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Abstract 17 

The intersection of the Xiaojiang Fault and the Red River Fault at the southeastern margin of the 18 

Tibetan Plateau experiences intense tectonic activity. At this intersection, frequent destructive 19 

earthquakes have induced hydrochemical variations in thermal springs. In this study, Bayesian change 20 

point analysis is applied, and a multicomponent synergy anomaly detection model is developed using 21 

five years of monitoring data (2019–2024) from two thermal springs in the region to achieve real-time 22 

forecasting of occurrence timing for M ≥ 4 earthquakes. Comprehensive analysis demonstrates that the 23 

anomaly detection model possesses reliable real-time anomaly detection capabilities. Tailored model 24 

parameters for specific hydrochemical components account for their differences in response 25 

characteristics to seismic activity. The model identifies Na+, Ca2+, Cl−, SO4
2−, δD, and δ18O as sensitive 26 

indicators for strong earthquake forecasting. The multicomponent synergy alarm mechanism for 27 

hydrochemistry overcomes the limitations of single-parameter methods, which significantly enhances 28 

the model’s overall performance in earthquake forecasting. The number of hydrochemical components 29 

with synchronous anomalies serves as a reliable criterion for determining alarm intensity, with higher 30 

intensity typically correlating with larger earthquake magnitudes or shorter epicentral distances. 31 
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1. Introduction 38 

Earthquake forecasting, a frontier in geosciences, relies on detecting sensitive and reliable 39 

precursor anomalies (Chen, 2009; Pritchard et al., 2020). Subsurface fluids, owing to their ease of 40 

migration and incompressibility, respond rapidly to dynamic crustal stress changes during earthquake 41 

preparation. These responses often result in significant changes in the physicochemical properties of 42 

the fluids (Lee et al., 2017; Gori & Barberio, 2022; Tian et al., 2023). Moreover, subsurface fluids can 43 

transmit deep geological signals to the surface, for example, through thermal springs, which makes 44 

them valuable targets for monitoring precursor anomalies. Currently, earthquake-related anomalies in 45 

subsurface fluids are widely monitored across various spatial and temporal scales. These include 46 

hydrological anomalies such as water temperature, water level, and flow rate (Shi et al., 2015; Lee et 47 

al., 2017; Petitta et al., 2018; Di Matteo et al., 2020; Du et al., 2023), hydrogeochemical anomalies 48 

like major elements, trace elements, and stable isotopes (Ide et al., 2020; Nakagawa et al., 2020; 49 

Barbieri et al., 2021; Wang et al., 2021; Zhang et al., 2021; Yan et al., 2022), and gas geochemical 50 

anomalies such as radon, helium, and carbon dioxide (Chaudhuri et al., 2011; Fu et al., 2017; Woith et 51 

al., 2020; Zhao et al., 2021; Zhou et al., 2021). While some fluid precursor anomalies have shown 52 

predictive value, many are still identified only through retrospective analysis after earthquakes. 53 

Moreover, continuous fluid monitoring data often reflect integrated signals from multiple sources, 54 

including seismic activity, environmental variability, and human-induced influences (Martinelli, 2020). 55 

The isolation of true seismic precursor anomalies from such complex datasets remains a significant 56 

challenge in current earthquake forecasting research. 57 

In analysing large-scale fluid monitoring data, traditional anomaly detection methods typically 58 
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rely on manually defined fixed thresholds to identify fluctuations. Techniques such as trend analysis 59 

and standard deviation methods offer clear advantages in capturing prominent anomalies (Ingebritsen 60 

& Manga, 2014; Yan et al., 2018). However, in practice, fluid monitoring data often integrate 61 

superimposed signals from both tectonic and non-tectonic sources and exhibit complex nonlinear 62 

dynamic behaviors. These characteristics present notable limitations for traditional statistical 63 

approaches in effectively identifying fluid precursor anomalies (Yan et al., 2021). Machine learning-64 

based anomaly detection algorithms offer new perspectives for earthquake forecasting by uncovering 65 

hidden precursor signals within large volumes of monitoring data (Li et al., 2022, 2023). In recent 66 

years, algorithms such as artificial neural networks, long short-term memory networks, and random 67 

forests have been widely applied to anomaly detection in individual indicators, such as water levels 68 

and radon concentrations, significantly enhancing detection accuracy and sensitivity (Tareen et al., 69 

2019; Haider et al., 2021; Feng et al., 2022; Zhang et al., 2025). However, single-indicator 70 

measurements are easily influenced by meteorological, tidal, and other environmental factors. While 71 

regression models and similar techniques have been used to correct these interferences, challenges 72 

remain in effectively distinguishing non-seismic anomalies (Woith, 2015; Soldati et al., 2020). 73 

Moreover, single-indicator analysis does not leverage the synergistic relationships among multiple 74 

indicators, which thus limits its ability to enhance the reliability of anomaly identification. 75 

Thermal springs are natural discharge outlets of deep-circulating groundwater and they offer 76 

distinct advantages for hydrogeochemical monitoring. The hydrochemical components (e.g., Na+, Cl−, 77 

SO4
2−) of thermal springs tend to exhibit high stability, rapid upward migration, and limited 78 

susceptibility to environmental interference. These characteristics help minimise non-seismic noise 79 
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and allow for a more accurate reflection of hydrogeological changes during earthquake preparation 80 

