prognostic and diagnostic models usually yield a similar magnitude

of fluxes, in spite
:::::
despite

:
of the fact that these different experiments do not use the same inundation estimates (Fig. 2). For

Canada, the average total flux from the prognostic models is similar to the diagnostic models – 14.19 and 12.17 Tg per year,435

respectively (using GSWP3 meteorology). Similarly, the average total flux from the prognostic versus diagnostic models is

nearly identical for the boreal forest biome. In some regions, the diagnostic models show greater agreement on the total annual

flux than the prognostic models, but in other regions, the prognostic and diagnostic models show similar levels of inter-model

agreement (Fig. 2).

Interesting
::::::::::
Interestingly, we find models with simpler flux calculations yield flux magnitudes that agree more with atmo-440

spheric observations compared to those using more complex equations. GCP models such as LPJ-wsl, SDGVM, and JULES

produce smaller flux magnitudes, and each of these models uses simple approaches to simulate CH4 fluxes. For example, these

models rely only on net fluxes without accounting for specific transport pathways (e.g., ebullition, diffusion, or plant-mediated

transport) (Zhang et al., 2025). In contrast, models such as VISIT, JSBACH, and ISAM have the largest flux magnitudes,

and each of these models employs more complex equations that include multiple components of CH4 fluxes, such as gross445

production, oxidation, and consumption. These models also simulate explicit transport pathways like ebullition, diffusion, and

plant-mediated transport, alongside layered soil temperature schemes for temperature sensitivity (Zhang et al., 2025). Models

with more complex representations generally require additional input data to provide detailed
::::
more

:::::::
accurate

:
flux estimates.

This pattern suggests that the additional complexity in VISIT, JSBACH, and ISAM may introduce greater uncertainty in regions

with more uncertain input data
:::::
Thus,

::
in

:::::::::
data-sparse

:::::::
regions,

:::::
added

:::::::
process

:::::
detail

:::::
could

:::::::::
potentially

::::::
amplify

:::::
input

:::
and

:::::::::
parameter450

:::::::::
uncertainty

:::
and

:::::::
enlarge

:::
the

:::
flux

::::::
spread.

3.3 Seasonality

We find that models more consistent with atmospheric observations have a distinct seasonal peak in wetland CH4 fluxes in July

and August. In contrast, models that do not agree well with atmospheric observations have a flatter seasonal cycle.

To evaluate these differences, we compare the correlation between atmospheric CH4 observations and STILT simulations455

using each of the different GCP models (Fig. 5). We specifically use this analysis to explore which GCP models better capture

::
the

:
seasonal and spatial variability of CH4 fluxes across our model domain. First, we calculate R2 values for each model using

a two-predictor regression model. In each regression, the first predictor variables
:::::::
variable represents modeled CH4 mixing
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Figure 4. Comparisons between modeled mixing ratios from STILT against observations at the tower sites. The y-axis has values range from

0 to 9, representing the ratio between the modeled wetland CH4 mixing ratios using the GCP
:::
and

::::::::::
WETCHIMP

:
models and the observed

increment. We define the observed increment as the difference between atmospheric CH4 observations and the sum of the boundary CH4

levels, modeled anthropogenic CH4 mixing ratios, and modeled biomass burning CH4 mixing ratios. A value of 1 on the y-axis indicates

perfect agreement between the modeled wetland CH4 mixing ratios and the observed increment.

ratios due to wetlands using one of the GCP models, and the second predictor variable represents modeled CH4 mixing ratios

due to different anthropogenic flux products plus biomass burning from GFED (Sects. 2.3 and 2.4). The regression will scale460

the magnitude of the STILT model outputs to optimally match atmospheric observations. As a result, this analysis is not very

sensitive to the absolute magnitude of the original flux estimates. Instead, the overall fit of each regression is more likely a

reflection of the seasonal and spatial patterns in the wetland, anthropogenic, and biomass burning flux estimates; GCP flux

estimates with more accurate seasonal and spatial variability will more likely yield higher correlation coefficients (R2 values).

Figure 5 depicts the mean R2 values for 16 GCP diagnostic wetland models and 11 GCP prognostic wetland models. Each465

model has a mean R2 value that is averaged from the two climate forcing data (GSWP3 and CRU) and three anthropogenic

flux products. These results highlight the large variability in R2 values across different GCP models.
:::
As

:::::
shown

:::
in

:::
Fig.

::::
S7,

:::::
model

:::::::::::
comparisons

::::
using

:::::
Root

:::::
Mean

:::::::
Squared

::::
Error

::::::::
(RMSE)

:::
are

:::::::
identical

::
to

:::::
those

::::
using

::::
R2,

:
a
:::::
result

:::
that

::::::
further

:::::::::
reinforces

:::
the

::::::::
discussion

:::::
here.

Based on this analysis, we categorize each of the diagnostic and prognostic GCP models into three groups based on how470

they agree with atmospheric observations. By grouping the models, we can look for common patterns that separate models

that exhibit high R2 values from those that exhibit lower R2 values. Models with R2 values greater than 0.4 are grouped into

the high R2 group (represented by blue lines in Figs. 6a and 6b), models with R2 values between 0.3 and 0.4 are classified as

the average R2 group (represented by green lines in Figs. 6a and 6b), and models with R2 values below 0.3 are considered as

the low R2 group (represented by red lines in Figs. 6a and 6b). Although these cut-offs are inherently subjective, they offer a475

practical framework for grouping the models and result in a similar number of models within each group.
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The plot shows the Q10 factors estimated for each of the GCP models. Each colored shape represents an unique GCP model, and prognostic

and diagnostic values are plotted separately for each model. The plot also shows the relationship between the magnitude of fluxes estimated

by each model for the study domain and the Q10 value estimated for each model.
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Figure 5. The correlation R2 between modeled CH4 mixing ratios using the GCP
::::::::::
process-based

:
models and atmospheric observations.

Blue dots represent the mean R2 value for prognostic models across different climate forcing data and anthropogenic products. Orange dots

represent the mean R2 value for diagnostic models across different climate forcing data and anthropogenic products. The
:::
gray

:::
dot

::::::::
represents

::
the

:::::
mean

::
R2

:::::
value

::
for

:::
the

::::::::::
WETCHIMP

::::::
models

:::::
across

:::::::
different

:::::::::::
anthropogenic

:::::::
products.

:::
The

:
y-axis lists all the prognostic and diagnostic

GCP models
::
and

::::::::::
WETCHIMP

::::::
models, and

::
the x-axis shows the R2 range for these GCP

::
and

::::::::::
WETCHIMP

:
models.

Across the high and average R2 groups, CH4 fluxes exhibit a clear seasonal cycle, and we find that approximately 60–

70% of the total fluxes from these models during the period of May to October occur during the peak summer season (June,

July, and August). In these groups, the models capture the sharp rise and fall of the CH4 fluxes, and they also show peak

monthly percentages during July and August (Figs. 6a and 6b).
:::
This

::::::
pattern

::::::
aligns

::::
with

:::
the

:::::
results

:::
of

::::::
aircraft

::::::::
inversion

::::::
studies480

:::
that

:::::
report

::
a

::::::::::
pronounced

::::::::::
midsummer

::::::::
maximum

:::::::::::::::::::::::::::::::::
Miller et al. (2016b); Chang et al. (2014)

:
. The low R2 models display a much

flatter seasonal pattern. The flatter seasonal cycle indicates that these
:::::
These models do not capture the pronounced summer

peaks observed in the high and average groups, suggesting that they may not fully capture seasonal variations in wetland fluxes.

The relationships between CH4 fluxes and temperature may explain some, though not all, of the differences in seasonality

among the GCP models. In our study, diagnostic SDGVM, diagnostic LPJ-MPI, diagnostic JULES, and diagnostic ISAM are485

the models that have high and average R2 values (>0.35), and both have estimated Q10 values greater than three, indicating

a high sensitivity of their fluxes to temperature changes .
::::
(Figs.

::::
S12

::
–

::::
S13).

:
Moreover, models in the low R2 group (<0.30)

have estimated Q10 values below 2, resulting in weaker temperature-driven flux variations (Fig. ??
:::::
mean

:::::
fluxes

:::::
(Figs.

::::
S12

::
–
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(a)

(b)

Figure 6. The seasonal cycles of the diagnostic GCP models (a) and prognostic GCP models (b) from 2007-2017. The blue, green, and red

lines each represent the GCP models that have the highest, average, low R2 values with atmospheric observations. The x-axis represents the

months from May to October throughout 2007-2017, and y-axis denotes the percentages of CH4 fluxes that occur within that month.

