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RESPONSES TO REVIEWER TWO’S COMMENTS  

 

We would like to express our sincere appreciation for your valuable comments and 

suggestions on our manuscript. We have carefully considered the comments and have 

revised the manuscript accordingly. The comments are laid out below in italicized font. 

Our response is given in normal font and changes/additions to the manuscript are given 

in the blue text. 

 

# Major comments: 

1. #The introduction offers an overview of earthquake precursor research, 

referencing relevant studies (e.g., Chen, 2009; Pritchard et al., 2020). However, it 

lacks a comprehensive review of competing methodologies, such as Bayesian 

Change Point (BCP) analysis or geophysical approaches, which would better 

contextualize the proposed hydrochemical method. Additionally, while it notes 

challenges in isolating seismic precursors from complex fluid monitoring data, it 

fails to clearly articulate specific gaps in existing hydrochemical anomaly 

detection research. For example, it mentions limitations of single-indicator 

methods but does not quantify their shortcomings (e.g., false positive rates) or 

directly compare them to the multicomponent approach. This limited scope results 

in an underdeveloped problem statement, rendering the study’s contribution 

ambiguous and weakening the justification for its methodological novelty. 

Response: We thank the reviewer for this insightful and constructive feedback. 

We agree that a more comprehensive literature review and a clearer articulation of the 

research gap are essential to strengthen the introduction. 

The study of earthquake precursors relies significantly on various geophysical 
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approaches, including seismology, geomagnetism, geoelectrical methods, and 

ionospheric monitoring. Specifically, seismological methods focus on phenomena such 

as seismic activity analysis, b-value variations, and seismic wave velocity anomalies 

(Papadimitriou, 2008; Chen and Zhu, 2020). Geomagnetic techniques are dedicated to 

observing anomalies in the geomagnetic field (Chen et al., 2022), while geoelectric 

methods involve monitoring anomalies in ground resistivity and the geoelectric field 

(Sidorin, 2003; An et al., 2019). Ionospheric monitoring seeks information potentially 

related to earthquakes by analyzing parameters such as variations in Total Electron 

Content (TEC) (Zulhamidi et al., 2023; Nayak et al., 2024). These approaches are 

primarily effective for identifying long-term trend precursors and are thus more suitable 

for medium- to long-term earthquake forecasting. Nevertheless, for short-term and 

imminent earthquake forecasting, fluid geochemical methods exhibit unique 

advantages due to their sensitivity to changes in crustal stress. 

To further enhance the analysis of data, Bayesian techniques are particularly 

valuable for addressing uncertainties, integrating multi-source data, and improving 

predictive accuracy (Zhang et al., 2016; Jiao and Shan, 2024). Specific applications 

include detecting ionospheric anomalies with Bayesian-LSTM models (Saqib et al., 

2024), predicting GPS-TEC variations via Bayesian regularized backpropagation 

algorithms (Karatay and Gul, 2023), and analyzing groundwater geochemical 

composition using Bayesian mixture models (Chen et al., 2025), all of which contribute 

to more reliable identification of earthquake precursor signals. 

In response to the comment on articulating research gaps, in the revised manuscript, 

we will explicitly state the shortcomings of single-index methods. Regarding the direct 

comparison with multi-component methods, to the best of our knowledge, there is a 

scarcity of published results applying such methods. This makes a direct, quantitative 

comparison challenging at this stage. 

References: 

Papadimitriou, P.: Identification of seismic precursors before large earthquakes: 



 

3 

 

Decelerating and accelerating seismic patterns. Journal of Geophysical Research: 

Solid Earth, 113(B4), https://doi.org/10.1029/2007jb005112, 2008. 

An, Z., Zhan, Y., Fan, Y., Chen, Q., and Liu, J.: Investigation of the characteristics of 

geoelectric field earthquake precursors: a case study of the Pingliang observation 

station, China, Annals of Geophysics, 63(5), PA545, https://doi.org/10.4401/ag-

7982, 2020. 

Nayak, K., Romero-Andrade, R., Sharma, G., López-Urías, C., Trejo-Soto, M. E., and 

Vidal-Vega, A. I.: Evaluating Ionospheric Total Electron Content (TEC) Variations 

as Precursors to Seismic Activity: Insights from the 2024 Noto Peninsula and 

Nichinan Earthquakes of Japan, Atmosphere, 15(12), 1492, 

https://doi.org/10.3390/atmos15121492, 2024. 

Sidorin, A. Ya.: Search for earthquake precursors in multidisciplinary data monitoring 

of geophysical and biological parameters, Natural Hazards and Earth System 

Sciences, 3(3/4), 153–158, https://doi.org/10.5194/nhess-3-153-2003, 2003. 

Zulhamidi, N. F. I., Abdullah, M., Abdul Hamid, N. S., Yusof, K. A., and Bahari, S. A.: 

Investigating short-term earthquake precursors detection through monitoring of 

total electron content variation in ionosphere, Frontiers in Astronomy and Space 

Sciences, 10, https://doi.org/10.3389/fspas.2023.1166394, 2023. 

Chen J, Zhu S.: Spatial and temporal b-value precursors preceding the 2008 Wenchuan, 

China, earthquake (Mw=7.9): implications for earthquake prediction, Geomatics, 

Natural Hazards and Risk, 11(1), 1196-1211, 

https://doi.org/10.1080/19475705.2020.1784297, 2020. 

Chen, H., Han, P., Hattori, K.: Recent Advances and Challenges in the Seismo-

Electromagnetic Study: A Brief Review, Remote Sensing, 14, 5893, 

https://doi.org/10.3390/rs14225893, 2022. 

Chen, Y., Huang, F., Hu, L., Wang, Z., Yang, M., Hua, P., Sun, X., Zhu, S., Zhang, Y., 

Wu, X., Wang, Z., Xu, L., Han, K., Cui, B., Dong, H., Fei, B., and Zhou, Y.: Two 

Opposite Change Patterns Before Small Earthquakes Based on Consecutive 

Measurements of Hydrogen and Oxygen Isotopes at Two Seismic Monitoring 

https://doi.org/10.1029/2007jb005112
https://doi.org/10.3390/atmos15121492
https://doi.org/10.5194/nhess-3-153-2003
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Sites in Northern Beijing, China. Geosciences, 15(6), 

https://doi.org/10.3390/geosciences15060192, 2025. 

Jiao, Z., & Shan, X.: A Bayesian Approach for Forecasting the Probability of Large 

Earthquakes Using Thermal Anomalies from Satellite Observations, Remote 

Sensing, 16(9), https://doi.org/10.3390/rs16091542, 2024. 

Karatay, S., & Gul, S. E.: Prediction of GPS-TEC on Mw > 5 Earthquake Days Using 

Bayesian Regularization Backpropagation Algorithm, IEEE Geoscience and 

Remote Sensing Letters, 20, 1-5, https://doi.org/10.1109/lgrs.2023.3262028, 2023. 

Saqib, M., Şentürk, E., Arqim Adil, M., and Freeshah, M.: Seismo-ionospheric 

precursory detection using hybrid Bayesian-LSTM network model with 

uncertainty-boundaries and anomaly-intensity, Advances in Space Research, 74(4), 

1828-1842, https://doi.org/10.1016/j.asr.2024.05.023, 2024. 

Zhang, Y., Zhao, H., He, X., Pei, F.-D., & Li, G.-G.: Bayesian prediction of earthquake 

network based on space–time influence domain, Physica A: Statistical Mechanics 

and its Applications, 445, 138-149, https://doi.org/10.1016/j.physa.2015.11.006, 

2016. 