(Martinelli, 2020; Tian et al., 2024). Numerous studies have reported diverse geochemical behaviors 81 

among hydrochemical components, which shows marked differences in their response magnitude, 82 

quantity, patterns, and timing to tectonic stress variations throughout the earthquake preparation 83 

process (Li et al., 2021; Yan et al., 2022; Tian et al., 2023). Therefore, applying anomaly detection 84 

algorithms to evaluate the abnormal response characteristics of individual hydrochemical components 85 

and integrating multiple components to enhance anomaly identification accuracy may represent a 86 

promising technical approach for precursor recognition. Current research on hydrochemical anomaly 87 

detection algorithms remains in an exploratory stage (Castellana & Biagi, 2008). Existing studies have 88 

demonstrated the effectiveness of common machine learning algorithms in identifying abnormal 89 

periods in hydrochemical data while also emphasising the need for scenario-specific optimisation of 90 

key indicators (Zhu et al., 2024). However, there is an urgent need to investigate the synergistic 91 

anomaly response patterns among hydrochemical components and to identify sensitive indicators for 92 

reliable forecasting of strong earthquakes. 93 

This study focuses on the tectonically active region at the intersection of the Xiaojiang Fault (XJF) 94 

and the Red River Fault (RRF) on the southeastern margin of the Tibetan Plateau. The real-time 95 

anomaly was innovatively modified using the detection algorithm developed by Piersanti et al. (2016), 96 

and its application was extended to the analysis of multiple hydrochemical components in thermal 97 

springs across the study area. By integrating continuous monitoring data of hydrochemical ions and 98 

hydrogen–oxygen isotopes with earthquake catalogs and applying Bayesian change point (BCP) 99 

analysis, this study optimised parameters for specific components and built a multi-component joint 100 
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anomaly detection model. This model supports anomaly detection in both long-term time series and 101 

real-time earthquake forecasting across different time scales. The main objectives of this study are as 102 

follows: (1) to evaluate the applicability and performance of the algorithm in analysing hydrochemical 103 

time series; (2) to identify effective hydrochemical indicators for forecasting strong earthquakes in the 104 

study area; and (3) to assess the feasibility of the multi-component joint anomaly detection model and 105 

explore the relationship between hydrochemical variations and seismic activity by analysing the 106 

number of components with synchronous anomalies. 107 

 108 

2. Geological setting 109 

The southeastern Tibetan Plateau has undergone sustained rotation and southeastward extrusion, 110 

driven by the collision-induced uplift and deformation between the Indian and Eurasian plates. The 111 

rotation and extrusion effects have resulted in the formation of an active tectonic region characterised 112 

by large-scale strike-slip fault systems and the presence of intracontinental microplates (Tapponnier et 113 

al., 1982; Yin & Harrison, 2000; Xu et al., 2011) (Figure 1). Among these structures, the XJF and RRF 114 

serve as key strike-slip boundaries and play critical roles in the tectonic evolution and material 115 

extrusion of the southeastern Tibetan Plateau (Zhang et al., 2003; Tong et al., 2015). The intersection 116 

area of the XJF and RRF serves as the frontal zone accommodating the extrusion of the Sichuan–117 

Yunnan Block (SYB). The XJF is blocked by the Indochina Block (ICB) and has not yet propagated 118 

southward through the RRF, which makes the intersection area the primary zone of stress accumulation, 119 

where ongoing dextral compressional motion of the SYB occurs (Wen et al., 2022; Li et al., 2024; 120 

Shao et al., 2024). The deeply incised XJF and RRF, along with secondary faults such as the Qujiang 121 
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Fault (QJF) and Shiping–Jianshui Fault (SJF) in this region, act as conduits for deep-circulating 122 

thermal waters and the exchange of seismic information, with thermal springs commonly found along 123 

these faults. This area experiences prolonged stress accumulation and intense tectonic deformation, 124 

accompanied by historical moderate-to-strong seismic activity (Wen et al., 2008), which makes it a 125 

critical zone for earthquake hazard monitoring. Consequently, this region is an ideal setting for 126 

investigating how variations in hydrochemical compositions respond to seismic activity. 127 

 128 

Figure 1. (a) Simplified tectonic map of the southeastern margin of the Tibetan Plateau, showing the distribution of 129 

M ≥ 4 earthquakes during the thermal spring monitoring period. (b) Locations of continuously monitored thermal 130 

spring sites, fault distribution, and the geological map at the intersection of the Xiaojiang Fault (XJF) and Red River 131 

Fault (RRF). Earthquake catalogues are obtained from the China National Earthquake Data Center 132 

(https://data.earthquake.cn/). The tectonic divisions and active faults are sourced from Deng et al., 2002, and the 133 

geological map is adapted from Ma et al., 2002. SYB: Sichuan–Yunnan Block; ICB: Indochina Block; SCB: South 134 
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China Block; QJF: Qujiang Fault; SJF: Shiping–Jianshui Fault.  135 

This study involves continuous hydrochemical monitoring at two high-temperature springs, 136 

Qujiang (QJ) and Wana (WN), located at key tectonic sites within the research area (Figure 1b). QJ is 137 

situated at the intersection of the XJF and the QJF, with sandstone as the predominant country rock. 138 

QJ is positioned at a critical location where the sinistral slip rate of the XJF decreases sharply from 8–139 

11 mm/a to approximately 4 mm/a after crossing the QJF (Wen et al., 2011; Wang et al., 2014). WN, 140 

located along the RRF, is hosted by gneiss and mylonite and lies within a stress concentration zone, 141 

where the SYB undergoes southwestward deflection, compressing the RRF (Schoenbohm et al., 2006; 142 

Li et al., 2019; Wen et al., 2022). The two hot springs are located along the boundary faults that control 143 

the regional tectonic pattern, and their hydrochemical variations may provide sensitive indicators of 144 

changes in the earthquake preparation state within the intersection area. 145 

 146 

3. Data and methods 147 

3.1. Thermal spring monitoring data 148 

The monitoring period for the QJ spring spanned from June 1, 2019, to May 21, 2024 149 

(approximately 5 years), while the WN spring was monitored from October 3, 2021, to May 21, 2024 150 

(approximately 2.5 years). Synchronous monitoring of hydrogen and oxygen isotopes was conducted 151 

at both springs between January 1, 2023, and February 21, 2024. All monitoring parameters for the 152 

thermal springs and their hydrochemical components were measured every three days. Water 153 

temperature, pH, and electrical conductivity (EC) were measured in situ using a portable multi-154 

parameter water quality analyser (HQ40D, HACH, USA), with measurement accuracies of 0.1°C, 0.01, 155 
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and 1 μS/cm, respectively. Rainfall data were collected through continuous in situ monitoring using an 156 