:::
S13). This result shows that temperature relationships can explain at least some differences in the seasonality of the diagnostic

GCP models. By comparison, existing empirical studies find a range of Q10 values for wetlands in the arctic
:::::
Arctic region. Cao490

et al. (1996) suggest that a Q10 value of 2 is calculated using a simple temperature response model, but Ito (2019); Walter and

Heimann (2000) compute the Q10 values of 3.85 and 6 using a more complicated mechanistic temperature response model. In

addition, another study finds that the composition of wetlands can also yield different Q10 values in the arctic
:::::
across

:::
the

::::::
Arctic

region. Specifically, M. Lupascu and Pancost (2012) find that wetlands that contain more Sphagnum moss can result in a Q10

value of 8 or higher. These studies show that Q10 values can be highly dynamic in high-latitude regions, and a Q10 value of 6495

does not necessarily mean that the temperature response model is wrong.
:::
We

::::
also

:::::::
examine

:::
the

::::::::::
relationship

:::::::
between

:::::
mean

:::
R2

:::
and

:::
Q10::::::

across
:::::::
models,

:::
but

::
we

::::
find

:::
no

::::::::
consistent

:::::::::
association

::::::::
between

:::
the

:::
two

::::::::
variables

::::
(Fig.

:::::
S13).

::::::::::
Interestingly,

:::
we

::::
find

::::
that

::
for

:::::
64%

:::::
(7/11)

::
of

:::
the

:::::::
models,

:::
the

:::::::::
diagnostic

::::::
version

:::
of

:::
the

:::::
model

:::::
yields

::
a
:::::
better

::
fit

:::::
(R2)

::::::
against

::::::::::
atmospheric

::::::::::
observations

:::::::::
compared

::
to

::
the

:::::::::
prognostic

:::::::
version

::
of

:::
the

:::::
model

::::
(Fig.

::
5.

:::::::::
Prognostic

:::::::
versions

::
of

::::::::::
CLASSIC,

::::::::
SDGVM,
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:::::::::
LPX-Bern,

:::
and

::::::
VISIT

::::
have

:::::
better

:::
R2

::::::
values

::::::::
compared

::
to
:::::::::

diagnostic
:::::::::
versions).

::::
This

:::::
result

:::::::
suggests

::::
that

:::
the

::::::::::::::
better-performed500

::::::::
diagnostic

::::::
models

::::
may

::::
also

:::::
reflect

::::
their

:::::::
reliance

:::
on

:
a
::::::::
consistent

:::::::::
inundation

:::::::
product,

:::::
which

:::::::::
potentially

:::::
gives

::::
them

:::
the

:::::::::
advantage

::
in

:::
this

:::::::::
evaluation

:::::::::
framework

::::
over

::::
the

::::
more

:::::::::::
mechanistic

:::::::::
prognostic

:::::::
models.

::
In

::::::::
addition,

:::::::::::
process-based

:::::::
models

::::
with

:::::::
simpler

:::
and

::::
more

:::::::::::
deterministic

:::::::::::
formulations

::::
tend

::
to

:::::::
produce

::::::
smaller

::::
flux

:::::::::
magnitudes

::::
and

:::::
higher

:::
R2

::::::
values

::::::::
compared

::
to

::::
more

::::::::
complex

::::::
models.

:::::
This

:::::
result

::::::::
indicates

:::
that

::::::
simple

:::::::::::
formulations

::::
can

:::::::::
effectively

::::::
capture

::::::::::::::::::::
regional-to-continental

:::
flux

:::::::
patterns

:::
as

:::::
those

::::
more

::::::::::
complicated

:::::::
models

::::::::::::::::::::::::::
(e.g., Miller et al., 2014, 2016b).

::::::::
However,

:::::
more

:::::::::::
sophisticated

::::::
process

:::::::::::::
representations

::::
may

:::::::
become505

::::::::::
increasingly

::::::::
important

:::
for

:::::::::
simulating

:::::::::
finer-scale

:::::
spatial

::::::::
structure

::
or

::::::::::::::
higher-frequency

::::::::
temporal

::::::::
variability

:::
of

::::
CH4::::::

fluxes.

:::
We

:::
also

::::
find

::::
that

:::
the

::::
GCP

:::::::
models

:::::
result

::
in

:::::
higher

:::
R2

::::::
values

::::
and

:::::
lower

:::::
errors

::::::::
compared

::
to
:::

the
::::::::::::

WETCHIMP
:::::::
models,

::::
both

::::
when

:::::::::
comparing

:::::::::::
overlapping

::::::
subsets

::
of

:::::::
models

:::
and

:::::
when

::::::::::
considering

::::
their

:::::::::
respective

::::::::::
multi-model

:::::::::
ensembles

:::::
(Fig.

:::
S10

::::
and

::::
S11).

::::
The

::::::::
ensemble

::
of

:::
all

:::::::::::
WETCHIMP

:::::::
models

:::::
yields

::
a

:::
R2

::
of

::::
0.20

::::
and

::
an

::::::
RMSE

::
of

::::
13.2

:::::
ppb.

::
In

:::::::
contrast,

:::
the

::::::::
ensemble

:::
of

::
all

:::::::::
prognostic

::::
GCP

:::::::
models

:::::
shows

::
a

:::
R2

::
of

::::
0.35

::::
with

::
an

::::::
RMSE

::
of

::::
11.9

::::
ppb,

:::::
while

:::
the

:::::::::
ensemble

::
of

::
all

:::::::::
diagnostic

::::
GCP

:::::::
models510

::::
gives

::
a

:::
R2

::
of

::::
0.39

::::
with

:::
an

::::::
RMSE

::
of

::::
11.5

::::
ppb.

:::::
These

::::::
results

:::::::::::
demonstrate

:
a
::::
clear

::::::::::::
improvement

::::
over

:::
the

:::::
earlier

::::::::::::
WETCHIMP

::::::
models,

::
at

::::
least

::
in
:::::::::::
comparisons

::::
with

::::::::::
atmospheric

:::::::::::
observations.

:

3.4 Spatial Distribution
::::::::::
distribution

We find that prognostic models that are most consistent with atmospheric observations concentrate their fluxes near the HBL

::::::
Hudson

::::
Bay

::::::::
Lowlands

:
(Fig. 7a). In contrast, prognostic models with the lowest R2 values focus their fluxes outside this key515

region (Fig. 7c). To gain insight into the spatial patterns of prognostic GCP models, we analyze how their flux estimates

vary across different regions. We focus this section on the prognostic models because the diagnostic models use the same

inundation map and therefore exhibit similar spatial flux patterns. Similar to the previous analysis of seasonality, we group the

prognostic models into three categories (high, average, low) depending on their R2 values when compared against atmospheric

observations. A Principal Component Analysis (PCA) highlights common spatial patterns among the models in each different520

group (e.g., Wold et al., 1987; Jolliffe, 1986; Delwiche et al., 2021). The percentage of variance explained by the first principal

component
:::::
(PC1)

:
shows the degree of spatial patterns shared among models in each group, and this percentage captures how

consistently the models agree in their spatial flux distributions across grid boxes within the study domain. We
::
use

::::
the

::::
PC1

::::::::
explained

:::::::
variance

::
as

::
a
:::::::
measure

::
of

:::::::::::
within-group

::::::
spatial

:::::::::
coherence

::::
that

::::::::
quantifies

::::
how

:::::
much

::
of

:::
the

:::::::::::::
between-model

::::::::
variance

::
in

:
a
:::::
group

::
is
::::::::

captured
:::
by

:
a
::::::
single

::::
grid.

:::
We

:
find that models in the high R2 group have a first principal component (PC1 )525

explaining 63.5% of the variance, followed by the average R2 group with 50.1%, and the low R2 group with 68.9% explained

variance. Although the low R2 group shows the highest explained variance, this number does not necessarily indicate that

the models in this group are more accurately capturing the true spatial patterns of the CH4 fluxes compared to those in other

groups.

We find notable common spatial features among the models in the high R2, as seen in the PCA analysis. LPJ-wsl and530

CLASSIC have the highest R2 values, and these models consistently concentrate their CH4 fluxes in the HBL
::::::
Hudson

::::
Bay

::::::::
Lowlands. In contrast, JULES, ISAM, and ELM are the models with lower R2 values. These models show large spatial
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. The PCA results and mean standardized CH4 fluxes for the prognostic GCP models, run separately for each group of models – the

high (a and d), average (b and e), and low (c and f) R2 groups. The unit for PCA results is in explained variance by the first component (%),

and darker (or more blue) shades represent better spatial agreements among the models within a same group.

discrepancies in critical wetland regions such as the HBL
::::::
Hudson

:::
Bay

:::::::::
Lowlands, and they tend to concentrate fluxes outside of

these key regions, particularly in the Great Lakes region of Canada.

