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Abstract. Landslide inventories are crucial for the assessment of landslide susceptibility and hazard. An analysis of old 10 

landslides can reveal periods of intensified landslide activity, but the features of these landslides may have diminished over 

time, particularly in the context of human impact. However, landslide features are often preserved well under forest cover and 

are thus valuable for compiling or updating landslide inventories. However, the mapping of these features remains challenging. 

Light detection and ranging (lidar) analysis and its derivatives are essential in landslide research, particularly in landslide 

identification and mapping. Unlike the expert-based analysis of lidar derivatives, the use of object-based approaches to map 15 

landslides from lidar data (semi)automatically requires further studies. This study adopts geographic-object-based image 

analysis based solely on lidar derivatives for the inventory mapping of forest-covered old landslides within a middle-mountain 

region in Jena, Germany, and surrounding areas. A manually prepared expert-based inventory map was used for model training 

and validation. Lidar derivative data were processed using (a) a default moving-window size (3 × 3; model I) and (b) an optimal 

window size (model II). Multi-resolution segmentation and support vector machine classification with distinct rule sets were 20 

implemented for each model, followed by refinement and accuracy assessment against the inventory map for model 

performance evaluation. The proposed approach achieved a 70% detection of existing landslides compared with the inventory. 

Model II outperforms model I in accuracy, as indicated by its superior performance in scarp area detection (15% improvement) 

and significantly lower false positives (30% reduction). However, although this method excellently identifies and maps forest-

covered old landslides, its applicability is currently limited to large and medium landslides (area > 0.5 ha). Overall, our findings 25 

suggest that landslides worldwide with clear geomorphological signatures in lidar data can be identified using this approach. 

1 Introduction 

Landslides are significant in landform evolution, and numerous regions worldwide have considerable landslide hazard. In 

certain areas, landslides frequently cause greater mortality and economic loss than other natural hazards, such as earthquakes, 

volcanic eruptions and floods (Guzzetti et al., 1999; Aksoy and Ercanoglu, 2012; Guzzetti et al., 2021). Landslide hazard is 30 
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the probability of a landslide of a specific magnitude occurring in a particular area within a defined time frame (Guzzetti et al., 

1999). Landslide hazard assessment necessitates the creation of detailed landslide maps, with landslide inventory maps 

specifically recording the geographic distribution of documented landslides based on their detection and delineation (Guzzetti 

et al., 1999). Such inventories are traditionally developed through analyses of aerial photographs, supplemented by fieldwork 

and collection of historical data (Guzzetti et al., 1999, 2012; Santangelo et al., 2010). Albeit a standard geomorphological 35 

practice, the field mapping of landslides, particularly older ones, is hindered by factors such as landslide size, limitations in 

field perspectives, forest cover or erosion and anthropogenic modifications. Compared with traditional field techniques, remote 

methods using aerial photographs and high-resolution digital elevation models (DEMs) provide more comprehensive and 

accurate data, increasing mapping precision (Santangelo et al., 2010; Guzzetti et al., 2012; Bell et al., 2012; Crawford, 2014; 

Schmaltz et al., 2016; Petschko, Bell, and Glade, 2016; Bernat Gazibara et al., 2019).  40 

In recent decades, geographic-object-based image analysis (GEOBIA) has emerged as a powerful method for semi- 

or fully automated landform mapping (e.g. Drăguţ and Blaschke, 2006; Blaschke, 2010a; Schneevoigt et al., 2010; 

Seijmonsbergen et al., 2011; Anders et al., 2011, 2013; Drǎguţ and Eisank, 2012; Zylshal et al., 2013; Eisank et al., 2014; 

Robb et al., 2015; Pedersen, 2016; Guilbert and Moulin, 2017; Hossain and Chen, 2019). The integration of GEOBIA into 

semi-automatic landslide mapping is a significant development in this field. Lahousse et al. (2011) developed a multiscale 45 

GEOBIA technique for landslide mapping, but it is limited to specific areas and landslide types. Aksoy and Ercanoglu (2012) 

proposed a semi-automatic inventory mapping method that uses fuzzy logic based on thematic data and spectral information. 

Feizizadeh and Blaschke (2013) developed a rule-based classification approach utilising satellite data. Hölbling et al. (2016) 

identified spatiotemporal landslide hotspots by analysing historical and recent aerial photographs. Hölbling et al. (2017) 

compared GEOBIA and manual mapping approaches and concluded that GEOBIA-based semi-automatic mapping encounters 50 

difficulties in areas where landslides are covered by vegetation. Karantanellis et al. (2020, 2021) stated that landslide modelling 

based on unmanned aerial vehicles (UAVs) enables detailed, automated landslide characterisation, with high adaptability to 

specific sites. They also found that UAVs enable time- and cost-efficient data collection, whereas machine learning algorithms 

are effective for local-scale sub-zone landslide mapping when integrated into GEOBIA. Dias et al. (2023) showed that applying 

GEOBIA-based methods to high-resolution satellite imagery can successfully identify shallow landslides and debris flows 55 

with over 70% accuracy. Karantanellis and Hölbling (2025) further emphasised the utility of high-resolution digital data, in 

combination with GEOBIA-based methods, for improving landslide mapping and assessment accuracy.  

Limited studies have explored the use of GEOBIA for landslide mapping in forested regions, particularly in the 

underexamined context of old landslide inventories. Plank and Martinis (2016) used an object-based and change detection 

approach with DEM and synthetic-aperture radar (SAR) imagery to map landslides in vegetated areas by integrating pre-event 60 

optical and post-event very-high-resolution polarimetric SAR data. However, their study focused only on fresh landslides, not 

old landslides under forest cover. Comprehensive inventory mapping is required to address this limitation. Eeckhaut et al. 

(2006, 2012) studied landslides occurring beneath forest cover, achieving a detection rate of approximately 70% using lidar 

data alone. Their investigation encompassed multiple levels, but the moving-window size of land surface variables (LSVs) for 
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landslide components (e.g. landslide scarp and body) were not adequately addressed; both components were treated using the 65 

same window size. Knevels et al. (2019) used open-source software to map forest landslides using GEOBIA. Using high-

resolution lidar data, they attained a 69% detection rate relative to manual mapping. Despite using default window sizes, the 

authors acknowledged the potential of identifying the optimal window size for different landslide portions, possibly enhancing 

model performance. In summary, previous researchers used default window sizes to calculate LSVs, underscoring the need to 

explore optimal moving-window approaches to enhance landslide mapping.  70 

Determining the optimal window sizes for different LSVs relative to specific landforms is critical in semi-automatic 

landform detection using digital data; a detailed review of scale-related issues is available in Drǎguţ and Eisank (2011). 