RTP-II tri-element meteorological instrument with a resolution of 0.1 mm. Before the thermal water 157 

samples were collected, high-density polyethylene (HDPE) bottles were thoroughly rinsed three times 158 

with deionised water and twice with thermal water. Water samples were then filtered through 0.45 μm 159 

micropore membranes and stored in HDPE bottles. Samples intended for cation analysis were acidified 160 

with high-purity nitric acid. During collection, care was taken to prevent the introduction of air bubbles, 161 

and samples were immediately sealed hermetically for preservation. 162 

The concentrations of major ions (Na+, K+, Ca2+, Mg2+, Li+, F−, Cl−, SO4
2−, Br−, NO3

−) were 163 

analysed using a Thermo Scientific Dionex Aquion IC system equipped with an AS40 autosampler, 164 

which had a detection limit of 0.01 mg/L. HCO3
− and CO3

2− concentrations were determined via 165 

standard titration procedures using a ZDJ-3D potentiometric titrator with 0.05 mol/L HCl. δ18O and 166 

δ2H values were determined using a Picarro L2140-i water isotope analyser, with precisions of 0.015 ‰ 167 

and 0.05 ‰, respectively. All analyses were conducted at the Key Laboratory of the Institute of 168 

Earthquake Forecasting, China Earthquake Administration. The monitoring data are detailed in data 169 

set S1. To ensure data accuracy, cation–anion balance error tests were performed for each sample, with 170 

all ionic deviations kept within ± 5%. The ion balance error is calculated as below: 171 

𝑖𝑏ሺ％ሻ ൌ
∑ 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 െ ∑𝑎𝑛𝑖𝑜𝑛𝑠
∑ 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ൅ ∑𝑎𝑛𝑖𝑜𝑛𝑠

ൈ 100 ሺ1ሻ 172 

 173 

3.2. Earthquake data collection and processing 174 

The anomaly detection model developed in this study focused on forecasting destructive 175 

earthquakes with magnitudes (M) ≥ 4. To identify earthquakes that might influence hydrochemical 176 

https://doi.org/10.5194/egusphere-2025-2132
Preprint. Discussion started: 17 July 2025
c© Author(s) 2025. CC BY 4.0 License.



10 
 

component variations, while excluding those unrelated to precursors, and to establish a precise 177 

correlation between changes in hydrochemical components and seismic activity, an earthquake 178 

screening method based on the preparation zone radius formula (Dobrovolsky et al., 1979) was 179 

employed: 180 

𝑅 ൌ 10଴.ସଷெ ሺ2ሻ 181 

where M represents the earthquake magnitude, and R denotes the radius (in km) of the earthquake 182 

preparation zone. 183 

Earthquakes were selected as study events based on the criterion that the epicentral distance (Δ) 184 

from the thermal spring monitoring sites did not exceed the earthquake preparation zone radius (R) 185 

(Figure 1a). The QJ site was within the preparation zones of 22 M ≥ 4 earthquakes during its monitoring 186 

period (2019/06/01–2024/05/21), while the WN site was within the preparation zones of 12 M ≥ 4 187 

earthquakes during its observation period (2021/10/03–2024/05/21) (Table S1). All earthquakes had 188 

focal depths ranging from 8 to 16 km, and they were classified as shallow-focus events. The earthquake 189 

catalogue was obtained from the National Earthquake Data Center of China (http://data.earthquake.cn). 190 

Seismic moment (M₀), which directly reflects fault geometry parameters and the rigidity of the 191 

medium, accurately quantifies earthquake rupture processes and mechanical energy release. Compared 192 

with magnitude scales, the seismic moment is more suitable for analysing the seismic impact on 193 

hydrochemical component changes in thermal springs. The commonly used empirical formula for 194 

estimating seismic moment based on magnitude (Hanks & Kanamori, 1979) is as follows: 195 

𝑙𝑔𝑀଴ ൌ 1.5𝑀 ൅ 16.1 ሺ3ሻ 196 

Stress attenuates with increasing epicentral distance during the earthquake preparation process and 197 
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directly influences the development of thermal water seepage pathways and the intensity of water–198 

rock interactions (Wang & Manga, 2010; Ingebritsen & Manga, 2019). To account for distance-related 199 

effects, the seismic moment requires correction using the following empirical formula (Piersanti et al., 200 

2016):  201 

𝑀଴௖௢௥ ൌ 𝑀଴ 𝛥ఠ⁄ ሺ4ሻ 202 

where ω is the weighting factor, in this study ω takes the value of 1. 203 

 204 

3.3. Hydrochemical component time series 205 

The geochemical behaviors of different components in thermal spring water show significant 206 

variation, with each component exhibiting distinct characteristics in terms of anomaly amplitude, 207 

temporal evolution, and precursor response sensitivity. Controlled by unique hydrogeological 208 

conditions, the hydrochemical variations of each thermal spring also display spatial differences in 209 

response to tectonic activity. To effectively extract anomalous signals, the anomaly responses of 210 

different components and springs in the study area are compared, and the algorithm’s generalisability 211 

across springs is validated. This study establishes independent time series for each component at 212 

different springs (Figure 2 and S1). 213 
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 214 

Figure 2. Time series of hydrochemical components at Qujiang spring, along with rainfall and earthquake events. 215 

3.3.1. Data evaluation and noise removal 216 

The dynamic variations in thermal spring ion concentrations are crucial for identifying seismic 217 

precursors. When observed data show minimal fluctuations or remain consistently below detection 218 

limits over extended periods, it becomes challenging to effectively extract hydrogeochemical anomaly 219 

signals before an earthquake. Long-term monitoring reveals that concentrations of Mg2+, Br−, and 220 

NO3
− are extremely low and remain consistently below instrumental detection limits, without temporal 221 
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fluctuations, which thus limits their value for tracking seismic precursors. Consequently, Na+, K+, Ca2+, 222 

