

1 Impact of Internal Tides on Chlorophyll-a Distribution and Primary 2 Production off the Amazon Shelf from Glider Measurements and 3 Satellite Observations

4 Amine M'hamdi^{1,2,8}, Ariane Koch-Larrouy^{1,8}, Alex Costa da Silva², Isabelle Dadou¹, Carina Regina de
5 Macedo^{1,3,7}, Anthony Bosse¹², Vincent Vantrepotte^{3,2}, Habib Micaël Aguedjou^{1,11}, Trung-Kien Tran³,
6 Pierre Testor⁹, Laurent Mortier¹⁰, Arnaud Bertrand⁴, Pedro Augusto Mendes de Castro Melo², James
7 Lee⁵, Marcelo Rollnic⁵, Moacyr Araujo^{2,6}

8 ¹LEGOS, Université de Toulouse, CNRS, OMP, IRD, Toulouse, France.

9 ²Departamento de Oceanografia, Universidade Federal de Pernambuco (DOCEAN/UFPE), Recife, Brazil.

10 ³Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-
11 62930 Wimereux, France.

12 ⁴MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Sète, France.

13 ⁵Departamento de Oceanografia, Universidade Federal do Pará (UFPa), Belém, Brazil.

14 ⁶Brazilian Research Network on Global Climate Change (Rede CLIMA), 12227-010, São José dos Campos-SP, Brazil.

15 ⁷Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos,
16 Brazil.

17 ⁸CECI CNRS/Cerfa/IRD, Université de Toulouse, Toulouse, France.

18 ⁹LOCEAN-IPSL/CNRS, Université Pierre et Marie Curie, T45-55 E4 case 100, 4 place Jussieu 75252 Paris, France.

19 ¹⁰Ecole Nationale Supérieure de Techniques Avancées, 29 rue d'Ulm, F-75230 Paris cedex 05, France.

20 ¹¹Centre National d'Etudes Spatiales, 18 av. Edouard Belin 31400 Toulouse, France.

21 ¹²Mediterranean Institute of Oceanography, OSU Institut Pytheas, Aix Marseille University, Université de Toulon, CNRS,
22 IRD, Marseille, France.

23 *Correspondence to:* Amine M'hamdi (abn.mhamdi@gmail.com)

24 Abstract.

25 The ocean region off the Amazon shelf including shelf-break presents a hotspot for Internal Tides (ITs) generation, yet its
26 impact on phytoplankton distribution remains poorly understood. These baroclinic waves, generated by tidal interactions with
27 topography, could modulate nutrient availability and primary production both by mixing and advection. While previous studies
28 have extensively examined the physical characteristics and dynamics of ITs, their biological implications—particularly in
29 nutrient-limited environments—remain underexplored. To address this question, we analysed a 26-day glider mission deployed
30 in September–October 2021 sampling hydrographic and optical properties (chlorophyll-a) at high resolution along an IT
31 pathway, satellite chlorophyll-a and altimetry data to assess mesoscale interactions. Chlorophyll-a dynamics were analysed
32 under varying IT intensities, comparing strong (HT) and weak (LT) internal tide conditions. Results reveal that ITs drive
33 vertical displacements of the Deep chlorophyll Maximum (DCM) from 15 to 45 meters, accompanied by a remarkable 50%
34 expansion in its thickness during HT events. This expansion is observed with a dilution of the chlorophyll-a maximum

35 concentration within the DCM depth. Turbulent cross-isopycnal exchanges driven by tides redistribute chlorophyll-a into
36 adjacent layers above and below the DCM. At the surface, turbulent fluxes contribute to 38% of the chlorophyll-a supply,
37 which directly influences primary production. Notably, the total chlorophyll-a content in the water column increases by 14-
38 29% during high internal tide phases, reflecting a net enhancement of primary productivity. This increase results from the
39 combined effect of vertical mixing and stimulated biological activity in the surface layer. These findings highlight the role of
40 ITs as a key driver of chlorophyll-a distribution and short-term biological variability, reshaping the vertical chlorophyll-a
41 profile and regulating primary productivity and potentially carbon cycling in oligotrophic oceanic systems.

42 1 Introduction

43 Internal Tides (ITs), also known as baroclinic tides, are ubiquitous in stratified oceans. These waves cause vertical
44 displacements of isopycnal layers on the order of tens of meters and can propagate over long distances, reaching up to
45 thousands of kilometers along the thermocline for the lowest modes (Zhao et al., 2016). Baroclinic tides are generated through
46 the interaction of barotropic tidal currents with prominent submarine topographies such as continental slopes and mid-ocean
47 ridges (Baines, 1982; Egbert and Ray, 2001; Munk and Wunsch, 1998). ISWs are highly stable internal waveforms that can
48 propagate over long distances with a crest of a few tens of kilometers, and are generally structured with a wave train trailing
49 behind the main crest (Alford et al., 2015; Jackson et al., 2012; Jeans and Sherwin, 2001). In addition to ITs, shorter-
50 wavelength internal solitary waves (ISWs) may form from the nonlinear properties of ITs and dispersive processes,
51 accompanying the ITs (Grimshaw, 2003; Grisouard et al., 2011). During their propagation, ITs and ISWs may eventually break
52 down, releasing energy and driving vertical turbulent mixing (Alford et al., 2015; Lamb and Xiao, 2014; Moum et al., 2003;
53 Nash et al., 2004). This mixing can play a crucial role in general circulation, contributing to the enclosure of the Atlantic
54 Meridional Overturning Circulation (AMOC), and influencing oceanic energy and heat fluxes (Kantha and Tierney, 1997;
55 Kunze, 2017; Waterhouse et al., 2014). Furthermore this mixing occurs close to the surface; it may also influence climate
56 variability (Koch-Larrouy et al., 2010; Sprintall et al., 2014).

57 While the physical characteristics of ITs have been extensively studied, their impact on biogeochemical processes remains
58 relatively poorly explored (Holligan et al., 1985; Liu et al., 2006; Ma et al., 2023; Zaron et al., 2023). Their influence on
59 plankton dynamics is of significant interest, as phytoplankton constitutes the lowest trophic level of marine ecosystems.
60 Through photosynthesis and organic carbon production, phytoplankton regulates primary productivity and influences global
61 biogeochemical cycles (Falkowski and Knoll, 2007). The spatial and temporal variability of phytoplankton populations is
62 driven by a combination of biological factors, such as production and grazing, and physical processes, including ocean currents,
63 mesoscale structures (fronts and eddies), and heat fluxes (Mahadevan and Campbell, 2002; Van Gennip et al., 2016). Given
64 the timescale and amplitude of disturbances generated by ITs, it is reasonable to hypothesize that ITs can significantly influence
65 phytoplankton distribution.

66 The effects of ITs on phytoplankton could occur through, at least, two primary mechanisms. First, vertical mixing induced by
67 ITs can enhance nutrient fluxes into the euphotic zone, stimulating primary production and increasing phytoplankton biomass
68 in regions with high IT activity (Bourgault et al., 2011; Capuano et al., 2025; Horne et al., 1996; Kaneko et al., 2025; Law et
69 al., 2003; Lewis et al., 1986; Martin et al., 2010; Tsutsumi et al., 2020; Tuerena et al., 2019; Zaron et al., 2023). Second, the
70 vertical displacements associated with ITs can alter the light and nutrient conditions experienced by phytoplankton cells near
71 the pycnocline, thereby influencing their physiological responses and community structure (Gaxiola-Castro et al., 2002;
72 Holloway and Denman, 1989; Jacobsen et al., 2023; Kahru, 1983; Lande and Yentsch, 1988; Sangrà et al., 2002; Vázquez et
73 al., 2009)

74 The Amazon shelf-break is recognized as a hotspot for internal tide (IT) generation, dissipation and interact with intense
75 mesoscale features. First identified by Baines, 1982, subsequent studies have confirmed its role in converting barotropic energy
76 into baroclinic waves (Assene et al., 2024; Brandt et al., 2002; De Macedo et al., 2023; Ivanov et al., 1990; Magalhaes et al.,
77 2016; Tchilibou et al., 2022; Vlasenko et al., 2005). However, the specific impacts of these ITs on biological processes off
78 Amazon, particularly phytoplankton dynamics in the region, remain poorly understood and require further investigation.

79 This region, situated in the western tropical Atlantic near the mouth of the Amazon and Pará rivers, features a shallow
80 continental shelf and a macrotidal regime predominantly influenced by the semi-diurnal M2 tidal component (Beardsley et al.,
81 1995; Gabiou et al., 2005). The Amazon River significantly shapes local oceanographic conditions by modifying salinity,
82 temperature, and water column stratification (Geyer, 1995; Ruault et al., 2020). During the August-September-October (ASO)
83 season, reduced river discharge leads to a weaker and deeper pycnocline, along with a stronger North Brazil Current (NBC)
84 and higher eddy kinetic energy (EKE) (Neto and Da Silva, 2014; Silva et al., 2005; Tchilibou et al., 2022). The isopycnal
85 layers are thicker nearshore and become tighter offshore, causing weaker coastal stratification that increases offshore. These
86 seasonal variations clearly highlight the dynamic shifts in vertical density gradients, consistent with observations by Aguedjou
87 et al., 2019.

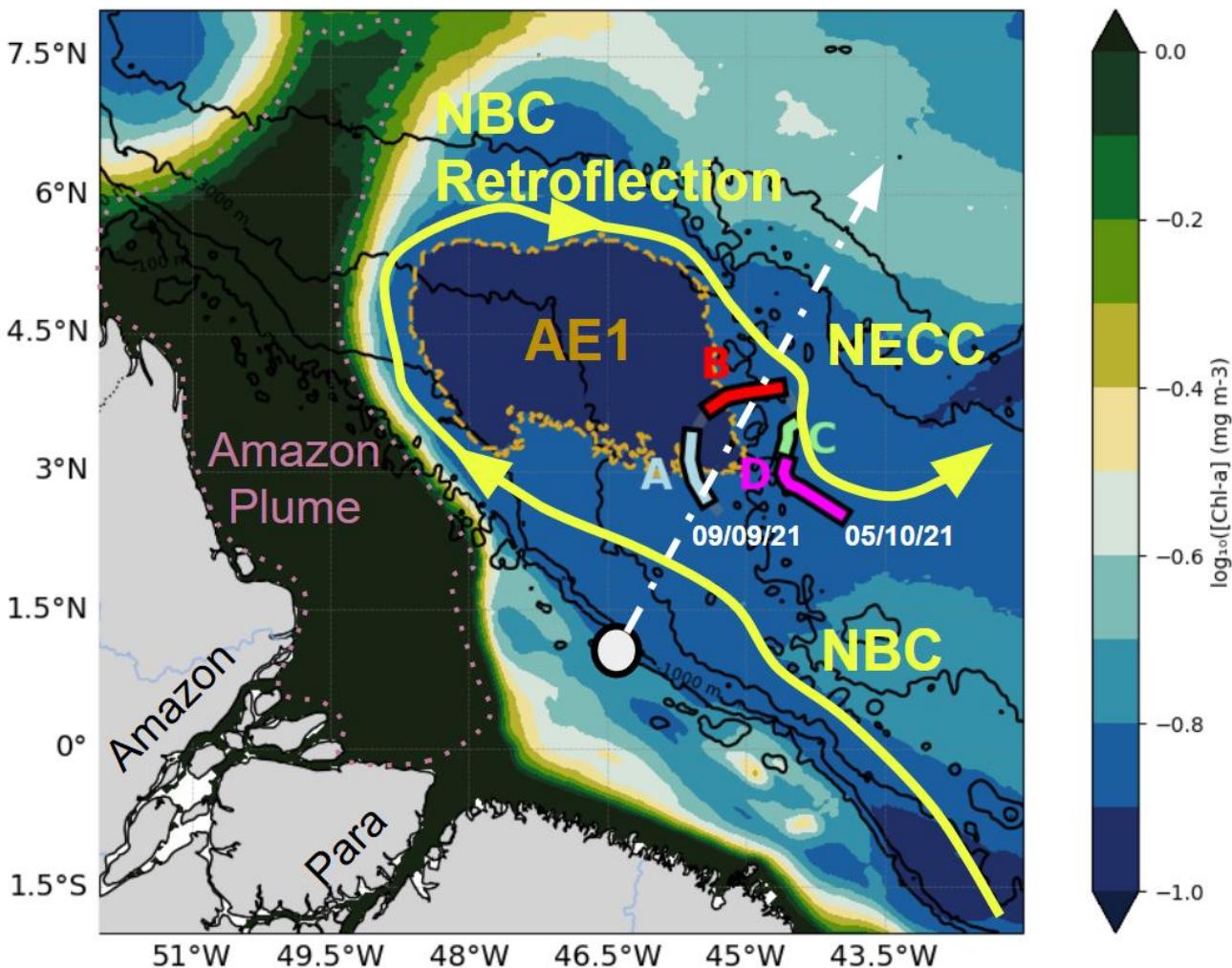
88 The dynamics of this region are further shaped by interactions with the NBC, a major western boundary current transporting
89 warm, saline waters from the South Atlantic (Garzoli et al., 2003; Johns et al., 1998; Schott et al., 1998; Silva et al., 2005).
90 Between June and February, the NBC undergoes a seasonal retroflection, forming large anticyclonic rings that propagate
91 northwestward (Fratantoni and Richardson, 2006; Fratantoni and Glickson, 2002). These anticyclonic eddies, known as “NBC
92 rings”, can modulate stratification and nutrient distributions, influencing phytoplankton productivity (Mikaelyan et al., 2020).
93 During the second part of the year a large part of the NBC retroflects to feeds the eastward North Equatorial Countercurrent
94 (NECC) (Dimoune et al., 2023).

95 To investigate the role of ITs in shaping phytoplankton dynamics in the oceanic region off the Amazon shelf, the AMAZOMIX
96 cruise aimed to collect a wide range of in situ measurements. Conducted between September and October 2021—an optimal

97 period for IT activity and mesoscale interactions—the cruise employs a multi-faceted approach combining numerical models,
98 satellite data, and in situ observations. In addition to ship-based measurements, an autonomous underwater glider was deployed
99 from September 9 to October 5, 2021 to have high resolution vertical structure data (hydrographic and chlorophyll-a)
100 influenced by ITs.

101 The objective of this study is to investigate how ITs influence the vertical distribution of Chlorophyll-a concentration off the
102 Amazon shelf. Analyses were performed by examining glider measurements and remote sensing observations, and by
103 comparing periods of strong and weak internal tide activity under similar stratification conditions.

104 **2 Data and Methods**


105 **2.1 Data**

106 **2.1.1 Autonomous glider**

107 On September 9, 2021, during the AMAZOMIX campaign an autonomous underwater glider (Testor et al., 2019)
108 was deployed for 26 days (09/09-05/10/ 2021) between the NBC and NECC, the adjacent oceanic waters off the
109 Northern Brazil (Figure 1) in the core of an ITs propagation path identified by Magalhaes et al., 2016 and Tchilibou
110 et al., 2022 . A Slocum G2 glider from Teledyne Webb Research was used, which is able to dive to 1000 m within
111 four hours and to cover approximately 20 km horizontally per day relative to the water. Due to strong currents near
112 1 m/s representing a real challenge for glider operation, the glider only completes a total distance of 315 km over
113 ground during the 26-day deployment. The glider was equipped with a Seabird's pumped CTD (temperature,
114 pressure, conductivity), an Aanderaa optode (dissolved oxygen), and a WetLabs's optical puck (chlorophyll-a
115 fluorescence, CDOM, and turbidity). The sensors had a sampling frequency of 5 seconds, resulting in a vertical
116 sampling interval of approximately 1 m. Between each surfacing, the glider estimates its position thanks to
117 navigation sensors (compass) enabling to estimate a mean dive-average horizontal currents while comparing its
118 dead-reckoned position with GPS fixes. The glider dataset was processed using the Geomar Matlab Toolbox
119 (Krahmann, 2023), which includes the removal of thermal lag errors following (Garau et al., 2011). Temperature
120 and salinity were converted to conservative temperature and absolute salinity using the Gibbs Seawater python
121 library (McDougall and Barker, 2011). The temperature and salinity profiles were validated by comparison with a
122 reference CTD at the glider deployment site. Daytime chlorophyll-a fluorescence profiles were corrected for non-
123 photochemical quenching processes using the method described by (Thomalla et al., 2018), setting the quenching
124 depth at 40 m. To enable direct comparison with satellite-derived data, chlorophyll-a concentrations measured by

125 the glider were averaged from the surface down to the first optical depth ($Z_{pd} = Zeu/4.6$ Morel, 1988) to build the
126 time series, which defines the depth range primarily sensed by ocean colour remote sensors.