 

2. #The earthquake selection method employs Dobrovolsky’s preparation zone radius 

formula, assuming isotropic subsurface structures. This oversimplification 

disregards the anisotropic complexities of faults and aquifers at the Xiaojiang-Red 

River Fault (XJF-RRF) intersection, potentially leading to inaccurate event 

selection. The manuscript neither justifies this assumption nor evaluates its 

sensitivity, which compromises the reliability of correlations between 

hydrochemical anomalies and seismic events. 

Response: Thank you for your insightful comment regarding the use of 

Dobrovolsky’s formula for estimating the earthquake preparation zone radius. We agree 

that the assumption of isotropic subsurface structures is a simplification, particularly in 

complex fault-aquifer systems such as the Xiaojiang-Red River Fault (XJF-RRF) 
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intersection, where anomalies may be more likely to occur along the strike of fault. 

In our study, we adopted Dobrovolsky’s empirical formula based on its theoretical 

foundation and widespread validation in the literature. As derived in Dobrovolsky et al. 

(1979), the formula originates from a mechanical model that treats the preparation zone 

as a “soft inclusion” within an elastic half-space. The calculation corresponds to a 

special case of a homogeneous isotropic inclusion where only the shear modulus 

decreases, under the action of shear stresses applied at infinity. This formulation allows 

estimation of surface deformations and tilts as a function of both earthquake magnitude 

and epicentral distance. Crucially, it was shown that the precursors of other physical 

nature fall into this circle. As emphasized in the original work, the primary purpose of 

the model is not to capture intricate anisotropic fault structures, but rather to estimate 

the "zone of effective manifestation of the precursor deformations"—termed the "strain 

radius." Thus, even in anisotropic media, the formula provides a robust reference scale 

for the maximum circular area potentially influenced by the source process. 

In long-term studies of seismic fluid geochemistry, comprehensive comparisons 

of empirical formulas used in precursor research have identified Dobrovolsky’s formula 

as the theoretical foundation for numerous geochemical earthquake prediction methods, 

demonstrating relatively broad applicability (Li et al., 2023). This foundation has been 

applied in forecasting studies across various seismic regions worldwide, such as those 

focusing on radon emanation and hydrochemistry (Hashemi et al., 2012; Fu et al., 2017; 

Barkat et al., 2018; Süer et al., 2020; Zhang et al., 2020; Zhao et al., 2021; Zhou et al., 

2021; Seminsky and Seminsky, 2024; Zhu et al., 2024). Based on long-term 

observations of 27 radon-involved earthquake cases in China between 1997 and 2020, 

9 widely applied prediction methods were evaluated. The results showed that 

Dobrovolsky’s formula achieved the highest applicability rate, reaching 96.30% (Li et 

al., 2023). A recent study on Mw 5.0 earthquakes in Western Türkiye (Yakupoglu et al., 

2025) demonstrated that pre-earthquake hydrogeochemical anomalies were detected 

within the strain radius predicted by Dobrovolsky’s formula but well beyond the smaller 

radius estimated by the geologically-constrained model (D = 100.28M+0.25) by Martinelli 
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and Tamburello (2020). This finding, observed in a complex tectonic setting, supports 

the validity and practical utility of Dobrovolsky’s formula for defining the potential 

extent of preparatory processes. 

We acknowledge that the isotropic assumption may not fully capture the 

anisotropic nature of fault zones and aquifer systems. Although Dobrovolsky’s formula 

has been extensively validated by global observations, we have explicitly addressed 

this limitation in the Limitations section of our manuscript. Based on our results, we 

note that some false positive earthquake events may be attributed to the isotropic 

assumption of the earthquake selection criteria, which cause earthquakes located 

beyond the calculated radius along the same fault zone to be overlooked. As described 

on line 553: “Approximately 30 days after the last multicomponent synchronised false 

alarms at the two thermal springs, an M 4.1 earthquake occurred, with an epicenter 

located outside the radius of the earthquake preparation zone.” Therefore, we have 

emphasized that future work should incorporate more complex, anisotropic models to 

improve accuracy in active tectonic regions. 

Based on the above statement, we have added more details on Lines 176-183: 

To identify earthquakes potentially influencing hydrochemical component 

variations and to establish a precise correlation between hydrochemical changes and 

seismic activity, a screening method based on the preparation zone radius formula 

(Dobrovolsky et al., 1979) was employed:  

𝑅𝑅 = 100.43𝑀𝑀 (2) 

where M represents the earthquake magnitude, and R denotes the radius (in km) of the 

earthquake preparation zone. The method provides an empirically validated and widely 

adopted reference scale for selecting potentially correlated earthquake events (Li et al., 

2023; Zhu et al., 2024; Yakupoglu et al., 2025). 

On Lines 555-557: 

Current earthquake screening method assumes an isotropic underground structure 

although effective and widely used. Therefore, the algorithm requires optimisation 

based on the specific geological background in further research. 
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References: 
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3. #The 15-day moving average effectively reduces rainfall-induced noise, as 

evidenced by low cross-correlation coefficients (± 0.2). However, the method lacks 

validation against other environmental factors, such as temperature or barometric 

pressure, or long-term trends that may influence hydrochemical signals. Without a 

control dataset or comparison with alternative filtering techniques (e.g., wavelet 

transforms), confidence in the denoising process is limited, undermining the 
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robustness of the data preprocessing methodology. 

Response: We sincerely thank the reviewer for this insightful comment and for 

acknowledging the effectiveness of the 15-day moving average. We agree that 

validating the denoising process is crucial for robustness. We have carefully considered 

your points regarding the potential influences of environmental factors beyond rainfall, 

as well as the validation of the denoising approach. We have now performed additional 

analyses and revised the manuscript accordingly to address these concerns point-by-

point. 

We would like to clarify that the hydrochemical component of the thermal spring 

water in our study area is primarily controlled by deep geothermal processes and 

lithology of the surrounding rocks. To further substantiate this, we incorporated 

concurrent meteorological data. Specifically, comparative plots (Figure S6) between 

hydrochemical data (taking Na⁺ time series from Qujiang spring as an example) and 

local meteorological data (including temperature and atmospheric pressure) 

consistently show weak correlation, confirming that these factors do not significantly 

influence the variability in hydrochemical component concentrations. Moreover, partial 

decreases in Na⁺ concentration following rainfall events are observable. These confirm 

our focus on rainfall as the dominant environmental noise source. 

 
Figure S6. Time series of Na+, alongside corresponding rainfall (R), temperature (T), and 
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atmospheric pressure (P) for Qujiang spring. 

While the 15-day moving average effectively reduces high-frequency noise related 

to rainfall pulses, we agree that additional validation strengthens methodological 

robustness. Accordingly, we have further applied both Fast Fourier Transform (FFT) 

low-pass filtering and a 3-level wavelet denoising technique (using DB5 wavelet with 

20% threshold) to the same dataset (Figure S7, again using the Na⁺ series from Qujiang 

as an example). The results demonstrate approximately consistent signal smoothing 

across all three methods, thereby reinforcing the reliability of the moving average 

approach for denoising process. Although the backward moving average introduces a 

slight phase lag, this method is better suited to the real-time anomaly detection 

framework of our detection model. 

 

Figure S7. Comparison of denoising results using 15-day moving average, Fast Fourier Transform, 

and 3-level Wavelet. 

