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17  Abstract

18 The intersection of the Xiaojiang Fault and the Red River Fault at the southeastern margin of the
19  Tibetan Plateau experiences intense tectonic activity. At this intersection, frequent destructive
20  earthquakes have induced hydrochemical variations in thermal springs. In this study, Bayesian change
21  point analysis is applied, and a multicomponent synergy anomaly detection model is developed using
22 five years of monitoring data (2019-2024) from two thermal springs in the region to achieve real-time
23 forecasting of occurrence timing for M > 4 earthquakes. Comprehensive analysis demonstrates that the
24 anomaly detection model possesses reliable real-time anomaly detection capabilities. Tailored model
25  parameters for specific hydrochemical components account for their differences in response
26  characteristics to seismic activity. The model identifies Na*, Ca>", CI", SO4>", 8D, and §'%0 as sensitive
27  indicators for strong earthquake forecasting. The multicomponent synergy alarm mechanism for
28  hydrochemistry overcomes the limitations of single-parameter methods, which significantly enhances
29  the model’s overall performance in earthquake forecasting. The number of hydrochemical components
30  with synchronous anomalies serves as a reliable criterion for determining alarm intensity, with higher
31 intensity typically correlating with larger earthquake magnitudes or shorter epicentral distances.

32

33  Keywords:

34  Thermal springs, Hydrogeochemistry, Multicomponent synergy, Anomaly detection model,

35  Earthquake forecasting

36
37



https://doi.org/10.5194/egusphere-2025-2132
Preprint. Discussion started: 17 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

38 1. Introduction

39 Earthquake forecasting, a frontier in geosciences, relies on detecting sensitive and reliable
40  precursor anomalies (Chen, 2009; Pritchard et al., 2020). Subsurface fluids, owing to their ease of
41  migration and incompressibility, respond rapidly to dynamic crustal stress changes during earthquake
42 preparation. These responses often result in significant changes in the physicochemical properties of
43 the fluids (Lee et al., 2017; Gori & Barberio, 2022; Tian et al., 2023). Moreover, subsurface fluids can
44  transmit deep geological signals to the surface, for example, through thermal springs, which makes
45  them valuable targets for monitoring precursor anomalies. Currently, earthquake-related anomalies in
46  subsurface fluids are widely monitored across various spatial and temporal scales. These include
47  hydrological anomalies such as water temperature, water level, and flow rate (Shi et al., 2015; Lee et
48  al., 2017; Petitta et al., 2018; Di Matteo et al., 2020; Du et al., 2023), hydrogeochemical anomalies
49 like major elements, trace elements, and stable isotopes (Ide et al., 2020; Nakagawa et al., 2020;
50  Barbieri et al., 2021; Wang et al., 2021; Zhang et al., 2021; Yan et al., 2022), and gas geochemical
51  anomalies such as radon, helium, and carbon dioxide (Chaudhuri et al., 2011; Fu et al., 2017; Woith et
52 al., 2020; Zhao et al., 2021; Zhou et al., 2021). While some fluid precursor anomalies have shown
53  predictive value, many are still identified only through retrospective analysis after earthquakes.
54 Moreover, continuous fluid monitoring data often reflect integrated signals from multiple sources,
55  including seismic activity, environmental variability, and human-induced influences (Martinelli, 2020).
56  The isolation of true seismic precursor anomalies from such complex datasets remains a significant
57  challenge in current earthquake forecasting research.

58 In analysing large-scale fluid monitoring data, traditional anomaly detection methods typically
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59  rely on manually defined fixed thresholds to identify fluctuations. Techniques such as trend analysis
60  and standard deviation methods offer clear advantages in capturing prominent anomalies (Ingebritsen
61 & Manga, 2014; Yan et al., 2018). However, in practice, fluid monitoring data often integrate
62  superimposed signals from both tectonic and non-tectonic sources and exhibit complex nonlinear
63  dynamic behaviors. These characteristics present notable limitations for traditional statistical
64  approaches in effectively identifying fluid precursor anomalies (Yan et al., 2021). Machine learning-
65  based anomaly detection algorithms offer new perspectives for earthquake forecasting by uncovering
66  hidden precursor signals within large volumes of monitoring data (Li et al., 2022, 2023). In recent
67  years, algorithms such as artificial neural networks, long short-term memory networks, and random
68  forests have been widely applied to anomaly detection in individual indicators, such as water levels
69 and radon concentrations, significantly enhancing detection accuracy and sensitivity (Tareen et al.,
70 2019; Haider et al., 2021; Feng et al.,, 2022; Zhang et al., 2025). However, single-indicator
71  measurements are easily influenced by meteorological, tidal, and other environmental factors. While
72 regression models and similar techniques have been used to correct these interferences, challenges
73 remain in effectively distinguishing non-seismic anomalies (Woith, 2015; Soldati et al., 2020).
74  Moreover, single-indicator analysis does not leverage the synergistic relationships among multiple
75  indicators, which thus limits its ability to enhance the reliability of anomaly identification.

76 Thermal springs are natural discharge outlets of deep-circulating groundwater and they offer
77  distinct advantages for hydrogeochemical monitoring. The hydrochemical components (e.g., Na*, CI”,
78  SO4%) of thermal springs tend to exhibit high stability, rapid upward migration, and limited

79  susceptibility to environmental interference. These characteristics help minimise non-seismic noise
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80  and allow for a more accurate reflection of hydrogeological changes during earthquake preparation
81  (Martinelli, 2020; Tian et al., 2024). Numerous studies have reported diverse geochemical behaviors
82  among hydrochemical components, which shows marked differences in their response magnitude,
83  quantity, patterns, and timing to tectonic stress variations throughout the earthquake preparation
84  process (Li et al., 2021; Yan et al., 2022; Tian et al., 2023). Therefore, applying anomaly detection
85  algorithms to evaluate the abnormal response characteristics of individual hydrochemical components
86  and integrating multiple components to enhance anomaly identification accuracy may represent a
87  promising technical approach for precursor recognition. Current research on hydrochemical anomaly
88  detection algorithms remains in an exploratory stage (Castellana & Biagi, 2008). Existing studies have
89  demonstrated the effectiveness of common machine learning algorithms in identifying abnormal
90  periods in hydrochemical data while also emphasising the need for scenario-specific optimisation of
91  key indicators (Zhu et al., 2024). However, there is an urgent need to investigate the synergistic
92  anomaly response patterns among hydrochemical components and to identify sensitive indicators for
93  reliable forecasting of strong earthquakes.