127

128 **Figure 1 : Chlorophyll map averaged between 09/09/21 and 05/10/21 in the glider deployment region, divided into four subregions:**
129 **A (blue), B (red), C (green), and D (magenta), each characterized by distinct temperature–salinity (T/S) properties (section 3.1). The**
130 **yellow area marks the main surface current, purple indicates the plume, and light brown highlights AE1, the anticyclonic eddy**
131 **detected by altimetry during the transect. The white dashed line shows the main internal tide propagation pathways identified by**
132 **Magalhães et al. (2016) and Tchilibou et al. (2022), while the grey circle marks the primary internal tide generation site ($46^\circ\text{W}/0.75^\circ\text{S}$).**

133 2.1.2 Remote sensing observations: ISW detection, Chlorophyll-a distribution and Mesoscale eddy tracking

134 Internal solitary waves (ISWs) create patterns alternating between rough and smooth surface areas, corresponding to
135 convergent and divergent surface currents, respectively. Thus, their signatures in MODIS images during sunglint or in the SAR
136 imagery are manifested by variations in sea surface roughness, resulting in changes in the brightness of the captured images (De
137 Macedo et al., 2023; Jackson and Alpers, 2010; Magalhaes et al., 2016). During the cruise, ISW signatures were visually
138 identified and manually extracted off the Amazon shelf from a representative assembled data set composed of 21 remote
139 sensing imagery acquired by active and passive sensors from 1st September 2021 to 10th October 2021. A total of 13 imagery
140 were acquired by the synthetic aperture radar (SAR) C-band (centre frequency of 5.4 GHz) Copernicus Sentinel-1A and 1B
141 instruments Level-1 GRD (ground range detected) products in the interferometric wide swath mode with about 250 km of
142 swath and spatial resolution of 20.3 x 22.6 m (range x azimuth), operating in single polarization (VV channel). The SAR
143 imagery were collected from the Copernicus Open Access Hub (<https://scihub.copernicus.eu/dhus/#/home>). The SAR scenes
144 were pre-processed using the software SNAP and Sentinel Toolboxes (version 8.0) by calibrating the data (conversion from
145 digital number to normalised radar cross-section) and applying a 5x5 boxcar filter to reduce the speckle noise. A total of 8
146 Level 1B imagery were acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the
147 TERRA and AQUA satellites. The band 6 centred at 1640 nm with a spatial resolution of 500 m was used to identify the ISW
148 signatures in the sun glint region. The MODIS/TERRA and AQUA imagery were collected from NASA's Earth Science Data
149 System, ESDS (<https://earthdata.nasa.gov/>).

150

151 Given that ocean colour observations are often affected by interference from clouds, leading to data gaps, we used the daily
152 mean merged chlorophyll-a (with a spatial resolution of ~4 km) product from the GlobColour project to maximise data
153 coverage from 1st September 2021 to 05 th October 2021 provided by the ACRI-ST company (Garnesson et al., 2019). This
154 product provides chlorophyll-a concentration information from the ocean colour sensors MODIS-AQUA, NPP-VIIRS,
155 NOAA20-VIIRS, and Sentinel-3 OLCIA and B, including updated ancillary information (i. e., meteorological and ozone data
156 for atmospheric correction, and attitude and ephemerides for data geolocation). According to Garnesson et al., 2019, the
157 approach merge three algorithms: 1) the CI approach for oligotrophic waters (Hu et al., 2012) ; 2) the OCx (OC3, OC4 or
158 OC4Me depending on the sensor) for mesotrophic waters; and 3) the OC5 algorithm for complex waters (Gohin, 2011). The
159 product can be found on the CMEMS website (<https://resources.marine.copernicus.eu/products>). In this study, we utilized data
160 provided by GlobColour, specifically estimates of the euphotic depth (Zeu) derived from satellite observations of the MODIS-
161 Aqua sensor. These Level-3 processed data are available at a spatial resolution of 4 km and were obtained from the GlobColour
162 platform. The euphotic depth was estimated following the methodology described by Morel and Maritorena (2001), which
163 defines Zeu as the depth where incident light is reduced to 1% of its surface value. The dataset is publicly available at HERMES
164 ACRI.

165

166 Daily maps of the Ssalto/Duacs absolute dynamic topography (ADT) gridded product were used to identify and track coherent
167 mesoscale eddies during AMAZOMIX campaign. This product was obtained from all available satellite altimetry along-track
168 data and optimally interpolated onto a $0.25^\circ \times 0.25^\circ$ longitude/latitude (Pujol et al., 2016). The product can be found on :
169 (https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_MDT_008_063/description)
170 Mesoscale eddies were identified, using the algorithm developed by Chaigneau et al., 2009, 2008; Pegliasco et al., 2015. In
171 this method, an eddy is identified by its centre and its external edge. An eddy centre corresponds to a local extremum
172 (maximum for an anticyclonic eddy and minimum for a cyclonic eddy) in ADT while eddy edge corresponds to the outermost
173 closed ADT contour around each detected eddy centre. One long-lived anticyclonic eddy (AE1) was identified during the
174 AMAZOMIX campaign. AE1 was generated within the study domain from instability of NECC and propagated north
175 westward making NECC oscillating the NBC figure 3 . AE1 lasted more than 120 days. The bathymetric data used in this
176 study are sourced from the NOAA CoastWatch Program and are accessible through the NOAA CoastWatch Data Portal. These
177 data are formatted for MATLAB and are stored under the directory gov.noaa.pfel.coastwatch.Matlab. The bathymetric dataset,
178 referenced from the Topography SRTM30 Version 6.0 (30 Arc-Second Global), provides detailed seafloor topography
179 information crucial for analysing oceanographic processes. Additionally, the geostrophic velocity data used in this study are
180 sourced from the Global Ocean Gridded SSALTO/DUACS Sea Surface Height L4 product, provided by Mercator through the
181 Copernicus Marine Service. This product includes surface geostrophic eastward and northward sea water velocities, calculated
182 from sea surface height assuming sea level as the geoid reference. These data, derived from sea surface height, provide essential
183 surface currents. The dataset is available via Copernicus Marine Data.

184 **2.1.3 FES model**

185 Tidal data were extracted from the global FES2014 (Finite Element Solution) model developed by Lyard et al., 2021. The
186 outputs of the sea surface elevation field (eta) were used at the grid point corresponding to 46°N , 0.75°E , which corresponds
187 to an internal tide generation site previously identified by Magalhaes et al., 2016 and Tchilibou et al., 2022. The use of those
188 data helped us to identify neap tides and spring tides.

189 **2.2 Methods**

190 To assess the impact of ITs (ITs) on the vertical distribution of chlorophyll-a (hereafter referred as CHL for the equations), a
191 multi-step approach was applied. (1) Satellite observations were used to characterize the large-scale spatial distribution of
192 chlorophyll-a and the physical processes influencing it, enabling the identification of hydrographically distinct regions (section
193 3.1) (2) Based on this preliminary analysis, glider data were divided into transects corresponding to periods with contrasting
194 hydrographic properties named A, B, C and D (Fig 1) (Section 3.2). (3) Given the prevalence of ITs in the study area, A and
195 B period was further subdivided into low tide (LT) and high tide (HT) phases using spectral analysis of the temperature field
196 to estimate tidal amplitude; the classification was based on the presence of a spectral peak at the M2 frequency (section 3.2).
197 (4) Chlorophyll-a fluorescence profiles collected by the glider were then averaged and statistically compared between LT and

198 HT conditions to evaluate the effect of IT intensity on chlorophyll-a vertical distribution (section 3.3). (5) Finally, vertical
199 turbulent fluxes of chlorophyll-a were estimated to better understand the transport mechanisms associated with ITs (section
200 3.3).

201 **2.2.1 Temperature Power Spectra**

202 We analysed temperature time series between 145m and 165 m depth, where the largest vertical displacement of isotherms
203 was observed. The high-frequency glider profiling (about 12 profiles per day) enabled the construction of temperature time
204 series resolving the main tidal frequency (12h). All temperature measurements between 145 and 165 meters were aggregated
205 into a single time series. The aggregated time series was resampled at 30 mins to ensure regularly spaced data points and
206 detrended to remove long-term variations. A Fast Fourier Transform (FFT) was then applied to convert time series into
207 frequency domain. The power spectrum was calculated to identify the dominant frequencies of oscillations (McInerney et al.,
208 2019).

209 **2.2.2 Diapycnal chlorophyll fluxes estimation**

210 The vertical dynamics of chlorophyll-a concentration (CHL) in the water column is described by the following
211 equation :

$$212 \frac{\partial CHL(z,t)}{\partial t} + w \frac{\partial}{\partial z} CHL(z,t) = \frac{\partial}{\partial z} (K_z \frac{\partial}{\partial z} CHL(z,t)) + SMS(z,t) \quad (1)$$

213 Where CHL is the chlorophyll-a concentration. The $w \frac{\partial}{\partial z} CHL(z,t)$ term represents the vertical advection of chlorophyll by
214 the vertical velocity field w, while $\frac{\partial}{\partial z} (K_z \frac{\partial}{\partial z} CHL(z,t))$ accounts for vertical turbulent diffusion, with K_z being the diffusivity
215 coefficient. The source-minus-sink (SMS) term encompasses biological processes, specifically primary production and
216 grazing, which regulate the net chlorophyll-a balance in the system.

217 To isolate turbulent chlorophyll-a fluxes, the analysis is conducted within a vertical isopycnal reference framework. In this
218 context, the advection term $w \frac{\partial}{\partial z} CHL(z) = 0$ as vertical velocities advect isopycnals up and down. By changing the vertical
219 coordinate from z to rho $\frac{\partial CHL(\rho(z))}{\partial z} = \frac{\partial \rho}{\partial z} \frac{\partial CHL(\rho(z))}{\partial \rho}$ and assuming $\frac{\partial \rho}{\partial z}$ and K_z is constant leads to the equation:

$$220 \frac{\partial CHL(\rho,t)}{\partial t} = K_v \frac{\partial^2 CHL(\rho,t)}{\partial \rho^2} + SMS(\rho) \quad (2)$$

221 Where the constant $K_v = (\frac{\partial \rho}{\partial z})^2 K_z = (\frac{N^2 \rho_0}{g})^2 K_z$ represents the diapycnal diffusivity coefficient with ρ_0 the mean density of
222 the ocean and g the gravitational acceleration. By integrating between two isopycnal density surfaces (ρ_0 and ρ_1), the average
223 variations over a given period (ΔT) are defined as:

224

$$\langle P \rangle_{\rho_0, \rho_1, \Delta T} = \frac{1}{\Delta T} \int_{\Delta T} \int_{\rho_0}^{\rho_1} \frac{\partial P(\rho, t)}{\partial t} d\rho dt \quad (3)$$

225 Where P correspond either to $\frac{\partial CHL(\rho, t)}{\partial t}$; $K_v \frac{\partial^2 CHL(\rho, t)}{\partial \rho^2}$; $SMS(\rho)$ and $\langle P \rangle$ to $\langle CHL \rangle$, $\langle DIFF \rangle$ or $\langle SMS \rangle$

226 For two distinct periods corresponding to complete tidal cycles with intense tides ΔHT and low tides ΔLT , and within
227 a density layer between ρ_a and ρ_b , the differences are defined as :

228

$$\Delta P_{\rho_0, \rho_1, Tides} = \langle P \rangle_{\rho_0, \rho_1, HT} - \langle P \rangle_{\rho_0, \rho_1, LT} \quad (4)$$

229 The comparison between periods of strong (HT) and weak (LT) tidal forcing, relating to spring tides / neap tides cycle,
230 conducted in a region with similar hydrodynamic properties but primarily differentiated by the intensity of ITs (ITs), served
231 as a proxy for quantifying the influence of ITs on turbulent chlorophyll-a fluxes.

232 We divided the water column into three isopycnal layers: the surface layer, the Deep Chlorophyll Maximum (DCM layer), and
233 the bottom layer. We assumed that the difference of mean CHL integrated in DCM at the DCM ($\Delta Diff_{DCM}$) is redistributed
234 upward and downward through mixing, with proportions n for the surface layer and m for the bottom layer, where $n+m=1$.
235 Using this partitioning approach, we express the variation in chlorophyll-a (ΔCHL) for each layer as follows:

236

$$\Delta CHL_{SURF} = -n \cdot \Delta Diff_{DCM} + \Delta SMS_{SURF} \quad (5)$$

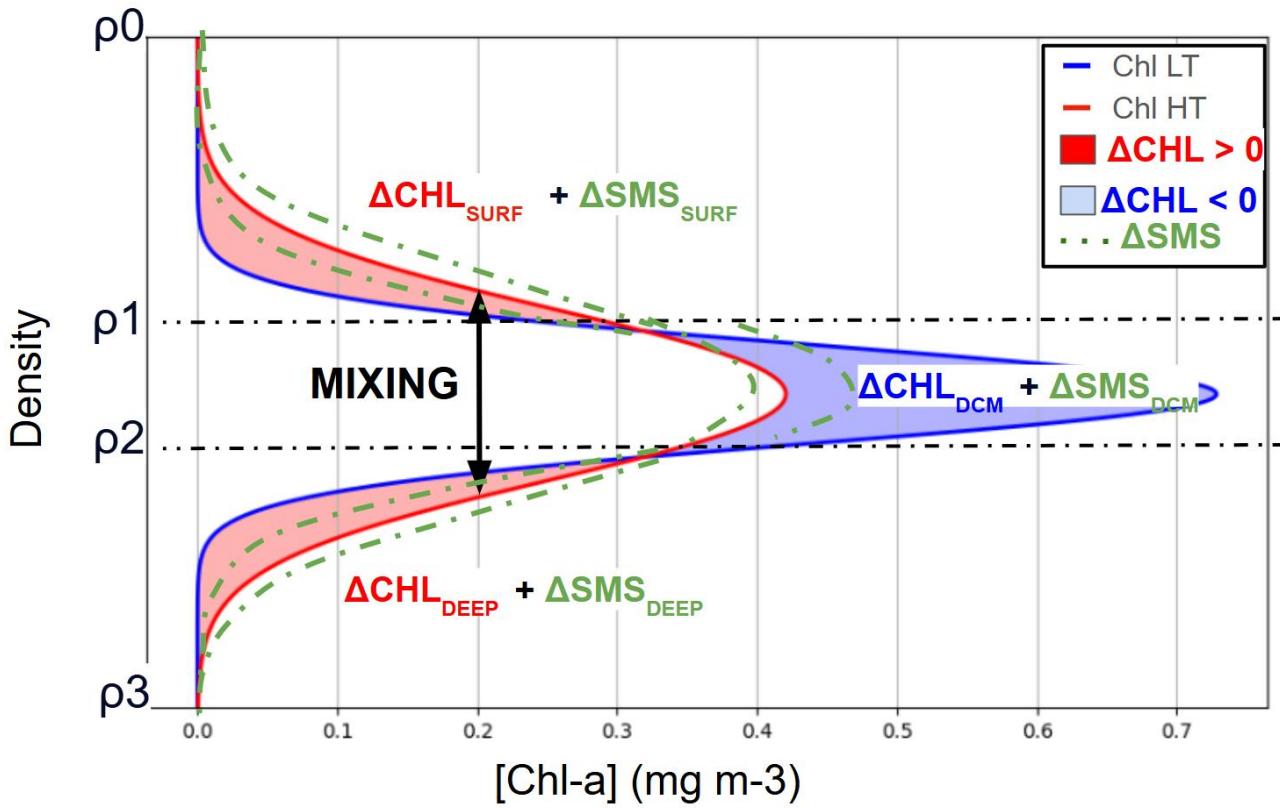
237

$$\Delta CHL_{DCM} = \Delta Diff_{DCM} + \Delta SMS_{DCM} \quad (6)$$

238

$$\Delta CHL_{DEEP} = -m \cdot \Delta Diff_{DCM} + \Delta SMS_{DEEP} \quad (7)$$

239 With $-n \cdot \Delta Diff_{DCM} = \Delta Diff_{SURF}$ and $-m \cdot \Delta Diff_{DCM} = \Delta Diff_{DEEP}$


240 By summing Equations 5, 6, and 7, the diffusion-related component cancels out, leaving:

241

$$\Delta SMS_{DCM} + \Delta SMS_{Surf} + \Delta SMS_{Deep} = \Delta CHL_{TOT} \quad (8)$$