Seijmonsbergen et al. (2011) demonstrated that using multiple window sizes for LSVs can enhance semi-automatic landform 

detection. They found that different landscape features are best detected using different window sizes, but they manually 

selected these sizes to compare with expert-based mapped features. Pawluszek et al. (2018) investigated the impact of scaling 75 

window sizes on the automatic detection of landslides using digital terrain model (DTM) data. After DTM rescaling, the 

landslide modelling accuracy improved relative to that of the original (non-rescaled) DTM. Sîrbu et al. (2019) developed an 

automated approach to selecting the optimal window size of each LSV relative to landslide scarps, significantly improving 

detection accuracy in two study sites in comparison with that under the default selection of window sizes. However, landslide 

bodies were not examined in this study. No standard or operational method has been developed to achieve this goal despite the 80 

considerable progress in automated landslide mapping.  

This study investigates the potential of using GEOBIA and high-resolution DTM data for the semi-automatic mapping 

of forest-covered old landslides (mainly focus on the deep-seated ‘rotational’ landslides) in middle-mountain regions in Jena, 

Germany. Specifically, the effectiveness of using lidar data and their derivatives for the semi-automated inventory mapping of 

forest-covered landslides is assessed, particularly the role of optimised window sizes. The central research question is as 85 

follows: How can DTM derivatives and optimised window sizes enhance the reliability of GEOBIA-based semi-automatic 

landslide mapping in forested environments? Thus, the influence of optimal window sizes for LSVs on the accuracy of semi-

automatic landslide mapping is first determined. This is then compared with results achieved using default window sizes. By 

addressing these aspects, this study seeks to advance the understanding of, and improve practices in, landslide mapping within 

forested environments. 90 

2 Study area 

The study area is in the eastern part of Thuringia, near the city of Jena, Germany (Figure 1). It is approximately 150 

km2 in size and encompasses two elevation zones. The first zone is a low-elevation area that includes most of the Saale River 

valley and parts of the Roda River catchment. The other is an elevated zone consisting of a plateau, low mountains and adjacent 

slopes at elevations reaching 400 m asl (Zangana et al., 2023). Moreover, the study area is situated within the Thuringian Basin 95 

and has two predominant geological formations. The Muschelkalk Formation (limestone) predominates in the higher-altitude  
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Figure 1. Study area. (a) Map: An orthophoto of the study area is overlaid on a hillshade DTM, with the landslide inventories delineated by 

white polygons. (b) Photo (taken by Ikram Zangana on February 24, 2019): The photo faces the southeast direction, showing the hillslopes 

of Kerenberge, Hausberg and Jenzig, along with a forested area and part of Jena City. Key locations are marked (1, 2 and 3), and the white 100 

dashed lines indicate the lithological boundaries, with Muschelkalk (mu) limestone above and Buntsandstein (bu) sandstone below. The 

orthophoto and the hillshade-DTM in (a) were obtained from TLUBN (2019) and other datasets are sourced from ESRI (2025). 
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regions, whereas the Buntsandstein Formation (red sandstone) dominates in the lower-altitude areas (Föhlisch, 2002; Seidel, 

1992).  

The preconditioning factors influencing landslide occurrence in the study area are geological and structural 105 

characteristics, particularly the stratigraphic contact between limestone and underlying sandstone. This lithological 

configuration, when combined with the steep slope geometry of the cuesta escarpments, plays a pivotal role in the slope 

instability. Such structural settings are known to favour rotational landslides, particularly in cuesta landscapes, where 

differential weathering and erosion of layered sedimentary rocks promote mass movement. According to  Achilles et al. (2016), 

the landslides may have been triggered during the Holocene, likely beginning at the end of the Weichselian glaciation, due to 110 

increased precipitation, glacial meltwater infiltration, and associated hydrological changes. While the exact age of these 

landslides remains uncertain, especially when relying solely on LiDAR-derived DTMs, the widespread presence of dense 

forest cover over many large landslide bodies suggests limited recent activity and supports the possibility of an older origin 

(Zangana et al., 2024). Most of the mapped landslides occur on hillslopes in the eastern part of the Saale River basin, 

predominantly facing north and northwest. However, to the best of our knowledge, there are no recent studies or official records 115 

documenting damage or economic losses correlated with older deep-seated landslides in the region.  

The annual mean temperature is 9°C–11°C, the summer mean is approximately 16°C–18°C and the winter mean is 

0°C–2°C. The mean annual rainfall is 600–800 mm (TMUEN, 2017). Land use is dominated by residences, industries and 

infrastructure in the valley floors and some gentle slopes. Forests cover steep slopes and high plateaus. Farmlands are primarily 

located along the floodplains of the Saale River and its tributaries, whereas grasslands and pastures are more sparsely 120 

distributed, mainly in the northern portion of the study area (landnutzung). The soil types in this area include rendzinas 

(Leptosols), which are on the Muschelkalk Formation, predominantly within the plateau area, and pararendzinas (Pelosols), 

which are in the Buntsandstein area and on the slopes. However, the Holocene floodplain and flat areas of the region are 

covered by gley–Vega soil types (Gleysols). Cambisols are found in areas dominated by sandstone, sandstone/siltstone and 

claystone sequences of the lower and middle Buntsandstein, while podsols (Podzols) are present in some southern parts of the 125 

study area (Rau et al., 2000; Zangana et al., 2023b). 