94 This study focuses on the tectonically active region at the intersection of the Xiaojiang Fault (XJF)
95 and the Red River Fault (RRF) on the southeastern margin of the Tibetan Plateau. The real-time
96  anomaly was innovatively modified using the detection algorithm developed by Piersanti et al. (2016),
97 and its application was extended to the analysis of multiple hydrochemical components in thermal
98  springs across the study area. By integrating continuous monitoring data of hydrochemical ions and
99  hydrogen—oxygen isotopes with earthquake catalogs and applying Bayesian change point (BCP)

100  analysis, this study optimised parameters for specific components and built a multi-component joint
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101  anomaly detection model. This model supports anomaly detection in both long-term time series and
102 real-time earthquake forecasting across different time scales. The main objectives of this study are as
103 follows: (1) to evaluate the applicability and performance of the algorithm in analysing hydrochemical
104 time series; (2) to identify effective hydrochemical indicators for forecasting strong earthquakes in the
105  study area; and (3) to assess the feasibility of the multi-component joint anomaly detection model and
106  explore the relationship between hydrochemical variations and seismic activity by analysing the
107  number of components with synchronous anomalies.

108

109 2. Geological setting

110 The southeastern Tibetan Plateau has undergone sustained rotation and southeastward extrusion,
111 driven by the collision-induced uplift and deformation between the Indian and Eurasian plates. The
112 rotation and extrusion effects have resulted in the formation of an active tectonic region characterised
113 by large-scale strike-slip fault systems and the presence of intracontinental microplates (Tapponnier et
114 al, 1982; Yin & Harrison, 2000; Xu et al., 2011) (Figure 1). Among these structures, the XJF and RRF
115  serve as key strike-slip boundaries and play critical roles in the tectonic evolution and material
116  extrusion of the southeastern Tibetan Plateau (Zhang et al., 2003; Tong et al., 2015). The intersection
117  area of the XJF and RRF serves as the frontal zone accommodating the extrusion of the Sichuan—
118  Yunnan Block (SYB). The XJF is blocked by the Indochina Block (ICB) and has not yet propagated
119  southward through the RRF, which makes the intersection area the primary zone of stress accumulation,
120  where ongoing dextral compressional motion of the SYB occurs (Wen et al., 2022; Li et al., 2024;

121 Shao et al., 2024). The deeply incised XJF and RRF, along with secondary faults such as the Qujiang
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122 Fault (QJF) and Shiping—Jianshui Fault (SJF) in this region, act as conduits for deep-circulating
123 thermal waters and the exchange of seismic information, with thermal springs commonly found along
124 these faults. This area experiences prolonged stress accumulation and intense tectonic deformation,
125  accompanied by historical moderate-to-strong seismic activity (Wen et al., 2008), which makes it a
126 critical zone for earthquake hazard monitoring. Consequently, this region is an ideal setting for
127  investigating how variations in hydrochemical compositions respond to seismic activity.
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129  Figure 1. (a) Simplified tectonic map of the southeastern margin of the Tibetan Plateau, showing the distribution of
130 M >4 earthquakes during the thermal spring monitoring period. (b) Locations of continuously monitored thermal
131 spring sites, fault distribution, and the geological map at the intersection of the Xiaojiang Fault (XJF) and Red River
132 Fault (RRF). Earthquake catalogues are obtained from the China National Earthquake Data Center
133 (https://data.earthquake.cn/). The tectonic divisions and active faults are sourced from Deng et al., 2002, and the
134 geological map is adapted from Ma et al., 2002. SYB: Sichuan—Yunnan Block; ICB: Indochina Block; SCB: South
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135  China Block; QJF: Qujiang Fault; SJF: Shiping—Jianshui Fault.

136 This study involves continuous hydrochemical monitoring at two high-temperature springs,
137  Qujiang (QJ) and Wana (WN), located at key tectonic sites within the research area (Figure 1b). QJ is
138  situated at the intersection of the XJF and the QJF, with sandstone as the predominant country rock.
139 QJis positioned at a critical location where the sinistral slip rate of the XJF decreases sharply from 8-
140 11 mm/a to approximately 4 mm/a after crossing the QJF (Wen et al., 2011; Wang et al., 2014). WN,
141  located along the RREF, is hosted by gneiss and mylonite and lies within a stress concentration zone,
142 where the SYB undergoes southwestward deflection, compressing the RRF (Schoenbohm et al., 2006;
143 Lietal, 2019; Wen et al., 2022). The two hot springs are located along the boundary faults that control
144  the regional tectonic pattern, and their hydrochemical variations may provide sensitive indicators of
145  changes in the earthquake preparation state within the intersection area.