242 The total chlorophyll-a variation $\Delta\text{CHL}_{\text{TOT}}$ between high tide (HT) and low tide (LT) periods is interpreted as follows:
243 if $\Delta\text{CHL}_{\text{TOT}} > 0$ this value represents the minimum possible net production. Respectively if $\Delta\text{CHL}_{\text{TOT}} < 0$ it indicates a
244 dominance of grazing

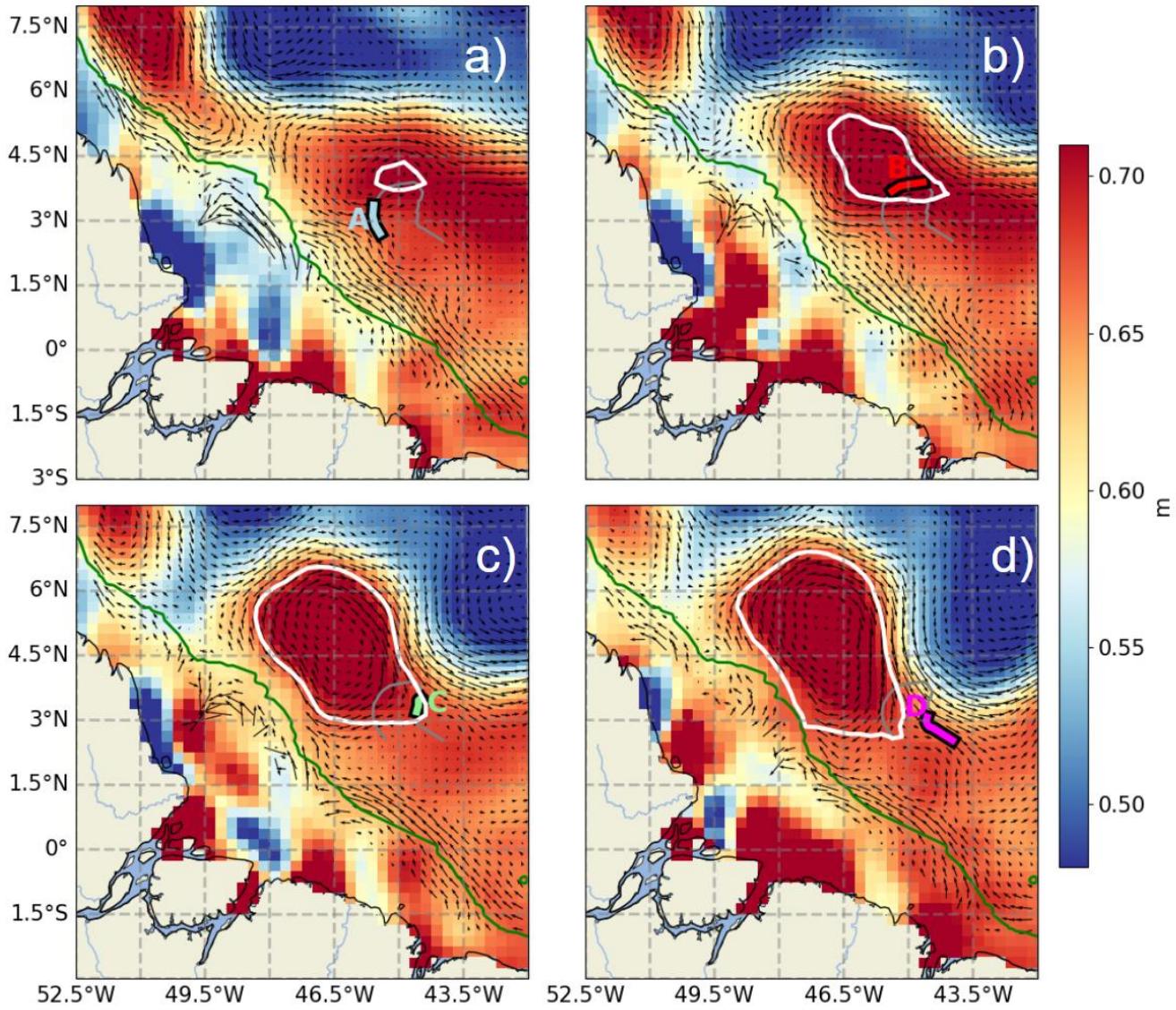
245
246 **Figure 2 : Schematic of Vertical diffusion of chlorophyll-a Peak between LT period (blue) vs HT period (red) with profile**
247 **modification due to ITs mixing**

248 2.2.3 Statistical Analysis

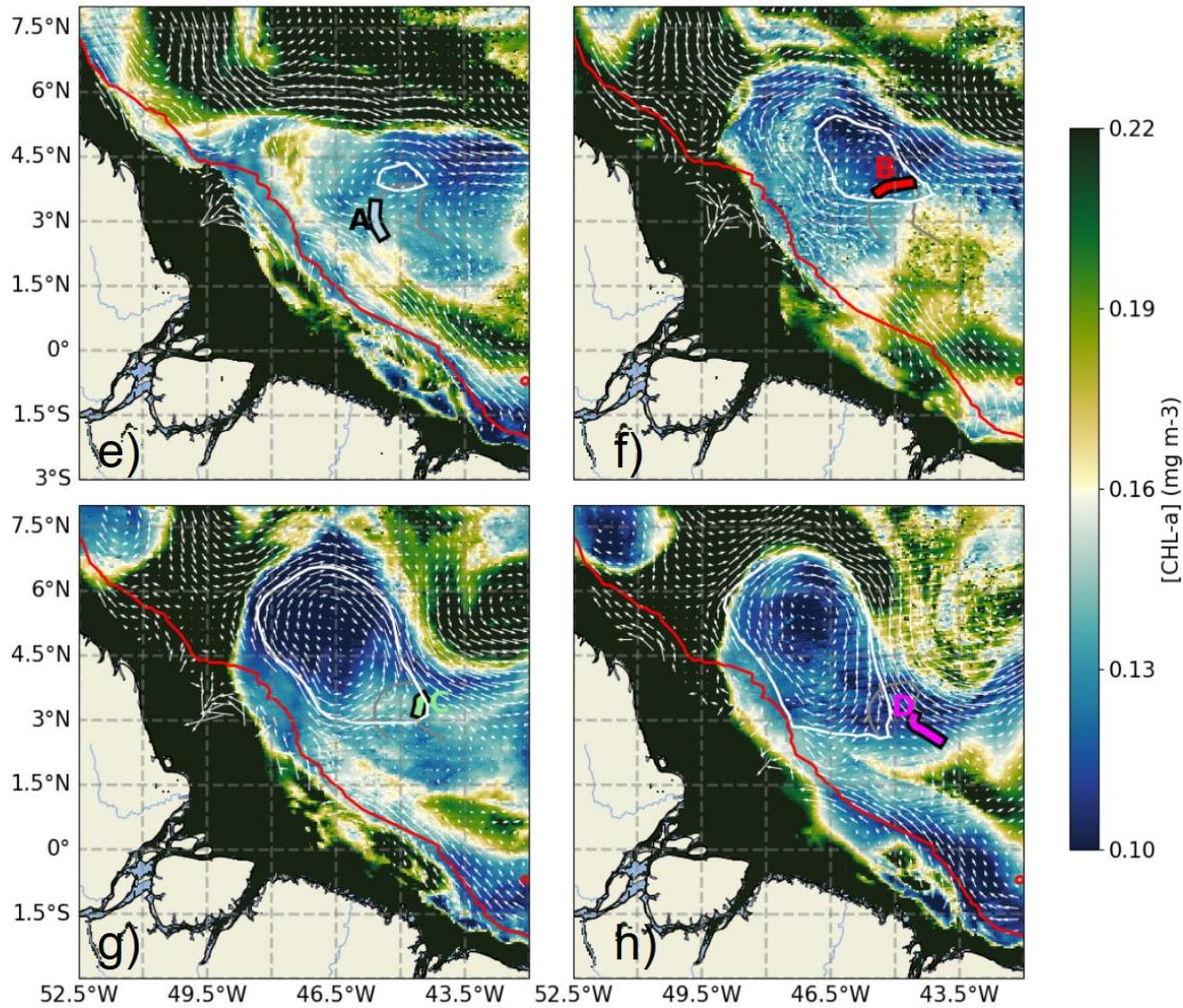
249 In this study, various statistical methods were employed to analyse the impact of ITs on chlorophyll-a distribution across
250 density layers. The Mann-Whitney U test, a non-parametric test, was selected to compare chlorophyll-a concentrations between
251 periods of high and low ITs within different density layers. This test is particularly suitable here, as it does not require the
252 assumption of data normality distribution, which is often difficult to ensure for environmental samples with irregular
253 distributions. Mean comparisons and percentage changes provide a statistical approach of ITs on chlorophyll-a. Maximum
254 chlorophyll-a concentrations and DCM thickness were extracted from fluorescence profiles. A Pearson correlation analysis
255 was performed to assess the linear relationship between these variables. Statistical significance was determined using the

256 associated p-value. Additionally, descriptive statistics by isopycnal layer were calculated for each density zone, offering a
257 detailed view of trends specific to layers and enabling the identification of significant changes. Collectively, these methods
258 robustly capture significant differences and their potential effects on chlorophyll-a distribution and concentration.

259 **3 Results**


260 **3.1 The glider study area**

261 The oceanic circulation in the study area was dominated by two major current systems: the NBC and the NECC. Their
262 interaction was regulated by the seasonal retroflection of the NBC, as that was clearly illustrated in the Absolute Dynamic
263 Topography (ADT) maps (Fig. 3a–d). This circulation was associated with ADT values reaching approximately 0.6 m. From
264 a biogeochemical perspective, strong contrasts were observed between offshore waters and the Amazon continental shelf.
265 The offshore waters were characterized by oligotrophic conditions, with low chlorophyll-a concentrations (~0.1 mg m⁻³),
266 whereas the Amazon shelf was dominated by turbid waters, rich in suspended matter, with chlorophyll-a concentrations
267 exceeding 1 mg m⁻³. This gradient highlighted the significant influence of the Amazon plume on local productivity.
268 Moreover, the depth of the euphotic layer (Zeu) (Fig. 4 purple) remained relatively stable along the glider transect, ranging



269

between 72 m and 87 m.

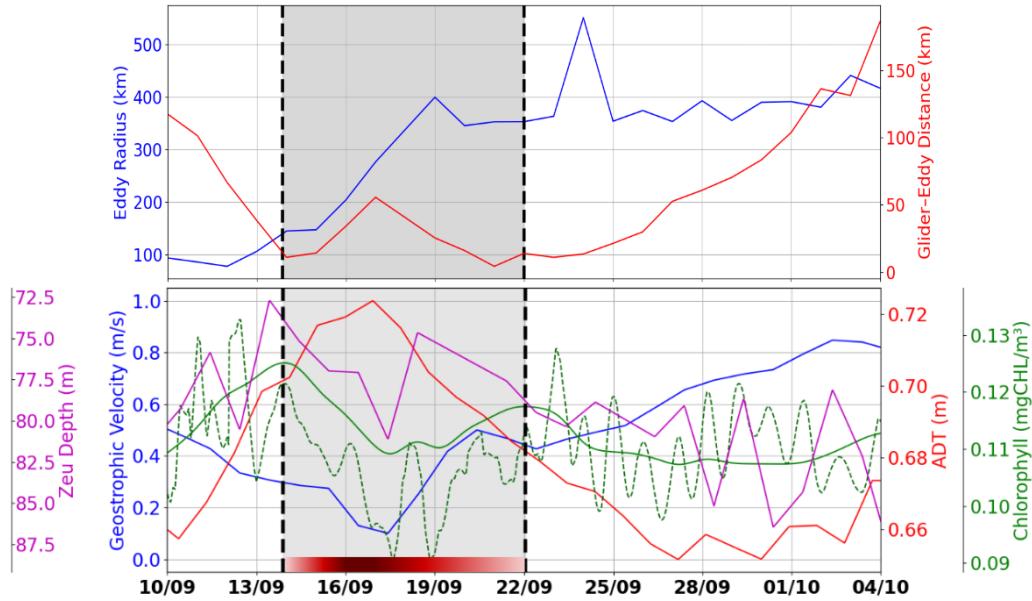
270

271

272 **Figure 3. (a–d) Absolute Dynamic Topography (ADT) maps for September 11 (a), 16 (b), 22 (c), and 28 (d), 2021. (e–h) Satellite-
273 derived surface chlorophyll-a maps for the same dates: September 11 (e), 16 (f), 22 (g), and 28 (h). The AE1 eddy is outlined by white
274 ovals. The glider trajectory is shown as a grey line, with color-coded segments indicating periods A, B, C, and D (as defined in Fig.
275 1). Geostrophic surface currents are shown as arrows. The 1000 m isobath is marked in green (a–d) and red (e–h).**

276 *Formation and Evolution of the Anticyclonic Eddy (AE1)*

277 On Sept 11st 2021, an anticyclonic eddy (AE1) formed in the region, identified by an ADT peak reaching approximately 0.7
278 m (Fig. 3a, white circle). The eddy core gradually migrated from 44.5°W-4°N to 47.5°W-5.5°N over the following 27 days,


279 covering roughly 372 km with an average speed of 0.16 m/s. Between Sept 12nd and Sept 19th, the eddy underwent significant
280 expansion, with its radius increasing from 100 km to approximately 400 km.

281 *Glider-Eddy Interactions*

282 The influence of the eddy on surface velocity is evident from an initial decrease in speed from 0.58 m/s to 0.17 m/s in Sept
283 17th, followed by a gradual acceleration reaching 0.8 m/s at the end of the transect (Fig. 4, bottom panel). Between Sept 14th
284 and Sept 22nd, as the glider traversed the eddy, variations in its distance from the eddy's outer boundary were observed (Fig.
285 4, top panel). These fluctuations confirm that the glider remained along the eddy's periphery, highlighting the kinematic effects
286 induced by its circulation. Maximum geostrophic velocities, derived from ADT gradients, further indicate intense eddy
287 dynamics, with circulating currents reaching up to 0.8 m/s toward the end of the observation period.