3 Methodology 

3.1 Data 

Landslide mapping is based on lidar–DTM data with a 1 m × 1 m resolution provided by the Thuringian State Office for Soil 

Management and Geoinformation (TLUBN, 2019; Zangana et al., 2023a). Different LSVs, namely, slope, topographic 130 

openness (TO), curvature (plan and profile), terrain roughness index (TRI) and topographic position index (TPI), were 

generated using an original DTM. A landslide inventory map (reference map) was created using manual on-screen mapping 

in ArcMap 10.7. Traditional and multi-directional hillshade were used as the primary visual base, following the method 

described by Schulz (2004). Hillshades and slope maps were visually evaluated for landslide features such as scarps and bodies 
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by systematically panning through the imagery at scales ranging from 1:1,000 to 1:200 and mapped accordingly at this scale 135 

to ensure the correct delineation of landslide boundaries. However, additional LSVs (e.g. curvature, TO, TPI, and TRI) were 

employed as supplementary layers to facilitate interpretation and boundary delineation, particularly in regions where hillshade 

and slope alone were inadequate for fully resolving the geomorphic manifestation of landslides. Furthermore, as in the method 

applied by Zangana et al. (2023b), we incorporated a LSVs-composite map visualisation that improved the detection of 

morphological features of landslides. Scarps and bodies were mapped separately wherever they could be clearly distinguished. 140 

In a few instances, scarp features could not be identified with confidence from the available data. Approximately 10% of the 

mapped landslides were validated in the field. The inventory primarily includes deep-seated (rotational) landslides (34 

landslides), along with a few shallow landslides (6 landslides). 

3.2 GEOBIA-based landslide inventory mapping 

We used the software eCognition 10.3 and developed a structured workflow to design a rule set for semi-automatic landslide 145 

mapping. This workflow enabled landslide identification using two distinct models. Model I (MI) used the default window 

size to calculate the LSVs as a pre-processing step for segmentation and classification, whereas model II (MII) used the optimal 

window size. The final results were exported as shapefiles to ArcGIS 10.7. The overall methodological framework, consisting 

of three main stages, is illustrated in Figure 2. 

3.2.1 STAGE I: Data preparation  150 

This stage was divided into two main steps. Step 1: A landslide inventory map was manually prepared using DTM hillshade 

data and a visual analysis of all relevant LSVs. This inventory map served as a reference for model development and as a 

baseline with which the final GEOBIA results were compared for accuracy assessment (AA). Step 2: ArcGIS 10.7 and R 4.3.2 

were used to generate LSVs using different window sizes. For MI, the default window sizes in ArcGIS were applied based on 

standard raster calculation methods and commonly published values. For MII, we adopted an advanced approach involving 155 

the automatic detection of optimal window sizes for each LSV for alignment between landslide-prone and non-landslide areas 

(Sîrbu et al., 2019). 

For model training samples were collected from landslide scarps (MI: 6.09 ha; MII: 1.32), landslide bodies (MI: 36.20 

ha; MII: 27.2 ha) non-scarp areas (MI: 9.42 ha; MII: 4.07 ha), non-body areas (MI: 53.95 ha; MII: 41.21 ha). These values 

represent the total sampled area used for each model (MI and MII). Classification was then performed using unsupervised 160 

methods and support vector machines (SVMs; for further details, see Tzotsos and Argialas, 2008; Hong et al., 2017). An 

algorithm was trained using these samples and then used to classify the data accordingly. For optimal results, this stage was 

repeated multiple times while adjusting the training samples iteratively to enhance accuracy in comparison with the inventory 

map.  
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 165 

Figure 2. Flowchart of method used for mapping of landslide scarps and bodies. First, data are prepared using default and optimal window 

sizes. Then, segmentation and classification are conducted via MRS and SVM. Finally, refinement and accuracy assessment (AA) are 

performed by comparing the reference map with the GEOBIA results. 

 

3.2.2 STAGE II: Segmentation and classification 170 

Segmentation and classification were performed using eCognition at two hierarchical levels. Segmentation was conducted 

using multi-resolution segmentation (MRS; Baatz and Schäpe, 2000) after trial-and-error across different scales (Drǎguţ et al., 

2010; Li et al., 2015) for distinct landslide components (landslide scarps and bodies). Specifically, landslide scarps and bodies 

were segmented and identified using separate projects and rule sets. MRS with scale parameters of 50 and 20 for landslide 

scarps using shape of 0.1 and compactness of 0.5 and MRS with scale parameters of 70 and 30 for landslide bodies using shape 175 

of 0.1 and compactness of 0.5 achieved the best fit and were thus applied to MI and MII, respectively. 

3.2.3 STAGE III: Refinement and accuracy assessment (AA) 

This stage consisted of two main steps: GEOBIA-based refinement and accuracy assessment (AA). The first, a GEOBIA-based 

refinement aimed to enhance the initial SVM classification from Stage II by incorporating additional object-based rules. Based 

on the outcomes of Stage II, an additional stage (Stage III) was developed using expert knowledge and implemented as a rule 180 
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set within the eCognition framework. This GEOBIA-based refinement leverages expert-driven interpretation in combination 

with object-level spatial and contextual information to enhance classification accuracy. Previous studies have demonstrated 

the value of combining machine learning with rule-based approaches for improving thematic mapping quality (Johnson and 

Xie, 2011; Eisank et al., 2014;  Zylshal et al., 2016; Robson et al., 2020). 

The refinement process focused on iteratively improving the true positive rate (TPr) while reducing both the false 185 

positive rate (FPr) and false negative rate (FNr). This was achieved by assessing a comprehensive set of object-based features 

derived from morphometric (e.g., slope, curvature, TPI, ...etc.), geometric (e.g., area, shape index, length-to-width ratio), and 

contextual attributes (e.g., distance to landslide-related objects, and the relative border to neighbor metric). The latter measures 

the proportion of an object’s boundary shared with a predefined class, helping to identify embedded or adjacent features for 

reclassification. For example, a relative border value of 1 indicates complete enclosure by a reference class, while lower values 190 

suggest partial adjacency (for a further and comprehensive overview of the ruleset developed, see Tables A1-B2 in the 

Appendices). 

Refinements were conducted using eCognition’s interactive visualization tools, enabling semi-automated object 

filtering and targeted adjustments based on spatial inconsistencies. Objects were assessed through iterative cycles of visual 

inspection, attribute filtering, and validation against the reference inventory using both number- and area-based accuracy 195 

metrics. Key decisions included merging or expanding TP-classified regions and reclassifying ambiguous objects based on 

rules such as (1) adjacency to existing TP objects, (2) sharing >80% boundary with TPs, and (3) being fully surrounded by TP 

zones. Importantly, no expansion was allowed into areas clearly identified as non-landslide terrain. This process was repeated 

until no further improvements were observed. The landslide scarps and bodies were analysed separately, so different criteria 

and parameters were applied to each of them during the development of the rule set in eCognition. In other words, the landslide 200 

scarp area was treated separately from the landslide body area. 