146

147 3. Data and methods

148  3.1. Thermal spring monitoring data

149 The monitoring period for the QJ spring spanned from June 1, 2019, to May 21, 2024
150  (approximately 5 years), while the WN spring was monitored from October 3, 2021, to May 21, 2024
151  (approximately 2.5 years). Synchronous monitoring of hydrogen and oxygen isotopes was conducted
152 at both springs between January 1, 2023, and February 21, 2024. All monitoring parameters for the
153  thermal springs and their hydrochemical components were measured every three days. Water
154  temperature, pH, and electrical conductivity (EC) were measured in sifu using a portable multi-

155  parameter water quality analyser (HQ40D, HACH, USA), with measurement accuracies of 0.1°C, 0.01,
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156  and 1 puS/cm, respectively. Rainfall data were collected through continuous in situ monitoring using an
157  RTP-II tri-element meteorological instrument with a resolution of 0.1 mm. Before the thermal water
158  samples were collected, high-density polyethylene (HDPE) bottles were thoroughly rinsed three times
159  with deionised water and twice with thermal water. Water samples were then filtered through 0.45 um
160  micropore membranes and stored in HDPE bottles. Samples intended for cation analysis were acidified
161  with high-purity nitric acid. During collection, care was taken to prevent the introduction of air bubbles,
162 and samples were immediately sealed hermetically for preservation.
163 The concentrations of major ions (Na*, K*, Ca**, Mg?', Li*, F~, CI', SO4*", Br', NO3") were
164  analysed using a Thermo Scientific Dionex Aquion IC system equipped with an AS40 autosampler,
165  which had a detection limit of 0.01 mg/L. HCOs;™ and COs>" concentrations were determined via
166  standard titration procedures using a ZDJ-3D potentiometric titrator with 0.05 mol/L HCI. §'%0 and
167  &%H values were determined using a Picarro L2140-i water isotope analyser, with precisions of 0.015 %o
168  and 0.05 %o, respectively. All analyses were conducted at the Key Laboratory of the Institute of
169  Earthquake Forecasting, China Earthquake Administration. The monitoring data are detailed in data
170  set S1. To ensure data accuracy, cation—anion balance error tests were performed for each sample, with
171  all ionic deviations kept within + 5%. The ion balance error is calculated as below:

Y cations — Y, anions

172 ib(%) =
(%) Y cations + Y, anions * 100 M

173
174 3.2. Earthquake data collection and processing
175 The anomaly detection model developed in this study focused on forecasting destructive

176  earthquakes with magnitudes (M) > 4. To identify earthquakes that might influence hydrochemical
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177  component variations, while excluding those unrelated to precursors, and to establish a precise
178  correlation between changes in hydrochemical components and seismic activity, an earthquake
179  screening method based on the preparation zone radius formula (Dobrovolsky et al., 1979) was
180  employed:

181 R = 10%43M @)
182 where M represents the earthquake magnitude, and R denotes the radius (in km) of the earthquake
183  preparation zone.

184 Earthquakes were selected as study events based on the criterion that the epicentral distance (A)
185  from the thermal spring monitoring sites did not exceed the earthquake preparation zone radius (R)
186  (Figure 1a). The QJ site was within the preparation zones of 22 M > 4 earthquakes during its monitoring
187  period (2019/06/01-2024/05/21), while the WN site was within the preparation zones of 12 M >4
188  earthquakes during its observation period (2021/10/03—-2024/05/21) (Table S1). All earthquakes had
189  focal depths ranging from & to 16 km, and they were classified as shallow-focus events. The earthquake
190  catalogue was obtained from the National Earthquake Data Center of China (http://data.earthquake.cn).
191 Seismic moment (Mo), which directly reflects fault geometry parameters and the rigidity of the
192  medium, accurately quantifies earthquake rupture processes and mechanical energy release. Compared
193  with magnitude scales, the seismic moment is more suitable for analysing the seismic impact on
194  hydrochemical component changes in thermal springs. The commonly used empirical formula for
195  estimating seismic moment based on magnitude (Hanks & Kanamori, 1979) is as follows:

196 lgM, = 1.5M + 16.1 3)

197  Stress attenuates with increasing epicentral distance during the earthquake preparation process and

10
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198  directly influences the development of thermal water seepage pathways and the intensity of water—
199  rock interactions (Wang & Manga, 2010; Ingebritsen & Manga, 2019). To account for distance-related
200  effects, the seismic moment requires correction using the following empirical formula (Piersanti et al.,
201 2016):

202 Mocor = Mo/ A% 4
203  where w is the weighting factor, in this study w takes the value of 1.

204

205  3.3. Hydrochemical component time series

206 The geochemical behaviors of different components in thermal spring water show significant
207  variation, with each component exhibiting distinct characteristics in terms of anomaly amplitude,
208  temporal evolution, and precursor response sensitivity. Controlled by unique hydrogeological
209  conditions, the hydrochemical variations of each thermal spring also display spatial differences in
210  response to tectonic activity. To effectively extract anomalous signals, the anomaly responses of
211  different components and springs in the study area are compared, and the algorithm’s generalisability
212 across springs is validated. This study establishes independent time series for each component at

213 different springs (Figure 2 and S1).
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215  Figure 2. Time series of hydrochemical components at Qujiang spring, along with rainfall and earthquake events.
216  3.3.1. Data evaluation and noise removal

217 The dynamic variations in thermal spring ion concentrations are crucial for identifying seismic
218  precursors. When observed data show minimal fluctuations or remain consistently below detection
219  limits over extended periods, it becomes challenging to effectively extract hydrogeochemical anomaly
220  signals before an earthquake. Long-term monitoring reveals that concentrations of Mg?*, Br~, and

221  NOj™ are extremely low and remain consistently below instrumental detection limits, without temporal

12
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222 fluctuations, which thus limits their value for tracking seismic precursors. Consequently, Na*, K", Ca’',
223 CI, SO4*,HCO;, F, 8D, and §'80 have been selected for earthquake anomaly identification owing
224 to their consistent continuity and reliable data characteristics.