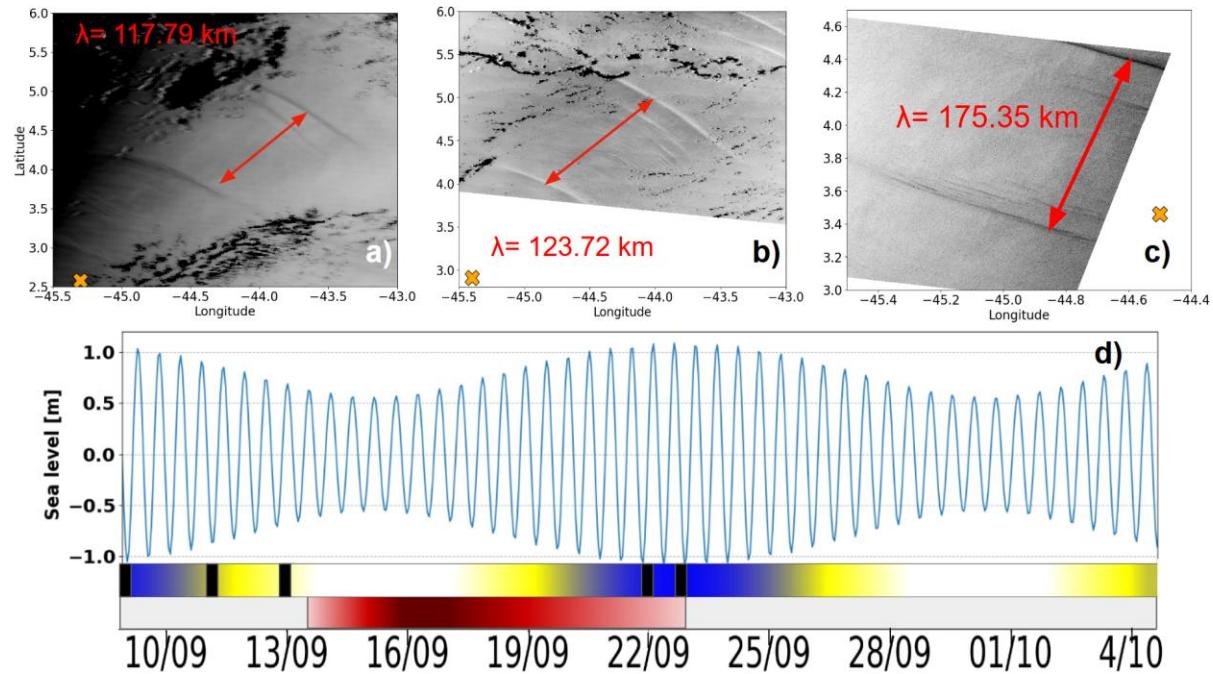
288 *Biogeochemical Characteristics Associated with AEI*

289 The lowest Chlorophyll values (~0.11 mg m⁻³) along the glider acquisition were recorded in the eddy core, which was
290 characterized by minimal velocities and maximum Absolute Dynamic Topography (ADT). In contrast, higher biological
291 activity was observed at the eddy's periphery, marked by dashed black lines on September 14 and Sept 22nd (Fig. 4),
292 emphasizing the spatial heterogeneity induced by the eddy's circulation. This pattern was explained by the typical behaviour
293 of anticyclonic eddies, where isopycnal depression inhibited the upward flux of nutrients, thereby limiting primary
294 productivity. The coupling between the eddy's physical dynamics and the distribution of biological parameters was highlighted
295 by the chlorophyll-a maps. During the eddy-impacted period (shaded in grey), both glider (dashed green) and satellite (solid
296 green) chlorophyll-a data show a decrease at the eddy center (Sept 16th – Sept 19th) and an increase at its edge (Sept 14th and
297 Sept 22nd). In addition to the smoother satellite signal, the glider data reveal short-term oscillations; these high-frequency
298 variations, likely associated with diurnal and semidiurnal processes, are not resolved by satellite observations, although the
299 satellite successfully captures the overall trend and order of magnitude.
300

301

302 **Figure 4: (Top)** Time series of the distance between the glider and the nearest eddy contour (red) and the maximum eddy radius
303 (blue). **(Bottom)** Geostrophic velocity magnitude along the glider's track (blue), ADT along the glider's track (red), chlorophyll-a
304 concentration along the glider's track from GlobColour (solid green), integrated chlorophyll-a between surface and Zpd from
305 glider (dashed green), euphotic depth along the glider's track (purple). The red segment represents AE1, with shading that becomes
306 lighter towards the edge and darker at the core

307


Internal Solitary Waves

308

During the observation period, between Sept 9th and Sept 23rd 2021, a total of 12 internal solitary wave (ISW) crests were identified (Table 1). These waves were detected through a combination of satellite observation and in situ glider measurements, enabling documentation of their occurrence and dynamics over a two-week period. Satellite images (Fig. 5a–c), acquired on Sept 9th and Sept 11th (sunglint information) and on Sept 23rd (SAR imagery), revealed the surface signatures of internal solitary waves. The glider's position, marked by an orange cross on the images, confirms the influence of intense ISWs during its evolution. Figure 5d illustrates the tidal current amplitudes derived from the FES2014 model (Lyard et al., 2014) at the point (46°W-0.5°N). The graph highlights the variations between spring tides (blue-shaded areas) and neap tides (white areas), as well as transitional phases (yellow). The black rectangles in Fig. 5d, indicating the occurrences of solitons, show a clear alignment between the presence of internal wave trains and spring tide periods, as also shown by De Macedo et al. (2023). The observed waves primarily propagated towards the northeast, with wavelengths ranging from 117 km to 175 km, characteristic of mode-1 internal waves. These structures exhibit rapid dynamics, with estimated propagation speeds of approximately 3 m/s (De Macedo et al., 2023), significantly faster than the average speed of the glider (~0.14 m/s). This speed difference justifies

320 that the glider is unable to capture the same wave crest more than once, and is almost stationary in the ITs field (reduced
321 aliasing).

322

323 **Figure 5:** (a-c) Satellite imagery acquired on September 9, 2021, at 13:45 UTC, and September 11, 2021, at 13:30 UTC (both from
324 sunglint imagery), as well as on September 23, 2021, at 08:47:35 UTC (SAR imagery). (d) Tidal current amplitudes derived from
325 the FES2014 model (Lyard et al., 2021) at point (46°W, 0.5°N). The orange cross denotes the glider's position at the corresponding
326 timestamps. The timeline illustrates the variation of Spring Tides (blue), Neap Tides (White), transient zone (Yellow). The red
327 segment represents AE1, with shading that becomes lighter towards the edge and darker at the core.

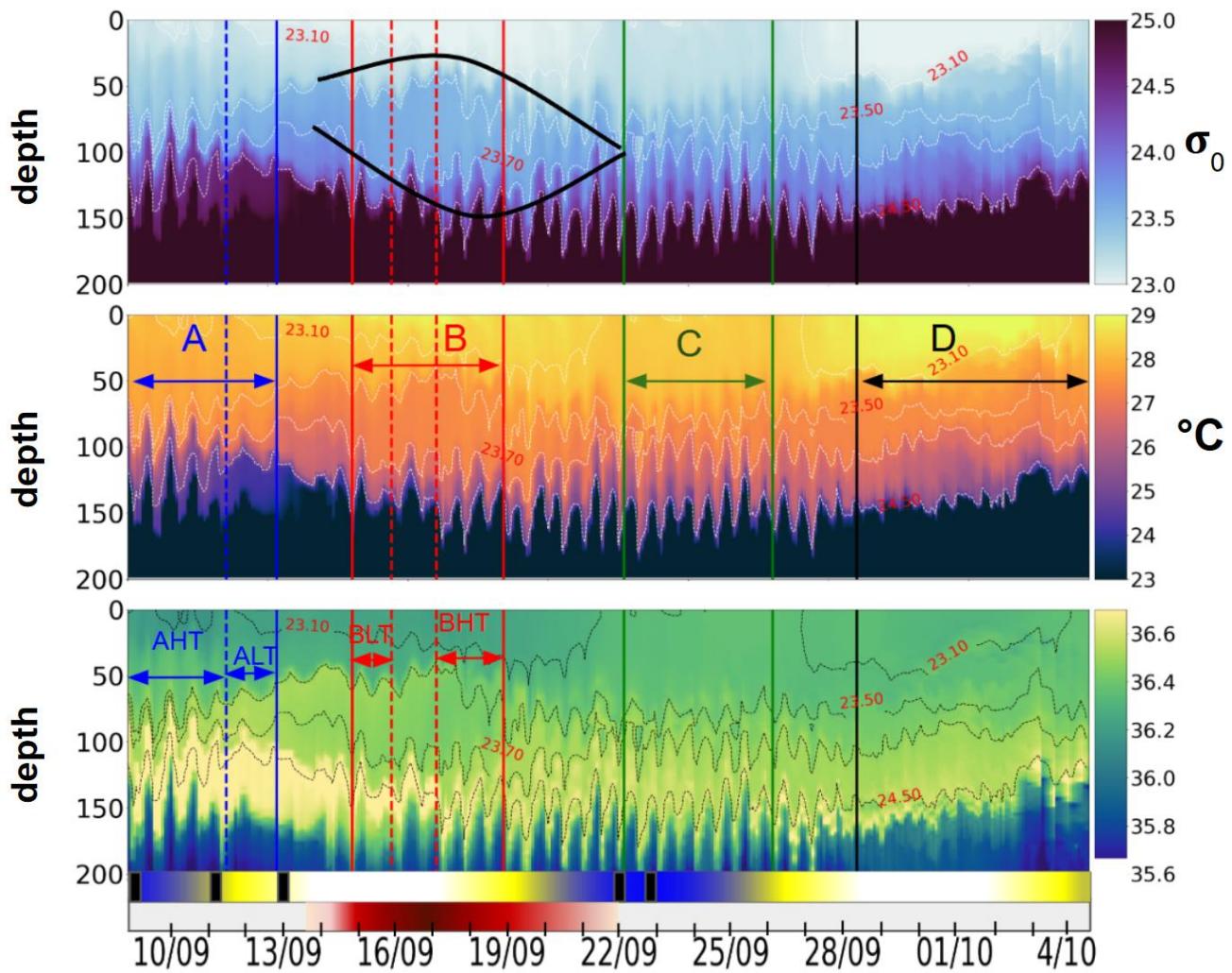
328
329

**Table 1: Internal solitary waves detected by SAR (Sentinel-1) and Sunglint (Modis) during the period Sept 9th to Oct 5th off Amazon
self/shelf-break region**

Date	Sensor Type	Crest
Sept 9 th 2021	MODIS	1
Sept 11 st 2021	Sentinel-1	3
	MODIS	1
Sept 13 rd 2021	MODIS	4
Sept 22 nd 2021	MODIS	1
Sept 23 rd 2021	Sentinel-1	2

330

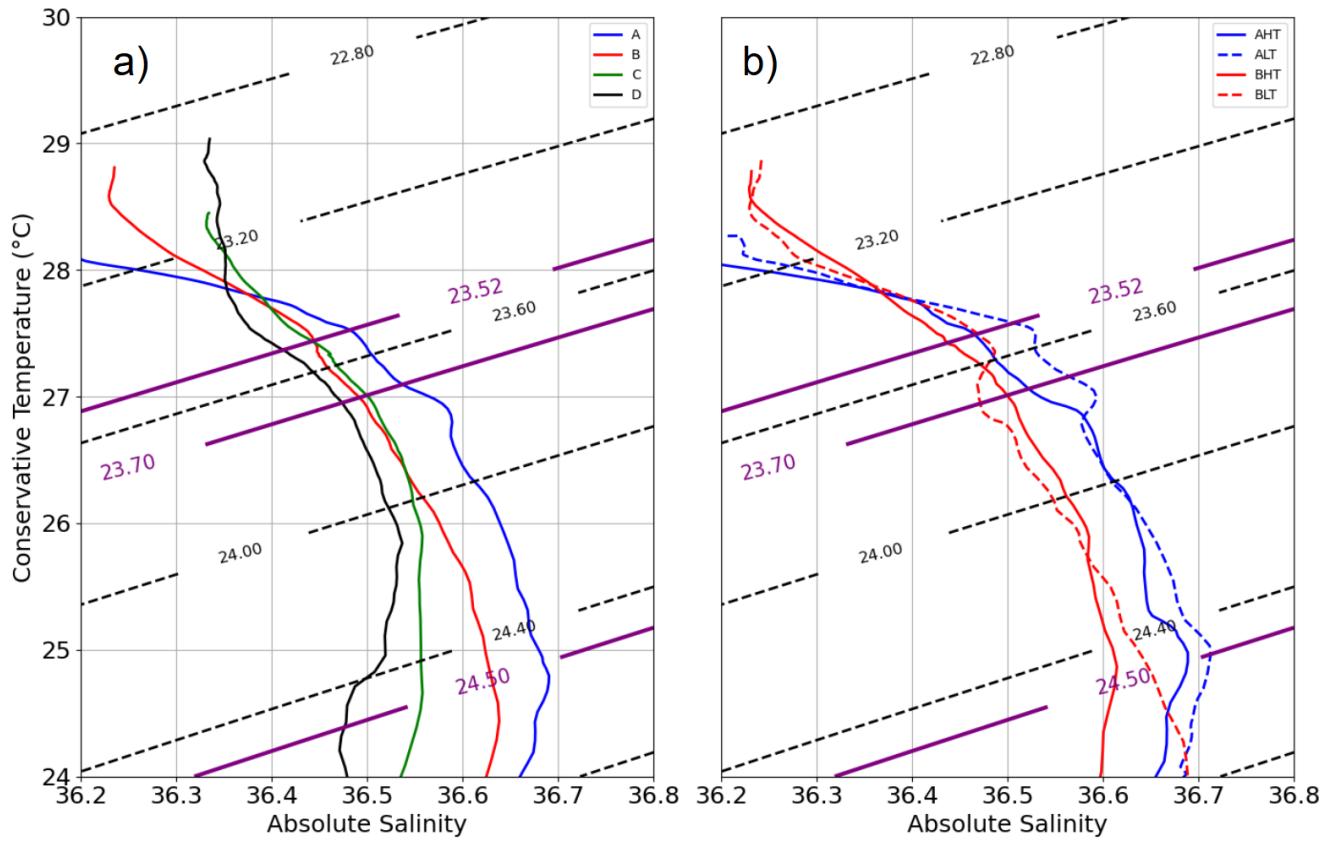
331 **3.2 Physical Near Surface Processes**


332 *Near Surface Hydrography*

333 The hydrographic observations collected by the glider between the surface and 200 m depth reveal a strongly stratified
334 thermohaline structure, characteristic of tropical waters (Fig. 6). The temperature (T), salinity (S), and density (σ_0) profiles
335 indicated the presence of a homogeneous layer between 0 and 50 m, followed by a thermocline, halocline, and pycnocline
336 extending from 50 to 160 m. Salinity above 35.5 in this region indicates euhaline conditions, showing the plume did not affect
337 the southern area. Notable hydrographic changes are further observed during the study period. Between Sept 14th and Sept
338 22nd, as the glider crossed AE1 (marked by circular arcs in Fig. 3a), a lenticular and homogeneous isopycnal field was detected,
339 with nearly uniform temperature (27°C) and salinity (36.5) between isopycnals 23.5 and 23.7 (75m–125m depth). At the
340 surface, this anticyclone exhibited warmer and more stratified waters compared to the surrounding environment, while salinity
341 remained homogeneous. Prior to crossing AE1, the glider was deployed at the edge of the NBC (Fig. 1, Fig. 3a) from September
342 9th to 14th. In contrast, this region displayed a homogeneous temperature layer but a stratified salinity profile. During this
343 period, a maximum salinity zone (~36.7) was observed between 120 and 150 m depth, generally associated with the maximum
344 salinity transport by the North Brazil Current (NBC) (Silva et al., 2009), which was significantly reduced in subsequent periods
345 indicating the shift in background conditions. Between September 22nd and 28th, the region was characterized by a
346 homogeneous surface layer (0–50 m) in both temperature and salinity, accompanied by a pronounced uplift of the 23.10
347 isopycnal. Below 50 m, the ocean became increasingly stratified, exhibiting coherent variations in T and S. From Sept 28th to

348 Oct 4th, the glider entered the waters of the North Equatorial Countercurrent (NECC), characterized by an accelerated
349 geostrophic current field (Fig. 4, bottom), reaching speeds of 0.6 m/s eastward. The hydrography during this period revealed
350 the warmest surface layer of the transect (~30°C), followed by a coherent stratification in T and S. The four distinct regions,
351 identified through these hydrographic variations, have been designated as A, B, C, and D, while the edges have been excluded,
352 as they are considered transition periods.