Cl−, SO4
2−, HCO3

−, F−, δD, and δ18O have been selected for earthquake anomaly identification owing 223 

to their consistent continuity and reliable data characteristics. 224 

The thermal spring water in the study area originates from atmospheric precipitation recharge. It 225 

circulates deeply through faults, is heated by geothermal energy, and then discharges at the surface, 226 

with its hydrochemical composition mainly determined by the lithology of the surrounding rocks (Shao 227 

et al., 2024). Consequently, ambient temperature and atmospheric pressure at the spring outlet have a 228 

negligible effect on the hydrochemistry. However, rainfall serves not only as the primary water source 229 

but also accelerates groundwater circulation, promotes shallow infiltration, and mixes with thermal 230 

waters (Taylor et al., 2012; Hosono et al., 2020; Colman et al., 2021). This process can potentially 231 

obscure deep-seated earthquake preparatory signals carried by the thermal spring. Consequently, this 232 

study focuses on assessing the potential perturbations induced by rainfall on thermal spring 233 

hydrochemistry. Unlike temperature and pressure, rainfall causes pulsed disturbances, typically 234 

manifesting as intermittent spikes followed by extended zero-value intervals in sampling data. To 235 

suppress high-frequency noise from short-term environmental disturbances such as rainfall while 236 

preserving mid- to low-frequency tectonic signals, a 15-day backward moving average is applied to 237 

process the 3-day resolution hydrochemistry data: 238 

𝑀𝐴ሺ𝑡ሻ ൌ
1
15

෍ 𝐷𝑟ሺ𝑡ሻ

௧

௧ିଵସ

ሺ5ሻ 239 

where MA is the 15-day moving average, and Dr is the daily raw data. 240 

3.3.2. Correlation analysis 241 

The influence of rainfall on the hydrochemical dynamics of thermal springs may exhibit a lag 242 
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effect, while hydrochemical precursor anomalies induced during earthquake preparation processes 243 

typically precede earthquake events. These two mechanisms exhibit a significant temporal phase 244 

difference in their perturbations to hydrochemical components. In this study, the cross-correlation 245 

function is employed to quantitatively analyse the temporal offset between the impacts of rainfall and 246 

seismic activity on thermal spring hydrochemistry. This study aims to identify the maximum 247 

correlation time offset between rainfall-hydrochemistry and precursory anomaly-main shock events 248 

via the calculation of correlation coefficients at varying lag times. The cross-correlation function is 249 

defined as: 250 

𝐶𝐶௫௬ሺ𝑘ሻ ൌ
1
𝑁
෍ሺ𝑥௧ െ 𝑥ሻ

ேି௞

௧ୀଵ

ሺ𝑦௧ା௞ െ 𝑦ሻ ሺ6ሻ 251 

where x and y are two time series, 𝑥 and 𝑦 represent their sample means, N is the series length, and 252 

k denotes the lag. Considering the seasonal effects of rainfall and the response time reliability of 253 

seismic precursors, the k is set within a range of −45 to 45 days. 254 

In the cross-correlation analysis, the denoised hydrochemical component time series (processed 255 

using a 15-day moving average) are correlated with both the rainfall time series and the distance-256 

corrected M0 time series. This analysis aims to evaluate the effectiveness of the moving-average 257 

method in filtering out rainfall-induced interference by assessing the correlation intensity between the 258 

denoised hydrochemical time series and rainfall. At the same time, the analysis verifies potential 259 

temporal linkages between the denoised hydrochemical components and regional seismic moment 260 

release. 261 
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 262 

Figure 3. Cross-correlation function analysis of the 15-day moving average time series of hydrochemical components 263 

during stable isotope monitoring, with rainfall and distance-corrected seismic moment. 264 

The results of the cross-correlation analysis (Figure 3) show weak correlations (blue dotted lines) 265 

between rainfall events and the 15-day moving average hydrochemical component time series, with 266 

correlation coefficients approximately within ± 0.2. This result indicates that the moving average 267 

treatment effectively mitigates rainfall-induced noise. Notably, Na+, Ca2+, δD, and δ18O exhibit minor 268 

response peaks at lags of 18–30 days, suggesting that certain impacts on these components persist 15 269 

to 30 days after rainfall. Similarly, the correlations between the distance-corrected M₀ and the denoised 270 
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hydrochemical component time series (red dotted lines) remain low (around ± 0.2). However, K+, Ca2+, 271 

Cl−, SO4
2−, F−, δD, and δ18O exhibit weak response peaks at lags of −39 to −12 days, with varying 272 

peak directions for each component. This observation suggests that seismic activity (12–39 days before 273 

seismic moment release) may influence hydrochemical components, causing their concentrations to 274 

fluctuate (either increasing, decreasing, or remaining stable) owing to different geochemical 275 

mechanisms. 276 

 277 

3.4. Detection algorithms 278 

3.4.1. BCP analysis 279 

The correlation analysis results indicate that changes in environmental parameters have little to 280 

no significant influence on denoised hydrochemical components, or their effects were slow processes. 281 

Consequently, these component time series appear to follow specific distribution patterns. However, 282 

since earthquake events are stochastic and hydrochemical anomalies (i.e., change points) emerge 283 

during the pre-earthquake period without a known rupture time, continuous hydrochemical monitoring 284 

data exhibit non-stationary variations. Therefore, BCP analysis is applied to effectively extract 285 

anomalous signals from these component time series. 286 

To detect change points in pre-seismic hydrochemical component time series and verify their 287 

correspondence with earthquakes for forecasting future earthquake occurrences, the BCP analysis 288 

algorithm, which is developed for Earth climate systems (Ruggieri, 2012) to the 15-day moving 289 

average time series of all component concentrations from QJ and WN, is applied to this study. The 290 

analysis produces Bayesian predictive model curves, change point locations, and posterior 291 
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probabilities for each component. The posterior probabilities represent the likelihood of change point 292 

occurrences in the predictive models, with probability peaks indicating the most likely timings of 293 

change points. 294 

 295 
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Figure 4. Anomaly detection results from the Bayesian change point (BCP) analysis applied to hydrochemical 296 

component time series. The black solid line represents the component concentration after 15-day moving averaging. 297 