225 The thermal spring water in the study area originates from atmospheric precipitation recharge. It
226  circulates deeply through faults, is heated by geothermal energy, and then discharges at the surface,
227  with its hydrochemical composition mainly determined by the lithology of the surrounding rocks (Shao
228  etal., 2024). Consequently, ambient temperature and atmospheric pressure at the spring outlet have a
229  negligible effect on the hydrochemistry. However, rainfall serves not only as the primary water source
230  but also accelerates groundwater circulation, promotes shallow infiltration, and mixes with thermal
231  waters (Taylor et al., 2012; Hosono et al., 2020; Colman et al., 2021). This process can potentially
232 obscure deep-seated earthquake preparatory signals carried by the thermal spring. Consequently, this
233 study focuses on assessing the potential perturbations induced by rainfall on thermal spring
234 hydrochemistry. Unlike temperature and pressure, rainfall causes pulsed disturbances, typically
235  manifesting as intermittent spikes followed by extended zero-value intervals in sampling data. To
236  suppress high-frequency noise from short-term environmental disturbances such as rainfall while
237  preserving mid- to low-frequency tectonic signals, a 15-day backward moving average is applied to

238  process the 3-day resolution hydrochemistry data:

t
239 MA(t) = % Z Dr(t) (5)
t—14

240  where MA is the 15-day moving average, and Dris the daily raw data.
241  3.3.2. Correlation analysis

242 The influence of rainfall on the hydrochemical dynamics of thermal springs may exhibit a lag

13
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243  effect, while hydrochemical precursor anomalies induced during earthquake preparation processes
244  typically precede earthquake events. These two mechanisms exhibit a significant temporal phase
245  difference in their perturbations to hydrochemical components. In this study, the cross-correlation
246  function is employed to quantitatively analyse the temporal offset between the impacts of rainfall and
247  seismic activity on thermal spring hydrochemistry. This study aims to identify the maximum
248  correlation time offset between rainfall-hydrochemistry and precursory anomaly-main shock events
249  via the calculation of correlation coefficients at varying lag times. The cross-correlation function is

250  defined as:

N-k
1
251 COy () =% ) (4 =) Gerk = ) ©)
t=1

252 where xand yare two time series, x and y represent their sample means, N is the series length, and
253 k denotes the lag. Considering the seasonal effects of rainfall and the response time reliability of
254 seismic precursors, the kis set within a range of —45 to 45 days.

255 In the cross-correlation analysis, the denoised hydrochemical component time series (processed
256  wusing a 15-day moving average) are correlated with both the rainfall time series and the distance-
257  corrected Mo time series. This analysis aims to evaluate the effectiveness of the moving-average
258  method in filtering out rainfall-induced interference by assessing the correlation intensity between the
259  denoised hydrochemical time series and rainfall. At the same time, the analysis verifies potential
260  temporal linkages between the denoised hydrochemical components and regional seismic moment

261  release.

14
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263  Figure 3. Cross-correlation function analysis of the 15-day moving average time series of hydrochemical components
264  during stable isotope monitoring, with rainfall and distance-corrected seismic moment.

265 The results of the cross-correlation analysis (Figure 3) show weak correlations (blue dotted lines)
266  between rainfall events and the 15-day moving average hydrochemical component time series, with
267  correlation coefficients approximately within = 0.2. This result indicates that the moving average
268  treatment effectively mitigates rainfall-induced noise. Notably, Na*, Ca?*, 8D, and §'®0 exhibit minor
269  response peaks at lags of 1830 days, suggesting that certain impacts on these components persist 15

270  to 30 days after rainfall. Similarly, the correlations between the distance-corrected Mo and the denoised

15
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271  hydrochemical component time series (red dotted lines) remain low (around + 0.2). However, K*, Ca*",
272 CI, SO4*, F~, 8D, and 5'%0 exhibit weak response peaks at lags of =39 to —12 days, with varying
273 peak directions for each component. This observation suggests that seismic activity (12—39 days before
274  seismic moment release) may influence hydrochemical components, causing their concentrations to
275  fluctuate (either increasing, decreasing, or remaining stable) owing to different geochemical
276  mechanisms.

277

278  3.4. Detection algorithms

279  3.4.1. BCP analysis

280 The correlation analysis results indicate that changes in environmental parameters have little to
281  no significant influence on denoised hydrochemical components, or their effects were slow processes.
282  Consequently, these component time series appear to follow specific distribution patterns. However,
283  since earthquake events are stochastic and hydrochemical anomalies (i.e., change points) emerge
284  during the pre-earthquake period without a known rupture time, continuous hydrochemical monitoring
285  data exhibit non-stationary variations. Therefore, BCP analysis is applied to effectively extract
286  anomalous signals from these component time series.

287 To detect change points in pre-seismic hydrochemical component time series and verify their
288  correspondence with earthquakes for forecasting future earthquake occurrences, the BCP analysis
289  algorithm, which is developed for Earth climate systems (Ruggieri, 2012) to the 15-day moving
290  average time series of all component concentrations from QJ and WN, is applied to this study. The

291  analysis produces Bayesian predictive model curves, change point locations, and posterior

16
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292  probabilities for each component. The posterior probabilities represent the likelihood of change point
293  occurrences in the predictive models, with probability peaks indicating the most likely timings of
294 change points.
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296  Figure 4. Anomaly detection results from the Bayesian change point (BCP) analysis applied to hydrochemical
297  component time series. The black solid line represents the component concentration after 15-day moving averaging.
298  The green dashed line indicates the forecasting model of the BCP algorithm. The red solid line shows the posterior
299  probability of change points. Yellow stars mark earthquake events. The false alarm rate (FAR), probability of
300  detection (POD), and threat score (TS) are evaluation metrics; further details are provided later.