353
354
355
356


357

358 **Figure 6: Hovmöller diagrams showing (a) σ_0 density (with the black lens highlighting eddy AE1 as identified in Section 3.1), (b)**
359 **Conservative Temperature, and (c) Absolute Salinity, all derived from glider observations. The timeline below the plots indicates**
360 **key oceanographic processes discussed in Section 3.1: blue segments mark spring tide events, white indicates neap tides, and the red**
361 **segment corresponds to AE1, with shading intensity increasing from lighter at the periphery to darker at the core. A black rectangle**
362 **marks the occurrence of internal solitary waves (ISWs) detected from satellite data. Labels A, B, C, and D denote distinct periods,**
363 **A and B further divided into high tide (HT) and low tide (LT) subperiods, reflecting variations in tidal intensity.**

364 *Transect Divided into Four Periods*

365 To assess the impact of ITs on chlorophyll-a, the transect was divided into distinct periods based on hydrographic criteria,
366 ensuring a robust comparative framework. The relevance of this classification (A, B, C, and D) was validated using T/S
367 diagrams (Fig. 7), where four distinct hydrographic profiles were identified. Period A (Sept 9th – Sept 13rd, Blue) was
368 characterized by a strong salinity gradient above 23.52 kg/m³, ranging from 36.2 to 36.6, while temperature remained stable
369 around 28°C. This period was observed at edge of the NBC (Fig. 1, Fig. 3), with a total distance of 96.69 km covered by the
370 glider. Period B (Sept 15–19, Red) was located within (AE1), where a well-defined T/S stratification was observed, indicating
371 a stable water mass structure. During this phase, a distance of 84.20 km was recorded. Period C (Sept 22nd – 25th, Green) was
372 identified as a transition zone between B and D, exhibiting a structure similar to Period B in the 23.3–24 kg/m³ layer but with
373 a saltier water mass in the 24–24.8 kg/m³ range. Period D (Sept 28th–Oct 5th, Black) was associated with waters in the influence
374 of the North Equatorial Countercurrent (NECC) (Fig. 1, Fig. 3), where the T/S profile revealed three distinct layers within the
375 0–200 m column. The surface layer (23–23.3 kg/m³) was stratified in temperature while salinity remained constant (~36.3).
376 Beneath it, an intermediate transition layer (23.3–23.7 kg/m³) was marked by coherent T and S gradients, followed by a deep
377 layer, where temperature remained stratified, and salinity was stable (~36.5). This classification was found to effectively
378 capture the hydrographic variability along the transect, providing a general frame for analysing internal tide dynamics.


379

380 **Figure 7: T/S Diagram (a - left) for periods A, B, C, and D and (b - right) for the sub-periods High Tides (HT) / Low Tides (LT)**
381 **within periods A and B. Black dotted isopycnals are plotted at intervals of 0.4 kg/m³.**

382

383 *Thermocline Oscillations Driven by ITs: Variability Between High and Low Tides*

384 Thermocline oscillations were observed in all periods except D, with amplitudes ranging from 10 to 50 m and peaking near
385 the 24.5 isopycnal (Fig. 6). These in-phase oscillations were most intense at the pycnocline and gradually diminished toward
386 the surface, and were modulated by neap and spring tide cycles, with peaks coinciding with Internal Solitary Wave (ISW)
387 events (Fig. 5). Spring tides (A and C) induced a ~1°C temperature drop, contrasting with the surface warming in period D,
388 when no oscillations were detected. A Fast Fourier Transform (FFT) analysis of isotherms (145–165 m) (McInerney et al.,
389 2019) confirms the semi-diurnal modulation of these oscillations. Periods A and B were further divided into high Tide-
390 amplitude (AHT, BHT) and low Tides-amplitude (ALT, BLT) phases, while Period C exhibits continuous oscillations. All
391 showed a 12h25 spectral peak (Fig. 8) with a tenfold increase in spectral power, confirming the influence of ITs. Furthermore,
392 Figure 7b reveals that these oscillatory phases correspond to the same water masses, validating the subdivision AHT/ALT and
393 BHT/BLT.

394

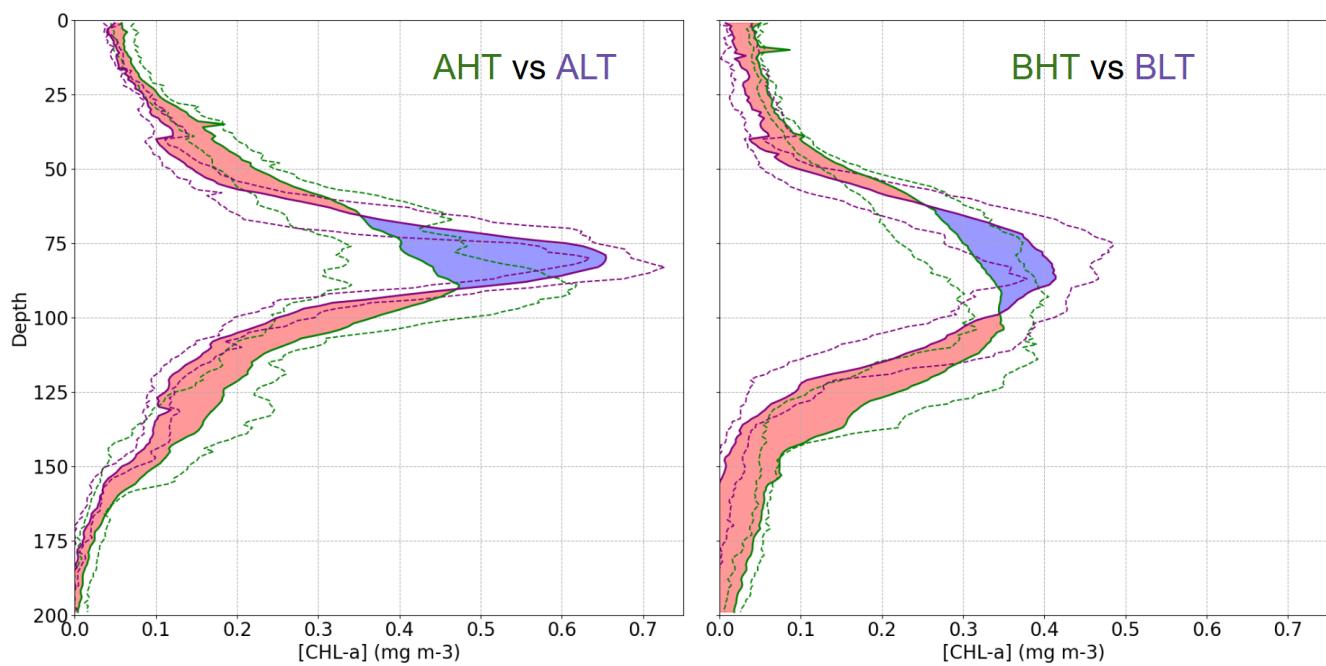
395 **Figure 8:** Spectral Analysis of temperature time series in Regions A, B, C, and D, across 145m and 165m depth.

396 **3.3 ITs effect on chlorophyll**

397 *Overview of Subsurface Processes Effects on Chlorophyll*

398 The vertical distribution of chlorophyll-a along the transect (Fig. 9a) was characterized by a three-layer structure. A Deep
399 Chlorophyll Maximum (DCM) was observed between isopycnals 23.53 and 23.7 (corresponding to depths of approximately
400 70m and 120 m), with concentrations ranging from 0.4 to 0.8 mg m⁻³. The lowest value (0.4 mg m⁻³) was recorded during
401 period B, coinciding with the passage of the glider through the anticyclonic eddy AE1, in agreement with the surface signal
402 (Fig. 4, green). At the edges of AE1, a slight uplift of the DCM was observed, attributed to the upward displacement of
403 isopycnals. Above 23.53, a surface layer was identified, while a deeper layer extends between 23.7 and 24.5. A key finding is
404 the influence of ITs on the vertical structure of chlorophyll-a. The tides induced DCM oscillations with amplitudes between
405 15 and 45 meters at depths of 65 to 125 meters during AHT, BHT, and C, while weaker disturbances were observed during
406 ALT and BLT (Fig. 9b). These disturbances could impact primary production, as the light gradient is non-linear — an uplift
407 exposes the chlorophyll-a layer to more light than the amount lost by a downlift. The following section now focuses on the
408 characterization and quantification of ITs processes advection and mixing, that influence chlorophyll-a distribution.



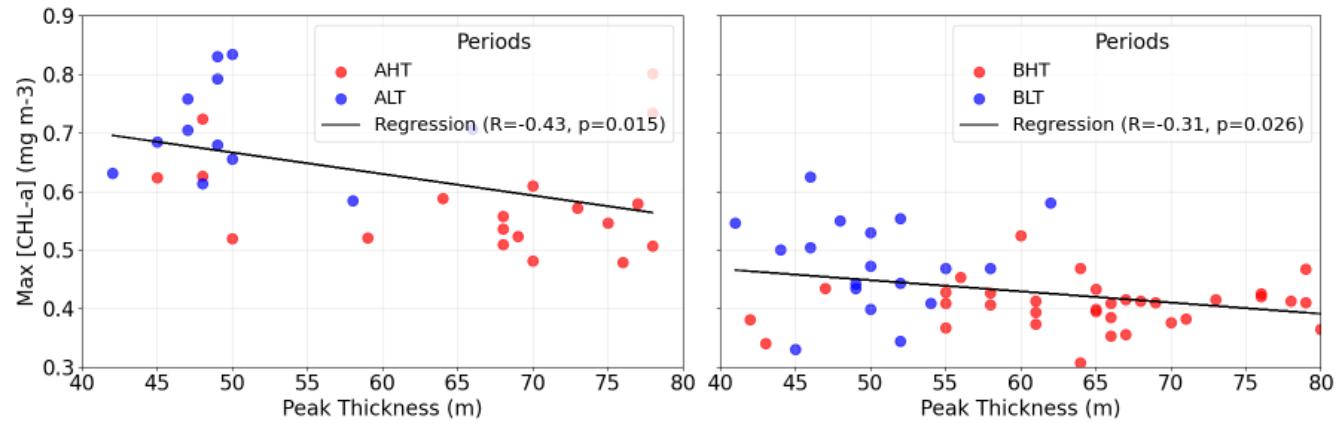

Figure 9: (a) Hovmöller diagram of chlorophyll-a distribution from 0 to 200 m between September 9, 2021, and October 4, 2021. Dark green segments indicate spring tide events, while light green segments correspond to neap tides. The red segment represents Anticyclonic Eddy 1 (AE1), with lighter shades at the edges and a darker core. The black rectangle highlights the presence of Internal Solitary Waves (ISWs). (b) Hovmöller diagram of chlorophyll-a from 0 to 200 m, segmented by tidal phases: ALT, AHT, BLT, and BHT.

Variability of Chlorophyll-a Structure Between High and Low ITs

418 Higher chlorophyll-a concentrations were found at the surface and in deeper layers during HT, while chlorophyll-a
419 concentration was more pronounced within the DCM during LT (Fig. 10). To assess these variations and evaluate the impact
420 of ITs on the vertical redistribution of chlorophyll, four key parameters were examined: maximum chlorophyll-a concentration,
421 chlorophyll-a peak thickness, Total averaged chlorophyll-a content, and DCM depth (Table 2). The chlorophyll-a peak
422 thickness corresponds to the depth range where concentrations exceed 0.2 mg m-3.

423 Under HT conditions, ITs induce vertical displacements of chlorophyll, leading to a redistribution of biomass across different
424 layers. Specifically, maximum chlorophyll-a concentration decreased by 17% (0.12 mg m-3) in period A (resp. 9%, 0.04 mg
425 m-3 in period B), while the peak thickness expanded by 50% (resp. 30%). The resulting redistribution led to an inverse
426 relationship between maximum chlorophyll-a concentration and DCM thickness (Fig. 11). This correlation was statistically
427 significant, with Pearson coefficients of $r = -0.43$ ($p = 0.015$) for period A and $r = -0.31$ ($p = 0.026$) for period B. Total averaged
428 chlorophyll-a content increased significantly during HT, with rises of 14% ($\Delta\text{CHL}_{\text{total}} = 4.44 \text{ mg m}^{-2}$ where $\Delta\text{CHL}_{\text{total}}$ is the
429 total variation of averaged integrated chlorophyll-a between HT and LT) in period A (resp. 29%, $\Delta\text{CHL}_{\text{total}} = 6.98 \text{ mg m}^{-2}$ in
430 period B), indicating an overall enhancement of primary production.