The second step, called AA, involved comparing the final result of GEOBIA-based refinement (stage III, part 1) with 

expert-based landslide data (i.e. the inventory map). This comparison helped assess the efficacy of each model (MI and MII) 

against the reference map. For a comprehensive investigation, AA was conducted separately for landslide scarps and bodies. 

As seen in Section 3.3, number-based AA, area-based AA and calculation of additional metrics were adopted (Cai et al., 2018; 205 

Simoes et al., 2023). 

3.3 Accuracy assessment  

Various metrics were used to evaluate the congruence between the GEOBIA mapping outcomes and the reference map 

quantitatively. These comparisons were conducted independently per model and per landslide component: landslides scarps 

and bodies.  210 
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3.3.1 Thematic accuracy assessment 

We assessed the results through number-based and area-based accuracy assessment. First, following Cai et al. (2018), we 

developed an R script to assess the accuracy of the model results numerically. If the GEOBIA-detected polygon’s overlapping 

area exceeded 50% of the area of the reference landslide polygon, then it was considered a correctly identified landslide 

(Eeckhaut et al., 2012; Knevels et al., 2019). The TP, FP and FN numbers and percentages were calculated according to MI 215 

and MII. Then, in addition to number-based AA, area-based AA (hectares [ha]) was adopted to obtain more detailed 

information about the absolute areas correctly detected as landslides (i.e. TP), undetected landslide areas (i.e. FN) and areas 

incorrectly mapped as landslides (i.e. FP). To achieve this, we overlaid the inventory map polygons (reference map) on the 

GEOBIA-based polygons, which included these three components, to calculate the percentage of each category and determine 

whether the use of the optimal moving-window size in MII improved the semi-automatic GEOBIA-based mapping results 220 

(Figure 6). The script for this analysis was developed and implemented in R using the GEOBIA results according to previously 

reported key concepts and algorithms (for further details, see Eisank et al., 2014; Cai et al., 2018). 

3.3.2 Segmentation metrics  

An R script developed using the segmetric package to calculate the segmentation accuracy of the objects of interest through 

various metrics (Simoes et al., 2023). As outlined in Table 6, we analysed key metrics relevant to landslide studies: area fit 225 

index (AFI), over-segmentation (OS), under-segmentation (US), F-measure, recall and precision. These metrics were based 

on area proportions, with values between 0 and 1 except for AFI. A value closer to zero indicated a better spatial match between 

the test and reference datasets (Dias et al., 2023). 

4 Results 

This chapter presents the main results of this study, specifically the optimisation results of window sizes for LSVs in MII, the 230 

results of GEOBIA-based landslide detection and the model performance evaluation results from different AA approaches. 

4.1 Optimisation of window sizes for LSVs in MII 

Figure 3 shows the variation in the optimal window size for each LSV across multiple runs, highlighting noticeable differences 

between landslide scarps and bodies. Some LSVs (e.g. TO, plan curvature and profile curvature) have consistent window sizes, 

whereas others (e.g. slope and TRI) show greater variability. Table 1 shows the final window sizes used in the analysis for 235 

both landslide components in MII, along with the default values used in MI for comparison. The optimal window sizes differ 

not only between LSVs but also between scarps and bodies within the same LSV. Hence, separate rule sets were developed in 

eCognition for each landslide component. Segmentation, classification, refinement and AA were then performed independently 

for the scarps and bodies. 
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240 

Figure 3. Optimal window sizes for each LSV in predicting landslide scarps and bodies. Note: i1, i2, ..., i10: number of iterations; C: 

curvature; TO: topographic openness; TRI: terrain roughness index; TPI: terrain position index. 

Table 1. LSVs and corresponding window sizes per model. 

 

 245 

* Default window size, ** optimal window size 

4.2 GEOBIA-based landslide modelling results 

The GEOBIA-based landslide modelling results, specifically those of landslide scarps and bodies for both models (MI and 

MII), were compared with the inventory map to assess their spatial correspondence (Figures 4 and 5). Figure 4(a) shows the 

MI results (default window sizes). The brown and yellow polygons represent the model-detected landslide scarps and bodies, 250 

and the blue and pink polygons indicate the landslide scarps and bodies in the reference map for comparison. Figure 5(a) shows 

the same area but illustrates the MII results. In both figures, the polygons within the black-dashed-line regions are further 

discussed in Section 5. A visual inspection of these maps shows that MI covers a larger portion of the landslide body areas 

compared with MII, but MII performs better in detecting scarp zones. However, on-screen analysis shows that MII is more 

precise than MI for each landslide component, as indicated by the brown and yellow polygons (GEOBIA-based results) and 255 
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the blue-(scarps) and pink (bodies) polygons (reference map). This is particularly evident when considering the accuracy of 

landslide size and FPr. These results are assessed more thoroughly in Figure 6 and Section 4.3. 

Figure 4. Final map of semi-automatic landslide detection using MI, displayed over hillshade DTM (TLUBN, 2019) throughout study area. 

Detected landslides are shown as coloured polygons (brown: scarps; yellow: bodies), while the inventory map is also displayed for 260 

comparison. The insets outlined by black dotted lines are magnified and analysed in Figure 8.  

The morphological characteristics of the landslides (scarps and bodies) in the Jena region highlight notable 

distinctions between these components, as summarized in Tables 2 and 3. The results show that scarps have slope mean values 

of 48° and 40.5° in MI and MII, respectively, whereas bodies maintain a consistent slope mean value of approximately 20° 

across both models. This suggests that scarp areas are more sensitive to the optimized approach applied in MII, while body 265 
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areas remain relatively unchanged. Scarps exhibit positive values for plan curvature (C_plan), while bodies show lower values. 

Similarly, for profile curvature (C_profile), scarps display positive values, whereas bodies exhibit negative values, further 

emphasizing their distinct morphological characteristics. The TRI mean values further differentiate scarps and bodies, with 

scarps showing significantly higher values (3.73 and 5.09 for MI and MII, respectively) compared to bodies (0.95 and 1.93 for 

MI and MII, respectively). Additionally, TPI values for scarp areas are higher in MII than in MI, while for body areas, the TPI 270 

values are notably lower in MII compared to MI. 

Figure 5. Final map of semi-automatic landslide detection using MII, displayed over hillshade DTM (TLUBN, 2019) throughout study area. 