The green dashed line indicates the forecasting model of the BCP algorithm. The red solid line shows the posterior 298 

probability of change points. Yellow stars mark earthquake events. The false alarm rate (FAR), probability of 299 

detection (POD), and threat score (TS) are evaluation metrics; further details are provided later. 300 

The results show that change points are successfully detected in all component time series from 301 

both thermal springs (Figure 4). For example, before the M6.6 earthquake on December 24, 2021, the 302 

posterior probability for a Ca2+ change point at QJ was 0.06 at 15 days before the earthquake, while 303 

SO4
2− exhibited a posterior probability of 0.17 at 37 days before the earthquake. Similarly, before the 304 

M5.2 earthquake on November 16, 2021, Cl− at WN showed posterior probabilities for change points 305 

of 0.15 and 0.51 at 3 and 17 days before the earthquake, respectively. Notably, the timing and posterior 306 

probabilities of change points exhibit significant uncertainty, which reflects the complexity of factors 307 

influencing hydrochemical component variations. These factors include inhomogeneity in stress 308 

accumulation, the structural complexity of fault and aquifer systems, modulation by deep gas 309 

degassing, and the mixing effects of multi-source fluids (Skelton et al., 2014; Kim et al., 2019; Hosono 310 

et al., 2020). Although earthquakes result from the coupling of multiple factors, most change points 311 

are identified within 45 days preceding the earthquakes. This observation suggests that component 312 

concentration changes are sensitive to earthquake preparation processes and do occur before 313 

earthquakes, which provides critical empirical support for anomaly detection algorithm models. 314 

The BCP analysis algorithm for anomaly detection also has limitations. Compared with the Na+ 315 

detection results at WN, the Cl− time series produces two false positives for 2022 and misses three 316 
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earthquakes for 2023 (Figure 4c, d). This result suggests that the analysis requires a longer time series 317 

and is highly sensitive to prior distribution settings. In practice, identifying the locations and 318 

probabilities of earthquake-induced change points in hydrochemical component time series is 319 

challenging. Larger-amplitude component changes often overshadow smaller-amplitude variations, 320 

which makes the latter difficult to detect and more prone to missed detections or false positives. 321 

Additionally, most BCP methods have a fundamental limitation: they inherently perform retrospective 322 

analysis on complete time series. Specifically, identifying a change point at time ti relies on data 323 

collected after ti (t > ti), which makes real-time, forward earthquake forecasting unfeasible with short-324 

term data sequences (Piersanti et al., 2016). 325 

3.4.2. Anomaly detection model 326 

According to the results of the BCP analysis, change-point detection for earthquake forecasting 327 

should be viewed as a supplementary approach. This study enhances the real-time anomaly detection 328 

algorithm for soil radon concentration time series (Piersanti et al., 2016; Soldati et al., 2020) and 329 

applies it to hydrochemical multicomponent time series (Na+, Cl−, SO4
2−, δD, δ18O, etc.). The aim is 330 

to establish an anomaly detection model within a multi-parameter feature space to explore potential 331 

correlations between hydrochemical component variations and major earthquakes. This study modifies 332 

the algorithmic workflow to a backward processing mode and enables real-time forward forecasting. 333 

In the study, evaluation metrics for parameter optimisation are introduced and a seismic response time 334 

threshold parameter, which accounts for local geological conditions is incorporated. The detection 335 

model processes hydrochemical component time series and confirms earthquake catalogues, fitting 336 

optimal parameters based on the evaluation metrics to generate the best anomaly detection parameter 337 
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combinations for each component. The optimised model performs online, point-by-point data 338 

processing for real-time monitoring. When real-time hydrochemical data deviates from the threshold, 339 

the model triggers an alarm to predict earthquakes, which enhances forecasting accuracy through 340 

multicomponent collaboration (Figure 5). The model improves in three ways: 1) the model 341 

incorporates a multi-parameter collaborative verification mechanism that reduces environmental noise 342 

interference; 2) the model identifies components with superior anomaly detection performance; 3) the 343 

model analyses anomaly intensity based on the number of components detecting anomalies for the 344 

same earthquake, thereby improving detection accuracy and reducing false positives and missed alarms. 345 

 346 

Figure 5. Framework of the hydrochemical multicomponent synergy anomaly detection model. 347 

The improved detection algorithm procedure (Figure S2) is as follows: Real-time monitoring data 348 

for each component from day i are loaded. If the daily value on day i−p2 exceeds p1 times the 15-day 349 

moving average on day i−p2−1, and simultaneously, the 15-day moving average on day i surpasses p3 350 

times that on day i−p2, the system triggers an alarm on day i. This alarm is considered a successful 351 
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early warning if an M ≥ 4 earthquake occurs within I + Tth. After an earthquake, new parameters 352 

p1’ = p4 × p1 and p3’ = p4 × p3 are used for a period of p5^M (where M is the magnitude). If 353 

subsequent earthquakes occur within this period, the post-earthquake time is calculated based on the 354 

maximum magnitude. If no M ≥ 4 earthquakes occur during this interval, parameters p1 and p3 355 

automatically revert to their initial values. The algorithm incorporates five adjustable parameters (p1–356 

p5) and a seismic response time threshold (Tth), with p1, p3, and Tth being key parameters. 357 

When thermal water is subjected to external disturbances (e.g., contamination or anthropogenic 358 

inputs), particularly the dissolution of a single compound, variations in hydrochemical ion 359 

concentrations generally follow the charge balance principle, often resulting in synchronous changes 360 

in paired cations and anions. To minimise the impact of uncertain interference and improve program 361 

efficiency, reliable warning signals should be defined by concurrent alarms from at least three 362 

hydrochemical components. The intensity of the anomaly increases with the number of components 363 

triggering simultaneous alarms. 364 

3.4.3. Evaluation metrics 365 

Given that earthquake forecasting research focuses on evaluating algorithms’ ability to identify 366 

low-probability earthquake events, this study employs four evaluation metrics based on the number of 367 

correct alarms (NA), false alarms (NB), and missed alarms (NC). 368 

False alarm rate (FAR): This measures the proportion of non-earthquake events incorrectly classified 369 

as earthquake events, relative to the total number of warning instances. 370 

𝐹𝐴𝑅 ൌ 𝑁𝐵 ሺ𝑁𝐴 ൅ 𝑁𝐵⁄ ሻ ሺ7ሻ 371 

Missed alarm rate (MAR): The proportion of earthquakes that are not detected relative to the total 372 
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number of earthquake events, indicating the risk of failing to identify such events. 373 