431
432 **Figure 10: Comparison of mean chlorophyll-a profiles during HT and LT periods. The purple dashed lines represent the**
433 **interquartile range (IQR) for LT periods, while the green dashed area represents the IQR for HT periods. The red regions indicate**
434 **where the mean chlorophyll-a concentration during HT exceeds that during LT, and the blue regions indicate the opposite (LT >**
435 **HT).**

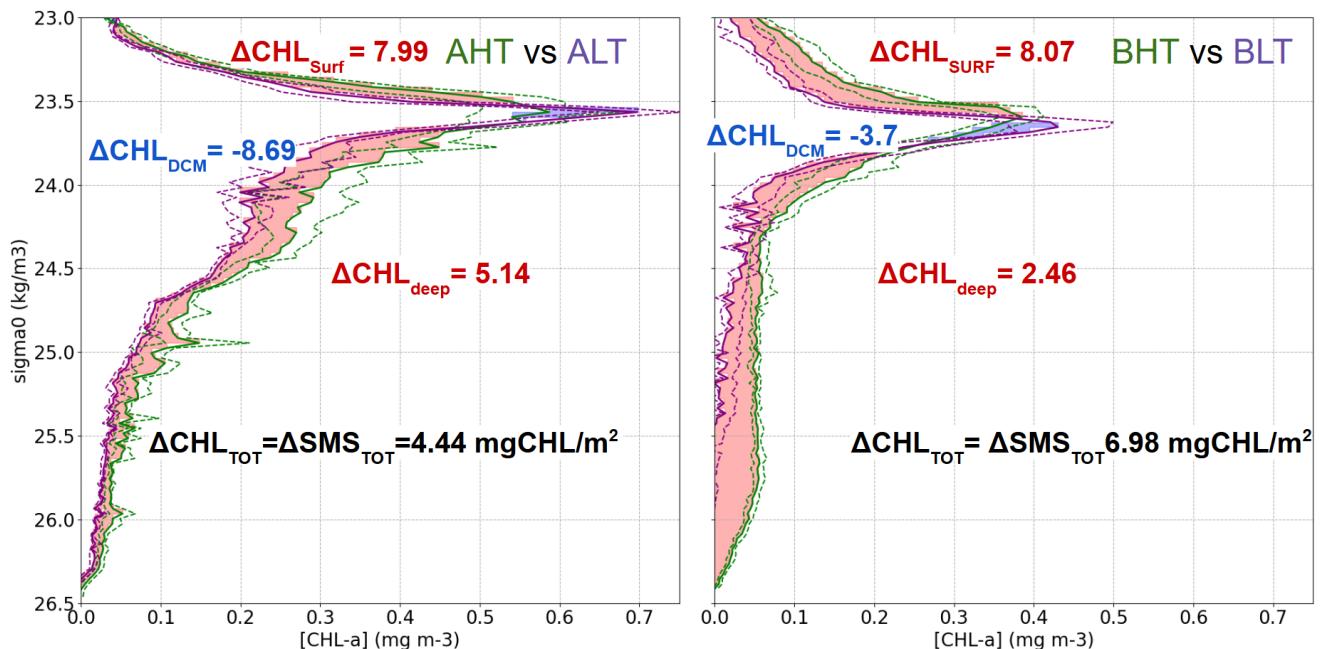


437 **Table 2: Summary statistics of chlorophyll-a of four key parameters: maximum chlorophyll-a concentration, chlorophyll-a peak**
438 **thickness, mean chlorophyll-a content, and the depth of the deep chlorophyll-a maximum during HT and LT periods.**

439

Period/features	Peak Thickness at 0.2 (mg m-3)			Depth of Max (m)		
	Mean	Median	STD	Mean	Median	STD
AHT	69.2	67.5	18.6	81.7	87	15.59
ALT	45.93	47	6.56	79.38	80.5	5.35
BHT	66.3	67	9.59	98.28	99.5	22.01
BLT	51	50.5	5.69	85.45	86.0	10.46
Period/features	Max of chlorophyll-a (mg m-3)			Total Averaged Chlorophyll (mg -m3)		
	Mean	Median	STD	Mean	Median	STD
AHT	0.60	0.58	0.09	36.28	34.69	6.36
ALT	0.72	0.71	0.07	31.84	31.73	2.09
BHT	0.43	0.41	0.11	31.36	30.77	3.91
BLT	0.47	0.47	0.09	24.38	24.21	7.02

440



441
442 **Figure 11: Relationship between Chlorophyll peak thickness (m) and maximum chlorophyll-a concentration (mg m-3) during HT**
443 **and** **LT** **periods.**

444
445 *Chlorophyll-a Diapycnal Redistribution*

466 The net chlorophyll-a loss observed in the Deep chlorophyll-a Maximum (DCM) layer between low tide (LT) and high tide
467 (HT) was estimated at $\Delta\text{CHL}_{\text{DCM}} = -8.69 \text{ mg m}^{-2}$ or a 64% loss during period A (-3.7 mg m^{-2} or 21% loss during period B)
468 as shown in table 3. This depletion was redistributed both upward and downward across isopycnal layers.

499 The downward turbulent flux reaching the deep isopycnal layer ($23.7 < \sigma_0 < 26.5$) was quantified as $\Delta\text{CHL}_{\text{DEEP}} = 5.14 \text{ mg m}^{-2}$ in period A (2.46 mg m^{-2} in period B). As this layer lay below the euphotic zone and did not support photosynthesis,
500 biological consumption processes dominate ($\Delta\text{SMS}_{\text{DEEP}} < 0$) implying that the observed chlorophyll-a increase represented a
501 minimum estimate of the turbulent flux to depth $\Delta\text{CHL}_{\text{DEEP}} \leq \Delta\text{Diff}_{\text{DEEP}}$ (eq. 7). Thus, turbulent fluxes from the DCM supplied
502 approximately 57 % of the total chlorophyll-a increase observed in the deep layer. The turbulent flux toward the surface layer
503 ($\sigma_0 < 23.53$) was consequently estimated as $\Delta\text{CHL}_{\text{DCM}} - \Delta\text{Diff}_{\text{DEEP}} = \Delta\text{Diff}_{\text{SURF}} = 3.55 \text{ mg m}^{-2}$ for period A (1.09 mg m^{-2} for
504 period B). Thus, turbulent fluxes from the DCM supplied approximately 38% of the total chlorophyll-a increase observed in
505 the surface layer. The total variation in surface chlorophyll-a content between LT and HT reached 7.99 mg m^{-2} in period A
506 (8.07 mg m^{-2} in period B). After accounting for the turbulent input, the contribution of biological processes (production minus
507 grazing) was calculated at $\Delta\text{SMS}_{\text{surf}} = 4.55 \text{ mg m}^{-2}$ for period A (6.98 mg m^{-2} for period B).

460

461 **Figure 12:** Average vertical profiles of chlorophyll-a concentration (mg m^{-3}) as a function of density ($\sigma_0, \text{kg m}^{-3}$) for two regions:
462 AHT vs ALT (left) and BHT vs BLT (right) based on density bins of 0.03. Shaded areas indicate differences in chlorophyll-a
463 concentration between regimes, with red representing positive differences and blue indicating negative differences. Green and purple
464 dashed areas represent the first and the third quartile for HT and LT periods.

465 **Table 3 :** Diapycnal statistics of integrated chlorophyll-a concentrations for each isopycnal layer

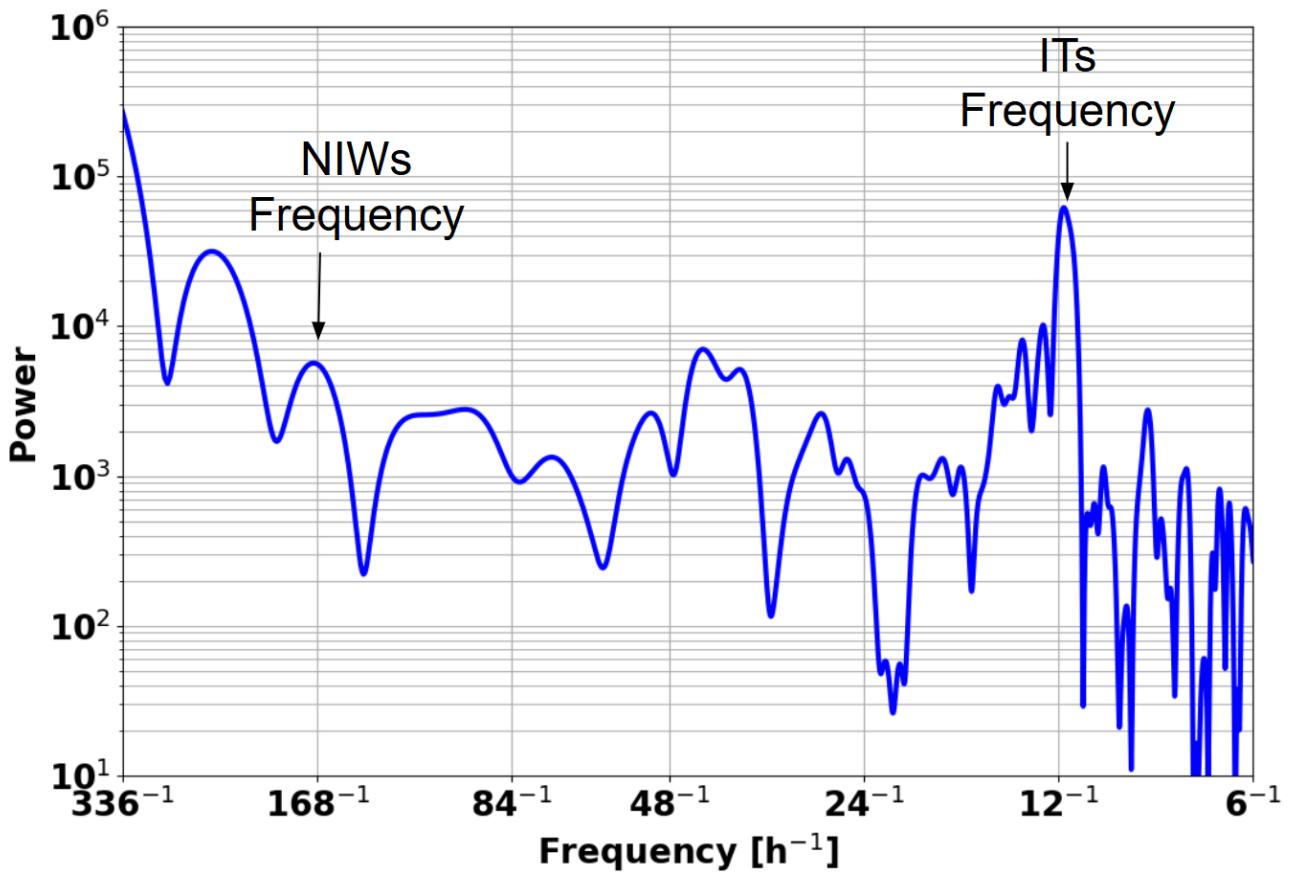
466

Layer	A				B			
	Period	Mean	Median	STD	Period	Mean	Median	STD
Surface - 23.53 (SURFACE)	AHT	17.37	15.92	4.23	BHT	10.96	12.01	4.06
	ALT	9.38	9.56	1.10	BLT	2.89	3.04	1.95
23.53 - 23.7	AHT	4.46	3.73	2.85	BHT	13.68	12.00	6.10

(DCM)	ALT	13.15	13.7	2.04	BLT	17.38	17.38	3.32
23.7 - 26.5 (DEEP)	AHT	14.45	13.07	3.77	BHT	6.57	6.23	1.43
	ALT	9.31	9.15	2.25	BLT	4.11	3.66	2.54

467

468 4 Discussion


469 *AE1 as a mode water eddy*

470 In this study, AE1 was identified as a mode-water eddy with an isopycnal structure distinct from that of classical
471 anticyclonic eddies. While classical anticyclonic eddies typically feature depressed isopycnals that form a bowl-like shape
472 restricting nutrient access to the euphotic zone, cyclonic eddies are characterized by domed isopycnals that enhance
473 nutrient uplift. Mode-water eddies, a particular type of anticyclone, combine both doming and depression of isopycnals
474 and have been reported as productive systems in subtropical regions (Chelton et al., 2011; McGillicuddy et al., 2007). In
475 the case of AE1, deeper, less dense isopycnals ($\sigma_0 \approx 23.5$) showed doming, while the upper, denser isopycnals ($\sigma_0 \approx 23.7$)
476 displayed a bowl-like depression (Figure 6). Notably, during period B, AE1 was less productive compared to other
477 periods, which contrasts with McGillicuddy et al. (2007) (Figure 9). This reduced productivity is likely due to AE1's
478 greater depth; although uplift of isopycnals was observed, their vertical displacement remained insufficient to bring
479 nutrients close to the euphotic layer. This finding suggests that the productivity of mode-water eddies is strongly
480 influenced by their vertical positioning. Consequently, the deep chlorophyll maximum (DCM) and likely the nutricline
481 were situated deeper, limiting light availability and constraining photosynthetic activity.

482 *Dominance of ITs Over Near Inertial Waves*

483 One may ask whether wind forcing contributes significantly to the observed variability. Figure 13 shows a spectral analysis of
484 the glider data over the whole period of acquisition (one month). A clear and intense peak is observed at 1e5 close enough to
485 the M2 12.25 hours (fig8 and fig 13). At the inertial period (approximately 7 days at 2°–4°N), a small peak at 5e3 is found
486 suggesting that the wind-driven processes like near-inertial waves are less important in our region.

487 These findings support the conclusion that internal tides are the dominant oscillation that explain the intensified mixing that
488 we estimate at the time scale of the month.

489

490 **Figure 13: Spectral Analysis of temperature from the whole time series.**

491 *Limits of Reversibility of LT and HT period and biological consequences*

492 A key limitation of our study is the limited number of sampling periods available to effectively assess the impact of ITs (ITs)
493 on the vertical distribution of chlorophyll. This constraint not only reduces statistical robustness but also restricts our ability
494 to generalize the observed patterns. An additional and important nuance lies in the specific sequence in which high tide (HT)
495 and low tide (LT) occur. In the available data for Period A, HT precedes LT (AHT/ALT), raising questions about the
496 reversibility of tidal effects. The biological impact of HT followed by LT may differ significantly from a reversed sequence
497 (ALT/AHT), particularly due to the lagged responses of phytoplankton communities.

498 This issue is especially relevant in our study region, which is characterized by regular and intense internal tide propagation,
499 generating near-continuous alternation between HT and LT phases. Rather than isolating the direct effect of individual ITs,
500 our approach focuses on a comparative analysis between HT and LT conditions, acknowledging the interconnectedness and

501 cumulative nature of these processes. Notably, the LT phase may still harbour biological communities that have benefited from
502 favourable mixing and nutrient supply conditions during the preceding HT phase. The extent to which this occurs depends on
503 the response time of the resident phytoplankton taxa.

504 In oligotrophic tropical waters such as ours, phytoplankton communities are typically dominated by small-sized cells, including
505 *Prochlorococcus*, *Synechococcus*, and various picoeukaryotes. These groups exhibit relatively rapid physiological responses
506 to environmental changes, particularly to nutrient enrichment. For example, *Prochlorococcus* can respond to pulses of nitrogen
507 or phosphorus within 12–36 hours (Moore et al., 2007; Partensky et al., 1999), while *Synechococcus* and picoeukaryotes tend
508 to show measurable increases in biomass within 24–72 hours (Calvo-Díaz et al., 2008; Fuchs et al., 2023; Scanlan et al., 2009;
509 Zubkov et al., 2000). In contrast, larger phytoplankton such as diatoms are less competitive under nutrient-poor conditions and
510 typically require more sustained or intense inputs to initiate growth, with response times ranging from 2 to 4 days (Falkowski
511 et al., 1998; Marañón et al., 2000). In our region, assuming that the biological response occurs within approximately one day,
512 this factor is unlikely to significantly influence our results. Consequently, the AHT/ALT sequence would yield similar
513 outcomes to an ALT/AHT sequence. The cumulative evidence from our findings (Fig. 9 and Fig. 11) supports this hypothesis,
514 suggesting that the phytoplankton species in our region exhibit a rapid response to light and nutrient availability. Further
515 validation of this hypothesis will be achieved through complementary analysis of AMAZOMIX cytometry data in future
516 studies.

517 *Chlorophyll turbulent vertical fluxes*

518 The diapycnal redistribution of chlorophyll-a observed between high tide (HT) and low tide (LT) phases (Fig. 12) is attributed
519 to mixing driven by internal tides (IT), under the assumption that large-scale background conditions remain similar between
520 HT and LT subperiods within the same overall period. Additionally, we argue that ITs dominate over near-inertial waves
521 (NIWs) in transporting biomass both upward into the euphotic zone and downward into deeper layers. This assumption holds
522 only if the water masses and active processes are comparable between the two phases. We verified that the water masses were
523 sufficiently similar to support this, but we acknowledge that this approach neglects possible contributions from other vertical
524 mixing processes, such as NIWs or frontal activity, which may differ between HT and LT. Longer time series would help
525 quantify these fluxes more precisely, beyond the limitations of a single-event analysis.

526 The deep chlorophyll maximum (DCM), located at the interface between nutrient-rich deep waters and the light-limited upper
527 layers (Ma et al. (2023) ma.), showed a net biomass loss between HT and LT, with 21% (period B) to over 60% (period
528 A) exported downward and the remainder redistributed upward. These findings partly align with the observations of Gaxiola-
529 Castro et al. (2002), who reported internal wave-driven upward transport of chlorophyll in the Gulf of California, increasing
530 surface biomass by around 40% during spring tides — consistent with the increases we observe. However, their study did not
531 quantify the downward flux, which in our case accounts for nearly half of the deep-layer biomass (~57%).