Detected landslides are shown as coloured polygons (brown: scarps; yellow: bodies), while the inventory map is also displayed for 

comparison. The insets outlined by black dotted lines are magnified and analysed in Figure 8. 275 
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Table 2. The morphological characteristics of landslides (scarps and bodies) in Jena region as detected by GEOBIA, Model I. 

 

Table 3. The morphological characteristics of landslides (scarps and bodies) in Jena region as detected by GEOBIA, Model II 

 

4.3 Accuracy assessment results 280 

4.3.1 Thematic accuracy assessment 

The thematic accuracy assessment is conducted using two complementary approaches: object-based (number-based) and 

area-based accuracy metrics. First, the number-based AA results (Table 4) show a significant improvement in the scarp 

zones for MII, with a higher TPr and significant reductions in both FPs and FNs. In the landslide body areas, the FPs were 

also significantly reduced, indicating an overall improvement in classification accuracy under the optimised window size. 285 
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Next, the area-based AA results are summarised in Table 5, with MII showing significant improvements over MI. As for 

scarp detection, MII increases the TP area from 6.3 ha to 9.1 ha and reduces the FNs accordingly, demonstrating better 

detection performance than MI. Although the FPs remain relatively high, they moderately decrease under MII. As for 

landslide body detection, MII significantly reduces the FPs from over 760 ha in MI to approximately 155 ha, indicating a 

significant improvement in mapping accuracy. However, a trade-off is observed, with the FNs increasing slightly. These 290 

trends are also noticeable in Figures 6 and 7, which shows a significantly lower FP in MII (red polygons in Figure 7) than in 

MI (Figure 6). 

Table 4. Number-based comparison of True Positives (TPs), False Positives (FPs) and False Negatives (FNs) in landslides detection per 

model. 

 295 

Table 5. Comparison of True Positives (TPs), False Positives (FPs) and False Negatives (FNs) in landslides detection per model (area in 

hectares).  
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300 

Figure 6. Area-based accuracy assessment of landslide body mapping using GEOBIA in Model I (True Positives (TP), False Positives (FP), 

and False Negatives (FN)), displayed over hillshade DTM (TLUBN, 2019). 

4.3.2 Segmentation metrics 

The US values for both models are below 0.50 in landslide scarp detection. Specifically, the US value drops from 0.84 in MI 

to 0.60 in MII, demonstrating that the use of the optimal window size in MII significantly improves the results (Table 6). 305 

Likewise, the OS value for scarps decreases from 0.53 in MI to 0.33 in MII. Additionally, the precision value improves in 

MII, confirming the effectiveness of the optimised approach.  
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Figure 7.  Area-based accuracy assessment of landslide body mapping using GEOBIA in Model II (True Positives (TP), False Positives 

(FP), and False Negatives (FN)), displayed over hillshade DTM (TLUBN, 2019). 310 

5 Discussion 

This study highlights the efficacy of integrating GEOBIA with high-resolution DTM data for the inventory mapping of forest-

covered old landslides in middle-mountain regions. The implementation of the optimal window size (MII) substantially 

enhances landslide detection accuracy while significantly reducing both the number and total area of FPs relative to the use of 

the default window size (MI). These results align with those of Sîrbu et al. (2019), who demonstrated window size variability 315 

across different LSVs for landslide scarps. Our study broadens this understanding by analysing both scarp and landslide body 

areas, revealing that window sizes differ not only across LSVs but also between landslide scarp and body areas within the 
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same LSVs (Figure 3, Table 1). Consequently, landslide scarps and bodies should be detected separately within the model for 

an accurate analysis of each landslide component. 

In our study area, large forest-covered landslides (>0.5 ha) are more successfully detected than smaller landslides, as 320 

they mostly show a strong geomorphological signature (Figure 8(b)). This is similar to previous findings (Knevels et al., 2019; 

Dias et al., 2023). However, MII has a lower proportion of misclassified areas within the same inset (Section 4.3.1, Figure 7), 

highlighting its ability to delineate landslide features accurately throughout the study area. Additionally, some automatically 

delineated landslide polygons extend beyond the boundaries of the inventoried actual landslide areas (Figures 4 and 5). These 

deviations can be attributed to limitations in the segmentation and classification algorithms, which may produce irregular or 325 

overly coarse objects, or potential misclassifications or errors in object merging due to the use of a low threshold for object 

characteristics during refinement and the final layout.  

We should acknowledge that in one instance (see Figure 8(b)), a large mapped landslide may in fact consist of multiple 

individual events. Due to uncertainty regarding the precise boundaries between these possible landslides, we decided to map 

the area as a single, large landslide in the inventory map. However, this issue is partially addressed through the area-based 330 

accuracy assessment presented in Section 4.3.1, which minimizes the impact of such limitations on model validation. Future 

studies could improve the accuracy further by labelling such ambiguous cases as "uncertain" or separating them from clearly 

defined landslides in the inventory. This would help to better assess model performance and transferability. 

Other misclassifications occur in areas where the geomorphological signature or roughness resembles the 

characteristics of landslide body or scarp candidates defined by the developed rule set. Both models incorrectly detect a scarp 335 

in the same inset/window in Figure 8(d) but in different locations. The parameters in these areas are similar to those of actual 

landslide scarps, so distinguishing them solely based on DTM data is difficult. The misclassified area is actually rock outcrops, 

which are common in this region due to its local-scale variations in lithology, where different layers and materials respond 

differently to weathering and erosion (see the geological map of the region in Zangana et al., 2023). Most landslide scarp FPs 

in our study can be attributed to this issue. In addition, both models misclassify landslide scarps as landslide bodies for two 340 

landslides from the inventory map in the same location in Figure 8(d). Thus, the scarp and landslide body areas in these cases 

landslides from the inventory map in the same location in Figure 8(d). Thus, the scarp and landslide body areas in these cases 

are highly similar, possibly due to landslide type/age and human activity, so the rule set cannot easily differentiate them from 

the rest of the study area. However, the landslides are successfully mapped, highlighting the need for detecting different 

landslides separately. This shortcoming of our approach is similar to those reported in previous studies on forest-covered 345 

landslides (Li et al., 2015; Pawłuszek et al., 2019), demonstrating the challenges of performing inventory mapping without 

FPs using DTM data alone (Eeckhaut et al., 2012; Bell et al., 2012; Goetz et al., 2014; Knevels et al., 2019).  