𝑀𝐴𝑅 ൌ 𝑁𝐶 ሺ𝑁𝐴 ൅ 𝑁𝐶ሻ⁄ ሺ8ሻ 374 

Probability of detection (POD): The proportion of correctly identified earthquake events out of all 375 

earthquake events, assessing the model’s ability to detect these events. 376 

𝑃𝑂𝐷 ൌ 𝑁𝐴 ሺ𝑁𝐴 ൅ 𝑁𝐶⁄ ሻ ሺ9ሻ 377 

Threat score (TS): This reflects the accuracy of the forecast, ranging from 0 (complete mismatch) to 1 378 

(perfect match) with actual events. 379 

𝑇𝑆 ൌ 𝑁𝐴 ሺ𝑁𝐴 ൅ 𝑁𝐵 ൅ 𝑁𝐶ሻ⁄ ሺ10ሻ 380 

This metric system allows for a more accurate evaluation of the model’s forecasting performance in 381 

handling imbalanced data through multi-dimensional quantitative analysis. 382 

 383 

4. Results and discussion 384 

4.1. Hydrochemistry 385 

The average water temperature at QJ is approximately 60°C, with a pH of 7.5 and an EC of 1148 386 

μS/cm, while WN has a higher temperature of 80°C, a pH of 7.9, and a lower EC of 579 μS/cm. Both 387 

QJ (sandstone) and WN (mylonite, gneiss, etc.) exhibit similar hydrochemical types (HCO3-Na), 388 

owing to the comparable lithology of the surrounding rocks. The δ18O values at QJ range from −13.19‰ 389 

to −11.81‰, while the δD values range from −94.93‰ to −90.59‰. At WN, the δ18O values range 390 

from −13.22‰ to −12.01‰, and the δD values range from −91.26‰ to −88.09‰. The narrow 391 

fluctuation range of stable isotopes in both thermal springs, coupled with their proximity to the local 392 

and global meteoric water lines (Figure S3), suggests that the thermal spring water originates from 393 
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atmospheric precipitation. Overall, the two springs exhibit similar hydrochemical characteristics, 394 

which minimises the impact of compositional differences on the evaluation of algorithm effectiveness 395 

across the different springs. For detailed hydrochemical ion concentrations and isotope values, please 396 

refer to the supplementary materials. 397 

 398 

4.2. Model parameters 399 

4.2.1. Seismic response time threshold 400 

The anomaly detection model in this study establishes forecasting rules based on the temporal 401 

correlation between precursor anomalies and earthquake events. The seismic response time threshold 402 

(Tth) plays a key role in determining both forecasting performance and practical value. Tth is defined 403 

as the maximum allowable time interval between anomaly detection and earthquake occurrence. This 404 

threshold is a critical parameter that balances accuracy and timeliness. Increasing Tth expands the 405 

monitoring window and captures more potentially correlated abnormal signals, but it significantly 406 

reduces the time resolution of forecasting. Conversely, decreasing Tth improves temporal precision but 407 

may risk omitting valid precursor signals owing to shorter observation periods. 408 

To improve the accuracy of the anomaly detection model in predicting earthquake timing, the 409 

nonlinear effects of Tth on predictive performance are systematically explored via an incremental 410 

increase of Tth from 5 to 70 days in 5-day steps. This increase identifies key inflection points during 411 

threshold optimisation (Figure S4). As Tth increases from 5 to 45 days, model performance improves 412 

considerably, with both TS and POD rising rapidly, while FAR gradually decreases. This improvement 413 

results from the extended monitoring windows, which better capture the association between 414 
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anomalies and seismic activities. Notably, the evaluation metrics reveal a turning point at the 45-day 415 

threshold. Beyond 45 days, the trends in TS, POD, and FAR plateaus, with minimal variation. This 416 

result is consistent with the finding that maximum cross-correlations between M0 and hydrochemical 417 

components (Cl−, SO4
2−, δD) occur within 45 days before the earthquake (Figure 3) and that BCP 418 

analysis detects most change points emerging within 45 days of pre-earthquake events (Figure 4). 419 

Collectively, these results jointly define 45 days as the optimal response time threshold for 420 

hydrochemical precursors to seismic activities in the study area. 421 

4.2.2. Free parameters 422 

The parameter optimisation process involves quantitatively aligning observed hydrochemical 423 

data with seismic precursor anomalies. Among the five adjustable parameters (p1–p5) in the detection 424 

model, the key regulatory parameters p1 and p3 represent multiples of the sliding window values. This 425 

study focuses on p1 and p3 to examine the influence of the optimisation of these parameters on the 426 

performance of the anomaly detection model. For optimisation involving ion concentration data, the 427 

model applies parameter values ranging from 1.00 to 1.20 in steps of 0.01. For optimisation involving 428 

isotopic data, which exhibit minor fluctuations, the model applies parameter values ranging from 0.985 429 

to 1.015, with a step increment of 0.001. Model performance is then evaluated using TS. Figure 6 430 

shows the variations in the TS under different values of p1 and p3. When p1 and p3 are small, the 431 

model becomes overly sensitive to background noise, detecting more non-seismic signals. This effect 432 

leads to an increase in the FAR and a decrease in TS. As p1 and p3 increase, TS improves. However, 433 

when the parameters become excessively large, surpassing the actual seismic anomaly thresholds, the 434 

MAR rises sharply, which causes TS to drop below 0.35. The optimal parameter combinations for each 435 
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hydrochemical component are identified at the TS peak inflection points (marked by yellow circles). 436 

According to this method, the complete set of model parameters for all hydrochemical components at 437 