We have revised the manuscript on line 225 to include a brief comparison of these 

filtering techniques and to more explicitly state the rationale for focusing on rainfall-

induced noise:  

The thermal spring water in the study area originates from atmospheric 

precipitation recharge. It circulates deeply through faults, is heated by geothermal 

energy, and then discharges at the surface, with its hydrochemical composition mainly 
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determined by the lithology of the surrounding rocks (Shao et al., 2024). Consequently, 

ambient temperature and atmospheric pressure at the spring outlet have a negligible 

effect on the hydrochemistry. However, rainfall serves not only as the primary water 

source but also accelerates groundwater circulation, promotes shallow infiltration, and 

mixes with thermal waters (Taylor et al., 2012; Hosono et al., 2020; Colman et al., 

2021). This process can potentially obscure deep-seated earthquake preparatory signals 

carried by the thermal spring. Consequently, this study focuses on assessing the 

potential perturbations induced by rainfall on thermal spring hydrochemistry. As shown 

in the comparative analysis of hydrochemical and meteorological data (Figure S6), 

rainfall is the dominant interfering factor, with ion concentrations partially decreasing 

following events, whereas the effects of temperature and pressure are negligible. Unlike 

temperature and pressure, rainfall causes pulsed disturbances, typically manifesting as 

intermittent spikes followed by extended zero-value intervals in sampling data. To 

suppress high-frequency noise from short-term environmental disturbances such as 

rainfall while preserving mid- to low-frequency tectonic signals, a 15-day backward 

moving average is applied to process the 3-day resolution hydrochemistry data. This 

method is better suited to the real-time anomaly detection framework of detection 

model. To validate the robustness of the denoising process, the results obtained from 

the moving average were compared with those derived from Fast Fourier Transform 

low-pass filtering and wavelet-based denoising techniques (Figure S7). The 

approximately consistent outcomes across all methods confirm the suitability of the 
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moving average approach for suppressing high-frequency noise. 

𝑀𝑀𝑀𝑀(𝑡𝑡) =
1

15
� 𝐷𝐷𝐷𝐷(𝑡𝑡)
𝑡𝑡

𝑡𝑡−14

(5) 

where MA is the 15-day moving average, and Dr is the daily raw data. 

 

4. #The optimization of parameters p1 and p3 is thoroughly described but lacks 

transparency regarding the selection of parameter ranges. The manuscript does 

not explore alternative optimization methods, such as grid search with cross-

validation, nor does it assess the sensitivity of results to parameter variations 

beyond the TS presented in Figure 6. This omission raises concerns about the 

robustness and reproducibility of the anomaly detection model. Furthermore, using 

the entire dataset for parameter optimization introduces a significant risk of 

overfitting, which is not addressed, further undermining the model’s reliability. 

Response: We thank the reviewer for their thorough review and valuable 

comments, which have helped us significantly improve the manuscript. 

1) We acknowledge that the anomaly detection model is an application-specific 

model for the seismic industry, not a general-purpose computer model, with the goal of 

exploring relatively effective methods for earthquake forecasting. The parameter ranges 

were not chosen arbitrarily but were based on certain seismological rationale and 

operational framework of model. Please allow us to clarify the rationale for each 

parameter: 

Parameters p1 and p3 represent multiples of the sliding window values. The model 

logic requires a baseline multiplier exceeding 1.0 to define a meaningful deviation from 

threshold. Values below 1.0 would inappropriately trigger alarms for values falling 

below the average, which does not represent the target earthquake anomaly. The upper 

bound of 1.2 was determined empirically during the optimization process, where it was 

consistently observed that model performance degraded beyond this value, thereby 
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establishing a natural performance-based limit for these threshold multipliers. 

Parameter p2 defines the anomaly duration interval, which must not exceed the 

seismic response time threshold of 45, otherwise it becomes meaningless. 

Parameter p4 represent post-earthquake sensitivity adjustment multiplier. The 

purpose of p4 is to increase the thresholds (p1 and p3) following an earthquake to 

reduce sensitivity to post-earthquake disturbances. Therefore, a value greater than 1.0 

is physically necessary to achieve this effect. However, an excessively high value for 

p4 would oversuppress the model’s sensitivity, potentially causing it to miss genuine 

post-earthquake anomalies and thus defeating its intended purpose. 

Parameter p5 represent magnitude-scaling factor for post-earthquake duration. Its 

value must exceed 1.0 to ensure the period (p5^M) scales appropriately with increasing 

earthquake magnitude (M). An appropriate upper bound is applied to prevent 

unrealistically long periods that would lack physical justification. 

In summary, the lower bounds for parameters are defined by the model’s 

foundational logic, while the upper bounds are determined by actual model 

performance test results and fundamental constraints of seismology.  

We have briefly supplemented the basis for the selection of parameter ranges on 

line 427: 

The parameter ranges were based on certain seismological rationale, operational 

framework of model, and actual model performance test results. For optimisation 

involving ion concentration data, the model applies parameter values ranging from 1.00 

to 1.20 in steps of 0.01. 

2) The reviewer rightly pointed out that the original manuscript did not assess the 

sensitivity of the results to parameter variations beyond the Threat Score (TS) presented 

in Figure 6. We have conducted additional sensitivity analyses by testing the model’s 

performance under variations of two key parameters. The results are provided in two 

new supplementary tables (Tables S3 and S4), which present the corresponding values 

for correct alarms (NA), false alarms (NB), and missed alarms (NC), False alarm rate 

(FAR), Missed alarm rate (MAR), Probability of detection (POD), and TS values under 
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different parameter settings. The best values are denoted by bold. 

Table S3. Model performance metrics (NA, NB, NC, FAR, MAR, POD, TS) under 

varying parameters p1 and p3 for Na+ at Qujiang Spring. 