An important caveat of this result is that the long-term observation network is sensitive to fluxes from some regions of high-535

latitude North America but not others (Fig. 1), so this analysis of spatial distribution is weighted to areas with good
:
.
:::
The

:::::
PCA

::::::
analysis

:::::
itself

::
is

::::::::::
unweighted,

::::
and

:::
our

::::::::::::
interpretation

::
of

::::::
spatial

:::::::
patterns

::::::
(based

::
on

:::
the

:::
R2

:::::::
metric)

::
is

:::::::::
necessarily

:::::::::
influenced

:::
by

::::::
regions

::::
with

:::::::
stronger

:
observational coverage. We also note that none of the atmospheric observing towers are directly located

in the HBL
::::::
Hudson

::::
Bay

::::::::
Lowlands, but the STILT footprints shown in Fig. 1 indicates that the network is sensitive to CH4 fluxes

from the broader region, allowing us to draw conclusions about the spatial distribution of fluxes in and around the HBL
::::::
Hudson540

:::
Bay

:::::::::
Lowlands.

Interestingly, we also find that for 64% (7/11) of the models, the diagnostic version of the model yields a better fit (R2) against

atmospheric observations compared to the prognostic version of the model (Fig. 5. Prognostic versions of CLASSIC, SDGVM,

LPX-Bern, and VISIT have better R2 values compared to diagnostic versions). The diagnostic and prognostic versions of

each model often exhibit similar seasonal cycles (Fig. 6) but often exhibit different spatial patterns. This result suggests that545

the diagnostic inundation map is likely a more reliable or accurate inundation product than the inundation maps generated
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internally by the prognostic models, thus allowing the models to better capture regional CH4 fluxes in high-latitude North

America.

4 Conclusions

This study highlights areas of convergence and disagreement among state-of-the-art process models of wetland CH4 fluxes.550

We compare the estimates with atmospheric CH4 observations between May and October in high-latitude North America. In

the first section of the paper, we find that GCP models have a much smaller flux magnitude and lower inter-model uncertainty

across North America compared to a previous model inter-comparison (WETCHIMP). This change in magnitude improves

consistency
:::
The

:::::
GCP

:::::::
models,

:::::
when

::::::
passed

:::::::
through

::
an

:::::::::::
atmospheric

:::::::
transport

::::::
model,

::::
are

::::
more

:::::::::
consistent

:
with atmospheric

CH4 observations
::::::::
compared

::
to

:::
the

:::::::::::
WETCHIMP

:::::::
models, though we argue that the current GCP model ensemble is still too555

high across much of Canada and Alaska. In the second section of the study, we find that process-based CH4 models that are

most consistent with atmospheric observations
:::::
based

::
on

::::
our

:::
R2

:::::::
analysis exhibit the highest percentage of fluxes in July and

August relative to other months and have a sharper seasonal cycle. These process-based models also concentrate their fluxes

near the HBL
:::::::
Hudson

:::
Bay

:::::::::
Lowlands while less skilled models often concentrate fluxes further south near the Great Lakes.

Overall, this study highlights the opportunity
:::::::::::
opportunities

:
to improve current process-based models to estimate regional

::
of560

wetland CH4 fluxes. Key areas for improvement in model parameterization include addressing
::::::
include

:::::::::
addressing

:::
(1)

:
uncer-

tainties in inundation maps to capture
::
or

:
wetland extent and

::
(2)

:
improving estimated maps of soil carbon, though the latter

factor was difficult to evaluate this study. We find that prognostic models show greater room for improvement than the diag-

nostic models ; while
::::::
because

::::
they

:::::
show

::::
less

::::::::
agreement

:::::
with

::::::::::
atmospheric

:::::::::::
observations

:::::
based

::
on

:::
the

:::
R2

::::
and

::::::
RMSE

:::::::
metrics.

:::::
While diagnostic models benefit from consistent inundation maps, the development of better prognostic models is nevertheless565

very important because these models can be used to project future trends in wetland extent or inundation, which is critical for

future projections of CH4 fluxes under the ongoing climate change. Overall, we argue that the bottom-up modeling community

had made large strides in reducing inter-model uncertainties, and these improvements are consistent with atmospheric CH4

observations .
::::
based

:::
on

:::
our

:::::::
analysis

:::::
using

:::
the

::::::
STILT

::::::
model.

::::
We

::::
note,

::::::::
however,

:::
that

::::
the

::::
GCP

::::::
models

::::
are

:::::
global

::::
and

::::::
drivers

::::
vary

::::::::
regionally,

:::
so

::::
these

::::::::::
conclusions

:::::
apply

::::
only

::
to
::::
our

::::::
domain

:::
and

:::::
time

::::::
period. With that said, there is still an enormous need570

for further improvements in these models to advance understanding of high-latitude wetland CH4 fluxes in a changing climate.

22



Data availability. We received the wetland model estimates from Zhen Zhang and the GCP modeling team, and these datasets are available

upon request from the GCP modeling team. The GlobalViewPlus CH4 ObsPack v5.1 dataset is available at https://gml.noaa.gov/ccgg/

obspack/citation.php?product=obspack_ch4_1_GLOBALVIEWplus_v5.1_2023-03-08.

The WRF-STILT footprints for North American CH4 monitoring sites are available at https://gml.noaa.gov/aftp/products/carbontracker/575

lagrange/footprints/ctl-na-v1.1/. The North American Boundary Condition product is provided by the NOAA Earth System Research Labo-

ratory, and the dataset is available at https://gml.noaa.gov/aftp/user/arlyn/naboundary/v20190806/ROBJ/. Guidance related to these datasets

can be requested from Lei Hu (lei.hu@noaa.gov) and Kathryn McKain (Kathryn.McKain@noaa.gov).

The CAMS global emission inventory dataset is available from the Copernicus Atmosphere Data Store. DOI:https://doi.org/10.24381/

1d158bec. CarbonTracker CT-CH4-2023 data are available from NOAA’s Global Monitoring Laboratory. DOI:https://doi.org/10.25925/580

40jt-qd67. The gridded inventory of Canada’s anthropogenic CH4 fluxes is available from the Harvard Dataverse. https://doi.org/10.7910/

DVN/CC3KLO. The gridded U.S. Greenhous Gas Inventory (Version 2) can be found on Zenodo. DOI: https://doi.org/10.5281/zenodo.

8367082. The Global Fire Emissions Database, Version 4 (GFEDv4) is available through the Oak Ridge National Laboratory (ORNL)

Distributed Active Archive Center (DAAC). DOI: https://doi.org/10.3334/ORNLDAAC/1293.

Author contributions. HL and SMM designed the study and wrote the manuscript. FRV, MI, ZZ, BP, JRM, LF, ALGL, AC, ZH, DCG, DC,585

VY, and DH provided feedback and comments on the manuscript. LF, AC, ZH, and DCG provided modeling support. JRM provided the

WETCHIMP models. ZZ, BP, and the GCP modeling team provided the prognostic and diagnostic process-based CH4 flux models. FRV,

MI, DEJW, and DC contributed to the collection and maintenance of Canadian in situ tower CH4 measurements included in the NOAA

ObsPack data product. ALGL and DH provided valuable suggestions on the Q10 calculations.

Competing interests. The authors declare that they have no conflict of interest.590

Acknowledgements. This work is funded by NASA ABoVE grant (#80NSSC22K1246) and by an NSF CAREER award (#2237404). We

thank Environment And Climate Change Canada (ECCC) and NOAA Global Monitoring Laboratory for providing the GLOBALVIEWplus

CH4 ObsPack v5.1 dataset that is important for the completion of this work. We also acknowledge the use of WRF-STILT footprints data that

are produced as a part of the CarbonTracker-Lagrange project with the support from NOAA’s Climate Program Office and NASA’s Carbon

Monitoring System. We also acknowledge the use of the NOAA Earth System Research Laboratory’s North American Boundary Condition595

product for CH4, and we thank Arlyn Andrews, Kathryn McKain, and all other collaborators for providing access to the dataset. We use

the anthropogenic CH4 emissions from the 2020 CAMS global emission inventory. This work contains modified Copernicus Atmosphere

Monitoring Service information [2020]. Neither the European Commission nor ECMWF is responsible for any use that may be made of

the Copernicus information or data it contains. The CarbonTracker CT-CH4-2023 results are provided by NOAA GML, Boulder, Colorado,

USA from the website at https://gml.noaa.gov/ccgg/carbontracker-ch4/. We acknowledge the use of the fire emissions from the Global Fire600

Emissions Database version 4 (GFED4s) described in van der Werf et al. (2017), and we regrid the
::
that

:
dataset for this work. We also thank

the Global Carbon Project (GCP) modeling team for their invaluable contributions in developing the models. In addition, we specifically