Furthermore, both models identify the same location in Figure 8(e) as a landslide candidate (as a landslide scarp or a 

landslide body). The right-hand part of Figure 8(e) in MII shows a landslide that is excluded from the initial inventory due to 

its dissimilarity with the other landslides and its small size. In MII, the body area of this landslide is incorrectly mapped over 350 

cropland, grassland and built-up areas. On the left-hand side of the same window (Figure 8(e), MI), the landslide body is wider 
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Table 6. Metrics used per landslide component per model. 

 

than the inventory map area that may correspond to the inventory map but is excluded from the initial inventory due to the 

insufficiency of the available information for it to be classified as a large landslide. In the MI image in Figure 8(d), the FP area 355 

extends over a wide region, particularly into forested areas and erosional rims, demonstrating that this model has lower 

landslide detection precision than MII. Therefore, landslide size should be addressed in future studies. Detecting landslides of 

different types and sizes at various levels can enhance detection rates and further reduce the FPr.  

An analysis of the AA results reveals that MII outperforms MI in detecting landslide components (bodies and scarps) 

in terms of correctly identified areas and FP reduction. For instance, MII reduces the FPr by approximately 30% and 20% for 360 

landslide scarps and landslide bodies, respectively (Table 4).  MII slightly underestimates the landslide body areas; the TPr for 

landslide body detection decreases, offset by an increase in the TPr for scarp areas. Although MI yields a higher TPr for 

landslide body areas, its FPr is approximately 30% higher than that of MII, highlighting the importance of considering the FPr 

alongside the TPr and FNr for a comprehensive evaluation of model performance. MII has considerable potential, effectively 

reducing the FPr while maintaining a strong TPr. However, further research is needed to enhance the applicability of this 365 

approach across various environments and datasets. 

Our TPr is comparable to that of Eeckhaut et al. (2012), who investigated the semi-automatic detection of landslides 

using lidar data and identified 71% of landslides using object-based detection. In comparison, MII achieves TPr values of 

65.8% and 72.5% for landslide scarps and landslide bodies, respectively. However, our approach demonstrates significantly 

better accuracy through minimising of FPs. Eeckhaut et al. (2012) identified 18 FP landslides in an area affected by 38 deep-370 

seated landslides (47%), and Martha et al. (2010) reported 73 FP landslides for 55 expert-identified landslides (132%). As 

shown in Tables 2 and 3, our study identifies only 5 FP landslide scarps (20% relative to the TPs) and 7 FP landslide bodies 

(24% relative to the TPs). Therefore, MII detects landslides more efficiently than MI and the abovementioned approaches. 

However, some studies (Martha et al., 2010; Eeckhaut et al., 2012; Knevels et al., 2019) do not provide the number or total  
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 375 

Figure 8.  Detailed results of Model I (MI) and Model II (MII) for selected areas. The left column shows the landslide inventory overlaid 

on the hillshade DTM (TLUBN, 2019). The middle and right columns display MI and MII results, respectively, corresponding to the inset 

areas b–e shown in Figures. 4 and 5. These zoomed-in views highlight differences in model performance within representative subregions. 
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area of FPs or only present them numerically, hindering a comprehensive comparison of methods. Conversely, our evaluation 

is more detailed, enabling a systematic assessment of model precision in identifying a specific number of TPs while minimising 380 

FPs. 

Misclassification also occurs in areas with degraded geomorphological signatures (Figure 8(d, e)). Landslide scarps 

are often misidentified in regions with features resembling those of scarp candidates. These errors may be attributed to human-

made structures, such as roads, pits, ridges and rock toes. Similar false detections are observed in areas with partially eroded 

or weathered limestone formations, particularly in areas where they overlay sandstone. This misclassification pattern aligns 385 

with commonly reported results (Eeckhaut et al., 2012; Hölbling et al., 2017; Knevels et al., 2019; Dias et al., 2023). 

Selecting the appropriate window sizes for the LSVs is challenging (Figure 3, Table 1). The results show considerable 

variability across the 10 runs, with the optimal window sizes often being larger for scarp zones than for body areas. For 

example, the TPI and TRI significantly deviate between the optimal and default window sizes, highlighting the need to fine-

tune window sizes based on the specific geomorphometric characteristics of each landslide feature. By contrast, the default 390 

window sizes used in MI often result in under- or over-segmentation, especially in scarp zones, compromising detection 

accuracy. These results highlight the complexity of adjusting window sizes for accurate scarp and body detection and 

emphasise the advantages of the tailored approach of MII in overcoming these limitations. 

Compared with MI, MII is more effective in detecting individual landslides as distinct polygons and separating them 

from neighbouring landslides. Additionally, MII significantly reduces the FP number and area, as shown in the model 395 

comparison in Figure 7. This highlights the robustness of the optimal window size approach of MII, which is more effective 

for landslide detection than default or manually selected window sizes, which have been commonly used in many studies for 

decades. Overall, this approach is a valuable advancement in improving semi-automatic landslide inventory mapping, 

particularly in forested areas, where the limited availability of optical data often hampers complete inventory mapping 

(Eeckhaut et al., 2012; Li et al., 2015; Knevels et al., 2019). Although Stage III was first developed in the Jena region, the 400 

framework and rulesets can be applied to other areas where landslides are well expressed in hillshade and distinct from their 

surroundings. This condition is often met for forest-covered landslides of varying ages, and may also apply to younger 

landslides, with no or limited human impact. While some refinement parameters may need local adjustment, the method is not 

restricted to a specific landslide type or setting, and its broader applicability should be further evaluated in future studies 

6 Conclusion  405 

A GEOBIA-based approach is developed and used for the semi-automatic mapping of landslide inventories in the forested 

areas of the middle-mountain regions of Jena, Germany. The proposed method effectively maps forest-covered landslides, 

with a particular focus on medium and large landslides (greater than 0.5 ha), but does not detect smaller landslides. MII, which 

uses the optimal window size, maps landslide scarps with higher accuracy than MI, which relies on default window sizes. MII 

shows a significant (15%) improvement in scarp detection during number-based AA while reducing the FPr by 30%. However, 410 



21 

 

this FPr reduction entails a trade-off, as the FNr increases by approximately 15%. Nonetheless, MII remains highly effective 

for semi-automatic landslide mapping in forest-covered areas.  