532 This redistribution has important implications for the trophic network. As Durham and Stocker (2012) have shown, thin
533 phytoplankton layers act as trophic hotspots, intensifying interactions among phytoplankton, zooplankton, and higher trophic
534 levels. The downward export of biomass not only contributes to the biological carbon pump but also reduces resource
535 availability for mesopelagic organisms. Meanwhile, the upward transfer enhances primary production, increasing surface
536 biomass by 14–29% and reinforcing upper trophic chains. Overall, these results highlight the crucial role of internal tides in
537 shaping marine trophic dynamics and underscore the importance of accounting for both upward and downward turbulent
538 fluxes.

539 **5 Conclusion**

540 This study provides new insights into the role of internal tides (ITs) in reshaping and homogenizing the vertical distribution of
541 chlorophyll-a and enhancing primary productivity off the Amazon shelf. Using a combination of satellite observations and
542 high-resolution glider data from the AMAZOMIX 2021 campaign, we show that ITs are key drivers of short-term vertical
543 chlorophyll variability.

544 The region is marked by dynamic interactions between major current systems, including the North Brazil Current (NBC), the
545 NBC retroflection, and the North Equatorial Countercurrent (NECC), as well as the presence of mesoscale and submesoscale
546 structures. During the glider deployment, five internal solitary wave (ISW) signals and a large anticyclonic eddy (AE1) were
547 detected by remote sensing. Combined with glider data, observations showed that AE1 locally reduced productivity by limiting
548 exchanges between surface and deep nutrient-rich layers.

549 Glider profiles revealed strong vertical isopycnal oscillations between 15 and 45 meters at semi-diurnal tidal frequencies. The
550 intensity of these oscillations allowed us to separate periods of strong internal tide activity (high tide, HT) from periods of
551 weaker activity (low tide, LT), which, under similar water mass conditions, provided a robust basis for comparing the effect
552 of internal tides on chlorophyll-a. Importantly, while ocean colour satellites are unable to resolve such fine-scale diurnal
553 variations, the glider was able to capture these dynamics, offering unique insights into the vertical redistribution of chlorophyll-
554 a.

555 Our results show that ITs redistribute chlorophyll-a vertically. This results in a thickening of the deep chlorophyll maximum
556 (DCM), increasing by 30–50% ($\sim +15$ m) during high-tide periods, and a reduction in its peak chlorophyll-a concentration by
557 9–17% (~ -0.1 mg m⁻³). These effects are the results of both advection and mixing of the ITs.

558 First, the advection of the ITs induce vertical motion of the DCM, following the associated isopycnal displacement, which,
559 when averaged results in a larger DCM peak and combined with light conditions, may enhance primary production since the
560 light gradient is not linear with depth. Indeed, in the uplift condition, chlorophyll receives more light and increased Primary
561 production is expected; an uplift exposes the chlorophyll-a r light gain than the light loss caused by a downlift.

562 Second, the mixing plays a major role in reshaping the chlorophyll. Turbulent transport redistributes chlorophyll -a both upward
563 into the euphotic surface layers (accounting for ~40% of the chlorophyll content above the DCM) and downward into the
564 aphotic deep layers (about ~60% of the chlorophyll content below the DCM), with these fluxes originating from the DCM
565 pool and leading to losses of up to 65%.

566 In overall, the combined effect of advection and mixing, by improving both light availability and nutrient supply, leads to an
567 increase in the total chlorophyll-a content integrated over the whole water column by 14–29% during high internal tide phases
568 compared to low tide phases.

569 For future research, we recommend a more systematic use of gliders in oceanographic campaigns to enhance our understanding
570 of internal tides and their interactions with ocean biogeochemistry. We strongly advocate for the combined integration of
571 biological, physical, and turbulence sensors to better characterize the small-scale processes that control phytoplankton
572 dynamics and primary production.

573

574 **Data availability**

575 The AMAZOMIX glider data are available upon request by contacting the corresponding author.

576 Sentinel-1 SAR imagery: Copernicus Open Access Hub – <https://scihub.copernicus.eu/dhus/>

577 MODIS-TERRA/AQUA imagery: NASA Earthdata – <https://earthdata.nasa.gov/>

578 Chlorophyll-a and euphotic depth (Zeu): GlobColour via Copernicus Marine Service –
<https://resources.marine.copernicus.eu/products>

580 Absolute Dynamic Topography and geostrophic velocities: Copernicus Marine Service (SSALTO/DUACS)

581 https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_MDT_008_063/description

582 Bathymetry data: NOAA CoastWatch Data Portal – <https://coastwatch.pfeg.noaa.gov/>

583 **Authors contributions**

584

585 AKL: funding acquisition. AM and AKL, with assistance from ID, VP, ACS, AB, MA: conceptualization and
586 methodology. AM, with assistance from AB: data pre-processing. Formal analysis: AM with interactions from
587 all co-authors. Preparation of the manuscript: AM with contributions from all co-authors. This work is a
588 contribution to the LMI TAPIOCA (www.tapioca.ird.fr).

589 **Acknowledgements**

590

591 M.A. thanks the support of the Brazilian research Network on Global Climate Change - Rede CLIMA (FINEP-CNPq 439
592 437167/2016-0)

593

594 The authors would like to thank the “Flotte Océanographique Française” and the officers and crew of the R/V
595 Antea for their contribution to the success of the operations aboard the R/V ANTEA, as well as, all the scientists
596 involved in data and water samples collection, for their valuable support during and after the AMAZOMIX cruise.
597 We acknowledge the Brazilian authorities for authorising the survey, the National french parc of instrument (DT-
598 INSU) for their instrument during the cruise and support in data analysis, as well as, the US-IMAGO from IRD for
599 its help during the cruise and for biogeochemical data analysis.

600 **Financial support**

601 This work is a part of the project “AMAZOMIX”, funded multiple agencies : the “Flotte Océanographique
602 Française” that funded the 40 days at sea of the R/V Antea, the Institut de Recherche pour le Développement (IRD),
603 via among other the LMI TAPIOCA, the CNES, within the framework of the APR TOSCA MIAMAZ TOSCA
604 project (PIs Ariane Koch-Larrouy, Vincent Vantrepotte, and Isabelle Dadou), the LEGOS and the program
605 international Franco-Brazileiro GUYAMAZON (call No 005/2017). It is also part of the PhD Thesis of Amine
606 M’hamdi, funded by the Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco (FACEPE), under
607 the co-advisement of Ariane Koch-Larrouy, Alex Costa da Silva, Isabelle Dadou and Vincent Vantrepotte.

608 **Competing interests**

609 The authors declare that they have no conflict of interest.

610

611 **References**

612 Aguedjou, H.M.A., Dadou, I., Chaigneau, A., Morel, Y., Alory, G., 2019. Eddies in the Tropical Atlantic Ocean and Their
613 Seasonal Variability. *Geophys. Res. Lett.* 46, 12156–12164. <https://doi.org/10.1029/2019GL083925>

614 Alford, M.H., Peacock, T., MacKinnon, J.A., Nash, J.D., Buijsman, M.C., Centurioni, L.R., Chao, S.-Y., Chang, M.-H.,
615 Farmer, D.M., Fringer, O.B., 2015. The formation and fate of internal waves in the South China Sea. *Nature* 521,
616 65–69.

617 Assene, F., Koch-Larrouy, A., Dadou, I., Tchilibou, M., Morvan, G., Chanut, J., Costa da Silva, A., Vantrepotte, V., Allain,
618 D., Tran, T.-K., 2024. Internal tides off the Amazon shelf—Part 1: The importance of the structuring of ocean
619 temperature during two contrasted seasons. *Ocean Sci.* 20, 43–67.

620 Baines, P.G., 1982. On internal tide generation models. *Deep Sea Res. Part Oceanogr. Res. Pap.* 29, 307–338.

621 Beardsley, R.C., Candela, J., Limeburner, R., Geyer, W.R., Lentz, S.J., Castro, B.M., Cacchione, D., Carneiro, N., 1995. The
622 M₂ tide on the Amazon Shelf. *J. Geophys. Res. Oceans* 100, 2283–2319. <https://doi.org/10.1029/94JC01688>

623 Bourgault, D., Hamel, C., Cyr, F., Tremblay, J.-É., Galbraith, P.S., Dumont, D., Gratton, Y., 2011. Turbulent nitrate fluxes
624 in the Amundsen Gulf during ice-covered conditions. *Geophys. Res. Lett.* 38, 2011GL047936.
625 <https://doi.org/10.1029/2011GL047936>

626 Brandt, P., Rubino, A., Fischer, J., 2002. Large-Amplitude Internal Solitary Waves in the North Equatorial Countercurrent. *J.*
627 *Phys. Oceanogr.* 32, 1567–1573. [https://doi.org/10.1175/1520-0485\(2002\)032<1567:LAISWI>2.0.CO;2](https://doi.org/10.1175/1520-0485(2002)032<1567:LAISWI>2.0.CO;2)

628 Calvo-Díaz, A., Morán, X.A.G., Suárez, L.Á., 2008. Seasonality of picophytoplankton chlorophyll a and biomass in the

629 central Cantabrian Sea, southern Bay of Biscay. *J. Mar. Syst.* 72, 271–281.
 630 Capuano, T.A., Koch-Larrouy, A., Nugroho, D., Zaron, E., Dadou, I., Tran, K., Vantrepotte, V., Allain, D., 2025. Impact of
 631 Internal Tides on Distributions and Variability of Chlorophyll-a and Nutrients in the Indonesian Seas. *J. Geophys.*
 632 *Res. Oceans* 130, e2022JC019128. <https://doi.org/10.1029/2022JC019128>
 633 Chaigneau, A., Eldin, G., Dewitte, B., 2009. Eddy activity in the four major upwelling systems from satellite altimetry
 634 (1992–2007). *Prog. Oceanogr.* 83, 117–123.
 635 Chaigneau, A., Gizolme, A., Grados, C., 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and
 636 eddy spatio-temporal patterns. *Prog. Oceanogr.* 79, 106–119.
 637 De Macedo, C.R., Koch-Larrouy, A., Da Silva, J.C.B., Magalhães, J.M., Lentini, C.A.D., Tran, T.K., Rosa, M.C.B.,
 638 Vantrepotte, V., 2023. Spatial and temporal variability in mode-1 and mode-2 internal solitary waves from MODIS-
 639 Terra sun glint off the Amazon shelf. *Ocean Sci.* 19, 1357–1374.
 640 Egbert, G.D., Ray, R.D., 2001. Estimates of M₂ tidal energy dissipation from TOPEX/Poseidon altimeter data. *J. Geophys.*
 641 *Res. Oceans* 106, 22475–22502. <https://doi.org/10.1029/2000JC000699>
 642 Falkowski, P.G., Barber, R.T., Smetacek, V., 1998. Biogeochemical Controls and Feedbacks on Ocean Primary Production.
 643 *Science* 281, 200–206. <https://doi.org/10.1126/science.281.5374.200>
 644 Falkowski, P.G., Knoll, A.H., 2007. An introduction to primary producers in the sea: who they are, what they do, and when
 645 they evolved, in: *Evolution of Primary Producers in the Sea*. Elsevier, pp. 1–6.
 646 Fratantoni, D.M., Glickson, D.A., 2002. North Brazil Current ring generation and evolution observed with SeaWiFS. *J. Phys.*
 647 *Oceanogr.* 32, 1058–1074.
 648 Fuchs, R., Rossi, V., Caille, C., Bensoussan, N., Pinazo, C., Grosso, O., Thyssen, M., 2023. Intermittent Upwelling Events
 649 Trigger Delayed, Major, and Reproducible Pico-Nanophytoplankton Responses in Coastal Oligotrophic Waters.
 650 *Geophys. Res. Lett.* 50, e2022GL102651. <https://doi.org/10.1029/2022GL102651>
 651 Gabiou, M., Vinzon, S.B., Paiva, A.M., 2005. Tidal propagation over fluid mud layers on the Amazon shelf. *Cont. Shelf*
 652 *Res.* 25, 113–125.
 653 Garau, B., Ruiz, S., Zhang, W.G., Pascual, A., Heslop, E., Kerfoot, J., Tintoré, J., 2011. Thermal Lag Correction on Slocum
 654 CTD Glider Data. *J. Atmospheric Ocean. Technol.* 28, 1065–1071. <https://doi.org/10.1175/JTECH-D-10-05030.1>
 655 Garnesson, P., Mangin, A., Fanton d'Andon, O., Demaria, J., Bretagnon, M., 2019. The CMEMS GlobColour chlorophyll
 656 <i>a</i> product based on satellite observation: multi-sensor merging and flagging strategies. *Ocean*
 657 *Sci.* 15, 819–830. <https://doi.org/10.5194/os-15-819-2019>
 658 Garzoli, S.L., Ffield, A., Yao, Q., 2003. North Brazil Current rings and the variability in the latitude of retroflection, in :
 659 Elsevier Oceanography Series. Elsevier, pp. 357–373.
 660 Gaxiola-Castro, G., Álvarez-Borrego, S., Nájera-Martínez, S., Zirino, A., 2002. Internal waves effect on the Gulf of
 661 California phytoplankton. *Cienc. Mar.* 28, 297–309. <https://doi.org/10.7773/cm.v28i3.222>
 662 Geyer, W.R., 1995. Tide-induced mixing in the Amazon Frontal Zone. *J. Geophys. Res. Oceans* 100, 2341–2353.
 663 <https://doi.org/10.1029/94JC02543>
 664 Gohin, F., 2011. Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and turbidity observed from space
 665 and in-situ in coastal waters. *Ocean Sci.* 7, 705–732.
 666 Grimshaw, R., 2003. Internal Solitary Waves, in: Grimshaw, R. (Ed.), *Environmental Stratified Flows, Topics in*
 667 *Environmental Fluid Mechanics*. Kluwer Academic Publishers, Boston, pp. 1–27. https://doi.org/10.1007/0-306-48024-7_1
 668 Grisouard, N., Staquet, C., Gerkema, T., 2011. Generation of internal solitary waves in a pycnocline by an internal wave
 669 beam: a numerical study. *J. Fluid Mech.* 676, 491–513.
 670 Holligan, P.M., Pingree, R.D., Mardell, G.T., 1985. Oceanic solitons, nutrient pulses and phytoplankton growth. *Nature* 314,
 671 348–350.
 672 Holloway, G., Denman, K., 1989. Influence of internal waves on primary production. *J. Plankton Res.* 11, 409–413.
 673 Horne, E.P., Loder, J.W., Naime, C.E., Oakey, N.S., 1996. Turbulence dissipation rates and nitrate supply in the upper water
 674 column on Georges Bank. *Deep Sea Res. Part II Top. Stud. Oceanogr.* 43, 1683–1712.
 675 Hu, C., Feng, L., Lee, Z., Davis, C.O., Mannino, A., McClain, C.R., Franz, B.A., 2012. Dynamic range and sensitivity
 676 requirements of satellite ocean color sensors: learning from the past. *Appl. Opt.* 51, 6045–6062.
 677 Ivanov, V.A., Ivanov, L.I., Lisichenok, A.D., 1990. Redistribution of energy of the internal tidal wave in the North