23

https://gml.noaa.gov/ccgg/obspack/citation.php?product=obspack_ch4_1_GLOBALVIEWplus_v5.1_2023-03-08
https://gml.noaa.gov/ccgg/obspack/citation.php?product=obspack_ch4_1_GLOBALVIEWplus_v5.1_2023-03-08
https://gml.noaa.gov/ccgg/obspack/citation.php?product=obspack_ch4_1_GLOBALVIEWplus_v5.1_2023-03-08
https://gml.noaa.gov/aftp/products/carbontracker/lagrange/footprints/ctl-na-v1.1/
https://gml.noaa.gov/aftp/products/carbontracker/lagrange/footprints/ctl-na-v1.1/
https://gml.noaa.gov/aftp/products/carbontracker/lagrange/footprints/ctl-na-v1.1/
https://gml.noaa.gov/aftp/user/arlyn/naboundary/v20190806/ROBJ/
https://doi.org/10.24381/1d158bec
https://doi.org/10.24381/1d158bec
https://doi.org/10.24381/1d158bec
https://doi.org/10.25925/40jt-qd67
https://doi.org/10.25925/40jt-qd67
https://doi.org/10.25925/40jt-qd67
https://doi.org/10.7910/DVN/CC3KLO
https://doi.org/10.7910/DVN/CC3KLO
https://doi.org/10.7910/DVN/CC3KLO
https://doi.org/10.5281/zenodo.8367082
https://doi.org/10.5281/zenodo.8367082
https://doi.org/10.5281/zenodo.8367082
https://doi.org/10.3334/ORNLDAAC/1293
https://gml.noaa.gov/ccgg/carbontracker-ch4/


thank the following individuals for their important work in building the GCP models: Benjamin Poulter, Philippe Ciais, Joe Melton, William

Riley, David Beerling, Nicola Gedney, Peter Hopcroft, Akihiko Ito, Atul Jain, Fortunat Joos, Thomas Kleinen, Tingting Li, Xiangyu Liu,

Paul Miller, Changhui Peng, Shushi Peng, Zhangcai Qin, Qing Sun, Hanqin Tian, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai605

Zhuang.

24



References

Baray, S., Jacob, D. J., Maasakkers, J. D., Sheng, J.-X., Sulprizio, M. P., Jones, D. B. A., Bloom, A. A., and McLaren, R.: Estimating

2010–2015 anthropogenic and natural methane emissions in Canada using ECCC surface and GOSAT satellite observations, Atmospheric

Chemistry and Physics, 21, 18 101–18 121, https://doi.org/10.5194/acp-21-18101-2021, 2021.610

Bohn, T. J., Melton, J. R., Ito, A., Kleinen, T., Spahni, R., Stocker, B. D., Zhang, B., Zhu, X., Schroeder, R., Glagolev, M. V., Maksyutov,

S., Brovkin, V., Chen, G., Denisov, S. N., Eliseev, A. V., Gallego-Sala, A., McDonald, K. C., Rawlins, M. A., Riley, W. J., Subin, Z. M.,

Tian, H., Zhuang, Q., and Kaplan, J. O.: WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia,

Biogeosciences, 12, 3321–3349, https://doi.org/10.5194/bg-12-3321-2015, 2015.

Cao, M., Marshall, S., and Gregson, K.: Global carbon exchange and methane emissions from natural wetlands: Application of a process-615

based model, Journal of Geophysical Research: Atmospheres, 101, 14 399–14 414, https://doi.org/https://doi.org/10.1029/96JD00219,

1996.

Chan, E., Worthy, D. E. J., Chan, D., Ishizawa, M., Moran, M. D., Delcloo, A., and Vogel, F.: Eight-Year Estimates of Methane Emissions

from Oil and Gas Operations in Western Canada Are Nearly Twice Those Reported in Inventories, Environmental Science & Technology,

54, 14 899–14 909, https://doi.org/10.1021/acs.est.0c04117, 2020.620

Chang, R. Y.-W., Miller, C. E., Dinardo, S. J., Karion, A., Sweeney, C., Daube, B. C., Henderson, J. M., Mountain, M. E., Eluszkiewicz,

J., Miller, J. B., Bruhwiler, L. M. P., and Wofsy, S. C.: Methane emissions from Alaska in 2012 from CARVE airborne observations,

Proceedings of the National Academy of Sciences, 111, 16 694–16 699, https://doi.org/10.1073/pnas.1412953111, 2014.

Delwiche, K. B., Knox, S. H., Malhotra, A., Fluet-Chouinard, E., McNicol, G., Feron, S., Ouyang, Z., Papale, D., Trotta, C., Canfora, E.,

Cheah, Y.-W., Christianson, D., Alberto, M. C. R., Alekseychik, P., Aurela, M., Baldocchi, D., Bansal, S., Billesbach, D. P., Bohrer, G.,625

Bracho, R., Buchmann, N., Campbell, D. I., Celis, G., Chen, J., Chen, W., Chu, H., Dalmagro, H. J., Dengel, S., Desai, A. R., Detto,

M., Dolman, H., Eichelmann, E., Euskirchen, E., Famulari, D., Fuchs, K., Goeckede, M., Gogo, S., Gondwe, M. J., Goodrich, J. P.,

Gottschalk, P., Graham, S. L., Heimann, M., Helbig, M., Helfter, C., Hemes, K. S., Hirano, T., Hollinger, D., Hörtnagl, L., Iwata, H.,

Jacotot, A., Jurasinski, G., Kang, M., Kasak, K., King, J., Klatt, J., Koebsch, F., Krauss, K. W., Lai, D. Y. F., Lohila, A., Mammarella, I.,

Belelli Marchesini, L., Manca, G., Matthes, J. H., Maximov, T., Merbold, L., Mitra, B., Morin, T. H., Nemitz, E., Nilsson, M. B., Niu,630

S., Oechel, W. C., Oikawa, P. Y., Ono, K., Peichl, M., Peltola, O., Reba, M. L., Richardson, A. D., Riley, W., Runkle, B. R. K., Ryu,

Y., Sachs, T., Sakabe, A., Sanchez, C. R., Schuur, E. A., Schäfer, K. V. R., Sonnentag, O., Sparks, J. P., Stuart-Haëntjens, E., Sturtevant,

C., Sullivan, R. C., Szutu, D. J., Thom, J. E., Torn, M. S., Tuittila, E.-S., Turner, J., Ueyama, M., Valach, A. C., Vargas, R., Varlagin,

A., Vazquez-Lule, A., Verfaillie, J. G., Vesala, T., Vourlitis, G. L., Ward, E. J., Wille, C., Wohlfahrt, G., Wong, G. X., Zhang, Z., Zona,

D., Windham-Myers, L., Poulter, B., and Jackson, R. B.: FLUXNET-CH4: a global, multi-ecosystem dataset and analysis of methane635

seasonality from freshwater wetlands, Earth System Science Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, 2021.

Di Sarra, A. G., Zahn, A., Watson, A., Ankur Desai, Karion, A., Hoheisel, A., Leskinen, A., Arlyn Andrews, Jordan, A., Colomb, A., Kers,

B., Scheeren, B., Baier, B., Viner, B., Stephens, B., Daube, B., Van Der Veen, C., Labuschagne, C., Myhre, C. L., Couret, C., Miller, C. E.,

Choong-Hoon Lee, Lunder, C. R., Plass-Duelmer, C., Plass-Duelmer, C., Gerbig, C., Sloop, C. D., Sweeney, C., Kubistin, D., Goto, D.,

Jaffe, D., Heltai, D., Lowry, D., Munro, D., Worthy, D., Dlugokencky, E., Kozlova, E., Gloor, E., Cuevas, E., Hintsa, E., Kort, E., Morgan,640

E., Nisbet, E., Obersteiner, F., Apadula, F., Meinhardt, F., Moore, F., Vitkova, G., Giordane A. Martins, Manca, G., Zazzeri, G., Brailsford,

G., Forster, G., Santoni, G., Haeyoung Lee, Boenisch, H., Moossen, H., Timas, H., Matsueda, H., Kang, H.-Y., Huilin Chen, Lehner, I.,

Mammarella, I., Bartyzel, J., Elkins, J. W., Jaroslaw Necki, Pittman, J., Pichon, J. M., MÃ¼ller-Williams, J., Jgor Arduini, Turnbull, J.,

25

https://doi.org/10.5194/acp-21-18101-2021
https://doi.org/10.5194/bg-12-3321-2015
https://doi.org/https://doi.org/10.1029/96JD00219
https://doi.org/10.1021/acs.est.0c04117
https://doi.org/10.1073/pnas.1412953111
https://doi.org/10.5194/essd-13-3607-2021


Miller, J. B., Lee, J., Jooil Kim, Pitt, J., DiGangi, J. P., Lavric, J., Hatakka, J., Worsey, J., Holst, J., Lehtinen, K., Kominkova, K., McKain,

K., Saito, K., Davis, K., Thoning, K., TÃ̧rseth, K., Haszpra, L., SÃ̧rensen, L. L., Gatti, L. V., Emmenegger, L., Sha, M. K., Menoud,645

M., Delmotte, M., Fischer, M. L., De Vries, M., Schumacher, M., Torn, M., Popa, M. E., Leuenberger, M., Heimann, M., Heimann, M.,

Steinbacher, M., Schmidt, M., De MaziÃ¨re, M., Lindauer, M., MÃ¶lder, M., Martin, M. Y., Ko, M.-Y., Rothe, M., Heliasz, M., Marek,

M. V., Ramonet, M., StanisavljeviÄ‡, M., Lopez, M., Sasakawa, M., Miles, N., Laurent, O., Hermanssen, O., Trisolino, P., Cristofanelli,

P., Krummel, P., Shepson, P., Smith, P., Rivas, P. P., Bergamaschi, P., Keronen, P., Keeling, R., Langenfelds, R., Weiss, R., Leppert, R.,

De Souza, R. A. F., Piacentino, S., Richardson, S., Biraud, S. C., Conil, S., Morimoto, S., Aoki, S., O’Doherty, S., Zaehle, S., Platt, S. M.,650

Prinzivalli, S., Wofsy, S., Nichol, S., Schuck, T., Lauvaux, T., RÃ¶ckmann, T., Seifert, T., Biermann, T., Kneuer, T., Gehrlein, T., Machida,

T., Laurila, T., Aalto, T., Monteiro, V., Kazan, V., Ivakhov, V., Joubert, W., Brand, W. A., Lan, X., Niwa, Y., and Loh, Z.: Multi-laboratory

compilation of atmospheric methane data for the period 1983-2021, https://doi.org/10.25925/20230301, 2023.

