Appendix:

A.1 Proposed figures to better explain the workflow for using SOM in hysteresis analysis
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Figure 3. Workflow to generate an SOM for C-Q hysteresis loops (training phase) and apply the SOM for C-Q hysteresis
analyses in watersheds (analysis phase). Here, we illustrate the generation of the SOM using different shapes, which
are analogous to the hysteresis loop types that might be found for a dissolved or particulate constituent in a
watershed. In the bottom panel (analysis phase), we demonstrate how hysteresis loops from a new dataset get
mapped to the trained SOM, where the shade of orange represents the frequency with which the shape occurs in
the dataset. The HySOM python package (see section 7) allows users to implement this workflow.
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Figure 4. Workflow for training an SOM. a: learning rate, o: neighborhood radius, subscripts 0, f indicate
initial (first iteration) and final (last iteration) values, respectively. Q: Discharge, C: Concentration, n: length
of the sequence of (@, C) data pairs representing a loop (section 2.3). Other symbols are defined in the
figure.
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Figure 5. Workflow for fine-tuning SOM hyperparameters using a combination of quantitative metrics and
qualitative assessment. The process begins with training multiple SOMs across a grid of map sizes, learning
rates, and neighborhood radii. Quantization error is evaluated to identify the optimal map size using the
elbow method. A subset of high-quality maps—selected from the Pareto frontier of topographic and
guantization errors—is then examined in detail. SOM selection is based on visual inspection, prioritizing
maps that exhibit coherent transitions between similar loop types and clear separation between
contrasting ones. Finally, retraining of the selected SOM may enhance quantization accuracy.

A.2 Proposed new section S in the Sl to better explain the DTW algorithm

S1. Dynamic Time Warping

Figure S1 illustrates the difference between Euclidean distance and dynamic time warping (DTW) for
one-dimensional sequences. Euclidean distance compares time series by matching values at the same
time index, resulting in larger distances if sequences are misaligned. In contrast, Dynamic Time Warping
(DTW) flexibly matches points across time to minimize overall distance. For example, x5 in the first
sequence is matched with ys in the second sequence.
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Figure S1. Comparison between Euclidean distance and Dynamic Time Warping distance for one-
dimensional sequences

The same principle applies to two-dimensional sequences, as illustrated by the two hysteresis loops in Fig.
S2. DTW flexibly matches nearby points along the trajectory on the Q-T plane, resulting in lower distances
when the loops follow similar paths. In contrast, Euclidean distance is sensitive to time misalignments and
compares points at fixed positions—leading to larger distances even when the overall loop shapes are
similar.
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Figure S2. Comparison between Euclidean distance and Dynamic Time Warping distance for two-
dimensional sequences



