
Appendix:  

A.1 Proposed figures to better explain the workflow for using SOM in hysteresis analysis 

 

Figure 3. Workflow to generate an SOM for C-Q hysteresis loops (training phase) and apply the SOM for C-Q hysteresis 
analyses in watersheds (analysis phase). Here, we illustrate the generation of the SOM using different shapes, which 
are analogous to the hysteresis loop types that might be found for a dissolved or particulate constituent in a 
watershed. In the bottom panel (analysis phase), we demonstrate how hysteresis loops from a new dataset get 
mapped to the trained SOM, where the shade of orange represents the frequency with which the shape occurs in 
the dataset. The HySOM python package (see section 7) allows users to implement this workflow. 



 

Figure 4. Workflow for training an SOM. 𝛼𝛼: learning rate, 𝜎𝜎: neighborhood radius, subscripts 0, 𝑓𝑓 indicate 
initial (first iteration) and final (last iteration) values, respectively. 𝑄𝑄: Discharge, 𝐶𝐶: Concentration, 𝑛𝑛: length 
of the sequence of (𝑄𝑄,𝐶𝐶) data pairs representing a loop (section 2.3). Other symbols are defined in the 
figure. 



 

Figure 5. Workflow for fine-tuning SOM hyperparameters using a combination of quantitative metrics and 
qualitative assessment. The process begins with training multiple SOMs across a grid of map sizes, learning 
rates, and neighborhood radii. Quantization error is evaluated to identify the optimal map size using the 
elbow method. A subset of high-quality maps—selected from the Pareto frontier of topographic and 
quantization errors—is then examined in detail. SOM selection is based on visual inspection, prioritizing 
maps that exhibit coherent transitions between similar loop types and clear separation between 
contrasting ones. Finally, retraining of the selected SOM may enhance quantization accuracy. 

 

A.2 Proposed new section S in the SI to better explain the DTW algorithm 

S1. Dynamic Time Warping 

Figure S1 illustrates the difference between Euclidean distance and dynamic time warping (DTW) for 
one-dimensional sequences. Euclidean distance compares time series by matching values at the same 
time index, resulting in larger distances if sequences are misaligned. In contrast, Dynamic Time Warping 
(DTW) flexibly matches points across time to minimize overall distance. For example, 𝑥𝑥3 in the first 
sequence is matched with 𝑦𝑦5 in the second sequence.  

 



 

Figure S1. Comparison between Euclidean distance and Dynamic Time Warping distance for one-
dimensional sequences 

The same principle applies to two-dimensional sequences, as illustrated by the two hysteresis loops in Fig. 
S2. DTW flexibly matches nearby points along the trajectory on the Q-T plane, resulting in lower distances 
when the loops follow similar paths. In contrast, Euclidean distance is sensitive to time misalignments and 
compares points at fixed positions—leading to larger distances even when the overall loop shapes are 
similar. 

 

Figure S2. Comparison between Euclidean distance and Dynamic Time Warping distance for two-
dimensional sequences 

 