301 The results show that change points are successfully detected in all component time series from
302  both thermal springs (Figure 4). For example, before the 16.6 earthquake on December 24, 2021, the
303  posterior probability for a Ca*>" change point at QJ was 0.06 at 15 days before the earthquake, while
304  SO4* exhibited a posterior probability of 0.17 at 37 days before the earthquake. Similarly, before the
305  MS5.2 earthquake on November 16, 2021, CI™ at WN showed posterior probabilities for change points
306 of0.15and 0.51 at 3 and 17 days before the earthquake, respectively. Notably, the timing and posterior
307  probabilities of change points exhibit significant uncertainty, which reflects the complexity of factors
308 influencing hydrochemical component variations. These factors include inhomogeneity in stress
309  accumulation, the structural complexity of fault and aquifer systems, modulation by deep gas
310  degassing, and the mixing effects of multi-source fluids (Skelton et al., 2014; Kim et al., 2019; Hosono
311 etal, 2020). Although earthquakes result from the coupling of multiple factors, most change points
312 are identified within 45 days preceding the earthquakes. This observation suggests that component
313  concentration changes are sensitive to earthquake preparation processes and do occur before
314  earthquakes, which provides critical empirical support for anomaly detection algorithm models.

315 The BCP analysis algorithm for anomaly detection also has limitations. Compared with the Na*

316  detection results at WN, the CI” time series produces two false positives for 2022 and misses three
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317  earthquakes for 2023 (Figure 4c, d). This result suggests that the analysis requires a longer time series
318 and is highly sensitive to prior distribution settings. In practice, identifying the locations and
319  probabilities of earthquake-induced change points in hydrochemical component time series is
320  challenging. Larger-amplitude component changes often overshadow smaller-amplitude variations,
321  which makes the latter difficult to detect and more prone to missed detections or false positives.
322 Additionally, most BCP methods have a fundamental limitation: they inherently perform retrospective
323  analysis on complete time series. Specifically, identifying a change point at time # relies on data
324 collected after # (¢ > ), which makes real-time, forward earthquake forecasting unfeasible with short-
325  term data sequences (Piersanti et al., 2016).

326  3.4.2. Anomaly detection model

327 According to the results of the BCP analysis, change-point detection for earthquake forecasting
328  should be viewed as a supplementary approach. This study enhances the real-time anomaly detection
329  algorithm for soil radon concentration time series (Piersanti et al., 2016; Soldati et al., 2020) and
330  applies it to hydrochemical multicomponent time series (Na', Cl~, SO4>7, 8D, 5'%0, etc.). The aim is
331  to establish an anomaly detection model within a multi-parameter feature space to explore potential
332 correlations between hydrochemical component variations and major earthquakes. This study modifies
333 the algorithmic workflow to a backward processing mode and enables real-time forward forecasting.
334 Inthe study, evaluation metrics for parameter optimisation are introduced and a seismic response time
335  threshold parameter, which accounts for local geological conditions is incorporated. The detection
336  model processes hydrochemical component time series and confirms earthquake catalogues, fitting

337  optimal parameters based on the evaluation metrics to generate the best anomaly detection parameter
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338  combinations for each component. The optimised model performs online, point-by-point data
339  processing for real-time monitoring. When real-time hydrochemical data deviates from the threshold,
340  the model triggers an alarm to predict earthquakes, which enhances forecasting accuracy through
341  multicomponent collaboration (Figure 5). The model improves in three ways: 1) the model
342 incorporates a multi-parameter collaborative verification mechanism that reduces environmental noise
343  interference; 2) the model identifies components with superior anomaly detection performance; 3) the
344  model analyses anomaly intensity based on the number of components detecting anomalies for the

345  same earthquake, thereby improving detection accuracy and reducing false positives and missed alarms.
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347  Figure 5. Framework of the hydrochemical multicomponent synergy anomaly detection model.
348 The improved detection algorithm procedure (Figure S2) is as follows: Real-time monitoring data

349  for each component from day i are loaded. If the daily value on day i—p2 exceeds pl times the 15-day
350  moving average on day i—p2—1, and simultaneously, the 15-day moving average on day i surpasses p3

351  times that on day i—p2, the system triggers an alarm on day i. This alarm is considered a successful
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352  early warning if an M > 4 earthquake occurs within [ + 7w. After an earthquake, new parameters
353  pl’=p4 xpl and p3’ =p4 x p3 are used for a period of p5*M (where M is the magnitude). If
354  subsequent earthquakes occur within this period, the post-earthquake time is calculated based on the
355  maximum magnitude. If no M > 4 earthquakes occur during this interval, parameters pl and p3
356  automatically revert to their initial values. The algorithm incorporates five adjustable parameters (p1—
357  p5) and a seismic response time threshold (7tw), with p1, p3, and 7w being key parameters.

358 When thermal water is subjected to external disturbances (e.g., contamination or anthropogenic
359  inputs), particularly the dissolution of a single compound, variations in hydrochemical ion
360  concentrations generally follow the charge balance principle, often resulting in synchronous changes
361  in paired cations and anions. To minimise the impact of uncertain interference and improve program
362 efficiency, reliable warning signals should be defined by concurrent alarms from at least three
363  hydrochemical components. The intensity of the anomaly increases with the number of components
364  triggering simultaneous alarms.

365  3.4.3. Evaluation metrics

366 Given that earthquake forecasting research focuses on evaluating algorithms’ ability to identify
367  low-probability earthquake events, this study employs four evaluation metrics based on the number of
368  correct alarms (NA), false alarms (NB), and missed alarms (NC).

369  False alarm rate (FAR): This measures the proportion of non-earthquake events incorrectly classified
370  as earthquake events, relative to the total number of warning instances.

371 FAR = NB/(NA + NB) 7

372 Missed alarm rate (MAR): The proportion of earthquakes that are not detected relative to the total
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373 number of earthquake events, indicating the risk of failing to identify such events.