p1 p3 NB NA NA+NC FAR MAR POD TS 
1 1 19 20 22 0.49  0.09  0.91  0.49  
1 1.01 12 18 22 0.40  0.18  0.82  0.53  
1 1.02 6 14 22 0.30  0.36  0.64  0.50  
1 1.03 5 11 22 0.31  0.50  0.50  0.41  
1 1.04 4 9 22 0.31  0.59  0.41  0.35  
1 1.05 3 7 22 0.30  0.68  0.32  0.28  
1 1.06 2 5 22 0.29  0.77  0.23  0.21  
1 1.07 1 4 22 0.20  0.82  0.18  0.17  
1 1.08 1 4 22 0.20  0.82  0.18  0.17  
1.01 1 14 19 22 0.42  0.14  0.86  0.53  
1.01 1.01 8 16 22 0.33  0.27  0.73  0.53  
1.01 1.02 5 12 22 0.29  0.45  0.55  0.44  
1.01 1.03 5 5 22 0.50  0.77  0.23  0.19  
1.01 1.04 4 6 22 0.40  0.73  0.27  0.23  
1.01 1.05 1 6 22 0.14  0.73  0.27  0.26  
1.01 1.06 1 5 22 0.17  0.77  0.23  0.22  
1.01 1.07 1 4 22 0.20  0.82  0.18  0.17  
1.01 1.08 1 2 22 0.33  0.91  0.09  0.09  
1.02 1 8 16 22 0.33  0.27  0.73  0.53  
1.02 1.01 4 14 22 0.22  0.36  0.64  0.54  
1.02 1.02 4 11 22 0.27  0.50  0.50  0.42  
1.02 1.03 4 7 22 0.36  0.68  0.32  0.27  
1.02 1.04 2 6 22 0.25  0.73  0.27  0.25  
1.02 1.05 1 5 22 0.17  0.77  0.23  0.22  
1.02 1.06 1 5 22 0.17  0.77  0.23  0.22  
1.02 1.07 1 4 22 0.20  0.82  0.18  0.17  
1.02 1.08 1 2 22 0.33  0.91  0.09  0.09  
1.03 1 4 13 22 0.24  0.41  0.59  0.50  
1.03 1.01 4 12 22 0.25  0.45  0.55  0.46  
1.03 1.02 2 10 22 0.17  0.55  0.45  0.42  
1.03 1.03 2 6 22 0.25  0.73  0.27  0.25  
1.03 1.04 2 6 22 0.25  0.73  0.27  0.25  
1.03 1.05 1 5 22 0.17  0.77  0.23  0.22  
1.03 1.06 1 5 22 0.17  0.77  0.23  0.22  
1.03 1.07 1 3 22 0.25  0.86  0.14  0.13  
1.03 1.08 1 2 22 0.33  0.91  0.09  0.09  
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1.04 1 2 10 22 0.17  0.55  0.45  0.42  
1.04 1.01 2 8 22 0.20  0.64  0.36  0.33  
1.04 1.02 2 7 22 0.22  0.68  0.32  0.29  
1.04 1.03 2 6 22 0.25  0.73  0.27  0.25  
1.04 1.04 2 5 22 0.29  0.77  0.23  0.21  
1.04 1.05 1 5 22 0.17  0.77  0.23  0.22  
1.04 1.06 1 5 22 0.17  0.77  0.23  0.22  
1.04 1.07 1 3 22 0.25  0.86  0.14  0.13  
1.04 1.08 1 2 22 0.33  0.91  0.09  0.09  
1.05 1 2 6 22 0.25  0.73  0.27  0.25  
1.05 1.01 2 6 22 0.25  0.73  0.27  0.25  
1.05 1.02 2 6 22 0.25  0.73  0.27  0.25  
1.05 1.03 2 6 22 0.25  0.73  0.27  0.25  
1.05 1.04 2 5 22 0.29  0.77  0.23  0.21  
1.05 1.05 1 5 22 0.17  0.77  0.23  0.22  
1.05 1.06 1 5 22 0.17  0.77  0.23  0.22  
1.05 1.07 1 3 22 0.25  0.86  0.14  0.13  
1.05 1.08 1 2 22 0.33  0.91  0.09  0.09  
1.06 1 2 5 22 0.29  0.77  0.23  0.21  
1.06 1.01 2 5 22 0.29  0.77  0.23  0.21  
1.06 1.02 2 5 22 0.29  0.77  0.23  0.21  
1.06 1.03 2 5 22 0.29  0.77  0.23  0.21  
1.06 1.04 2 4 22 0.33  0.82  0.18  0.17  
1.06 1.05 1 4 22 0.20  0.82  0.18  0.17  
1.06 1.06 1 4 22 0.20  0.82  0.18  0.17  
1.06 1.07 1 3 22 0.25  0.86  0.14  0.13  
1.06 1.08 1 2 22 0.33  0.91  0.09  0.09  

 

Table S4. Model performance metrics (NA, NB, NC, FAR, MAR, POD, TS) under 

varying parameters p1 and p3 for SO4
2- at Wana Spring. 

p1 p3 NB NA NA+NC FAR MAR POD TS 
1 1 12 10 12 0.55 0.17  0.83  0.42  
1 1.01 11 10 12 0.52 0.17  0.83  0.43  
1 1.02 11 10 12 0.52 0.17  0.83  0.43  
1 1.03 11 10 12 0.52 0.17  0.83  0.43  
1 1.04 9 8 12 0.53 0.33  0.67  0.38  
1 1.05 8 8 12 0.50 0.33  0.67  0.40  
1 1.06 7 8 12 0.47 0.33  0.67  0.42  
1 1.07 7 6 12 0.54 0.50  0.50  0.32  
1 1.08 6 6 12 0.50 0.50  0.50  0.33  
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1.01 1 11 10 12 0.52 0.17  0.83  0.43  
1.01 1.01 11 10 12 0.52 0.17  0.83  0.43  
1.01 1.02 10 10 12 0.50 0.17  0.83  0.45  
1.01 1.03 10 10 12 0.50 0.17  0.83  0.45  
1.01 1.04 8 8 12 0.50 0.33  0.67  0.40  
1.01 1.05 8 8 12 0.50 0.33  0.67  0.40  
1.01 1.06 7 8 12 0.47 0.33  0.67  0.42  
1.01 1.07 7 6 12 0.54 0.50  0.50  0.32  
1.01 1.08 6 6 12 0.50 0.50  0.50  0.33  
1.02 1 10 10 12 0.50 0.17  0.83  0.45  
1.02 1.01 10 10 12 0.50 0.17  0.83  0.45  
1.02 1.02 10 10 12 0.50 0.17  0.83  0.45  
1.02 1.03 10 10 12 0.50 0.17  0.83  0.45  
1.02 1.04 8 8 12 0.50 0.33  0.67  0.40  
1.02 1.05 8 8 12 0.50 0.33  0.67  0.40  
1.02 1.06 7 8 12 0.47 0.33  0.67  0.42  
1.02 1.07 7 6 12 0.54 0.50  0.50  0.32  
1.02 1.08 6 6 12 0.50 0.50  0.50  0.33  
1.03 1 9 10 12 0.47 0.17  0.83  0.48  
1.03 1.01 8 10 12 0.44 0.17  0.83  0.50  
1.03 1.02 7 9 12 0.44 0.25  0.75  0.47  
1.03 1.03 7 9 12 0.44 0.25  0.75  0.47  
1.03 1.04 7 8 12 0.47 0.33  0.67  0.42  
1.03 1.05 7 8 12 0.47 0.33  0.67  0.42  
1.03 1.06 6 8 12 0.43 0.33  0.67  0.44  
1.03 1.07 6 6 12 0.50 0.50  0.50  0.33  
1.03 1.08 5 6 12 0.45 0.50  0.50  0.35  
1.04 1 9 10 12 0.47 0.17  0.83  0.48  
1.04 1.01 7 10 12 0.41 0.17  0.83  0.53  
1.04 1.02 7 9 12 0.44 0.25  0.75  0.47  
1.04 1.03 7 9 12 0.44 0.25  0.75  0.47  
1.04 1.04 7 8 12 0.47 0.33  0.67  0.42  
1.04 1.05 7 8 12 0.47 0.33  0.67  0.42  
1.04 1.06 6 8 12 0.43 0.33  0.67  0.44  
1.04 1.07 6 6 12 0.50 0.50  0.50  0.33  
1.04 1.08 5 6 12 0.45 0.50  0.50  0.35  
1.05 1 9 9 12 0.50 0.25  0.75  0.43  
1.05 1.01 8 9 12 0.47 0.25  0.75  0.45  
1.05 1.02 8 9 12 0.47 0.25  0.75  0.45  
1.05 1.03 7 9 12 0.44 0.25  0.75  0.47  
1.05 1.04 7 8 12 0.47 0.33  0.67  0.42  
1.05 1.05 7 8 12 0.47 0.33  0.67  0.42  
1.05 1.06 6 8 12 0.43 0.33  0.67  0.44  
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1.05 1.07 6 6 12 0.50 0.50  0.50  0.33  
1.05 1.08 5 6 12 0.45 0.50  0.50  0.35  
1.06 1 7 8 12 0.47 0.33  0.67  0.42  
1.06 1.01 7 8 12 0.47 0.33  0.67  0.42  
1.06 1.02 6 7 12 0.46 0.42  0.58  0.39  
1.06 1.03 6 7 12 0.46 0.42  0.58  0.39  
1.06 1.04 6 6 12 0.50 0.50  0.50  0.33  
1.06 1.05 6 6 12 0.50 0.50  0.50  0.33  
1.06 1.06 5 6 12 0.45 0.50  0.50  0.35  
1.06 1.07 5 5 12 0.50 0.58  0.42  0.29  
1.06 1.08 4 5 12 0.44 0.58  0.42  0.31  

The supplementary results confirm that the Threat Score (TS) provides the most 

robust evaluation of model performance. We selected the Threat Score 

(TS=NA/(NA+NB+NC)) as the primary metric because it provides a comprehensive 

evaluation by integrating NA, NB, and NC, making it particularly suitable for 

evaluating model performance on imbalanced data. It is important to note that the 

parameter sensitivity tables only present results for individual components to clearly 

illustrate the parameter selection process for each component. The multi-component 

joint model results tend to perform significantly better than any single-component 

results, since not every component achieves ideal anomaly detection result on its own. 