679 Equatorial Countercurrent region. Sov. J. Phys. Oceanogr. 1, 383–386.
 680 Jackson, Christopher.R., Alpers, W., 2010. The role of the critical angle in brightness reversals on sunglint images of the sea
 681 surface. J. Geophys. Res. Oceans 115, 2009JC006037. <https://doi.org/10.1029/2009JC006037>
 682 Jackson, C.R., Da Silva, J.C., Jeans, G., 2012. The generation of nonlinear internal waves. Oceanography 25, 108–123.
 683 Jacobsen, J.R., Edwards, C.A., Powell, B.S., Colosi, J.A., Fiechter, J., 2023. Nutricline adjustment by internal tidal beam
 684 generation enhances primary production in idealized numerical models. Front. Mar. Sci. 10, 1309011.
 685 Jeans, D.R.G., Sherwin, T.J., 2001. The variability of strongly non-linear solitary internal waves observed during an
 686 upwelling season on the Portuguese shelf. Cont. Shelf Res. 21, 1855–1878.
 687 Johns, W.E., Lee, T.N., Beardsley, R.C., Candela, J., Limeburner, R., Castro, B., 1998. Annual cycle and variability of the
 688 North Brazil Current. J. Phys. Oceanogr. 28, 103–128.
 689 Kahru, M., 1983. Phytoplankton patchiness generated by long internal waves: A model. Mar. Ecol. Prog. Ser. Oldendorf 10,
 690 111–117.
 691 Kaneko, H., Tanaka, T., Wakita, M., Sasaki, K., Okunishi, T., Miyazawa, Y., Zhang, R., Tatamisashi, S., Sato, Y.,
 692 Hashimukai, T., 2025. Topographically driven vigorous vertical mixing supports mesoscale biological production in
 693 the Tsugaru Gyre. Nat. Commun. 16, 3656.
 694 Kantha, L.H., Tierney, C.C., 1997. Global baroclinic tides. Prog. Oceanogr. 40, 163–178.
 695 Koch-Larrouy, A., Lengaigne, M., Terray, P., Madec, G., Masson, S., 2010. Tidal mixing in the Indonesian Seas and its
 696 effect on the tropical climate system. Clim. Dyn. 34, 891–904.
 697 Krahmann, G., 2023. GEOMAR FB1-PO Matlab Slocum glider processing toolbox.
 698 Kunze, E., 2017. Internal-wave-driven mixing: Global geography and budgets. J. Phys. Oceanogr. 47, 1325–1345.
 699 Lamb, K.G., Xiao, W., 2014. Internal solitary waves shoaling onto a shelf: Comparisons of weakly-nonlinear and fully
 700 nonlinear models for hyperbolic-tangent stratifications. Ocean Model. 78, 17–34.
 701 Lande, R., Yentsch, C.S., 1988. Internal waves, primary production and the compensation depth of marine phytoplankton. J.
 702 Plankton Res. 10, 565–571.
 703 Law, C.S., Abraham, E.R., Watson, A.J., Liddicoat, M.I., 2003. Vertical eddy diffusion and nutrient supply to the surface
 704 mixed layer of the Antarctic Circumpolar Current. J. Geophys. Res. Oceans 108, 2002JC001604.
 705 <https://doi.org/10.1029/2002JC001604>
 706 Lewis, M.R., Hebert, D., Harrison, W.G., Platt, T., Oakey, N.S., 1986. Vertical Nitrate Fluxes in the Oligotrophic Ocean.
 707 Science 234, 870–873. <https://doi.org/10.1126/science.234.4778.870>
 708 Liu, C., Pinkel, R., Klymak, J., Hsu, M., Chen, H., Villanoy, C., 2006. Nonlinear internal waves from the Luzon Strait. Eos
 709 Trans. Am. Geophys. Union 87, 449–451. <https://doi.org/10.1029/2006EO420002>
 710 Lyard, F.H., Allain, D.J., Cancet, M., Carrère, L., Picot, N., 2021. FES2014 global ocean tide atlas: design and performance.
 711 Ocean Sci. 17, 615–649.
 712 Ma, L., Bai, X., Laws, E.A., Xiao, W., Guo, C., Liu, X., Chiang, K., Gao, K., Huang, B., 2023. Responses of Phytoplankton
 713 Communities to Internal Waves in Oligotrophic Oceans. J. Geophys. Res. Oceans 128, e2023JC020201.
 714 <https://doi.org/10.1029/2023JC020201>
 715 Magalhaes, J.M., da Silva, J.C.B., Buijsman, M.C., Garcia, C.A.E., 2016. Effect of the North Equatorial Counter Current on
 716 the generation and propagation of internal solitary waves off the Amazon shelf (SAR observations). Ocean Sci. 12,
 717 243–255. <https://doi.org/10.5194/os-12-243-2016>
 718 Mahadevan, A., Campbell, J.W., 2002. Biogeochemical patchiness at the sea surface. Geophys. Res. Lett. 29.
 719 <https://doi.org/10.1029/2001GL014116>
 720 Marañón, E., Holligan, P.M., Varela, M., Mouríño, B., Bale, A.J., 2000. Basin-scale variability of phytoplankton biomass,
 721 production and growth in the Atlantic Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 47, 825–857.
 722 Martin, A.P., Lucas, M.I., Painter, S.C., Pidcock, R., Prandke, Hartmut, Prandke, Holger, Stinchcombe, M.C., 2010. The
 723 supply of nutrients due to vertical turbulent mixing: A study at the Porcupine Abyssal Plain study site in the
 724 northeast Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 57, 1293–1302.
 725 McDougall, T.J., Barker, P.M., 2011. Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox.
 726 Scoriapso WG 127, 1–28.
 727 McInerney, J.B.T., Forrest, A.L., Schladow, S.G., Largier, J.L., 2019. How to Fly an Autonomous Underwater Glider to
 728 Measure an Internal Wave. in: OCEANS 2019 MTS/IEEE SEATTLE. Presented at the OCEANS 2019 MTS/IEEE

729 SEATTLE, IEEE, Seattle, WA, USA, pp. 1–8. <https://doi.org/10.23919/OCEANS40490.2019.8962407>

730 Mikaelyan, A.S., Zatsepin, A.G., Kubryakov, A.A., 2020. Effect of mesoscale eddy dynamics on bioproductivity of the
731 marine ecosystems. *Phys. Oceanogr.* 27, 590–618.

732 Moore, C.M., Seeyave, S., Hickman, A.E., Allen, J.T., Lucas, M.I., Planquette, H., Pollard, R.T., Poulton, A.J., 2007. Iron–
733 light interactions during the CROZet natural iron bloom and EXport experiment (CROZEX) I: Phytoplankton
734 growth and photophysiology. *Deep Sea Res. Part II Top. Stud. Oceanogr.* 54, 2045–2065.

735 Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). *J. Geophys.*
736 *Res. Oceans* 93, 10749–10768. <https://doi.org/10.1029/JC093iC09p10749>

737 Moum, J.N., Farmer, D.M., Smyth, W.D., Armi, L., Vagle, S., 2003. Structure and generation of turbulence at interfaces
738 strained by internal solitary waves propagating shoreward over the continental shelf. *J. Phys. Oceanogr.* 33, 2093–
739 2112.

740 Munk, W., Wunsch, C., 1998. Abyssal recipes II: energetics of tidal and wind mixing. *Deep Sea Res. Part Oceanogr. Res.*
741 *Pap.* 45, 1977–2010. [https://doi.org/10.1016/S0967-0637\(98\)00070-3](https://doi.org/10.1016/S0967-0637(98)00070-3)

742 Nash, J.D., Kunze, E., Toole, J.M., Schmitt, R.W., 2004. Internal tide reflection and turbulent mixing on the continental
743 slope. *J. Phys. Oceanogr.* 34, 1117–1134.

744 Neto, A.V.N., Da Silva, A.C., 2014. Seawater temperature changes associated with the North Brazil current dynamics.
745 *Ocean Dyn.* 64, 13–27.

746 Partensky, F., Hess, W.R., Vaulot, D., 1999. *Prochlorococcus*, a Marine Photosynthetic Prokaryote of Global Significance.
747 *Microbiol. Mol. Biol. Rev.* 63, 106–127. <https://doi.org/10.1128/MMBR.63.1.106-127.1999>

748 Pegliasco, C., Chaigneau, A., Morrow, R., 2015. Main eddy vertical structures observed in the four major Eastern Boundary
749 Upwelling Systems. *J. Geophys. Res. Oceans* 120, 6008–6033. <https://doi.org/10.1002/2015JC010950>

750 Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., Picot, N., 2016. DUACS DT2014: the new
751 multi-mission altimeter data set reprocessed over 20years. *Ocean Sci.* 12, 1067–1090. <https://doi.org/10.5194/os-12-1067-2016>

752 Ruault, V., Jouanno, J., Durand, F., Chanut, J., Benshila, R., 2020. Role of the Tide on the Structure of the Amazon Plume:
753 A Numerical Modeling Approach. *J. Geophys. Res. Oceans* 125, e2019JC015495.
754 <https://doi.org/10.1029/2019JC015495>

755 Sangrà, P., Martínez, A., Lubián, L., Antorranz, A., Rodríguez Santana, A., Rodríguez, S., Sobrino, C., Pelegrí, J.L.,
756 Hernández Guerra, A., 2002. Mesoscale Structures and Chlorophyll Distribution In The Bransfield Strait (antarctica),
757 in: EGS General Assembly Conference Abstracts. p. 3312.

758 Scanlan, D.J., Ostrowski, M., Mazard, S., Dufresne, A., Garczarek, L., Hess, W.R., Post, A.F., Hagemann, M., Paulsen, I.,
759 Partensky, F., 2009. Ecological Genomics of Marine Picocyanobacteria. *Microbiol. Mol. Biol. Rev.* 73, 249–299.
760 <https://doi.org/10.1128/MMBR.00035-08>

761 Schott, F.A., Fischer, J., Stramma, L., 1998. Transports and pathways of the upper-layer circulation in the western tropical
762 Atlantic. *J. Phys. Oceanogr.* 28, 1904–1928.

763 Silva, A., Araujo, M., Medeiros, C., Silva, M., Bourles, B., 2005. Seasonal changes in the mixed and barrier layers in the
764 western Equatorial Atlantic. *Braz. J. Oceanogr.* 53, 83–98. <https://doi.org/10.1590/S1679-87592005000200001>

765 Silva, A.C., Bourlès, B., Araujo, M., 2009. Circulation of the thermocline salinity maximum waters off the Northern Brazil
766 as inferred from in situ measurements and numerical results, in: *Annales Geophysicae*. Copernicus GmbH, pp.
767 1861–1873.

768 Sprintall, J., Gordon, A.L., Koch-Larrouy, A., Lee, T., Potemra, J.T., Pujiana, K., Wijffels, S.E., 2014. The Indonesian seas
769 and their role in the coupled ocean–climate system. *Nat. Geosci.* 7, 487–492.

770 Tchilibou, M., Koch-Larrouy, A., Barbot, S., Lyard, F., Morel, Y., Jouanno, J., Morrow, R., 2022. Internal tides off the
771 Amazon shelf during two contrasted seasons: interactions with background circulation and SSH imprints. *Ocean*
772 *Sci.* 18, 1591–1618. <https://doi.org/10.5194/os-18-1591-2022>

773 Testor, P., de Young, B., Rudnick, D.L., Glenn, S., Hayes, D., Lee, C.M., Pattiarchi, C., Hill, K., Heslop, E., Turpin, V.,
774 Alenius, P., Barrera, C., Barth, J.A., Beaird, N., Béchu, G., Bosse, A., Bourrin, F., Brearley, J.A., Chao, Y., Chen, S.,
775 Chiggiato, J., Coppola, L., Crout, R., Cummings, J., Curry, B., Curry, R., Davis, R., Desai, K., DiMarco, S.,
776 Edwards, C., Fielding, S., Fer, I., Frajka-Williams, E., Gildor, H., Goni, G., Gutierrez, D., Haugan, P., Hebert, D.,
777 Heiderich, J., Henson, S., Heywood, K., Hogan, P., Houpert, L., Huh, S., E. Inall, M., Ishii, M., Ito, S., Itoh, S., Jan,
778

779 S., Kaiser, J., Karstensen, J., Kirkpatrick, B., Klymak, J., Kohut, J., Krahmann, G., Krug, M., McClatchie, S.,
780 Marin, F., Mauri, E., Mehra, A., P. Meredith, M., Meunier, T., Miles, T., Morell, J.M., Mortier, L., Nicholson, S.,
781 O'Callaghan, J., O'Conchubhair, D., Oke, P., Pallàs-Sanz, E., Palmer, M., Park, J., Perivoliotis, L., Poulain, P.-M.,
782 Perry, R., Queste, B., Rainville, L., Rehm, E., Roughan, M., Rome, N., Ross, T., Ruiz, S., Saba, G., Schaeffer, A.,
783 Schönau, M., Schroeder, K., Shimizu, Y., Sloyan, B.M., Smeed, D., Snowden, D., Song, Y., Swart, S., Tenreiro,
784 M., Thompson, A., Tintore, J., Todd, R.E., Toro, C., Venables, H., Wagawa, T., Waterman, S., Watlington, R.A.,
785 Wilson, D., 2019. OceanGliders: A Component of the Integrated GOOS. *Front. Mar. Sci.* 6, 422.
786 <https://doi.org/10.3389/fmars.2019.00422>

787 Thomalla, S.J., Moutier, W., Ryan-Keogh, T.J., Gregor, L., Schütt, J., 2018. An optimized method for correcting
788 fluorescence quenching using optical backscattering on autonomous platforms. *Limnol. Oceanogr. Methods* 16,
789 132–144. <https://doi.org/10.1002/lom3.10234>

790 Tsutsumi, E., Matsuno, T., Itoh, S., Zhang, J., Senju, T., Sakai, A., Lee, K., Yanagimoto, D., Yasuda, I., Ogawa, H.,
791 Villanoy, C., 2020. Vertical fluxes of nutrients enhanced by strong turbulence and phytoplankton bloom around the
792 ocean ridge in the Luzon Strait. *Sci. Rep.* 10, 17879. <https://doi.org/10.1038/s41598-020-74938-5>

793 Tuerena, R.E., Williams, R.G., Mahaffey, C., Vic, C., Green, J.A.M., Naveira-Garabato, A., Forryan, A., Sharples, J., 2019.
794 Internal Tides Drive Nutrient Fluxes Into the Deep Chlorophyll Maximum Over Mid-ocean Ridges. *Glob.
795 Biogeochem. Cycles* 33, 995–1009. <https://doi.org/10.1029/2019GB006214>

796 Van Gennip, S., Martin, A.P., Srokosz, M.A., Allen, J.T., Pidcock, R., Painter, S.C., Stinchcombe, M.C., 2016. Plankton
797 patchiness investigated using simultaneous nitrate and chlorophyll observations. *J. Geophys. Res. Oceans* 121,
798 4149–4156. <https://doi.org/10.1002/2016JC011789>

799 Vázquez, A., Flecha, S., Bruno, M., Macías, D., Navarro, G., 2009. Internal waves and short-scale distribution patterns of
800 chlorophyll in the Strait of Gibraltar and Alborán Sea. *Geophys. Res. Lett.* 36.

801 Vlasenko, V., Stashchuk, N., Hutter, K., 2005. Baroclinic tides: theoretical modeling and observational evidence. Cambridge
802 University Press.

803 Waterhouse, A.F., MacKinnon, J.A., Nash, J.D., Alford, M.H., Kunze, E., Simmons, H.L., Polzin, K.L., St. Laurent, L.C.,
804 Sun, O.M., Pinkel, R., 2014. Global patterns of diapycnal mixing from measurements of the turbulent dissipation
805 rate. *J. Phys. Oceanogr.* 44, 1854–1872.

806 Zaron, E.D., Capuano, T.A., Koch-Larrouy, A., 2023. Fortnightly variability of Chl a in the Indonesian seas. *Ocean Sci.* 19,
807 43–55.

808 Zhao, Z., Alford, M.H., Girton, J.B., Rainville, L., Simmons, H.L., 2016. Global observations of open-ocean mode-1 M 2
809 internal tides. *J. Phys. Oceanogr.* 46, 1657–1684.

810 Zubkov, M.V., Sleigh, M.A., Burkhill, P.H., Leakey, R.J., 2000. Picoplankton community structure on the Atlantic
811 Meridional Transect: a comparison between seasons. *Prog. Oceanogr.* 45, 369–386.

812