374 MAR = NC/(NA+ NC) (8)
375  Probability of detection (POD): The proportion of correctly identified earthquake events out of all
376  earthquake events, assessing the model’s ability to detect these events.

377 POD = NA/(NA+ NC) 9)
378  Threat score (TS): This reflects the accuracy of the forecast, ranging from 0 (complete mismatch) to 1
379  (perfect match) with actual events.

380 TS =NA/(NA+ NB + NC) (10)
381  This metric system allows for a more accurate evaluation of the model’s forecasting performance in
382  handling imbalanced data through multi-dimensional quantitative analysis.

383

384 4. Results and discussion

385  4.1. Hydrochemistry

386 The average water temperature at QJ is approximately 60°C, with a pH of 7.5 and an EC of 1148
387  uS/cm, while WN has a higher temperature of 80°C, a pH of 7.9, and a lower EC of 579 uS/cm. Both
388  QJ (sandstone) and WN (mylonite, gneiss, etc.) exhibit similar hydrochemical types (HCOs-Na),
389  owing to the comparable lithology of the surrounding rocks. The §'%0 values at QJ range from —13.19%o
390  to —11.81%o, while the 8D values range from —94.93%o to —90.59%o. At WN, the §'80 values range
391  from —13.22%0 to —12.01%o, and the 8D values range from —91.26%0 to —88.09%o. The narrow
392  fluctuation range of stable isotopes in both thermal springs, coupled with their proximity to the local

393  and global meteoric water lines (Figure S3), suggests that the thermal spring water originates from
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394  atmospheric precipitation. Overall, the two springs exhibit similar hydrochemical characteristics,
395  which minimises the impact of compositional differences on the evaluation of algorithm effectiveness
396  across the different springs. For detailed hydrochemical ion concentrations and isotope values, please
397  refer to the supplementary materials.

398

399  4.2. Model parameters

400  4.2.1. Seismic response time threshold

401 The anomaly detection model in this study establishes forecasting rules based on the temporal
402  correlation between precursor anomalies and earthquake events. The seismic response time threshold
403  (Tw) plays a key role in determining both forecasting performance and practical value. Ty is defined
404  as the maximum allowable time interval between anomaly detection and earthquake occurrence. This
405  threshold is a critical parameter that balances accuracy and timeliness. Increasing T expands the
406  monitoring window and captures more potentially correlated abnormal signals, but it significantly
407  reduces the time resolution of forecasting. Conversely, decreasing 7w improves temporal precision but
408  may risk omitting valid precursor signals owing to shorter observation periods.

409 To improve the accuracy of the anomaly detection model in predicting earthquake timing, the
410  nonlinear effects of 7w on predictive performance are systematically explored via an incremental
411  increase of Tw from 5 to 70 days in 5-day steps. This increase identifies key inflection points during
412 threshold optimisation (Figure S4). As T increases from 5 to 45 days, model performance improves
413 considerably, with both TS and POD rising rapidly, while FAR gradually decreases. This improvement

414  results from the extended monitoring windows, which better capture the association between
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415 anomalies and seismic activities. Notably, the evaluation metrics reveal a turning point at the 45-day
416  threshold. Beyond 45 days, the trends in TS, POD, and FAR plateaus, with minimal variation. This
417  result is consistent with the finding that maximum cross-correlations between Mo and hydrochemical
418  components (CI-, SO4*, 8D) occur within 45 days before the earthquake (Figure 3) and that BCP
419  analysis detects most change points emerging within 45 days of pre-earthquake events (Figure 4).
420  Collectively, these results jointly define 45 days as the optimal response time threshold for
421  hydrochemical precursors to seismic activities in the study area.

422 4.2.2. Free parameters

423 The parameter optimisation process involves quantitatively aligning observed hydrochemical
424  data with seismic precursor anomalies. Among the five adjustable parameters (p1—p5) in the detection
425  model, the key regulatory parameters p1 and p3 represent multiples of the sliding window values. This
426  study focuses on pl and p3 to examine the influence of the optimisation of these parameters on the
427  performance of the anomaly detection model. For optimisation involving ion concentration data, the
428  model applies parameter values ranging from 1.00 to 1.20 in steps of 0.01. For optimisation involving
429  isotopic data, which exhibit minor fluctuations, the model applies parameter values ranging from 0.985
430  to 1.015, with a step increment of 0.001. Model performance is then evaluated using TS. Figure 6
431  shows the variations in the TS under different values of pl and p3. When pl and p3 are small, the
432 model becomes overly sensitive to background noise, detecting more non-seismic signals. This effect
433 leads to an increase in the FAR and a decrease in TS. As pl and p3 increase, TS improves. However,
434 when the parameters become excessively large, surpassing the actual seismic anomaly thresholds, the

435  MAR rises sharply, which causes TS to drop below 0.35. The optimal parameter combinations for each
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hydrochemical component are identified at the TS peak inflection points (marked by yellow circles).
According to this method, the complete set of model parameters for all hydrochemical components at

QJ and WN is provided in Table S2.
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Figure 6. Effect of parameters on model performance. TS varies with changes in pl and p3 (the main free
parameters pl and p3 are used as examples). The yellow circle highlights the TS value corresponding to the optimal
combination of pl and p3.

The parameter optimisation results reveal notable differences in the optimal pl and p3
combinations for different hydrochemical components. Hydrochemical anomalies preceding
earthquakes in many regions are typically caused by the combined action of multiple mechanisms
(Skelton et al., 2014; Kim et al., 2019; Hosono & Masaki, 2020). Furthermore, owing to significant
variations in the geochemical behavior of different hydrochemical components, components within
the same thermal spring often exhibit diverse response patterns to the same earthquake. These patterns
may include asynchronous variations (increase/decrease/stability) and considerable discrepancies in

the magnitude of change (Shi et al., 2020; Wang et al., 2021; Tian et al., 2023). Therefore, optimising
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451  parameter combinations to create customised anomaly detection models for specific hydrochemical
452  components at designated observation points is the key approach in this study to enhance the model’s
453  ability to detect seismic precursor information.