High-resolution DTM derivatives serve as the base data for landslide mapping using GEOBIA, which incorporates 

an optimal window size to detect forest-covered old landslides in middle-mountain regions. Our analysis shows that this 

approach may significantly improve the accuracy of landslide mapping in areas with sparse or no vegetation and in regions 415 

where landslides are newly formed or have recently altered the terrain. This is due to the superior ability of DTM data to show 

recent landslide features compared with historical ones. 

This study emphasises the importance of calculating window sizes separately for different landslide components, as 

landslide scarps and bodies require distinct window sizes for accurate detection. This factor should be considered thoroughly 

before any calculation or modelling process involving landforms of interest. As landform detection depends on the defined 420 

window size, our automated objective approach is highly suited for future research and semi-automatic landform modelling. 

However, further evaluation is required to ascertain the transferability of this method to other regions; nonetheless, this method 

should be globally applicable to the detection of landslides with well-defined geomorphological features using high-resolution 

DTM data. As the pioneering use of GEOBIA for landslide inventory mapping in the Jena area, this study serves as a foundation 

for future research on landslides in this region. Furthermore, it can be used as a base map for hazard and risk assessments, 425 

especially as climate change may reactivate old landslides, as has occurred in many areas across Germany and around the 

world. 
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Appendices 

A) Ruleset Model I 450 

Table A1: Landslide Scarps Refinement Steps 

Refinement Step Actions Conditions / Criteria Additional Notes 

Refinement 1 Remove 

objects 

IF SLOPE < 33 AND TRI < 2 Then → Merge objects 

  
Remove IF TRI < 1.7 

 

 
Expand 

objects 

IF non-Scarp (Rel. Border to Scarp Candidate > 0.1 AND TRI > 

2.5 AND SLOPE > 45) 

Then → Merge objects 

  
Remove IF AREA < 1500 pixels AND Length/Width > 5 

 

Refinement 2 
   

 
Remove 

objects 

IF TPI < -0.01 AND (SLOPE < 33 AND TRI < 2) Then → Merge objects 

  
Remove IF (TRI < 1 AND TPI < 1) 

 

  
Remove IF Length/Width > 3 AND TRI < 1.8 

 

  
Remove IF Rectangular fit < 0.1 AND Roundness > 2 

 

 
Remove 

objects 

IF (AREA > 20,000 pixels AND TPI < 0.1) OR AREA < 100 pixels AND IF TPI < 0.02 OR Length/Width > 10 

OR C_plan < 0 

Refinement 3 
   

 
Remove 

objects 

IF SLOPE < 34 OR C_plan < -3 
 

  
Remove IF TOP > 0.03 OR TOP < -0.004 

 

  
Remove IF TPI < 0.1 Then → Merge objects 

 

Table A2: Landslide Bodies Refinement Steps 

Refinement Step Actions Conditions / Criteria Additional Notes 

Refinement 1 
   

 
Expand 

objects 

IF unclassIFied (SLOPE > 12 AND Rel. Border to Body Candidate > 

0.5) 

 

  
IF non-Body (Rel. Border to Body Candidate > 0.5 AND Rel. Border 

to non-Body ≤ 0.2) 

Then → Merge objects 

  
IF non-Body (Rel. Border to Body Candidate > 0.6) 
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IF non-Body (SLOPE > 10, C_plan < 0.1 AND Rel. Border to Body 

Candidate ≥ 0.1) 

 

  
Remove IF AREA < 5000 pixels 

 

 
Expand 

objects 

IF non-Body (Rel. Border to Body Candidate ≥ 0.1 AND C_plan < 

0.2 AND SLOPE > 12) 

 

  
IF non-Body (Rel. Border to Body Candidate ≥ 0.4, C_plan < 0.3 

AND SLOPE > 15) 

 

  
IF non-Body (Rel. Border to Body Candidate ≥ 0.7 AND C_plan < 

0.3 AND SLOPE > 10) 

 

 
Remove 

objects 

IF Length/Width ≥ 6.1 OR (Length/Width ≥ 5 AND SLOPE < 15) Then → Merge objects 

  
Remove IF AREA < 15,000 pixels 

 

Refinement 2 
   

 
Remove 

objects 

IF SLOPE < 14 AND TRI < 0.6 
 

 
Expand 

objects 

IF unclassIFied (Rel. Border to Body Candidate ≥ 0.5 AND SLOPE ≥ 

12) 

 

  
IF non-Body (SLOPE > 10, C_plan < 0.1 AND Rel. Border to Body 

Candidate ≥ 0.1) 

 

  
Remove IF non-Body (Rel. Border to Body Candidate > 0.5 AND 

Rel. Border to non-Body ≤ 0.2) 

Then → Merge objects 

  
Remove IF (TRI < 0.7 AND TPI < -0.05) OR AREA < 15,000 pixels 

 

 
Expand 

objects 

IF unclassIFied (Rel. Border to Body Candidate = 1) Then → Merge objects 

  
→ Expand IF (TRI > 0.6 AND C_plan > 0.3) 

 

  
Remove IF AREA < 46,000 pixels 

 

 
Expand 

objects 

IF unclassIFied (Rel. Border to Body Candidate > 0.5, C_plan > 0.1 

AND TRI > 0.45) 

OR IF Rel. Border to Body Candidate > 0.5 

→ Merge objects 
 

Remove 

objects 

IF (AREA < 150,000 pixels AND C_plan < 0) OR SLOPE < 5 
 

Refinement 3 
   

 
Remove 

objects 

IF SLOPE < 14 
 

  
IF TPI < -0.1 

 

  
IF C_plan < -0.04 OR C_plan > 0.2 Then → Merge objects 

 

 455 

B) Ruleset Model II 
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Table B1: Model II Landslide Scarps Refinement Steps 

Step Action Conditions / Criteria Notes 

Initial Pre-processing Segmentation MRS 20 (Shape: 0.1, Compactness: 0.5) 
 

 
Initial 

classIFication 

Remove plateau AND floodplain AREAs by identIFying "Initial Scarp AREA" 

to retain Landslide polygons AND buffers 

 

Potential Scarp 

IdentIFication 

Remove segments IF mean SLOPE ≥ 0.3, TPI ≥ 0.65, TRI ≥ 0.8 Define as 

Potential Scarp 
 

Expand AREA IF mean SLOPE > 0.7 AND Rel. Border to Potential Scarp ≥ 0.45 
 

  
Or mean SLOPE ≥ 25, TPI ≥ 1.5, mean TRI ≥ 2.5 

 