Feng, L., Tavakkoli, S., Jordaan, S. M., Andrews, A. E., Benmergui, J. S., Waugh, D. W., Zhang, M., Gaeta, D. C., and Miller, S. M.: Inter-

annual variability in atmospheric transport complicates estimation of US methane emissions trends, Geophysical Research Letters, 50,655

e2022GL100 366, https://doi.org/https://doi.org/10.1029/2022GL100366, e2022GL100366 2022GL100366, 2023.

Gao, F. and Han, L.: Implementing the Nelder-Mead simplex algorithm with adaptive parameters, Computational Optimization and Appli-

cations, 51, 259–277, https://doi.org/10.1007/s10589-010-9329-3, 2012.

Granier, C., Darras, S., van der Gon, H. D., Doubalova, J., Elguindi, N., Galle, B., Gauss, M., Guevara, M., Jalkanen, J.-P., Kuenen, J., Liousse,

C., Quack, B., Simpson, D., and Sindelarova, K.: The Copernicus Atmosphere Monitoring Service global and regional emissions (April660

2019 version), https://atmosphere.copernicus.eu/sites/default/files/2019-06/cams_emissions_general_document_apr2019_v7.pdf, coper-

nicus Atmosphere Monitoring Service (CAMS) report, 2019.

Harris, I., Jones, P., and Osborn, T.: CRU TS4.06: Climatic Research Unit (CRU) Time-Series (TS) version 4.06 of high-resolution gridded

data of month-by-month variation in climate (Jan. 1901 - Dec. 2021), NERC EDS Centre for Environmental Data Analysis, https://

catalogue.ceda.ac.uk/uuid/e0b4e1e56c1c4460b796073a31366980/, 2022.665

Hartery, S., Commane, R., Lindaas, J., Sweeney, C., Henderson, J., Mountain, M., Steiner, N., McDonald, K., Dinardo, S. J., Miller, C. E.,

Wofsy, S. C., and Chang, R. Y.-W.: Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska,

Atmospheric Chemistry and Physics, 18, 185–202, https://doi.org/10.5194/acp-18-185-2018, 2018.

Henderson, J. M., Eluszkiewicz, J., Mountain, M. E., Nehrkorn, T., Chang, R. Y.-W., Karion, A., Miller, J. B., Sweeney, C., Steiner, N.,

Wofsy, S. C., and Miller, C. E.: Atmospheric transport simulations in support of the Carbon in Arctic Reservoirs Vulnerability Experiment670

(CARVE), Atmospheric Chemistry and Physics, 15, 4093–4116, https://doi.org/10.5194/acp-15-4093-2015, 2015.

Hodson, E. L., Poulter, B., Zimmermann, N. E., Prigent, C., and Kaplan, J. O.: The El Niño–Southern Oscillation and wetland methane

interannual variability, Geophysical Research Letters, 38, https://doi.org/https://doi.org/10.1029/2011GL046861, 2011.

Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J. B., Michalak, A. M., Dlugokencky, E., Tans, P. P., Shiga, Y. P., Mountain,

M., Nehrkorn, T., Montzka, S. A., McKain, K., Kofler, J., Trudeau, M., Michel, S. E., Biraud, S. C., Fischer, M. L., Worthy, D. E. J.,675

Vaughn, B. H., White, J. W. C., Yadav, V., Basu, S., and van der Velde, I. R.: Enhanced North American carbon uptake associated with El

Niño, Science Advances, 5, eaaw0076, https://doi.org/10.1126/sciadv.aaw0076, 2019.

Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven,

C. D., O’Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost

carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-680

2014, 2014.

26

https://doi.org/10.25925/20230301
https://doi.org/https://doi.org/10.1029/2022GL100366
https://doi.org/10.1007/s10589-010-9329-3
https://atmosphere.copernicus.eu/sites/default/files/2019-06/cams_emissions_general_document_apr2019_v7.pdf
https://catalogue.ceda.ac.uk/uuid/e0b4e1e56c1c4460b796073a31366980/
https://catalogue.ceda.ac.uk/uuid/e0b4e1e56c1c4460b796073a31366980/
https://catalogue.ceda.ac.uk/uuid/e0b4e1e56c1c4460b796073a31366980/
https://doi.org/10.5194/acp-18-185-2018
https://doi.org/10.5194/acp-15-4093-2015
https://doi.org/https://doi.org/10.1029/2011GL046861
https://doi.org/10.1126/sciadv.aaw0076
https://doi.org/10.5194/bg-11-6573-2014
https://doi.org/10.5194/bg-11-6573-2014
https://doi.org/10.5194/bg-11-6573-2014


Ishizawa, M., Chan, D., Worthy, D., Chan, E., Vogel, F., and Maksyutov, S.: Analysis of atmospheric CH4 in Canadian Arctic and estimation

of the regional CH4 fluxes, Atmospheric Chemistry and Physics, 19, 4637–4658, https://doi.org/10.5194/acp-19-4637-2019, 2019.

Ishizawa, M., Chan, D., Worthy, D., Chan, E., Vogel, F., Melton, J. R., and Arora, V. K.: Estimation of Canada’s methane emissions: inverse

modelling analysis using the Environment and Climate Change Canada (ECCC) measurement network, Atmospheric Chemistry and685

Physics, 24, 10 013–10 038, https://doi.org/10.5194/acp-24-10013-2024, 2024.

Ito, A.: Methane emission from pan-Arctic natural wetlands estimated using a process-based model, 1901–2016, Polar Science, 21, 26–36,

https://doi.org/https://doi.org/10.1016/j.polar.2018.12.001, iSAR-5/ Fifth International Symposium on Arctic Research, 2019.

Ito, A., Li, T., Qin, Z., Melton, J. R., Tian, H., Kleinen, T., Zhang, W., Zhang, Z., Joos, F., Ciais, P., Hopcroft, P. O., Beerling, D. J.,

Liu, X., Zhuang, Q., Zhu, Q., Peng, C., Chang, K.-Y., Fluet-Chouinard, E., McNicol, G., Patra, P., Poulter, B., Sitch, S., Riley,690

W., and Zhu, Q.: Cold-season methane fluxes simulated by GCP-CH4 models, Geophysical Research Letters, 50, e2023GL103 037,

https://doi.org/https://doi.org/10.1029/2023GL103037, e2023GL103037 2023GL103037, 2023.

James, W.: Plant Respiration, Clarendon Press, ISBN 9780598984043, https://books.google.com/books?id=9KkvAAAAIAAJ, 1953.

Jolliffe, I. T.: Principal Component Analysis and Factor Analysis, pp. 115–128, Springer New York, New York, NY, ISBN 978-1-4757-1904-

8, https://doi.org/10.1007/978-1-4757-1904-8_7, 1986.695

Karion, A., Sweeney, C., Miller, J. B., Andrews, A. E., Commane, R., Dinardo, S., Henderson, J. M., Lindaas, J., Lin, J. C., Luus, K. A.,

Newberger, T., Tans, P., Wofsy, S. C., Wolter, S., and Miller, C. E.: Investigating Alaskan methane and carbon dioxide fluxes using

measurements from the CARVE tower, Atmospheric Chemistry and Physics, 16, 5383–5398, https://doi.org/10.5194/acp-16-5383-2016,

2016.

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,700

L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J.,

Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C., Naik, V., O’Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter,

B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A.,

Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G.: Three decades of

global methane sources and sinks, Nature Geoscience, 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013.705

Koffi, E. N., Bergamaschi, P., Alkama, R., and Cescatti, A.: An observation-constrained assessment of the climate sensitivity and future

trajectories of wetland methane emissions, Science Advances, 6, eaay4444, https://doi.org/10.1126/sciadv.aay4444, 2020.