454

455  4.3. Evaluation of forecasting performance

456 Figures 7 and 8 present the 15-day moving average time series of hydrochemical components,
457  anomaly detection results, and earthquake events for the anomaly detection model at QJ and WN. For
458  each component, the model successfully identifies varying numbers of pre-earthquake anomalies and
459  triggered warnings. The model activates comprehensive alarms when anomalies are detected in three
460  or more components simultaneously. At QJ, the model provides 21 effective warnings for 22
461  earthquake events (POD = 0.95), with 8 false alarms (FAR = 0.28) and a TS of 0.70. At WN, the model
462  generates 10 accurate warnings for 12 events (POD = 0.83), 5 false alarms (FAR = 0.33), and a TS of
463  0.59. Compared with the single-component anomaly detection results, the multi-component joint
464  warning results exhibit higher TS values (Figures 7, 8, 9). This observation demonstrates that
465 multicomponent collaboration mitigates the effects of geochemical behavior differences among
466  components, reduces environmental interference on individual ions/ion pairs, and consequently
467  enhances the accuracy of the anomaly detection model. Zhu et al. (2024) comprehensively evaluated
468  the anomaly detection performance of several machine learning algorithms using 2.5 years of
469  hydrochemical data from the southeast coast of China. The best-performing local outlier factor
470  algorithm achieved an R-score of about 0.6, POD of about 0.7, and FAR of about 0.15. The improved

471  anomaly detection model demonstrates comparable performance, which confirms its effectiveness.
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472 The results from the anomaly detection model and BCP analysis are mutually corroborative; however,
473  the anomaly detection model exhibits superior sensitivity in processing nonlinear time series data.
474  Taking QJ as an example, the model achieves POD values of 0.70 and 0.59 for Ca?" and SO4* detection
475  results, respectively (Figures 4 and 7), which represents significant improvements over the BCP
476  analysis results (0.50 and 0.41). The model is also capable of accurately detecting subtle anomalies
477  that the BCP analysis may miss.
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479  Figure 7. Results of the anomaly detection model applied to hydrochemical component time series from Qujiang
480  spring. The blue curve represents the hydrochemical component time series after a 15-day moving average. Red and
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481 gray triangles indicate accurate alarms and false alarms, respectively. Yellow stars mark successfully reported
482  earthquakes. Black and gray vertical bars show detected and missed earthquakes based on the algorithm’s
483 comprehensive alarm (triggered by >3 components), respectively. Orange-red boxes highlight synchronous
484  successful alarms triggered by six or more components. Grayish-blue boxes mark synchronous false alarms triggered
485 by five or more components.

486 Owing to variations in the geochemical behaviors of hydrochemical components, their response
487  patterns and magnitudes to earthquakes differ. Although the mechanisms behind these differences have
488  not yet reached academic consensus, this study aims to identify effective strong earthquake prediction
489  indicators applicable to the study area through anomaly detection model results. A comparison of the
490 TS values of each component’s warning results in QJ and WN (Figure 9) reveals that in the two thermal
491  springs of the study area, the TS values for Na*, Ca*", Cl~, SO4>", 8D, and §'30 detection (around 0.50)
492  are relatively high. This observation suggests that these components can serve as sensitive indicators
493  for strong earthquake forecasting in the study area. In general, QJ in the study area exhibits a more
494 sensitive response to earthquakes. In addition, the anomalies are categorised into multiple consecutive
495  anomalies and single anomalies (Figures 7 and 8). This phenomenon is more pronounced in the stable
496  isotope time series, likely because isotopic changes are more sensitive and tend to trigger multiple

497  warning signals before an earthquake.

28



https://doi.org/10.5194/egusphere-2025-2132
Preprint. Discussion started: 17 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

498

499
500
501
502
503
504
505

506

= 150 =5 T > % T
&
g 140-M\\/M
+N
Z 1304
2 28 » < D> i > » % Te D L, 5
)
WW'S g
L
S [P EE & > BR% >% Db % [ S S S > ’
?
> > B >h % > B > X > D> I Te > > s
F10 g
,6 ‘6
g 144 > x> D > ST DB D> B e D> e » > D
I\%j il
g 8 _
7 wPF % D> [ |23 B> ® L =
on
L380 =
260 O
R L = S S S S R > =
|
g 15
o 13
PIEEDIMA D B b B D B |
$
—790:%:
d=131km d=338km d=42km d=129km d=108km  d=89km oA
— D picle B> B D e D> D lg <
1221 Eq2 Al
io’—lz.s— il o 3
S o
SNl N BN W

2021/11/1  2022/2/1 2022/5/1 2022/8/1  2022/11/1 2023/2/1 2023/5/1 2023/8/1  2023/11/1  2024/2/1 2024/5/1

Figure 8. Results of the anomaly detection model applied to hydrochemical component time series from Wana
spring. The same notes as above for Figure 7.