QJ and WN is provided in Table S2. 438 

 439 

Figure 6. Effect of parameters on model performance. TS varies with changes in p1 and p3 (the main free 440 

parameters p1 and p3 are used as examples). The yellow circle highlights the TS value corresponding to the optimal 441 

combination of p1 and p3. 442 

The parameter optimisation results reveal notable differences in the optimal p1 and p3 443 

combinations for different hydrochemical components. Hydrochemical anomalies preceding 444 

earthquakes in many regions are typically caused by the combined action of multiple mechanisms 445 

(Skelton et al., 2014; Kim et al., 2019; Hosono & Masaki, 2020). Furthermore, owing to significant 446 

variations in the geochemical behavior of different hydrochemical components, components within 447 

the same thermal spring often exhibit diverse response patterns to the same earthquake. These patterns 448 

may include asynchronous variations (increase/decrease/stability) and considerable discrepancies in 449 

the magnitude of change (Shi et al., 2020; Wang et al., 2021; Tian et al., 2023). Therefore, optimising 450 
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parameter combinations to create customised anomaly detection models for specific hydrochemical 451 

components at designated observation points is the key approach in this study to enhance the model’s 452 

ability to detect seismic precursor information. 453 

 454 

4.3. Evaluation of forecasting performance 455 

Figures 7 and 8 present the 15-day moving average time series of hydrochemical components, 456 

anomaly detection results, and earthquake events for the anomaly detection model at QJ and WN. For 457 

each component, the model successfully identifies varying numbers of pre-earthquake anomalies and 458 

triggered warnings. The model activates comprehensive alarms when anomalies are detected in three 459 

or more components simultaneously. At QJ, the model provides 21 effective warnings for 22 460 

earthquake events (POD = 0.95), with 8 false alarms (FAR = 0.28) and a TS of 0.70. At WN, the model 461 

generates 10 accurate warnings for 12 events (POD = 0.83), 5 false alarms (FAR = 0.33), and a TS of 462 

0.59. Compared with the single-component anomaly detection results, the multi-component joint 463 

warning results exhibit higher TS values (Figures 7, 8, 9). This observation demonstrates that 464 

multicomponent collaboration mitigates the effects of geochemical behavior differences among 465 

components, reduces environmental interference on individual ions/ion pairs, and consequently 466 

enhances the accuracy of the anomaly detection model. Zhu et al. (2024) comprehensively evaluated 467 

the anomaly detection performance of several machine learning algorithms using 2.5 years of 468 

hydrochemical data from the southeast coast of China. The best-performing local outlier factor 469 

algorithm achieved an R-score of about 0.6, POD of about 0.7, and FAR of about 0.15. The improved 470 

anomaly detection model demonstrates comparable performance, which confirms its effectiveness. 471 
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The results from the anomaly detection model and BCP analysis are mutually corroborative; however, 472 

the anomaly detection model exhibits superior sensitivity in processing nonlinear time series data. 473 

Taking QJ as an example, the model achieves POD values of 0.70 and 0.59 for Ca2+ and SO4
2− detection 474 

results, respectively (Figures 4 and 7), which represents significant improvements over the BCP 475 

analysis results (0.50 and 0.41). The model is also capable of accurately detecting subtle anomalies 476 

that the BCP analysis may miss. 477 

 478 

Figure 7. Results of the anomaly detection model applied to hydrochemical component time series from Qujiang 479 

spring. The blue curve represents the hydrochemical component time series after a 15-day moving average. Red and 480 
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gray triangles indicate accurate alarms and false alarms, respectively. Yellow stars mark successfully reported 481 

earthquakes. Black and gray vertical bars show detected and missed earthquakes based on the algorithm’s 482 

comprehensive alarm (triggered by ≥ 3 components), respectively. Orange-red boxes highlight synchronous 483 

successful alarms triggered by six or more components. Grayish-blue boxes mark synchronous false alarms triggered 484 

by five or more components. 485 

Owing to variations in the geochemical behaviors of hydrochemical components, their response 486 

patterns and magnitudes to earthquakes differ. Although the mechanisms behind these differences have 487 

not yet reached academic consensus, this study aims to identify effective strong earthquake prediction 488 

indicators applicable to the study area through anomaly detection model results. A comparison of the 489 

TS values of each component’s warning results in QJ and WN (Figure 9) reveals that in the two thermal 490 

springs of the study area, the TS values for Na+, Ca2+, Cl−, SO4
2−, δD, and δ18O detection (around 0.50) 491 

are relatively high. This observation suggests that these components can serve as sensitive indicators 492 

for strong earthquake forecasting in the study area. In general, QJ in the study area exhibits a more 493 

sensitive response to earthquakes. In addition, the anomalies are categorised into multiple consecutive 494 

anomalies and single anomalies (Figures 7 and 8). This phenomenon is more pronounced in the stable 495 

isotope time series, likely because isotopic changes are more sensitive and tend to trigger multiple 496 

warning signals before an earthquake. 497 
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 498 

Figure 8. Results of the anomaly detection model applied to hydrochemical component time series from Wana 499 

spring. The same notes as above for Figure 7. 500 

Among the earthquakes for which the earthquake preparation zone covers both thermal springs, 501 

only two earthquakes (represented by gray vertical bars in Figures 7 and 8) fail to induce 502 

multicomponent anomalies prior to the earthquake. Earthquake Eq1 causes no synchronous anomalies 503 

at either spring, which suggests that Eq1 has a limited impact on regional tectonic activity. For Eq2 504 

(epicentral distance > 600 km), WN shows no alarm response, while QJ reacts effectively. This 505 

discrepancy is likely related to WN’s location on the eastern boundary of the SYB, where stress 506 
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accumulation mainly affects QJ, which is also located on the eastern border. The muted response in 507 