3) We sincerely appreciate the reviewer’s concern regarding overfitting, which is 

indeed a critical issue in any data-driven modeling study. The decision to use the entire 

dataset was primarily driven by its limited size, a common challenge in earthquake 

monitoring applications. Acquiring additional data is often prohibitively expensive or 

operationally infeasible, particularly for rare target events such as earthquakes. 

Specifically, for one hydrochemical component analyzed over a five-year monitoring 

period, the dataset consists of only 604 samples, which include just 22 potential 

earthquake events. Under such constraints, partitioning the data into a hold-out test set 

could easily result in a highly unrepresentative subset that might contain 0 earthquake 

events, thereby rendering performance evaluation unreliable or meaningless. Using the 

entire dataset enables a more stable and meaningful evaluation of model performance. 

To mitigate the risk of overfitting, we developed a parsimonious model with a 
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limited number of parameters, in accordance with industry constraints. Furthermore, 

the model framework we adopted was designed to incorporate seismological 

interpretability and empirical predictive experience where feasible, thereby enhancing 

practical applicability and reducing the model’s propensity to overfit compared to more 

complex models. 

 

5. #The study relies on data from only two thermal springs and a limited dataset (22 

and 12 M ≥ 4 earthquakes, respectively), restricting the generalizability of findings 

to other tectonic settings or regional springs. The manuscript does not address how 

site-specific factors, such as lithology or fault geometry, might limit the model’s 

applicability, thus diminishing its broader scientific impact. Furthermore, the 

abstract claims that Na⁺, Ca²⁺, Cl⁻, SO₄²⁻, δD, and δ¹⁸O are sensitive indicators for 

earthquake forecasting, but this assertion is likely valid only for the studied springs. 

Additionally, the shorter time series for δD and δ¹⁸O in Figure 2 undermines their 

reliability as sensitive indicators. 

Response: Thank you for your thoughtful comments regarding the 

generalizability and site-specific nature of our study. We would like to clarify that the 

two thermal springs were not selected arbitrarily. Their selection was based on a 

comprehensive survey of thermal springs within the study area, followed by a thorough 

analysis of their hydrogeochemical characteristics and tectonic activity (Shao et al., 

2024). As described in the Geological setting section, these springs were chosen as 

long-term monitoring sites precisely because of their representative hydrological and 

tectonic conditions, which make them suitable for investigating earthquake-related 

hydrochemical changes. So, we agree that the identified sensitive indicators (Na+, Ca2+, 

Cl−, SO4
2−, δD, and δ18O) are likely most applicable to the specific thermal springs or 

region studied. We have revised the manuscript to ensure this is clearly stated and to 

avoid overgeneralization. 

However, the core value of our model lies not in universally transferring these 
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specific indicators, but in providing a methodological framework. For other regions, 

researchers can apply this model to their own continuous monitoring data from local 

springs. By doing so, they can identify which parameters are sensitive within their 

specific geological and hydrogeological context, thereby addressing differences in 

geological settings.  

We completely agree that the number of earthquake events in our dataset is limited. 

This is indeed a common challenge in the field of earthquake hydrogeochemistry, given 

the inherent difficulty in obtaining continuous hydrogeological data, the low probability 

and uncertainty of earthquake occurrence. For example, even over a 14-year monitoring 

period in a seismically active region like Iceland, only about 5 M ≥ 5 earthquakes might 

be recorded (Skelton et al., 2024). Similarly, at the junction of the Tibetan Plateau and 

the Yunnan-Guizhou Plateau, just 7 events of M ≥ 5 were recorded over an 11-year 

period (Feng et al., 2022). In this context, our continuous observational dataset is 

relatively long-term and detailed for the earthquake hydrogeochemistry field, yet we 

acknowledge that data scarcity is a fundamental constraint in earthquake industry. 

The reason for selecting geologically complex areas for this study is twofold. 

Firstly, these regions often have intricate seismogenic mechanisms, making it difficult 

to distinguish the timing, direction, and amplitude of anomalies based on physical 

mechanisms alone. Short-term, mechanism-based pre-earthquake anomaly analysis is 

exceptionally challenging in such settings. Secondly, precisely because these 

tectonically complex areas experience frequent earthquakes, they provide a relatively 

larger number of earthquake events within a monitoring period, offering a richer sample 

set for developing models. And there is a practical need for monitoring and risk 

mitigation in these seismically active regions. Therefore, the original intention of our 

model was not to rely on a fully understood physical mechanism and geological 

conditions first, but to explore a feasible method for extracting potential anomalies in 

scenarios where the underlying mechanisms are still unclear. 

Based on the above statement, we have revised the manuscript on line 26: 

The model identifies Na+, Ca2+, Cl−, SO4
2−, δD, and δ18O as sensitive indicators 
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for strong earthquake forecasting in the study area. 

On line 577: 

The anomaly detection model demonstrates reliable real-time anomaly detection 

capabilities and identifies Na+, Ca2+, Cl−, SO4
2−, δD, and δ18O as effective indicators 

for strong earthquake forecasting in the study area, with δD and δ18O exhibiting higher 

sensitivity to seismic activity. 

We have added the following content about method application prospects to the 

last part of the 4.4. Limitations and prospects section: 

Owing to significant differences in hydrogeological settings, tectonic activity, and 

the current limitations in quantitatively modeling geothermal water circulation under 

specific geological conditions, a universal set of model parameters applicable across all 

hot springs within even the same tectonic region cannot be established. This highlights 

the necessity of anomaly detection model, which involves optimizing parameters 

specifically for individual hot springs based on their unique pre-seismic responses in 

different hydrochemical components. The model aims to leverage the inherent 

differences among these hydrochemical components, integrating them to enhance 

forecasting efficacy. Crucially, this methodological framework is transferable. For 

application in other tectonic regions, the model can be adapted by similarly optimizing 

the parameter combinations for the target hot spring(s) based on their specific 

hydrochemical components. This addresses the challenge posed by varying tectonic and 

hydrogeological conditions leading to divergent hydrochemical behaviors. By enabling 

the application of the model to hot spring monitoring in specific regions through this 

targeted parameter optimization, the model provides an attempt at a method to 

advancing earthquake forecasting. 
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forecasting earthquakes in Iceland using changes in groundwater chemistry. 
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01852-3, 2024. 

 

6. #The discussion attributes hydrochemical anomalies to stress-induced fluid mixing 

and rock dissolution. However, it fails to propose specific geochemical pathways, 

such as mineral dissolution kinetics or isotopic fractionation, to explain the 

heightened sensitivity of certain components (e.g., δD, δ¹⁸O). This lack of 

mechanistic insight limits the study’s contribution to understanding earthquake 

preparation processes and weakens its theoretical foundation. 