Kort, E. A., Andrews, A. E., Dlugokencky, E., Sweeney, C., Hirsch, A., Eluszkiewicz, J., Nehrkorn, T., Michalak, A., Stephens, B., Gerbig,

C., Miller, J. B., Kaplan, J. O., Houweling, S., Daube, B. C., Tans, P., and Wofsy, S. C.: Atmospheric constraints on 2004 emissions of

methane and nitrous oxide in North America from atmospheric measurements and a receptor-oriented modeling framework, Journal of710

Integrative Environmental Sciences, 7, 125 – 133, https://doi.org/10.1080/19438151003767483, 2010.

Kyzivat, E. D. and Smith, L. C.: A closer look at the effects of lake area, aquatic vegetation, and double-counted wetlands on Pan-

Arctic lake methane emissions estimates, Geophysical Research Letters, 50, e2023GL104 825, https://doi.org/10.1029/2023GL104825,

e2023GL104825 2023GL104825, 2023.

Lange, S. and Büchner, M.: ISIMIP2a atmospheric climate input data, https://doi.org/10.48364/ISIMIP.886955, 2020.715

Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., and Grainger, C. A.: A near-field tool for simulating the up-

stream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model, Journal of Geophysical

Research: Atmospheres, 108, https://doi.org/https://doi.org/10.1029/2002JD003161, 2003.

27

https://doi.org/10.5194/acp-19-4637-2019
https://doi.org/10.5194/acp-24-10013-2024
https://doi.org/https://doi.org/10.1016/j.polar.2018.12.001
https://doi.org/https://doi.org/10.1029/2023GL103037
https://books.google.com/books?id=9KkvAAAAIAAJ
https://doi.org/10.1007/978-1-4757-1904-8_7
https://doi.org/10.5194/acp-16-5383-2016
https://doi.org/10.1038/ngeo1955
https://doi.org/10.1126/sciadv.aay4444
https://doi.org/10.1080/19438151003767483
https://doi.org/10.1029/2023GL104825
https://doi.org/10.48364/ISIMIP.886955
https://doi.org/https://doi.org/10.1029/2002JD003161


Liu, L., Zhuang, Q., Oh, Y., Shurpali, N. J., Kim, S., and Poulter, B.: Uncertainty quantification of global Net methane emissions from

terrestrial ecosystems using a mechanistically based biogeochemistry model, Journal of Geophysical Research: Biogeosciences, 125,720

e2019JG005 428, https://doi.org/https://doi.org/10.1029/2019JG005428, e2019JG005428 2019JG005428, 2020.

Lu, X., Jacob, D. J., Wang, H., Maasakkers, J. D., Zhang, Y., Scarpelli, T. R., Shen, L., Qu, Z., Sulprizio, M. P., Nesser, H., Bloom, A. A.,

Ma, S., Worden, J. R., Fan, S., Parker, R. J., Boesch, H., Gautam, R., Gordon, D., Moran, M. D., Reuland, F., Villasana, C. A. O.,

and Andrews, A.: Methane emissions in the United States, Canada, and Mexico: Evaluation of national methane emission inventories

and 2010–2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) atmospheric725

observations, Atmospheric Chemistry and Physics, 22, 395–418, https://doi.org/10.5194/acp-22-395-2022, 2022.

M. Lupascu, J. L. Wadham, E. R. C. H. and Pancost, R. D.: Temperature sensitivity of methane production in the permafrost active layer

at Stordalen, Sweden: A comparison with non-permafrost northern wetlands, Arctic, Antarctic, and Alpine Research, 44, 469–482,

https://doi.org/10.1657/1938-4246-44.4.469, 2012.

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M., Wirth, T., Hight, C., DeFigueiredo, M., Desai, M., Schmeltz,730

R., Hockstad, L., Bloom, A. A., Bowman, K. W., Jeong, S., and Fischer, M. L.: Gridded national inventory of U.S. methane emissions,

Environmental Science & Technology, 50, 13 123–13 133, https://doi.org/10.1021/acs.est.6b02878, 2016.

Maasakkers, J. D., McDuffie, E. E., Sulprizio, M. P., Chen, C., Schultz, M., Brunelle, L., Thrush, R., Steller, J., Sherry, C., Jacob, D. J.,

Jeong, S., Irving, B., and Weitz, M.: A gridded inventory of annual 2012–2018 U.S. anthropogenic methane emissions, Environmental

Science & Technology, 57, 16 276–16 288, https://doi.org/10.1021/acs.est.3c05138, pMID: 37857355, 2023.735

MacKay, K., Lavoie, M., Bourlon, E., Atherton, E., O’Connell, E., Baillie, J., Fougère, C., and Risk, D.: Methane emissions from upstream

oil and gas production in Canada are underestimated, Scientific Reports, 11, 8041, https://doi.org/10.1038/s41598-021-87610-3, 2021.

McKain, K., Down, A., Raciti, S. M., Budney, J., Hutyra, L. R., Floerchinger, C., Herndon, S. C., Nehrkorn, T., Zahniser, M. S., Jack-

son, R. B., Phillips, N., and Wofsy, S. C.: Methane emissions from natural gas infrastructure and use in the urban region of Boston,

Massachusetts, Proceedings of the National Academy of Sciences, 112, 1941–1946, https://doi.org/10.1073/pnas.1416261112, 2015.740

Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., Chen, G., Eliseev, A. V.,

Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P., Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Zürcher, S., Brovkin, V., van

Bodegom, P. M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling:

conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-

2013, 2013.745

Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews, A. E., Biraud, S. C., Dlugokencky, E. J., Eluszkiewicz, J., Fischer, M. L.,

Janssens-Maenhout, G., Miller, B. R., Miller, J. B., Montzka, S. A., Nehrkorn, T., and Sweeney, C.: Anthropogenic emissions of methane

in the United States, Proceedings of the National Academy of Sciences, 110, 20 018–20 022, https://doi.org/10.1073/pnas.1314392110,

2013.

Miller, S. M., Worthy, D. E. J., Michalak, A. M., Wofsy, S. C., Kort, E. A., Havice, T. C., Andrews, A. E., Dlugokencky, E. J., Kaplan, J. O.,750

Levi, P. J., Tian, H., and Zhang, B.: Observational constraints on the distribution, seasonality, and environmental predictors of North Ameri-

can boreal methane emissions, Global Biogeochemical Cycles, 28, 146–160, https://doi.org/https://doi.org/10.1002/2013GB004580, 2014.

Miller, S. M., Commane, R., Melton, J. R., Andrews, A. E., Benmergui, J., Dlugokencky, E. J., Janssens-Maenhout, G., Michalak, A. M.,

Sweeney, C., and Worthy, D. E. J.: Evaluation of wetland methane emissions across North America using atmospheric data and inverse

modeling, Biogeosciences, 13, 1329–1339, https://doi.org/10.5194/bg-13-1329-2016, 2016a.755

28

https://doi.org/https://doi.org/10.1029/2019JG005428
https://doi.org/10.5194/acp-22-395-2022
https://doi.org/10.1657/1938-4246-44.4.469
https://doi.org/10.1021/acs.est.6b02878
https://doi.org/10.1021/acs.est.3c05138
https://doi.org/10.1038/s41598-021-87610-3
https://doi.org/10.1073/pnas.1416261112
https://doi.org/10.5194/bg-10-753-2013
https://doi.org/10.5194/bg-10-753-2013
https://doi.org/10.5194/bg-10-753-2013
https://doi.org/10.1073/pnas.1314392110
https://doi.org/https://doi.org/10.1002/2013GB004580
https://doi.org/10.5194/bg-13-1329-2016


Miller, S. M., Miller, C. E., Commane, R., Chang, R. Y.-W., Dinardo, S. J., Henderson, J. M., Karion, A., Lindaas, J., Melton, J. R., Miller,

J. B., Sweeney, C., Wofsy, S. C., and Michalak, A. M.: A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric

observations, Global Biogeochemical Cycles, 30, 1441–1453, https://doi.org/https://doi.org/10.1002/2016GB005419, 2016b.

Monforti Ferrario, F., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E., Olivier, J., and Vignati, E.: EDGAR v6.0

Greenhouse Gas Emissions, http://data.europa.eu/89h/97a67d67-c62e-4826-b873-9d972c4f670b, eDGAR database, European Commis-760

sion, 2021.

Mundim, K. C., Baraldi, S., Machado, H. G., and Vieira, F. M.: Temperature coefficient (Q10) and its applications in biological systems:

Beyond the Arrhenius theory, Ecological Modelling, 431, 109 127, https://doi.org/https://doi.org/10.1016/j.ecolmodel.2020.109127, 2020.

Nzotungicimpaye, C.-M., Zickfeld, K., MacDougall, A. H., Melton, J. R., Treat, C. C., Eby, M., and Lesack, L. F. W.: WETMETH

1.0: a new wetland methane model for implementation in earth system models, Geoscientific Model Development, 14, 6215–6240,765

https://doi.org/10.5194/gmd-14-6215-2021, 2021.