 
ClassIFication SVM (Scarp vs Non-Scarp) 

 

Refinement 1 Expand Scarps IF Rel. Border to Scarp > 0.85 AND mean SLOPE ≥ 0.4 
 

  
Or Rel. Border to Scarp > 0.3, mean TPI ≥ 12, mean SLOPE > 0.6 

 

 
Remove Scarps IF −29 < mean C_profile > 6.3 AND −5.2 < mean C_plan > 37 

 

  
IF −0.04 < TOP > 0.14 

 

  
IF mean SLOPE > 0.45 AND mean TPI < 0.14 or mean TRI < 1.14 

 

 
Further Expand 

Scarps 

IF mean SLOPE > 0.65, mean TRI > 2.2, mean TPI > 7, AND Rel. Border to 

Scarps > 0.2 

 

  
For unclassIFied/non-Scarp: mean SLOPE > 0.4 AND Rel. Border to Scarps > 

0.9 

 

 
Remove Scarps IF Rel. Border to Scarps < 0.4 AND AREA > 2000 pixels 

 

 
Merge segments Merge all segments 

 

Refinement 2 Remove Scarps IF AREA < 1000 pixels AND mean SLOPE < 0.74 
 

 
Expand Scarps IF mean SLOPE > 0.45, Rel. Border to Scarps > 0.25, Rel. Border to non-

Scarps < 0.01 

 

  
Or mean SLOPE > 0.7, Rel. Border to Scarps > 0.3, mean TRI < 2.15 

 

  
Or mean SLOPE > 0.65, Rel. Border to Scarps > 0.1, mean TRI < 2.1, Rel. 

Border to non-Scarps < 0.5, AREA < 6800 pixels 

 

 
Merge non-Scarps IF mean SLOPE > 0.48, TRI > 1, mean TPI > 7 

 

 
Further Expand 

Scarps 

IF mean SLOPE > 0.5, Rel. Border to Scarps > 0.3, Rel. Border to non-Scarps > 

0.43, TRI < 1.7 

 

 
Remove Scarps IF Rel. Border to non-Scarps > 0.85, AREA < 3000, mean SLOPE < 0.7 

 

  
AND IF mean TPI < 2.45, mean SLOPE < 0.65, AREA < 1600 

 

  
Or mean SLOPE < 0.75, AREA < 8000, mean TPI > 10 

 

  
Or mean SLOPE < 0.7, AREA < 10,000, mean TOP < 0.028 

 

Landslide Bodies 
   

 

 

Table B2: Model II Landslide Bodies Refinement Steps 460 

Step Action Conditions / Criteria Notes 
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Initial Pre-

processing 

Segmentation MRS 30 (Shape: 0.1, Compactness: 0.5) 
 

 
Potential Body Segments Remove IF mean SLOPE ≥ 0.2, TPI < 7, TRI ≥ 0.5 

 

 
ClassIFication SVM (Bodies vs Non-Bodies) 

 

Refinement 1 Expand Bodies IF Rel. Border to Body ≥ 0.8 AND mean SLOPE > 0.25, or Rel. Border ≥ 0.9 
 

 
Merge Body segments Merge all Body segments 

 

 
Expand further IF Rel. Border to Body ≥ 0.7, Rel. Border to non-Body < 0.3, mean SLOPE ≥ 

0.25 

 

  
Or Rel. Border to Body ≥ 0.8, Rel. Border to non-Body < 0.3, mean TRI ≥ 0.35 

 

  
Or Rel. Border to Body ≥ 0.4, Rel. Border to unclassIFied < 0.01 

 

  
Or Rel. Border to Body ≥ 0.55, Rel. Border to non-body < 0.2, mean TRI > 0.6 

 

  
Or Rel. Border to Body ≥ 0.6 AND mean TRI > 0.4 

 

  
Or Rel. Border to Body ≥ 0.15, mean TRI > 1, mean SLOPE > 0.4 

 

Refinement 2 Merge Body segments Merge all Body segments 
 

 
Expand Bodies IF Rel. Border to Body ≥ 0.3, mean SLOPE > 0.2, mean TRI > 0.6 

 

 
Remove Bodies IF −.0022 < mean TOP ≥ 0.003 

 

  
Or AREA < 10,000 pixels AND mean SLOPE > 0.25 

 

  
Or AREA < 25,000 pixels AND mean SLOPE < 0.25 

 

  
Or AREA > 400,000 pixels 

 

  
Or mean C_plan < 0.0 AND/or mean C_profile < 0.0 AND AREA > 50,000 or 

mean TPI > 1.3 

 

 
Expand from unclassIFied/non-

Body 

IF Rel. Border to Body > 0.99 
 

 
Remove Body segments IF Rel. Border to non-Body > 0.99, or Rel. Border > 0.9 AND mean SLOPE < 

0.29 

 

Refinement 3 Remove Bodies IF mean SLOPE < 0.4 AND AREA < 15,000 pixels 
 

  
Or mean SLOPE < 0.3, AREA < 50,000, mean TPI > 0.8 

 

  
Or mean SLOPE < 0.42 AND mean TPI < -1.9 

 

  
Or AREA < 40,000 AND mean TPI > 1.4 

 

  
Or mean C_profile < 0.0 AND mean TPI > 1, or mean SLOPE < 0.25 

 

  
Or 15,000 < AREA < 65,000 AND Length/Width > 1.99 

 

  
Or mean C_profile > -0.05 

 

  
Or 15,000 < AREA < 100,000 AND 3.2 > Length/Width > 1.99 

 

  
Or 25,000 < AREA < 100,000, or C_plan < -0.02, or C_plan > 0.19 AND mean 

TPI < 1 

 

  
Or St. Deviation of C_profile < 1.6 

 

 
Expand Body AREA From unclassIFied segments IF Rel. Border to Body > 0.6, mean SLOPE > 0.4, 

mean TRI > 1 

 

  
Or Rel. Border to Body > 0.42 AND Rel. Border to unclassIFied = 0 

 

  
Or from non-body AREAs IF Rel. Border to Body > 0.7 

 

 
Remove Bodies IF AREA > 183,000 pixels AND mean TRI > 0.81 
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