Response: Thank you for your comment. Regarding the general mechanisms 

behind hydrochemical anomalies, it is recognized that pre-earthquake stress 

accumulation leads to fresh mineral surface exposure during micro-fracturing, which 

enhances water–rock interaction and can increase ion concentrations as well as δ18O 

values (a process often termed δ18O shift). For example, the rise in Na⁺ concentrations 

before earthquake may result from a switchover to nonstoichiometric dissolution of 

analcime at fresh rock surface with preferential release of Na+ into groundwater 

(Andrén et al., 2016). Similarly, the increase in δ18O before the M 6.6 Tottori earthquake 

in southwestern Japan has been attributed to enhanced water–rock interaction due to 

rock strain during the earthquake preparation process (Onda et al., 2018). Furthermore, 

fluid mixing following aquifer breaching is also a widely accepted mechanism for pre-

earthquake hydrochemical anomalies. The mixing of fluids with significantly different 

isotopic and hydrochemical compositions can cause variations in δD, δ18O, and ion 

concentrations. Previous studies in Iceland have reported pre-earthquake increases in 
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Na⁺ concentration, δD, and δ¹⁸O due to mixing with different groundwater (Skelton et 

al., 2014; Skelton et al., 2024). A similar phenomenon includes elevated electrical 

conductivity (EC) and ion concentrations before the Mw5.0 Mudanya earthquake in 

western Turkey (Yakupoglu et al., 2025). In contrast, post-seismic periods often involve 

mixing with shallow water, which may lead to decreases in ion concentrations and 

isotopic values, as observed after the Mw7.0 Kumamoto earthquake in Japan (Hosono 

et al., 2020) and the M5.0 Tonghai earthquake in China (Shi et al., 2020). These cases 

represent detailed, event-specific mechanistic studies. However, since the present study 

focuses on anomaly detection across multiple earthquakes with diverse hydrochemical 

changes, it remains difficult to identify a universal mechanism that explains all 

anomalies. Therefore, based on the dominant patterns reported in previous research, our 

model was designed to detect high-value anomalies, which better reflect typical pre-

earthquake observations. 

The higher sensitivity of δD and δ¹⁸O may be attributed to the fact that stable water 

isotopes are more conservative than hydrochemical ions. After fluid mixing, the 

isotopes are not easily altered by short-term chemical processes such as dissolution or 

precipitation, and instead follow a simple mixing process. In contrast, the ion 

concentrations can be easily influenced by multiple concurrent processes, such as 

precipitation/dissolution, cation exchange, adsorption/desorption, and redox reactions, 

which cause the thermal water tend to ion re-equilibrate, making their responses to 

earthquakes more complex and less sensitive. 
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7. #The discussion asserts that the model outperforms single-component methods and 

compares favorably to Zhu et al. (2024). However, the reported false alarm rate 
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(FAR, ~0.28–0.33) is relatively high for practical forecasting applications. The 

absence of statistical tests to confirm the model’s superiority, combined with an 

overemphasis on TS and POD without addressing the operational impact of false 

alarms, overstates the model’s practical utility. 

Response: We thank the reviewer for this comment. Our statement that the model 

“outperforms single-component methods” refers exclusively to an internal comparison 

within our own model’s framework. As shown in Figures 7, 8, and 9, the multi-

component joint warning result demonstrably achieves a higher TS and POD values 

than the result from any single-component used in isolation. This improvement 

represents the central thesis of our method: integrating multiple hydrochemical 

components mitigates limitations and environmental noise inherent in individual 

components, thereby highlighting the unique advantage of multi-component synergy in 

constructing a more robust and accurate anomaly detection model.  

Our intention was not to claim superiority over Zhu et al. 2024, but to use their 

recent and comprehensive study as a benchmark to demonstrate that our model's 

performance (POD: 0.83–0.95, TS: 0.59–0.70) is comparable to they reported best-

performing method (LOF, POD of ~0.7, R-score of ~0.6, which is analogous to a TS of 

~0.6). 

We fully agree with the reviewer that a FAR of 0.28–0.33 is a significant 

consideration for operational forecasting, and we did not intend to understate this point. 

This high FAR reflects a challenging trade-off in anomaly detection, wherein 

maximizing the POD often incurs a higher FAR. The primary contribution of our model 

is its enhanced sensitivity to potential anomalies through a multi-component approach, 

as demonstrated by the high POD and TS. The TS serves as an integrated metric that 

balances both POD and FAR, any increase in FAR would correspondingly lower the 

TS. We acknowledge that high FAR remains a common challenge in the field, which 

often prioritizes sensitivity to avoid missing potential anomalies. Therefore, our model 

is designed not as a standalone forecasting tool, but as an assistive component aimed at 
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identifying hydrochemical anomalies. For practical applications, we recommend 

integrating its outputs with other geophysical, geodetic, and geological data to form a 

more robust and reliable seismic risk assessment.  

In the revision, we have revised the manuscript on line 463 to address lack of 

clarity and to avoid any overstatement of utility: 

At QJ, the model provides 21 effective warnings for 22 earthquake events (POD 

= 0.95), with 8 false alarms (FAR = 0.28) and a TS of 0.70. At WN, the model generates 

10 accurate warnings for 12 events (POD = 0.83), 5 false alarms (FAR = 0.33), and a 

TS of 0.59. It is noteworthy that while the obtained FAR remains relatively high, which 

is a common challenge in earthquake anomaly detection that prioritize detection 

sensitivity, the TS provides a comprehensive metric that balances both POD and FAR. 

Compared with the internal single-component anomaly detection results from our 

model, the multi-component joint warning results exhibit higher TS values (Figures 7, 

8, 9). This observation demonstrates that multicomponent collaboration mitigates the 

effects of geochemical behavior differences among components, reduces environmental 

interference on individual ions/ion pairs, and consequently enhances the accuracy of 

the anomaly detection model. Zhu et al. (2024) comprehensively evaluated the anomaly 

detection performance of several machine learning algorithms using 2.5 years of 

hydrochemical data from the southeast coast of China. The best-performing local 

outlier factor algorithm achieved an R-score of about 0.6, POD of about 0.7, and FAR 

of about 0.15. The improved anomaly detection model demonstrates comparable 

performance, which confirms its effectiveness. These results indicate the practical value 

of the multi-component model for anomaly identification, though its practical 

application would benefit from integration with other geophysical, geodetic, and 

geological data to further reduce the false alarm burden. 

 

8. #Line 239: The manuscript states that a 15-day moving average is applied to 3-

day resolution hydrochemical data, implying only five measurements per 15-day 
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period. The rationale for averaging over 15 days is not explained, which raises 

questions about the appropriateness of this window size for capturing tectonic 

signals while filtering noise. A justification or sensitivity analysis for this choice is 

needed to ensure methodological rigor.  

Response: Thank you for your insightful comment regarding the choice of the 15-

day moving average. The use of a moving average over this timescale (e.g., 14-day) is 

a well-established methodology in fluid geochemical analysis, as evidenced by its 

application in numerous previous studies (Piersanti et al., 2016; Fu et al., 2017; Zhao 

et al., 2021). We use a 15-day window, which is more applicable to 3-day resolution 

data. Furthermore, the model is applied to enhance the capability for short-term and 

imminent earthquake forecasting (within a 45-day window). So, the moving average 

window time is set to be shorter than the earthquake response time threshold (45 days). 