Obu, J.: How much of the earth’s surface is underlain by permafrost?, Journal of Geophysical Research: Earth Surface, 126, e2021JF006 123,

https://doi.org/10.1029/2021JF006123, 2021.

Oh, Y., Bruhwiler, L., Lan, X., Basu, S., Schuldt, K., Thoning, K., Michel, S. E., Clark, R., Miller, J. B., Andrews, A., Sherwood, O.,

Etiope, G., Crippa, M., Liu, L., Zhuang, Q., Randerson, J., van der Werf, G., Aalto, T., Amendola, S., Andra, S. C., Andrade, M., Nguyen,770

N. A., Aoki, S., Apadula, F., Arifin, I. B., Arnold, S., Arshinov, M., Baier, B., Bergamaschi, P., Biermann, T., Biraud, S. C., Blanc, P.-E.,

Brailsford, G., Chen, H., Colomb, A., Couret, C., Cristofanelli, P., Cuevas, E., Chmura, L., Delmotte, M., Emmenegger, L., Esenzhanova,

G., Fujita, R., Gatti, L., Guerette, E.-A., Haszpra, L., Heliasz, M., Hermansen, O., Holst, J., Di lorio, T., Jordan, A., Jennifer, M.-W., Karion,

A., Kawasaki, T., Kazan, V., Keronen, P., Kim, S.-Y., Kneuer, T., Kominkova, K., Kozlova, E., Krummel, P., Kubistin, D., Labuschagne,

C., Langenfelds, R., Laurent, O., Laurila, T., Lee, H., Lehner, I., Leuenberger, M., Lindauer, M., Lopez, M., Mahdi, R., Mammarella, I.,775

Manca, G., Marek, M. V., Mazière, M. D., McKain, K., Meinhardt, F., Miller, C. E., Mölder, M., Moncrieff, J., Moosen, H., Moreno,

C., Morimoto, S., Myhre, C. L., Nahas, A. C., Necki, J., Nichol, S., O’Doherty, S., Paramonova, N., Piacentino, S., Pichon, J. M., Plass-

Dülmer, C., Ramonet, M., Ries, L., di Sarra, A. G., Sasakawa, M., Say, D., Schaefer, H., Scheeren, B., Schmidt, M., Schumacher, M., Sha,

M. K., Shepson, P., Smale, D., Smith, P. D., Steinbacher, M., Sweeney, C., Takatsuji, S., Torres, G., Tørseth, K., Trisolino, P., Turnbull,

J., Uhse, K., Umezawa, T., Vermeulen, A., Vimont, I., Vitkova, G., Wang, H.-J. R., Worthy, D., and Xueref-Remy, I.: CarbonTracker CH4780

2023, https://doi.org/10.25925/40JT-QD67, 2023.

Pickett-Heaps, C. A., Jacob, D. J., Wecht, K. J., Kort, E. A., Wofsy, S. C., Diskin, G. S., Worthy, D. E. J., Kaplan, J. O., Bey, I., and Drevet, J.:

Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada), Atmospheric Chemistry and Physics,

11, 3773–3779, https://doi.org/10.5194/acp-11-3773-2011, 2011.

Poulter, B., Bousquet, P., Canadell, J. G., Ciais, P., Peregon, A., Saunois, M., Arora, V. K., Beerling, D. J., Brovkin, V., Jones, C. D.,785

Joos, F., Gedney, N., Ito, A., Kleinen, T., Koven, C. D., McDonald, K., Melton, J. R., Peng, C., Peng, S., Prigent, C., Schroeder, R.,

Riley, W. J., Saito, M., Spahni, R., Tian, H., Taylor, L., Viovy, N., Wilton, D., Wiltshire, A., Xu, X., Zhang, B., Zhang, Z., and Zhu,

Q.: Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics, Environmental Research Letters, 12, 094 013,

https://doi.org/10.1088/1748-9326/aa8391, 2017.

Randerson, J., Van Der Werf, G., Giglio, L., Collatz, G., and Kasibhatla, P.: Global Fire Emissions Database, Version 4.1 (GFEDv4),790

https://doi.org/10.3334/ORNLDAAC/1293, 2017.

29

https://doi.org/https://doi.org/10.1002/2016GB005419
http://data.europa.eu/89h/97a67d67-c62e-4826-b873-9d972c4f670b
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2020.109127
https://doi.org/10.5194/gmd-14-6215-2021
https://doi.org/10.1029/2021JF006123
https://doi.org/10.25925/40JT-QD67
https://doi.org/10.5194/acp-11-3773-2011
https://doi.org/10.1088/1748-9326/aa8391
https://doi.org/10.3334/ORNLDAAC/1293


Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has

warmed nearly four times faster than the globe since 1979, Communications Earth & Environment, 3, 168, https://doi.org/10.1038/s43247-

022-00498-3, 2022.

Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., and Hess, P.: Barriers to pre-795

dicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM,

Biogeosciences, 8, 1925–1953, https://doi.org/10.5194/bg-8-1925-2011, 2011.

Ringeval, B., de Noblet-Ducoudré, N., Ciais, P., Bousquet, P., Prigent, C., Papa, F., and Rossow, W. B.: An attempt to quantify the impact

of changes in wetland extent on methane emissions on the seasonal and interannual time scales, Global Biogeochemical Cycles, 24,

https://doi.org/https://doi.org/10.1029/2008GB003354, 2010.800

Saunois, M., Martinez, A., Poulter, B., Zhang, Z., Raymond, P. A., Regnier, P., Canadell, J. G., Jackson, R. B., Patra, P. K., Bousquet, P.,

Ciais, P., Dlugokencky, E. J., Lan, X., Allen, G. H., Bastviken, D., Beerling, D. J., Belikov, D. A., Blake, D. R., Castaldi, S., Crippa,

M., Deemer, B. R., Dennison, F., Etiope, G., Gedney, N., Höglund-Isaksson, L., Holgerson, M. A., Hopcroft, P. O., Hugelius, G., Ito, A.,

Jain, A. K., Janardanan, R., Johnson, M. S., Kleinen, T., Krummel, P. B., Lauerwald, R., Li, T., Liu, X., McDonald, K. C., Melton, J. R.,

Mühle, J., Müller, J., Murguia-Flores, F., Niwa, Y., Noce, S., Pan, S., Parker, R. J., Peng, C., Ramonet, M., Riley, W. J., Rocher-Ros, G.,805

Rosentreter, J. A., Sasakawa, M., Segers, A., Smith, S. J., Stanley, E. H., Thanwerdas, J., Tian, H., Tsuruta, A., Tubiello, F. N., Weber,

T. S., van der Werf, G. R., Worthy, D. E. J., Xi, Y., Yoshida, Y., Zhang, W., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q.: Global Methane

Budget 2000–2020, Earth System Science Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, 2025.

Scarpelli, T., Jacob, D., Moran, M., Reuland, F., and Gordon, D.: Gridded inventory of Canada’s anthropogenic methane emissions for 2018,

https://doi.org/10.7910/DVN/CC3KLO, 2021.810

Schulzweida, U.: Climate Data Operators (CDO) User Guide, https://code.mpimet.mpg.de/projects/cdo/embedded/cdo.pdf, 2023.

Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence,

D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the

permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.

Singarayer, J. S., Valdes, P. J., Friedlingstein, P., Nelson, S., and Beerling, D. J.: Late Holocene methane rise caused by orbitally controlled815

increase in tropical sources, Nature, 470, 82–85, https://doi.org/10.1038/nature09739, 2011.

Spahni, R., Wania, R., Neef, L., van Weele, M., Pison, I., Bousquet, P., Frankenberg, C., Foster, P. N., Joos, F., Prentice,

I. C., and van Velthoven, P.: Constraining global methane emissions and uptake by ecosystems, Biogeosciences, 8, 1643–1665,

https://doi.org/10.5194/bg-8-1643-2011, 2011.

Sweeney, C., Dlugokencky, E., Miller, C. E., Wofsy, S., Karion, A., Dinardo, S., Chang, R. Y.-W., Miller, J. B., Bruhwiler, L., Crotwell,820

A. M., Newberger, T., McKain, K., Stone, R. S., Wolter, S. E., Lang, P. E., and Tans, P.: No significant increase in long-term CH4

emissions on North Slope of Alaska despite significant increase in air temperature, Geophysical Research Letters, 43, 6604–6611,

https://doi.org/https://doi.org/10.1002/2016GL069292, 2016.

Sweeney, C., Chatterjee, A., Wolter, S., McKain, K., Bogue, R., Conley, S., Newberger, T., Hu, L., Ott, L., Poulter, B., Schiferl, L., Weir, B.,

Zhang, Z., and Miller, C. E.: Using atmospheric trace gas vertical profiles to evaluate model fluxes: a case study of Arctic-CAP observations825

and GEOS simulations for the ABoVE domain, Atmospheric Chemistry and Physics, 22, 6347–6364, https://doi.org/10.5194/acp-22-

6347-2022, 2022.