Among the earthquakes for which the earthquake preparation zone covers both thermal springs,
only two earthquakes (represented by gray vertical bars in Figures 7 and 8) fail to induce
multicomponent anomalies prior to the earthquake. Earthquake Eql causes no synchronous anomalies
at either spring, which suggests that Eql has a limited impact on regional tectonic activity. For Eq2
(epicentral distance > 600 km), WN shows no alarm response, while QJ reacts effectively. This

discrepancy is likely related to WN’s location on the eastern boundary of the SYB, where stress
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507  accumulation mainly affects QJ, which is also located on the eastern border. The muted response in
508  WN likely results from the blocking effects of the RRF (Li et al., 2024; Shao et al., 2024). The similar
509  abnormal response sensitivity of different springs to the same earthquake demonstrates regional-scale
510  hydrochemical impacts from earthquake preparation and confirms the stable and reliable performance
511  of the anomaly detection model.
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513 Figure 9. TS values of anomaly detection model results for hydrochemical components. DA denotes comprehensive
514  alarms triggered by the model.
515 In Figures 7 and 8, the orange-red boxes represent model results of successfully predicted
516  earthquakes, identified through synchronised anomalies in six or more hydrochemical components.
517  The width of the boxes, which indicates the interval between the appearance of anomalies and
518  earthquake occurrence, shows no clear correlation with magnitude or epicentral distance. This
519  observation underscores the complex dynamic mechanisms and regional structural differences
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520  involved in the earthquake preparation process, with anomalies often arising from the combined effects
521  of multiple mechanisms (Thomas, 1988). Spatially, the number of hydrochemical components
522 exhibiting synchronous anomalies correlates with earthquake magnitude and epicentral distance.
523  Earthquakes that induce synchronous anomalies in six or more hydrochemical components have
524  epicentral distances within 150 km for earthquakes with magnitudes less than 6.0 (M < 6.0), while this
525  distance extends to approximately 450 km for earthquakes with magnitudes greater than or equal to
526 6.0 (M >6.0). Although it is difficult to quantify the exact impact of magnitude and distance on the
527 number of components exhibiting synchronous anomalies, as magnitude increases or distance
528  decreases, the number of components with synchronous anomalies detected by the model tends to
529  increase. This trend aligns with the positive correlation between the scale of earthquake energy release
530  and the number of anomalies, as confirmed by the hydrochemical monitoring results (Li et al., 2022).
531  Therefore, a significant relationship exists between the temporal variation of hydrochemical
532 components and earthquakes in the study area. The number of components exhibiting synchronous
533  anomalies can be used as an effective criterion for determining alarm intensity, with higher intensity
534  generally corresponding to larger earthquake magnitudes or shorter epicentral distances.

535 Furthermore, this study reveals that hot springs closer to the epicenter tend to exhibit a greater
536  number of components with synchronous anomalies during the same earthquake. Pre-earthquake
537  hydrochemical anomalies generally manifest on a regional scale, which means different thermal
538  springs can not only validate each other in terms of anomaly timing for forecasting purposes but also
539  help identify the closest springs to the epicenter based on the number of synchronous anomalous

540  components. This approach aids in defining potential earthquake preparation zones. According to this
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541  approach, a dense thermal spring monitoring network provides more opportunities for spatial
542  earthquake forecasting.

543

544  4.4. Limitations and prospects

545 This study focuses on evaluating the performance of anomaly detection models in predicting the
546  timing of earthquakes with magnitudes > 4. One potential cause of false alarms could be anomalous
547  fluctuations in hydrochemical components triggered by seismic activities with magnitudes < 4 in areas
548  near thermal springs. Four days after the second synchronised false alarm involving five components
549  (Figure 7, grayish-blue boxes), an M2.6 earthquake occurred 3 km from QJ. This occurrence suggests
550  that high-frequency false alarms may not solely result from non-seismic fluid anomalies, but could
551  also reflect the model’s limited ability to distinguish anomalies caused by microseisms. According to
552 this finding, it is recommended to establish observation station networks and optimise algorithms to
553  enable hierarchical alarm systems. Approximately 30 days after the last multicomponent synchronised
554  false alarms at the two thermal springs (Figures 7 and 8), an M4.1 earthquake occurred, with an
555  epicenter located outside the radius of the earthquake preparation zone. Current earthquake screening
556  criteria assume an isotropic underground structure; however, the algorithm requires tailored
557  optimisation based on the specific geological background in practical applications. Additionally, the
558  model demonstrates limited adaptability to changes in data trends, highlighting the need for periodic
559  parameter re-optimisation. While the model is constructed using major elements and stable isotopic
560 indicators in thermal waters, future research should also consider the potential associations between

561  other hydrochemical components, such as trace elements, and seismic activity.
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5. Conclusions

A multicomponent synergistic anomaly detection model is developed using five years of
continuous hydrochemical monitoring data to enable real-time forecasting of M > 4 earthquakes in the
study area. Model parameters are optimised for each component, and their impact on anomaly
detection performance is evaluated to identify applicable hydrochemical indicators for strong
earthquake forecasting. The results of the multicomponent synergy anomaly detection reveal a clear
connection between hydrochemical variations and seismic activity, offer valuable insights, and
establish a new paradigm for precursor identification in earthquake forecasting. The main findings are
summarised as follows:

1. A 45-day response time threshold for hydrochemical components to M >4 earthquakes is
established as the optimal period for capturing key hydrochemical precursors for short-term
earthquake forecasting. Tailored model parameters for specific hydrochemical components
account for their differences in response characteristics to seismic activity and significantly
enhance the model’s performance and adaptability.

2. The anomaly detection model demonstrates reliable real-time anomaly detection capabilities and
identifies Na, Ca*", CI-, SO4*", 8D, and 8'80 as effective indicators for strong earthquake
forecasting, with D and §'%0 exhibiting higher sensitivity to seismic activity.

3. The newly proposed multi-parameter synergy alarm mechanism for hydrochemistry overcomes the
limitations of single-parameter methods and significantly improves the model’s overall

performance in earthquake forecasting. The number of hydrochemical components with
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583 synchronous anomalies provides a reliable criterion for determining alarm intensity, with higher
584 intensity typically correlating to larger earthquake magnitudes or shorter epicentral distances. A
585 dense thermal spring monitoring network can facilitate cross-verification across multiple sites for
586 time-based forecasting and offer enhanced capabilities for spatial forecasting.
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