To ensure methodological rigor, we have added a justification for the 15-day 

moving average at line 235 of the revised manuscript: 

Unlike temperature and pressure, rainfall causes pulsed disturbances, typically 

manifesting as intermittent spikes followed by extended zero-value intervals in 

sampling data. Previous studies typically employ a 14-day moving average to filter out 

such interference, a method that has been established as effective in geochemical 

analysis (Piersanti et al., 2016; Fu et al., 2017; Zhao et al., 2021). To suppress high-

frequency noise from short-term environmental disturbances such as rainfall while 

preserving mid- to low-frequency tectonic signals, a 15-day backward moving average 

is applied to process the 3-day resolution hydrochemistry data. 
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9. Figure 4: For the QJ station, the manuscript reports 22 M ≥ 4 earthquakes, yet 

Figure 4a displays only 11 earthquakes. This discrepancy is unacceptable and 

suggests incomplete data visualization. Similar inconsistencies appear in other 

subfigures, undermining the reliability of the visual representation of results and 

necessitating a comprehensive review of figure accuracy. 

Response: Thank you for raising this important point. In the original Figure 4a, 

the 11 M ≥ 4 earthquakes shown were not meant to represent all recorded earthquake 

events, but specifically those that occurred after the detected Bayesian change points 

and were therefore identified as successfully forecasted by the model. This display 

intended to maintain visual clarity in illustrating the temporal relationship between 

change points and subsequent earthquakes. The evaluation metrics provided alongside 

the figure already offer a comprehensive assessment of forecasting performance, 

including both successful predictions and misses, thereby fully reflecting the 

effectiveness of the Bayesian change point analysis. 

However, we fully acknowledge that displaying all earthquakes improves 

transparency and allows readers to visually correlate all seismic activity with the 

identified change-points. In response to your feedback, we have revised the figure to 

include all M ≥ 4 earthquakes. Successfully detected earthquake events are now 

indicated in black, while those not detected by the model are shown in gray. Similar 

https://doi.org/10.5194/se-7-1303-2016
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revisions have been consistently applied to all other relevant subfigures. 

The revised figure is as follows: 

 

Figure 4. Anomaly detection results from the Bayesian change point (BCP) analysis applied to 

hydrochemical component time series. The black solid line represents the component concentration 

after 15-day moving averaging. The green dashed line indicates the forecasting model of the BCP 

algorithm. The red solid line shows the posterior probability of change points. Yellow stars mark 

earthquake events. Black and gray vertical bars show detected and missed earthquakes respectively. 

The false alarm rate (FAR), probability of detection (POD), and threat score (TS) are evaluation 



 

29 

 

metrics. 

 

# Mirror comments: 

1. #Line 25: The phrase “tailored model parameters for specific hydrochemical 

components” is imprecise. It should specify that parameters are optimized for 

individual components (e.g., Na⁺, δ¹⁸O) based on their distinct geochemical 

responses to seismic stress, as elaborated later (lines 428–431). 

Response: Thank you for this insightful comment. We have revised the phrasing 

on Line 25: 

Parameters are optimized for individual components based on their distinct 

geochemical responses to seismic stress, thereby significantly enhancing the model’s 

performance and adaptability. 

 

2. #Line 42: The term “physicochemical properties” is overly general. To align with 

the study’s focus on hydrochemical components, specify the properties primarily 

affected by crustal stress changes, such as ion concentrations and isotopic ratios. 

Response: Thank you for the insightful comment. We agree that “physicochemical 

properties” was too general. To thoroughly assess the impact of crustal stress changes 

on fluid properties and to highlight the response characteristics of hydrochemical 

components (such as ion concentrations and stable isotope ratios), we supplemented 

case evidence on hydrochemistry. Additionally, the originally cited literature on water-

level variations has been replaced with references pertaining to changes in stable 

isotopes of water. 

These responses often result in significant changes in the physical and chemical 

properties of the fluids, such as their ion concentrations and isotopic ratios (Gori and 

Barberio, 2022; Tian et al., 2023; Skelton et al., 2024). 

References: 
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Skelton, A., Sturkell, E., Mörth, C.-M., Stockmann, G., Jónsson, S., Stefansson, A., 

Liljedahl‐Claesson, L., Wästeby, N., Andrén, M., Tollefsen, E., Gunnarsson Robin, 

J., Keller, N., Geirsson, H., Hjartarson, H., and Kockum, I.: Towards a method for 

forecasting earthquakes in Iceland using changes in groundwater chemistry. 

Communications Earth & Environment, 5(1), https://doi.org/10.1038/s43247-024-

01852-3, 2024. 

 

3. #Line 78: The statement “thermal springs tend to exhibit high stability” may 

mislead readers, as stability is context-specific. Clarify that this refers to their low 

susceptibility to short-term environmental fluctuations (e.g., temperature) 

compared to other fluid systems. 

Response: We appreciate you highlighting the need for greater precision. We have 

revised the manuscript to explicitly state that the stability of thermal springs is discussed 

in comparison to other fluid systems, particularly near-surface groundwater, and to 

clarify that this stability refers to resilience against short-term environmental 

fluctuations. The revised content on Line 78: 

The hydrochemical components (e.g., Na+, Cl−, SO4
2−) of thermal springs tend to 

exhibit greater stability against short-term environmental fluctuations (e.g., temperature, 

short-term rainfall) compared to near-surface cold water systems, alongside deep 

circulation depth, rapid upward migration and limited susceptibility to anthropogenic 

influence. These characteristics help minimise non-seismic noise and allow for a more 

accurate reflection of hydrogeological changes during earthquake preparation 

(Martinelli, 2020; Tian et al., 2024). 

 

4. #Line 96: The reference to Piersanti et al. (2016) is introduced abruptly without 

clarifying its relevance to hydrochemical data. Briefly note that the algorithm, 

originally developed for radon time series, was adapted for multicomponent 

hydrochemical analysis to enhance reader comprehension. 
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Response: Thank you for this helpful suggestion. We have revised the manuscript 

to clarify the relevance of the algorithm by Piersanti et al. (2016). The sentence on Line 

96 has been modified to better explain its original purpose and our adaptation: 

The anomaly detection algorithm originally developed by Piersanti et al. (2016) 

for radon time series was adapted for real-time multicomponent hydrochemical analysis 

in thermal springs within the study area. 

 

5. #Line 155: The description of the water quality analyzer (HQ40D, HACH, USA) 

and its measurement accuracies (0.1°C, 0.01 pH, 1 μS/cm) is tangential to the 

study’s primary focus. Omit or briefly summarize this detail to maintain emphasis 

on the hydrochemical data. 

Response: Thank you for this valuable suggestion. As per your comment, we have 

revised the manuscript (lines 152-156) accordingly. 

Water temperature, pH, electrical conductivity (EC) and hydrochemical 

components for the thermal springs were measured every three days.  

 

6. #Line 163: The list of analyzed ions is overly comprehensive. Specify only the ions 

used in the study to maintain focus and avoid extraneous detail. 

Response: Thank you for your thoughtful comment. The comprehensive ion list 

was included to ensure full data transparency and to perform essential ion-balance 

checks, which are critical for validating measurement quality. The reasons for selecting 

the specific ions used in our analysis, as opposed to this full dataset, are explicitly 

detailed in the manuscript (Line 217). We believe this approach upholds methodological 

rigor while maintaining a focused narrative. 

 

7. #Line 172: The ion balance error equation is presented but not referenced or 

applied elsewhere in the study, rendering it disconnected from the analysis. Clarify 
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its use or remove it to avoid confusion. 