30

https://doi.org/10.1038/s43247-022-00498-3
https://doi.org/10.1038/s43247-022-00498-3
https://doi.org/10.1038/s43247-022-00498-3
https://doi.org/10.5194/bg-8-1925-2011
https://doi.org/https://doi.org/10.1029/2008GB003354
https://doi.org/10.5194/essd-17-1873-2025
https://doi.org/10.7910/DVN/CC3KLO
https://code.mpimet.mpg.de/projects/cdo/embedded/cdo.pdf
https://doi.org/10.1038/nature14338
https://doi.org/10.1038/nature09739
https://doi.org/10.5194/bg-8-1643-2011
https://doi.org/https://doi.org/10.1002/2016GL069292
https://doi.org/10.5194/acp-22-6347-2022
https://doi.org/10.5194/acp-22-6347-2022
https://doi.org/10.5194/acp-22-6347-2022


Thompson, R. L., Sasakawa, M., Machida, T., Aalto, T., Worthy, D., Lavric, J. V., Lund Myhre, C., and Stohl, A.: Methane fluxes in the high

northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion, Atmospheric Chemistry and Physics, 17, 3553–3572,

https://doi.org/10.5194/acp-17-3553-2017, 2017.830

Tian, H., Xu, X., Liu, M., Ren, W., Zhang, C., Chen, G., and Lu, C.: Spatial and temporal patterns of CH4 and N2O fluxes in terres-

trial ecosystems of North America during 1979–2008: application of a global biogeochemistry model, Biogeosciences, 7, 2673–2694,

https://doi.org/10.5194/bg-7-2673-2010, 2010.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C.,

Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth System Science Data, 9,835

697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.

van Huissteden, J. and Dolman, A.: Soil carbon in the Arctic and the permafrost carbon feedback, Current Opinion in Environmental Sus-

tainability, 4, 545–551, https://doi.org/https://doi.org/10.1016/j.cosust.2012.09.008, terrestrial systems, 2012.

van Hulzen, J., Segers, R., van Bodegom, P., and Leffelaar, P.: Temperature effects on soil methane production: an explanation for observed

variability, Soil Biology and Biochemistry, 31, 1919–1929, https://doi.org/https://doi.org/10.1016/S0038-0717(99)00109-1, 1999.840

Walter, B. P. and Heimann, M.: A process-based, climate-sensitive model to derive methane emissions from natural wetlands:

Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochemical Cycles, 14, 745–765,

https://doi.org/https://doi.org/10.1029/1999GB001204, 2000.

Wania, R., Ross, I., and Prentice, I. C.: Implementation and evaluation of a new methane model within a dynamic global vegetation model:

LPJ-WHyMe v1.3.1, Geoscientific Model Development, 3, 565–584, https://doi.org/10.5194/gmd-3-565-2010, 2010.845

Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Chen, G., Eliseev, A. V., Hopcroft,

P. O., Riley, W. J., Subin, Z. M., Tian, H., van Bodegom, P. M., Kleinen, T., Yu, Z. C., Singarayer, J. S., Zürcher, S., Lettenmaier,

D. P., Beerling, D. J., Denisov, S. N., Prigent, C., Papa, F., and Kaplan, J. O.: Present state of global wetland extent and wetland

methane modelling: methodology of a model inter-comparison project (WETCHIMP), Geoscientific Model Development, 6, 617–641,

https://doi.org/10.5194/gmd-6-617-2013, 2013.850

Ward, R. H., Sweeney, C., Miller, J. B., Goeckede, M., Laurila, T., Hatakka, J., Ivakov, V., Sasakawa, M., Machida, T., Mo-

rimoto, S., Goto, D., and Ganesan, A. L.: Increasing methane emissions and widespread cold-season release from high-

Arctic regions detected through atmospheric measurements, Journal of Geophysical Research: Atmospheres, 129, e2024JD040 766,

https://doi.org/https://doi.org/10.1029/2024JD040766, e2024JD040766 2024JD040766, 2024.

Watts, J. D., Farina, M., Kimball, J. S., Schiferl, L. D., Liu, Z., Arndt, K. A., Zona, D., Ballantyne, A., Euskirchen, E. S., Parmentier,855

F.-J. W., Helbig, M., Sonnentag, O., Tagesson, T., Rinne, J., Ikawa, H., Ueyama, M., Kobayashi, H., Sachs, T., Nadeau, D. F., Kochendor-

fer, J., Jackowicz-Korczynski, M., Virkkala, A., Aurela, M., Commane, R., Byrne, B., Birch, L., Johnson, M. S., Madani, N., Rogers,

B., Du, J., Endsley, A., Savage, K., Poulter, B., Zhang, Z., Bruhwiler, L. M., Miller, C. E., Goetz, S., and Oechel, W. C.: Carbon

uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget, Global Change Biology, 29, 1870–1889,

https://doi.org/https://doi.org/10.1111/gcb.16553, 2023.860

Wold, S., Esbensen, K., and Geladi, P.: Principal component analysis, Chemometrics and Intelligent Laboratory Systems, 2, 37–52,

https://doi.org/https://doi.org/10.1016/0169-7439(87)80084-9, proceedings of the Multivariate Statistical Workshop for Geologists and

Geochemists, 1987.

31

https://doi.org/10.5194/acp-17-3553-2017
https://doi.org/10.5194/bg-7-2673-2010
https://doi.org/10.5194/essd-9-697-2017
https://doi.org/https://doi.org/10.1016/j.cosust.2012.09.008
https://doi.org/https://doi.org/10.1016/S0038-0717(99)00109-1
https://doi.org/https://doi.org/10.1029/1999GB001204
https://doi.org/10.5194/gmd-3-565-2010
https://doi.org/10.5194/gmd-6-617-2013
https://doi.org/https://doi.org/10.1029/2024JD040766
https://doi.org/https://doi.org/10.1111/gcb.16553
https://doi.org/https://doi.org/10.1016/0169-7439(87)80084-9


Worthy, D. E. J., Levin, I., Trivett, N. B. A., Kuhlmann, A. J., Hopper, J. F., and Ernst, M. K.: Seven years of continuous methane

observations at a remote boreal site in Ontario, Canada, Journal of Geophysical Research: Atmospheres, 103, 15 995–16 007,865

https://doi.org/10.1029/98JD00925, 1998.

Xiao, H., Song, C., Li, S., Lu, X., Liang, M., Xia, X., and Yuan, W.: Global wetland methane emissions from 2001 to 2020: magnitude,

dynamics and controls, Earth’s Future, 12, e2024EF004 794, https://doi.org/https://doi.org/10.1029/2024EF004794, 2024.

Zhang, Z., Zimmermann, N. E., Stenke, A., Li, X., Hodson, E. L., Zhu, G., Huang, C., and Poulter, B.: Emerging role of wetland

methane emissions in driving 21st century climate change, Proceedings of the National Academy of Sciences, 114, 9647–9652,870

https://doi.org/10.1073/pnas.1618765114, 2017.

Zhang, Z., Fluet-Chouinard, E., Jensen, K., McDonald, K., Hugelius, G., Gumbricht, T., Carroll, M., Prigent, C., Bartsch, A., and Poulter,

B.: Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M), Earth System Science Data, 13,

2001–2023, https://doi.org/10.5194/essd-13-2001-2021, 2021.

Zhang, Z., Poulter, B., Feldman, A. F., Ying, Q., Ciais, P., Peng, S., and Li, X.: Recent intensification of wetland methane feedback, Nature875

Climate Change, 13, 430–433, https://doi.org/10.1038/s41558-023-01629-0, 2023.

Zhang, Z., Poulter, B., Melton, J. R., Riley, W. J., Allen, G. H., Beerling, D. J., Bousquet, P., Canadell, J. G., Fluet-Chouinard, E., Ciais,

P., Gedney, N., Hopcroft, P. O., Ito, A., Jackson, R. B., Jain, A. K., Jensen, K., Joos, F., Kleinen, T., Knox, S. H., Li, T., Li, X., Liu, X.,

McDonald, K., McNicol, G., Miller, P. A., Müller, J., Patra, P. K., Peng, C., Peng, S., Qin, Z., Riggs, R. M., Saunois, M., Sun, Q., Tian,

H., Xu, X., Yao, Y., Xi, Y., Zhang, W., Zhu, Q., Zhu, Q., and Zhuang, Q.: Ensemble estimates of global wetland methane emissions over880

2000–2020, Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, 2025.

32

https://doi.org/10.1029/98JD00925
https://doi.org/https://doi.org/10.1029/2024EF004794
https://doi.org/10.1073/pnas.1618765114
https://doi.org/10.5194/essd-13-2001-2021
https://doi.org/10.1038/s41558-023-01629-0
https://doi.org/10.5194/bg-22-305-2025