WN likely results from the blocking effects of the RRF (Li et al., 2024; Shao et al., 2024). The similar 508 

abnormal response sensitivity of different springs to the same earthquake demonstrates regional-scale 509 

hydrochemical impacts from earthquake preparation and confirms the stable and reliable performance 510 

of the anomaly detection model. 511 

 512 

Figure 9. TS values of anomaly detection model results for hydrochemical components. DA denotes comprehensive 513 

alarms triggered by the model. 514 

In Figures 7 and 8, the orange-red boxes represent model results of successfully predicted 515 

earthquakes, identified through synchronised anomalies in six or more hydrochemical components. 516 

The width of the boxes, which indicates the interval between the appearance of anomalies and 517 

earthquake occurrence, shows no clear correlation with magnitude or epicentral distance. This 518 

observation underscores the complex dynamic mechanisms and regional structural differences 519 
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involved in the earthquake preparation process, with anomalies often arising from the combined effects 520 

of multiple mechanisms (Thomas, 1988). Spatially, the number of hydrochemical components 521 

exhibiting synchronous anomalies correlates with earthquake magnitude and epicentral distance. 522 

Earthquakes that induce synchronous anomalies in six or more hydrochemical components have 523 

epicentral distances within 150 km for earthquakes with magnitudes less than 6.0 (M < 6.0), while this 524 

distance extends to approximately 450 km for earthquakes with magnitudes greater than or equal to 525 

6.0 (M ≥ 6.0). Although it is difficult to quantify the exact impact of magnitude and distance on the 526 

number of components exhibiting synchronous anomalies, as magnitude increases or distance 527 

decreases, the number of components with synchronous anomalies detected by the model tends to 528 

increase. This trend aligns with the positive correlation between the scale of earthquake energy release 529 

and the number of anomalies, as confirmed by the hydrochemical monitoring results (Li et al., 2022). 530 

Therefore, a significant relationship exists between the temporal variation of hydrochemical 531 

components and earthquakes in the study area. The number of components exhibiting synchronous 532 

anomalies can be used as an effective criterion for determining alarm intensity, with higher intensity 533 

generally corresponding to larger earthquake magnitudes or shorter epicentral distances. 534 

Furthermore, this study reveals that hot springs closer to the epicenter tend to exhibit a greater 535 

number of components with synchronous anomalies during the same earthquake. Pre-earthquake 536 

hydrochemical anomalies generally manifest on a regional scale, which means different thermal 537 

springs can not only validate each other in terms of anomaly timing for forecasting purposes but also 538 

help identify the closest springs to the epicenter based on the number of synchronous anomalous 539 

components. This approach aids in defining potential earthquake preparation zones. According to this 540 

https://doi.org/10.5194/egusphere-2025-2132
Preprint. Discussion started: 17 July 2025
c© Author(s) 2025. CC BY 4.0 License.



32 
 

approach, a dense thermal spring monitoring network provides more opportunities for spatial 541 

earthquake forecasting. 542 

 543 

4.4. Limitations and prospects 544 

This study focuses on evaluating the performance of anomaly detection models in predicting the 545 

timing of earthquakes with magnitudes ≥ 4. One potential cause of false alarms could be anomalous 546 

fluctuations in hydrochemical components triggered by seismic activities with magnitudes < 4 in areas 547 

near thermal springs. Four days after the second synchronised false alarm involving five components 548 

(Figure 7, grayish-blue boxes), an M2.6 earthquake occurred 3 km from QJ. This occurrence suggests 549 

that high-frequency false alarms may not solely result from non-seismic fluid anomalies, but could 550 

also reflect the model’s limited ability to distinguish anomalies caused by microseisms. According to 551 

this finding, it is recommended to establish observation station networks and optimise algorithms to 552 

enable hierarchical alarm systems. Approximately 30 days after the last multicomponent synchronised 553 

false alarms at the two thermal springs (Figures 7 and 8), an M4.1 earthquake occurred, with an 554 

epicenter located outside the radius of the earthquake preparation zone. Current earthquake screening 555 

criteria assume an isotropic underground structure; however, the algorithm requires tailored 556 

optimisation based on the specific geological background in practical applications. Additionally, the 557 

model demonstrates limited adaptability to changes in data trends, highlighting the need for periodic 558 

parameter re-optimisation. While the model is constructed using major elements and stable isotopic 559 

indicators in thermal waters, future research should also consider the potential associations between 560 

other hydrochemical components, such as trace elements, and seismic activity. 561 
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 562 

5. Conclusions 563 

A multicomponent synergistic anomaly detection model is developed using five years of 564 

continuous hydrochemical monitoring data to enable real-time forecasting of M ≥ 4 earthquakes in the 565 

study area. Model parameters are optimised for each component, and their impact on anomaly 566 

detection performance is evaluated to identify applicable hydrochemical indicators for strong 567 

earthquake forecasting. The results of the multicomponent synergy anomaly detection reveal a clear 568 

connection between hydrochemical variations and seismic activity, offer valuable insights, and 569 

establish a new paradigm for precursor identification in earthquake forecasting. The main findings are 570 

summarised as follows: 571 

1. A 45-day response time threshold for hydrochemical components to M ≥ 4 earthquakes is 572 

established as the optimal period for capturing key hydrochemical precursors for short-term 573 

earthquake forecasting. Tailored model parameters for specific hydrochemical components 574 

account for their differences in response characteristics to seismic activity and significantly 575 

enhance the model’s performance and adaptability. 576 

2. The anomaly detection model demonstrates reliable real-time anomaly detection capabilities and 577 

identifies Na, Ca2+, Cl−, SO4
2−, δD, and δ18O as effective indicators for strong earthquake 578 

forecasting, with δD and δ18O exhibiting higher sensitivity to seismic activity. 579 

3. The newly proposed multi-parameter synergy alarm mechanism for hydrochemistry overcomes the 580 

limitations of single-parameter methods and significantly improves the model’s overall 581 

performance in earthquake forecasting. The number of hydrochemical components with 582 
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synchronous anomalies provides a reliable criterion for determining alarm intensity, with higher 583 

intensity typically correlating to larger earthquake magnitudes or shorter epicentral distances. A 584 

dense thermal spring monitoring network can facilitate cross-verification across multiple sites for 585 

time-based forecasting and offer enhanced capabilities for spatial forecasting. 586 
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