Response: Thank you. We agree that the purpose of the ion balance error equation 

should be made clear in the text. To address this, we have revised the manuscript to 

explicitly state that the calculation was used for quality control purposes, ensuring the 

analytical reliability of the data prior to any further analysis. Furthermore, reference 

and parameter clarifications are provided on lines 170: 

To ensure data accuracy, cation–anion balance error tests were performed for each 

sample as a quality control measure, with all ionic deviations kept within ± 5%, and 

data fulfilling this criterion were included in the subsequent analysis. The ion balance 

error (Appelo and Postma, 2004) is calculated as below:  

𝑖𝑖𝑖𝑖(%) =
∑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − ∑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ∑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

× 100 (1) 

where ∑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represents the sum of cation concentrations (in milliequivalents per 

liter, meq/L), and ∑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 represents the sum of anion concentrations. 

References: 

Appelo, C.A.J., and Postma, D.: Geochemistry, Groundwater and Pollution (2nd ed.), 

A.A. Balkema Publishers, Leiden, 17pp, ISBN04 1536 428 0, 2004. 

 

8. #Line 175: The claim that all earthquakes with M ≥ 4 are “destructive” is 

inaccurate, as destructiveness depends on depth, location, and infrastructure. 

Revise to reflect that M ≥ 4 earthquakes are the study’s focus without implying 

universal destructiveness. 

Response: We fully agree with your suggestion. To ensure more precise 

expression, we have removed “destructive” and the revised version is as follows: 

The anomaly detection model developed in this study focused on forecasting 

(identifying anomalous signals preceding) earthquakes with magnitudes (M) ≥ 4. 

 

9. #Line 188: The text states that QJ was within the preparation zones of 22 M ≥ 4 
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earthquakes, but Table S1 lists 24 events, creating a discrepancy. Clarify the 

correct number in the text to ensure consistency. 

Response: We sincerely appreciate the reviewer’s meticulous attention to data 

consistency. Upon thorough verification: 

Table S1 correctly lists 22 events for QJ: While Table S1 includes 24 total M ≥ 

4 earthquakes (sorted chronologically), only 22 of these events have preparation zones 

encompassing the QJ site. We apologize for any ambiguity caused by the chronological 

sorting of Table S1. 

The manuscript text (22 events) is accurate: The statement "QJ was within the 

preparation zones of 22 M ≥ 4 earthquakes" remains valid and consistent with Table S1 

data. 

Table S1. Catalog of earthquakes meeting the selection criteria during the thermal 

spring monitoring period. 

Date Lon. Lat. 
Depth 
(km) 

M 
Δ (km) Response 

sites QJ WN 
2019/06/24 101.64 24.93 10 5.2 161 － QJ 
2019/08/31 101.95 23.34 13 4.3 109 － QJ 

2019/11/01 102.79 24.39 13 4.0 51 － QJ 

2020/01/15 103.12 25.55 8 4.8 182 － QJ 

2020/01/23 101.86 23.37 15 4.0 115 － QJ 

2020/04/11 101.89 23.67 12 4.1 97 － QJ 

2020/06/16 102.72 22.64 9 5.2 144 － QJ 

2020/07/12 102.52 22.86 11 4.8 123 － QJ 

2021/05/21 99.88 25.70 10 6.7 354 － QJ 

2021/06/10 101.92 24.35 8 5.6 100 － QJ 

2021/06/16 101.90 24.34 8 4.8 101 － QJ 

2021/06/28 101.89 24.31 8 4.9 101 － QJ 

2021/11/16 101.68 22.32 10 5.2 213 135 QJ/WN 

2021/12/24 101.68 22.34 10 6.6 211 133 QJ/WN 

2022/03/05 101.63 22.37 8 4.8 191 131 QJ/WN 

2022/07/22 99.90 21.10 10 6.2 434 338 QJ/WN 

2022/09/05 102.09 29.59 16 6.8 632 676 QJ/WN 

2022/11/19 102.29 23.40 8 5.4 79 42 QJ/WN 
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2022/11/21 102.27 23.43 14 4.1 － 39 WN 

2023/03/03 102.60 22.55 10 4.6 156 129 QJ/WN 

2023/03/23 100.69 22.62 10 4.7 － 159 WN 

2023/05/31 102.65 24.20 16 4.0 33 108 QJ/WN 

2023/08/13 101.86 24.32 10 4.8 104 89 QJ/WN 

2023/11/17 99.35 21.20 10 6.2 467 368 QJ/WN 

“－” means no data. 

 

10. #Line 214: Figure 2 is referenced without specifying its content (e.g., time series of 

which components). Clarify that it illustrates hydrochemical component time series 

(e.g., Na⁺, Ca²⁺, Cl⁻) alongside rainfall and earthquake events for QJ spring to 

guide readers. 

Response: We thank the reviewer for this helpful suggestion. The figure captions 

have been revised to explicitly state the content of Figure 2 and Figure S1. The captions 

now read: 
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Figure 2. Time series of hydrochemical components (Na+, K+, Ca2+, Cl−, SO42−, HCO3−, F−, δD, and 

δ18O), alongside corresponding rainfall and earthquake events for Qujiang spring. 

Figure S1. Time series of hydrochemical components (Na+, K+, Ca2+, Cl−, SO42−, HCO3−, F−, δD, 

and δ18O), alongside corresponding rainfall and earthquake events for Wana spring. 

 

11. Line 299: The evaluation metrics (FAR, POD, TS) are introduced in Figure 4’s 

caption but not defined until later (lines 370–380). Define them first before using 

them to avoid confusion for readers encountering the metrics early. 

Response: We thank the reviewer for highlighting this logical flow issue. The 

results of BCP analysis (Lines 295-314) have been relocated from the original location 
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to the Results and discussion section. The metrics are formally defined immediately 

before their first appearance in Figure 4 (now in Results). The caption retains the 

abbreviated names after their full definitions in text, maintaining visual clarity. 

 

12. Figures 7 and 8 effectively present anomaly detection results, but their captions 

and annotations lack sufficient detail. The figures omit scales or legends for 

posterior probabilities. Revise captions to include legends to enhance accessibility 

and enable independent verification of results. 

Response: Thank you for your valuable feedback regarding the clarity of Figures 

7 and 8. We would like to clarify that Figures 7 and 8 specifically present the primary 

results of the anomaly detection model, while the results from the Bayesian method, 

which serves a supplementary analysis, are separately illustrated in Figure 4. Our initial 

intention was to avoid overcrowding the figures and to maintain a clear focus on the 

respective analyses. Integrating all results into a single figure did, after our try, result in 

visual clutter. To improve coherence, we have repositioned Figure 4 (Bayesian results) 

immediately before Figure 7 in the revised manuscript. This arrangement ensures that 

both sets of results are logically organized and enable independent verification. 

 

13. Line 520: The discussion references “multiple mechanisms” for anomalies (e.g., 

Thomas, 1988) without specifying examples, such as fracture dilation or fluid 

mixing. Briefly list one or two mechanisms to clarify the context. 

Response: Thank you for this insightful comment. We have revised the 

manuscript to explicitly include these mechanisms for clarity on Line 518: 

This observation underscores the complex dynamic mechanisms and regional 

structural differences involved in the earthquake preparation process. The geochemical 

anomalies often arise from the combined effects of multiple mechanisms, such as fluid 

mixing following aquifer breaching or fresh mineral surface exposure during micro-

fracturing, resulting in increased hydrochemical component concentrations (Thomas, 
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1988). 

 

14. Line 574: The phrasing “tailored model parameters… account for their differences” 

is awkward and lacks clarity. Streamline for precision and readability. 

Response: We thank the reviewer for this valuable feedback. We agree and have 

revised the sentence on Line 574 to improve its clarity and flow.  

Parameters are optimized for individual components based on their distinct 

geochemical responses to seismic stress, significantly enhance the model’s performance 

and adaptability. 


